
Every emission you create–every dollar you’ll donate: The
effect of regulation-induced pollution on corporate

philanthropy∗

Seungho Choi†, Raphael Jonghyeon Park‡, and Simon Xu§

Abstract

This paper investigates the role of charitable giving as a form of reputation
insurance by analyzing donations to nonprofits from philanthropic foundations
associated with U.S. corporations that operate polluting facilities. Our empirical
setting exploits the close attainment and nonattainment designation status of
counties under the Clean Air Act as a source of exogenous variation in a firm’s
local pollution. Using regression discontinuity, we find that firms operating in
close attainment counties pollute more and subsequently donate more to local
nonprofits compared to those in close nonattainment counties. Firms maximize
the insurance value of donations by using the most salient forms of charitable
giving and reallocating donations to areas where they pollute the most. Potential
mechanisms that propagate the relation between regulation-induced emissions and
donations to local nonprofits include a firm’s local media coverage, reputational
risk exposure, and history of regulatory noncompliance. Further analysis indicates
that corporate philanthropy benefits firms at the cost of social welfare. Overall,
the evidence suggests that insurance-motives are a key determinant of polluting
firms’ participation in philanthropy.

JEL Classification: G38; L31; M14; Q53
Keywords: corporate philanthropy, environmental regulation, pollution, regression disconti-
nuity

∗We greatly appreciate the comments of Alexey Boulatov, Jasmin Gider, Stefano Giglio, Marcin Kacperczyk,
Haekwon Lee, Ross Levine, Tse-Chun Lin, Elisabetta Magnani, Ulrike Malmendier, Ron Masulis, Christine
Parlour, Manh Pham, Gordon Phillips, Martin Schmalz, Joseph Shapiro, David Sraer, Annette Vissing-
Jørgensen, Wolf Wagner, Reed Walker, Wei Wu, Chelsea Yao, Hong Zhang, Qifei Zhu, and seminar participants
at UC Berkeley Haas School of Business, UC Berkeley Department of Economics, IWH-FIN-FIRE Workshop
2022, Asia Conference on Business and Economic Studies 2022, Frontiers of Factor Investing Conference 2022,
Portsmouth Business School International Conference 2022, CREDIT International Conference in Venice on
Long Run Risks 2022, Haskell & White Academic Conference 2022, University of Bologna Sustainable and
Socially Responsible Finance Conference 2022, KDI Frontiers in Development Policy Conference 2022, and
University of Sydney Business Financing and Banking Research Workshop 2022. We also thank the EPA for
helpful discussions on data. All remaining errors are our own.

†School of Economics and Finance, QUT Business School, Queensland University of Technology, Brisbane,
QLD 4000, Australia; email seungho.choi@qut.edu.au.

‡School of Banking and Finance, UNSW Business School, University of New South Wales, Sydney, NSW
2052, Australia; email jonghyeon.park@unsw.edu.au.

§Haas School of Business, University of California at Berkeley, Berkeley, CA 94720, United States; email
simon xu@haas.berkeley.edu.

1



1. Introduction

Polluting firms are one of the most active participants in corporate philanthropy in the United

States.1 For example, some of the biggest polluters such as Chevron and ExxonMobil not only

rank among the most generous donors in corporate philanthropy but also have long-standing

partnerships with some of the most prolific environmental nonprofit organizations.2 Despite

the active engagement of polluting firms in corporate philanthropy, the fundamental question

of why firms give to charity has received relatively less attention in the existing literature.3

Thus, the objective of this paper is to explore the determinants of corporate philanthropy in

the context of polluting firms.

On the one hand, firms that engage in philanthropy can accrue reputational capital

(Godfrey, 2005; Godfrey, Merrill, & Hansen, 2009) and improve their public image (Madsen &

Rodgers, 2015; Porter & Kramer, 2002). On the other hand, corporate philanthropy could

be a manifestation of agency issues when it is used to secure private benefits of control (Cai,

Xu, & Yang, 2021; Masulis & Reza, 2015). Politically-motivated donations that influence

government decision-makers may even lead to societal welfare loss by distorting policies and

resource allocations to favor donating firms (Bertrand, Bombardini, Fisman, Hackinen, &

Trebbi, 2021; Bertrand, Bombardini, Fisman, & Trebbi, 2020).

This paper provides empirical evidence which robustly suggests that corporate philanthropy

may serve as a salient form of reputation insurance for polluting firms. We study donations

to nonprofit organizations (“nonprofits”) made through a firm’s corporate foundation, which

is arguably the most salient form of corporate philanthropy because foundations usually

bear the same name as their parent company and often serve as the flagship of a firm’s

corporate giving strategy. Our argument is grounded in the insurance-based view of corporate

social responsibility (CSR), whereby CSR can function as an insurance mechanism (Barnett,

Hartmann, & Salomon, 2018; Koh, Qian, & Wang, 2014; Shiu & Yang, 2017) by mitigating

negative reactions associated with socially irresponsible actions (Flammer, 2013; Freund,
1In general, corporate philanthropy has grown substantially over the past decade. According to Giving

USA 2019, corporate charitable giving grew by 5.4% in 2018, to a total amount of $20.05 billion. Of this
amount, corporate foundation grantmaking constituted $6.88 billion, an increase of 6.5% from 2017.

2Both Chevron and ExxonMobil have charitable programs with nonprofit organizations such as Conservation
International and the Wildlife Conservation Society. For more details, refer to “25 of the most generous
companies in America,” Business Insider, June 23, 2016 and https://news.mongabay.com/2016/05/big
-donors-corporations-shape-conservation-goals/.

3One obvious explanation of why firms engage in corporate philanthropy is due to donations being tax-
deductible. However, the cash flows generated through tax shields are typically much lower than the donated
amount. Hence, tax motivations cannot fully explain why firms support charitable activities beyond the tax
benefits that they receive (Navarro, 1988).
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Nguyen, & Phan, 2021; Hong, Kubik, Liskovich, & Scheinkman, 2019; Luo, Kaul, & Seo,

2018; Luo & Bhattacharya, 2009). The key focus of this paper, however, is not on the value

implications and potential cost mitigation benefits of corporate donations, which has been

previously documented in the literature, but rather on the changes in a firm’s donation

behavior in response to changes in pollution that could plausibly be driven by insurance

motives.

To provide evidence of the insurance-motive, we assemble a comprehensive dataset that

links firms’ localized pollution to their local donation activities and analyze how changes

in local pollution affect corporate philanthropy. Firms’ pollution is localized because their

emissions are restricted to the areas where they operate plants.4 Likewise, the impact of

donations is also likely to be localized because the majority of nonprofits are established to

tackle issues in the local community. Thus, one cannot study the determinants of corporate

philanthropy of polluting firms by simply aggregating pollution and donations at the firm-level.

In this study, we use granular data on firm pollution and donations to nonprofits at the

firm–county–year level, which enables us to more accurately measure the localized nature of

pollution and link it with geographic variation in donations to nonprofits to answer questions

that cannot be addressed with firm–year level data.5

The insurance-motive of corporate philanthropy for polluting firms is based on the notion

that donations serve as a reputation-building tool to help build social capital with the local

community where they operate polluting plants. Studies have documented that firms benefit

the most from CSR engagements that have a local impact on their communities and employees

(Byun & Oh, 2018; Husted, Jamali, & Saffar, 2016). To provide some context of the importance

of firms’ reputational capital within local communities, the relationship between Montana

Resources and the local community in Butte, Montana, serves as an instructive example.

Montana Resources operates several polluting facilities in the Greeley neighborhood of Butte.

Although the firm does not violate any pollution standards in the area, its pollution abatement

procedures go above and beyond the requirements, with the firm’s manager of environmental

affairs stating that “If there is a problem [with pollution] in that community, I want to know

about it”. In response, local community members that are part of the nonprofit Greeley
4The type of air pollutant examined in this paper is also inherently local. Specifically, we only focus on

“ground-level” ozone pollution, which is a localized type of man-made air pollutant produced by the reaction
between various chemicals emitted from facilities. As a result, ground-level ozone pollution is found in close
proximity to the surrounding areas where plants operate.

5With few exceptions, past research on corporate donations are generally conducted at the firm–year level.
At this level of aggregation, the donation distribution is smoothed out and one loses the geographic variation
in donations that allows for connections to be made with localized pollution.
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Neighborhood Community Development Corporation have repeatedly emphasized that they

are not trying to hamper or close the firm’s operations, but rather work with the firm to create

a clean environment.6

If the insurance-motive drives corporate philanthropy, then we expect firms that operate

plants with a high level of pollution in a given area to make more donations to nonprofits

located in the same area relative to those that operate plants with less pollution because

the insurance value of donations is greater for the former. As an illustrative example of

the insurance value that corporate philanthropy may provide, consider the case of Allied

Chemical Corporation. Allied was initially fined $13.2 million in 1977 for its Kepone pollution

in Virginia’s James River. In response, the company made a charitable donation of $8 million

to a Virginia environmental fund. When handing down the final verdict, the U.S District

Judge presiding over the case decided to reduce Allied’s fine down to $5 million and explicitly

stated that Allied “has been a good corporate citizen” and “deserved credit for establishing the

environmental fund”.7

Empirically, however, examining the causal effect of local pollution on local donation

activities is a challenging exercise because a firm’s level of pollution and donation to nonprofits

are arguably endogenous choices made by the firm. The decision to donate is not a random

choice since preexisting differences in unobservable firm characteristics may lead to firms with

different levels of pollution engaging in philanthropy to different extents. The local nature of

pollution and donations further complicates the matter since a credible identification strategy

would need to use localized exogenous shocks to pollution to study the causal effect on local

donation activities. The ideal experiment would be to randomly assign firms in areas where

they operate plants into a “high polluting group” and a “low polluting group” and compare

their local donations following this “treatment”. Obviously, such an ideal experiment would

be unreasonably difficult to implement in practice.

Our identification strategy uses a quasi-natural experiment that is very close in spirit to

this ideal experiment. We rely on a key regulatory component of the Clean Air Act (CAA),

namely the yearly designation of counties into attainment or nonattainment status with

respect to the National Ambient Air Quality Standards (NAAQS) for ground-level ozone.8

Under the NAAQS, the federal United States Environmental Protection Agency (EPA) sets

maximum allowable concentrations of ozone pollution. Counties with ozone pollution levels
6https://khn.org/news/article/montana-mine-dust-butte/.
7This example comes from “Allied’s Fine Cut To $5 Million for Kepone Pollution,” The Washington Post,

February 2, 1977.
8Henceforth, we refer to ground-level ozone as simply ozone.
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above the NAAQS threshold are deemed to be noncompliant (i.e., nonattainment), while those

with pollution levels below the threshold are considered compliant (i.e., attainment). The

implication for firms is that those operating polluting plants in nonattainment counties face

stringent regulations and mandatory pollution abatement requirements compared to those in

attainment counties (Becker, 2005; Becker & Henderson, 2000, 2001; Greenstone, 2002). Since

nonattainment regulations are binding and enforced on polluting plants, they have significant

ramifications on a firm’s polluting behavior. In particular, due to the differences in regulatory

stringency, firms have a greater incentive to pollute in attainment counties (Bento, Freedman,

& Lang, 2015; Gibson, 2019; Greenstone, 2003).

To determine compliance, each year, the EPA calculates a summary statistic for each

county based on ozone monitor readings, known as a design value (DV). Counties with DVs

above the NAAQS threshold are designated nonattainment, while those with DVs below

the threshold are designated attainment. Our empirical strategy exploits the variation in

county-level DVs around the NAAQS threshold by using a regression discontinuity design

(RDD) approach. Specifically, we compare firms operating polluting plants in counties with

DVs slightly above the NAAQS threshold so that they are marginally in violation (“close

nonattainment”) with firms operating plants in counties with DVs slightly below the threshold

so that they are marginally in compliance (“close attainment”). The outcome variable that

we examine is the amount of subsequent donations to nonprofits located in the same county

(“local nonprofits”) where the firm operates its polluting plants. Since moving from a DV

above to below the NAAQS threshold sharply increases the probability of attainment and

hence incentives to pollute, these close attainment and nonattainment designations provide a

source of random variation in a firm’s level of local pollution that can be used to estimate the

causal effect on its donation activities to local nonprofits.

Our RDD approach uses a sample of 1,079 unique firms with corporate foundations,

operating polluting plants in 857 unique counties over the period 1999–2018. Consistent with

the existing literature, we find that a county’s attainment status has a significant impact

on local polluting plants’ ozone emissions (Greenstone, 2003), with firms operating plants in

close attainment counties emitting up to 51% more ozone than those in close nonattainment

counties. Our main results are consistent with the insurance-motive and show that firms

operating polluting plants in close attainment counties subsequently donate significantly more

to local nonprofits relative to those operating in close nonattainment counties. Furthermore,

the results are primarily driven by firms that operate historically heavy ozone-polluting plants,
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rather than by those that operate only non-ozone emitting plants, consistent with the fact that

the insurance value of donations is greater for the former set of firms because the relaxation in

regulation due to close attainment status increases their incentives to continue emitting ozone.

If reputation insurance is a main driver of philanthropy, then we expect firms to use

the most salient forms of donations to maximize the insurance value of these donations. In

line with this prediction, we find that firms in close attainment counties donate significantly

more to local nonprofits in the health, social and human services, community development,

and environment categories relative to those in close nonattainment counties. There are no

differential effects in donation outcomes for less-relevant categories such as art, religion, sports,

etc. Lastly, we ensure that our results are robust to a variety of alternative RDD specifications

and placebo tests.

We provide additional evidence of the insurance-motive of philanthropy by using another

distinct source of variation in our data. Polluting firms may donate to nonprofits located

in many counties, but may not necessarily operate plants in all of those counties. Since the

probability of an adverse event happening is greater in counties where firms operate polluting

plants, the expected insurance value of donations is greater in these counties compared to

those where the firm does not operate plants. We find that firms shift donations away from

counties where they have historically made donations to but do not operate plants and

toward attainment counties where they operate plants. Our results are consistent with the

interpretation that firms reallocate donations to areas where they pollute the most and hence

maximize the expected insurance value of such donations.

Our next set of analysis focuses on the plausible mechanisms that could propagate the

relation between regulation-induced emissions and donations to local nonprofits. We show

that local media coverage is a potential channel through which firms use to increase their

reputational capital. In particular, we find that the closure of a local newspaper in a close

attainment county leads to a decrease of roughly 63% in donations to local nonprofits relative

to other close attainment counties without any closures. Another channel that influences a

firm’s donation activities is its reputational risk exposure to media news of their CSR-related

incidents. Our results show that firms with a history of high reputational risk exposure donate

more to local nonprofits in close attainment counties, consistent with the notion that these

firms benefit the most from the insurance value of donations. In a similar channel, we find

that firms with a history of publicized regulatory noncompliance also donate more to local

nonprofits in close attainment counties, in line with the view that firms with more regulatory
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noncompliance risk derive more insurance value from donations.

In our final set of analysis, we expand our focus to society’s perspective and examine the

implications for social welfare by comparing the social damages associated with the regulation-

induced pollution and the social benefits from the corresponding donations. Through this

exercise, we are able to provide some insight into whether firms are underpaying or overpaying

for the insurance value they receive from their donations and determine whether corporate

philanthropy benefits firms at the cost of social welfare. We find that the marginal increase

in mortality-related damages associated with the pollution from firms operating plants in

close attainment counties exceeds the marginal increase in donations to local nonprofits by

these firms. On average, for every ton of ozone emitted by a firm operating plants in close

attainment counties, the firm donates $1,011.99 to local nonprofits while creating damages to

society worth $3,430.59. Therefore, our results indicate that firms benefit from the insurance

value of corporate philanthropy at the cost of social welfare.

Our research contributes to the burgeoning literature on the motivations of firms to engage

in corporate philanthropy. One strand of literature shows that corporate philanthropy can

reflect agency problems because it can be used to enhance CEOs’ personal utility through the

consumption of private benefits of control (Brown, Helland, & Smith, 2006; Masulis & Reza,

2015; Yermack, 2009). However, these studies primarily focus on the variation in donations

driven by agency issues by examining the contribution of funds from firms to foundations

and direct donations from firms to nonprofits, while we focus on the geographic variation

in donations by studying the publicly observable distribution of funds from foundations to

nonprofits.9 Cai et al. (2021) find evidence in support of the agency motive by showing

that CEO compensation is higher at firms making affiliated donations.10 Other studies have

documented corporate philanthropy as a political tool to obtain favorable regulatory treatment
9Our data is also different from those used in the existing literature on agency motives. In particular, these

studies use aggregated data that reports the total amount of direct and indirect donations at the firm–year
level. Direct donations refer to the funds that are distributed to nonprofits without passing through the firm’s
foundation. Such donations are generally unobservable because firms are not required to disclose publicly
the recipients of their directed donations. Indirect donations refer to the funds that a firm contributes to its
foundation. However, the distribution of such funds from the foundation to nonprofits may not necessarily
occur until a future point in time. The building block of our data is at the nonprofit–firm–year level because
we examine donations made through corporate foundations, which are publicly observable via foundation
disclosures. Another advantage of the granularity of our data is that we are able to exploit geographic variation
in donations since we observe the nonprofit recipients. This geographic distribution is a key component of our
identification strategy because it allows us to link the allocation of donations across different counties with
varying levels of pollution.

10Although Cai et al. (2021) use a similar set of donations data as ours, their focus is on the variation in
the small portion of donations that are made to affiliated nonprofits at the firm–year level, while we employ
donations to all nonprofits to study the geographic variation at the firm–county–year level.
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(Bertrand et al., 2021, 2020; Wang & Qian, 2011) or to gain competitive advantages (Baron,

2001; Choi, Park, & Xu, 2022b; Navarro, 1988). Our paper adds to the literature on the

determinants of corporate philanthropy by showing that the insurance-motive is a distinct

factor for participating in corporate philanthropy.

