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1. Introduction 

Since obtaining an implied volatility surface (IVS) at a given point of time is equivalent to specifying 
the prices of all calls and puts at that specific date, numerous models have been developed to capture the 
dynamics of this surface over time (Cont and Fonseca, 2002; Fengler et al., 2007; Daglish et al., 2007; 
Chalamandaris and Tsekrekos, 2010, 2014; Han et al., 2016).  A model that captures these dynamics well 
presumably also yields good forecasts.  In early years, researchers used linear models fitting implied 
volatilities (IVs) to time to maturity and moneyness in a cross-sectional setting (Dumas et al., 1998; 
Christoffersen and Jacobs, 2004).  Their results suggest that the estimated parameters of these models 
are very unstable over time.  Heston and Nandi (2000) estimate a nonlinear GARCH model and also find 
that some of the estimates are not stable.  The implication is that the time variation of the implied 
volatilities matters for option pricing forecasts.   

To model time series variation of the IVs, the literature suggests various factor models that may 
be organized under three different headings.  First, building on the earlier work with linear cross-sectional 
models, Gonçalves and Guidolin (2006) develop a three-stage estimation procedure: (i) estimate a 5-
parameter cross-sectional model of the IVS; (ii) treating those cross-sectional parameters as proxies of 
latent factors, model the time series dynamics of these factors; and (iii) using the forecasts of these factors 
as forecasts of the parameters of the IVS, generate a forecast of the future IVS.  This procedure greatly 
improves the forecasts compared to those generated with the model of Dumas et al. (1998).  
Chalamandaris and Tsekrekos (2011) expand on the work of Gonçalves and Guidolin (2006) with a richer 
7-parameter cross-sectional model that better captures nonlinearity in the time-to-maturity dimension of 
the IVS term structure.  Second, following Stock and Watson (2002a), Chalamandaris and Tsekrekos (2010) 
generate forecasts through factor analysis.  Specifically, it is a three-step process, (i) use all the observed 
IVs over all time periods to obtain factors directly by the method of principal components or another 
technique; (ii) model the time series dynamics of obtained factors; and (iii) by means of the estimated 
factor loadings obtained in the first step, turn the forecasts of these factors into a forecast of the future 
IVS.  They find that vector autoregressive (VAR) factor models can yield a more accurate forecasts than a 
random walk model in the short-term, where the short-term is 1 to 5-days.  Third, the diffusion index 
model (Stock and Watson, 2002b) consists of a two-step process: (i) factors are extracted from a host of 
variables (including historical IV values) that are candidates for explaining the dynamics of the IVS, and (ii) 
IVs are regressed on these factors in order to generate a forecasting model of the IVS.  This approach has 
not been applied yet in the IVS forecasting literature; we will explore it in Sections 3 and 5 below.   

The results of the IVS forecasts in the literature are not in line with each other.  Some conclude 
that certain models beat the random walk models forecasts in short-term but not long-term, while others 
indicate that certain models beat the random walk models only in the medium/long term forecasts but 
not in the short-term.  For example, Chalamandaris and Tsekrekos (2011) compare the 5- and 7-parameter 
cross-sectional factor models with the factor analytic approach.  They find that none of the models used 
in the paper can outperform the simple random walk model for a 2-week (i.e., 10 days) prediction.  
However, for longer horizons, the gain in forecasting accuracy by means of the parametric models 
becomes significant, more so than for factor models.  Exploring parametric and factor-analytic models, 
Chalamandaris and Tsekrekos (2014) find that forecasts generated with these models are better than 
those of the hard-to-beat benchmark random walk models, but only in the medium- and long-term and 
again more so for parametric models, which, by their nature, incorporate more information about the IVS 
shape.  Guo et al. (2018) employ 14 models and show that these models only beat the random walk model 
within a forecast horizon of one week; they lose their predictive power beyond a week.  Of all their models, 



2 
 

VARC (VAR on first-differenced variables) provides better out-of-sample forecasts within a week; when 
the forecast horizon is beyond a week, simpler AR models do a better job.  Even with these various 
unsettling results, most researchers agree that random walk models are hard to beat. 

In this paper, we add a new perspective, born out of recent developments in spatial and network 
econometrics.  Studies in this field have focused on the measurement and modelling of cross-sectional 
dependence in panel datasets where the data have structure over time and space (Chudik et al., 2011; 
Bailey et. al., 2016a; Bailey et. al., 2016b).  In the quest for the source of dependencies in space, 
researchers distinguish between strong and weak cross-sectional dependence within a set of variables.  If 
the data generating process contains a common factor and this factor cannot be averaged out, the data 
have strong cross-sectional dependence.  This common factor may be extracted in different forms.  Bailey 
et. al. (2016) use cross-unit averages as common factors and compare their modeling results with the 
principal component techniques. Essentially, a general practice in the literature is to remove the strong 
cross-sectional dependence by regressing the original data on either the cross-sectional means or the 
common factors of the data.  Afterwards, researchers may deal with the weak cross-sectional 
dependence, if it exists, through different modeling strategies.  IVS data may be set up as panel data with 
time to maturity and deltas, similar to the spatial or network structure over time and space.  The extremely 
high correlations among these options with different time to maturity and deltas indicate the likely 
existence of strong cross-sectional dependence.  So, the new ways to deal with strong cross-sectional 
dependence in the literature will be incorporated into our forecasting models.  These cross-sectional 
means or common factors that cause the strong cross-sectional dependence will be referred to as filters 
in this paper. 

The goal of this paper is to add to the literature on IVS forecasts through a different utilization of 
factor models in IV forecasts.  We do so in the context of currency options.  The common factor that 
generates strong cross-sectional dependence among the IVs may be captured in various ways: (i) with the 
cross-sectional mean of the IVs; (ii) with one or more principal component factors computed from the IVs; 
or (iii) with Morgan Stanley’s Global FX Index (FXVIX), which is a weighted average of the implied 
volatilities of a basket of currencies and measures the sentiments in the overall currency market.  The first 
two are common factors generated from the panel data itself; the third is an externally generated 
common factor.1  Viewing a common factor as a filter allows us to separate the time series process of an 
IV into three parts: the process that generates the filter, the relationship between the filter and the IV, 
and the process that generates the filtered IV variable.  The filter is common to all IVs and thus to the 
whole IVS, but the filter may affect different parts of the IVS differently, and the filtered IV variables may 
exhibit time series patterns (i.e., serial correlation) that differ from the filter and from each other.  For 
example, we find the IVs of options with a short time to maturity to be more sensitive to the FXVIX; among 
short time-to-maturity options, we find that options with a lower delta put react more strongly to 
variations in the FXVIX (though this may be different in other time periods); and we find that the common 
factors (both internal and external) to exhibit less memory than the filtered IV variables. 

In our analysis, we consider euro/US dollar and Canadian dollar/US dollar currency options.  Many 
of the better-performing models in earlier research will be included as alternative models.  We find that 
models with a filter in the form of FXVIX or the cross-sectional average forecast well, often better than 
models with principal component factors.  We speculate that this is due to the time-varying factor loadings 

 
1 A precedent for the latter appears in Elhorst et al. (2020), who list business cycle effects, aggregate shocks such as 
oil price shocks, or changes in legislation or government policy as potential external common factors in a study of 
car traffic. 
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of principal components: relative to the fixed weights of the FXVIX or with the cross-sectional average, 
the time-varying factor loadings produce unwanted variation in forecasts.  We also examine whether IV 
forecasts can be traded profitably.  Both without and with trading costs, the returns to trading the IV 
forecasts with the common factor models beat those of the random walk model.  However, profits from 
trading the IV forecasts are quickly eaten up by trading costs: trading may still be profitable if the cost is 
only 2 basis points on the implied volatility—which is unreasonably low—and profits disappear if the cost 
is 5 basis points—which is still quite low.  We view this as being consistent with the efficient market 
hypothesis: information that could be acted upon is no longer profitable because of transaction costs.  

The implied volatility data cover the period from 2010 to 2015.  This avoids the major disruption 
of the financial crisis in 2007-2008 as well as the changing international environment when the Trump 
administration pursued significant changes in international trade relationships in 2017-2020. 

In the following, Section 2 sets the scene with a few observations about euro options implied 
volatility.  Section 3 outlines econometric models, which are divided into four groups.  Section 4 describes 
the methods used to evaluate the forecasts of each model, using the random walk model as a baseline.  
Section 5 reports the empirical results, allowing for structural change by distinguishing 2010-2012 and 
2013-2015.  Section 6 considers the potential profits from trading implied volatility forecasts.  Section 7 
concludes. 

 

2. Data and patterns 

We use daily implied volatility (IV) data of Euro and Canadian Dollars (CAD).  The data for both 
currencies started from January 3rd, 2010 and ended at December 31st, 2015.  For each currency, we have 
the implied volatilities of 1-month, 2-month, 3-month, 6-month and 12-month maturities of the options 
for each of the following moneyness: 10-delta put, 25-delta put, ATM (at the money), 25-delta call, 10-
delta call.2  Thus, at each time point, we obtain 𝐽 = 25 data points on the volatility surface for each 
currency.  For simplicity, we refer to the degree of moneyness (delta) by numerical values of 10, 25, 50, 
75, and 90.  Thus, e.g., a delta of 10 (90) corresponds to a 10-delta put (10-delta call).  This section provides 
a few stylized facts. 

Figure 1A is the one-month maturity IV with different deltas while Figure 1B is at-the-money IV 
with different maturities over time.  Panel A shows the typical smile, elevated on the front (low delta 
value) and falling toward the back (high delta value) for options at each point of time.  Panel B shows that, 
at the earlier period, IV values do not vary much over different maturities while, at the later period, IVs 
with shorter maturities have higher IV values than those of longer-term maturities.  The movements of IV 
with different maturities or different deltas have remarkably similar patterns over time. The behavior of 
these IV values over time is quite characteristic of a nonstationary time series.  Thus, it is not surprising 
that all 25 time series do not pass the unit root test, i.e., all have a unit root. 

 
2 The Bloomberg terminal does not provide the volatilities of 10-delta put and 10-delta call directly.  However, it does 
provide 10-delta butterfly and 10-delta Risk Reversal.  The former measures [(10 delta put + 10 delta call) – ATM] 
while the latter measures (10-delta call – 10-delta put).  With two equations and two unknowns, volatilities of 10-delta 
put and 10-delta call can be derived easily.  The same applies to 25-delta put and call options. 
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The close similarity in behavior over time is also reflected in the correlation between the time 
series.  Table 1 presents parts of the correlation matrix, namely for three-month maturity across different 
delta (Panel A) and for 10-delta across different maturity.  The left half of the table considers log-volatility 
in level; the right side considers log-volatility in first difference.  The table also examines stability in these 
correlations by comparing 2010-2012 (below the diagonal) with 2013-2015 (above the diagonal).   
Correlations are as high as 0.998 and for any given maturity are nearly always above 0.90.  In all this, there 
is little difference over time.  One might expect that the correlation in first differences would be less as 
daily noise might take over.  But correlation coefficients in the right half of the table are only slightly lower.  
Thus, once again, there is much evidence of a high degree of commonality in the day-to-day movements 
of these time series. 

Methods to deal with the commonality that is evident in these time series are a part of the 
contribution of this paper.  But how may this commonality be captured?  That is what Section 3 will 
address. 

Figure 1: Implied volatility of euro options over time 

 A: Implied volatility by delta over time B: Implied volatility by maturity 
 (time to maturity: 1 month) (delta: 10) 
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3. Forecasting Models 

Several forecasting models are examined.  Some of the so-called best-performing models in the 
literature are selected and, at the same time, additional new models will be introduced.  Let 𝜎௜௧ denote 
the implied volatility of an option with delta 𝐷 and maturity 𝑀, where, depending on the context, the 
index 𝑖 is either the tuple (𝐷, 𝑀) with 𝐷 = 10, 25, 50, 75, 90 and 𝑀 = 1, 2, 3, 6, 12 or a simple counter 
𝑖 = 1, … ,25.  Let 𝑦௜௧ = ln 𝜎௜௧ be the log implied volatility.  This will be the explained variable of the 
following analysis.  In vector form, 𝑦௧ is a 25 × 1 vector stacking 𝑦௜௧  with 𝐷 running fast and 𝑀 running 
slow (unless indicated otherwise), such that options with the same maturity are grouped together. 

Models are estimated on time series data running from 𝑡 = 1 to 𝑡 = 𝑇.  Unless otherwise 
indicated, the disturbance 𝜖௜௧ has mean 0, variance 𝜃௜௧

ଶ , and zero serial correlation.  ℎ-day-ahead forecasts 
are generated for 𝑡 = 𝑇 + ℎ with ℎ = 1,2, … 𝐻.  When a model is specified in first difference, the forecast 
𝑦ො௜,்ା௛ is computed as 𝑦௜் + ∑ Δy෢

௜,்ା௝
௛
௝ୀଵ . 

The set of explored models are divided into four groups.  For notation, 𝐿 denotes the lag operation 
(such that 𝐿𝑦௜௧ = 𝑦௜,௧ିଵ), Δ𝑦௜௧ = (1 − 𝐿)𝑦௜௧ = 𝑦௜௧ − 𝑦௜,௧ିଵ, and Δ௛𝑦௜௧ = 𝑦௜௧ − 𝑦௜,௧ି௛.  Symbols are reused 
for different models—e.g., intercepts are always indicated as 𝛼—and the same symbol is not meant to 
have the same value (or meaning or even dimension) in different models.   

3.1.  Basic Models: RW, ARMA, ARIMA 

The three models in Group I draw on standard time series techniques. 

I.1  RW: Random walk 

 𝑦௜௧ = 𝑦௜,௧ିଵ + 𝜖௜௧ (3.1) 

Forecasts are straightforward: 

Table 1: Correlation in implied volatility across options 

 Log-volatility in level  Log.volatility in first difference 
A: Across delta for 3-month maturity options       
 10 25 50 75 90  10 25 50 75 90 
10       .. 0.9986 0.9926 0.9822 0.9689  .. 0.9948 0.9778 0.9493 0.9152 
25 0.9984 .. 0.9974 0.9900 0.9784  0.9889 .. 0.9916 0.9705 0.9403 
50 0.9877 0.9942 .. 0.9975 0.9898  0.9684 0.9891 .. 0.9926 0.9726 
75 0.9608 0.9721 0.9913 .. 0.9971  0.9321 0.9641 0.9896 .. 0.9904 
90 0.9164 0.9308 0.9629 0.9893 ..  0.8878 0.9155 0.9579 0.9807 .. 
B: Across maturities for delta = 10 options       
 1 2 3 6 12  10 25 50 75 90 

1 .. 0.9930 0.9901 0.9815 0.9606  .. 0.8676 0.8562 0.8133 0.7678 
2 0.9943 .. 0.9982 0.9923 0.9741  0.9381 .. 0.9481 0.9163 0.8695 
3 0.9862 0.9971 .. 0.9957 0.9799  0.9236 0.965 .. 0.9531 0.9080 
6 0.9704 0.9875 0.9956 .. 0.9928  0.8957 0.9335 0.9571 .. 0.9560 

12 0.9490 0.9708 0.9834 0.9939 ..  0.8450 0.8847 0.9118 0.9560 .. 
Note:  Within each 5x5 block, correlation coefficients above the diagonal pertain to 2010-2012; correlation 
coefficients above the diagonal pertain to 2013-2015.   
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𝑦ො௜,்ା௛ = 𝑦ො௜,்ା௛ିଵ = ⋯ = 𝑦ො௜,்ାଵ = 𝑦௜௧  

I.2  ARMA: univariate ARMA(𝑝,𝑞) with 0 ≤ 𝑝 ≤ 5 and 0 ≤ 𝑞 ≤ 3.   

 Φ௜(𝐿)𝑦௜௧ = 𝛼௜ + Θ௜(𝐿)𝜖௜௧ (3.2) 

where Φ௜(𝐿) and Θ௜(𝐿) are polynomials of order 𝑝 and 𝑞, respectively.  The choice of parameters is 
optimized for each window by means of the BIC criterion.  The maximum of 𝑝 is motivated by the fact that 
data are measured by business day: a week represents five consecutive observations.  For the purpose of 
forecasting, we may rewrite this model as 

𝑦௜௧ = 𝛼௜ + 𝜙ଵ௜𝑦௜,௧ିଵ + ⋯ + 𝜙௣𝑦௜,௧ି௣ + 𝜖௜௧ + 𝜃ଵ𝜖௜,௧ିଵ + ⋯ + 𝜃௤𝜖௜,௧ି௤ 

Forecasting is accomplished by rolling this equation forward. 

I.3  ARIMA: univariate ARIMA(𝑝,1,𝑞) with 0 ≤ 𝑝 ≤ 5 and 0 ≤ 𝑞 ≤ 3.   

 𝐴௜(𝐿)(1 − 𝐿)𝑦௜௧ = 𝛼௜ + 𝐵௜(𝐿)𝜖௜௧ (3.3) 

The choice of parameters 𝑝 and 𝑞 is optimized for each window by means of the BIC criterion.  This model 
is of course equivalent to an ARMA(𝑝,𝑞) model of Δ𝑦௜௧.  Forecasting of 𝑦௜,்ା௛ is accomplished by rolling 
this equation forward to obtain Δ𝑦෢

௜,்ା௛ and accumulating the computed first differences. 

Vector autoregression (VAR) models of various kinds have been proposed in the literature as well; 
for example, see Chalamandaris and Tsekrekos (2010) and Guo et al. (2017).  Since they are highly 
parameter-intensive and therefore underperform in comparison with the random walk approach, they 
are omitted from the list of standard time series model in this section.  See Appendix A.2 for a description 
of them and their performance. 

