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Abstract

Defining a futures return as the rate of change of futures prices, as done in many

empirical studies, implicitly implies that a futures contract is fully collateralized. We

adjust futures’ returns to explicitly account for holding the minimum margin (collat-

eral) and the return to this collateral. Different collateral choices of the futures affect

the dynamic properties of returns to futures contracts and modify their risk profile.

In our empirical study, we document these discrepancies under full and partial collat-

eralization. The discrepancy is minimal except when the futures prices and minimum

margins are volatile. Our findings broadly verify the common belief that commodity

futures serve as a good asset class for diversification purposes.

JEL codes: C58, G13
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1 Introduction

It is commonly accepted that commodity futures provide an attractive asset class to add

to a portfolio because they are not highly correlated with equities and among themselves

(e.g., see Gorton and Rouwenhorst (2006), Erb and Harvey (2006), Geman and Kharoubi

(2008), Büyükşahin, Haige and Robe (2010), Chong and Miffre (2010), Daskalakia and

Skiadopoulos (2011), Bhardwaj, Gorton and Rouwenhorst (2015)). This belief is based on
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14853 and Kamakura Corporation, Honolulu, Hawaii 96815; Email: raj15@cornell.edu. Kwok: School of
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studying time series properties of futures prices (and returns) that implicitly assume the

futures contracts are fully collateralized and where the returns on the required margins

are ignored.1 This is a serious omission because futures contracts exist precisely because

they provide an exchange traded contract for investing in a commodity that is highly

levered. Ignoring both the leverage and the return to the margin accounts could possibly

bias the return moments and correlations. These biases may, in principle, revise our beliefs

with respect to the attractiveness of commodity futures as an alternative asset class. The

purpose of this paper is to investigate the time series properties of commodity futures

returns explicitly incorporating both leverage and margin account returns to determine

what difference, if any, these complications make.

In the existing literature, futures price returns are defined as the rate of change of

futures prices; the role of margins (collateral) is not considered. Gorton and Rouwenhorst

(2006) collected monthly returns over 1959-2004 and documented a number of stylized

facts about commodity futures (e.g., expected returns and Sharpe ratio). A related study

is Erb and Harvey (2006), who study the statistical properties of monthly returns (e.g.,

return correlations among futures) for a wide range of commodity futures in 1982-2004.

Gorton, Hayashi and Rouwenhorst (2007) carry out time series analysis on monthly futures

data in 1970-2006. Anderson, Bianchi and Goldberg (2014) analyze the monthly futures

returns over a much longer sample spanning 1929-2013. Hamilton and Wu (2015) study

the predictability of expected futures return and its relationship with notional values of

investment held by index funds.

Using futures price returns implicitly assumes full collateralization. This is convenient

because futures prices are then the only data input needed to compute such a return. From

a practical perspective, it side-steps the technical difficulty of formally defining a futures

return. Note that the value of a futures contract is always zero at the end of each period

due to marking-to-market; hence, futures returns are technically undefined. The return

on a futures contract is only well defined if the base, the non-zero initial futures price, is

interpreted as the collateral held in the margin account.

Despite its convenience, the full collateral assumption is unrealistic. It neglects the fact

that the minimum margin changes over time and can be correlated with the trading of

futures.2 In this paper, we allow for a choice of the futures collateralization and examine

1This convention is commonly adopted in the literature; see Gorton and Rouwenhorst (2006, Appendix
A), and Erb and Harvey (2006, Note 1)

2A strand of literature studies the relationship between minimal margin and futures trading. Hartzmark
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how this affects the statistical analysis of futures’ returns. We generalize the definition

of futures return (known as the adjusted futures return) to correctly reflect the change

in value of marked-to-market futures contracts under partial collateralization. We define

partial collateralization as holding the less than full collateral. Additionally, the adjusted

return accounts for the interest accrued on the collateral and any changes in the collateral

due to marking-to-market.

The adjusted returns under partial collateralization serve as the basis for our theoreti-

cal and empirical studies. We examine the dynamic properties of a self-financing portfolio

of futures, and find that full collateralization leads to a constant inflow/outflow of capital.

In addition, we examine the difference in the statistical properties of futures returns under

full and partial collateralization. Different statistical measures are compared, including

the standard deviation, correlation, and market beta. We find that returns on the collat-

eral itself and stochastic interest rates contribute to the discrepancy between multi-period

futures returns under different choices of collateralization. The discrepancy tends to be

larger when the sampling frequency of futures return is lower.

Our empirical study estimates futures contract returns under full collateral and partial

collateral, where partial collateral is defined as holding the maximum leverage (minimal

margin). We show that ignoring the adjustments due to changing minimal margin re-

quirements can lead to a bias in the sample statistics during volatile periods when margin

requirements change rapidly. The bias becomes more substantial when the sampling fre-

quency is lower relative to the updating frequency of margins. In many occasions, a shift

from full to partial collateralization leads to a significant adjustment in return correlations.

The adjustments become large when futures prices and minimal margins are volatile (e.g.,

during the 2008 GFC and the crash of crude oil futures in 2020). As an implication for

portfolio diversification, the common belief that commodity futures serve as an attractive

asset class remains valid, except in volatile markets, even after the consideration of margins

and the interest earned on collateral.

The rest of the paper is organized as follows. Section 2 introduces the problem and clar-

ifies the definition of a futures return under partial collateralization. Section 3 establishes

theoretical results on the impact of collateral choice on a portfolio’s return and capital.

(1986) endogenizes futures’ margins and analyzes how this may lead to a change of investors’ composition
and the market performance of futures. More recently, Hedegaard (2014) examines the effect of margin
changes on market liquidity and volatility. Abruzzo and Park (2014) finds that futures price volatility has
an asymmetric effect on margins.
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Section 4 discusses how partial collateralization changes the statistical properties of fu-

tures’ returns. Section 5 reports the results of our empirical study. Section 6 concludes.

The technical proofs and supplementary results are collected in the Appendix.

2 The Problem

The purpose of this section is to understand, theoretically, the impact that margins have

on a futures contract’s return.

2.1 Definition of a Futures Return

For ease of analysis, we adopt a discrete time setting t = 0, 1, ..., T . Consider a futures

contract with delivery date T . The futures price Ft is set at at the start of period [t, t+ 1)

(t = 0, 1, ..., T − 1) such that the futures contract has zero value.3 Let Vt denote the time

t value of the futures contract.

At the start of period [t, t+1), as noted, the futures contract starts out with zero value,

i.e., Vt = 0. At the end of each period [t, t+ 1), the contract is marked-to-market : the con-

tract holder receives Ft+1−Ft, and the contract value reverts again to zero. Consequently,

futures contracts have value Vt ≡ 0 for all t = 0, 1, ..., T − 1.

For example, if one goes long a futures contract at time t, the initial value of the position

is Vt = 0. The value plus cash flow at time t+ 1 is Vt+1 +Ft+1−Ft. And, the “return” on

a long position in a futures contract is:

Vt+1 + Ft+1 − Ft − Vt
Vt

.

Due to marking-to-market, the denominator is 0; therefore, the return is not well-defined.

The problem is how to define a return on a long position in a futures contract. The

solution is that, in practice (and economic theory), futures contracts require the posting

of collateral/margin to guarantee performance.

Let’s consider the return to a futures contract including the collateral posted. At

the start of a period [t, t + 1), collateral Ct is posted. The collateral is then invested in

a default-free interest-bearing securities (the money market account, or mma) until the

futures contract is sold or expires. We assume that the collateral is positive (Ct > 0) and

3Since the delivery date will be fixed in what follows, we do not need to include the delivery date T as
an argument in the futures price. Note that FT = ST , the spot price at the delivery date.
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exogenously determined by the exchange. In addition, we assume that the mma earns

interest at a risk-free interest rate rt.
4

Due to the collateral, one can consider an augmented portfolio consisting of a long

position in a futures contract plus collateral. The augmented portfolio is worth

Vt + Ct

at time t; and

Vt+1 + Ft+1 − Ft + Ct(1 + rt)

at time t+ 1. The return on augmented portfolio over the period (t, t+ 1] is therefore

at+1 =
Vt+1 + Ft+1 − Ft + Ct(1 + rt)− (Vt + Ct)

Vt + Ct

=
Ft+1 − Ft + Ct(1 + rt)− Ct

Ct

=
Ft+1 − Ft

Ct
+ rt

=
|Ft|
Ct

(
Ft+1 − Ft
|Ft|

)
+ rt. (1)

Note that at+1 is always well-defined since Ct > 0.