Our research also contributes to the understanding of how changes in a firm’s local polluting

behavior impact on its local CSR. Corporate philanthropy is a very nuanced type of CSR

because shareholders often view charitable giving as a short-term cost with no meaningful

long-term benefits for the business (Bénabou & Tirole, 2010). Consequently, much of the

prior research on corporate philanthropy has focused on the value implications of donations

at the firm-level (Brammer & Millington, 2008; Cuypers, Koh, & Wang, 2016; Elfenbein &

McManus, 2010; Lev, Petrovits, & Radhakrishnan, 2010; Wang, Choi, & Li, 2008). On the

side of pollution, a considerable body of work has been dedicated to examining the drivers of

firm pollution (Akey & Appel, 2021; Bartram, Hou, & Kim, 2022; Kim, Wan, Wang, & Yang,

2019; Levine, Lin, Wang, & Xie, 2018; Shive & Forster, 2020; Xu & Kim, 2022) and how stock

markets react to pollution-related environmental violations (Flammer, 2013; Karpoff, Lott, &

Wehrly, 2005; Liu, Cheong, & Zurbruegg, 2020). To the best of our knowledge, we provide the

first empirical analysis that examines how firm pollution impacts on corporate philanthropy

at the local level.

Finally, our findings improve our understanding of how environmental regulations affect

corporate philanthropic activities. The environmental economics literature has utilized county-

level attainment and nonattainment designation status as an instrument for emissions to

study health outcomes (Bishop, Ketcham, & Kuminoff, 2022), industrial activity (Becker &

Henderson, 2000; Greenstone, 2002; List, McHone, & Millimet, 2004; List, Millimet, Fredriksson,

& McHone, 2003), housing prices (Bento et al., 2015; Chay & Greenstone, 2005; Grainger,

2012), employment (Curtis, 2020; Kahn & Mansur, 2013), labor reallocation (Walker, 2011,

2013), productivity (Greenstone, List, & Syverson, 2012; Shapiro & Walker, 2018), earnings

(Isen, Rossin-Slater, & Walker, 2017), and pollution substitution (Gibson, 2019; Greenstone,

2003). We contribute to this literature by using attainment designations to examine the effects

of regulation-induced pollution on firms’ corporate philanthropy.

2. Background

The CAA requires the EPA to set NAAQS for six pollutants: carbon monoxide, nitrogen

dioxide, ozone, sulfur dioxide, particulate matter, and lead. We focus on ozone because

counties most often fail to meet NAAQS standards by exceeding ozone limits, rather than
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by violating the NAAQS for the other pollutants (Curtis, 2020).11 As a result, ozone offers a

much larger treatment group of counties for our analyses.12

Each year, the CAA also requires the EPA to designate each county either as being in

attainment or out of attainment (nonattainment) with the NAAQS. Attainment determinations

rely on daily and hourly readings from ozone monitoring stations across the United States. To

assess compliance, the EPA calculates an annual county-level summary statistic using monitor

readings across the county, known as a DV. Counties with DVs above the threshold for a given

standard are considered to be out of attainment (i.e., nonattainment) with the standard, while

counties with DVs below the threshold are in attainment. As shown in Internet Appendix

Table IA.1,13 during our sample period from 1999 to 2018, the EPA implemented four different

ozone standards: i) the 1-Hour Ozone (1979) standard with a threshold of 0.12 ppm from

1999 to 2003; ii) the 8-Hour Ozone (1997) standard with a threshold of 0.08 ppm from 2004

to 2011; iii) the 8-Hour Ozone (2008) standard with a threshold of 0.075 ppm from 2012 to

2017; and iv) the 8-Hour Ozone (2015) standard with a threshold of 0.070 ppm in 2018.14

For nonattainment counties, the EPA requires the state to submit a SIP (state implemen-

tation plan) and also implements its own requirements. SIPs indicate how the state will bring

nonattainment counties back into compliance with the NAAQS (US EPA, 2013). While SIPs

may vary from state to state, they must follow EPA’s guidelines and be approved by the EPA.

Failure to submit and execute an acceptable SIP can result in federal sanctions, including

withholding federal grants, penalties, and construction bans on new polluting establishments.

Environmental regulations in nonattainment counties are intended to be stringent and involve

regulatory actions to curb emissions.15 Existing studies show that nonattainment designations

are effective at reducing pollution levels, and much of this reduction is a result of increased

firm compliance, implying that nonattainment regulations are binding for polluting plants
11Focusing on ozone is also important economically because the largest health benefits from the CAA are

derived from ozone regulations (Muller, Mendelsohn, & Nordhaus, 2011). Unlike other pollutants such as
particulate matter whose negative health effects may not become apparent until decades later (Bishop et al.,
2022), relatively short-term exposure to ozone could lead to severe health effects.

12Another advantage with focusing only on ozone is that the NAAQS specifies only one primary standard
for ozone, while there exists both a primary and secondary standard for other pollutants such as particulate
matter. The existence of only one standard for ozone allows us to implement a RDD approach to study the
effect of ozone emissions on donations.

13In this table, the name of each ozone standard is based on the year in which the new NAAQS was proposed.
The effective date is when the EPA actually implemented that standard.

14The thresholds used to determine compliance usually decrease over time because they are based on
exogenous revisions that reflect new scientific research on the ongoing health effects of air pollution at that
point in time (Gibson, 2019).

15For example, large pollution sources are required to install the cleanest available technology, regardless of
costs. Moreover, any emissions from new or expanding sources must be offset from an existing source located
in the same county before commencing operations.
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(Chay & Greenstone, 2003; Henderson, 1996).

In attainment counties, polluting plants face more lax regulatory standards and significantly

less emission limits.16 Due to the regulatory differences in emission limitations, firms with

polluting facilities located in attainment counties are allowed to emit substantially more

ozone than those located in nonattainment counties (Greenstone, 2003). We exploit the

sharp increase in attainment probability when a county’s DV moves from above to below

the NAAQS threshold and the corresponding change in a firm’s polluting behavior stemming

from attainment designations to study the impact of increased emissions on a firm’s donation

activities to local nonprofits.

3. Conceptual framework

In this section, we describe the conceptual framework underpinning the insurance-motive of

corporate philanthropy for polluting firms and derive testable implications.

3.1. Insurance-motives for corporate philanthropy

The motivations for participating in corporate philanthropy depends critically on a firm’s

operating environment (Ioannou & Serafeim, 2012; Liang & Renneboog, 2017). In this paper, we

argue that changes in a firm’s local polluting behavior stemming from environmental regulations

can influence its local charitable giving. In particular, we posit that reputation insurance

is a key determinant of polluting firms’ donation activities when changes in environmental

regulation increases their incentives to pollute.

Due to the differences in regulatory stringency, it is well-documented that firms operating

facilities in attainment counties pollute significantly more than those operating in nonattain-

ment counties (e.g., Bento et al., 2015; Gibson, 2019; Greenstone, 2002, 2003). Although the

lax regulations in attainment counties incentivize firms to pollute more, they could also lead to

negative consequences. For example, institutional investors have started to place considerable

attention on the negative externalities of firms’ emissions through divestments (Azar, Duro,

Kadach, & Ormazabal, 2021; Kim et al., 2019) and activism campaigns (Akey & Appel, 2020;

Naaraayanan, Sachdeva, & Sharma, 2021). In addition, an increase in emissions can lead to

additional penalties (Xu & Kim, 2022), greater compliance costs (Blundell, Gowrisankaran, &

Langer, 2020), and losses in stock price valuations (Karpoff et al., 2005).

Given the potential costs associated with an increase in emissions, studies have shown that

firms can use corporate philanthropy as a tool to offset such costs in areas where they operate
16Large-scale investments involve less expensive pollution abatement equipment and pollution offsets are not

necessary.
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polluting plants (Godfrey, 2005; Godfrey et al., 2009). In particular, philanthropy serves as a

salient form of reputation insurance; firms that undertake philanthropy accrue reputational

capital within their local community, which pays off when adverse events occur (Luo et al.,

2018). More generally, our reasoning is supported by the insurance-based view of CSR, whereby

CSR provides protection against negative outcomes by harnessing the goodwill of stakeholder

groups (Lev et al., 2010; Wang et al., 2008) and insures the firm against socially irresponsible

actions (Barnett et al., 2018; Flammer, 2013; Freund et al., 2021; Hong et al., 2019; Koh

et al., 2014; Shiu & Yang, 2017). The insurance-motive for corporate philanthropy has a

straightforward testable implication in our setting. Since attainment status is associated with

an increase in emissions, firms operating plants in counties with DVs that are marginally in

compliance with the NAAQS threshold are predicted to donate more to local nonprofits relative

to those operating in counties with DVs that are marginally in violation of the threshold.

3.2. Donations in operating versus non-operating counties

Polluting firms may donate to nonprofits located in two types of counties, namely those where

they operate plants and those where they do not operate plants. Since the probability of

an adverse event occurring is greater in counties where firms operate polluting plants, the

expected value of insurance from every dollar donated is greater in such counties compared to

counties where they do not operate plants (Parkin & Wu, 1972). Additionally, a stylized fact

of corporate foundations’ grantmaking is that their overall charitable giving across all counties

remains relatively stable over time even if there are fluctuations in the firms’ contributions to

their foundations in a given year (Petrovits, 2006; Sansing & Yetman, 2006; Webb, 1994).17

Thus, if the insurance-motive is a driving factor for donations, then given an exogenous shock

in firms’ incentives to pollute in a given county due to localized regulatory changes, firms

will maximize the insurance value of their donations by internally reallocating donations from

counties where they do not operate plants to counties where they operate plants (Billett

& Mauer, 2003; Shin & Stulz, 1998). Taken together, another testable implication of the

insurance-motive for corporate philanthropy is that in order to satisfy the increase in donations

in close attainment operating counties, firms reallocate donations away from other counties in

which they have historically made donations to but do not operate plants there and toward

close attainment counties where they operate polluting plants.
17The literature has documented multiple reasons as to why foundations smooth their distributions over

time including earnings management (Petrovits, 2006), tax-induced incentives (Sansing & Yetman, 2006), and
to maintain a steady level of corporate goodwill (Webb, 1994).
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3.3. Propagating channels

In this section, we discuss the potential mechanisms that could propagate the relation between

regulation-induced emissions and donations to local nonprofits. The local media is a possible

channel that firms use to improve their reputational capital because it helps disseminate

news of their charitable activities, allowing them to accrue reputational capital by positively

shaping the local community’s perceptions of such donations (Luo & Bhattacharya, 2006).

Studies have shown that firms with better CSR performance receive more favorable media

coverage (Cahan, Chen, Chen, & Nguyen, 2015), with media coverage of locally-oriented CSR

being the most value-enhancing (Byun & Oh, 2018). In turn, local news reporting is an

important determinant of firms’ reputation (Dyck, Volchkova, & Zingales, 2008; Gurun &

Butler, 2012; Miller, 2006), with more positive media coverage leading to an improvement in

firms’ reputational capital among the local community (Liu & McConnell, 2013). Additionally,

recent work by Heese, Pérez-Cavazos, and Peter (2022) document that the local media is an

effective monitor of corporate misconduct, with local newspaper closures leading to an increase

in local facility-level violations because firms face less scrutiny from the public.

To study the role of local news coverage on propagating the relation between close

attainment designation status and donations to local nonprofits, we follow Heese et al. (2022)

and study the consequences of local newspaper closures on donation outcomes. If reputation

insurance drives firms’ philanthropic efforts, then we expect firms to decrease donations to local

nonprofits in close attainment counties with a local newspaper closure because the insurance

value of such donations decreases given a reduction in local news coverage of their charitable

activities.

Another channel that could influence a firm’s donations to local nonprofits in close

attainment counties is the firm’s reputational risk exposure to media news of their CSR-

related incidents. Firms that have higher emissions tend to experience a higher frequency of

environmental-related incidents covered by the media news (Hsu, Li, & Tsou, 2022). Prior

research shows that shareholders react negatively to news about CSR incidents (Flammer,

2013; Karpoff et al., 2005; Krueger, 2015). Additionally, Glossner (2021) and Yang (2021) both

show that a firm’s past history of news-based CSR incidents is the best predictor of future

incidents. Therefore, if insurance-motives are driving philanthropy, then we expect firms with

a history of high reputational risk exposure to CSR incidents to increase their donations to

local nonprofits, relative to those with less reputational risk exposure.

In a similar vein, we also examine a firm’s history of publicized regulatory noncompliance
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based on regulatory incidents. Firms with a history of regulatory noncompliance are subject to

greater regulatory scrutiny (Blundell et al., 2020), which increases their regulatory compliance

costs (Blundell, 2020), especially if such noncompliances are publicly available (Johnson,

2020). Thus, the insurance-motive of philanthropy predicts that firms with a history of

regulatory noncompliance should increase donations to local nonprofits, relative to firms with

less regulatory incidents.

4. Data

4.1. Firms’ ozone pollution

We use pollution data from the EPA’s Toxics Release Inventory (TRI) database, which contains

information on the disposal and release of over 650 toxic chemicals from more than 50,000

plants in the U.S. since 1987. Industrial facilities that fall within a specific industry (e.g.,

manufacturing, waste management, mining, etc), have ten or more full time employees, and

handle amounts of toxic chemicals above specified thresholds must submit detailed annual

reports on their releases of toxins to the TRI. The TRI provides self-reported toxic emissions

at the plant-level along with identifying information about the facility such as the plant’s

name, county of location, industry, and parent company’s name.18

Since we only focus on ozone, we classify a facility’s emissions of toxic chemicals into

ozone pollutants and non-ozone pollutants.19 In any given year, we calculate a facility’s total

amount of ozone emissions as the amount of chemical emissions that are classified as volatile

organic compounds or nitrogen oxides, both precursors to ozone formation.20 Although the

TRI data provides information on chemical emissions through the ground, air and water, we

only consider emissions through the air because the NAAQS only regulates air emissions.

To obtain parent companies’ financial and stock price information, we manually match the

TRI parent company names to those in Compustat and CRSP. We aggregate a firm’s ozone

emissions across all facilities in a given county since our analysis is at the firm–county–year

level. Internet Appendix Table IA.2 lists the three-digit NAICS industries in TRI that are
18While the TRI data are self-reported, the EPA regularly conducts quality analyses to identify potential

errors and purposefully misreporting emissions can lead to criminal or civil penalties (Xu & Kim, 2022).
Additionally, most reporting errors are due to changes in reporting requirements in the early years of TRI
data collection (Bui & Mayer, 2003; De Marchi & Hamilton, 2006), which leaves our study unaffected since
our sample period begins from 1999.

19We use the mapping from TRI chemicals to CAA criteria pollutants from Greenstone (2003). However,
additional chemicals have been introduced into the TRI since the creation of the mapping. Thus, we contacted
the EPA and also hired a Ph.D. chemist in atmospheric science to classify the remaining chemicals.

20Ozone is not directly emitted by plants, but rather formed through chemical reactions. We refer to emitters
of ozone precursors as ozone emitters/polluters.

13



included in our sample. Similar to Akey and Appel (2021), the most common industries are

chemical manufacturing (12.97% of sample), fabricated metal product manufacturing (12.64%),

and transportation equipment manufacturing (8.22%). The final TRI sample consists of 89,481

firm–county–year observations from 1999 to 2018.

4.2. Corporate foundations

Data on charitable donations by foundations linked to corporations come from Foundation-

Search, which provides funding information based on Internal Revenue Service (IRS) 990-PF

forms for more than 120,000 active foundations. The starting point for our sample is the

companies in the S&P 1500. We match firms with their foundations using the foundation

directory from Candid. Since we only focus on polluting firms, we restrict sample of corporate

foundations to those that are owned by parent firms of TRI facilities.

Once we establish a link between a firm and its foundation, the donation record is obtained

from FoundationSearch. For each grant, FoundationSearch reports the amount, the recipient’s

name, city, and state, as well as a giving category created by the database.21 For observations

that are missing information regarding the city and/or state where the grant recipients are

incorporated, we match the recipient name in FoundationSearch to a master list of all nonprofits

from the IRS Exempt Organizations Business Master File to obtain the precise address of the

recipient. We collect a total of 327,132 grants made to nonprofits in the United States for the

sample period from 1999 to 2018.22 We aggregate a firm’s foundation donations across all

nonprofits in a given county to form a sample of 101,573 observations at the firm–county–year

level.

4.3. Ozone design values

We obtain monitor-level ozone concentrations from the Air Quality System (AQS) database

maintained by the EPA. For each ozone monitor, the database includes ozone concentration

readings and the county location of the monitor. We use these ozone concentrations to

calculate DVs, which are statistics that the EPA uses to determine whether a county is in

compliance with the NAAQS each year.23 From 1999 to 2003, we use the 1-Hour Ozone (1979)

standard with a NAAQS threshold of 0.12 ppm. Under this standard, monitor-level DVs are
21The 10 categories are: Arts & Culture, Community Development, Education, Environment, Health,

International Giving, Religion, Social & Human Services, Sports & Recreation, and Miscellaneous Philanthropy.
22Following Bertrand et al. (2020), we winsorize the dollar amount of donations at the highest 1 percent of

the values to account for extremely large donations.
23We only include monitor–year observations that are not affected by “extreme natural events” beyond

human influence, occurrences that are noted in the AQS data.
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calculated as the annual daily maximum hourly average concentration. From 2004 to 2011, we

use the 8-Hour Ozone (1997) standard with a NAAQS threshold of 0.08 ppm. From 2012 to

2017, we use the 8-Hour Ozone (2008) standard with a NAAQS threshold of 0.075 ppm. In

2018, we use the 8-Hour Ozone (2015) standard with a NAAQS threshold of 0.070 ppm. For

each of the standards from 2004 onwards, monitor-level DVs are calculated as the three-year

rolling average of the annual fourth highest daily maximum 8-hr ozone concentration. The rule

used to compute the DVs and the relevant thresholds for each ozone standard are summarized

in Table IA.1 of the Internet Appendix. We follow the EPA and aggregate monitor-level ozone

DVs to the county-level by taking the maximum DV across all monitors within a county–year.

Counties with DVs that are above the relevant threshold are designated nonattainment, while

those below the threshold remain in attainment. Our sample of county-level DVs consists of

15,914 county–year observations from 1999 to 2018.

4.4. Plant-level variables

We use a host of plant-level variables obtained from various database which are summarized as

follows. We use the EPA’s Pollution Prevention (P2) database to create pollution abatement

variables. The database provides information on a facility’s source reduction activities that

limit the amount of toxic chemicals released (e.g., recycling, recovery, and treatment). We

also use the production ratio variable in the P2 database, which measures the change in

output associated with the release of a chemical in a given year.24 We use EPA’s Integrated

Compliance Information System for Air (ICIS-Air) database for information on plant-level

ozone violations, operating permits, and stack tests. We obtain data on formal administrative

and judicial cases from EPA’s Integrated Compliance Information System for Federal Civil

Enforcement Case Data (ICIS FE&C). Finally, we collect data on a plant’s sales and first year

of operation from the National Establishment Time-Series (NETS).

