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1. Introduction

Information asymmetry is a fundamental concept in economics, but its estimation is chal-

lenging because private information is generally unobservable. Many proxies for information

asymmetry exist including bid/ask spreads, price impacts, and estimates from structural

models. In this paper, we study the identification of information asymmetry parameters

in structural models. Structural modeling allows the econometrician to capture parameters

related to the underlying economic mechanisms such as the probability and magnitude of pri-

vate information events or the intensity of liquidity trading. Demand for plausible measures

of information asymmetry is high because private information plays a key role in so many

economic settings. Evidence of this demand is the large literature in finance and accounting

that utilizes the probability of informed trade (PIN) measure of Easley, Kiefer, O’Hara and

Paperman (1996) to proxy for information asymmetry.1

Our first contribution is to propose and solve a model of informed trading in securities

markets that shares many features of the PIN model of Easley et al. (1996) but in which

informed trading is endogenous as in Kyle (1985). We call this a hybrid PIN-Kyle model.

In the paper, we study a binary signal following Easley et al. (1996), but the model can

accommodate more general signal distributions.

An important implication of the model is that order flows alone cannot identify informa-

tion asymmetry. The intuition is quite simple. Consider, for example, a stock for which there

is a large amount of private information and another for which there is only a small amount

of private information. If it is anticipated that private information is more of a concern for

the first stock than for the second, then the first stock will be less liquid, other things being

equal. The lower liquidity will reduce the amount of informed trading, possibly offsetting the

1Some of those papers assesses whether information risk is priced. See, for example, Easley and O’Hara
(2004), Duarte and Young (2009), Mohanram and Rajgopal (2009), Easley, Hvidkjaer and O’Hara (2002),
Easley, Hvidkjaer and O’Hara (2010), Akins, Ng and Verdi (2012), Li, Wang, Wu and He (2009), and Hwang,
Lee, Lim and Park (2013). Many other papers use PIN (and other measures) to capture a firm’s information
environment in a variety of applications ranging from corporate finance (e.g., Chen, Goldstein and Jiang,
2007; Ferreira and Laux, 2007) to accounting (e.g., Frankel and Li, 2004; Jayaraman, 2008).
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increase in informed trading due to greater private information. In equilibrium, the amount

of informed trading may be the same in both stocks, despite the difference in information

asymmetry. In general, the distribution of order flows need not reflect the degree of infor-

mation asymmetry when liquidity providers react to information asymmetry and informed

traders react to liquidity. Thus, we provide the first theoretical explanation of why method-

ologies that use order flows alone to estimate information asymmetry parameters, like PIN

and Adjusted PIN (Duarte and Young, 2009), may not identify private information.2

Our second contribution is to develop novel estimates characterizing the information

environment in financial markets. We structurally estimate our theoretical model for a

panel of stocks and provide several validation checks that the estimated parameters are

plausibly related to information asymmetry. First, reduced-form estimates of price impact

are increasing in our structural estimates of the probability and magnitude of information

events, as implied by theory. Second, the model implies that the magnitude of price changes

is proportional to Kyle’s lambda, which depends on order flows and parameters of the model.

Empirically, volatility over the latter part of a trading day is increasing in the conditional

model-implied lambda, where the conditioning is based on cumulative order flows over the

first part of the day and our estimated parameters. This phenomenon of stochastic volatility

occurs in both the model and the data.3

2Several papers argue that PIN does not identify private information. Aktas et al. (2007) examine
trading around merger announcements. They show that PIN decreases prior to announcements. In contrast,
percentage spreads and the permanent price impact of trades, measured as in Hasbrouck (1991), rise before
announcements, indicating the presence of information asymmetry. They describe the decline in PIN prior
to announcements as a PIN anomaly. Akay et al. (2012) show that PIN is higher in the Treasury bill market
than it is in markets for individual stocks. Given that it is very doubtful that informed trading in T-bills is
a frequent occurrence, this is additional evidence that PIN is not measuring information asymmetry. Benos
and Jochec (2007) find that PIN is higher following earnings announcements, contrary to their assumption
that information asymmetry should be higher before announcements. Duarte, Hu and Young (2016) also
examine earnings announcements. They estimate the parameters of the PIN model and then compute the
conditional probability of an information event each day. They show that the conditional probability rises
prior to announcements but stays elevated for a number of days following announcements. They show that
the high post-announcement conditional probabilities are due to high turnover and argue that high turnover
is misidentified as private information by the PIN model.