On the other hand, the rate of change of futures prices over (t, t+ 1] is given by

bt+1 :=
Ft+1 − Ft
|Ft|

. (2)

In what follows, we will refer to at+1 as the futures return adjusted for holding partial

collateral (or the adjusted futures return), and bt+1 as the futures return under full collateral

(plus interest rate).5

Define the collateral ratio πt := Ct
|Ft| over [t, t+ 1). It satisfies 0 < πt ≤ 1. The leverage

ratio is given by π−1t . From (1)-(2) and by the definition of πt, we deduce the relation

4This interest rate is often the LIBOR rate less some haircut.
5Observe that at+1 = bt+1+rt when πt = 1. Because the stochastic variation of interest rate is negligible

compared to that of bt+1 as revealed by our empirical analysis, we will simply drop the qualifier “plus interest
rate” while referring to bt+1.
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between adjusted and unadjusted futures returns,

at+1 =
1

πt
bt+1 + rt. (3)

2.2 Issues with Full Collateral

As noted above, the academic literature investigating futures contract returns (e.g., see

Gorton and Rouwenhorst [10], p. 6), sets Ct = Ft, which is called “fully or 100% collater-

alized.” This simplification has numerous problems.

1. First, a futures minimal margin is not 100%, it is typically a small percent. Futures

contracts are an attractive alternative to buying and storing a commodity precisely

because of this implied leverage when posting the minimal margin. Ignoring margin

distorts the true returns investors obtain when investing in commodities.

2. Total collateral is related to the commodity’s volatility due to the manner in which

exchanges determine the minimal margins. For example, letting πt denote the min-

imal margin, a first approximation is given by πt = c0 + c1σt−1 where σt−1 is the

conditional standard deviation at time t − 1. This implies, of course, that the size

of a commodity’s minimal collateral is correlated with changes in the commodity’s

volatility and market conditions, implying that a commodity’s adjusted futures return

moments differ from unadjusted returns.

3. The commodity’s minimal margin differs across commodities (and even delivery dates

on a commodity). This difference induces differences in the adjusted futures contract

return’s correlations across commodities and with equities as compared to the unad-

justed returns.

4. Last, the margin held affects a commodity futures adjusted return’s distribution and,

hence, its risk. Given expression (3), we have that

Et(at+1)− rt
σt(at+1)

=
1
πt
Et (bt+1)

1
πt
σt (bt+1)

=
Et (bt+1)

σt (bt+1)
.

We see that the Sharpe ratio is modified due to margins because the numerator changes.

Including the margin held reduces the adjusted futures return’s Sharpe ratio relative to

6

Electronic copy available at: https://ssrn.com/abstract=3921423



the fully collateralized return. In addition, we see that

Pt(at+1 ≤ θ) = Pt (bt+1 ≤ [θ − rt]πt)

for a given θ. Note that, for the same threshold, the tail probability of the adjusted return

is larger than the tail probability of the unadjusted return, because [θ − rt]πt is generally

smaller than θ. This implies that the probability of a large drawdown increases when

margin is considered. Of course, due to the increased leverage, the probability of a larger

return also increases.

3 Portfolio Considerations

When constructing a portfolio, we want to invest a fixed amount of capital at the beginning,

and neither add nor remove any capital until the strategy is terminated, at some future

time T . This is called a self-financing trading strategy. The purpose of this section is to

study the implications of different margins across commodities on the portfolio’s return

and capital. Two facts are shown:

1. For a fully collateralized futures trading strategy, capital does not remain unchanged.

And, as a consequence, the number of futures contracts held must be modified across

time to keep the trading strategy self-financing.

2. Partially collateralized futures trading strategies differ from fully collateralized fu-

tures trading strategies due to the different return relations given by expression (1).

This induces different portfolio variances and Sharpe ratios.

3.1 Some Notations

Let us define some notations:

• Kt = the capital at time t ∈ [0, 1, ..., T ]. K0 is given.

• Fi(t) = the time t futures price for the ith commodity where i = 1, 2..., n.

• Ni(t) = the number of futures contracts of the ith commodity held at time t (negative

holdings are possible).

• Ci(t) = collateral deposited per futures contract for the ith commodity at time t.
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• Ci(t) |Ni(t)| = total collateral deposited for the ith commodity at time t. Note that

the absolute value of the holdings is utilized because positive collateral must be held

for negative positions.

• Ci(t)|Ni(t)|
K0

= wi(t) = the percentage of capital allocated to the ith commodity at time

t where ∑n

i=1
wi(t) = 1.

Note that wi(t) ≥ 0.

For an equally weighted portfolio, set Ni(t) = K0
nCi(t)

≥ 0, to generate wi(t) = 1
n .

Define the collateral ratio as 0 < πi(t) ≤ 1. Then, the collateral is given by

Ci(t) = πi(t) |Fi(t)| .

3.2 Time Dynamics

This section discusses the time dynamics of the portfolio.

1. Time 0. Choose Ni(0) for i = 1, ..., n such that∑n

i=1
|Ni(0)|Ci(0) = K0. (4)

This expression allocates the initial capital across the different commodities based on

the collateral requirements.

2. Enter time 1. The capital is now given by

K1 =
∑n

i=1
Ni(0)[Fi(1)− Fi(0)] + r0K0 +K0 (5)

Note that the first term is the change in value of the futures contracts. The second

two terms correspond to the value of the capital at time 1. It equals the initial capital

plus interest earned (recall that the summed collateral equals total capital).

This implies

K1 −K0 =
∑n

i=1
Ni(0)[Fi(1)− Fi(0)] + r0K0

Note that the capital changes at time 1.
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We next want to express the return on the portfolio as a weighted average of the

returns on the individual futures positions. This can be done as follows. The return

on the portfolio is:

K1 −K0

K0
=
∑n

i=1

|Ni(0)|Ci(0)

K0
sign(Ni(0))

[
Fi(1)− Fi(0)

Ci(0)

]
+ r0

=
∑n

i=1
wi(0)

[
sign(Ni(0))

Fi(1)− Fi(0)

Ci(0)

]
+ r0.

The term sign(Ni(0)) adjusts for the position being positive or negative.

We can write this as

K1 −K0

K0
=
∑n

i=1
wi(0)

[
Fi(0)

Ci(0)
sign(Ni(0))

Fi(1)− Fi(0)

Fi(0)

]
+ r0

=
∑n

i=1
wi(0)

[
1

πi(0)
sign(Ni(0))

Fi(1)− Fi(0)

Fi(0)

]
+ r0. (6)

This implies the variance and covariances of the returns are:

σ20

(
K1 −K0

K0

)
=
∑n

i=1

∑n

j=1
wi(0)wj(0)

1

πi(0)

1

πj(0)
·

Cov0

(
sign(Ni(0))

Fi(1)− Fi(0)

Fi(0)
, sign(Nj(0))

Fj(1)− Fj(0)

Fj(0)

)
.

Note that if 1
πi(0)

6= 1, then the variance of the adjusted portfolio’s return is different

from the fully collateralized position’s variance.

E0

(
K1−K0
K0

)
− r0

σ0

(
K1−K0
K0

) =

∑n
i=1wi(0) 1

πi(0)
sign(Ni(0))E0

(
Fi(1)−Fi(0)

Fi(0)

)
∑n

i,j=1
wi(0)
πi(0)

wj(0)
πj(0)

Cov0

(
sign(Ni(0))Fi(1)−Fi(0)Fi(0)

, sign(Nj(0))
Fj(1)−Fj(0)

Fj(0)

) .
The Sharpe ratio can change due to the different πi(0) across i.