4.5. Control variables

In our analyses, we use a variety of variables related to a firm’s polluting activities and financial

characteristics. The variables for polluting activities include a dummy variable equal to one if a

given firm operates plants in a given county that emit core ozone chemicals as defined by TRI,
24For example, if a chemical is used in the manufacturing of refrigerators, the production ratio for year t is

given by #Refrigerators producedt

#Refrigerators producedt−1
. If the chemical is used as part of an activity and not directly in the

production of goods, then the production ratio represents a change in the activity. For instance, if a chemical
is used to clean molds, then the production ratio for year t is given by #Molds cleanedt

#Molds cleanedt−1
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and zero otherwise (Core chemical);25 a dummy variable equal to one if a given firm operates

plants in a given county that hold operating permits for ozone emissions, and zero otherwise

(Permit); a dummy variable equal to one if a given firm operates plants in a given county

that engage in ozone source reduction activities, and zero otherwise (Source reduction); and a

given firm’s average ozone production ratio across all plants in a given county (Production

ratio). Variables for firm financial characteristics include the natural logarithm of market

capitalization (ln(Size)); the natural logarithm of book-to-market ratio (ln(BM)); return on

assets (ROA), calculated as net income divided by total assets; debt to assets ratio (Leverage),

calculated as total liabilities divided by total assets; sales growth (Sales growth), defined as the

ratio of sales in the current fiscal year to sales in the last year minus one; financial constraints

(KZ ), defined as the Kaplan-Zingales index; cash ratio (Cash), calculated as cash divided

by total assets; price momentum (Momentum), defined as the cumulative 12-month return

of a stock, excluding the immediate past month; annual stock returns (Stock returns); and

bankruptcy risk (z-score), defined as Altman’s unlevered z-score.

4.6. Descriptive statistics

After taking the intersection of the TRI, FoundationSearch, and DV data, the final sample

comprises 1,079 unique firms with corporate foundations that operate polluting plants in 857

unique counties, resulting in 54,524 firm–county–year observations over the period 1999–2018.

Figure 1 presents the average DVs (in parts per million) over the sample period in the counties

where TRI plants operate and where DV data is available. As can be seen, there is substantial

variation in a county’s compliance status across the United States.26

Table 1 presents summary statistics on the firm variables. A full list of the variables used

in this paper and their data sources can be found in Table A.1 in Appendix A. On average,

firms donate approximately $14,000 to nonprofits in the counties where they operate polluting

plants. However, there is substantial variation in the donation size given the sizable standard

deviation in donations. Salient categories such as health, social and human services, and

community development have the three highest average donations. In terms of emissions, the

average firm emits roughly 15 tons of ozone in a given county–year with a standard deviation
25Core chemicals are those that have consistent reporting requirements in TRI.
26Nonattainment designations are fairly persistent; the mean duration of nonattainment for the sample of

counties that we study is around 16 years. There is also substantial variation in the length of time that a
county remains in nonattainment; some counties are redesignated to attainment after one or two years, while
others (e.g., counties in Southern California) have been in nonattainment for over a decade. Furthermore, it is
very rare for a county to be designated as nonattainment for a second time once it has been redesignated to
attainment.
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of 90 tons. Finally, about 71% of a given firm’s polluting plants are operating in counties that

are in compliance with the NAAQS threshold.

5. Methodology

In this section, we describe our empirical framework to estimate the impact of firms’ local ozone

air pollution on their donation activities. A firm’s pollution in a given county is potentially

endogenous to its donations to local nonprofits because unobserved firm characteristics that

are also correlated with pollution likely affect the amount of charitable giving. For example,

firms that are more profitable may have more resources to donate to local nonprofits and may

also be more likely to emit more pollutants as they produce more. Therefore, we use a RDD

approach to estimate the effect of firms’ county-level ozone emissions on donations to local

nonprofits.

Our identification strategy relies on a county’s close attainment designation status based

on its DVs. Counties with a DV below the NAAQS threshold are likely to be designated as

attainment. As a result, firms with polluting facilities located in these attainment counties

are allowed to emit significantly more ozone than those located in nonattainment counties.

Ideally, we would want a county’s designation status to be a randomly assigned variable with

regard to firms’ characteristics, especially the firms’ donation activities. The RDD framework

that exploits a county’s DVs helps us to approximate this ideal setup because the designation

of attainment status is a random outcome in an arbitrarily small interval around the NAAQS

threshold; for example, whether a county is in compliance with a DV slightly below the

NAAQS threshold or in violation with a DV slightly above the threshold is arguably random.

These close attainment designations, therefore, provide a source of random variation in a

firm’s county-level ozone emissions that can be used to estimate the impact of its pollution on

local donations.

We perform the RDD by using a nonparametric, local linear estimation. Small neigh-

borhoods on the left- and right-hand sides of the NAAQS threshold are used to estimate

discontinuities in firms’ donations to local nonprofits. We follow Imbens and Kalyanaraman

(2012) and Calonico, Cattaneo, and Titiunik (2014) to derive the asymptotically optimal

bandwidth under a squared-error loss. The choices of the neighborhood (bandwidth) are

data-driven (determined by the data structure) and different across samples and variables.

By choosing the optimal bandwidth to the left and right of the threshold, we only include

observations in the RDD specification if the absolute difference between the DV for that

observation and the threshold is less than the bandwidth. The local linear regression model
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can therefore be specified as

Yi,c,t+1 = α + βComplyc,t + ϕf(Rc,t) + εi,c,t+1 (1)

where, in our main analyses, Yi,c,t+1 is the natural logarithm of one plus the total amount of

donations of firm i to nonprofits located in county c in year t + 1. Rc,t is the centered DV (i.e.,

the running variable in RDD parlance), defined as the difference between the NAAQS threshold

and the DV of county c in year t.27 Positive (negative) values indicate that the county is in

compliance with (violation of) the NAAQS threshold. Our primary specifications use local

linear functions in the running variable with rectangular kernels as represented by f(Rc,t).

Complyc,t is a dummy variable equal to one if county c is in compliance with the NAAQS

threshold in year t, and zero otherwise. Since treatment assignment is at the county-level,

standard errors are clustered by county and bias-corrected as discussed in Calonico et al.

(2014).

The estimate of β captures the discontinuity at the NAAQS threshold—the difference in

donation outcomes between the firms operating polluting plants in counties that marginally

comply with the NAAQS threshold and the firms operating plants in counties that marginally

violate the NAAQS threshold—and, hence, provides a consistent estimate of the effect of

firms’ ozone pollution on their charitable activities at the county-level. We consider a host

of sensitivity analyses, such as using alternative bandwidths that are either narrower or

wider than the optimal bandwidth, using covariate-adjusted bandwidth selection and point

estimation, using different kernel functions, using global polynomial regressions, controlling for

local quadratic and cubic polynomials in the running variable, and residualizing the outcome

variable by different sets of fixed effects before estimating the RDD specification.

5.1. Tests for quasi-randomized assignment

The identifying assumption of the RDD is that, around the NAAQS threshold, a county’s

designation status is as good as randomly assigned. In this section, we perform two standard

tests for the RDD validity that counties cannot precisely manipulate the running variable

so that their DVs are right below the NAAQS threshold (Lee & Lemieux, 2010). If this

assumption is satisfied, then the variation in a county’s attainment designation status should

be as good as that from a randomized experiment.
27Specifically, we define Rc,t = NAAQSt − DVc,t
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5.1.1. Continuity in the distribution of design values

Having a DV below the NAAQS threshold is a critical factor in determining a county’s

compliance status. Since being classified as nonattainment imposes costly regulatory actions

to curb emissions, counties have a strong incentive to keep pollution levels below the threshold.

Thus, one potential concern is that counties just above the threshold might try to manipulate

their monitored ozone concentrations in order to be right below the threshold. The first test

that we conduct evaluates whether the distribution of DVs is continuous around the NAAQS

threshold. Any discontinuity would suggest a nonrandom assignment of attainment versus

nonattainment status around the threshold.

In practice, however, it is unlikely that counties could strategically manipulate their DVs.

All counties are evaluated on the same standards, so nonattainment designations are likely

to be exogenous to all county-specific characteristics other than local air quality conditions.

Additionally, studies show that nonattainment designations often depend on weather patterns

(Cleveland & Graedel, 1979; Cleveland, Kleiner, McRae, & Warner, 1976). Combined with

the fact that ozone emissions are a result of complex chemical reactions in the atomsphere

between pollutants such as volatile organic compounds and nitrogen oxides, it is extremely

difficult for counties to manipulate their ozone concentration levels precisely.

Figure 2 presents the histogram of county-level DVs from years 1999–2018 in the counties

where TRI plants operate and where DV data is available. If counties were manipulating their

DVs to strategically avoid nonattainment designations, one would expect to see a bunching of

counties just below the NAAQS thresholds. However, the figure shows that the distribution of

DVs appears to be smooth and continuous around the NAAQS thresholds. Take, for example,

the 8-Hour Ozone (1997) standard with a threshold of 0.08 ppm. The histogram shows that

DVs are evenly distributed just below and above this threshold.

However, since the thresholds change throughout time, a more formal approach is provided

in Figure 3, which plots the local density of centered DVs estimated separately on either

side of the NAAQS threshold, using the plug-in estimator proposed by Cattaneo, Jansson,

and Ma (2020). Observations on the right (left) of the vertical dashed line indicate that the

county is in compliance with (violation of) the NAAQS threshold.28 As is shown, there is

no evidence for a discontinuous jump in DVs around the threshold. Using the density break

test following Cattaneo et al. (2020),29 we fail to reject the null hypothesis that counties are
28Note that centered DVs are defined as NAAQSt − DVc,t, so that positive values correspond to compliance

with the NAAQS threshold.
29The density break test builds upon the more standard density manipulation test by McCrary (2008).
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unable to manipulate their pollution levels in order to be right below the threshold specified

by the NAAQS (p-value = 0.450).

5.1.2. Preexisting differences

The second testable implication of the randomness assumption is that firms operating plants

in counties whose DVs are immediately below or above the NAAQS threshold should be very

similar on the basis of ex ante characteristics. In other words, if a county’s designation status is

as good as randomized, it should be orthogonal to firm characteristics prior to the designation.

In Table 2, we examine whether there are any preexisting differences between firms

operating plants in counties that comply and violate NAAQS thresholds. In columns (1) and

(2), we examine these characteristics in the year preceding the designation (t − 1). In columns

(3) and (4), we examine the change in these characteristics between years t − 2 and t − 1.

Columns (1) and (3) report the differences among all firms in the sample, whereas columns

(2) and (4) report the differences at the narrow margin (using the optimal bandwidth) around

the NAAQS threshold.

As can be seen in columns (1) and (3), the firm’s characteristics—size, cash ratio, price

momentum, annual stock returns, bankruptcy risk, ozone permits, and ozone source reduction

activities—of those operating plants in counties that are in compliance with the NAAQS

differ significantly from those operating plants in counties that are in violation. Importantly,

however, columns (2) and (4) show that these differences completely disappear when we

restrict the sample to be within a small window around the threshold. Overall, this evidence

suggests that no systematic or significant difference exists between firms operating plants in

counties with DVs that are marginally below or above the NAAQS thresholds, which lends

support to our identification strategy.

6. Close attainment designation status and donations

6.1. First-stage results

Before presenting our main results, we first validate two basic premises of our RDD framework,

namely the sharp increase in attainment probability when moving from a DV above to below

the NAAQS threshold and the change in a firm’s polluting behavior stemming from attainment

designations.

In Panel A of Table 3, we present the effects of a county’s attainment status on local

polluting plants’ ozone emissions. We use the same RDD specification as in Equation (1),

except the dependent variable is the natural logarithm of one plus the total amount of ozone
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air emissions (in pounds) in a given county of a given firm in a given year. Across all columns,

we find that firms operating plants in counties with DVs that are marginally in compliance

with the NAAQS threshold emit significantly more ozone in those counties relative to the

counties that are marginally in violation of the threshold. Economically, moving from a close

nonattainment to a close attainment county increases a firm’s county-level ozone emissions by

37.03% to 51.13%.

Panel B of Table 3 reports the probability of a county being designated as attainment

conditional on its compliance with the NAAQS threshold. Column (1) shows that having a

DV below the threshold increases the probability of being designated attainment by roughly

80%. Similarly, in column (2), we follow Curtis (2020) and include additional county-level

control variables in the regression. These include a county’s level of employment, emissions to

employment ratio, change in employment levels, and whether the county is located in a MSA.

However, as can be seen, a county’s DV compliance with the NAAQS threshold is still the

main determinant of its attainment designation status.

6.2. Graphical analysis

Having verified the basic premise of our RDD setting, we now measure the impact of regulation-

induced ozone pollution on donation activities. To display the magnitudes of potential

discontinuities in our outcome variable, we provide a visualization of the data in Figure 4.

Specifically, the figure plots ln(Donation)t+1, defined as the natural logarithm of one plus the

total dollar amount of donations of a given firm to nonprofits in a given county in year t + 1,

against the centered DVs. Each dot in the figure represents the average of non-zero values

of ln(Donation)t+1 using integrated mean squared error optimal bins following Calonico et

al. (2014). The solid lines on either side of the NAAQS threshold is based on two separate

regressions of ln(Donation)t+1 on local quadratic polynomials in centered DVs using the

rectangular kernel and optimal bandwidth following Calonico et al. (2014). Bins to the left

of zero indicate close nonattainment counties and bins to the right of zero indicate close

attainment counties.

As can be seen from the figure, the amount of county-level donations appears to be

a continuous and smooth function of the centered DVs everywhere except at the NAAQS

threshold, where there is a discontinuous jump when crossing from a close nonattainment

county to a close attainment county. This evidence suggests that firms operating polluting

plants in a given county donate more to nonprofits located in the same county if the county has

a DV that is marginally in compliance with the NAAQS threshold relative to firms operating
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plants in a county that is marginally in violation of the threshold.

6.3. Regression analysis

In this section, we formally quantify the discontinuity illustrated in Figure 4 by estimating the

RDD specification in Equation (1). We present the results in Table 4, which reports estimates

of the difference in a firm’s donation activities in response to a county’s close attainment

designation status. Column (1) shows that firms operating polluting plants donate significantly

more to nonprofits located in close attainment counties relative to close nonattainment counties.

In economic terms, firms donate 39.38% more to nonprofits located in counties where they

operate polluting plants and the counties are marginally in compliance with the NAAQS

threshold relative to those operating plants in counties that are marginally in violation of the

threshold. The coefficient on Complyc,t remains positive and statistically significant when we

add covariates to the optimal bandwidth selection and point estimation following Calonico et

al. (2014), as shown in column (2). Similar results are obtained when we use 50% and 150%

of the optimal bandwidth as shown in columns (3) and (4), respectively, and when we use the

triangular kernel in column (5).30

Overall, the results in this section coupled with the findings of the first-stage results imply

that firms operating plants in close attainment counties not only pollute more locally relative

to those in close nonattainment counties but also donate more to local nonprofits, possibly as

a form of reputation insurance given the potential costs associated higher emissions.

6.4. Ozone versus non-ozone facilities

While Equation (1) identifies the effect of close attainment designation status on firms’ donation

activities to local nonprofits overall, we expect differential effects for ozone-emitting plants

versus non-ozone emitting plants. Specifically, some polluting plants may emit more ozone

than others because they rely more on ozone chemicals for their production. Thus, firms that

operate historically heavy ozone-polluting plants obtain more insurance value from donations

because a county’s close attainment designation status increases their incentives to emit ozone.

To investigate this hypothesis, we alter Equation (1) by including an interaction term as
30In Internet Appendix Table IA.3, we also examine whether other characteristics could potentially moderate

the relation between close attainment designation status and donations to local nonprofits. We find that the
insurance-motive is a key determinant of donations to local nonprofits regardless of plants’ distance to ozone
monitors, plants’ age, or local competition between polluting plants.
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follows:

ln(Donation)i,c,t+1 = α + β1Complyc,t + β2ln(Ozone)i,c,t−1 + β3Complyc,t

× ln(Ozone)i,c,t−1 + ϕf(Rc,t) + εi,c,t+1

(2)

where the notation is identical to Equation (1). Since attainment designations are based

on the amount of ozone emissions and not ozone emission intensity (i.e., ozone emissions

per unit of production), we define ln(Ozone)i,c,t−1 to be the natural logarithm of one plus

the total amount of ozone air emissions (in pounds) in county c of firm i as of year t − 1.

This variable is measured in year t − 1 to reflect a firm’s most recent ozone emissions prior

to the designation. The coefficient of interest is β3, which represents the differential effect

of close attainment designations on firms’ donations to local nonprofits of firms operating

heavy ozone-polluting plants in a given county, relative to those operating plants with less

ozone emissions. Since firms that operate heavy ozone-polluting plants are more likely to be

affected by a close attainment designation because it allows them to continue to rely on ozone

emissions for their production, we expect such firms to donate more to local nonprofits given

the potential costs associated with additional ozone emissions, leading to a positive β3.

We present the results in Table 5. Consistent with our predictions, we see that the

coefficients on Comply× ln(Ozone) are positive and statistically significant across all regression

specifications, indicating that firms operating heavy ozone-polluting plants in a close attainment

county donate more to local nonprofits than those operating plants with less ozone emissions.

Economically, the coefficient estimate in column (2) implies that in a close attainment county,

a one standard deviation increase in the (log) amount of ozone emissions leads to a 23%

increase in donations to local nonprofits.

The coefficient on Comply represents the impact of close attainment designation status on

donations to local nonprofits for firms operating plants that do not emit any ozone in a given

county. Across all columns, these coefficients are positive but statistically insignificant (with

the exception of column (4)). These results are in line with the fact that the polluting behavior

of firms operating only non-ozone plants are effectively unaffected by the regulations of a

county’s ozone attainment status, which translates into a lack of significance in their donation

activities following the designation. In summary, the fact that close attainment designations

have differential effects on firms’ donations to local nonprofits depending on their historical

ozone emissions adds to the evidence in support of the insurance-motives of philanthropy.
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6.5. What types of donations matter?