3.2.  Day-of-Week Seasonality Models: AR*(5), ARIS 

Group II consists of two models that focus on the fact that option contracts are traded daily on 
weekdays. 

II.1  AR*(5) and AR*(5)D: Day of week effects 

The data on option volatility are gathered daily on business days.  This creates the potential for a day-of-
week pattern in the behavior of the outcome variable.  On Fridays, market participants prepare their 
positions both to close the week and to bridge the weekend; on Mondays, market participants respond 
to the news that accumulated over the weekend.  Thus, the model is stated as:3 

 Δ𝑦௜௧ = 𝛼௜ + 𝐷௧
௦𝛾௜ + 𝜖௜௧ (3.4) 

where 𝐷௧
௦ is a vector of four dummy variables to denote Monday through Thursday, with Friday as the 

base day.  𝜖௜௧ follows an AR process, with the lag length acknowledging the length of the business week: 

 𝜖௜௧ = 𝜙ଵ௜𝜖௜,௧ିଵ + ⋯ + 𝜙ହ௜𝜖௜,௧ିହ + 𝜈௜௧ (3.5) 

Explorations with the data showed that 𝜙෠ଷ௜ and 𝜙෠ସ௜ were frequently statistically insignificant whereas 𝜙෠ହ௜ 
does contribute for about half of the 25 equations.  For reason of parsimony, 𝜙ଷ௜ and 𝜙ସ௜ are therefore a 

 
3 A similar model might be formulated in levels.  However, finance theory would argue against a regular day of week 
effect in the level of volatility.  Empirically, 𝛾ො௜  never gains statistical significance during the time period under study 
in a model where the dependent variable is 𝑦௜௧. 
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priori set to 0, yielding what will be referred to as an AR*(5) model (if omitting 𝐷௧
௦ from equation (3.4)) 

and an AR*(5)D model (if including 𝐷௧
௦). 

II.2:  ARIS(𝑝,𝑑,𝑃௦): Weekly-seasonal AR 

The AR*(5) model states that option volatility tends to move up more (or down less) on certain days of 
the week than on other days, and that the magnitude of this weekly pattern remains constant over time.  
A multiplicative seasonal model is usually expressed as ARIMA(𝑝,𝑑,𝑞)×(𝑃௦,𝐷௦,𝑄௦).  To keep the model 
parsimonious, we consider only a seasonal component of order 1 and an AR component of order 2, at 
most.  Thus, an ARIS(𝑝,𝑑,𝑃௦) model is introduced.  For example, for 𝑝 = 2, 𝑑 = 1, 𝑃௦ = 1, we have 

 Δ𝑦௜௧ = 𝛼௜ + 𝜖௜௧ (3.6) 

 (1 − 𝜉௜𝐿ହ)(1 − 𝜙ଵ௜𝐿 − 𝜙ଶ௜𝐿ଶ)𝜖௜௧ = 𝜈௜௧  (3.7) 

3.3.  Factor Models: CFLk, CFCk, GG, DIk, DIkF and DIkFD 

 Group III consists of six models suggested in the literature, all based on factor analysis. 

III.1  CFLk: Common factor in levels with 𝑘 factors 

As illustrated in Section 2, the time series behavior of the 𝑦௜௧  is highly correlated.  Following in the 
footsteps of Bai and Ng (2002) and Pesaran (2015), it may be beneficial to extract one or more common 
factors 𝐹௧ = (𝐹ଵ௧ , … , 𝐹௞௧) from the 25 time series ൫𝑦ଵ௧ , … , 𝑦ଶହ,௧൯, decompose each 𝑦௜௧  into a part that is a 
function of these common factors and a remainder.  Specifically, let 𝐸 be the (25 × 𝑘) matrix of factor 
loadings (equal to the 𝑘 eigenvectors belonging to the 𝑘 largest eigenvalues of the correlation matrix of 
𝑦௧), and let 𝐸௜  be the 𝑖th row of 𝐸.  Let 𝜇௜  and 𝜎௜ be the sample mean and standard deviation of 𝑦௜௧.  Then 

 𝑦௜௧ = 𝜇௜ + 𝜎௜𝐹௧𝐸௜
ᇱ + 𝜖௜௧ (3.8) 

and therefore, after 𝐹෠்ା௛ is forecast with an optimized ARIMA(𝑝,𝑑,𝑞) model: 

 𝑦ො௜,்ା௛ = 𝜇௜ + 𝜎௜𝐹෠்ା௛𝐸௜
ᇱ (3.9) 

III.2  CFCk: Common factor in first difference 

As 𝑦௜௧  is highly correlated with each other, so is Δ𝑦௜௧.  The CFC model parallels the CFL model by 
formulating it terms of Δ𝑦௜௧: 

 Δ𝑦௜௧ = 𝜇௜ + 𝜎௜𝐹௧𝐸௜
ᇱ + 𝜖௜௧  (3.10) 

where 𝜇௜  and 𝜎௜ now are the sample mean and standard deviation of Δ𝑦௜௧.   

This first-difference model may be extended with the day of week dummies,4 where 𝐹௧ is 
computed from the correlation matrix of the day-of-week-filtered Δ𝑦௜௧: 

 Δ𝑦௜௧ = 𝛼௜ + 𝐷௧
௦𝛾௜ + 𝜎௜𝐹௧𝐸௜

ᇱ + 𝜖௜௧  (3.11) 

This model will be referred to as CFCkD. 

III.3 GG with optimized ARIMA(𝑝,𝑑,𝑞) 

 
4 In principle, common factors 𝐹௧ combined with factor loadings 𝐸௜

ᇱ in the CFC model could capture day-of-week 
effects that are modeled with the 𝐷௧

௦𝛾௜  in equation (3.11).  The advantage of modeling the day-of-week effects 
explicitly is that 𝐹௧ is data-driven and therefore varies between data windows with the shocks occurring during those 
windows, whereas 𝐷௧  is deterministic and therefore parsimonious. 
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Gonçalves and Guidolin (2006) modeled the implied volatility surface in terms of moneyness and time to 
maturity at each point in time: 

 𝑦௜௧ = 𝛽଴௧ + 𝛽ଵ௧𝐷௜ + 𝛽ଶ௧𝐷௜
ଶ + 𝛽ଷ௧𝑀௜ + 𝛽ସ௧𝐷௜𝑀௜ + 𝜖௜௧ ≡ 𝑥௜

ᇱ𝛽௧ + 𝜖௜௧ (3.12) 

This model is estimated with OLS, which in principle assumes that 𝜖௜௧ is distributed iid(0, 𝜎௜௧
ଶ ).  It would 

seem that 𝑦ො௜,்ା௛ could be computed as 𝑥௜
ᇱ𝛽መ்ା௛, inserting 𝜖௜̂,்ା௛ = 0.  The latter turns out to be a poor 

strategy.  For some points (𝑀௜, 𝐷௜) on the implied volatility surface, the distribution of residuals 𝜖௜̂௧ or, 
more illustrative, 𝜖஽̂ெ௧ over time does not center at 0.  This may be viewed as a misspecification of 
equation (3.12), but the effect of this misspecification can be forecasted.  Thus, forecasts are generated 
as 

 𝑦ො௜,்ା௛ = 𝑥௜
ᇱ𝛽መ்ା௛ + 𝜖௜̂,்ା௛  (3.13) 

and each element of 𝛽መ்ା௛ and each 𝜖௜̂,்ା௛ is forecasted with an optimized univariate ARIMA(𝑝,𝑑,𝑞) 
model.  In preliminary analysis, 𝛽଴௧ was to have a unit root; the other slopes were stationary; and residuals 
never have a unit root either.  Therefore, 𝛽଴,்ା௛ is forecasted with an optimized ARIMA(𝑝,1,𝑞) model and 
slopes 𝛽௝,்ା௛ for 𝑗 = 1, … ,4 and 𝜖௜௧ are forecasted with an optimized ARIMA(𝑝,0,𝑞) model, in both cases 
with 0 ≤ 𝑝 ≤ 5 and 0 ≤ 𝑞 ≤ 3. 

The GG model is in effect a factor model: the values of 𝑦௜௧  for 𝑖 = 1, … ,25 are condensed into five 
𝛽௝௧ at each 𝑡, with preselected factor loadings that were named 𝑥௜ in the discussion above.  More 
specifically, apart from scaling, 𝑥௜ in equation (3.9) fulfills the same function as 𝐸௜  in equation (3.12).  
However, a simple forecast 𝑦ො௜,்ା௛ = 𝑥௜

ᇱ𝛽መ்ା௛ is not competitive as 𝜖௜̂௧ still carries information that can be 
used for forecasting; this parallels the presence of 𝜇௜  in equation (3.9). 

III.4  Diffusion index models: DIk, DIkF and DIkFD 

 Stock and Watson (2002ab) introduced a diffusion index model for forecasting.  The model is 
related to factor models, which can be summarized as the following.  Let 𝑍௧  be a (1 × 𝑙) row vector of 
stationary variables relevant for the forecasting of 𝑦௜௧.  The variables are condensed into 𝑘 factors 
represented by the row vector 𝐹௧, with 𝐸 as the 𝑚 × 𝑘 matrix of factor loadings: 

 𝑍௧ = 𝐹௧𝐸′ +  𝜀௭௧   (3.14) 

Once 𝐹௧ is computed, estimate an ARMAX(1,0) model that relates each Δ𝑦௜௧ to the diffusion indices: 

 Δ𝑦௜௧ = 𝛼௜ + 𝐹௧𝛽௜ + 𝜙௜Δ𝑦௜,௧ିଵ + 𝜖௜௧  (3.15) 

We implement 𝑍௧  in three different forms.   In the first, 𝑍௧  includes the history of all the first-
differenced implied volatilities Δ𝑦௧, taken to consist of its first five lags: 𝑍௧ = (Δ𝑦௧ିଵ

ᇱ , … , Δ𝑦௧ିହ
ᇱ ) such that 

𝑙 = 125.  The second form augments this with the history of other financial variables Δ𝑓௧, again captured 
by their first five lags: 𝑍௧ = (Δ𝑦௧ିଵ

ᇱ , … , Δ𝑦௧ିହ
ᇱ , Δ𝑓௧ିଵ

ᇱ , … , Δ𝑓௧ିହ
ᇱ ).  The third form adds the day of the week 

the option is traded through the row vector 𝐷௧
௦ defined in equation (3.4) (four dummy variables to denote 

Monday through Thursday, with Friday as the base day):  𝑍௧ = {Δ𝑦௧ିଵ
ᇱ , … , Δ𝑦௧ିହ

ᇱ , Δ𝑓௧ିଵ
ᇱ , … , Δ𝑓௧ିହ

ᇱ , 𝐷௧
௦}.  

Thus, letting 𝑘 be the number of factors retained, the three models under the diffusion index rubric will 
be referred to as DI𝑘 if 𝑍௧  contains only past first-differences in 𝑦; as DI𝑘F if 𝑍௧  adds financial variables; 
and as DI𝑘FD if if 𝑍௧  also contains a day-of-week component. 

Consider forecasting with the DI𝑘 model.  To forecast Δ𝑦௜,்ା௛, a forecast of 𝐹்ା௛ is needed.  First, 
note that 𝐹்ାଵ is derived from 𝑍்ାଵ = (Δ𝑦்

ᇱ , … , Δ𝑦்ିସ
ᇱ ), which is therefore fully observed.  Therefore, 
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 Δ𝑦෢
௜,்ାଵ = 𝛼ො௜ + 𝐹்ାଵ𝛽መ௜ + 𝜙෠ ̂௜Δ𝑦௜்  (3.16) 

To forecast 𝐹்ାଶ, we make use of the just-obtained forecast of Δ𝑦்ାଵ.  Thus, 𝑧்̂ାଶ =

൫Δ𝑦෢
்ାଵ, Δ𝑦் , … , Δ𝑦்ିଷ൯ and therefore also 𝐹෠்ାଶ = 𝐹෠(𝑧்̂ାଶ).  It follows that  

 Δ𝑦෢
௜,்ାଶ = 𝛼ො௜ + 𝐹෠்ାଶ𝛽መ௜ + 𝜙෠ ̂௜Δ𝑦෢

௜,்ାଵ  (3.17) 

This process of rolling forward continues until the end of the forecast horizon. 

In the case of DI𝑘F, 𝑧௧ = (Δ𝑦௧ିଵ, … , Δ𝑦௧ିହ, Δ𝑓௧ିଵ, … , Δ𝑓௧ିହ).  The forecast for period 𝑇 + 1 is as 
above, but forecasts cannot be simply rolled forward since Δ𝑓 ାଵ is unknown and must be separately 
forecasted).  Thus, forecasting necessitates an optimized ARMA(𝑝,𝑞) forecasting step to obtain each 𝐹்ା௛.   

In the case of DI𝑘FD, the day of week enters in two places.  First, note that in its common form, 
factor analysis starts with standardizing 𝑧௧.  Each element of a vector in 𝑧௧ is taken in deviation from the 
same mean.  Now, to account for the day of week, take each element of a vector in 𝑧௧ in deviation of the 
trading-day-specific mean.  In essence, this implies that 𝐹௧ = 𝐹෠(𝑧௧ , 𝐷௧

௦).   Second, add 𝐷௧
௦ to the 

relationship of 𝑦௜௧  with 𝐹௧: 

 Δ𝑦௜௧ = 𝛼௜ + 𝐷௧
௦𝛾௜ + 𝐹௧𝛽௜ + 𝜙௜Δ𝑦௜,௧ିଵ + 𝜖௜௧  (3.18) 

𝛾௜  is a (4 × 1) vector of slopes of day-of-week intercept shifters.  The remainder of the steps are similar 
to the process followed for DI𝑘F. 

3.4.  Filter-Related Models: AVEL, AVEC, FXVIXL, FXVIXC 

Apart from 𝛽௧ in the GG model and 𝐹௧ in the CFL and CFC models, what other common factor 
models could be formulated?  Four come to mind, which are inspired by the familiar CAPM model.  We 
will refer to these factors as “observed common factors.”  The models constitute Group IV. 

As shown in Section 2, the correlations among the 25 options are extremely high.  These high 
correlations exist not just for the levels, but also for the first-differenced of these options.  These 
correlations illustrate the strong cross-sectional dependence in the IVS of FX options.  The common 
practice in the recent literature (Bailey et. al., 2016; Elhorst et al., 2020) is to remove the strong cross-
sectional dependence by regressing the original data on either the cross-sectional means or the common 
factors of the data or on another observed variable.  These variables will be referred to as filters in this 
paper.  The “filter” concept will be incorporated in the following forecasting models. 

IV.1  AVEL: Average Implied Volatility, in level 

The first is extremely simple, yet quite powerful for forecasting relative to the CFL model: the cross-
sectional average of the options’ implied volatilities, or 𝑦ത௧ =

ଵ

ଶହ
∑ 𝑦௜௧

ଶହ
௜ୀଵ .  For each 𝑖, we formulate 

 𝑦௜௧ = 𝛼௜ + 𝛿௜𝑦ത௧ + 𝑦෤௜௧ (3.19) 

𝑦෤௜௧  may be thought of as the implied volatility of option 𝑖 filtered by the average implied volatility across 
all options under consideration.  Estimates of 𝛿௜  that are much greater than ଵ

ଶହ
 are evidence of the high 

degree of commonality among the 𝑦௜௧.5  Forecasting of 𝑦௜,்ା௛ necessitates generating a forecast of 𝑦ത்ା௛ 
and a forecast of 𝑦෤௜,்ା௛.   

 
5 Estimates of 𝛼௜  and 𝛿௜ suffer from endogeneity bias, but this is of no concern when the objective is to obtain 
accurate forecasts: the forecasting equation suffers from the same bias as the estimation equation. 
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 𝑦ො௜,்ା௛ = 𝛼ො௜ + 𝛿መ௜𝑦ത෠்ା௛ + 𝑦෤෠௜,்ା௛  (3.20) 

Why might this be beneficial relative to the approaches in Groups I and III?  Here, the time series process 
of the common factor is separated from the time series process of each specific option.  Therefore, a 
single time series model does not have to represent two separate processes.  Thus, the processes for 𝑦ത௧ 
and 𝑦෤௜௧  may have different lag lengths and may depend in different ways on the day of week (𝐷௧).  In the 
implementation of this model, the prediction model for 𝑦ത௧ is generated with an optimized ARIMA(𝑝,𝑑,𝑞) 
model with 1 ≤ 𝑝 ≤ 5, 𝑑 = {0,1}, and 0 ≤ 𝑞 ≤ 3,   For the process for 𝑦෤௜௧, two models are considered as 
the filtering process removes the unit root from some but not all 𝑦௜௧: AVEL1 specifies an optimized ARIMA 
model, and AVEL2 specifies an optimized ARIS(𝑝,𝑑,𝑃) model with 1 ≤ 𝑝 ≤ 2, 𝑑 = {0,1} and 𝑃 ≤ 1. 

IV.2  AVEC 

Formulated in first difference terms, the AVEC model blends the AR(2) model with a day-of-week element 
and the common factor that comes from the change in the average option volatility.   