3. Rebalance time 1. Choose Ni(1) for i = 1, ..., n such that∑n

i=1
|Ni(1)|Ci(1) = K1.

In this rebalancing, if K1 > K0, and the collateral remains unchanged (Ci(1) =

Ci(0)), then the number of futures contracts held must change to keep the portfolio
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capital fully utilized.

4. Enter time 2.

K2 =
∑n

i=1
Ni(1)[Fi(2)− Fi(1)] + r1K1 +K1

K2 −K1

K1
=
∑n

i=1
wi(1)

1

πi(1)

[
sign(Ni(1))

Fi(2)− Fi(1)

Fi(1)
+ r1

]
5. So forth ....

Remark 1 (Full Collateral) Let πi(t) = 1 for all t. Then we have∑n

i=1
Ni(0)Fi(0) = K0.

And it follows that

K1 =
∑n

i=1
Ni(0)[Fi(1)− Fi(0)] + r0K0 +K0

=
∑n

i=1
Ni(0)Fi(1) + r0K0

6= K0.

Note that for a fully collateralized futures trading strategy, capital can be either gained or

lost. In general, it does not stay unchanged. The portfolio’s return is

K1 −K0

K0
=
∑n

i=1
wi(0)

[
sign(Ni(0))

Fi(1)− Fi(0)

Fi(0)
+ r0

]
.

Remark 2 For an equally weighted portfolio, set Ni(0) = K0
nCi(0)

≥ 0. The portfolio’s

return is
K1 −K0

K0
=
∑n

i=1

1

n

1

πi(0)

[
Fi(1)− Fi(0)

Fi(0)
+ r0

]
.

4 Statistical Analysis

The purpose of this section is to derive various statistical relationship between at+1 and

bt+1 that we can test empirically. We first discuss the probabilistic structure of our model.

Let (Ω,F , {Ft}t>0, P ) denote a filtered probability space. The quantities Ft, Ct, πt and rt

are known at the start of period [t, t+ 1); i.e., they are Ft-measurable. Consequently, at+1

and bt+1 are Ft+1-measurable.

10

Electronic copy available at: https://ssrn.com/abstract=3921423



4.1 One-period Moments

We will start with one-period conditional moments. Let Et[·] denote the conditional ex-

pectation given Ft. We first observe that, conditional on Ft, the futures returns under

partial and full collateral are linearly related. This follows from (3), implying that their

conditional moments are equal after a suitable transformation. For example, leveraging

does not affect the conditional kurtosis of futures returns because kurtosis is a normalized

measure:

κat =
Et[(at+1 − µat)4]

σ4at
=
π−4t Et[(bt+1 − µbt)4]

π−4t σ4bt
= κbt ,

where µst = Et(st+1) and σ2st = V art(st+1) for s = a, b. The same equivalence applies to

the conditional skewness. Note that all of these normalized measures are unit-free (i.e.,

independent of the unit of measurement).

The effect of partial collateral is seen in conditional centralized moments (which do

not take the normalized form). For example, the conditional variance of futures return is

magnified by the squared leverage ratio π−2t :

V art(at+1) = π−2t V art(bt+1). (7)

Similarly, the conditional kurtosis is inflated by π−4t :

Et[(at+1 − µat)4] = π−4t Et[(bt+1 − µbt)4],

Equalities hold iff full collateral is assumed (i.e., πt = 1).

4.1.1 Cross Asset Correlations

The cross correlations of futures returns are important in understanding diversification

in portfolios. Let W denote a risky asset and wt denote its return. Define ρbwt :=

corrt(bt+1, wt+1), the conditional correlation between the returns on futures under full

collateral and the returns on asset W .

We can compute the one-step ahead conditional correlation between the adjusted fu-
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tures returns and asset W . Using expression (3),

ρawt = corrt(at+1, wt+1)

= corrt(π
−1
t bt+1 + rt, wt+1)

= corrt(π
−1
t bt+1, wt+1)

= corrt(bt+1, wt+1)

= ρbwt . (8)

The third equality follows from the Ft-measurability of rt. The fourth equality holds

because correlation is normalized; hence, the presence of margins does not alter correlations

with futures contracts.

Now, suppose the other asset is a different futures contract. Let a′t denote its adjusted

return (with collateral ratio π′t), and let b′t denote its return under full collateral. A similar

argument shows that the conditional correlation remains the same, i.e.,

ρaa
′

t = corrt(at+1, a
′
t+1)

= corrt(
1

πt
bt+1 + rt+1,

1

π′t
b′t+1 + rt+1)

= corrt(
1

πt
bt+1,

1

π′t
b′t+1)

= corrt(bt+1, b
′
t+1)

= ρbb
′

t .

4.1.2 Market Betas

Market betas are useful for understanding how commodity futures returns correlate with

an aggregate equity index. Let mt denote the return of market portfolio M .

The one-period ahead conditional market beta of the adjusted futures return denoted
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βat is given by

βat =
Covt(at+1,mt+1)

V art(mt+1)

=
Covt(π

−1
t bt+1 + rt,mt+1)

V art(mt+1)

=
π−1t Covt(bt+1,mt+1)

V art(mt+1)

= π−1t βbt ,

where βbt := Covt(bt+1,mt+1)
V art(mt+1)

represents the conditional market beta of commodity futures

under full collateral. The third equality follows from the Ft-measurability of rt.

We thus see that the conditional market beta of futures contracts are magnified by the

leverage ratio. The return on the margin account, the interest rate, plays no role in the

calculation of the one-period conditional adjusted futures market beta.

4.2 Multi-period Analysis

We now proceed to the multi-period analysis by studying the statistical properties of futures

return over a time horizon k > 1. Let:

• at,t+k denote the return on the augmented portfolio over (t, t + k]. It is Ft+k-
measurable.

• bt,t+k :=
Ft+k−Ft
|Ft| denote the rate of change of futures prices over (t, t + k]. It is

Ft+k-measurable.

bt,t+k :=
(Ft+k − Ft+k−1) + (Ft+k−1 − Ft+k−2) + · · ·+ (Ft+1 − Ft)

|Ft|

Note the telescoping sum in the numerator.

• rt,t+k := (1 + rt)(1 + rt+1) · · · (1 + rt+k−1)− 1 denote the interest rate (i.e., return on

the mma) over [t, t+k). Note that rt,t+k is Ft+k−1-measurable, hence it is stochastic

as of time t.

Suppose we are at time t. Here, πt is known, while at,t+k, bt,t+k and rt,t+k are random.

Note that they reduce to the notations in the previous section when k = 1 (at+1 = at,t+1,

bt+1 = bt,t+1 and rt = rt,t+1).
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We now generalize (1) to the k-period horizon. Note that the change in the futures

contract is adjusted each period by the change in the collateral over the next period. We

obtain the following relationship between at,t+k and bt,t+k:

at,t+k =
Ft+k − Ft + {· · · [(Ct(1 + rt) + ∆Ct+1) (1 + rt+1) + ∆Ct+2] · · ·+ ∆Ct+k−1} (1 + rt+k−1)− Ct

Ct

=
|Ft|
Ct

(
Ft+k − Ft
|Ft|

)
+ rt,t+k +

∆Ct+1(1 + rt+1) · · · (1 + rt+k−1) + · · ·+ ∆Ct+k−1(1 + rt+k−1)

Ct
,

where ∆Ct = Ct+1 − Ct. Define

ct,t+k :=
1

Ct

k−1∑
i=1

∆Ct+i
∏k−1
j=i (1 + rt+j) =

1

Ct

k−1∑
i=1

∆Ct+i(1 + rt+i,t+k−1).

Using the previously defined notations, we arrive at

at,t+k =
1

πt
bt,t+k + rt,t+k + ct,t+k (9)

4.2.1 The Variance of Futures Returns

This section compares the variance of futures returns under partial and full collateral. In

contrast to the one-period horizon setting, a formal analysis needs to acknowledge both the

effect of leveraging and the stochastic nature of interest rates that span multiple periods.