If firms are utilizing corporate philanthropy as a form of reputation insurance, then we expect

firms to maximize the insurance value by using the most salient forms of donations to increase

the public’s awareness of their charitable activities. For example, polluting firms may find it

optimal to donate to health-related nonprofits, as opposed to art- or religious-related nonprofits,

to mitigate the negative environmental image of their ozone emissions by donating to nonprofits

that addresses the negative externalities of pollution. Thus, we decompose a firm’s donations

into categories based on the type of nonprofits that receive the donations as classified by

FoundationSearch. We estimate the same regression specification as in Equation (1), but

aggregate the dollar amount of donations based on the category.

Table 6 presents the results. As can be seen across the first four columns, firms that

operate plants in close attainment counties donate significantly more to local nonprofits in

the health, social and human services, community development, and environment categories

relative to those operating plants in close nonattainment counties. The largest economic

magnitude on Complyc,t is for the health category, which corresponds to roughly a 38%

increase in donations to local nonprofits. These results indicate that firms appear to target

nonprofits that maximizes the salience of their donations. On the other hand, the coefficients

on Complyc,t are insignificant for the less-salient categories in columns (5) to (9), consistent

with the interpretation that these donation categories are less relevant for polluting firms.

6.6. Robustness

We perform a number of robustness tests to ensure that our baseline results remain qualitatively

unchanged. For brevity, we report a concise summary of these tests, while the corresponding

tables can be found on the Internet Appendix.

6.6.1. Global polynomial regression

In Internet Appendix Table IA.4, we conduct a similar RDD test using a different methodology

to capture the discontinuity. Instead of relying only on the observations within the optimal

bandwidths, we extend the regression discontinuity analysis with an estimation of a global

polynomial series model by including polynomials of order two and three that are different on

both sides of the threshold.31 Although the economic magnitudes are slightly smaller when

compared to those of Table 4, the coefficient on Comply remains positive and statistically
31The global polynomial approach, however, fails to take into consideration RDD’s strong locality and weak

externality, which are important features of the approach (Bakke & Whited, 2012).
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significant, thus further confirming our baseline results.

6.6.2. Alternative RDD specifications

We consider a host of alternative RDD specifications. In Internet Appendix Table IA.5, we use

the Epanechnikov kernel with the mean squared error optimal bandwidth following Calonico

et al. (2014). We also report results across alternative bandwidths, including 50% of optimal

bandwidth (narrower bandwidth) and 150% of optimal bandwidth (wider bandwidth). We

additionally control for local quadratic and cubic polynomials in centered design values using

the rectangular kernel function. The estimates on Comply are robust to these permutations to

the regression model.

Since not all firms make donations to local nonprofits, Bellemare and Wichman (2020)

argue that one should use the inverse hyperbolic sine transformed amount of donations

as the dependent variable because this transformation not only resembles the natural log

transformation but also retains zero values. Thus, in Internet Appendix Table IA.6, we use

arcsinh(Donation)t+1 as the dependent variable and replicate the analysis of Table 4. We find

very little effect on the coefficient of interest.

We also residualize the dollar amount of donations by various fixed effects in Internet

Appendix Table IA.7. Specifically, we first regress ln(Donation)t+1 on firm (column (1)), firm

and county (column (2)), firm, county, and year (column (3)), firm–year (column (4)), and

firm–year and firm–county (column (5)) fixed effects. Then, we use the residuals of these

regressions as the dependent variable in Equation (1). Again, our results remain unchanged.

In Internet Appendix Table IA.8, we replicate the analysis in Table 5, except rather than

measuring ozone emissions in the year immediately preceding the designation, we calculate

the rolling average of ozone emissions in the previous three years. Measuring historical ozone

emissions in this manner accounts for cases where a plant may not emit any ozone in year

t − 1 but emits heavily in years t − 2 and t − 3. Our results remain largely consistent when

using rolling average ozone emissions.

6.6.3. Long term donation activity

A potential concern is that firms operating in close attainment counties may appear to donate

more relative to those in close nonattainment counties because charitable activities and

pollution abatement effort could be substitutes. Specifically, firms in close nonattainment

counties may donate less to local nonprofits because they invest more in pollution abatement

technology. Although this concern is partially mitigated by our empirical design since firms
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operating in the optimal bandwidth of the NAAQS threshold are very similar to each other in

terms of pollution abatement efforts and source reduction is explicitly controlled for in our

RDD specifications, we conduct further tests to account for any substitution effects.

Prior studies have shown that pollution abatement costs associated with nonattainment

status primarily consist of capital expenditures, which are usually fixed in nature and therefore

do not affect marginal production decisions (Becker, 2005, 2011). For those variable costs

that are tied to current production, e.g., change in the raw materials processed, incumbent

plants are generally shielded from these costs because they can escape stringent regulations on

pollution abatement until they undergo large expansions (Becker & Henderson, 2000, 2001).

Thus, while the fixed costs of pollution abatement activities may reduce donations in the

immediate short term, they should not affect donations in the long term.

Rather than studying a firm’s donation activities in the year immediately following the

close attainment designation, we examine whether a firm extends its donation activities to

local nonprofits beyond year t + 1 by using the two-year and three-year forward amount of

donations as the dependent variable in the baseline RDD specification. The intuition is that

any substitution between pollution abatement efforts and donation activities should mainly

exist in the short term, while the extent to which donations are used for insurance should

persist in the long term. Internet Appendix Table IA.9 shows that firms operating polluting

plants located in close attainment counties donate significantly more to nonprofits in the

following two and three years relative to those in close nonattainment counties, indicating

that substitution effects are unlikely to be driving our results.

6.6.4. Placebo tests

We conduct two placebo tests on the baseline RDD specification to rule out confounding effects.

In the first test, we use placebo NAAQS thresholds whereby the 1-Hour Ozone (1979) standard

uses the 8-Hour Ozone (2008) standard’s threshold, the 8-Hour Ozone (1997) standard uses the

1-Hour Ozone (1979) standard’s threshold, the 8-Hour Ozone (2008) standard uses the 8-Hour

Ozone (2015) standard’s threshold, and the 8-Hour Ozone (2015) standard uses the 8-Hour

Ozone (1997) standard’s threshold. If our results are driven by close attainment designations

for counties with DVs in a narrow window around the NAAQS threshold, then there should

be no such results when using placebo thresholds to define compliance. As expected, there are

no significant effects of a close attainment designation status on firms’ donations based on the

placebo thresholds (columns (1) and (2) of Internet Appendix Table IA.10).

In the second test, we use a placebo sample of counties whereby we limit the sample to the
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counties where the firm does not operate any polluting plants. Since firms have no emissions

in these counties, their donation decisions in these counties should not be impacted by the

counties’ close attainment designation status if such donations are indeed mainly driven by

insurance-motives. Using this placebo sample, the coefficient on Comply becomes statistically

insignificant (columns (3) and (4) of Internet Appendix Table IA.10), which is in line with our

predictions.

7. Reallocation of donations

So far, our analysis has only utilized one source of variation in our data, namely donations to

local nonprofits in the same county where the firm operates polluting plants. In this section,

we provide additional evidence in support of the insurance-motives by using another distinct

source of variation in the data. We focus on the dynamics of donations to local nonprofits

in counties where the firm does not operate any plants (“connected non-operating counties”)

and relate such dynamics to changes in donations in close attainment counties where the firm

operates plants (“close attainment operating counties”). The intuition behind this approach is

straightforward. If we observe a decline in donations by firms to nonprofits located in connected

non-operating counties that is coincident with an increase in donations in attainment counties

where they operate plants then, we argue, the donations in the close attainment counties

would plausibly have been motivated by insurance purposes, since firms are incentivized to

reallocate donations to areas where they pollute the most and hence maximize the insurance

value of such donations.

7.1. Empirical strategy

We highlight our empirical design in Figure 5, which consists of three key steps. The first step

encompasses the analysis presented so far in the previous Section 6, whereby we established

that close attainment designation status leads to an increase in donations to local nonprofits.

In the second step, we expand the set of counties to include those connected counties where

firms have historically made donations to but do not operate plants there. In the third step,

we relate the changes in donations in both sets of counties and show that in order to satisfy

the increase in donations in close attainment operating counties, firms reallocate donations

away from connected non-operating counties and toward close attainment operating counties.

To study the reallocation of donations, we construct a panel data set at the firm–county–

year level from 1999 to 2018. For each firm–year, we include all of the counties in which that

firm donated to nonprofits in the prior calendar year. These counties are assumed to contain
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the relevant nonprofits for the firms’ charitable activities. Once a firm–county enters our

data set, we keep it going forward, even if during some years that firm made no donations to

nonprofits in that county. We then flag each county in the year in which that county has a

DV below the NAAQS threshold and the firm operates plants there (i.e., close attainment

operating counties), and leave that flag on during the following two years.32 Lastly, we drop

these flagged county–years from our sample because our aim is to study how close attainment

designation status affects donations in connected non-operating counties.

To measure the incremental donations made by each firm in the flagged close attainment

county–years, we construct the following variable at the firm–year level:

∆Comply donationi,t =
∆Donation in close attainment operating countiesi,t/Ni,t∑

c Donationi,c,t

(3)

where i indexes firm, c indexes county, and t indexes year. The variable ∆Donation in close

attainment operating countiesi,t equals to the change in the dollar value of donations between

year t and year t − 1 for firm i, summed across all operating counties with DVs that are in

compliance with the NAAQS threshold in year t. However, since a given firm donates to

nonprofits across many different connected non-operating counties, we parcel out the additional

increase in donations in close attainment counties equally across the number of connected

non-operating counties (Ni,t). Finally, we normalize by each firm’s total donations summed

across all counties (both operating and non-operating) so that ∆Comply donationi,t is bounded

between −1 and 1.

7.2. Estimation and results

Using the constructed data set, we estimate the effect of each firm’s additional donations in

close attainment operating counties on its donations to nonprofits in connected non-operating

counties, as follows:

∆Connected donationi,c,t = β0 +
2∑

k=1
βk∆Comply donationi,t−k + β3Xt + F.E. + εi,c,t (4)

for firm i, county c, and year t. The dependent variable is measured at the firm–county–year

level and is equal to the change in the total dollar value of donations between year t and year

t − 1 in connected non-operating counties, normalized by the total amount of firm donations in

year t across all counties. We control for a variety of firm-level characteristics, as represented
32We use two years because of our earlier results in Section 6.6.3 showing that close attainment designation

status is associated with differential effects in long term donations following the designation.
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by Xt. In the baseline specification, we use firm, county, and year fixed effects. In our most

stringent specification, we include firm × county fixed effects to control for time-invariant

effects within a firm–county pair. For example, a firm may prefer to donate to nonprofits

located in specific areas where many of its employees are situated. If those areas happen to

coincide with the areas where the firm operates its plants, then this could bias the estimate of

βk. We also include county × year fixed effects to sweep out potentially confounding factors

affecting all firms in a given county–year (such as business cycle effects, trends, etc). The

coefficients of interest are the two lags on the ∆Comply donation variable, which captures the

extent to which firms reallocate donations from connected non-operating counties to close

attainment operating counties.

We present the estimation results of Equation (4) in Table 7. The specifications in

each column are based on different samples of close attainment counties used to define the

∆Comply donation variable. For example, columns (1) and (2) use the full sample of attainment

counties, whereas columns (3) and (4) restrict the sample of attainment counties to a narrow

window around the NAAQS threshold using the mean squared error optimal bandwidth

following Calonico et al. (2014). The remaining columns use 50% and 150% of the optimal

bandwidth. Across all specifications, the coefficients on the two lags of ∆Comply donation

are all negative and statistically significant, suggesting that firms reallocate donations away

from connected non-operating counties and toward close attainment operating counties. These

results are consistent with the interpretation that firms are maximizing the insurance-value of

donations by reallocating them to the areas where they pollute the most. Furthermore, the

magnitude of the coefficients decreases monotonically as we move from the first lag to the

second lag, indicating that the majority of the reallocation occurs in the first year following a

close attainment designation, but gradually becomes weaker over time.

The regression in Equation (4) is based on dollar-changes in normalized donations divided

equally across connected non-operating counties. Thus, the sum of the coefficients on the

lags of ∆Comply donation provides a straightforward economic interpretation on the total

effect per dollar of increased donation in close attainment operating counties on the changes

in donations in connected non-operating counties. Take the coefficient estimates in column (4)

of Table 7 as an example. The sum of the two lags is -0.294 and is statistically significant with

a F -statistic of 8.69. This result shows that the effect of donation reallocation is economically

sizable as it implies that donations fall by roughly 29 cents in connected non-operating counties

per dollar of additional donations stimulated by close attainment designations. We obtain
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qualitatively similar results when using the coefficient estimates in other columns.

8. Mechanisms

In this section, we investigate several plausible mechanisms that could propagate the relation

between regulation-induced emissions and donations to local nonprofits. We first examine

the role of local media as a channel through which firms use to improve their reputational

capital. Then, we examine the impact of a firm’s reputational risk exposure to news-related

CSR incidents and history of regulatory noncompliance on its donation activities.

8.1. Local newspaper closures

We follow Heese et al. (2022) and study the effect of local newspaper closures on donations

to local nonprofits in close attainment counties. We collect data on active local newspapers

and their closures and mergers from the UNC Center for Innovation and Sustainability in

Local Media (CISLM). This dataset provides snapshots of the name, the owner, and the

physical location of all local newspapers in the United States in 2004, 2014, 2016, and 2020.

In addition, the dataset contains a list of newspapers that have closed between 2004 and

2019 and identifies whether each closure is due to being merged by another newspaper.33

Based on the snapshots, we construct an annual time series of the active local newspapers

data by forward-filling observations between the report years. We assume that the level of

the active local newspapers remains unchanged from the current data collection year to the

next data collection year. We only focus on the local newspaper closures and not mergers

because mergers do not necessarily reduce local-news availability (Heese et al., 2022). Then,

we aggregate the data at the county-level.

The sample of counties that we examine consists of those that have at least one active

local newspaper. We identify all of the county–years where there is a local newspaper closure

and define Closurec,t−1 to be a dummy variable equal to one if a local newspaper closed in

county c in the past three years until year t − 1, and zero otherwise.34 The sample period is

from 2004 to 2018 because this is the period where we have available data on local newspaper

closures. We estimate an augmented version of Equation (1) by fully interacting Closure with
33For additional information about the database, please refer to https://www.usnewsdeserts.com. The list

of newspaper closures and mergers from 2004 to 2019 can be found at https://newspaperownership.com/
additional-material/closed-merged-newspapers-map.

34We look back three years because Heese et al. (2022) show that the impact of local newspaper closures on
firm behavior lasts up to three years.
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Comply:

ln(Donation)i,c,t+1 = α + β1Complyc,t + β2Closurec,t−1 + β3Complyc,t

× Closurec,t−1 + ϕf(Rc,t) + εi,c,t+1

(5)

for firm i, county c, and year t. The coefficient of interest is β3, which measures the changes

in donations to local nonprofits in close attainment counties with a local newspaper closure in

the past three years relative to other close attainment counties without any closures.

Table 8 reports the results of estimating Equation (5) using the mean squared error optimal

bandwidth following Calonico et al. (2014). Across all specifications, the coefficient on the

interaction term Comply × Closure is negative and statistically significant. In terms of

economic magnitude, the results indicate that the closure of a newspaper in a close attainment

county leads to a decrease of 63% in donations to local nonprofits (based on column (2)).

On the other hand, the coefficient on Comply remains positive and statistically significant

across all columns, with the coefficient estimate in column (2) implying that close attainment

counties without a local newspaper closure leads to an increase in donations to local nonprofits

by roughly 48%. Overall, the results indicate that polluting firms respond to local newspaper

closures by decreasing donations to local nonprofits, suggesting that local media coverage is

an important avenue behind the insurance-motives of philanthropy.

8.2. Reputational risk exposure

In this section, we directly measure the impact of a firm’s reputational risk exposure on its

donations to local nonprofits in close attainment counties. Specifically, we focus on firms’

reputational risk exposure to salient news of their CSR-related incidents using data from

RepRisk, which is a data provider that screens over 80,000 media sources for CSR incidents.35

This database is suitable for our analysis because it is based on an outcome-driven approach

that focuses on a firm’s adverse CSR events that are actually reported by the media news.

Thus, using a news-based measure of CSR incidents allows for an objective assessment of a

firm’s reputational risk exposure (Houston & Shan, 2022; Li & Wu, 2020).36

We measure a firm’s reputational risk exposure by using RepRisk’s Reputational Risk

Index (RRI). The RRI is a score that ranges from 0 to 100, where a higher value denotes a

higher CSR incident rate. The RRI of a firm increases whenever it experiences a new CSR
35RepRisk is not a rating agency as its main business is about the archival of news about negative CSR

events.
36In contrast, many other databases primarily assign ratings based on whether the firm “claims” to enact

certain policies that are more discretionary and subject to green-washing bias (Yang, 2021).
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incident. How much the index increases depends on the severity and novelty of the incident as

well as on the reach and intensity of the news about the incident.37 We use RepRisk’s “Peak

RRI” score, which is the two-year maximum value of the RRI capturing the long-term CSR

incident history of a firm. The sample period begins from 2007, the first year that RepRisk

provides data, until 2018. We estimate Equation (1) by fully interacting a firm’s Peak RRI

score with Comply as follows:

ln(Donation)i,c,t+1 = α + β1Complyc,t + β2Peak RRIi,t−1 + β3Complyc,t

× Peak RRIi,t−1 + ϕf(Rc,t) + εi,c,t+1

(6)

for firm i, county c, and year t. Peak RRIi,t−1 is a given firm’s two-year maximum value of

the RRI measured in year t − 1. The coefficient of interest is β3, which measures the difference

in donations to local nonprofits in close attainment counties for firms with a high reputational

risk exposure relative to other firms with a lower exposure.