 Δ𝑦௜௧ = 𝛼௜ + 𝐷௧
௦𝛾௜ + 𝛿௜Δ𝑦ത௧ + 𝜙ଵ௜Δ𝑦௜,௧ିଵ + 𝜙ଶ௜Δ𝑦௜,௧ିଶ + 𝜖௜௧  (3.21) 

This model is closely related to the AVEL model, of course, but allows a constant day-of-week pattern 
rather than a seasonal AR pattern that allows from dissipating day-of-week effects.  The Δ𝑦ത௧ process is 
estimated separately as an AR*(5) (an AR(2) model augmented with a fifth lag) with day-of-week: 

 Δ𝑦ത௧ = 𝛼௜
௔ + 𝐷௧

௦𝛾௜
௔ + 𝜙ଵ௜

௔ Δ𝑦ത௧ିଵ + 𝜙ଶ௜
௔ Δ𝑦ത௧ିଶ + 𝜙ହ௜

௔ Δ𝑦ത௧ିହ + 𝜖௜௧
௔  (3.22) 

IV.3  FXVIXL 

The third CAPM-inspired model broadens the common factor to the overall volatility measure FXVIX in 
currency markets, shown as 𝑓௫௧ in the following equation: 

 𝑦௜௧ = 𝛼௜ + 𝛿௜𝑓௫௧ + 𝑦෤௜௧  (3.23) 

where 𝑦෤௜௧  is now the implied volatility of option 𝑖 filtered by the FXVIX of the entire market for currencies.  
In the first implementation (FXVIXL1), the prediction model for 𝑓௫௧ is generated with an ARIMA(1,1,0) with 
day-of-week effects; 𝑦෤௜௧  is estimated with an optimized ARIS(𝑝,𝑑,𝑃) model with 1 ≤ 𝑝 ≤ 2, 𝑑 = {0,1} and 
𝑃 ≤ 1.  The filtering with 𝑓௫௧ does not always remove the unit root from 𝑦௜௧.  In the second implementation 
(FXVIXL2), optimized ARIMA(𝑝,𝑑,𝑞) processes are estimated for both 𝑓௫௧ and 𝑦෤௜௧. 

IV.4  FXVIXC 

The FXVIXC model parallels the AVEC model: it blends the AR(𝑝) model with a day-of-week element and 
the contextual factor that comes from the change in the FXVIX: 

 Δ𝑦௜௧ = 𝛼௜ + 𝐷௧𝛾௜ + 𝛿௜Δ𝑓௫௧ + 𝜙ଵ௜Δ𝑦௜,௧ିଵ + 𝜙ଶ௜Δ𝑦௜,௧ିଶ + 𝜙ହ௜Δ𝑦௜,௧ିହ + 𝜖௜௧ (3.24) 

The third and fourth lags of an AR(5) model are rarely statistically significant, but the fifth lag is, thus giving 
rise to the AR*(5) serial correlation structure.  Δ𝑓௫௧ is estimated with an AR(1) process augmented with a 
day-of-week element. 

 

4.  Out-of-Sample Forecast Evaluation Methods 

As mentioned at the start of Section 3, models are estimated on time series data running from 
𝑡 = 1 to 𝑡 = 𝑇, and ℎ-day-ahead forecasts are generated for 𝑡 = 𝑇 + ℎ with ℎ = 1, 2, … , 𝐻.  For 
comparison purposes, let rolling time windows be indexed by 𝑛 = 1, … , 𝑁, and let 𝑡̃ denote calendar time.  
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Thus, window 𝑛 utilizes data from 𝑡̃ = (𝑛 − 1) + 1 through 𝑡̃ = (𝑛 − 1) + 𝑇, generating forecasts for 𝑡̃ =
(𝑛 − 1) + 𝑇 + 1 through 𝑡̃ = (𝑛 − 1) + 𝑇 + 𝐻.  In this way, ℎ-period-ahead forecasts of different models 
may be evaluated on the basis of 𝑁 forecast attempts.  In tabulations in the following sections, we use 
𝑇 = 504 (two years of daily data) and 𝑁 = 252 (one year’s worth of ℎ-period-ahead forecasts).  In the 
following, every forecast and forecast error ought to be subscripted with 𝑛, but this subscript is omitted 
for notational clarity. 

Unless indicated otherwise, the baseline model is the random walk.  Let 𝑒௜,்ା௛
௥௪  be the ℎ-period-

ahead forecast error of the random walk model, and let 𝑒௜,்ା௛ be the same forecast of a comparison 
model: 

 𝑒௜,்ା௛
௥௪ = 𝑦௜,்ା௛ − 𝑦ො௜,்ା௛

௥௪   (3.25) 

 𝑒௜,்ା௛ = 𝑦௜,்ା௛ − 𝑦ො௜,்ା௛  (3.26) 

Again, note that these are computed for each rolling window 𝑛 with 𝑛 = 1, … , 𝑁.  𝑒௜,்ା௛ and 𝑒௜,்ା௛
௥௪  are 

the key ingredients of the out-of-sample 𝑅ଶ, the Diebold-Mariano and Clark-West tests, and the Sign test 
that are discussed in the next subsections. 

4.1. Out-of-Sample 𝑹𝟐 

The primary descriptive statistic is the out-of-sample 𝑅௜௛
ଶ , defined for a given forecasting model 

for each option 𝑖 and forecast horizon ℎ: 

 𝑅௜௛
ଶ = 1 −

∑ ௘೔,೅శ೓
మಿ

೙సభ

∑ ൫௘೔,೅శ೓
ೝೢ ൯

మಿ
೙సభ

  (3.27) 

It measures the proportional improvement in forecasts by a model (say, AVEC) at horizon ℎ relative to the 
random walk model.  A positive value indicates that the AVEC model generates smaller forecast errors 
and thus is more accurate; a negative value shows that the random walk model is preferable. 

To test whether this improvement is statistically significant, it matters whether the random walk 
model is nested within a given model.  For example, the ARMA(p,q) model reduces to the random walk 
model if, in equation (3.2), 𝜙ଵ௜ = 1 and all other parameters equal 0; the VARL model reduces to the 
random walk model if 𝛼 = 0 and 𝐴 = 𝐼ଶହ; the GG model cannot be reduced to the random walk model by 
any parameter restriction.  If a model does not nest the random walk model, the modified Diebold-
Mariano (MDM) test applies (Diebold and Mariano, 1995; West, 1996; Harvey et al., 1997; Rapach and 
Wohar, 2007); if a model does nest the random walk model, a modified Clark-West (MCW) test applies 
(Clark and West, 2007, Harvey et al., 1997).   

4.2.  The Modified Diebold-Mariano (MDM) and Clark-West (MCW) tests 

 Suppose that the comparison model does not nest the random walk model.  Define  

 𝑔௜௛௡ = ൫𝑒௜,்ା௛
௥௪ ൯

ଶ
− 𝑒௜,்ା௛

ଶ   (3.28) 

Let 𝑔̅௜௛ =
ଵ

ே
∑ 𝑔௜௛௡

ே
௡ୀଵ .  Let 𝜇௚೔೓

 denote the population mean of 𝑔௜௛௡.  The Null hypothesis states that the 
two models have equal predictive ability: 𝐻଴: 𝜇௚೔೓

= 0.  Under the Null hypothesis, we have by Diebold 
and Mariano (1995) and Clark (1997): 

 𝑀𝐷𝑀௜௛ =
ேାଵିଶ௛ା௛(௛ିଵ) ே⁄

ே
×

௚ത೔೓

௏(௚ത೔೓)భ మ⁄  ~ 𝑡(𝑁 − 1) (3.29) 
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where 𝑉(𝑔̅௜௛) =
ଵ

ே
൫𝑉଴௛ + ∑ 𝑉௝௛

௛ିଵ
௝ୀଵ ൯ and 𝑉௝௛ =

ଵ

ே
∑ (𝑔௜௛௡ − 𝑔̅௜௛)൫𝑔௜௛,௡ି௝ − 𝑔̅௜௛൯ே

௡ୀ௝  for 𝑗 = 0, … , ℎ − 1.  
The alternative hypothesis is two-sided (𝐻஺: 𝜇௚೔೓

≠ 0): one is better than the other.  Thus, a significant 
positive value provides evidence that the alternative model yields more accurate forecasts; a significant 
negative value indicates that the random walk model is preferable. 

If the model does nest the random walk model, 𝑔௜௛௡ is modified to account for estimation error 
that adds to the forecast error of the random walk model (Clark and West, 2007): 

 𝑔௜௛௡ = ൫𝑒௜,்ା௛
௥௪ ൯

ଶ
− ቀ𝑒௜,்ା௛

ଶ − ൫𝑒௜,்ା௛
௥௪ − 𝑒௜,்ା௛൯

ଶ
ቁ = 𝑒௜,்ା௛

௥௪ ൫𝑒௜,்ା௛
௥௪ − 𝑒௜,்ା௛൯  (3.30) 

Clark and McCracken (2013) recommend the following test statistic, which they call ENC-t and CW-t, 
modified again as suggested by Harvey et al. (1997) and thus called MCW: 

 𝑀𝐶𝑊௜௛ =
ேାଵିଶ௛ା௛(௛ିଵ) ே⁄

ே
×

௚ത೔೓

௏(௚ത೔೓)భ మ⁄  ~ 𝑡(𝑁 − 1) (3.31) 

The Null hypothesis states that the two models have equal predictive ability in population: 𝐻଴: 𝜇௚೔೓
= 0.  

Thus, the alternative is now one-sided (𝐻஺: 𝜇௚೔೓
> 0) since, when the true population parameters are 

inserted, the alternative model may be able to generate better forecasts than the random walk model, 
but the random walk model can never generate better forecasts than the alternative model. 

4.3  Out-of-sample 𝑹𝟐 and MDM/MCW tests in grouped settings 

The tools in the previous subsections are also applicable in group settings.  Let 𝑔௛௡ be the 25 × 1 
vector stacking 𝑔௜௛௡, and let 𝜄ଶହ be the vector (with elements equal to 0 and 1) that defines the group.  
Define 𝑔෤௛௡ = 𝜄ଶହ

ᇱ 𝑔௛௡ and 𝑔෤̅௛ =
ଵ

ே
∑ 𝑔෤௛௡

ே
௡ୀଵ .  Then, the test is implemented along the same lines as 

equations (3.29) and (3.31).  The Null hypothesis here is 𝐻଴: 𝜇௚෤೓
= 0.  The meaning of this hypothesis 

depends on whether the alternative model nests the random walk model.  In the nested case, 𝐻଴: 𝜇௚෤೓
=

0 is equivalent to 𝐻଴: 𝜇௚೔೓
= 0 for all 𝑖 in the group.  Thus, it constitutes a joint test of whether the 

alternative model outperforms the random walk model for any option in the group.  For the non-nested 
case, it is possible that the 𝐻଴: 𝜇௚෤೓

= 0 is true but 𝜇௚೓೔
> 0 for one option in the group and 𝜇௚೓೔

< 0 for 
another option. 

In this regard, recall that the out-of-sample 𝑅௜௛
ଶ  measures the relative improvement in forecast 

performance of the alternative model for option 𝑖 at horizon ℎ.  A grouped out-of-sample R2-type measure 
may be written as  

 𝑅෨௛
ଶ = 1 −

∑ ఐమఱ,೔ ∑ ௘೔,೅శ೓
మಿ

೙సభ
మఱ
೔సభ

∑ ఐమఱ,೔ ∑ ൫௘೔,೅శ೓
ೝೢ ൯

మಿ
೙సభ

మఱ
೔సభ

= 1 − ∑ 𝑤௜
∑ ௘೔,೅శ೓

మಿ
೙సభ

∑ ൫௘೔,೅శ೓
ೝೢ ൯

మಿ
೙సభ

ଶହ
௜ୀଵ = ∑ 𝑤௜𝑅௜௛

ଶଶହ
௜ୀଵ   (3.33) 

where 𝑤௜ = ∑ ൫𝑒௜,்ା௛
௥௪ ൯

ଶே
௡ୀଵ ∑ 𝜄ଶହ,௜ ∑ ൫𝑒௜,்ା௛

௥௪ ൯
ଶே

௡ୀଵ
ଶହ
௜ୀଵൗ  is the share of the sum of squared forecast errors of 

option 𝑖 as a fraction of the sum of squared forecast errors of the group to which it belongs.  Thus, 𝑅෨௛
ଶ is 

a weighted average of the 𝑅௜௛
ଶ  of the currency options in the group.  In Section 5, we employ this grouped 

𝑅෨௛
ଶ to evaluate the forecasts of all options with forecast horizon ℎ together: in this case, 𝜄ଶହ,௜ = 1 for all 𝑖. 

4.4.  Sign test 
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A second test to distinguish between forecasting models is the sign test (Diebold and Mariano, 
1995; Kitchens, 2002; Gibbons and Chakraborti, 2003).6  Define the indicator function 𝐼(𝑔௜௛௡) = 1 if 
𝑔௜௛௡ ≥ 0 and = 0 if 𝑔௜௛௡ < 0.  The sign test may then be written as: 

 𝑆𝑇௜௛ =
ଶ

ேబ.ఱ
(∑ 𝐼(𝑑௜௛௡)ே

௡ୀଵ − 0.5𝑁) ~௔ 𝑁(0,1)  (3.34) 

A significant negative value is evidence in favor of the alternative model; a significant positive value 
indicates that the random walk model is preferable. 

 

5. Forecasting performance 

5.1.  An overall assessment 

In this section, each model’s forecasting performance will be evaluated by grouping all 25 option 
IVs together.  Table 2 provides the evaluations by means of five summary statistics: (i) 𝑅෨௛

ଶ for each forecast 
horizon; (ii) significance levels of MDM/MCW tests as indicated by “*” and “+” markers: one-sided tests 
in favor of indicated model are marked as *** (1%), ** (5%), and * (10%), whereas one-sided tests in favor 
of random walk model are shown as +++ (1%), ++ (5%), and + (10%); (iii) the percentage of the MDM/MCW 
tests of individual option volatility models that are statistically significantly different from the random 
walk at the 10% level, across all horizons, shown under the “Share preferred” heading; (iv) for those 
models that do not nest the random walk model,7 the percentage of the MDM tests of individual option 
volatility models that indicate superior performance of the random walk at the 10% significance level, 
across all horizons; and (v) the percentage of the sign tests of individual option volatility models that are 
statistically significantly different from the random walk at the 10% level, across all horizons, shown under 
the heading of “Sign tests.” 

To take the second line of the table as an example, when the implied volatility models are 
estimated with an optimized ARIMA model, the overall out-of-sample 𝑅௛

ଶ at a forecast horizon of ℎ = 1 
equals 0.008, indicating that ARIMA’s mean squared prediction error is 0.8% smaller than that of the 
random walk model.  For ARIMA, the null hypothesis is that MSE of ARIMA is greater than or equal to MSE 
of random walk.  The *** marker indicates rejection of the null at the 1% significance level.   Thus, in the 
aggregate, ARIMA is a better forecast model than random walk.  At longer forecast horizons (ℎ ≥ 2), the 
mean squared prediction error of ARIMA tends to be slightly larger.  Summarizing IV-level tests, as seen 
under the “Share preferred” heading, the left column (“Model”) shows that 28.57 percent of the 175 (25 
option volatility series at seven forecast horizons) ARIMA forecast performances are better at the 10 
percent significance level than random walk.  The entry in the right column (“R.Walk”) is empty (“n.a.”) 
because the random walk model is nested within the ARIMA model.  The sign test reveals that in 8.57 
percent of the 175 comparisons the ARIMA model performed better than the random walk model at the 
10 percent significance level. 

The second group of models examine day-of-week effects.  The AR*(5) model is a baseline 
specification for these four rows.  It models Δ𝑦௜௧ with an autoregressive model that contains the first, 

 
6 The Wilcoxon Signed Rank Test has more power than the Sign Test but requires symmetry in 𝑑௜௛௡.  Symmetry is too 
often rejected for some models, for some options 𝑖, and/or for some forecast windows ℎ. 
7 The factor-based models (CFCk, CFLk, GG, and DIk and their variants) do not nest the random walk specification as 
there is no parameter restriction that would reduce the model to the random walk formulation.  All other models 
contain the random walk specification as a special case. 
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second and fifth lags.  For ℎ ≤ 5, it achieves better 𝑅෨௛
ଶ than the optimized ARIMA model and, in the 

aggregate, outperforms the random walk for ℎ ≤ 2.  Adding the day-of-week dummies further improves 
the short-term forecasting performance of the AR*(5) model.  The ARIS(𝑝,𝑑,𝑃௦) model approaches this 
day-of-week phenomenon from a seasonal-AR perspective.  Whether in optimized form or with a 
predetermined lags (listed as ARIS(2,1,1) form, the short-term forecasting performance falls short of the 
AR*(5) model—but the long-term (ℎ ≥ 5) is virtually identical.  