Going forward k periods (where k > 1), the conditional variance of futures return under

partial collateral is given by

σ2t (at,t+k) = σ2t

(
1

πt
bt,t+k + rt,t+k + ct,t+k

)
=

1

π2t
σ2t (bt,t+k) + σ2t (rt,t+k + ct,t+k) +

2

πt
Covt(bt,t+k, rt,t+k + ct,t+k). (10)

Under mild conditions, futures returns adjusted for partial collateral have a larger variance

than that under full collateral. This is stated in the following proposition.

Proposition 1 Suppose πt < 1 and σt(rt,t+k + ct,t+k) < (1 − πt)σt(
1
πt
bt,t+k). Then

σ2t (at,t+k) ≥ σ2t (bt,t+k) for k > 1.

The conditions assume that the futures are levered and that the variation of the lever-

aged futures returns is large relative to the variation of the returns on the mma and the
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collateral. These are likely to be satisfied in practice because the required collateral is often

a small proportion of the futures price.

Compared to the one-period analysis in (7), we see that both σ2t (at,t+k) and 1
π2
t
σ2t (bt,t+k)

are generally different because of the last two terms of (10)). To interpret the discrepancy,

we may express (10) as

σ2t (at,t+k) =
1

π2t
σ2t (bt,t+k)

[
1 + x2t + 2xtρ

b,rc
t,t+k

]
,

where xt :=
σt(rt,t+k+ct,t+k)

σt(
1
πt
bt,t+k)

and ρb,rct,t+k := cort(bt,t+k, rt,t+k + ct,t+k). This shows that the

source of the difference is xt and ρb,rct,t+k; i.e., the stochastic variation of the multi-period

returns on the mma, the collateral (rt,t+k + ct,t+k), and their correlations with futures

returns under full collateral (bt,t+k). The discrepancy only vanishes (hence recovering the

result of one-period analysis (7)) if the interest rate and return on the collateral has zero

stochastic variation relative to the leveraged futures return (i.e., xt = 0). We will show

later in our empirical analysis that this discrepancy varies over time and becomes significant

during certain time periods.

Example 1 As an illustration, assume that πt = 0.1 (10% collateral ratio), k = 5 (weekly

horizon for daily data), and that the conditional standard deviations are σt(rt,t+5+ct,t+5) =

0.1 and σt(bt,t+5) = 0.1. This gives the lower bound of the conditional covariance: Covt(bt,t+5, rt,t+5+

ct,t+5) > −σt(rt,t+5 + ct,t+5)σt(bt,t+5) > −0.01. It follows from (10) that the conditional

variance of the adjusted futures return has the lower bound: σt(at,t+5) > [102(0.01) +

0.01 + 2(10)(−0.01)]1/2 = 0.9. This is substantially larger than σt(bt,t+5) = 0.1. On the

other hand, the adjusted futures return has a standard deviation σt(
1
πt
bt,t+5) = 1, which is

contained within this range.

4.2.2 Cross Asset Correlations

Suppose we have another risky asset W with return wt,t+k over period (t, t + k], where

k > 1. Let us evaluate the conditional correlation of k-step returns between the augmented
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portfolio and asset W . Define xt :=
σt(rt,t+k+ct,t+k)

σt(
1
πt
bt,t+k)

. By simple algebra, we obtain

ρa,wt,t+k = corrt(at,t+k, wt,t+k)

= corrt(
1

πt
bt,t+k + rt,t+k + ct,t+k, wt,t+k)

=
1
πt
Covt(bt,t+k, wt,t+k) + Covt(rt,t+k + ct,t+k, wt,t+k)√

1
π2
t
σ2t (bt,t+k) + σ2t (rt,t+k + ct,t+k) + 2

πt
Covt(bt,t+k, rt,t+k + ct,t+k)σt(wt,t+k)

=
ρb,wt,t+k + ρw,rct,t+k · xt√
1 + x2t + 2

πt
ρb,rct,t+k · xt

,

where ρa,wt,t+k := corrt(at,t+k, wt,t+k), ρ
b,w
t,t+k := corrt(bt,t+k, wt,t+k), ρ

w,rc
t,t+k := corrt(wt,t+k, rt,t+k+

ct,t+k), and ρb,rct,t+k := corrt(bt,t+k, rt,t+k + ct,t+k).

Compared to the one-period result (8), the conditional correlations ρa,wt,t+k and ρb,wt,t+k
are not the same due to the presence of the multi-period interest rate and the return

on collateral. The two correlations are more similar when the returns on the mma and

collateral have a smaller variation relative to the futures returns under full collateral (i.e.,

when xt approaches zero).

Suppose W is another futures contract. Let a′t,t+k denote its adjusted return over period

(t, t+k] with the collateral ratio π′t at time t. Similarly, let b′t,t+k denote the futures return

under full collateral.

Denote ρa,a
′

t,t+k, the k-step ahead conditional correlation between the adjusted returns

at,t+k and a′t,t+k. Define xt :=
σt(rt,t+k+ct,t+k)

σt(
1
πt
bt,t+k)

and x′t :=
σt(rt,t+k+c

′
t,t+k)

σt(
1
π′t
b′t,t+k)

. By simple algebra,

ρa,a
′

t,t+k = corrt(at,t+k, a
′
t,t+k)

= corrt(
1

πt
bt,t+k + rt,t+k + ct,t+k,

1

π′t
b′t,t+k + rt,t+k + c′t,t+k)

=
ρb,b

′

t,t+k + ρb,rc
′

t,t+k · x
′
t + ρb

′,rc
t,t+k · xt + ρrc,rc

′

t,t+k · xt · x
′
t√

1 + x2t + 2ρb,rct,t+k · xt
√

1 + (x′t)
2 + 2ρb

′,rc′

t,t+k · x′t
.

Again, we see that ρa,a
′

t,t+k and ρb,b
′

t,t+k are different due to the presence of the multi-period

interest rate and the returns on the collateral. The difference is smaller when the returns

on the mma and collateral have a smaller stochastic variation relative to the futures returns
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under full collateral (i.e., both xt and x′t approach zero).

4.2.3 Market Betas

Letmt,t+k denote the k-period return of the market portfolioM . Define βbt,t+k :=
Covt(bt,t+k,mt,t+k)

V art(mt,t+k)

to be the conditional market beta for the k-period returns on the futures under full col-

lateral. Let βrt,t+k denote the conditional market beta for the k-period interest rate rt,t+k,

and βct,t+k denote the conditional market beta for the k-period returns on collateral ct,t+k.

Note that, for k > 1, βrt,t+k and βct,t+k are generally non-zero due to the stochastic nature

of rt,t+k and ct,t+k as of time t.

Going forward k periods, where k > 1, we evaluate the conditional market beta of the

adjusted return:

βat,t+k =
Covt(at,t+k,mt,t+k)

V art(mt,t+k)

=
Covt(

1
πt
bt,t+k + rt,t+k + ct,t+k,mt,t+k)

V art(mt,t+k)

=
1
πt
Covt(bt,t+k,mt,t+k)

V art(mt,t+k)
+
Covt(rt,t+k,mt,t+k)

V art(mt,t+k)
+
Covt(ct,t+k,mt,t+k)

V art(mt,t+k)

=
1

πt
βbt,t+k + βrt,t+k + βct,t+k.

As seen, the risk of the augmented portfolio depends on the risk of the adjusted futures

return, the risk of the stochastic interest rate, and the risk of collateral changes, where all

risks are measured relative to the market portfolio.

5 Empirical Analysis

This section provides our empirical estimation of the futures return moments and correla-

tions.

5.1 Data

Our sample consists of futures prices spanning January 2003 to May 2021. Using daily close

prices obtained from Datastream, we compute the simple weekly returns (Wednesday-to-
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Wednesday).6 The interest rate is taken to be the effective Federal funds rate released by

St. Louis Fed.

For our baseline analysis, we consider five front month futures (i.e., futures contracts

that are closest to expiration): corn (C), wheat (W), gold (GC), the British pound (BP),

and WTI crude oil (CL). In terms of trading volume these are among the most representa-

tive futures in their respective categories. We include other commodities subsequently. In

addition, we collect historical margins and futures contract specifications from the CME

Group. This enables us to compute the minimal margins.7 Table 1 reports the summary

statistics.