We present the results in Table 9 using the mean squared error optimal bandwidth following

Calonico et al. (2014). Across all regression specifications, the coefficient on the interaction

term Comply × Peak RRI is positive and statistically significant, indicating that firms with

a historically high reputational risk exposure to CSR incident news donate more to local

nonprofits in close attainment counties. The economic magnitude is sizable. For example,

the coefficient estimate in column (2) implies that a one standard deviation increase in a

firm’s Peak RRI leads to an increase of roughly 75% in donations to local nonprofits. It is

also worthwhile to note that although the coefficient estimates on Comply in Table 9 are

positive, they are all statistically insignificant. This result is consistent with the interpretation

that the insurance value of donations is lower for firms with no reputational risk exposure,

implying that such firms have fewer incentives to significantly increase their donations to

local nonprofits in close attainment counties. To ensure that our results in this section are

robust, in Internet Appendix Table IA.11, we replicate the analysis in Table 9 but use a firm’s

“Current RRI” to measure a firm’s short-term exposure to reputational risks. Our results

remain qualitatively unchanged.

8.3. Past regulatory noncompliance

To provide further evidence of the insurance-motives of philanthropy, we study a firm’s history

of publicized regulatory noncompliance based on regulatory incidents. Specifically, we examine
37For more information, see https://www.reprisk.com/news-research/resources/methodology.
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a firm’s facility-level high priority violations (HPV), stack tests, and enforcement cases, all of

which are made available to the public by the EPA through their Enforcement and Compliance

History Online (ECHO) system.

The first type of regulatory noncompliance that we examine is a facility’s HPV. The EPA

can label a facility with particularly serious or repeated violations as a HPV.38 Once a facility

enters HPV status, it triggers a period of intense oversight by the EPA that could lead to

higher fines and additional reporting requirements, which are very costly for the firm (Blundell,

2020; Blundell et al., 2020). Next, we consider stack tests, which are plant-level evaluation

tests conducted for the purposes of determining and demonstrating compliance with CAA

regulations.39 Failing stack tests is costly because it could lead to firms being labeled as

a HPV (Choi, Park, & Xu, 2022a). Lastly, we examine enforcement cases, which consists

of judicial and administrative cases brought forth by the EPA against facilities that violate

various environmental statutes. These enforcement cases are particularly costly for firms

because they could lead to legal penalties (Heitz, Wang, & Wang, 2021; Shive & Forster, 2020;

Xu & Kim, 2022).

To capture a firm’s history of regulatory noncompliance, we define ln(HPV), ln(Stack),

and ln(Case) as the natural logarithm of one plus the number of HPVs, stack tests, and

enforcement cases, respectively, across all facilities in a given county of a given firm in the

past three years. We look back three years because ECHO tracks facility-level compliance

status using the last three years of available data. Then, we estimate Equation (1) by fully

interacting the aforementioned measures with Comply as follows:

ln(Donation)i,c,t+1 = α + β1Complyc,t + β2Noncompliancei,c,t−1 + β3Complyc,t

× Noncompliancei,c,t−1 + ϕf(Rc,t) + εi,c,t+1

(7)

for firm i, county c, and year t. Noncompliancei,c,t−1 is one of the three regulatory noncompli-

ance variables defined above. The coefficient of interest is β3, which measures the difference in

donations to local nonprofits in close attainment counties for firms with a history of a high

frequency of regulatory noncompliance relative to other firms with less noncompliance.

Table 10 presents the results. Across all specifications, we find that the coefficients on

Comply and the Comply × Noncompliance are both positive and statistically significant. For
38HPVs cover a broad range of issues including excess emissions, failure to install plant modifications, and

violating an operating parameter, among others.
39These tests involve evaluating a facility based on its emissions, condition of control equipment, and results

of monitoring data.
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example, in column (2) the coefficient on Comply implies that firms operating facilities without

any regulatory noncompliance in the past three years in close attainment counties donate

34.58% more to local nonprofits. However, given a one standard deviation increase in the

(log) number of HPVs, firms donate an extra 35.28% more to local nonprofits. Similar results

are obtained in the other columns when using the number of stack tests and enforcement

cases. Overall, the findings suggest that firms with a history of regulatory noncompliance

donate more to local nonprofits, consistent with the interpretation that such firms derive more

insurance value from donations given their regulatory noncompliance risks.

9. Social welfare

Thus far, we have focused on the firm’s perspective and shown that firms that pollute more

locally also donate more to local nonprofits as a form of reputation insurance against the

potential costs of increased emissions. In this section, we expand our focus and examine the

social welfare implications of such donations and pollution. Specifically, we ask the question

“is more damage being done through pollution than social good through donations?” To answer

this, we consider only the counties where TRI plants operate and compare the additional

damages (“marginal damages”) with the additional donations (“marginal donations”) associated

with a one-ton increase in ozone emissions from TRI plants. This exercise is economically

important because if marginal damages are greater than marginal donations, then firms are

paying too low of a price for the insurance value they receive for their charitable activities,

implying that corporate philanthropy may benefit firms at the cost of social welfare. In

contrast, if marginal damages are less than marginal donations, then firms are overpaying

for the coverage they receive from corporate philanthropy, with the insurance benefits when

negative events happen being offset by the cost of philanthropy when they do not.

9.1. Calculating marginal donations and marginal damages of pollution

We calculate marginal donations by using the RDD estimates obtained from Tables 3 and 4 to

compute the change in the average donations in a given county by all TRI firms operating in

that county divided by the change in average total ozone emissions by those TRI firms. To

illustrate, consider the RDD estimate of 0.413 in column (2), panel A of Table 3. The average

ozone air emissions at the firm–county–year level in the sample of counties within the optimal

bandwidth is 27,162.85 pounds (unreported). Thus, moving from a close nonattaiment to

close attainment county increases ozone emissions by roughly 13,889.59 pounds (= 6.94 tons)

on average. Similarly, combining the corresponding RDD estimate of 0.382 in column (2) of
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Table 4 and the average donation amount of $15,107.27 (unreported) in the sample of counties

within the optimal bandwidth implies that donations increase by $7,028.09 on average, given

a close attainment designation. Taken together, these estimates result in a marginal donation

of 7, 028.09/6.94 = $1, 012 per ton of yearly emissions in the sample of counties within the

optimal bandwidth.

We compute marginal damages using the AP3 model, which is a leading “integrated

assessment” model that has been widely used in influential economics and policy research

(Holland, Mansur, Muller, & Yates, 2016, 2020; Muller & Mendelsohn, 2009; Muller et al.,

2011).40 The AP3 model includes four main components. First, it uses ozone emissions from

all sources in every county across the United States. Second, it uses an air quality model

translating emissions from each source county into ambient air quality in all counties. Third,

it uses published elasticities linking air quality to outcomes such as mortality. Fourth, it

monetizes the value of these outcomes using an estimate of the value of a statistical life (VSL).

The marginal damages computed using the AP3 model can be interpreted as the additional

dollar value of damages associated with a one-ton increase in ozone emissions from TRI

facilities in a given county. More details on the calibration and estimation of the AP3 model

can be found in Appendix B.

A few caveats are in order when comparing marginal donations and marginal damages in

our setting. First, our measure of marginal donations is only an estimate of the true social

benefits of corporate philanthropy, which may be greater or lower than the raw dollar value of

donations. This is because the social benefits of donations depend on the social impact of

the nonprofit that receives the donation. For example, a nonprofit that allocates $10,000 of

donated funds towards the successful development of a piece of green technology may create

social benefits that well exceeds the $10,000 of donations it received. Second, estimates of

the marginal damages of ozone emissions may understate true marginal willingness to pay,

since people may value clean air for reasons not captured in the mortality-damage function

approach (e.g., pure amenity value) that AP3 follows. In practice, hedonic models have been

economists’ primary approach to estimating marginal willingness to pay for clean air. However,

comparing hedonic estimates with those from integrated assessment models’ damage functions

does not suggest the latter substantially understates marginal willingness to pay; if anything,

the hedonic estimates are smaller than the damage function estimates (Bajari, Fruehwirth,

Kim, & Timmins, 2012; Chay & Greenstone, 2005; Smith & Huang, 1995). Nonetheless, our
40We thank Nick Muller for generously providing the raw AP3 code.
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analysis is still an important exercise in providing a glimpse into the costs and benefits of

regulation-induced pollution from society’s perspective.

9.2. Comparison results

Table 11 compares the mean marginal damages with the mean marginal donations across all

counties where TRI plants operate. The differences across each column is in the sample of

counties used to estimate the marginal donations and marginal damages. Column (1) uses

the full sample of counties, whereas column (2) uses the sample of counties located in the

narrow window around the NAAQS threshold by computing the mean squared error optimal

bandwidth following Calonico et al. (2014). In columns (3) and (4), we report results across

alternative bandwidths, including 50% of optimal bandwidth (narrower bandwidth) and 150%

of optimal bandwidth (wider bandwidth). The sample period in all specifications is from

2002 to 2017 because these are the years where data on marginal damages are available. We

consider two types of marginal damages, namely within-county marginal damages refer to

the damages restricted to the same county as where the emissions are produced, whereas all

counties marginal damages refer to the damages caused by the emissions produced in a given

county that spread across all counties.

Comparing the estimate of marginal donations in column (2) of Table 11 with the within-

county marginal damages using the baseline AP3 model parameters shows that marginal

damages are, on average, 3.39 times larger than marginal donations in a given county. Eco-

nomically, these estimates imply that on average, a firm donates $1,011.99 to local nonprofits

per ton of additional emissions given a close attainment designation. At the same time, the

firm creates $3,430.59 per ton in welfare damages within the same county. These results

suggest that firms are underpaying for the insurance value of philanthropy at the cost of social

welfare. The gap between marginal damages and marginal donations increases considerably

when we consider damages across all contiguous counties, as mean marginal damages are now

10.45 times larger than mean marginal donations.

We report several sensitivity analyses based on different models used to compute marginal

damages. The baseline estimates use the EPA’s preferred VSL of $8.6 million (2015 dollars)

(US EPA, 2010). We use one alternative estimate of $4.5 million from the Organization for

Economic Cooperation and Development (OECD, 2012). We also use alternative parameters

for the pollution concentration mortality response function from the 5th and 95th percentile,

respectively, of Krewski et al.’s (2009) study. These results are also presented in Table 11 and

reaffirm the baseline results that marginal damages exceed marginal donations.
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Finally, we plot the yearly mean within-county marginal damages and yearly mean marginal

donations based on the sample of counties within the optimal bandwidth in Internet Appendix

Figure IA.1. Our objective is to see whether there are any particular years where marginal

damages do not exceed marginal donations and to observe the time trends between the two

measures. The estimates of marginal damages vary year-by-year due to changes in population

density, differences in mortality rates, and differences in the baseline levels of emissions.

Likewise, estimates of marginal donations also vary year-by-year because of changes in the

yearly average donations and emissions in each county. Table 11 essentially shows the mean

value of this plot during the period 2002 to 2017, while the figure shows the underlying

year-by-year averages, for all years. A glance at the two time series in Internet Appendix

Figure IA.1 reveals that marginal damages are much higher than marginal donations in every

year, although the gap appears to be smaller in more recent years. In summary, the results

in this section suggest that polluting firms benefit from the insurance value of corporate

philanthropy at the cost of social welfare.

10. Conclusion

Despite the fact that many polluting companies actively engage in corporate philanthropy,

relatively little is known about their motivations for participating in philanthropy. Using

a sample of U.S. firms that have active corporate foundations and operate polluting plants

over the period 1999–2018, we examine the role of charitable giving as a form of reputation

insurance.

Our identification strategy relies on a county’s close attainment and nonattainment desig-

nation status based on its DVs as a source of locally exogenous variation in firm pollution. We

find strong evidence for the insurance-motives of corporate philanthropy, with firms operating

polluting plants in close attainment counties emitting more but also subsequently donating

more to local nonprofits relative to those operating in close nonattainment counties. Firms

appear to maximize the insurance value of donations by reallocating donations to the areas

where they pollute the most. Furthermore, we find that a firm’s local media coverage, reputa-

tional risk exposure to news-based CSR incidents, and history of regulatory noncompliance are

potential mechanisms that could propagate the relation between regulation-induced emissions

and donations to local nonprofits. From society’s perspective, firms underpay for the insurance

value of donations, suggesting that corporate philanthropy may benefit firms at the cost of

social welfare.

A potential caveat of our findings is that the causal effect is identified by the subset of
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counties whose DV is close to the NAAQS threshold, a limitation that is inherent to any

RDD. However, we believe that two aspects of the institutional setting ameliorates some

of the concerns regarding the external validity of our results. First, the number of close

attainment and close nonattainment county–years that are within the optimal bandwidth

represents roughly 30% of the total number of observations, implying that quite a sizable

portion of county–years is used to identify the effect at work. Second, since our sample period

includes four revisions to the NAAQS threshold that defines compliance, our results are robust

around four discrete levels of pollution rather than at just one level. Nonetheless, extending

the external validity of this study by identifying natural experiments that apply to a broader

universe of firms and donation activities is an exciting and challenging avenue for future

research.
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Figure 1
County-level design values.
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This figure presents the average DVs (in parts per million) from years 1999–2018 in the counties where TRI
plants operate and where DV data is available. Counties with higher DVs (indicated by darker shades)
correspond to those with greater concentrations of ozone pollution and are more likely to be designated
nonattainment with respect to the ozone NAAQS.
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Figure 2
Distribution of county-level design values.

This figure presents the histogram of the county-level DVs (in parts per million) from years 1999–2018 in the
counties where TRI plants operate and where DV data is available. The horizontal axis indicates the DV in
0.2% intervals. The vertical axis indicates the percentage of counties in our sample per DV interval.
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Figure 3
Density break test of the number of counties around NAAQS thresholds.

This figure presents the density of observations by the distance to the ozone NAAQS threshold. The unit of
observation underlying the estimation of this density is at the county–year level, considering only the counties
where TRI plants operate and where DV data is available from years 1999–2018. The horizontal axis shows
the centered DVs around zero by subtracting them from the NAAQS threshold. The dashed vertical line at
zero represents the NAAQS threshold for ozone attainment status. Observations on the right (left) of the
line indicate that the county is in compliance with (violation of) the NAAQS threshold. The solid black lines
represent the local density on either side of the NAAQS threshold and the shaded gray area corresponds to the
95% confidence interval bounds, calculated using the plug-in estimator proposed by Cattaneo et al. (2020). We
fail to reject the null hypothesis that there is no break in density around the threshold, with a p-value of 0.450.
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Figure 4
Donation activity around ozone NAAQS thresholds.
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This figure presents the regression discontinuity relating centered DVs to the amount of donations at the
firm–county level from years 1999–2018. The variable on the vertical axis is ln(Donation)t+1, defined as the
natural logarithm of one plus the total dollar amount of donations of a given firm to nonprofits in a given
county in year t + 1. The horizontal axis shows the centered DVs around zero by subtracting DVs from the
NAAQS threshold. The dashed vertical line at zero represents the NAAQS threshold for ozone attainment
status. Observations on the right (left) of the line indicate that the county is in compliance with (violation of)
the NAAQS threshold. Each dot in the figure represents the average of non-zero values of ln(Donation)t+1
using integrated mean squared error optimal bins following Calonico et al. (2014). The solid lines on either
side of the NAAQS threshold is based on two separate regressions of ln(Donation)t+1 on local quadratic
polynomials in centered DVs using the rectangular kernel and mean squared error optimal bandwidth following
Calonico et al. (2014).
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Figure 5
Empirical design for the reallocation of donations.

This figure illustrates the three key steps behind the empirical strategy examining the reallocation of donations.
First, firms that operate polluting facilities in close attainment counties increase their donations to local
nonprofits. Second, firms reallocate donations away from connected counties where they historically have
made donations but do not operate facilities and toward close attainment counties. Third, the reallocation of
donations leads to a decrease in the donations to local nonprofits in connected counties.

50



Table 1
Summary statistics.

Variables Mean Median Standard Observations
deviation

Donation ($ ’000s) 14.007 0.000 99.043 54,524
Health ($ ’000s) 3.515 0.000 119.106 54,524
Social & Human Services ($ ’000s) 2.113 0.000 13.715 54,524
Community Development ($ ’000s) 3.398 0.000 112.385 54,524
Environment ($ ’000s) 1.162 0.000 30.579 54,524
Education ($ ’000s) 1.473 0.000 10.447 54,524
Art ($ ’000s) 0.250 0.000 2.433 54,524
Religion ($ ’000s) 0.599 0.000 11.637 54,524
Sports ($ ’000s) 0.178 0.000 5.305 54,524
Miscellaneous ($ ’000s) 0.448 0.000 3.675 54,524

Comply donation ($ ’000s) 89.134 0.000 450.772 10,606
Connected donation ($ ’000s) 13.186 0.000 53.014 130,751
Ozone (ton) 14.990 0.000 90.405 54,524
Comply 0.705 1.000 0.456 54,524
ln(Size) 8.335 8.301 2.132 51,080
ln(BM) 0.516 0.522 0.135 51,075
ROA 0.032 0.032 0.023 50,223
Leverage 0.278 0.224 0.204 50,841
Sales growth 0.094 0.058 1.009 51,929
KZ 1.130 1.023 6.122 49,891
Cash 0.080 0.055 0.089 53,077
Momentum 1.138 1.103 0.441 49,848
Stock returns 0.139 0.104 0.459 49,269
z-score 0.869 0.937 0.845 48,433
Core chemical 0.379 0.000 0.485 54,524
Permit 0.506 1.000 0.500 54,524
Source reduction 0.069 0.000 0.254 54,524
Production ratio 0.910 0.984 0.394 28,683
Closure 0.019 0.000 0.137 38,361
ln(HPV) 0.065 0.000 0.271 54,524
ln(Stack) 0.271 0.000 0.742 54,524
ln(Case) 0.044 0.000 0.188 54,524
Peak RRI 22.071 25.250 20.057 32,262
Current RRI 13.115 9.917 14.528 32,262

This table reports the summary statistics for the variables used in this study. The sample consists of 1,079
unique firms with corporate foundations that operate polluting plants in 857 unique counties, resulting in
54,524 firm–county–year observations over the period 1999–2018. Variable definitions are presented in Table A.1
in Appendix A.
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Table 2
Preexisting differences in firm characteristics.