Table 2: Aggregate out-of-sample R2 and MDM/MCW tests, and summary of separate MDM/MCW 
and sign tests (euro, 2010-2012) 

Type of  
Model 

𝑅෨௛
ଶ by forecast horizona Share preferredb Sign 

test ℎ = 1 ℎ = 2 ℎ = 5 ℎ = 10 ℎ = 15 ℎ = 20 ℎ = 25 Model R.Walk 

I. Basic time series models         
ARMA -0.023   -0.064   -0.162   -0.309   -0.401   -0.484   -0.536   4.57 n.a. 0.00 
ARIMA 0.008 *** -0.007   -0.005   -0.006   -0.002   -0.001   0.000   28.57 n.a. 8.57 

II. Day-of-week seasonality models        
AR*(5) 0.016 *** 0.003 ** -0.004   -0.011   -0.020   -0.026   -0.034   14.86 n.a. 23.43 
AR*(5)D 0.056 *** 0.040 *** -0.005   -0.014   -0.021   -0.026   -0.032   22.86 n.a. 26.29 
ARIS(p,d,Ps) 0.014 *** 0.002 * -0.005   -0.013   -0.021   -0.025   -0.033   16.00 n.a. 25.71 
ARIS(2,1,1) 0.016 *** 0.003 ** -0.005   -0.013   -0.022   -0.027   -0.037   15.43 n.a. 20.00 

III. Factor models       
CFC3 0.010   -0.012   0.002   -0.006   -0.015   -0.021   -0.031   0.57 2.29 33.14 
CFC3D 0.062 ** 0.036 * 0.003   -0.006   -0.014   -0.021   -0.030   6.86 0.00 34.29 
CFL3 -0.229 +++ -0.106 +++ -0.034 ++  -0.006  -0.001  0.003  0.003  13.71 29.71 23.43 
CFL10 0.028 * 0.009   0.014   0.017   0.013   0.014   0.011   28.00 7.43 31.43 
GG -0.025   -0.038   -0.055   -0.050   -0.032   -0.022   -0.018   4.57 15.43 32.00 

DI5 0.009  -0.021  -0.017  -0.020  -0.026  -0.031  -0.037  0.00 1.71 15.43 
DI10 0.013   -0.033   -0.054   -0.041   -0.034   -0.039   -0.043   0.00 6.29 10.86 
DI5F 0.011  -0.034 +  -0.041 ++  -0.023  -0.037  -0.040  -0.043  0.00 16.00 13.71 
DI10F 0.024   -0.035 + -0.052 +++ -0.031   -0.044   -0.044   -0.045   1.14 17.14 13.14 
DI1FD 0.062 ** 0.036 * 0.004  -0.005  -0.014  -0.021  -0.030  7.43 0.00 30.86 
DI5FD 0.058 * 0.020   -0.047 ++  -0.034  -0.036  -0.041  -0.041  6.29 10.86 26.29 
DI10FD 0.066 ** 0.021   -0.054 ++ -0.038   -0.039   -0.041   -0.041   5.71 12.00 29.14 

IV. Filter-related models         
FXVIXC 0.056 *** 0.041 *** -0.002   -0.008   -0.016   -0.021   -0.026   25.14 n.a. 39.43 
AVEC 0.068 *** 0.043 *** -0.003   -0.013   -0.021   -0.026   -0.033   26.29 n.a. 25.71 
FXVIXL1 0.017 *** 0.033 *** 0.061 *** 0.113 *** 0.139 *** 0.164 ** 0.190 ** 72.57 n.a. 72.57 
FXVIXL2 -0.012 * -0.007 * 0.031 ** 0.081 *** 0.112 *** 0.140 *** 0.167 *** 38.29 n.a. 45.14 
AVEL1 0.025 *** 0.011 *** 0.020 *** 0.031 *** 0.037 *** 0.042 *** 0.040 *** 55.43 n.a. 33.14 
AVEL2 0.025 *** 0.012 *** 0.017 *** 0.032 *** 0.041 *** 0.046 *** 0.041 *** 41.14 n.a. 40.57 
Notes: a Significance levels of MDM/MCW tests.  One-sided tests in favor of indicated model: *** 1%, ** 5%, * 10%; one-
sided tests in favor of random walk model: +++ 1%, ++ 5%, + 10%. 
b Share of 175 forecasted series (25 option volatilities with 7 forecast horizons) for which the specified model (left column) 
or the random walk model (right column) is preferred in the MDM/MCW test at a 10% significance level.  “n.a.” indicates 
that the specified model nests the random walk model, in which case the notion that the random walk model is preferred is 
not applicable. 
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The third group of models in Table 2 are factor models, augmented in a few cases with day-of-
week dummy variables.  The CFC3 model reduces Δ𝑦ଵ௧ , … , Δ𝑦ଶହ,௧ to just three factors,8 which capture 
93.8%9 of the variation in 25 variables.  At ℎ = 1, forecasts are 1 percent better than the those of the 
random walk model, but at longer horizons, this model is no longer competitive.  The difference between 
this CFC3 model and random walk is not statistically significant, even though the model follows a very 
different strategy.  Adding day-of-week dummies does make a material difference for short-horizon 
forecasts: the 𝑅෨௛

ଶ is statistically significantly better than the random walk and indicates that the one- and 
two-day sum of squared forecast errors are 6.2% and 3.6% lower.  For medium and long-term forecasts, 
this advantage dissipates: CFC3D is equivalent to RW. 

The CFL𝑘 models capture the level values of the option volatility series.  Table 2 lists results for 
three and ten factors.  Though 𝑘 = 3 is the best choice according to the elbow method (three factors 
capture 99.5% of the variation), the short-term forecasting performance is still relatively poor, and the 
long-term performance is only marginal better than for 𝑘 = 1.  Adding more factors captures more trends 
and improves the forecasting performance until, roughly, 𝑘 = 10.  These 10 factors capture 99.99% of the 
variation in the option volatility series.  𝑅෨௛

ଶ > 0 for all forecast horizons and statistically significantly so at 
ℎ = 1; for 28% of the 175 forecasted series, this CFL10 is statistically preferred to the random walk.   

The GG model is not competitive.  As discussed before, the GG model estimates the shape of the 
volatility surface and predicts the evolution of this shape over the forecast horizon.   It helps to run 
separate forecasts for the gap between the predicted and actual volatility surface at each separate 
maturity-delta combination—without it, the 𝑅෨௛

ଶ values would be −1.079 for ℎ = 1 and −0.045 for ℎ =

25—but even then, the random walk model is still statistically preferred for 15.4% of the 175 forecasted 
series. 

Among the diffusion index models, the DI𝑘FD version is most successful.  The DI models extract 
factors from the five-day history of all option volatility series.  Table 2 illustrates forecasting performance 
for 𝑘 = 5 (strongly indicated by the elbow method and consistent with the notion that each lag may be 
represented by one factor, as in the CFC𝑘 model discussed above) and 𝑘 = 10.  Increasing 𝑘 improves 
short-term performance (ℎ = 1), but this gain evaporates when the forecast horizon lengthens.  Adding 
other financial variables yields very little gain; adding the day-of-week dummy variables makes a 
substantial contribution in terms of short-term forecasting performance (ℎ ≤ 2). 

The fourth group of models (bottom six rows of Table 2) focus more directly on the contribution 
of the day of week and the filter variable of FXVIX.  Adding Δ𝑓௫௧ (in the FXVIXC model) generates no 
improvement on AR*(5)D, similar to what was found with the diffusion index models.  The same is true 
when Δ𝑦ത௧ is added (i.e., the AVEC model).  These variables add much to the regression models but bring 
no gain to forecasting. 

The last four rows align more closely with the strong cross-sectional dependence concept: 
common factors are modeled respectively as 𝑓௫௧ (the log of the FXVIX index that measures volatility in the 
overall currency markets) or as 𝑦ത௧ (equivalent to the log of the geometric average of the 25 currency 

 
8 Three factors suffice on basis of the elbow method of selecting factors.  The first factor captures 89.7% of the 
variation and would already be sufficient according to the eigenvalue rule of thumb.  The CFC1 model performs 
similarly to the CFC3 model. 
9 Statistical descriptions of the model such as these pertain to the performance of the model over the entire 2010-
2012 time period used to estimate parameters that are used for forecasting, i.e., all observations that are part of 
any estimation window. 
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options); the two models for each alternative differ in the way that this factor and the remaining filtered 
𝑦෤௜௧  are forecast.  In forecasting, both approaches yield significant improvements over the random walk 
model at all forecast horizons, especially in the long run (ℎ = 25) where the mean squared prediction 
error is up to 19 percent lower. 

CFL𝑘, FXVIXL and AVEL models are all common factor models: why do they yield a different 
forecasting performance?  As mentioned, 𝑓௫௧ and 𝑦ത௧ can be thought of as filters or “observable common 
factors” that are determined either externally (as with 𝑓௫௧) or internally but deterministically (as with 𝑦ത௧).  
In contrast, CFL𝑘 models find common factors internally with a data-driven algorithm that generates 
factors both optimally and endogenously.  As the CFL factors are designed to capture the maximal 
proportion of variation in the data, it may actually be surprising that the FXVIXL and AVEL models 
outperform the CFL𝑘 models.  However, first, note that the models are not nested.  Forecasts based on 
CFL𝑘 rely on forecasts of the factors and ignore any remaining patterns in the residuals.  In contrast, the 
FXVIXL and AVEL models rely on forecasts of both the observable common factor and the filtered 𝑦෤௜௧.  As 
the GG model shows, such residuals do carry useful information.  Second, the five factors of the CFL5 
model explain 96.2% of the variation in 𝑓௫௧ and over 99.99% of the variation in 𝑦ത௧.  This shows that the 
latent common factors capture nearly all of the variation in the observable common factors—but the 
latter carry that information in a parsimonious fashion.  Interestingly, there appears to be no gain in 
including both 𝑓௫௧ and 𝑦ത௧ as these variables carry very similar informational content.  Third, the latent 
common factors are data-driven and thus endogenous.  That is, a large shock throws off the correlation 
matrix, its eigenvectors, and thus the derived latent common factors.  Such estimation noise is not present 
in observable common factors.  It is true that 𝑦ത௧ is also impacted by that large shock because some 𝑦௜௧  are 
subject to that shock, but the weights given to each 𝑦௜௧  in computing 𝑦ത௧ remain equal to 1/25 for each 𝑖; 
those weights do not vary as they do for the latent common factors.  The same may be said for 𝑓௫௧ in 
relation to the broader foreign exchange options market. 

5.2.  An in-depth assessment 

Of course, Table 2 present a highly aggregative picture of the performance of these models.  For 
a more disaggregate examination, consider four models that, according to Table 2, appear to be most 
successful: CFL10, DI10FD, AVEC, and FXVIXL1.  Figures 3 and 4 show the percentage difference in the root 
mean squared prediction error (𝑅𝑀𝑆𝑃𝐸௜௛) of a given model relative to the random walk model, by 
forecast horizon, delta (measured horizontally) and maturity (measured vertically).  This percentage 
difference is related to the out-of-sample 𝑅௜௛

ଶ : 

%𝐷(𝑅𝑀𝑆𝑃𝐸௜௛) = 100 ቀ൫1 − 𝑅௜௛
ଶ ൯

ଵ ଶ⁄
− 1ቁ = 100 ቆ

𝑅𝑀𝑆𝑃𝐸௜௛ − 𝑅𝑀𝑆𝑃𝐸௜௛
௥௪

𝑅𝑀𝑆𝑃𝐸௜௛
௥௪ ቇ 

It indicates more clearly the potential advantage of a model in generating forecasts.  If a model generates 
smaller (greater) forecast errors, we have  𝑅௜௛

ଶ > 0 (𝑅௜௛
ଶ < 0) and thus %𝐷(𝑅𝑀𝑆𝑃𝐸௜௛) < 0 (> 0).  I.e., 

𝑅௜௛
ଶ = 0.05 yields %𝐷(𝑅𝑀𝑆𝑃𝐸௜௛) = −2.53, implying that, for option 𝑖 at forecast horizon ℎ, the 

comparison model generates an 𝑅𝑀𝑆𝑃𝐸௜௛  that is 2.53% lower than the random walk model.  Section 3.3 
described tests of 𝑅௜௛

ଶ , which are therefore tests of %𝐷(𝑅𝑀𝑆𝑃𝐸௜௛) as well.  In Figures 3 and 4, the 
statistical significance of a model that performs better than the random walk model is indicated by a color 
fading from dark brown (1% significance) to light yellow (20% significance) with significance levels of 10% 
or less highlighted in boldface font.  In Figure 3, when the random walk model performs better, statistical 
significance is indicated by italicized font and a color fading from dark green (1%) to light green (20%) with 
significance levels of 10% or less highlighted in boldface font. 
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Figure 3 examines DI10FD (a model of the first difference of log implied volatility) and CFL10 (a 
model of log implied volatility in levels).  DI10FD does very well at very short-horizon forecasts (ℎ = 1), 
providing gains of around 7% for 1-month options across the board and gains of around 1-to-2 percent 
for longer-maturity options.  However, for ℎ = 5, the random walk model has the clear upper hand with 
gains between 1 and 4 percent.  This advantage persists for longer forecast horizons, even if only weakly 
statistically significant (or not at all). 

Figure 3: Percentage difference in RMSPE relative to random walk, 
by forecast horizon h, delta and maturity (euro, 2010-2012) 

 A: DI10FD model B: CFL10 model 

 
Statistical significance is coded by color and font thickness and italics: 
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In Table 2, CFL10 did not acquire many stars, although at each forecast horizon 𝑅෨௛
ଶ was positive.  

Figure 3, Panel B, shows why: (i) at each ℎ, forecasts for some options are more accurate with CFL10 and 
for other options with random walk; (ii) at ℎ = 1, CFL10 generally does better than random walk but gains 
are small; (iii) ℎ ≥ 5, forecasts for put options (delta less than 50) of random walk and CFL10 are 
equivalent, but there is an interesting divergence for put options: short-term call options (three months 
or less) are better handled by CFL10 forecasts whereas long-term call options are better forecast with the 
random walk model.  For example, for ℎ = 20 and delta =  90, this divergence runs as high as a 4.78% 
gain for CFL10 forecasts of 1-month call options and a 7.55% gain for random walk forecasts of 12-month 
options. 

Figure 4 turns to models with observable common factors.  AVEC models the first-difference of 
log implied volatility; FXVIXL1 aims for log implied volatility in levels.  Note that random walk model is 
nested within AVEC and FXVIXL1.  Thus, tests can only reject random walk in favor of the alternative 
model; they cannot reject the alternative model in favor of random walk.  Moreover, %𝐷(𝑅𝑀𝑆𝑃𝐸௜௛) can 
be positive, which seems to favor random walk, and yet tests can indicate rejection of the random walk 
model.   

Again, the first-difference AVEC model generates strong forecasting performance at short 
horizons ℎ ≤ 2, with %𝐷(𝑅𝑀𝑆𝑃𝐸௜௛) favoring the random walk model for ℎ ≥ 5.  On the other hand the 
FXVIXL1 model does well for virtually all options for longer forecast horizons with gains running as high as 
18.67%, while still testing favorably for short horizons (ℎ ≤ 2) as well.  One weak spot is the 2-month call 
option for delta = 90 at all horizons.  This performance is incongruous with both 2-month call option for 
delta = 75 and 1- and 3-month call options for delta = 90.10 

5.3.  Robustness: another time period, another currency 

An important question is whether the patterns shown in Section 4 extend to other time periods 
and other currencies.  This section examines euro options in 2013-2015 as well as Canadian dollar options 
in both 2010-2012 and 2013-2015.  In this, the main models to be highlighted are ARIMA, CFL10, DI10FD, 
the AR2p5D day-of-week model, and the models involving 𝑓௫௧ and 𝑦ത௧.  A few other models are added if 
they performed particularly well.  The aggregate results of all models are provided in Appendix A.1, 
together with a few of the detailed results that parallel those in Section 5.2. 

 
10 Figure A.1 in Appendix A.1.1 shows the disaggregate performance of ARIMA.  Table 2 indicated that ARIMA 
forecasts dominates random walk forecasts in the aggregate for ℎ = 1 but are equivalent and possibly slightly worse 
for ℎ ≥ 2.  Figure A.1 presents a more nuanced picture.  For example, ARIMA outperforms random walk for about 
half of the options for ℎ ≥ 15 though with small gains, but shortfalls for the other forecasts in this group outweigh 
the gains.  ARIMA also performed better for put (delta < 50) options than call (delta > 50) options. 
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Table 3 starts off with the euro in 2013-2015.  In brief summary: (i) ARIMA does provide some 
improvement over the random walk, especially in 1-month and 3-month options, but the gain in the 
RMSPE is always less than 1 percent.  (ii) In the aggregate, CFL10 does not distinguish itself from the 
random walk, but this hides the fact that the performance is highly variable: CLF10 is preferred for 22.3% 
of the 175 option/horizon combinations and random walk forecasts perform better for 20.57% of them.  
As in 2010-2012, there is no clear pattern in this by forecast horizon.  (iii) DI10FD fails to provide better 

Figure 4: Percentage difference in RMSPE relative to random walk, 
by forecast horizon h, delta and maturity (euro, 2010-2012) 

 A: AVEC model B: FXVIXL1 model 

 

Statistical significance in favor of the indicated model is coded by color and font thickness: 
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short-horizon forecasts as it did before, and it yields to the random walk model for longer horizons.  (iv) 
AVEC has the same performance as before, relying as it does on day-of-week effects.  (v) FXVIXL models 
are not nearly as effective as in 2013-2015.  In fact, AVEL models do better. 

 

Table 3: Aggregate out-of-sample R2 and MDM/MCW tests, and summary of separate MDM/MCW and 
sign tests: Euro 2013-2015 

Type of  
Model 

Forecast horizon Share preferreda Sign 
test ℎ = 1 ℎ = 2 ℎ = 5 ℎ = 10 ℎ = 15 ℎ = 20 ℎ = 25 Model R.Walk 

ARIMA -0.003 * -0.006 * -0.003   0.002 * 0.006 ** 0.005 *** 0.006 *** 22.86 n.a. 5.71 
CFL10 0.007   0.009   0.008   0.012   0.014   0.009   0.011   22.29 20.57 22.29 
DI10FD 0.022   -0.003   -0.026   -0.018   -0.023   -0.029   -0.043 + 1.71 29.14 5.71 
AR*(5) 0.005 ** 0.005 * -0.001   -0.009   -0.017   -0.027   -0.036   10.29 n.a. 1.71 
AR*(5)D 0.027 *** 0.016 *** 0.002   -0.001   -0.012   -0.019   -0.029   16.57 n.a. 7.43 
FXVIXC 0.016 *** 0.001 ** -0.006   -0.014   -0.022   -0.033   -0.042   12.57 n.a. 6.29 
AVEC 0.028 *** 0.015 *** -0.002   -0.003   -0.012   -0.019   -0.029   14.86 n.a. 9.71 
FXVIXL1 -0.046  -0.068  -0.069  -0.080  -0.053  -0.021  0.014  28.57 n.a. 7.43 
FXVIXL2 -0.042 * -0.037   -0.042   -0.033   -0.015 * 0.002 * 0.016 * 29.71 n.a. 4.57 
AVEL1 0.019  0.018  0.008  0.011  0.015  0.016  0.021  41.71 n.a. 16.00 
AVEL2 0.015  0.014  0.005  0.005  0.008  0.008  0.014  40.00 n.a. 17.71 

Notes: a Share of 175 forecasted series (25 option volatilities with 7 forecast horizons) for which the specified model (left column) 
or the random walk model (right column) is preferred in the MDM/MCW test at a 10% significance level.  “n.a.” indicates that the 
specified model nests the random walk model, in which case the notion that the random walk model is preferred is not applicable. 
Significance levels: one-sided tests in favor of indicated model: *** 1%, ** 5%, * 10%; one-sided tests in favor of random walk 
model: +++ 1%, ++ 5%, + 10%. 