We compare adjusted and unadjusted futures contract returns. For the adjusted re-

turns, we assume that partial collateralization corresponds to holding the maximum lever-

age possible (πt is defined to be the minimal margin percent), implying the minimal margin

is posted. To better understand the dynamics of these returns, we plot the daily time se-

ries of futures prices (Figure 1), the standard deviation of futures returns computed over

a one-year rolling window (Figure 2), and the leverage ratios determined by the minimum

margins required by the exchange (Figure 3; 1/πt). The standard deviation of futures

returns exhibits substantial variation over time. Due to the leverage effect, the standard

deviation of adjusted futures returns (in red) dominates those of the unadjusted futures

returns (in blue) and collateral returns (in yellow). The leverage ratio tends to be lower

when futures prices fluctuate more, e.g., the minimum collateral is at a record high during

March 2020 when crude oil futures experiences a sharp fall in price.

5.2 The Correlation Analysis

Figure 4 displays the time series plots of correlations between different pairs of futures

returns (computed using the previous year’s data), in the form of a matrix. Each subplot

contains both the return correlations under full collateral (raw correlation; in blue) and

the return correlations adjusted for maximum leveraging (adjusted correlation; in red).

Unlike unconditional correlations (which remain close to zero for many pairs; see Table 1),

the rolling correlations vary quite substantially over time. The futures prices tend to be

6Multi-day returns are used to examine the role of stochastic interest rates in affecting the correlations
of adjusted futures returns. See Section 3.

7Historical data of minimum margins (minimum performance bond requirements) are available for corn,
wheat and British pound futures over the entire sample period (January 2003 to May 2021). The margin
data for gold and WTI crude oil futures are available over a shorter time span (January 2009 to May 2021).
For the latter futures, the missing leverage ratios over earlier dates are replaced with the time series average.
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more highly correlated during 2009-2010 and 2020-21. The fully collateralized and adjusted

return correlations are mostly parallel with occasional deviations.

The plots also highlight the episodes with sizable correlation adjustments for partial

collateralization (green if adjustment > 0.05; orange if < −0.05). Many of these episodes

occur after the crash of the crude oil futures price in March 2020, when the fully collat-

eralized return correlations increase sharply for almost all pairs (except for C-W). The

correlations become higher for all pairs involving CL after accounting for partial collat-

eralization. Table 2 lists the time when each future pair achieves maximum conditional

correlation adjustment across the whole sample. For example, in 2020-21, GC-CL, BP-CL

and C-CL experienced large adjustments in correlation by more than 50%.

To investigate the underlying reasons for correlation adjustments, we decompose the ad-

justment according to the sources of the difference. The difference in correlations, denoted

D, can be broken down as follows:

D := corr(a, a′)− corr(b, b′) = D1 +D2 +D3.

Each component is interpreted below (see Lemma A1 in the Appendix for the exact defi-

nition):

1. D1 represents the contribution to the correlation adjustment due to leveraging.

2. D2 measures the variation in the changes of the collateral and how they co-move with

leveraged returns across the futures.

3. D3 measures the variation of interest rates and how they co-move with leveraged

returns and changes in collateral.

Figure 5 plots the time series of these components. The leverage effect (D1; in red)

contributes almost all of the correlation adjustment. The rest of the adjustments are mainly

due to the changes in collateral and its association with the leveraged returns (D2; in blue).

The effect of interest rates and its association with leveraged returns (as captured by D3;

in black) is negligible. The last observation is expected because its time series variation is

dominated by that of the adjusted futures returns.8

8In our sample of weekly data, the standard deviation of unadjusted futures returns is more than 50
times of the standard deviation of interest rates; see Table 1, Panel A.
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We examine the major contributor D1 by further breaking it down into interpretable

sub-components. See Lemma A2 and the entailing discussion in the Appendix. These

sub-components are displayed in Figure A1. Among the cases in which the correlation

adjustment is noticeable, many of them are driven by the interaction between the futures

return and the leverage ratio (D11; in purple). Another important determinant is the

time variation of the leverage ratio and its (linear and quadratic) association with futures

returns (D12; in black). These two factors dominate the effects of the product terms (D13

and D14; in yellow and green).

5.3 Robustness Tests

All of the commodity futures in the above analysis expire in a month’s time. It is interesting

to see whether the correlation adjustments change with the futures maturity. We repeat the

above correlation analysis for futures expiring in six months. The time series of correlations

(Figures A2) appear qualitatively similar. The correlation adjustments are visible for

similar time periods. There are some notable differences, however: e.g., unlike the front-

month futures, the correlations of longer-maturity futures during 2020-21 are adjusted

downward after accounting for leveraging. The decomposition (Figures A3) reveals that

D1 and D2 are smaller in magnitude as the futures’ maturity increases. This indicates,

for longer-term futures, a weaker interaction of the co-movement in futures returns and

their leverage ratios, less volatile leverage ratios over time, and a weaker link between

leverage ratios and futures returns. Consistent with this finding, we observe a decline in

the maximum adjustment to correlations across the futures pairs as a commodity futures’

maturity increases (Table A1, Panels B and C).

We next study the impact of sampling frequency on return correlations. Using daily

futures returns, we obtain the correlations using a one-year rolling window (Figure A4).

The correlation series becomes noisier in comparison to weekly return correlations (Figure

4). This is due to the different stylized facts of futures returns as the sampling frequency

changes. Furthermore, correlation adjustments for leveraging are visible, and the larger

adjustments tend to occur over similar time periods. Compared to weekly return correla-

tions, the maximum adjustments are generally smaller in absolute value with some slight

variation in different time periods and the adjustment direction (Table A1, Panel A). The

sources of the correlation adjustments are qualitatively the same as in the benchmark case.

Our benchmark results are based on five commodity futures. We now extend the study
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to 13 futures series. Due to the large number of futures pairs involved, we do not show the

time series return correlation plots. We report only the maximum correlation adjustments

for all pairs of futures (Table A2). While there are more heterogeneous ranges of time

periods in which the correlation adjustment achieves its maximum, many of them occur in

2009-10 in the aftermath of the global financial crisis, or after March 2020 when oil prices

dropped sharply.

As our final check, we examine the robustness of our analysis with respect to the roll-

over effect of futures. In our previous analysis, the price series of front-month futures are

obtained from the futures contract with the nearest maturity, i.e., it regularly “rolls over”

to the next nearest futures contract as the current month’s contract expires. This leads to

unwanted discontinuities of the time-to-maturity at a futures expiration date.

To obtain a time series of futures prices with a maturity fixed, a cubic spline is fitted

to the cross section of futures prices for various maturities on any given day. This yields

the estimated futures price as a function of maturity for each day. This price series is

hypothetical because it may not come from any traded futures contract, although it is

associated with a portfolio of futures with different maturities. Table A3 compares the

dynamics of the return series obtained by this method (smoothed returns, denoted rs)

with that of the return series obtained by rolling over expiring futures contracts (roll-over

returns, denoted r). The difference in their fluctuations as measured by their standard

deviation is small for all futures in our sample. This suggests that the results of our

correlation analysis are unlikely to be driven by the roll-over of futures. The result is

somewhat expected because, from what we observe in the empirical data, the temporal

variation of futures prices dominates the basis (defined as the rate of change of futures

prices across consecutive maturities; see, e.g., Gorton, Hayashi and Rouwenhorst (2007)

[9], footnote 6). Our result is consistent with Carchano and Pardo (2009) [14], which

recommends the least complex method to roll over futures contracts.

6 Conclusion

In time series analysis of commodity futures data, it is common practice to define a futures

return as the rate of change of futures prices. An implicit assumption underlying this

definition is that of full collateralization. This paper relaxes this assumption by modifying

the definition of futures return to allow for partial collateralization. The modified definition

explicitly accounts for leveraging and the return on collateral in the margin account. This
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leads to nontrivial changes in the stylized facts of futures’ returns.