Year (t − 1) ∆ from year
(t − 2) to (t − 1)

(1) (2) (3) (4)
ln(Size) 0.203∗∗ 0.064 0.022∗ 0.005

(0.082) (0.194) (0.012) (0.033)
ln(BM) 0.006 -0.001 0.003 -0.016

(0.005) (0.011) (0.002) (0.012)
ROA -0.002 -0.001 0.000 0.000

(0.001) (0.001) (0.001) (0.001)
Leverage 0.005 -0.017 0.004 0.005

(0.007) (0.018) (0.002) (0.006)
Sales growth -0.022 -0.023 0.001 -0.001

(0.018) (0.060) (0.007) (0.035)
KZ 0.041 -0.087 -0.011 -0.029

(0.043) (0.093) (0.017) (0.078)
Cash 0.013∗∗∗ 0.003 -0.001∗∗ -0.001

(0.003) (0.007) (0.001) (0.003)
Momentum 0.029∗∗ -0.002 0.018∗ -0.001

(0.012) (0.034) (0.009) (0.033)
Stock returns -0.028∗∗ -0.005 0.013 0.007

(0.011) (0.040) (0.009) (0.038)
z-score -0.065∗∗∗ -0.003 0.005 0.001

(0.024) (0.051) (0.007) (0.024)
Core chemical -0.008 0.042 0.003 0.012

(0.016) (0.032) (0.003) (0.009)
Permit 0.109∗∗ -0.069 0.003 -0.008

(0.049) (0.046) (0.004) (0.008)
Source reduction -0.013∗∗∗ 0.000 0.006∗∗ -0.001

(0.004) (0.017) (0.003) (0.006)
Production ratio 0.007 0.009 -0.005 -0.026

(0.009) (0.033) (0.007) (0.022)

Sample: Full Opt. Full Opt.

This table examines the differences in observable firm characteristics between firms that operate polluting
plants in counties that are in compliance with NAAQS thresholds and those operating in counties that are in
violation. In columns (1) and (2), these characteristics are measured in the year preceding the designation
(t − 1). Columns (3) and (4) consider the change in these characteristics between years t − 2 and t − 1.
Columns (1) and (3) report the differences using the full sample of firms, whereas columns (2) and (4) report
the differences using a narrow window around the NAAQS threshold by computing the mean squared error
optimal bandwidth following Calonico et al. (2014). For all specifications, standard errors are clustered by
county, bias-corrected following Calonico et al. (2014), and reported in the parenthesis. *, **, and *** indicate
significance at the 10%, 5%, and 1% level, respectively. Variable definitions are presented in Table A.1 in
Appendix A.
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Table 3
Effect of close attainment designation status on ozone emissions and attainment probability.

Panel A: Ozone emissions
Dep. variable: (1) (2) (3) (4) (5)ln(Ozone)t

Complyc,t 0.315∗∗ 0.413∗∗ 0.394∗∗ 0.318∗∗∗ 0.318∗∗

(2.20) (2.17) (2.24) (2.87) (2.23)

Kernel Rec. Rec. Rec. Rec. Tri.
Bandwidth type Opt. Opt. 50% Opt. 150% Opt. Opt.
Bandwidth estimate 0.015 0.020 0.010 0.030 0.012
Covariates No Yes Yes Yes Yes
Observations 25,539 32,318 11,773 41,299 16,289
Panel B: Probability of attainment
Dep. variable: Ac,t (1) (2)
Complyc,t 0.795∗∗∗ 0.753∗∗∗

(24.63) (10.81)

County controls No Yes
Year F.E. Yes Yes
County F.E. Yes Yes
Observations 16,707 15,143

Panel A reports the impact of a county’s close attainment designation status on polluting plants’ local ozone
emissions. We estimate a local linear regression using the mean squared error optimal bandwidth following
Calonico et al. (2014). We also report results across alternative bandwidths, including 50% of optimal
bandwidth (narrower bandwidth) and 150% of optimal bandwidth (wider bandwidth). Results using both
rectangular and triangular kernels are reported. Complyc,t is a dummy variable equal to one if county c is
in compliance with the NAAQS threshold in year t, and zero otherwise. ln(Ozone)t equals to the natural
logarithm of one plus the total amount of ozone air emissions (in pounds) in a given county of a given firm in
year t. Covariates include ln(Size), ln(BM), ROA, Leverage, Sales growth, KZ, Cash, Momentum, Stock returns,
z-score, Core chemical, Permit, Source reduction, and Production ratio. Panel B presents the probability of
actual attainment designation status given a county’s compliance with the NAAQS threshold. Ac,t is a dummy
variable equal to one if county c is actually designated attainment in year t, and zero otherwise. County
controls include the natural logarithm of one plus the employment levels in a given county, a given county’s
NOx emissions to employment ratio, the change in a given county’s employment levels, and a dummy variable
equal to one if the county is located in a MSA. For all specifications, standard errors are clustered by county
and bias-corrected following Calonico et al. (2014); t-statistics are reported in the parenthesis. *, **, and ***
indicate significance at the 10%, 5%, and 1% level, respectively. Variable definitions are presented in Table A.1
in Appendix A.
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Table 4
Donation activity in response to close attainment designation status.

Dep. variable: (1) (2) (3) (4) (5)ln(Donation)t+1

Complyc,t 0.332∗∗∗ 0.382∗∗∗ 0.359∗∗ 0.390∗∗∗ 0.371∗∗∗

(2.64) (2.90) (2.00) (3.64) (2.69)

Kernel Rec. Rec. Rec. Rec. Tri.
Bandwidth type Opt. Opt. 50% Opt. 150% Opt. Opt.
Bandwidth estimate 0.010 0.011 0.006 0.017 0.012
Covariates No Yes Yes Yes Yes
Observations 13,505 13,826 5,963 26,246 15,753

This table presents a firm’s donation activities in response to a county’s close attainment designation status.
We estimate the local linear regression specification given in Equation (1) using the mean squared error optimal
bandwidth following Calonico et al. (2014). We also report results across alternative bandwidths, including
50% of optimal bandwidth (narrower bandwidth) and 150% of optimal bandwidth (wider bandwidth). Results
using both rectangular and triangular kernels are reported. ln(Donation)t+1 equals to the natural logarithm
of one plus the total dollar amount of donations of a given firm to nonprofits in a given county in year t + 1.
Complyc,t is a dummy variable equal to one if county c is in compliance with the NAAQS threshold in year t,
and zero otherwise. Covariates include ln(Size), ln(BM), ROA, Leverage, Sales growth, KZ, Cash, Momentum,
Stock returns, z-score, Core chemical, Permit, Source reduction, and Production ratio. For all specifications,
standard errors are clustered by county and bias-corrected following Calonico et al. (2014); t-statistics are
reported in the parenthesis. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.
Variable definitions are presented in Table A.1 in Appendix A.
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Table 5
Donation activity in response to close attainment designation status conditional on past ozone emissions.

Dep. variable: (1) (2) (3) (4) (5)ln(Donation)t+1

Complyc,t 0.112 0.139 0.040 0.193∗∗ 0.135
(1.12) (1.38) (0.32) (2.47) (1.16)

ln(Ozone)t−1 0.014 0.014 0.003 0.019 0.005
(0.88) (0.81) (0.13) (1.14) (0.30)

Complyc,t × ln(Ozone)t−1 0.055∗∗ 0.049∗∗∗ 0.075∗∗ 0.042∗∗ 0.063∗∗∗

(2.31) (2.70) (2.10) (2.02) (2.74)

Kernel Rec. Rec. Rec. Rec. Tri.
Bandwidth type Opt. Opt. 50% Opt. 150% Opt. Opt.
Bandwidth estimate 0.010 0.011 0.006 0.017 0.012
Covariates No Yes Yes Yes Yes
Observations 13,505 13,826 5,963 26,246 15,753

This table presents a firm’s donation activities in response to a county’s close attainment designation status
conditional on past ozone emissions. We estimate the local linear regression specification given in Equation (2)
using the mean squared error optimal bandwidth following Calonico et al. (2014). We also report results
across alternative bandwidths, including 50% of optimal bandwidth (narrower bandwidth) and 150% of
optimal bandwidth (wider bandwidth). Results using both rectangular and triangular kernels are reported.
ln(Donation)t+1 equals to the natural logarithm of one plus the total dollar amount of donations of a given
firm to nonprofits in a given county in year t + 1. ln(Ozone)t−1 equals to the natural logarithm of one plus
the total amount of ozone air emissions (in pounds) in a given county of a given firm in year t − 1. Complyc,t

is a dummy variable equal to one if county c is in compliance with the NAAQS threshold in year t, and zero
otherwise. Covariates include ln(Size), ln(BM), ROA, Leverage, Sales growth, KZ, Cash, Momentum, Stock
returns, z-score, Core chemical, Permit, Source reduction, and Production ratio. For all specifications, standard
errors are clustered by county and bias-corrected following Calonico et al. (2014); t-statistics are reported
in the parenthesis. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively. Variable
definitions are presented in Table A.1 in Appendix A.
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Table 6
Donation activity in response to close attainment designation status by donation type.

Donation type: Health Social & Human Community Environment Education Art Religion Sports Miscellaneous
Services Development

Dep. variable: (1) (2) (3) (4) (5) (6) (7) (8) (9)ln(Donation)t+1

Complyc,t 0.325∗∗∗ 0.319∗∗∗ 0.213∗∗∗ 0.164∗∗∗ 0.079 0.066 0.037 0.029 0.046
(4.67) (2.89) (3.56) (4.17) (0.84) (1.47) (0.85) (1.17) (1.17)

Kernel Rec. Rec. Rec. Rec. Rec. Rec. Rec. Rec. Rec.
Bandwidth type Opt. Opt. Opt. Opt. Opt. Opt. Opt. Opt. Opt.
Bandwidth estimate 0.009 0.010 0.012 0.011 0.011 0.011 0.016 0.012 0.016
Covariates Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 10,522 12,260 15,753 12,260 14,882 12,098 29,354 18,903 27,700

This table presents a firm’s donation activities in response to a county’s close attainment designation status split by
the donation type. We estimate the local linear regression specification given in Equation (1) using rectangular kernels
and the mean squared error optimal bandwidth following Calonico et al. (2014). ln(Donation)t+1 equals to the natural
logarithm of one plus the total dollar amount of a given type of donation of a given firm to nonprofits in a given county in
year t + 1. Complyc,t is a dummy variable equal to one if county c is in compliance with the NAAQS threshold in year
t, and zero otherwise. Covariates include ln(Size), ln(BM), ROA, Leverage, Sales growth, KZ, Cash, Momentum, Stock
returns, z-score, Core chemical, Permit, Source reduction, and Production ratio. For all specifications, standard errors are
clustered by county and bias-corrected following Calonico et al. (2014); t-statistics are reported in the parenthesis. *, **,
and *** indicate significance at the 10%, 5%, and 1% level, respectively. Variable definitions are presented in Table A.1 in
Appendix A.
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Table 7
Reallocation of donations from connected non-operating counties to attainment operating counties.

Dep. variable: (1) (2) (3) (4) (5) (6) (7) (8)∆Connected donationi,c,t

∆Comply donationi,t−1 -0.111∗∗∗ -0.134∗∗∗ -0.220∗∗∗ -0.201∗∗ -0.648∗∗ -0.676∗∗ -0.159∗∗∗ -0.148∗∗

(-3.34) (-3.39) (-2.65) (-2.29) (-2.40) (-2.37) (-2.97) (-2.50)
∆Comply donationi,t−2 -0.021∗∗ -0.025∗∗ -0.073∗∗∗ -0.093∗∗∗ -0.046∗∗∗ -0.049∗∗∗ -0.091∗∗∗ -0.113∗∗∗

(-2.30) (-2.13) (-3.15) (-3.27) (-3.20) (-2.96) (-3.51) (-3.54)

Sample Full Full Opt. Opt. 50% Opt. 50% Opt. 150% Opt. 150% Opt.
Controls Yes Yes Yes Yes Yes Yes Yes Yes
Coefficient sum -0.132 -0.159 -0.293 -0.294 -0.694 -0.724 -0.250 -0.261
F (sum of lags) 11.17 11.24 10.22 8.69 6.87 6.85 12.64 10.43
p-Value 0.001 0.001 0.001 0.003 0.009 0.009 0.001 0.001
Firm F.E. Yes No Yes No Yes No Yes No
County F.E. Yes No Yes No Yes No Yes No
Year F.E. Yes No Yes No Yes No Yes No
Firm × County F.E. No Yes No Yes No Yes No Yes
County × Year F.E. No Yes No Yes No Yes No Yes
Observations 102,139 91,772 89,782 79,077 69,067 58,869 98,937 88,313

This table presents the reallocation of donations away from connected counties where firms historically have
made donations but do not operate facilities and toward close attainment counties. We estimate the regression
specification given in Equation (4). The dependent variable, ∆Connected donationi,c,t, is measured at the
firm–county–year level and is equal to the change in the total dollar value of donations between year t and
year t − 1 in connected counties where the firm does not operate any plants, normalized by the total amount of
donations of the given firm in year t across all counties. The independent variables, ∆Comply donationi,t, are
measured at the firm–year level and is equal to the change in the total dollar value of donations between year t
and year t − 1, summed across all counties where the firm operates plants and have DVs that are in compliance
with the NAAQS threshold, normalized by the total amount of donations of the given firm in year t across all
counties; we divide this by the number of connected non-operating counties associated with the firm in year t.
Columns (1) and (2) use the full sample of attainment counties where the firm operates plants, while columns
(3) and (4) restrict the sample of attainment counties to a narrow window around the NAAQS threshold using
the mean squared error optimal bandwidth following Calonico et al. (2014). We also report results across
alternative bandwidths, including 50% of optimal bandwidth (narrower bandwidth) in columns (5) and (6),
and 150% of optimal bandwidth (wider bandwidth) in columns (7) and (8). Control variables include ln(Size),
ln(BM), ROA, Leverage, Sales growth, KZ, Cash, Momentum, Stock returns, z-score, Core chemical, Permit,
Source reduction, and Production ratio. For all specifications, standard errors are robust to heteroskedasticity
and clustered by county; t-statistics are reported in the parenthesis. *, **, and *** indicate significance at the
10%, 5%, and 1% level, respectively. Variable definitions are presented in Table A.1 in Appendix A.
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Table 8
Effect of local newspaper closures on donation activity in response to close attainment designation status.

Dep. variable: (1) (2) (3) (4) (5)ln(Donation)t+1

Complyc,t 0.282∗∗ 0.392∗∗∗ 0.511∗∗ 0.391∗∗∗ 0.315∗∗∗

(2.29) (3.06) (2.49) (3.95) (2.80)
Closuret−1 -0.561 -0.190 -0.294 -0.329 -0.170

(-1.01) (-0.30) (-1.42) (-1.10) (-0.31)
Complyc,t × Closuret−1 -1.118∗∗∗ -0.987∗∗∗ -1.086∗∗ -0.828∗∗∗ -1.272∗∗∗

(-3.21) (-2.77) (-2.43) (-3.18) (-4.04)

Kernel Rec. Rec. Rec. Rec. Tri.
Bandwidth type Opt. Opt. 50% Opt. 150% Opt. Opt.
Bandwidth estimate 0.012 0.013 0.007 0.020 0.014
Covariates No Yes Yes Yes Yes
Observations 11,584 11,148 4,511 23,048 12,845

This table presents a firm’s donation activities in response to a county’s close attainment designation status
given local newspaper closures. We estimate the local linear regression specification given in Equation (5)
using the mean squared error optimal bandwidth following Calonico et al. (2014). We also report results
across alternative bandwidths, including 50% of optimal bandwidth (narrower bandwidth) and 150% of
optimal bandwidth (wider bandwidth). Results using both rectangular and triangular kernels are reported.
ln(Donation)t+1 equals to the natural logarithm of one plus the total dollar amount of donations of a given
firm to nonprofits in a given county in year t + 1. Closuret−1 is a dummy variable equal to one if a local
newspaper closed in a given county in the past three years until year t − 1, and zero otherwise. Complyc,t is
a dummy variable equal to one if county c is in compliance with the NAAQS threshold in year t, and zero
otherwise. Covariates include ln(Size), ln(BM), ROA, Leverage, Sales growth, KZ, Cash, Momentum, Stock
returns, z-score, Core chemical, Permit, Source reduction, and Production ratio. For all specifications, standard
errors are clustered by county and bias-corrected following Calonico et al. (2014); t-statistics are reported
in the parenthesis. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively. Variable
definitions are presented in Table A.1 in Appendix A.
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Table 9
Donation activity in response to close attainment designation status conditional on firms’ peak reputational
risk.

Dep. variable: (1) (2) (3) (4) (5)ln(Donation)t+1

Complyc,t 0.007 0.043 0.049 0.126 0.006
(0.04) (0.26) (0.20) (1.32) (0.03)

Peak RRIt−1 0.003 0.002 0.008 0.005 0.003
(0.44) (0.32) (1.04) (0.93) (0.53)

Complyc,t × Peak RRIt−1 0.029∗∗∗ 0.028∗∗∗ 0.024∗∗ 0.019∗∗∗ 0.030∗∗∗

(3.45) (3.72) (2.12) (2.89) (2.90)

Kernel Rec. Rec. Rec. Rec. Tri.
Bandwidth type Opt. Opt. 50% Opt. 150% Opt. Opt.
Bandwidth estimate 0.010 0.011 0.006 0.017 0.012
Covariates No Yes Yes Yes Yes
Observations 6,696 7,671 2,733 16,700 9,204

This table presents a firm’s donation activities in response to a county’s close attainment designation status
conditional on the firm’s peak reputational risk. We estimate the local linear regression specification given in
Equation (6) using the mean squared error optimal bandwidth following Calonico et al. (2014). We also report
results across alternative bandwidths, including 50% of optimal bandwidth (narrower bandwidth) and 150% of
optimal bandwidth (wider bandwidth). Results using both rectangular and triangular kernels are reported.
ln(Donation)t+1 equals to the natural logarithm of one plus the total dollar amount of donations of a given
firm to nonprofits in a given county in year t + 1. Peak RRIt−1 is a given firm’s two-year maximum value of
the RRI measured in year t − 1. The peak RRI is obtained from RepRisk and is a news-based measure of
CSR-related incidents that captures a firm’s long-term exposure to reputational risks. The RRI ranges from
zero (lowest) to 100 (highest), with a higher value indicating higher reputational risk exposure. Complyc,t is
a dummy variable equal to one if county c is in compliance with the NAAQS threshold in year t, and zero
otherwise. Covariates include ln(Size), ln(BM), ROA, Leverage, Sales growth, KZ, Cash, Momentum, Stock
returns, z-score, Core chemical, Permit, Source reduction, and Production ratio. For all specifications, standard
errors are clustered by county and bias-corrected following Calonico et al. (2014); t-statistics are reported
in the parenthesis. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively. Variable
definitions are presented in Table A.1 in Appendix A.
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Table 10
Donation activity in response to close attainment designation status conditional on past incidents.