 

Table 4 gives an overview of the forecast performance in the case of Canadian dollar options, for 
both 2010-2012 and 2013-2015.  ARIMA does not generate much improvement in the aggregate.  
However, as shown in Appendix A.1.2, for 2010-2012, ARIMA predicts call (delta ≥ 50) options better than 
random walk at all ℎ but does substantially worse on put (delta < 50) options.  For 2013-2015, ARIMA is 
doing well only for ℎ = 1.  CFL10 offers a mixed bag once again, in both periods.  In 2013-2015, CFC3D 
generates a strong performance for ℎ ≤ 2, in line with the AR2p5D models even though it follows a 
different strategy.  I.e., day-of-week effects are substantial, but they do not help for long-horizon 
forecasts.  The DI10FD model shows some ability to forecast over short horizons (ℎ ≤ 2) only.  Similarly, 
for ℎ ≤ 2, AVEC and FXVIXC also provide more accurate forecasts than the random walk model.  FXVIXL1 
does well for many (60.8%) option/horizon combinations in 2010-2012 but flourishes only for short-
horizon forecasts in 2013-2015.  The FXVIXL1 model perform better than AVEL1 in 2010-2012 but worse 
in 2013-2015; this is not only in the aggregate but also for just about each Canadian dollar option (Figures 
A.3 and A.4 in Appendix A.1.2). 
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Table 4: Aggregate out-of-sample R2 and MDM/MCW tests, and summary of separate MDM/MCW and 
sign tests: Canadian Dollar 

Type of  
Model 

Forecast horizon Share preferreda Sign 
test ℎ = 1 ℎ = 2 ℎ = 5 ℎ = 10 ℎ = 15 ℎ = 20 ℎ = 25 Model R.Walk 

A: 2010-2012              
ARIMA -0.006   -0.010   -0.003   -0.004   -0.004   -0.005   -0.005   33.71 n.a. 22.86 
CFL10 0.011   0.005   0.000   -0.008   -0.009   -0.008   -0.007   4.57 1.71 5.14 
DI10FD 0.022   -0.018   -0.007   0.016   0.009   0.020   0.033   4.57 2.29 57.71 
AR*(5) -0.006 * -0.004   0.011   0.015   0.014   0.023   0.029   17.14 n.a. 69.14 
AR*(5)D 0.024 *** 0.033 *** 0.000   0.007   0.009   0.018   0.028   26.29 n.a. 70.29 
FXVIXC 0.058 *** 0.061 *** 0.025 ** 0.025   0.024   0.028   0.035   52.57 n.a. 68.57 
AVEC 0.034 *** 0.037 *** -0.004   0.005   0.008   0.017   0.027   30.29 n.a. 69.71 
FXVIXL1 0.019  0.035  0.023  0.033  0.046  0.071  0.095  60.57 n.a. 61.14 
FXVIXL2 -0.008 ** -0.028 * -0.037   -0.021   0.003   0.030   0.054   15.43 n.a. 5.71 
AVEL1 0.014  0.010  0.015  0.015  0.015  0.014  0.014  48.57 n.a. 31.43 
AVEL2 0.012  0.009  0.011  0.013  0.014  0.013  0.011  43.43 n.a. 27.43 

B: 2013-2015              
ARIMA 0.039 *** 0.007 *** -0.009   -0.009   -0.004   -0.003   -0.006   30.29 n.a. 11.43 
CFC3D 0.159 *** 0.070 *** -0.046 +++ -0.067 ++ -0.061   -0.065   -0.089   19.43 22.86 17.71 
CFL10 0.096 *** 0.047 *** -0.010   -0.014   0.002   0.001   -0.008   17.71 12.00 21.71 
DI10FD 0.150 *** 0.054 * -0.014   -0.012   -0.015   -0.046   -0.069   10.86 1.71 12.57 
AR*(5) 0.055 *** 0.006 ** -0.046   -0.065   -0.060   -0.064   -0.079   24.57 n.a. 9.71 
AR*(5)D 0.150 *** 0.077 *** -0.023   -0.040   -0.042   -0.051   -0.070   27.43 n.a. 10.86 
FXVIXC 0.129 *** 0.060 *** -0.025   -0.048   -0.047   -0.054   -0.073   22.86 n.a. 8.57 
AVEC 0.162 *** 0.082 *** -0.021   -0.037   -0.039   -0.049   -0.069   28.57 n.a. 12.00 
FXVIXL1 0.015  -0.021  -0.035  -0.090  -0.144  -0.148  -0.135  8.00 n.a. 1.14 
FXVIXL2 0.005 ** 0.006 ** -0.015   -0.048   -0.094   -0.099   -0.095   21.71 n.a. 6.86 
AVEL1 0.095  0.046  -0.010  -0.009  0.006  0.006  -0.001  34.29 n.a. 16.57 
AVEL2 0.089  0.037  -0.013  -0.013  0.001  0.003  -0.004  34.29 n.a. 12.57 

Notes: a Share of 175 forecasted series (25 option volatilities with 7 forecast horizons) for which the specified model (left column) 
or the random walk model (right column) is preferred in the MDM/MCW test at a 10% significance level.  “n.a.” indicates that the 
specified model nests the random walk model, in which case the notion that the random walk model is preferred is not applicable. 
Significance levels: one-sided tests in favor of indicated model: *** 1%, ** 5%, * 10%; one-sided tests in favor of random walk 
model: +++ 1%, ++ 5%, + 10%. 

 

6. Trading the IV Forecasts 

6.1  Trading strategy 

To evaluate the economic profit of trading the IV forecasts, this paper engages in a trading 
strategy similar to Chalamandaris and Tsekrekos (2011, 2014), which seeks to identify a portfolio of delta-
hedged call option contracts with the strongest buy or sell signal based on the implied volatility forecasts.  
A brief description will be given below.   
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For a given forecast horizon h, 𝑑መ௛௧(𝑖) = 𝑅[𝜎ො௜,௧ା௛ − 𝜎௜,௧] stands for the ranking of the difference 
between the h-day-ahead IV forecast and the current IV for option 𝑖, in an ascending order.11  Let 𝑃௛௧

ି  and 
𝑃௛௧

ା  be the set of options with the 𝑝 lowest and 𝑝 highest forecasted deviations: 

 𝑃௛௧
ି = 𝑎𝑟𝑔௜{𝑑መ௛௧(𝑖) ≤ 𝑝}  (6.1) 

 𝑃௛௧
ା = 𝑎𝑟𝑔௜{𝑑መ௛௧(𝑖) ≥ 𝑁 − 𝑝}  (6.2) 

Let 𝐴௛௧
ି  and 𝐴௛௧

ା  be the average deviation among the options in 𝑃௛௧
ି  and 𝑃௛௧

ା : 

 𝐴௛௧
ି =

ଵ

௣
∑ ൫𝜎ො௜,௧ା௛ − 𝜎௜,௧൯௜∈௉೓೟

ష   (6.3) 

 𝐴௛௧
ା =

ଵ

௣
∑ ൫𝜎ො௜,௧ା௛ − 𝜎௜,௧൯௜∈௉೓೟

శ   (6.4) 

For each day, a long-only or short-only trading strategy is implemented based on the values of 𝐴௛௧
ି  and 

𝐴௛௧
ା .  Note that 𝐴௛௧

ି < 𝐴௛௧
ା  by design.  If 0 ≤ 𝐴௛௧

ି < 𝐴௛௧
ା , the trader would go long for the call option 

contracts in 𝑃௛௧
ା  because there is no sell signal from the IV forecasts.  If 𝐴௛௧

ି < 𝐴௛௧
ା ≤ 0, the trader would 

go short for the call option contracts in 𝑃௛௧
ି  because there is no buy signal from the forecasts.  However, 

if 𝐴௛௧
ି < 0 < 𝐴௛௧

ା , the trader would make his/her decision based on the following rule: if |𝐴௛௧
ା |− |𝐴௛௧

ି | >

0, long 𝑃௛௧
ା ; otherwise, short 𝑃௛௧

ି .  Defining 𝐼(𝐿) be an indicator function, equal to 1 (0) if the logical 
argument 𝐿 is true (false), let 𝑠௛௧ indicate the buy/sell position: 

 𝑠௛௧ = 2𝐼(|𝐴௛௧
ା | > |𝐴௛௧

ି |) − 1  (6.5) 

Thus, 𝑠௛௧ = 1 for a buy position and = −1 for a sell position.  After the contracts and the position are 
determined, invest total amount of $1000 cash into the 𝑝 selected contracts with the following portfolio 
weights: 

 𝑤௛௜ =
หఙෝ೔,೟శ೓ିఙ೔,೟ห

∑ หఙෝೕ,೟శ೓ିఙೕ,೟หೕ∈ು೓೟

 , 𝑖 ∈ 𝑃௛௧  (6.6) 

where 𝑃௛௧ is either 𝑃௛௧
ା  or 𝑃௛௧

ି .  Each long (short) call option position is delta-hedged by selling (buying) 
the underlying FX exchange rate.  Each option position is held for one trading day and is closed on the 
next day.  This is repeated for h days, and the total ℎ-day profit is accumulated.  The daily profit earned 
through option 𝑖 is calculated as  

 𝜋௛௜,௧ାଵ = 𝑠௛௧ ൬൫𝐶௜,௧ାଵ − 𝐶௜,௧൯ − (𝑆 ௧ାଵ − 𝑆 ௧)𝐷௜ −
௥೑

ଷ଺଴
𝑎௧(𝐶௜,௧ − 𝐷௜𝑆 ௧)൰  (6.7) 

where 𝐶௜,௧ = 𝐶(𝑆௧ , 𝑀௜, 𝐾௜௧ , 𝜎௜௧ + 𝑠௛௧𝑏) is today’s Black-Scholes call option price for opening the position, 
𝐶௜,௧ାଵ = 𝐶(𝑆௧ାଵ, 𝑀௜ − 1, 𝐾௜௧ , 𝜎௜,௧ାଵ − 𝑠௛௧𝑏) is tomorrow’s call option price for closing the position, 𝑆௧ is 
the FX spot rate, 𝑀௜ is time to maturity in days, 𝐷௜ is the delta call,12 𝑟௙ is the risk-free annual interest rate 
(set equal to 0.01, which is common in the literature but somewhat high relative to the estimates in 
Binsbergen et al (2019, Table 1)), 𝑎௧ is the number of calendar days between the two trading dates, 𝐾௜௧ is 
the strike price calculated on basis of the option delta, and 𝑏 is the transaction cost in basis points charged 
for trading options.  The daily profit is turned into a daily rate of return by dividing it with 𝐷௜𝑆௧ − 𝐶௜௧ > 0, 

 
11 Note that in earlier sections of this paper, 𝑦௜௧ and 𝑦ො௜௧ denoted the realized and forecasted log implied volatility.  
Thus 𝑦௜௧ = ln 𝜎௜௧  and 𝜎ො௜௧ = exp(𝑦ො௜௧). 
12 In this context, note that, e.g., our delta = 90 corresponds with a 10-delta call. 
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which is the value of the funds involved in the trade of the call option (Cao and Han, 2013; Cao et al., 
2021): 

 𝑟௛௜,௧ାଵ
௖ =

గ೓೔,೟శభ

஽೔ௌ೟ି஼೔೟
  (6.8) 

The daily return of the portfolio equals 𝑟௛,௧ାଵ
௖ = ∑ 𝑤௛௜௧𝑟௛௜,௧ାଵ

௖
௜ , and the average daily return over the 

length of the trading period is denoted as 𝑟̅௛௧
௖ = ∑ 𝑟௛,௧ା௝

௖௛
௝ୀଵ ℎ⁄ .  For reporting purposes, this is annualized 

by multiplying it with the number of trading days per year (252). 

6.2.  Assessing the trading strategies 

The trading strategy is evaluated in two aspects: whether the average daily return is positive and 
whether the strategy is more profitable than a random walk strategy.  For this, 𝑟̅௛௧

௖  is computed for 252 
days, separately for each ℎ and for selected forecasting models.  If ℎ > 1, 𝑟̅௛௧

௖  is likely subject to serial 
correlation as 𝑟̅௛௧

௖ , 𝑟̅௛,௧ାଵ
௖ , ..., 𝑟̅௛,௧ା௛

௖  have trading days in common.  Therefore, statistically, the test whether 
the expected value of 𝑟̅௛௧

௖ , denoted as 𝜇௥̅೓
೎ , equals 0 is similar to the MDM/MCW test discussed in Section 

4.2. 

Trading on random walk forecasts cannot be done with this trading strategy, since options cannot 
be ranked by their IV forecast deviation as the random walk forecast 𝜎ො௜,௧ା௛ is equal to 𝜎௜௧.  Instead, any 
portfolio of randomly selected option contracts with a randomly selected buy or sell position is consistent 
with the principle of the random walk.  The expected value of the random walk strategy is the average 
over all possible portfolios and long/short positions.  Since each option contract has an equal chance of 
being included in the portfolio, this amounts to populating the average portfolio with all 25 options with 
weights of 0.04, computing 𝑟̅௛௧

௥௪(𝑠௛௧ = 1) for the long position and 𝑟̅௛௧
௥௪(𝑠௛௧ = −1) for the short position, 

and taking the simple average of these two values.  Denote this average return as 𝑟̅௛௧
௥௪, and denote its 

expectation 𝐸[𝑟̅௛௧
௥௪] as 𝜇௥̅೓

ೝೢ.  The hypothesis that 𝜇௥̅೓
೎ equals 𝜇௥̅೓

ೝೢ is tested by examining whether the 
mean of 𝑟̅௛௧

௖ − 𝑟̅௛௧
௥௪  exceeds 0.  Again, because of serial correlation, the proper statistical tool is the 

MDM/MCW test. 

6.3.  Results 

Section 5 concluded that, generally, the CFL10, DiFD10, and FXVIX- and AVE-related models (in 
first difference or in levels) yielded forecasts that are commendable in different ways.  Thus, these models 
are examined as bases for the two trading strategies.  Table 6 reports on only three models for different 
levels of trading costs (𝑏 = 0, 2, and 5 basis points), forecast horizons (ℎ = 1, 2, 5, … ,25 days), time 
periods (2010-2012 and 2013-2015), and both currencies (euro and Canadian dollar).  The three models 
are selected as follows: one of CFL10 and DiDF10, one of FXVIXC and AVEC, and one of FXVIXL1, FXVIXL2, 
AVEL1 and AVEL2; within each subgroup, the most successful model is shown.  In Appendix A.3, a full 
comparison is presented. 

Table 6 reports average annualized returns.  Significance levels of the test whether the return is 
positive are shown with superscripted “*” symbols; significance levels of the test whether profit is greater 
than the expected profit from a random walk strategy are shown with subscripted “+” symbols.  For 𝑏 =

0, the “+” symbols are omitted as the two tests overlap. 