We explore the implications of different collateralization choices on portfolios. In par-

ticular, we compare full collateralization versus holding the maximum possible leverage

(minimum margin), which we call partial collateralization. Considering the minimum mar-

gin implies that the input capital needs to be constantly adjusted so that the portfolio

remains self-financing. Furthermore, a shift from full to partial collateralization can result

in a different futures trading strategy due to a change in the portfolio’s variance, Sharpe

ratio, market beta and return correlation.

Our empirical findings indicate that correlations on futures returns are minimally af-

fected by partial collateralization. The affect is widened when futures prices and minimum

margin are more volatile, e.g., in the aftermath of the 2008 GFC and after the crash of

crude oil futures in March 2020. This broadly verifies the common belief that commodity

futures serve as a good asset class to diversify a portfolio, except during market turbulence.

The impact tends to be larger as the sampling frequency of futures returns is lower.
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Appendix

A1 Supplementary Results

Lemma A1: We have

corr(a, a′)− corr(b, b′) = D1 +D2 +D3,

where Di (i = 1, 2, 3) are given as follows:

D1 :=
Cov( 1

π b,
1
π′ b
′)

σ(a)σ(a′)
− Cov(b, b′)

σ(b)σ(b′)
,

D2 :=
Cov( 1

π b, c
′) + Cov(c, 1

π′ b
′) + Cov(c, c′)

σ(a)σ(a′)
,

D3 :=
Cov( 1

π b, r) + Cov(r, 1
π′ b
′) + V ar(r)

σ(a)σ(a′)
.

Lemma A2: Assume that E(b) = E(b′) = 0. Then we have

corr(
1

π
b,

1

π′
b′)− corr(b, b′) = D11 +D12 +D13 −D14,

where D1i (i = 1, 2, 3, 4) are given as follows:

D11 :=
1

σ(a)σ(a′)
Cov(

1

π

1

π′
, bb′),

D12 :=
1

σ(a)σ(a′)

[
E(

1

π
)E(

1

π′
)−

σ( 1
π b)σ( 1

π′ b
′)

σ(b)σ(b′)

]
Cov(b, b′),

D13 :=
1

σ(a)σ(a′)
Cov(

1

π
,

1

π′
)Cov(b, b′),

D14 :=
1

σ(a)σ(a′)
Cov(

1

π
, b)Cov(

1

π′
, b′).

Each of the sub-components D1i (i = 1, 2, 3, 4) bears an interpretation (up to scaling

by the standard deviations of leveraged returns), summarized below:

1. D11 := 1
σ(a)σ(a′)Cov(``′, bb′) measures the interaction between the co-movement of

leverage ratios and that of futures returns.
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2. D12 := 1
σ(a)σ(a′)

[
E(`)E(`′)− σ(`b)σ(`′b′)

σ(b)σ(b′)

]
Cov(b, b′) captures the degree of time vari-

ation of the leverage ratios (as measured by their standard deviation), and the lin-

ear/quadratic association between leverage ratio and futures returns (as measured

by Cov(`, b) and Cov(`2, b2)).9

3. D13 := 1
σ(a)σ(a′)Cov(`, `′)Cov(b, b′) is the scaled product of the covariance between

leverage ratios (over futures) and the covariance of futures returns (over futures).

4. D14 := 1
σ(a)σ(a′)Cov(`, b)Cov(`′, b′) is the scaled product of the covariances between

futures returns and leverage ratio.

A2 Technical Proofs

A2.1 Proof of Proposition 1

If σt(rt,t+k + ct,t+k) = 0, then πt < 1 implies that σ2t (at,t+k) = σ2t (
1
πt
bt,t+k) > σ2t (bt,t+k).

From now on, we assume that σt(rt,t+k + ct,t+k) > 0.

Suppose the contrary, i.e., σ2t (at,t+k) < σ2t (bt,t+k). Applying this inequality to (10)

yields

σ2t (bt,t+k) > σ2t (at,t+k) =
1

π2t
σ2t (bt,t+k) + σ2t (rt,t+k + ct,t+k) +

2

πt
Covt(bt,t+k, rt,t+k + ct,t+k)

=⇒ Covt(bt,t+k, rt,t+k + ct,t+k) < −
πt
2
σ2t (rt,t+k + ct,t+k)−

πt
2

(
1

π2t
− 1

)
σ2t (bt,t+k)

=⇒
Covt(bt,t+k, rt,t+k + ct,t+k)

σt(bt,t+k)σt(rt,t+k + ct,t+k)
< −πt

2

[
σt(rt,t+k + ct,t+k)

σt(bt,t+k)
+

(
1

π2t
− 1

)
σt(bt,t+k)

σt(rt,t+k + ct,t+k)

]
=⇒ cort(bt,t+k, rt,t+k + ct,t+k) < −

1

2

[
σt(rt,t+k + ct,t+k)

σt(
1
πt
bt,t+k)

+
(
1− π2t

) σt(
1
πt
bt,t+k)

σt(rt,t+k + ct,t+k)

]
.

(11)

9To see this, suppose the futures return b has mean zero and are independent of the leverage ratio `.
We thus have

σ2(`b) = Cov(`2, b2) + {σ2(`) + [E(`)]2}{σ2(b) + [E(b)]2} − [E(`)E(b) + Cov(`, b)]2

= {σ2(`) + [E(`)]2}σ2(b).

This implies that
σ(`b)σ(`′b′)

σ(b)σ(b′)
=

√
σ2(`) + [E(`)]2

√
σ2(`′) + [E(`′)]2.

Substituting into the expression of D2, we deduce that D2 = 0 if in addition the leverage ratios are constant
over time.
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Consider the quadratic function:

f(x) = x2 − 2x+
(
1− π2

)
.

The solutions of the inequality f(x) > 0 are x < 1− π and x > 1 + π.

The assumed conditions ensure that xt :=
σt(rt,t+k+ct,t+k)

σt(
1
πt
bt,t+k)

< 1− πt. We deduce that

x2t − 2xt +
(
1− π2t

)
> 0. (12)

Since xt > 0 by assumption, we can divide both sides of (12) by xt, and obtain

xt − 2 +
(
1− π2t

) 1

xt
> 0

=⇒ xt +
(
1− π2t

) 1

xt
> 2

=⇒ 1

2

[
xt +

(
1− π2t

) 1

xt

]
> 1.

Combining with inequality (11) yields ρt(bt,t+k, rt,t+k) < −1. We thus arrive at a contradic-

tion (for correlation must be at least as large as -1). The stated claim follows immediately.

A2.2 Proof of Lemma A1

Given two distinct futures, let b and b′ denote their returns under full leverage, a and

a′ denote the returns of the augmented portfolio. We let ` = 1
π and `′ = 1

π′ denote the

leverage ratios of the two futures, c and c′ denote their changes in collateral over k period,

and let r be the common interest rate (return on mma). We then have a = `b + c + r

and similarly for a′. For notational simplicity, we drop the time subscripts, and all the

moments below are viewed as unconditional moments.
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We may then decompose the correlation adjustment as follows

D = corr(a, a′)− corr(b, b′)

=
Cov(a, a′)

σ(a)σ(a′)
− Cov(b, b′)

σ(b)σ(b′)

=
Cov(`b+ c+ r, `′b′ + c′ + r)

σ(a)σ(a′)
− Cov(b, b′)

σ(b)σ(b′)

=

[
Cov(`b, `′b′)

σ(a)σ(a′)
− Cov(b, b′)

σ(b)σ(b′)

]
+
Cov(`b, c′) + Cov(c, `′b′) + Cov(c, c′)

σ(a)σ(a′)

+
Cov(`b, r) + Cov(r, `′b′) + V ar(r)

σ(a)σ(a′)

=: D1 +D2 +D3.