3Banerjee and Green (2015) solve a rational expectations model with myopic mean-variance investors
in which investors learn whether other investors are informed. They show that variation over time in the
perceived likelihood of informed trading induces volatility clustering. While their model is quite different
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To demonstrate potential applications of the estimates, we revisit two settings in which

PIN estimates have been employed. One application of PIN has been to attempt to capture

time-series variation in information asymmetry.4 We show that conditional probabilities of

information events calculated using order flows and our parameter estimates rise on average

around earnings announcements and are higher both pre- and post-announcement for an-

nouncements with larger absolute earnings surprises. Private information is more likely to

be present around such announcements. Conditional probabilities are also elevated during

block accumulations by Schedule 13D filers, which existing information asymmetry measures

fail to detect (Collin-Dufresne and Fos, 2015). These results indicate that the model does

capture time-series variation in information asymmetry.

The second application illustrates how estimates of the information asymmetry parame-

ters from our model can be used to augment studies concerned with cross-sectional differences

in the information content of prices. To do so, we consider the hypothesis of Chen, Goldstein

and Jiang (2007) that corporate investment is more sensitive to market prices when there is

more private information in prices. Our model allows us to measure the amount of private

information alternatively by the frequency of private information events, by the magnitude

of private information, and by the fraction of total price movement that is due to private

information. We show that corporate investment is more sensitive to prices when any of

these measures is higher. These measures of private information should prove useful in other

settings in which researchers are interested in capturing distinct facets of the information

environment (e.g., the amount of liquidity trading or the magnitude of private information).

Related structural models of informed trading include the Adjusted PIN (APIN) model of

Duarte and Young (2009), the Volume-Synchronized PIN (VPIN) model of Easley, López de

Prado and O’Hara (2012), and the modified Kyle model of Odders-White and Ready (2008).

from ours, our model also exhibits volatility clustering. Volatility follows the same pattern as Kyle’s lambda,
which varies over time due to variation in the market’s estimate of whether an information event occurred.

4For example, Brown, Hillegeist and Lo (2004, 2009) examine changes in information asymmetry following
voluntary conference calls and earnings surprises, respectively, while Duarte, Han, Harford and Young (2008)
study the effect of Regulation FD on PIN and the cost of capital.
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The APIN model allows for time variation in liquidity trading (with positively correlated

buy and sell intensities), which provides a better fit to the empirical distribution of buys and

sells. The VPIN model estimates buys and sells within a given time interval by assigning a

fraction of total volume to buys and the remaining fraction to sells based on standardized

price changes during the time interval.5 Odders-White and Ready (OWR) analyze a Kyle

model in which the probability of an information event is less than 1, as it is in our model.

However, they analyze a single-period model, whereas we study a dynamic model. Unlike

our dynamic model in which prices equal conditional expectations, market makers in their

model only match unconditional means of prices to unconditional means of asset values.6

Our estimate of the probability of an information event is not positively correlated in the

cross section with estimates from the other models. The divergence between the estimates is

not surprising, because the models have different assumptions/implications regarding what

data is required to identify the probability of an information event.7 We also calculate a

composite measure of information asymmetry in our model: the expected average lambda.

This measure incorporates both the probability and magnitude of information events as

well as the amount of liquidity trading. Unlike the probability of an information event, the

expected average lambda from our model is positively correlated with similar measures from

other models (PIN, APIN, VPIN, and the OWR lambda). Each of these measures should

be increasing in the probability of an information event, so it is surprising that they are all

positively correlated, given the lack of correlation of the ‘probability of an information event’

5Easley et al. (2011) claim that VPIN predicted the “flash crash” of May 6, 2010. This claim and some
other claims regarding VPIN are challenged by Andersen and Bondarenko (2014b). See also Easley et al.
(2014) and Andersen and Bondarenko (2014a).

6In a single-period model, because of the net order having a mixture distribution, the conditional expec-
tation of the asset value given the net order is not a linear function of the net order. We solve our model by
exploiting the local linearity of continuous time. Odders-White and Ready instead deviate from the usual
Kyle model hypothesis that prices equal conditional expected values and instead find a linear pricing rule for
which unconditional expected market maker profits are zero. Such a pricing rule would require commitment
by market makers, because it is not consistent with ex-post optimization by market makers.

7While the OWR model uses both prices and order flows for estimation, their model shares the feature
of the PIN model that the unconditional order flow distribution depends on the information asymmetry
parameters and hence could be used to identify information asymmetry.
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estimates. However, the measures are also decreasing in the amount of liquidity trading, and

we present evidence in Section 5 that the measurement of liquidity trading is quite positively

correlated across models, resulting in the positive correlation of the composite measures. Of

course, applications of the measures generally assume that they are correlated with private

information, not just inversely correlated with liquidity trading.