Without trading costs, many forecasting models beat the random walk strategy especially when 
relying on short-horizon (ℎ = 1 or 2) forecasts.  Statistically significant economic returns of 5 or 6 percent 
are feasible for the euro in both time periods.  For AVEL2 in 2010-2012, returns to trading on longer 
forecast windows remain positive; for CFL10 and AVEC, they disappear.  It is nearly the opposite in 2013- 
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Table 6: Returns to trading implied volatility 

 𝑏 = 0 𝑏 = 2 𝑏 = 5 

A1: Euro, 2010-2012        

ℎ  CFL10 AVEC AVEL2 CFL10 AVEC AVEL2 CFL10 AVEC AVEL2 
1 5.48*** 6.07*** 5.21*** 1.96*

+++ 3.64**
+++ 2.29*

+++ -3.30+++ 0.00+++ -2.10+++ 
2 5.17*** 4.64*** 4.82*** 1.52+++ 1.95*

+++ 1.58+++ -3.94+++ -2.09+++ -3.28+++ 
5 0.94 1.46* 3.26*** -2.77+++ -1.33+++ -0.24+++ -8.34+++ -5.51+++ -5.49+++ 
10 -0.18 0.09 3.19*** -3.99+++ -3.14++ -0.52+++ -9.71+++ -7.98+++ -6.10+++ 
15 -0.54 0.05 3.39*** -4.41++ -3.34+ -0.39+++ -10.21+++ -8.42+++ -6.07+++ 
20 -0.74 0.18 3.40*** -4.59 -3.28++ -0.52+++ -10.37+++ -8.46+++ -6.39+++ 
25 -0.66 0.14 3.31*** -4.43+ -3.33++ -0.79+++ -10.08+++ -8.53+++ -6.93+++ 

A2: Euro, 2013-2015        
ℎ  DI10FD FXVIXC AVEL2 DI10FD FXVIXC AVEL2 DI10FD FXVIXC AVEL2 
1 6.05** 5.57** 5.31** 3.25+++ 2.37+++ 2.46+++ -0.97+++ -2.44+++ -1.80+++ 
2 2.94 4.36** 1.82 0.12+++ 1.52+++ -0.93+ -4.11+++ -2.73+++ -5.07+++ 
5 -0.47 2.02 0.94 -3.35 -1.11+ -1.75++ -7.66+++ -5.81+++ -5.79+++ 
10 1.50 4.59 -0.05 -1.25+++ 1.74+++ -2.69 -5.37+++ -2.55+++ -6.64+++ 
15 2.91* 5.21** -0.78 0.22+++ 2.49+++ -3.41 -3.80+++ -1.59+++ -7.34+++ 
20 4.10** 5.94** -0.94 1.46+++ 3.38*

+++ -3.47 -2.49+++ -0.46+++ -7.26+++ 
25 4.87*** 6.48*** -0.55 2.25**

+++ 3.99**
+++ -3.12 -1.68+++ 0.25+++ -6.97+++ 

B1: Canadian dollar, 2010-2012       
ℎ  CFL10 FXVIXC AVEL2 CFL10 FXVIXC AVEL2 CFL10 FXVIXC AVEL2 
1 14.48*** 11.18*** 11.98*** 7.40***

+++ 6.04**
+++ 5.28**

+++ -3.20+++ -1.66+++ -4.78+++ 
2 10.05*** 8.83*** 9.15*** 2.87+++ 3.47*

+++ 2.66+++ -7.91++ -4.57+++ -7.07+++ 
5 6.99*** 6.01** 4.36* -1.33+ -1.92+ -1.80+ -13.82 -13.81 -11.03 
10 5.30** 3.37* 5.45* -3.15 -3.99 -0.20+ -15.83 -15.04 -8.66+ 
15 3.44** 2.16 6.16* -4.95 -4.87 0.55++ -17.54 -15.42 -7.87++ 
20 2.28 1.88 6.06 -6.25 -4.43 0.42++ -19.05 -13.91 -8.04++ 
25 1.49 1.65 5.91 -6.97 -4.22 0.22++ -19.65 -13.03 -8.32+ 

B2: Canadian dollar, 2013-2015       

ℎ  CFL10 AVEC AVEL2 CFL10 AVEC AVEL2 CFL10 AVEC AVEL2 
1 3.48* 2.38 3.38* -2.27 -3.35 -2.38 -10.92 -11.95 -11.02 
2 2.82 3.67* 3.17 -2.84 -2.05 -2.52 -11.33 -10.63 -11.07 
5 2.48 3.47 3.63* -3.06 -2.26 -2.05+ -11.37 -10.85 -10.57 
10 2.13 2.38 2.76 -3.34 -3.25 -2.90 -11.55 -11.70 -11.39 
15 1.72 2.02 2.15 -3.65 -3.60 -3.49 -11.72 -12.04 -11.94 
20 1.90 2.20 2.25 -3.45 -3.41 -3.43 -11.49 -11.84 -11.96 
25 1.94 2.13 2.18 -3.37 -3.49 -3.49 -11.36 -11.93 -12.01 

Notes: Across all ℎ, the average random-walk rate of return to trading in euro options equals approximately 0 (𝑏 = 0), −5.45 
(𝑏 = 2), and −13.63 (𝑏 = 10) in 2010-2012, and 0 (𝑏 = 0), −5.42 (𝑏 = 2), and −13.54 (𝑏 = 10) in 2013-2015.  The average 
random-walk rate of return to trading in CAD options equals approximately 0 (𝑏 = 0), −5.41 (𝑏 = 2), and −13.53 (𝑏 = 10) in 
2010-2012, and 0 (𝑏 = 0), −5.43 (𝑏 = 2), and −13.57 (𝑏 = 10) in 2013-2015. 
In columns with 𝑏 = 0, superscripts indicate the significance level of one-tailed tests of whether 𝐻଴: 𝜇௥̅೓

೎ = 0 = 𝜇௥೓̅
ೝೢ (*** 1%, 

** 5%, * 10%).  In columns with 𝑏 = 2 and 𝑏 = 5, superscripts indicate the significance level of one-tailed tests of whether 
𝐻଴: 𝜇௥̅೓

೎ = 0 (*** 1%, ** 5%, * 10%), whereas subscripts indicate the significance level of one-tailed tests of whether 𝐻଴: 𝜇௥̅೓
೎ =

𝜇௥೓̅
ೝೢ (+++ 1%, ++ 5%, + 10%). 

2015, where returns to trading on AVEL2 forecasts disappear for rising ℎ but returns to trading on DI10FD 
and FXVIXC first fade and then rise again as ℎ increases.  For the Canadian dollar in 2010-2012, returns 
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are as large as 14.48 percent and, as with the euro, fade with longer forecast windows.  In 2013-2015, 
returns are much lower at roughly 3.5 percent for ℎ = 1 and diminishing slightly as ℎ rises—and not 
particularly significantly different from 0.   

With trading costs, these returns are necessarily lower.  As an indication of the effect of the 
trading cost on returns, consider the random walk strategy that picks a random portfolio to randomly buy 
or sell: the mean economic rate of return drops from 0 percent with no trading costs (𝑏 = 0) to −5.4 
percent with 𝑏 = 2 basis points and −13.5 percent with 𝑏 = 5 basis points.  Returns drop by different 
amounts for different forecasting models since each models selects different option contracts into their 
portfolio and the price of these contracts (and thus the monetary effect of these basis points) varies across 
contracts.  Thus, returns in the columns under the 𝑏 = 2 header are not necessarily 5.4 percent lower 
than under the 𝑏 = 0 header.  In 2010-2012, returns in both euro and Canadian dollar options are still 
statistically significantly positive for ℎ = 1 and possibly  ℎ = 2.  For euro options in 2013-2015, they 
remain positive also for ℎ = 25 and possibly ℎ = 20; for Canadian dollar options in 2013-2015, returns 
are no longer positive.  Even when negative, euro returns almost universally are significantly higher than 
those of the random walk strategy; for the Canadian dollar, this is true only in 2010-2012 for AVEL2 trades 
and for CFL10 and FXVIXC with ℎ ≤ 5.  The story for 𝑏 = 5 is virtually the same.13 

These results are generally in line with the evidence about the quality of forecasting gathered in 
Section 5.  Models outperform the random walk more often for ℎ = 1 and ℎ = 2.  For euro 2010-2012, 
FXVIXL1, FXVIXL2, AVEL1 and AVEL2 models all do well, and their returns are better also.  For euro 2013-
2015, the performance of DI10FD for long horizons is surprising: forecasts are worse than the random 
walk model and AVEL2, yet returns are substantially better.  With respect to the Canadian dollar in 2010-
2012, the trading results correspond with the forecasting results.  However, results for Canadian dollar 
options in 2013-2015 are the least expected: gains in forecasting performance do not turn into returns to 
trading, at least with the heuristic portfolio approach that derives option contract choice and buy/sell 
signals from the deviation between the forecasted and current implied volatility values. 

A final comment compares the different factor models.  CFL10 tends to perform worse than the 
AVE- and FXVIX-based models when ℎ rises and when transaction costs come into play.  One may 
speculate that the variability of factor loadings in the CFL10 approach impart unwanted variability to 
forecasts.  Aggregation weights in the cross-sectional average (AVE) or the market-wide volatility measure 
(FXVIX) are predetermined and do not vary with shocks in the IV data.  Among FXVIX- and AVE-based 
models, AVEL2 tends to perform better than the other models that are specified in level variables; AVEC 
might have an edge over FXVIXC.  Yet, Table 6 shows that FXVIX-based forecasts can sometimes be 
profitable as well. 

 

7. Concluding remarks 

This paper revisits the topic of forecasting the implied volatility surface of currency options with 
insights drawn from the spatial panel econometrics field.  The concept of strong cross-sectional 
dependence draws the attention to underlying factors and variables that produce high correlations among 
observations located in “space.”  In the context of option implied volatility, this space is the implied 
volatility surface, define by time to maturity and moneyness.  The familiar principal component analysis 

 
13 The rate of return declines virtually linearly with the rise in 𝑏.  This is true even though the rate of return is a 
nonlinear function of 𝑏, since 𝑏 is small. 
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in the currency IVS forecasting literature is thus reinterpreted as generating the common factors that 
create strong cross-sectional dependence and, additionally, creating filtered IV variables that deserve to 
be forecasted as well.  The unfiltered IVs thus consist of a mixture of time series processes, one defining 
the filter and another defining the filtered IVs.  Moreover, the filter does not operate uniformly on the 
entire implied volatility surface but rather affects the different parts differently, raising one corner more 
than another as the filter variable rises.  These effects are automatically built into the IVS forecasting 
process. 

Furthermore, principal component factors are not the only way to generate common factors.  The 
cross-sectional mean is another—and in this study proves to be a quite effective filter.  Yet another type 
of filter may be found in observable variables that may reflect business cycles, environmental shocks, and 
the like.  In this study, the FXVIX indicator that aggregates implied volatility across many currencies is a 
candidate and, similarly, proves to be quite effective.   

We examine this class of models from various angles and find their forecasting performance more 
satisfactory than the existing models can offer.  The random walk forecast can be beaten after all.  Yet, 
when we examine the potential to profit from trading the implied volatility forecasts, we find that returns 
are greater than a random walk strategy of currency option trading but are not large enough to offset 
transaction costs. 

In the light of the efficiency market hypothesis, it is not too surprising that trading implied 
volatility forecasts is profitable in the absence of transaction costs but is not profitable in the presence of 
transaction costs.  In fact, this should be expected.  There ought to be some useful information that can 
improve forecasts somewhat but not enough to cover the transaction cost of acting upon it. 
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Appendix 

 

A.1 Additional estimation results  

A.1.1  Euro 

Figure A.1: Percentage difference in RMSPE relative to random walk, 
by forecast horizon h, delta and maturity: Euro, 2010-2012 

 A: ARIMA model B: AVEL2 model 

 
Statistical significance in favor of the indicated model is coded by color and font thickness: 
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Table A.1: Aggregate out-of-sample R2 and MDM/MCW tests, and summary of separate MDM/MCW and 
sign tests: Euro 2013-2015 

Type of  
Model 

Forecast horizon Share preferreda Sign 
test ℎ = 1 ℎ = 2 ℎ = 5 ℎ = 10 ℎ = 15 ℎ = 20 ℎ = 25 Model R.Walk 

ARMA -0.014   -0.015   -0.049   -0.092   -0.135   -0.171   -0.224   1.71 n.a. 0.57 
ARIMA -0.003 * -0.006 * -0.003   0.002 * 0.006 ** 0.005 *** 0.006 *** 22.86 n.a. 5.71 

CFC3 -0.009   -0.021 + -0.017 ++ -0.018   -0.023   -0.039 +  -0.047 +  0.00 25.71 0.00 
CFC3D 0.018   0.008   -0.004   -0.005   -0.012   -0.026   -0.032   2.29 18.29 9.71 
CFL3 -0.156 +++ -0.054 +++ -0.013   0.005   0.011   0.007   0.009   16.00 41.71 20.00 
CFL10 0.007   0.009   0.008   0.012   0.014   0.009   0.011   22.29 20.57 22.29 
GG 0.022   0.027 ** 0.004   -0.005   -0.008   -0.023   -0.040   19.43 8.57 19.43 

DI5 0.002   -0.001   -0.004   -0.002   -0.010   -0.014   -0.023   0.00 0.00 0.57 
DI10 0.000   -0.002   -0.009   -0.003   -0.015   -0.017   -0.028   0.00 2.86 3.43 
DI5F 0.002   -0.019 +  -0.036 + -0.028 + -0.029   -0.030   -0.043 +  0.00 29.14 0.00 
DI10F 0.000   -0.019   -0.039 ++ -0.029 ++  -0.032   -0.037   -0.050 +  0.00 30.29 1.71 
DI1FD 0.015   0.004   -0.009   -0.017   -0.023   -0.037   -0.046 +  2.86 23.43 7.43 
DI5FD 0.027   -0.003   -0.025   -0.024   -0.027   -0.030   -0.041   2.86 28.00 8.00 
DI10FD 0.022   -0.003   -0.026   -0.018   -0.023   -0.029   -0.043 +  1.71 29.14 5.71 

AR2p5 0.005 ** 0.005 * -0.001   -0.009   -0.017   -0.027   -0.036   10.29 n.a. 1.71 
AR2p5D 0.027 *** 0.016 *** 0.002   -0.001   -0.012   -0.019   -0.029   16.57 n.a. 7.43 
SARpdP 0.007  0.008  0.001  -0.009  -0.018  -0.029  -0.038  13.71 n.a. 1.14 
SAR211 0.005  0.006  0.000  -0.008  -0.016  -0.026  -0.035  10.29 n.a. 1.71 
FXVIXC 0.016 *** 0.001 ** -0.006   -0.014   -0.022   -0.033   -0.042   12.57 n.a. 6.29 
AVEC 0.028 *** 0.015 *** -0.002   -0.003   -0.012   -0.019   -0.029   14.86 n.a. 9.71 
FXVIXL1 -0.046  -0.068  -0.069  -0.080  -0.053  -0.021  0.014  28.57 n.a. 7.43 
FXVIXL2 -0.042 * -0.037   -0.042   -0.033   -0.015 * 0.002 * 0.016 * 29.71 n.a. 4.57 
AVEL1 0.019  0.018  0.008  0.011  0.015  0.016  0.021  41.71 n.a. 16.00 
AVEL2 0.015  0.014  0.005  0.005  0.008  0.008  0.014  40.00 n.a. 17.71 

Notes: a Share of 175 forecasted series (25 option volatilities with 7 forecast horizons) for which the specified model (left column) 
or the random walk model (right column) is preferred in the MDM/MCW test at a 10% significance level.  “n.a.” indicates that the 
specified model nests the random walk model, in which case the notion that the random walk model is preferred is not applicable. 
Significance levels: one-sided tests in favor of indicated model: *** 1%, ** 5%, * 10%; one-sided tests in favor of random walk 
model: +++ 1%, ++ 5%, + 10%. 
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Figure A.2: Percentage difference in RMSPE relative to random walk, 
by forecast horizon h, delta and maturity: Euro, 2013-2015 

 A: ARIMA model B: AVEC model 

 
Statistical significance in favor of the indicated model is coded by color and font thickness: 
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Figure A.2: Continued 

 C: CFL10 model D: DI10FD model 

 
Statistical significance is coded by color and font thickness and italics: 
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Figure A.2: Continued 

 E: FXVIX1 model F: AVEL2 model 

 
Statistical significance in favor of the indicated model is coded by color and font thickness: 
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A.1.2  Canadian Dollar  

 

Table A.2: Aggregate out-of-sample R2 and MDM/MCW tests, and summary of separate MDM/MCW and 
sign tests: Canadian Dollar 2010-2012 

Type of  
Model 

Forecast horizon Share preferreda Sign 
test ℎ = 1 ℎ = 2 ℎ = 5 ℎ = 10 ℎ = 15 ℎ = 20 ℎ = 25 Model R.Walk 

ARMA -0.039   -0.081   -0.205   -0.340   -0.411   -0.450   -0.467   2.86 n.a. 0.00 
ARIMA -0.006   -0.010   -0.003   -0.004   -0.004   -0.005   -0.005   33.71 n.a. 22.86 

CFC3 0.004   0.002   0.017   0.024   0.027   0.031   0.036   6.86 0.00 69.14 
CFC3D 0.037   0.045 * 0.017   0.024   0.027   0.031   0.036   11.43 0.00 72.00 
CFL3 -0.341 +++ -0.159 +++ -0.063 +++ -0.034 ++ -0.024 ++ -0.017   -0.013   4.57 31.43 9.14 
CFL10 0.011   0.005   0.000   -0.008   -0.009   -0.008   -0.007   4.57 1.71 5.14 
GG 0.019   0.005   -0.001   -0.026   -0.045   -0.049   -0.052   8.57 8.57 35.43 

DI5 -0.016   -0.027   -0.027   -0.007   -0.001   0.009   0.022   1.14 2.29 57.71 
DI10 -0.010   -0.024   -0.037   -0.012   -0.004   0.007   0.021   1.71 0.57 49.14 
DI5F -0.010   -0.045   -0.020   0.011   0.009   0.017   0.030   1.14 4.00 53.71 
DI10F -0.005   -0.053 +  -0.023   0.004   0.004   0.016   0.031   1.14 6.29 48.00 
DI1FD 0.038   0.045 ** 0.017   0.024   0.027   0.031   0.036   10.86 0.00 72.00 
DI5FD 0.025   -0.006   -0.008   0.022   0.013   0.020   0.032   4.57 1.14 57.71 
DI10FD 0.022   -0.018   -0.007   0.016   0.009   0.020   0.033   4.57 2.29 57.71 