A2.3 Proof of Lemma A2

Using the same notation as in Lemma A1, the first component of correlation adjustment

(D1) is expressed as follows:

D1 =
Cov(`b, `′b′)

σ(a)σ(a′)
− Cov(b, b′)

σ(b)σ(b′)
. (13)

The covariance term in the first fraction is given by

Cov(`b, `′b′) = E(`b`′b′)− E(`b)E(`′b′). (14)

On the other hand, we have

Cov(``′, bb′) = E(``′bb′)− E(``′)E(bb′). (15)

Eliminating E(`b`′b′) in (14) and (15) yields

Cov(`b, `′b′) = Cov(``′, bb′) + E(``′)E(bb′)− E(`b)E(`′b′).
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Subsituting into (13), and using the assumption that E(b) = E(b′) = 0, we obtain

corr(a, a′)− corr(b, b′)

=
Cov(``′, bb′) + E(``′)E(bb′)− E(`b)E(`′b′)

σ(a)σ(a′)
− Cov(b, b′)

σ(b)σ(b′)

=
1

σ(a)σ(a′)
Cov(``′, bb′) +

1

σ(a)σ(a′)
[Cov(`, `′) + E(`)E(`′)]Cov(b, b′)

− 1

σ(a)σ(a′)
E(`b)E(`′b′)− 1

σ(a)σ(a′)

σ(a)σ(a′)

σ(b)σ(b′)
Cov(b, b′)

=
1

σ(a)σ(a′)
Cov(``′, bb′) +

1

σ(a)σ(a′)

[
E(`)E(`′)− σ(a)σ(a′)

σ(b)σ(b′)

]
Cov(b, b′)

+
1

σ(a)σ(a′)
Cov(`, `′)Cov(b, b′)− 1

σ(a)σ(a′)
E(`b)E(`′b′)

=D11 +D12 +D13 −D14,

as claimed.
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Figures and Tables
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Figure 1: Futures prices and interest rate.
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Figure 2: Standard deviation of futures returns and interest rate.

Electronic copy available at: https://ssrn.com/abstract=3921423



BP CL

C W GC

2005 2010 2015 2020 2005 2010 2015 2020

2005 2010 2015 2020

15

20

25

30

35

40

45

10

20

30

40

0

10

20

30

10

20

30

40

30

60

90

120

Year

1/
pi

Figure 3: Leverage ratio of futures.
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Figure 4: Time series of correlations (futures maturing in one month).
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Figure 5: Correlation decomposition (futures maturing in one month).
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Table 1: Summary statistics

Panel A: Returns under full collateralization

Mean sd Skewness Kurtosis C W GC BP CL SPX

C 0.0018 0.042 -0.032 5.951 C

W 0.0018 0.0448 0.616 4.782 W 0.581

GC 0.0020 0.0249 -0.396 6.117 GC 0.192 0.166

BP -0.0001 0.0133 -0.796 8.680 BP 0.169 0.171 0.323

CL 0.0024 0.0546 0.912 20.919 CL 0.204 0.134 0.228 0.255

SPX 0.0017 0.0221 -0.951 10.281 SPX 0.176 0.153 0.137 0.338 0.325

FFR 0.0002 0.0002 1.333 3.627 FFR 0.043 0.057 0.050 0.015 0.005 -0.033

Panel B: Returns under partial collateralization

Mean sd Skewness Kurtosis C W GC BP CL

C 0.0549 0.9118 0.446 6.339 C

W 0.0491 0.9183 1.005 6.633 W 0.580

GC 0.0401 0.6102 -0.392 6.307 GC 0.153 0.102

BP 0.0006 0.7552 -0.217 4.478 BP 0.113 0.147 0.234

CL 0.0128 0.7167 -0.176 5.266 CL 0.223 0.123 0.211 0.297

SPX 0.195 0.168 0.132 0.375 0.413

Panel C: Returns on collateral 

Mean sd Skewness Kurtosis C W GC BP CL

C 0.0042 0.0603 2.561 28.285 C

W 0.0034 0.0690 6.697 102.357 W 0.256

GC 0.0013 0.0331 2.716 28.886 GC 0.013 0.014

BP 0.0014 0.0442 3.627 49.138 BP 0.015 0.058 0.112

CL 0.0002 0.0339 1.716 24.665 CL 0.006 0.032 0.124 0.037

Note: Summary statistics are reported for the following front-month futures: corn (C), wheat (W); gold (GC); British Pound (BP); and WTI crude oil 
(CL). SPX: spot S&P 500. FFR: Federal funds rate. Sample period is Jan 2003 - May 2021. All series are Wednesday-to-Wednesday weekly returns.

Correlation

Correlation

Correlation
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Table 2: Maximum absolute correlation adjustments

Pair Date Correlation Difference % difference

BP-CL 2021-03-10 0.347 0.649 0.301 87%

C-BP 2008-12-17 0.426 0.283 -0.143 -34%

C-CL 2020-04-01 0.305 0.117 -0.189 -62%

C-GC 2010-01-20 0.251 0.342 0.091 36%

C-W 2011-07-13 0.699 0.537 -0.162 -23%

GC-BP 2017-06-07 -0.181 -0.321 -0.140 -77%

GC-CL 2020-04-08 0.572 0.245 -0.327 -57%

W-BP 2009-06-10 0.350 0.233 -0.118 -34%

W-CL 2008-12-10 0.280 0.163 -0.116 -42%

W-GC 2010-01-27 0.334 0.420 0.087 26%

Adjusted 
correlation 

Note: Included in the table are the maximum absolute correlation adjustment (fifth column) in the sample for each pair of 
futures. The correlation adjustment is equal to the correlation of leveraged futures returns (fourth column) minus the 
correlation of returns under full collateral (third column). All returns are on a weekly basis. All correlations are computed 
over a one-year rolling window. Date (second column) refers to the right endpoint of the rolling window over which 
absolute correlation adjustment achieves its maximum.  Sample period is Jan 2003 - May 2021.
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Appendix Figures and Tables
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Figure 1: Decomposition of D1 (futures maturing in one month).
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Figure 2: Time series of correlations (futures maturing in six months).
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Figure 3: Correlation decomposition (futures maturing in six months).
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Figure 4: Time series of correlations (daily futures return).
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Table A1: Maximum absolute correlation adjustments - robustness checks

Pair Date Correlation Difference % difference

Panel A: Daily returns

BP-CL 2021-04-20 0.211 -0.060 -0.271 -129%

C-BP 2008-12-17 0.406 0.307 -0.099 -24%

C-CL 2021-04-20 0.177 0.041 -0.136 -77%

C-GC 2010-01-19 0.208 0.269 0.062 30%

C-W 2008-11-06 0.596 0.493 -0.104 -17%

GC-BP 2017-06-05 -0.117 -0.216 -0.099 -85%

GC-CL 2021-04-20 0.089 -0.077 -0.166 -186%

W-BP 2008-10-29 0.288 0.158 -0.130 -45%

W-CL 2008-11-24 0.409 0.309 -0.100 -25%

W-GC 2008-06-09 0.253 0.166 -0.087 -34%

Panel B: Futures maturing in 6 months

BP-CL 2020-03-18 0.470 0.315 -0.155 -33%

C-BP 2017-06-07 0.232 0.099 -0.133 -57%

C-CL 2020-05-20 0.287 0.114 -0.173 -60%

C-GC 2020-05-13 0.238 0.156 -0.082 -35%

C-W 2011-07-13 0.683 0.548 -0.135 -20%

GC-BP 2020-03-18 0.500 0.361 -0.140 -28%

GC-CL 2020-04-08 0.516 0.237 -0.279 -54%

W-BP 2009-06-10 0.364 0.233 -0.131 -36%

W-CL 2007-01-10 0.008 -0.106 -0.114 -1423%

W-GC 2010-01-27 0.314 0.409 0.095 30%

Panel C: Futures maturing in a year

BP-CL 2021-05-19 0.484 0.361 -0.123 -26%

C-BP 2016-09-14 0.287 0.170 -0.117 -41%

C-CL 2020-05-20 0.359 0.259 -0.100 -28%

C-GC 2012-08-01 0.213 0.129 -0.084 -39%

C-W 2011-04-06 0.768 0.626 -0.142 -19%

GC-BP 2020-03-18 0.468 0.318 -0.150 -32%

GC-CL 2020-04-08 0.463 0.232 -0.230 -50%

W-BP 2017-06-14 0.185 0.093 -0.092 -50%

W-CL 2007-01-10 0.049 -0.073 -0.122 -248%

W-GC 2010-01-27 0.317 0.411 0.094 30%

Adjusted 
correlation 

Note: Included in the table are the maximum absolute correlation adjustment (fifth column) in the sample for each pair of 
futures. The correlation adjustment is equal to the correlation of leveraged futures returns (fourth column) minus the 
correlation of returns under full collateral (third column). All returns are on a weekly basis. All correlations are computed 
over a one-year rolling window. Date (second column) refers to the right endpoint of the rolling window over which 
absolute correlation adjustment achieves its maximum.  Sample period is Jan 2003 - May 2021.
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Table A2: Maximum absolute correlation adjustments, more commodity futures