Dep. variable: (1) (2) (3) (4) (5) (6)ln(Donation)t+1

Complyc,t 0.258∗∗ 0.297∗∗ 0.252∗∗ 0.318∗∗ 0.251∗∗ 0.307∗∗

(2.06) (2.19) (2.06) (2.02) (1.97) (2.28)
ln(HPV)t−1 0.122 0.227

(0.37) (0.64)
Complyc,t × ln(HPV)t−1 1.120∗∗ 1.115∗∗

(2.23) (2.05)
ln(Stack)t−1 -0.008 -0.049

(-0.03) (-0.18)
Complyc,t × ln(Stack)t−1 0.738∗∗ 0.619∗∗

(2.02) (2.02)
ln(Case)t−1 -0.149 0.032

(-0.26) (0.06)
Complyc,t × ln(Case)t−1 1.641∗∗ 1.629∗∗

(2.11) (2.09)

Kernel Rec. Rec. Rec. Rec. Rec. Rec.
Bandwidth type Opt. Opt. Opt. Opt. Opt. Opt.
Bandwidth estimate 0.010 0.011 0.010 0.011 0.010 0.011
Covariates No Yes No Yes No Yes
Observations 13,505 13,826 13,505 13,826 13,505 13,826

This table presents a firm’s donation activities in response to a county’s close attainment designation status
conditional on past incidents such as HPVs, stack tests, and enforcement cases. We estimate the local linear
regression specification given in Equation (7) using rectangular kernels and the mean squared error optimal
bandwidth following Calonico et al. (2014). ln(Donation)t+1 equals to the natural logarithm of one plus the
total dollar amount of donations of a given firm to nonprofits in a given county in year t + 1. ln(HPV)t−1
equals to the natural logarithm of one plus the number of high priority violations across all facilities in a given
county of a given firm in the past three years until year t − 1. ln(Stack)t−1 equals to the natural logarithm of
one plus the number of stack tests across all facilities in a given county of a given firm in the past three years
until year t − 1. ln(Case)t−1 equals to the natural logarithm of one plus the number of enforcement cases
across all facilities in a given county of a given firm in the past three years until year t − 1. Covariates include
ln(Size), ln(BM), ROA, Leverage, Sales growth, KZ, Cash, Momentum, Stock returns, z-score, Core chemical,
Permit, Source reduction, and Production ratio. For all specifications, standard errors are clustered by county
and bias-corrected following Calonico et al. (2014); t-statistics are reported in the parenthesis. *, **, and ***
indicate significance at the 10%, 5%, and 1% level, respectively. Variable definitions are presented in Table A.1
in Appendix A.
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Table 11
Mean marginal donations and marginal damages of ozone pollution.

(1) (2) (3) (4)
Marginal donations ($ / tpy) 696.75 1,011.99 1,019.18 1,261.22
Baseline AP3 model

Within-county marginal damages ($ / tpy) 2,182.09 3,430.59 4,020.88 2,765.17
All counties marginal damages ($ / tpy) 7,658.91 10,578.94 11,664.28 9,198.50

VSL OECD model
Within-county marginal damages ($ / tpy) 1,130.60 1,777.47 2,083.32 1,432.70
All counties marginal damages ($ / tpy) 3,968.27 5,481.22 6,043.56 4,765.97

Krewski 5th pctile
Within-county marginal damages ($ / tpy) 1,451.43 2,285.27 2,678.94 1,840.41
All counties marginal damages ($ / tpy) 5,109.73 7,067.84 7,793.28 6,149.77

Krewski 95th pctile
Within-county marginal damages ($ / tpy) 2,844.68 4,447.64 5,197.93 3,595.33
All counties marginal damages ($ / tpy) 9,955.42 13,685.19 15,043.79 11,943.77

Sample Full Opt. 50% Opt. 150% Opt.
Number of counties 618 355 231 494

This table compares the mean marginal donations of pollution with the marginal damages of pollution. We
only consider counties where TRI plants operate, and data exists for both DVs and marginal damages. The
sample period is from 2002 to 2017. Marginal donations are computed as the change in the average donations
in a given county by all TRI firms operating in that county divided by the change in average total ozone
emissions by those TRI firms using the RDD estimates from Tables 3 and 4. We use four different models
to compute marginal damages: i) baseline parameters using the AP3 model; ii) alternative VSL estimates
following OECD (2012); and iii) alternative parameters for the pollution concentration mortality response
function from the 5th and 95th percentile, respectively, of Krewski et al.’s (2009) study. Data on marginal
damages are available for years 2002, 2005, 2008, 2011, 2014, 2017, and linearly interpolated between years.
Within-county marginal damages refer to the damages restricted to the same county as where the emissions
are produced. All counties marginal damages refer to the damages caused by the emissions produced in a
given county that spread across all counties. In column (1), we report mean marginal donations and marginal
damages using the full sample of counties. Column (2) uses the sample of counties located in the narrow
window around the NAAQS threshold by computing the mean squared error optimal bandwidth following
Calonico et al. (2014). In columns (3) and (4), we report results across alternative bandwidths, including
50% of optimal bandwidth (narrower bandwidth) and 150% of optimal bandwidth (wider bandwidth). Both
marginal damages and marginal donations are in $ per ton of yearly emissions. All currency are in 2015 dollars,
deflated using the GDP deflator.
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Appendix A: Variable definitions

Table A.1
Variable definitions.

Variable Definitions Data source

ln(Donation) The natural logarithm of one plus the total dollar amount of donations
of a given firm to nonprofits in a given county.

FoundationSearch

∆Connected donation The change in the total dollar value of donations between year t and
year t − 1 in connected counties where the firm does not operate any
plants, normalized by the total amount of donations of the given firm
in year t across all counties.

FoundationSearch; TRI

∆Comply donation The change in the total dollar value of donations between year t and
year t − 1, summed across all counties where the firm operates plants
and have DVs that are in compliance with the NAAQS threshold,
normalized by the total amount of donations of the given firm in
year t across all counties; we divide this by the number of connected
non-operating counties associated with the firm in year t.

FoundationSearch; TRI

ln(Ozone) The natural logarithm of one plus the total amount of ozone air
emissions (in pounds) in a given county of a given firm.

TRI

Comply A dummy variable equal to one if a given county is in compliance
with the NAAQS threshold in a given year, and zero otherwise.

AQS

Closure A dummy variable equal to one if a local newspaper closed in a given
county in the past three years until year t − 1, and zero otherwise.

UNC CISLM

ln(Size) The natural logarithm of market equity. Compustat
ln(BM) The natural logarithm of one plus the book-to-market ratio. Compustat
ROA Net income divided by total assets. Compustat
Leverage Total liabilities divided by total assets. Compustat
Sales growth Ratio of sales in the current fiscal year to sales in the last year minus

one.
Compustat

KZ Kaplan-Zingales index. Compustat
Cash Cash divided by total assets. Compustat
Momentum Cumulative 12-month return of a stock, excluding the immediate

past month.
CRSP

Stock returns Firm-level annual stock returns. CRSP
z-score Altman’s unlevered z-score for a given firm. Compustat
Core chemical A dummy variable equal to one if a given firm operates plants in a

given county that emit core ozone chemicals as defined by TRI, and
zero otherwise.

TRI

Production ratio A given firm’s average ozone production ratio across all plants in a
given county.

P2

Permit A dummy variable equal to one if a given firm operates plants in a
given county that hold operating permits for ozone emissions, and
zero otherwise.

ICIS-Air

Source reduction A dummy variable equal to one if a given firm operates plants in a
given county that engage in ozone source reduction activities, and
zero otherwise.

P2

ln(HPV) The natural logarithm of one plus the number of high priority viola-
tions across all facilities in a given county of a given firm in the past
three years until year t − 1.

ICIS-Air

ln(Stack) The natural logarithm of one plus the number of stack tests across
all facilities in a given county of a given firm in the past three years
until year t − 1.

ICIS-Air

ln(Case) The natural logarithm of one plus the number of enforcement cases
across all facilities in a given county of a given firm in the past three
years until year t − 1.

ICIS FE&C

Peak RRI A given firm’s two-year maximum value of the RRI that captures a
firm’s long-term exposure to reputational risks.

RepRisk

Current RRI A given firm’s current value of the RRI that captures a firm’s short-
term exposure to reputational risks.

RepRisk
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Appendix B: AP3 model

B.1. AP3 model overview

We calculate county-level marginal damages of ozone emissions from the AP3 model (Holland
et al., 2020). AP3 is an integrated assessment model developed to estimate monetary damages
from emissions in the continental United States. Since previous research has found that
mortality accounts for approximately 95% of the total monetized health damages (Jaramillo
& Muller, 2016), the AP3 model does not include morbidity or other environmental damages.
The model uses air quality modeling to translate emissions into ambient concentrations, and
then to compute population exposure, health effects, and finally the valuation of those effects;
each of these steps is described in detail below.

The AP3 air quality model uses annual emissions of all criteria pollutants from all sources
within a county, measured from the National Emissions Inventory (NEI). AP3 then inputs these
emission rates into the Climatological Regional Dispersion Model, an air pollution transport
model, to calculate ambient concentrations of each pollutant in each county. The AP3 model
distinguishes among emissions released at four different effective stack height categories:
ground-level emissions, point sources (stationary sources) under 250 meters, point sources
between 250 meters and 500 meters, and point sources over 500 meters. AP3 then applies
concentration-response functions for each outcome it considers. AP3 calculates mortality in
each of 19 different age groups used in the U.S. census (0 years old, 1-4 years old, 5-9 years old,
..., 80-84 years old, 85+ years old). AP3 uses separate adult and infant concentration-response
functions. AP3 then monetizes the change in mortality using an estimate of the value of a
statistical life (VSL).

B.2. Data sources

Data on emissions is taken from the EPA’s NEI, which is a comprehensive accounting of
emissions from all sectors. Data is available every three years from 2002 to 2017. The stack
height of emissions plays an important role in the AP3 model because the altitude at which a
pollutant is emitted influences the pollutant’s ambient level and spatial distribution. However,
since we only focus on TRI facilities and the mean height of emissions of volatile organic
compounds (VOCs) from these facilities is only 14.2 meters with a standard deviation of 14.6
meters (US EPA, 1999), we apply AP3 assuming stack heights are lower than 250 meters.
Population data for each of the 19 different age groups come from the U.S. Census American
Community Survey. We use mortality data from the CDC National Vital Statistics System
Multiple Cause of Death dataset. The data includes all-cause mortality rates by county for
each of the 19 age groups.

B.3. Model calibration and application

To calculate the marginal damages of ozone emissions using AP3, we start from the raw
data files and programs that constitute AP3, which Nick Muller generously shared. The
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original AP3 uses all VOC emissions in a given county as inputs. However, since we are only
interested in the marginal damages of ozone emissions from TRI facilities, we sum together
the total VOC emissions from all TRI facilities in a given county and use this value instead.
We consider two types of damages: i) within-county damages, which are damages limited to
the same county as the source county of VOC emissions; and ii) all county damages, which
are damages summed across all counties attributable to the VOC emissions in the source
county. To calculate marginal damages, we increase VOC emissions by one ton in a given
source county and calculate the change in monetized damages. Since emissions data is only
available every three years, we linearly interpolate the marginal damages between years.

The baseline AP3 model use the EPA’s preferred VSL of $8.6 million (2015 dollars) (US
EPA, 2010). This estimate primarily reflects hedonic models of the labor market which
assess how a worker’s wage increases as the worker’s occupational fatality risk increases. An
alternative specification is a VSL of $4.5 million, which reflects a similar study covering all
countries in the Organization for Economic Cooperation and Development (OECD, 2012).
The OECD includes many countries with lower GDP per capita than the U.S., such as Mexico
and Turkey, so it is perhaps unsurprising that a VSL estimate for the OECD is lower than a
VSL estimate for the U.S.

For the adult and infant concentration-response functions, the baseline AP3 model uses
the estimate of 0.0058 from Krewski et al. (2009) and 0.0068 from Woodruff, Parker, and
Schoendorf (2006), respectively. For sensitivity analyses, we report estimates based on the 5th
percentile of Krewski et al. (2009) and Woodruff et al. (2006), which are 0.0039 and -0.0073,
respectively. We also report estimates based on the 95th percentile of Krewski et al. (2009)
and Woodruff et al. (2006), which are 0.0077 and 0.0215, respectively.
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Figure IA.1
Mean marginal donations and marginal damages of ozone pollution by year.
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This figure compares the yearly mean marginal donations of pollution with the marginal damages of pollution
from years 2002 to 2017. We only consider counties where TRI plants operate, and data exists for both DVs
and marginal damages. Marginal donations are computed as the change in the yearly average donations in a
given county by all TRI firms operating in that county divided by the change in yearly average total ozone
emissions by those TRI firms using the RDD estimates from Tables 3 and 4. Marginal damages represent
within-county damages and are computed using the baseline parameters using the AP3 model. Data on
marginal damages are available for years 2002, 2005, 2008, 2011, 2014, 2017, and linearly interpolated between
years. We use the sample of counties located in the narrow window around the NAAQS threshold by computing
the mean squared error optimal bandwidth following Calonico et al. (2014). Both marginal damages and
marginal donations are in $ per ton of yearly emissions. All currency are in 2015 dollars, deflated using the
GDP deflator.
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Table IA.1
Ozone NAAQS.

Standard Effective date Averaging
time

Threshold
(ppm)

Form

1-Hour Ozone (1979) January 6, 1992 1 hour 0.12 Attainment is defined when the
expected number of days per
calendar year, with maximum
hourly average concentration
greater than 0.12 ppm, is equal
to or less than 1

8-Hour Ozone (1997) June 15, 2004 8 hours 0.08 Annual fourth-highest daily
maximum 8-hr concentration,
averaged over 3 years

8-Hour Ozone (2008) July 20, 2012 8 hours 0.075 Annual fourth-highest daily
maximum 8-hr concentration,
averaged over 3 years

8-Hour Ozone (2015) August 3, 2018 8 hours 0.070 Annual fourth-highest daily
maximum 8-hr concentration,
averaged over 3 years

This table provides basic descriptions of the ozone NAAQS used in our study. Standard refers to the
name of the ozone NAAQS. Effective date is the date on which the standard is effectively implemented
as stated in the Federal Register. Averaging time is the sampling frequency of the ozone concentration
used to calculate DVs. Threshold refers to the DV value which if exceeded, then the county is considered
to be in nonattainment. This value is measured in parts per million (ppm). Form is the rule used to
compute the DVs for the relevant ozone standard. Our sample period is from 1999–2018. From 1999 to
2003, we use the 1-Hour Ozone (1979) standard. From 2004 to 2011, we use the 8-Hour Ozone (1997)
standard. From 2012 to 2017, we use the 8-Hour Ozone (2008) standard. In 2018, we use the 8-Hour
Ozone (2015) standard. This table is adapted from https://www.epa.gov/ground-level-ozone-pollution/
timeline-ozone-national-ambient-air-quality-standards-naaqs.
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Table IA.2
TRI industry composition.

NAICS Description Proportion (%)

325 Chemical Manufacturing 12.970
332 Fabricated Metal Product Manufacturing 12.644
336 Transportation Equipment Manufacturing 8.222
311 Food Manufacturing 7.942
333 Machinery Manufacturing 7.252
331 Primary Metal Manufacturing 6.733
334 Computer and Electronic Product Manufacturing 5.665
221 Utilities 4.958
327 Nonmetallic Mineral Product Manufacturing 4.709
326 Plastics and Rubber Products Manufacturing 4.430
424 Merchant Wholesalers, Nondurable Goods 3.531
321 Wood Product Manufacturing 3.144
322 Paper Manufacturing 3.128
335 Electrical Equipment, Appliance, and Component Manufacturing 3.044
324 Petroleum and Coal Products Manufacturing 2.740
562 Waste Management and Remediation Services 2.020
339 Miscellaneous Manufacturing 1.739
337 Furniture and Related Product Manufacturing 1.407
212 Mining (except Oil and Gas) 0.819
323 Printing and Related Support Activities 0.814
313 Textile Mills 0.614
312 Beverage and Tobacco Product Manufacturing 0.585
314 Textile Product Mills 0.299
316 Leather and Allied Product Manufacturing 0.110
811 Repair and Maintenance 0.090
454 Nonstore Retailers 0.079
315 Apparel Manufacturing 0.052
541 Professional, Scientific, and Technical Services 0.052
213 Support Activities for Mining 0.029
488 Support Activities for Transportation 0.027
113 Forestry and Logging 0.025
112 Animal Production and Aquaculture 0.024
493 Warehousing and Storage 0.020
486 Pipeline Transportation 0.013
532 Rental and Leasing Services 0.013
551 Management of Companies and Enterprises 0.009
481 Air Transportation 0.008
237 Heavy and Civil Engineering Construction 0.005
423 Merchant Wholesalers, Durable Goods 0.005
425 Wholesale Electronic Markets and Agents and Brokers 0.005
444 Building Material and Garden Equipment and Supplies Dealers 0.004
445 Food and Beverage Stores 0.004
561 Administrative and Support Services 0.004
531 Real Estate 0.003
211 Oil and Gas Extraction 0.002
442 Furniture and Home Furnishings Stores 0.002
484 Truck Transportation 0.002
511 Publishing Industries (except Internet) 0.002
812 Personal and Laundry Services 0.002
115 Support Activities for Agriculture and Forestry 0.002

This table reports the three-digit NAICS industries in TRI that are included in our sample. Proportion refers
to the fraction that is represented in our sample.
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Table IA.3
Other characteristics and donation activity in response to close attainment designation status.