AR2p5 -0.006 * -0.004   0.011   0.015   0.014   0.023   0.029   17.14 n.a. 69.14 
AR2p5D 0.024 *** 0.033 *** 0.000   0.007   0.009   0.018   0.028   26.29 n.a. 70.29 
SARpdP -0.004  -0.006  0.013  0.016  0.016  0.023  0.027  17.71 n.a. 73.14 
SAR211 -0.005  -0.004  0.012  0.015  0.014  0.021  0.026  15.43 n.a. 68.57 
FXVIXC 0.058 *** 0.061 *** 0.025 ** 0.025   0.024   0.028   0.035   52.57 n.a. 68.57 
AVEC 0.034 *** 0.037 *** -0.004   0.005   0.008   0.017   0.027   30.29 n.a. 69.71 
FXVIXL1 0.019  0.035  0.023  0.033  0.046  0.071  0.095  60.57 n.a. 61.14 
FXVIXL2 -0.008 ** -0.028 * -0.037   -0.021   0.003   0.030   0.054   15.43 n.a. 5.71 
AVEL1 0.014  0.010  0.015  0.015  0.015  0.014  0.014  48.57 n.a. 31.43 
AVEL2 0.012  0.009  0.011  0.013  0.014  0.013  0.011  43.43 n.a. 27.43 

Notes: a Share of 175 forecasted series (25 option volatilities with 7 forecast horizons) for which the specified model (left column) 
or the random walk model (right column) is preferred in the MDM/MCW test at a 10% significance level.  “n.a.” indicates that the 
specified model nests the random walk model, in which case the notion that the random walk model is preferred is not applicable. 
Significance levels: one-sided tests in favor of indicated model: *** 1%, ** 5%, * 10%; one-sided tests in favor of random walk 
model: +++ 1%, ++ 5%, + 10%. 
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Figure A.3: Percentage difference in RMSPE relative to random walk, 
by forecast horizon h, delta and maturity: Canadian dollar, 2010-2012 

 A: ARIMA model B: AVEC model 

 

Statistical significance in favor of the indicated model is coded by color and font thickness: 
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Figure A.3: Continued 

 C: CFL10 model D: DI10FD model 

 
Statistical significance is coded by color and font thickness and italics: 
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Figure A.3: Continued 

 E: FXVIX1 model F: AVEL1 model 

 
Statistical significance in favor of the indicated model is coded by color and font thickness: 
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Table A.3: Aggregate out-of-sample R2 and MDM/MCW tests, and summary of separate MDM/MCW and 
sign tests: Canadian Dollar 2013-2015 

Type of  
Model 

Forecast horizon Share preferreda Sign 
test ℎ = 1 ℎ = 2 ℎ = 5 ℎ = 10 ℎ = 15 ℎ = 20 ℎ = 25 Model R.Walk 

ARMA 0.030 *** -0.025   -0.116   -0.248   -0.416   -0.540   -0.625   15.43 n.a. 2.29 
ARIMA 0.039 *** 0.007 *** -0.009   -0.009   -0.004   -0.003   -0.006   30.29 n.a. 11.43 

CFC3 0.094 *** 0.029 * -0.036 ++ -0.052 + -0.049   -0.055   -0.072   12.57 19.43 12.00 
CFC3D 0.159 *** 0.070 *** -0.046 +++ -0.067 ++ -0.061   -0.065   -0.089   19.43 22.86 17.71 
CFL3 -0.037   0.000   -0.027 ++ -0.023   -0.005   -0.004   -0.013   9.71 20.57 12.00 
CFL10 0.096 *** 0.047 *** -0.010   -0.014   0.002   0.001   -0.008   17.71 12.00 21.71 
GG 0.040   0.009   -0.037 ++ -0.057   -0.060   -0.076   -0.104   22.29 35.43 21.14 
DI5 0.068 ** 0.021   -0.011   -0.020   -0.030   -0.043   -0.061   7.43 5.14 3.43 
DI10 0.097 *** 0.053 ** -0.010   -0.020   -0.031   -0.047   -0.063   10.86 2.86 12.00 
DI5F 0.069 ** -0.027   -0.043   -0.029   -0.027   -0.052   -0.070   4.57 14.86 4.57 
DI10F 0.064 * -0.033   -0.054   -0.034   -0.030   -0.059   -0.073   2.86 16.00 5.14 
DI1FD 0.160 *** 0.072 *** -0.036 ++ -0.053 + -0.049   -0.055   -0.072   20.00 21.71 13.14 
DI5FD 0.153 *** 0.048   -0.023   -0.019   -0.016   -0.047   -0.070   12.00 1.71 12.57 
DI10FD 0.150 *** 0.054 * -0.014   -0.012   -0.015   -0.046   -0.069   10.86 1.71 12.57 

AR2p5 0.055 *** 0.006 ** -0.046   -0.065   -0.060   -0.064   -0.079   24.57 n.a. 9.71 
AR2p5D 0.150 *** 0.077 *** -0.023   -0.040   -0.042   -0.051   -0.070   27.43 n.a. 10.86 
SARpdP 0.051  0.002  -0.038  -0.055  -0.050  -0.056  -0.073  23.43 n.a. 5.14 
SAR211 0.058  0.008  -0.046  -0.064  -0.058  -0.063  -0.078  24.57 n.a. 9.14 
FXVIXC 0.129 *** 0.060 *** -0.025   -0.048   -0.047   -0.054   -0.073   22.86 n.a. 8.57 
AVEC 0.162 *** 0.082 *** -0.021   -0.037   -0.039   -0.049   -0.069   28.57 n.a. 12.00 
FXVIXL1 0.015  -0.021  -0.035  -0.090  -0.144  -0.148  -0.135  8.00 n.a. 1.14 
FXVIXL2 0.005 ** 0.006 ** -0.015   -0.048   -0.094   -0.099   -0.095   21.71 n.a. 6.86 
AVEL1 0.095  0.046  -0.010  -0.009  0.006  0.006  -0.001  34.29 n.a. 16.57 
AVEL2 0.089  0.037  -0.013  -0.013  0.001  0.003  -0.004  34.29 n.a. 12.57 

Notes: a Share of 175 forecasted series (25 option volatilities with 7 forecast horizons) for which the specified model (left column) 
or the random walk model (right column) is preferred in the MDM/MCW test at a 10% significance level.  “n.a.” indicates that the 
specified model nests the random walk model, in which case the notion that the random walk model is preferred is not applicable. 
Significance levels: one-sided tests in favor of indicated model: *** 1%, ** 5%, * 10%; one-sided tests in favor of random walk 
model: +++ 1%, ++ 5%, + 10%. 
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Figure A.4: Percentage difference in RMSPE relative to random walk, 
by forecast horizon h, delta and maturity: Canadian dollar, 2013-2015 

 A: ARIMA model B: AVEC model 

 

Statistical significance in favor of the indicated model is coded by color and font thickness: 
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Figure A.4: Continued 

 C: CFL10 model D: DI10FD model 

 
Statistical significance is coded by color and font thickness and italics: 
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Figure A.4: Continued 

 E: FXVIX1 model F: AVEL1 model 

 
Statistical significance in favor of the indicated model is coded by color and font thickness: 
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A.2 The fifth group of models: VAR 

This appendix briefly describes VAR models that could be used for forecasting option volatility.  In 
the literature, Guo et al (2018) list them among their model alternatives.  These models constitute the 
fifth group, in addition to the four groups described in Section 3.  As shown below, VAR models may be 
specified in levels and in first difference. 

V.1  VARC: multivariate VAR(1) in first difference 

 Δ𝑦௧ = 𝛼 + 𝐴Δ𝑦௧ିଵ + 𝜖௧ (A2.1) 

When forecasting, this model is rolled forward. 

V.2  VARL: multivariate VAR(1) in levels 

 𝑦௧ = 𝛼 + 𝐴𝑦௧ିଵ + 𝜖௧ (A2.2) 

When forecasting, this model is rolled forward. 

V.3  VAR*C: multivariate VAR(1*) in first difference 

This forecasting strategy consists of a collection of models, one for each forecasting window ℎ. 

 Δ௛𝑦௧ = 𝛼௛ + 𝐴௛Δ௛𝑦௧ି௛ + 𝜖௧௛ (A2.3) 

The forecasting equation follows immediately: 

Δ௛y෢
்ା௛ = 𝛼ො௛ + 𝐴መ௛Δ௛𝑦் 

and thus 

𝑦ො்ା௛ = 𝑦் + 𝐴መ௛Δ௛y෢
்ା௛ 

V.4  VAR*Cm: multivariate VAR(1*) on first-differenced options with the same maturity 

The VARC and VARL models are highly parameter-intensive, despite the fact that the contain only one lag: 
in equations (A2.1)-(A2.1), the matrix 𝐴 contains 25ଶ = 625 parameters.  The VAR*C and VAR*L models 
are even worse in this regard, as each forecast window ℎ requires an estimate of a different matrix 𝐴௛ 
with 625 parameters to forecast a 25 × 1 vector 𝑦்ା௛.  This may work in other environments, but the 
movements of the 25 options are highly correlated and therefore may generate high degrees of 
multicollinearity in the estimated equations, imprecisely estimated parameters, and noisy forecasts.  Guo 
et al (2018) propose to forecast with smaller VAR* models aimed at options with the same maturity.  Let 
𝑦௠௧ = ൫𝑦ଵ଴,௠௧ , 𝑦ଶହ,௠௧ , 𝑦ହ଴,௠௧, 𝑦଻ହ,௠௧ , 𝑦ଽ଴,௠௧൯ be the 5 × 1 vector that stacks such options for maturity 𝑚.  
The VAR*Cm model is a VAR(1*) model of Δ𝑦௠௧: 

 Δ௛𝑦௠௧ = 𝛼௠௛ + 𝐴௠௛Δ௛𝑦௠,௧ି௛ + 𝜖௠௧  (A2.4) 

This is a special case of the VAR*C model in equation (A2.3) with 𝐴௛ = 𝑑𝑖𝑎𝑔(𝐴௠௛), a block-diagonal 
matrix, where off-diagonal blocks are restricted to 0.  This reduces the number of parameters in 𝐴௛ from 
625 to 125. 

V.5  VAR*Cd: multivariate VAR(1*) on first-differenced options with the same delta 

An alternative to VAR*Cm is to focus on options with the same degree of moneyness.  Thus, let 𝑦ௗ௧ =

൫𝑦ௗ,ଵ,௧, 𝑦ௗ,ଶ,௧, 𝑦ௗ,ଷ,௧, 𝑦ௗ,଺,௧, 𝑦ௗ,ଵଶ,௧൯ stack such options. 

 Δ௛𝑦ௗ௧ = 𝛼ௗ௛ + 𝐴ௗ௛Δ௛𝑦ௗ,௧ି௛ + 𝜖ௗ௧௛ (A2.5) 
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If 𝑦ௗ௠௧ is stacked into 𝑦௧ with 𝑑 slow and 𝑚 fast, 𝐴௛ may once again be written as a block-diagonal matrix 
𝑑𝑖𝑎𝑔(𝐴ௗ௛).  Since 𝑦ௗ௠௧ is arguably related to both 𝑦ௗᇱ௠௧ for 𝑑 ≠ 𝑑′ and 𝑦ௗ௠ᇱ௧ for 𝑚 ≠ 𝑚′, it is an 
empirical question whether the restriction imposed by the VAR*Cm model yields better forecasts than 
VAR*Cd—and whether either one is better than VAR*C. 

V.6  VAR*L: multivariate VAR(1*) in levels 

 𝑦௧ = 𝛼௛ + 𝐴௛𝑦௧ି௛ + 𝜖௧௛ (A2.6) 

Once again, the forecasting equation follows immediately: 

yො்ା௛ = 𝛼ො௛ + 𝐴መ௛𝑦் 

V.7  VAR*Lm: multivariate VAR(1*) on options (in levels) with the same maturity 

 𝑦௠௧ = 𝛼௠௛ + 𝐴௠௛𝑦௠,௧ି௛ + 𝜖௠௧௛ (A2.7) 

V.8  VAR*Ld: multivariate VAR(1*) on options (in levels) with the same delta 

 𝑦ௗ௧ = 𝛼ௗ௛ + 𝐴ௗ௛𝑦ௗ,௧ି௛ + 𝜖ௗ௧௛ (A2.8) 

Table A.4 reports the aggregate tests of these VAR models for Euro implied volatility for both 
2010-2012 and 2013-2015.  The VARC model provides a case study of anomalies in these tests: 𝑅ைௌ

ଶ  is 
negative in all cases, indicating that VARC forecast errors are generally larger than random walk forecast 
errors.  Yet the MCW test overwhelmingly rejects the hypothesis that the random walk and VARC models 
are equivalent, in favor of the alternative hypothesis that the VARC at the true parameters is a better 
forecasting model.  This is because the VARC model is very parameter-intensive and thus contains 
numerous imprecisely estimated parameters that adversely affect the small-sample quality of the 
forecasts.  In other words, in very large samples, VAR1C should outperform the random walk, but at least 
in the present case the small sample performance is weak.  The same comment applies to the VARL model, 
which generally performs worse yet than VARC.  The VAR*C and VAR*L models are yet more parameter-
intensive and perform yet worse, judged by the 𝑅ைௌ

ଶ .  The restrictions imposed by the VAR*Cm and 
VAR*Cd models are somewhat useful—it appears to be better to group the option volatility time series 
by delta than by maturity—but these models may outperform the random walk model only at the one- or 
two-day forecast horizon.  Similarly, the 𝑅ைௌ

ଶ  values of VAR*Lm and VAR*Ld model is better than VARL but 
still negative at all forecast horizons in 2010-2012. 

 

Table A.4: Euro implied volatility forecasts with VAR models 

Type of  
Model 

Forecast horizon Share preferreda Sign 
test ℎ = 1 ℎ = 2 ℎ = 5 ℎ = 10 ℎ = 15 ℎ = 20 ℎ = 25 Model R.Walk 

A: Euro, 2010-2012            
VARC -0.108 *** -0.058 *** -0.016 *** -0.023 *** -0.024 *** -0.030 *** -0.035 *** 100.00 n.a. 17.14 
VAR*C -0.109   -0.119 ** -0.412   -0.266   -0.334   -0.687   -1.092   19.43 n.a. 0.00 
VAR*Cm -0.012 ** -0.036   -0.076   -0.093   -0.002   -0.128   -0.146   16.00 n.a. 8.57 
VAR*Cd 0.005 ** 0.000 ** -0.106   -0.089   -0.115   -0.229   -0.357   17.71 n.a. 1.71 
VARL -0.099 *** -0.077 *** -0.090 *** -0.040 *** -0.056 *** -0.170 *** -0.252 *** 100.00 n.a. 0.57 
VAR*L -0.109   -0.119 ** -0.412   -0.266   -0.334   -0.687   -1.092   19.43 n.a. 0.00 
VAR*Lm -0.019 * -0.022 ** -0.096   -0.133   -0.231   -0.389   -0.428   14.29 n.a. 0.00 
VAR*Ld -0.017 ** -0.032   -0.087   -0.182   -0.398   -0.531   -0.723   6.29 n.a. 0.00 
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B: Euro, 2013-2015            

VARC -0.067 *** -0.021 *** -0.028 *** -0.031 *** -0.035 *** -0.044 *** -0.054 *** 100.00 n.a. 0.00 
VAR*C -0.069   -0.058 * -0.186   -0.196   -0.086 ** -0.171 * -0.124 ** 28.57 n.a. 8.57 
VAR*Cm -0.011   -0.010   -0.046   -0.053   -0.093   -0.061 *** -0.051 ** 20.57 n.a. 4.57 
VAR*Cd 0.001 ** 0.020 *** -0.027   -0.018   -0.042   -0.010   -0.002   21.71 n.a. 9.14 
VARL -0.098 *** -0.105 *** -0.165 *** -0.142 *** -0.143 *** -0.214 *** -0.346 *** 100.00 n.a. 0.00 
VAR*L -0.097   -0.118 * -0.210 * -0.349 * -0.409 ** -0.694 ** -0.701 * 34.29 n.a. 0.00 
VAR*Lm -0.027   -0.045   -0.110   -0.220   -0.288   -0.379   -0.464   0.00 n.a. 0.00 
VAR*Ld 0.006 *** 0.026 *** 0.004 * 0.016 * 0.006   0.024 * -0.021   25.71 n.a. 12.57 

Notes: a Share of 175 forecasted series (25 option volatilities with 7 forecast horizons) for which the specified model (left column) 
or the random walk model (right column) is preferred in the MDM/MCW test at a 10% significance level.  “n.a.” indicates that the 
specified model nests the random walk model, in which case the notion that the random walk model is preferred is not applicable. 
Significance levels: *** 1%, ** 5%, * 10% (one-sided tests) 

 

Table A.5: Canadian Dollar implied volatility forecasts with VAR models 

Type of  
Model 

Forecast horizon Share preferreda Sign 
test ℎ = 1 ℎ = 2 ℎ = 5 ℎ = 10 ℎ = 15 ℎ = 20 ℎ = 25 Model R.Walk 

A: Canadian Dollar, 2010-2012            

VARC -0.179 *** -0.036 *** -0.028 *** 0.002 *** 0.012 *** 0.021 *** 0.026 *** 100.00 n.a. 52.57 
VAR*C -0.182   -0.187   -0.529   -0.403   -0.640   -0.839   -0.443   3.43 n.a. 0.00 
VAR*Cm -0.008 ** -0.029   -0.140   -0.166   -0.232   -0.274   -0.105   12.57 n.a. 1.71 
VAR*Cd -0.008 ** 0.006 ** -0.082   -0.057   -0.130   -0.145   -0.069   19.43 n.a. 14.29 
VARL -0.133 *** -0.155 *** -0.286 *** -0.337 *** -0.331 *** -0.312 *** -0.305 *** 100.00 n.a. 0.00 
VAR*L -0.132   -0.307   -0.743   -1.032   -1.539   -1.542   -1.340   2.29 n.a. 0.00 
VAR*Lm -0.016   -0.055   -0.133   -0.223   -0.307   -0.388   -0.460   2.29 n.a. 1.14 
VAR*Ld -0.013   -0.042   -0.134   -0.254   -0.440   -0.599   -0.684   2.86 n.a. 0.57 
B: Canadian Dollar, 2013-2015            