Pair Date Corr Adj corr Diff % diff Pair Date Corr Adj corr Diff % diff

BO-BP 2010-03-17 0.439 0.327 -0.112 -25% GC-TY 2012-01-25 0.122 0.280 0.157 129%

BO-CL 2021-04-28 0.057 0.204 0.147 257% HG-BP 2010-03-03 0.597 0.470 -0.126 -21%

BO-FV 2010-06-09 -0.460 -0.230 0.230 50% HG-CL 2016-11-02 0.377 0.137 -0.240 -64%

BO-GC 2020-04-08 0.436 0.252 -0.184 -42% HG-FV 2010-06-02 -0.442 -0.264 0.178 40%

BO-HG 2010-05-12 0.631 0.469 -0.161 -26% HG-JY 2021-03-10 0.237 -0.307 -0.544 -230%

BO-JY 2014-02-12 -0.302 0.155 0.457 151% HG-NG 2013-06-05 -0.066 -0.161 -0.095 -144%

BO-NG 2019-05-08 -0.128 -0.022 0.106 83% HG-TU 2010-01-27 -0.268 -0.407 -0.138 -52%

BO-TU 2021-03-03 -0.068 -0.191 -0.124 -183% HG-TY 2010-04-28 -0.266 -0.102 0.164 62%

BO-TY 2020-09-09 -0.017 -0.167 -0.151 -900% JY-CL 2021-03-17 -0.284 0.171 0.455 160%

BP-CL 2021-03-10 0.347 0.649 0.301 87% JY-FV 2017-09-27 0.854 -0.166 -1.020 -119%

BP-FV 2018-02-07 0.096 -0.017 -0.113 -117% JY-NG 2010-12-01 -0.316 0.131 0.447 141%

BP-JY 2006-01-11 0.637 -0.149 -0.786 -123% JY-TU 2017-09-27 0.758 -0.134 -0.892 -118%

BP-NG 2019-05-08 0.109 0.007 -0.102 -94% JY-TY 2007-08-15 0.744 -0.284 -1.028 -138%

BP-TU 2015-06-03 0.208 0.068 -0.140 -67% NG-FV 2010-11-17 -0.093 -0.234 -0.141 -152%

BP-TY 2009-09-16 -0.151 -0.287 -0.136 -90% NG-TU 2021-03-24 -0.104 0.024 0.128 123%

C-BO 2021-03-31 0.111 0.229 0.118 107% NG-TY 2018-02-14 0.008 0.097 0.089 1083%

C-BP 2008-12-17 0.426 0.283 -0.143 -34% S-BO 2018-03-21 0.447 0.357 -0.091 -20%

C-CL 2020-04-01 0.305 0.117 -0.189 -62% S-BP 2018-02-14 0.194 0.276 0.082 42%

C-FV 2010-07-14 -0.369 -0.134 0.234 64% S-CL 2020-08-26 0.436 0.630 0.195 45%

C-GC 2010-01-20 0.251 0.342 0.091 36% S-FV 2010-07-14 -0.408 -0.314 0.093 23%

C-HG 2010-01-13 0.205 0.314 0.109 53% S-GC 2018-05-23 0.062 0.162 0.100 160%

C-JY 2020-03-18 0.261 -0.173 -0.435 -166% S-HG 2010-07-28 0.464 0.343 -0.121 -26%

C-NG 2019-03-13 -0.071 0.018 0.089 125% S-JY 2021-03-17 -0.299 0.357 0.656 220%

C-S 2018-04-04 0.524 0.435 -0.089 -17% S-NG 2019-05-01 0.041 0.136 0.096 235%

C-TU 2009-12-02 -0.010 -0.140 -0.130 -1287% S-TU 2021-03-10 0.258 0.122 -0.135 -53%

C-TY 2008-10-15 0.021 -0.102 -0.123 -586% S-TY 2020-10-14 0.214 0.130 -0.084 -39%

C-W 2011-07-13 0.699 0.537 -0.162 -23% TU-FV 2010-10-20 0.908 0.623 -0.284 -31%

CL-FV 2020-03-25 -0.015 -0.283 -0.268 -1840% TU-TY 2021-03-24 0.724 0.622 -0.102 -14%

CL-NG 2020-05-06 0.244 0.405 0.161 66% W-BO 2011-05-11 0.668 0.576 -0.092 -14%

CL-TU 2020-05-20 -0.180 -0.455 -0.275 -152% W-BP 2009-06-10 0.350 0.233 -0.118 -34%

CL-TY 2020-03-25 0.091 -0.217 -0.308 -339% W-CL 2011-12-21 0.200 0.088 -0.112 -56%

FV-TY 2010-01-06 0.893 0.616 -0.277 -31% W-FV 2010-06-09 -0.352 -0.126 0.226 64%

GC-BP 2017-06-07 -0.181 -0.321 -0.140 -77% W-GC 2010-01-27 0.334 0.420 0.087 26%

GC-CL 2020-04-08 0.572 0.245 -0.327 -57% W-HG 2011-06-08 0.566 0.468 -0.098 -17%

GC-FV 2010-01-06 -0.203 -0.040 0.163 80% W-JY 2020-07-01 -0.500 0.128 0.628 126%

GC-HG 2012-04-04 0.443 0.261 -0.182 -41% W-NG 2010-07-14 0.191 0.116 -0.075 -39%

GC-JY 2017-11-01 0.774 -0.374 -1.148 -148% W-S 2011-01-12 0.558 0.431 -0.127 -23%

GC-NG 2020-04-08 0.291 0.174 -0.117 -40% W-TU 2012-02-22 -0.205 -0.063 0.142 69%

GC-TU 2012-03-14 0.248 0.350 0.102 41% W-TY 2011-06-15 -0.340 -0.181 0.159 47%
Note: Included in the table are the maximum absolute correlation adjustment (fifth column) in the sample for each pair of futures. The correlation adjustment is equal to the 
correlation of leveraged futures returns (fourth column) minus the correlation of returns under full collateral (third column). All returns are on a weekly basis. All correlations are 
computed over a one-year rolling window. Date (second column) refers to the right endpoint of the rolling window over which absolute correlation adjustment achieves its 
maximum.  Sample period is Jan 2003 - May 2021. BO: soybean oil. BP: British Pound. C: corn. CL: WTI crude oil. GC: gold. HG: copper. JY: Japanese Yen. NG: Henry Hub 
natural gas. S: soybean. TU: 2-year US Treasury note. FV: 5-year US Treasury note. TY: 10-year US Treasury note. W: wheat.
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Table A3: Standard deviations of roll-over and smoothed returns

sd(r ) sd(r s ) sd(r ) sd(r s )

Panel A: Jan 2003 - May 2021

C 0.042 0.040 0.031 0.037
W 0.045 0.050 0.033 0.039
GC 0.025 0.025 0.025 0.025
BP 0.013 0.013 0.013 0.013
CL 0.057 0.055 0.043 0.043

Panel B: Jan 2003 - Dec 2019

C 0.042 0.041 0.031 0.037
W 0.045 0.051 0.034 0.040
GC 0.025 0.025 0.025 0.025
BP 0.013 0.013 0.013 0.013
CL 0.048 0.046 0.040 0.040

maturity: 1 month maturity: 6 months

Note: r : futures returns obtained by rolling over expiring contracts. r s : futures 

returns obtained by cubic spline. All returns are Wednesday-to-Wednesday weekly 
returns.
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