Monitor distance Age Concentration
Far Close Young Old Low High

Dep. variable: (1) (2) (3) (4) (5) (6)ln(Donation)t+1

Complyc,t 0.361∗∗∗ 0.277∗∗ 0.257∗∗ 0.457∗∗∗ 0.498∗∗∗ 0.253∗∗

(2.85) (2.00) (2.04) (3.16) (4.65) (2.05)

Coefficient difference 0.084 -0.200 0.245
p-value 0.656 0.297 0.211
Kernel Rec. Rec. Rec. Rec. Rec. Rec.
Bandwidth type Opt. Opt. Opt. Opt. Opt. Opt.
Bandwidth estimate 0.010 0.008 0.014 0.011 0.008 0.007
Covariates Yes Yes Yes Yes Yes Yes
Observations 4,657 5,033 9,714 6,077 4,899 2,921

This table presents a firm’s donation activities in response to a county’s close attainment designation status
for subsamples based on other characteristics. We estimate the local linear regression specification given in
Equation (1) using rectangular kernels and the mean squared error optimal bandwidth following Calonico
et al. (2014). Columns (1) and (2) report the results for the subsample where the average distance between
the plants of a given firm and the closest monitor in a given county is above (“Far”) and below (“Close”)
the median, respectively. Columns (3) and (4) report the results for the subsample where the average age of
the plants of a given firm in a given county is above (“Old”) and below (“Young”) the median, respectively.
Columns (5) and (6) report the results for the subsample where the county-level HHI based on facility-level
sales is above (“High”) and below (“Low”) the median, respectively. ln(Donation)t+1 equals to the natural
logarithm of one plus the total dollar amount of donations of a given firm to nonprofits in a given county in
year t + 1. Complyc,t is a dummy variable equal to one if county c is in compliance with the NAAQS threshold
in year t, and zero otherwise. Coefficient difference represents the difference in the coefficient estimates of
Complyc,t between the two subsamples. Covariates include ln(Size), ln(BM), ROA, Leverage, Sales growth, KZ,
Cash, Momentum, Stock returns, z-score, Core chemical, Permit, Source reduction, and Production ratio. For
all specifications, standard errors are clustered by county and bias-corrected following Calonico et al. (2014);
t-statistics are reported in the parenthesis. *, **, and *** indicate significance at the 10%, 5%, and 1% level,
respectively. Variable definitions are presented in Table A.1 in Appendix A.
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Table IA.4
Donation activity in response to close attainment designation status using global polynomial regression.

Dep. variable: (1) (2) (3) (4)ln(Donation)t+1

Complyc,t 0.200∗∗∗ 0.299∗∗∗ 0.198∗∗ 0.298∗∗∗

(2.59) (3.46) (2.13) (2.79)

Polynomial order 2 2 3 3
Controls No Yes No Yes
Observations 54,524 45,264 54,524 45,264

This table presents the RDD estimates using global polynomial regression. We use flexible polynomials of
order two and three that are different for observations on the left- and right-hand side of the NAAQS threshold.
ln(Donation)t+1 equals to the natural logarithm of one plus the total dollar amount of donations of a given
firm to nonprofits in a given county in year t + 1. Complyc,t is a dummy variable equal to one if county c is in
compliance with the NAAQS threshold in year t, and zero otherwise. Control variables include ln(Size), ln(BM),
ROA, Leverage, Sales growth, KZ, Cash, Momentum, Stock returns, z-score, Core chemical, Permit, Source
reduction, and Production ratio. For all specifications, standard errors are clustered by county; t-statistics are
reported in the parenthesis. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.
Variable definitions are presented in Table A.1 in Appendix A.
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Table IA.5
Alternative RDD specifications for donation activity in response to close attainment designation status.

Dep. variable: (1) (2) (3) (4) (5) (6)ln(Donation)t+1

Complyc,t 0.297∗∗ 0.338∗∗ 0.455∗∗ 0.368∗∗∗ 0.378∗∗∗ 0.339∗∗

(2.36) (2.35) (2.37) (3.23) (3.01) (2.17)

Kernel Epan. Epan. Epan. Epan. Rec. Rec.
Bandwidth type Opt. Opt. 50% Opt. 150% Opt. Opt. Opt.
Bandwidth estimate 0.011 0.011 0.006 0.017 0.011 0.012
Polynomial order 1 1 1 1 2 3
Covariates No Yes Yes Yes Yes Yes
Observations 15,051 12,977 5,963 26,246 13,700 15,479

This table presents alternative RDD specifications to estimate a firm’s donation activities in response to a
county’s close attainment designation status. In columns (1) to (4), we estimate the local linear regression
specification given in Equation (1) using the Epanechnikov kernel function and the mean squared error optimal
bandwidth following Calonico et al. (2014). We also report results across alternative bandwidths, including
50% of optimal bandwidth (narrower bandwidth) and 150% of optimal bandwidth (wider bandwidth). In
columns (5) and (6), we control for local quadratic and cubic polynomials, respectively, in centered design
values using the rectangular kernel function. ln(Donation)t+1 equals to the natural logarithm of one plus the
total dollar amount of donations of a given firm to nonprofits in a given county in year t + 1. Complyc,t is
a dummy variable equal to one if county c is in compliance with the NAAQS threshold in year t, and zero
otherwise. Covariates include ln(Size), ln(BM), ROA, Leverage, Sales growth, KZ, Cash, Momentum, Stock
returns, z-score, Core chemical, Permit, Source reduction, and Production ratio. For all specifications, standard
errors are clustered by county and bias-corrected following Calonico et al. (2014); t-statistics are reported
in the parenthesis. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively. Variable
definitions are presented in Table A.1 in Appendix A.
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Table IA.6
Donation activity in response to close attainment designation status using the inverse hyperbolic sine trans-
formed donations.

Dep. variable: (1) (2) (3) (4) (5)arcsinh(Donation)t+1

Complyc,t 0.350∗∗∗ 0.402∗∗∗ 0.378∗∗ 0.409∗∗∗ 0.392∗∗∗

(2.62) (2.88) (1.98) (3.60) (2.68)

Kernel Rec. Rec. Rec. Rec. Tri.
Bandwidth type Opt. Opt. 50% Opt. 150% Opt. Opt.
Bandwidth estimate 0.010 0.011 0.006 0.017 0.012
Covariates No Yes Yes Yes Yes
Observations 13,505 13,826 5,963 26,246 15,753

This table presents a firm’s donation activities in response to a county’s close attainment designation status
using the inverse hyperbolic sine transformed donations as the dependent variable. We estimate the local
linear regression specification given in Equation (1) using the mean squared error optimal bandwidth following
Calonico et al. (2014). We also report results across alternative bandwidths, including 50% of optimal
bandwidth (narrower bandwidth) and 150% of optimal bandwidth (wider bandwidth). Results using both
rectangular and triangular kernels are reported. arcsinh(Donation)t+1 equals to the inverse hyperbolic sine
(arcsinh) transformed total dollar amount of donations of a given firm to nonprofits in a given county in year
t + 1. Complyc,t is a dummy variable equal to one if county c is in compliance with the NAAQS threshold
in year t, and zero otherwise. Covariates include ln(Size), ln(BM), ROA, Leverage, Sales growth, KZ, Cash,
Momentum, Stock returns, z-score, Core chemical, Permit, Source reduction, and Production ratio. For all
specifications, standard errors are clustered by county and bias-corrected following Calonico et al. (2014);
t-statistics are reported in the parenthesis. *, **, and *** indicate significance at the 10%, 5%, and 1% level,
respectively. Variable definitions are presented in Table A.1 in Appendix A.
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Table IA.7
Residualized donation activity in response to close attainment designation status.

Dep. variable: (1) (2) (3) (4) (5)Residualized ln(Donation)t+1

Complyc,t 0.363∗∗∗ 0.184∗∗ 0.147∗∗ 0.292∗∗∗ 0.122∗∗

(2.95) (2.34) (2.11) (2.59) (2.04)

Residualize by firm Yes Yes Yes No No
Residualize by county No Yes Yes No No
Residualize by year No No Yes No No
Residualize by firm–year No No No Yes Yes
Residualize by firm–county No No No No Yes
Kernel Rec. Rec. Rec. Rec. Rec.
Bandwidth type Opt. Opt. Opt. Opt. Opt.
Bandwidth estimate 0.010 0.011 0.011 0.011 0.013
Covariates Yes Yes Yes Yes Yes
Observations 10,512 12,967 14,378 11,503 16,567

This table presents a firm’s donation activities in response to a county’s close attainment designation status using
residualized donation outcomes by various fixed effects. We estimate the local linear regression specification
given in Equation (1) using rectangular kernels and the mean squared error optimal bandwidth following
Calonico et al. (2014). We residualize ln(Donation)t+1 by regressing it on various fixed effects and then using
the residuals as the dependent variable. ln(Donation)t+1 equals to the natural logarithm of one plus the
total dollar amount of donations of a given firm to nonprofits in a given county in year t + 1. Complyc,t is
a dummy variable equal to one if county c is in compliance with the NAAQS threshold in year t, and zero
otherwise. Covariates include ln(Size), ln(BM), ROA, Leverage, Sales growth, KZ, Cash, Momentum, Stock
returns, z-score, Core chemical, Permit, Source reduction, and Production ratio. For all specifications, standard
errors are clustered by county and bias-corrected following Calonico et al. (2014); t-statistics are reported
in the parenthesis. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively. Variable
definitions are presented in Table A.1 in Appendix A.
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Table IA.8
Donation activity in response to close attainment designation status conditional on the rolling average of ozone
emissions in the previous three years.

Dep. variable: (1) (2) (3) (4) (5)ln(Donation)t+1

Complyc,t 0.068 0.172 0.063 0.138 0.163
(0.49) (1.53) (0.57) (1.06) (1.28)

ln(Ozone)t−1 0.003 0.023 0.008 0.005 0.012
(0.11) (1.28) (0.37) (0.19) (0.68)

Complyc,t × ln(Ozone)t−1 0.059∗∗ 0.036∗∗ 0.061∗∗ 0.048∗∗ 0.049∗∗

(2.00) (2.14) (2.10) (1.97) (2.30)

Kernel Rec. Rec. Rec. Rec. Tri.
Bandwidth type Opt. Opt. 50% Opt. 150% Opt. Opt.
Bandwidth estimate 0.010 0.011 0.006 0.017 0.012
Covariates No Yes Yes Yes Yes
Observations 13,505 13,826 7,329 26,246 15,973

This table presents a firm’s donation activities in response to a county’s close attainment designation status
conditional on the rolling average of ozone emissions in the previous three years. We estimate the local linear
regression specification given in Equation (2) using the mean squared error optimal bandwidth following
Calonico et al. (2014). We also report results across alternative bandwidths, including 50% of optimal
bandwidth (narrower bandwidth) and 150% of optimal bandwidth (wider bandwidth). Results using both
rectangular and triangular kernels are reported. ln(Donation)t+1 equals to the natural logarithm of one plus
the total dollar amount of donations of a given firm to nonprofits in a given county in year t + 1. ln(Ozone)t−1
equals to the natural logarithm of one plus the average of the total amount of ozone air emissions (in pounds)
in a given county of a given firm in the previous three years until year t − 1. Complyc,t is a dummy variable
equal to one if county c is in compliance with the NAAQS threshold in year t, and zero otherwise. Covariates
include ln(Size), ln(BM), ROA, Leverage, Sales growth, KZ, Cash, Momentum, Stock returns, z-score, Core
chemical, Permit, Source reduction, and Production ratio. For all specifications, standard errors are clustered
by county and bias-corrected following Calonico et al. (2014); t-statistics are reported in the parenthesis. *, **,
and *** indicate significance at the 10%, 5%, and 1% level, respectively. Variable definitions are presented in
Table A.1 in Appendix A.
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Table IA.9
Long term donation activity in response to close attainment designation status.

Panel A: Two-year forward donations
Dep. variable: (1) (2) (3) (4) (5)ln(Donation)t+2

Complyc,t 0.343∗∗∗ 0.381∗∗∗ 0.222∗∗ 0.321∗∗∗ 0.314∗∗∗

(3.27) (3.41) (2.36) (5.57) (2.61)

Kernel Rec. Rec. Rec. Rec. Tri.
Bandwidth type Opt. Opt. 50% Opt. 150% Opt. Opt.
Bandwidth estimate 0.013 0.015 0.008 0.023 0.015
Covariates No Yes Yes Yes Yes
Observations 20,419 21,047 8,339 36,421 21,047
Panel B: Three-year forward donations
Dep. variable: (1) (2) (3) (4) (5)ln(Donation)t+3

Complyc,t 0.240∗∗∗ 0.314∗∗∗ 0.272∗∗ 0.306∗∗∗ 0.312∗∗∗

(3.55) (3.88) (2.51) (4.87) (4.14)

Kernel Rec. Rec. Rec. Rec. Tri.
Bandwidth type Opt. Opt. 50% Opt. 150% Opt. Opt.
Bandwidth estimate 0.010 0.010 0.005 0.015 0.012
Covariates No Yes Yes Yes Yes
Observations 12,915 10,984 4,663 21,573 14,982

This table presents a firm’s long term donation activities in response to a county’s close attainment designation
status. Panel A (B) uses the two-year (three-year) forward donations. We estimate the local linear regression
specification given in Equation (1) using the mean squared error optimal bandwidth following Calonico et al.
(2014). We also report results across alternative bandwidths, including 50% of optimal bandwidth (narrower
bandwidth) and 150% of optimal bandwidth (wider bandwidth). Results using both rectangular and triangular
kernels are reported. ln(Donation)t+2 (ln(Donation)t+3) equals to the natural logarithm of one plus the total
dollar amount of donations of a given firm to nonprofits in a given county in year t + 2 (t + 3). Complyc,t is
a dummy variable equal to one if county c is in compliance with the NAAQS threshold in year t, and zero
otherwise. Covariates include ln(Size), ln(BM), ROA, Leverage, Sales growth, KZ, Cash, Momentum, Stock
returns, z-score, Core chemical, Permit, Source reduction, and Production ratio. For all specifications, standard
errors are clustered by county and bias-corrected following Calonico et al. (2014); t-statistics are reported
in the parenthesis. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively. Variable
definitions are presented in Table A.1 in Appendix A.
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Table IA.10
Placebo RDD specifications.

Placebo thresholds Non-operating counties
Dep. variable: (1) (2) (3) (4)ln(Donation)t+1

Complyc,t -0.042 -0.139 -0.005 -0.020
(-0.15) (-0.52) (-0.01) (-0.06)

Kernel Rec. Rec. Rec. Rec.
Bandwidth type Opt. Opt. Opt. Opt.
Bandwidth estimate 0.018 0.021 0.017 0.018
Covariates No Yes No Yes
Observations 18,292 18,045 35,820 36,434

This table presents placebo tests for a firm’s donation activities in response to a county’s close attainment
designation status. In columns (1) and (2), we use placebo NAAQS thresholds whereby the 1-Hour Ozone
(1979) standard uses the 8-Hour Ozone (2008) standard’s threshold, the 8-Hour Ozone (1997) standard uses
the 1-Hour Ozone (1979) standard’s threshold, the 8-Hour Ozone (2008) standard uses the 8-Hour Ozone
(2015) standard’s threshold, and the 8-Hour Ozone (2015) standard uses the 8-Hour Ozone (1997) standard’s
threshold. In columns (3) and (4), we limit the sample to the counties where the firm does not operate any
polluting plants. ln(Donation)t+1 equals to the natural logarithm of one plus the total dollar amount of
donations of a given firm to nonprofits in a given county in year t + 1. Complyc,t is a dummy variable equal to
one if county c is in compliance with the NAAQS threshold in year t, and zero otherwise. Covariates include
ln(Size), ln(BM), ROA, Leverage, Sales growth, KZ, Cash, Momentum, Stock returns, z-score, Core chemical,
Permit, Source reduction, and Production ratio. For all specifications, standard errors are clustered by county
and bias-corrected following Calonico et al. (2014); t-statistics are reported in the parenthesis. *, **, and ***
indicate significance at the 10%, 5%, and 1% level, respectively. Variable definitions are presented in Table A.1
in Appendix A.
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Table IA.11
Donation activity in response to close attainment designation status conditional on firms’ current reputational
risk.

Dep. variable: (1) (2) (3) (4) (5)ln(Donation)t+1

Complyc,t 0.052 0.113 0.087 0.151 0.069
(0.28) (0.67) (0.33) (1.63) (0.28)

Current RRIt−1 0.002 0.001 0.005 0.004 0.004
(0.21) (0.12) (0.41) (0.43) (0.36)

Complyc,t × Current RRIt−1 0.042∗∗∗ 0.039∗∗∗ 0.035∗∗ 0.030∗∗∗ 0.042∗∗∗

(2.87) (3.06) (1.96) (2.76) (2.72)

Kernel Rec. Rec. Rec. Rec. Tri.
Bandwidth type Opt. Opt. 50% Opt. 150% Opt. Opt.
Bandwidth estimate 0.010 0.011 0.006 0.017 0.012
Covariates No Yes Yes Yes Yes
Observations 6,696 7,671 2,733 16,700 9,204

This table presents a firm’s donation activities in response to a county’s close attainment designation status
conditional on the firm’s current reputational risk. We estimate the local linear regression specification given
in Equation (6) using the mean squared error optimal bandwidth following Calonico et al. (2014). We also
report results across alternative bandwidths, including 50% of optimal bandwidth (narrower bandwidth) and
150% of optimal bandwidth (wider bandwidth). Results using both rectangular and triangular kernels are
reported. ln(Donation)t+1 equals to the natural logarithm of one plus the total dollar amount of donations of
a given firm to nonprofits in a given county in year t + 1. Current RRIt−1 is a given firm’s current value of
the RRI measured in year t − 1. The current RRI is obtained from RepRisk and is a news-based measure of
CSR-related incidents that captures a firm’s short-term exposure to reputational risks. The RRI ranges from
zero (lowest) to 100 (highest), with a higher value indicating higher reputational risk exposure. Complyc,t is
a dummy variable equal to one if county c is in compliance with the NAAQS threshold in year t, and zero
otherwise. Covariates include ln(Size), ln(BM), ROA, Leverage, Sales growth, KZ, Cash, Momentum, Stock
returns, z-score, Core chemical, Permit, Source reduction, and Production ratio. For all specifications, standard
errors are clustered by county and bias-corrected following Calonico et al. (2014); t-statistics are reported
in the parenthesis. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively. Variable
definitions are presented in Table A.1 in Appendix A.
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