VARC 0.054 *** 0.016 *** -0.038 *** -0.051 *** -0.054 *** -0.055 *** -0.067 ** 100.00 n.a. 7.43 
VAR*C 0.057 *** -0.020 *** -0.025 * -0.287   -0.573   -0.792   -0.702   24.00 n.a. 4.57 
VAR*Cm 0.029 *** -0.017   -0.012   -0.051   -0.068   0.011   -0.068   16.00 n.a. 1.14 
VAR*Cd 0.088 *** -0.003 *** 0.030 ** -0.049   -0.161   -0.126   -0.050   31.43 n.a. 10.29 
VARL -0.020 *** -0.026 *** -0.124 *** -0.243 *** -0.355 *** -0.442 ** -0.513 ** 100.00 n.a. 0.00 
VAR*L -0.018 *** -0.044 ** -0.225   -0.570   -0.747   -1.030   -1.093   9.71 n.a. 0.00 
VAR*Lm -0.024   -0.033   -0.132   -0.270   -0.463   -0.594   -0.680   0.00 n.a. 0.00 
VAR*Ld 0.019 *** 0.002 *** -0.102   -0.247   -0.365   -0.418   -0.434   10.86 n.a. 1.14 

Notes: a Share of 175 forecasted series (25 option volatilities with 7 forecast horizons) for which the specified model (left column) 
or the random walk model (right column) is preferred in the MDM/MCW test at a 10% significance level.  “n.a.” indicates that the 
specified model nests the random walk model, in which case the notion that the random walk model is preferred is not applicable. 
Significance levels: *** 1%, ** 5%, * 10% (one-sided tests)  



45 
 

A.3 Detailed results on the rate of return to trading implied volatility 

 

Table A.6: Rate of return to trading implied volatility: Euro, 2010-2012 

A: No Transaction Cost 

h \Model RW CFL10 DI10FD FXVIXC AVEC FXVIXL1 FXVIXL2 AVEL1 AVEL2 
1 0.000 5.48*** 4.43*** 4.31*** 6.07*** 3.23** 5.21*** 4.21*** 5.21*** 
2 0.000 5.17*** 3.59*** 4.75*** 4.64*** 3.00*** 3.46*** 3.09*** 4.82*** 
5 0.000 0.94 0.50 0.11 1.46* 3.01*** 1.63* 3.42*** 3.26*** 

10 0.000 -0.18 0.28 0.03 0.09 2.94*** 1.95** 3.92*** 3.19*** 
15 0.000 -0.54 0.61 -0.14 0.05 2.27** 1.85* 3.71*** 3.39*** 
20 0.000 -0.74 0.52 -0.02 0.18 1.89 1.93* 3.49*** 3.40*** 
25 0.000 -0.66 0.60 0.65 0.14 1.69 1.84* 3.22** 3.31*** 

 
B: 2 Basis Points 

h \Model RW CFL10 DI10FD FXVIXC AVEC FXVIXL1 FXVIXL2 AVEL1 AVEL2 
1 -5.45 1.96*

+++ 1.73+++ 1.60+++ 3.64**
+++ 0.24+++ 1.77+++ 1.31+++ 2.29*

+++ 

2 -5.45 1.52+++ 0.92+++ 2.09*
+++ 1.95*

+++ 0.01+++ 0.55+++ 0.18+++ 1.58+++ 
5 -5.45 -2.77+++ -2.11+++ -3.24+++ -1.33+++ 0.48+++ -1.21+++ -0.02+++ -0.24+++ 

10 -5.45 -3.99+++ -2.56+++ -3.40+++ -3.14++ 0.40+++ -0.78+++ 0.30+++ -0.52+++ 
15 -5.45 -4.41++ -2.63+++ -3.62++ -3.34+ -0.28+++ -0.94+++ -0.04+++ -0.39+++ 
20 -5.45 -4.59 -2.94+++ -3.58++ -3.28++ -0.59+++ -0.78+++ -0.29+++ -0.52+++ 
25 -5.45 -4.43+ -2.87+++ -3.16+++

 -3.33++ -0.79+++ -0.83+++ -0.60+++ -0.79+++ 
 

C: 5 Basis Points 

h \Model RW CFL10 DI10FD FXVIXC AVEC FXVIXL1 FXVIXL2 AVEL1 AVEL2 
1 -13.63 -3.30+++ -2.31+++ -2.47+++ 0.00+++ -4.24+++ -3.38+++ -3.04+++ -2.10+++ 

2 -13.63 -3.94+++ -3.08+++ -1.89+++ -2.09+++ -4.49+++ -3.81+++ -4.18+++ -3.28+++ 
5 -13.63 -8.34+++ -6.02+++ -8.25+++ -5.51+++ -3.33+++ -5.47+++ -5.19+++ -5.49+++ 

10 -13.63 -9.71+++ -6.82+++ -8.55+++ -7.98+++ -3.41+++ -4.88+++ -5.13+++ -6.10+++ 
15 -13.63 -10.21+++ -7.48+++ -8.85+++ -8.42+++ -4.10+++ -5.13+++ -5.65+++ -6.07+++ 
20 -13.63 -10.37+++ -8.13+++ -8.90+++ -8.46+++ -4.30+++ -4.84+++ -5.96+++ -6.39+++ 
25 -13.62 -10.08+++ -8.09+++ -8.87+++

 -8.53+++ -4.53+++ -4.84+++ -6.32+++ -6.93+++ 
Notes: In Panel A, superscripts indicate the significance level of one-tailed tests of whether 𝐻଴: 𝜇௥̅೓

೎ = 0 = 𝜇௥೓̅
ೝೢ (*** 1%, ** 5%, 

* 10%).  In Panels B and C, superscripts indicate the significance level of one-tailed tests of whether 𝐻଴: 𝜇௥̅೓
೎ = 0 (*** 1%, ** 5%, 

* 10%), whereas subscripts indicate the significance level of one-tailed tests of whether 𝐻଴: 𝜇௥̅೓
೎ = 𝜇௥೓̅

ೝೢ (+++ 1%, ++ 5%, + 10%). 
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Table A.7: Rate of return to trading implied volatility: Euro, 2013-2015 

A: No Transaction Cost 

h \Model RW CFL10 DI10FD FXVIXC AVEC FXVIXL1 FXVIXL2 AVEL1 AVEL2 
1 0.000 2.83 6.05** 5.57** 5.88** 0.94 0.55 2.14 5.31** 
2 0.000 -0.39 2.94 4.36** 5.16** -1.72 1.54 0.86 1.82 
5 0.000 -0.05 -0.47 2.02 3.10* -2.44 -1.54 0.74 0.94 

10 0.000 1.58 1.50 4.59 3.73 -3.22 -1.87 0.80 -0.05 
15 0.000 1.39 2.91* 5.21** 4.03 -3.46 -2.53 0.39 -0.78 
20 0.000 1.71 4.10** 5.94** 5.28** -3.81 -2.82 0.46 -0.94 
25 0.000 1.98* 4.87*** 6.48*** 5.60** -3.76 -3.00 1.01 -0.55 

 
B: 2 Basis Points 

h \Model RW CFL10 DI10FD FXVIXC AVEC FXVIXL1 FXVIXL2 AVEL1 AVEL2 
1 -5.42 -0.36++ 3.25+++ 2.37+++ 3.11+++ -1.99 -2.29 -0.72+ 2.46+++ 

2 -5.41 -3.62 0.12+++ 1.52+++ 2.35+++ -4.58 -1.28+ -1.97+ -0.93+ 
5 -5.41 -3.24 -3.35 -1.11+ 0.61+++ -5.28 -4.79 -2.20++ -1.75++ 

10 -5.41 -1.48+++ -1.25+++ 1.74+++ 1.07+++ -6.13 -5.14 -2.19++ -2.69 
15 -5.42 -1.64++ 0.22+++ 2.49+++ 1.31+++ -6.42 -5.79 -2.68 -3.41 
20 -5.42 -1.36+++ 1.46+++ 3.38*

+++ 2.62+++ -6.80 -6.05 -2.63 -3.47 
25 -5.42 -1.10+++ 2.25**

+++ 3.99**
+++

 2.94*
+++ -6.81 -6.19 -2.09++ -3.12 

 
C: 5 Basis Points 

h \Model RW CFL10 DI10FD FXVIXC AVEC FXVIXL1 FXVIXL2 AVEL1 AVEL2 
1 -13.54 -5.15+++ -0.97+++ -2.44+++ -1.06+++ -6.39+++ -6.56+++ -5.01+++ -1.80+++ 

2 -13.54 -8.46++ -4.11+++ -2.73+++ -1.86+++ -8.87+ -5.50+++ -6.21+++ -5.07+++ 
5 -13.54 -8.03+++ -7.66+++ -5.81+++ -3.12+++ -9.55+ -9.67++ -6.59+++ -5.79+++ 

10 -13.54 -6.07+++ -5.37+++ -2.55+++ -2.92+++ -10.50 -10.04+ -6.66+++ -6.64+++ 
15 -13.54 -6.20+++ -3.80+++ -1.59+++ -2.78+++ -10.87 -10.68 -7.30+++ -7.34+++ 
20 -13.54 -5.98+++ -2.49+++ -0.46+++ -1.36+++ -11.30 -10.89 -7.25+++ -7.26+++ 
25 -13.55 -5.72+++ -1.68+++ 0.25+++

 -1.05+++ -11.38 -10.99 -6.74+++ -6.97+++ 
Notes: In Panel A, superscripts indicate the significance level of one-tailed tests of whether 𝐻଴: 𝜇௥̅೓

೎ = 0 = 𝜇௥೓̅
ೝೢ (*** 1%, ** 5%, 

* 10%).  In Panels B and C, superscripts indicate the significance level of one-tailed tests of whether 𝐻଴: 𝜇௥̅೓
೎ = 0 (*** 1%, ** 5%, 

* 10%), whereas subscripts indicate the significance level of one-tailed tests of whether 𝐻଴: 𝜇௥̅೓
೎ = 𝜇௥೓̅

ೝೢ (+++ 1%, ++ 5%, + 10%). 
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Table A.8: Rate of return to trading implied volatility: Canadian Dollar, 2010-2012 

A: No Transaction Cost 

h \Model RW CFL10 DI10FD FXVIXC AVEC FXVIXL1 FXVIXL2 AVEL1 AVEL2 
1 0.00 14.48*** 7.71*** 11.18*** 7.82*** 8.92*** 7.17*** 9.83*** 11.98*** 
2 0.00 10.05*** 5.93*** 8.83*** 7.02*** 5.15** 2.35 8.04*** 9.15*** 
5 0.00 6.99*** 2.05 6.01** 3.12** 2.89* -0.60 6.17** 4.36* 

10 0.00 5.30** 1.00 3.37* -0.51 1.13 -1.35 6.39* 5.45* 
15 0.00 3.44** 0.60 2.16 -1.02 0.91 -0.94 6.49* 6.16* 
20 0.00 2.28 0.03 1.88 -0.93 0.32 -0.37 6.32 6.06 
25 0.00 1.49 0.36 1.65 -0.54 0.47 -0.16 5.93 5.91 

 
B: 2 Basis Points 

h \Model RW CFL10 DI10FD FXVIXC AVEC FXVIXL1 FXVIXL2 AVEL1 AVEL2 
1 -5.41 7.40***

+++ 2.62+++ 6.04**
+++ 2.62+++ 2.53+++ 1.69+++ 3.65*

+++ 5.28**
+++ 

2 -5.41 2.87+++ 1.18+++ 3.47*
+++ 1.58+++ -0.72++ -2.91 2.16+++ 2.66+++ 

5 -5.41 -1.33+ -4.10 -1.92+ -4.47 -2.93 -5.56 -0.60++ -1.80+ 
10 -5.41 -3.15 -4.92 -3.99 -7.10 -4.49 -6.21 0.11++ -0.20+ 
15 -5.41 -4.95 -5.19 -4.87 -6.89 -4.33 -5.72 0.31+ 0.55++ 
20 -5.41 -6.25 -5.55 -4.43 -6.33 -4.75 -5.17 0.23+ 0.42++ 
25 -5.40 -6.97 -5.05 -4.22 -5.56 -4.46 -4.97 0.05+ 0.22++ 

 
C: 5 Basis Points 

h \Model RW CFL10 DI10FD FXVIXC AVEC FXVIXL1 FXVIXL2 AVEL1 AVEL2 
1 -13.53 -3.20+++ -5.01+++ -1.66+++ -5.19+++ -7.04+++ -6.54+++ -5.63+++ -4.78+++ 

2 -13.53 -7.91++ -5.96+++ -4.57+++ -6.58+++ -9.52+ -10.79 -6.66+++ -7.07+++ 
5 -13.53 -13.82 -13.34 -13.81 -15.85 -11.65 -13.00 -10.76 -11.03 

10 -13.52 -15.83 -13.82 -15.04 -16.99 -12.92 -13.49 -9.30+ -8.66+ 
15 -13.52 -17.54 -13.86 -15.42 -15.70 -12.19 -12.89 -8.96+ -7.87++ 
20 -13.51 -19.05 -13.91 -13.91 -14.42 -12.37 -12.36 -8.90+ -8.04++ 
25 -13.51 -19.65 -13.17 -13.03 -13.10 -11.85 -12.19 -8.76+ -8.32+ 

Notes: In Panel A, superscripts indicate the significance level of one-tailed tests of whether 𝐻଴: 𝜇௥̅೓
೎ = 0 = 𝜇௥೓̅

ೝೢ (*** 1%, ** 5%, 
* 10%).  In Panels B and C, superscripts indicate the significance level of one-tailed tests of whether 𝐻଴: 𝜇௥̅೓

೎ = 0 (*** 1%, ** 5%, 
* 10%), whereas subscripts indicate the significance level of one-tailed tests of whether 𝐻଴: 𝜇௥̅೓

೎ = 𝜇௥೓̅
ೝೢ (+++ 1%, ++ 5%, + 10%). 
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Table A.9: Rate of return to trading implied volatility: Canadian Dollar, 2013-2015 

A: No Transaction Cost 

h \Model RW CFL10 DI10FD FXVIXC AVEC FXVIXL1 FXVIXL2 AVEL1 AVEL2 
1 0.00 3.48* 2.55 2.38 2.38 2.29 3.42* 2.78 3.38* 
2 0.00 2.82 4.22* 2.60 3.67* 2.23 4.30* 3.09 3.17 
5 0.00 2.48 3.69 3.60 3.47 3.38 3.60 3.58 3.63* 

10 0.00 2.13 2.90 2.58 2.38 2.23 2.81 2.60 2.76 
15 0.00 1.72 2.38 2.11 2.02 1.83 2.35 1.89 2.15 
20 0.00 1.90 2.21 1.94 2.20 1.89 2.40 1.87 2.25 
25 0.00 1.94 2.11 1.87 2.13 1.93 2.31 1.81 2.18 

 
B: 2 Basis Points 

h \Model RW CFL10 DI10FD FXVIXC AVEC FXVIXL1 FXVIXL2 AVEL1 AVEL2 
1 -5.43 -2.27 -3.15 -3.35 -3.35 -3.40 -2.35 -2.91 -2.38 

2 -5.43 -2.84 -1.58+ -3.09 -2.05 -3.41 -1.46+ -2.61 -2.52 
5 -5.43 -3.06 -2.04 -2.15 -2.26 -2.30 -2.12 -2.11 -2.05+ 

10 -5.43 -3.34 -2.78 -3.12 -3.25 -3.41 -2.93 -3.04 -2.90 
15 -5.43 -3.65 -3.25 -3.58 -3.60 -3.81 -3.38 -3.73 -3.49 
20 -5.43 -3.45 -3.38 -3.71 -3.41 -3.72 -3.35 -3.67 -3.43 
25 -5.43 -3.37 -3.48 -3.73 -3.49 -3.69 -3.45 -3.66 -3.49 

 
C: 5 Basis Points 

h \Model RW CFL10 DI10FD FXVIXC AVEC FXVIXL1 FXVIXL2 AVEL1 AVEL2 
1 -13.57 -10.92 -11.70 -11.97 -11.95 -11.94 -11.01 -11.46 -11.02 

2 -13.57 -11.33 -10.28 -11.63 -10.63 -11.86 -10.10 -11.16 -11.07 
5 -13.57 -11.37 -10.64 -10.80 -10.85 -10.83 -10.71 -10.65 -10.57 

10 -13.57 -11.55 -11.30 -11.68 -11.70 -11.88 -11.53 -11.52 -11.39 
15 -13.57 -11.72 -11.71 -12.12 -12.04 -12.29 -11.99 -12.15 -11.94 
20 -13.57 -11.49 -11.76 -12.19 -11.84 -12.13 -11.98 -11.99 -11.96 
25 -13.57 -11.36 -11.88 -12.14 -11.93 -12.13 -12.08 -11.88 -12.01 

Notes: In Panel A, superscripts indicate the significance level of one-tailed tests of whether 𝐻଴: 𝜇௥̅೓
೎ = 0 = 𝜇௥೓̅

ೝೢ (*** 1%, ** 5%, 
* 10%).  In Panels B and C, superscripts indicate the significance level of one-tailed tests of whether 𝐻଴: 𝜇௥̅೓

೎ = 0 (*** 1%, ** 5%, 
* 10%), whereas subscripts indicate the significance level of one-tailed tests of whether 𝐻଴: 𝜇௥̅೓

೎ = 𝜇௥೓̅
ೝೢ (+++ 1%, ++ 5%, + 10%). 

 