Theory predicts that orders have larger price impacts and quoted spreads when infor-

mation asymmetry is more severe.8 Note that this is true in both the Kyle (1985) model

upon which the hybrid and OWR models are based and the Glosten and Milgrom (1985)

model upon which PIN models are based. To test this implication of theory, we compute

reduced-form estimates of price impacts for our sample as well as quoted spreads. Empir-

ically, expected average lambda from the hybrid model is positively correlated with price

impacts and quoted spreads both in the time series and cross-sectionally. While the same

is also true for PIN, APIN, VPIN, and the OWR lambda, expected average lambda has a

higher correlation with price impacts and spreads in the time series than the other compos-

ite measures. Expected average lambda also adds explanatory power relative to the other

measures in cross-sectional regressions of price impacts or quoted spreads on the composite

measures.

Other related theoretical work includes Rossi and Tinn (2010), Foster and Viswanathan

(1995), Chakraborty and Yilmaz (2004), Goldstein and Guembel (2008), Banerjee and Breon-

Drish (2017), and Wang and Yang (2017). Rossi and Tinn solve a two-period Kyle model

in which there are two large traders, one of whom is certainly informed and one of whom

may or may not be informed. In their model, unlike ours, there are always information

events. Foster and Viswanathan (1995) consider a series of single-period Kyle models in

which traders choose in each period whether to pay a fee to become informed. There may

8There seems to be general agreement that at least a portion of the price impact of trades is due to
information asymmetry. Glosten and Harris (1988), Hasbrouck (1988), and Hasbrouck (1991) estimate
models of trades and price changes in which both information asymmetry and inventory control motives are
accommodated, and all three papers conclude that information asymmetry is important.
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be periods in which there are no informed traders. However, in their model, it is always

common knowledge how many traders choose to become informed, so, in contrast to our

model, there is no learning from orders about whether informed traders are present.

Chakraborty and Yilmaz (2004) and Goldstein and Guembel (2008) study discrete-time

Kyle models in which there may or may not be an information event. The main result

in Chakraborty and Yilmaz (2004) is that the informed trader will manipulate (sometimes

buying when she has bad information and/or selling when she has good information) if the

horizon is sufficiently long. The primary difference between their model and ours is that

they assume that the liquidity trade distribution has finite support, so market makers may

incorrectly rule out a type of trader if the horizon is sufficiently long. In contrast, market

makers in our model can never rule out any type of the informed trader until the end of

the model, so it does not strictly pay for a low type to pretend to be a high type or vice

versa. The primary focus of Goldstein and Guembel (2008) concerns the incentives for an

uninformed strategic trader to manipulate if information in financial markets feeds back

into managers’ investment decisions. In their benchmark equilibrium with no feedback, the

uninformed speculator behaves as a contrarian but does not manipulate, which is the case

in our equilibrium.

Banerjee and Breon-Drish (2017) and Wang and Yang (2017) study continuous-time

Kyle models (specifically, the model of Back and Baruch (2004) in which there is a random

announcement date) in which an informed trader may not be present. Banerjee and Breon-

Drish study the information acquisition decision, treating it as a real option. In one version

of their model, the timing of information acquisition is publicly observed. In that version,

the market is infinitely deep before information is acquired, and the model is essentially

the same as in Back and Baruch after information is acquired. In a second version of their

model, the timing of information acquisition is not publicly observed, and the market tries

to learn from orders whether information has been acquired. For that version, they establish

a nonexistence result: In the class of pricing rules they consider, there is no equilibrium.
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Wang and Yang also study the Back-Baruch version of the Kyle model. In their model,

nature chooses at date 0 whether there is an information event (and all information events

are “good news” events). Unlike in our model or the model of Banerjee and Breon-Drish,

the strategic trader is not present in their model when there is no information event.9 They

also show the nonexistence of equilibria (though they have an existence result for a second

version of their model in which the market maker is a monopolist).

2. The Hybrid Model

The hybrid model includes two important features of PIN models—a probability less

than 1 of an information event and a binary asset value conditional on an information

event—and it also includes an optimizing (possibly) informed trader, as in the Kyle (1985)

model. Denote the time horizon for trading by [0, 1]. Assume there is a single risk-neutral

strategic trader. Assume this trader receives a signal S ∈ {L,H} at time 0 with probability

α, where L < 0 < H.10 Let pL and pH = 1 − pL denote the probabilities of low and high

signals, respectively, conditional on an information event. With probability 1−α, there is no

information event, and the trader also knows when this happens. Let ξ denote an indicator

for whether an information event has occurred (ξ = 1 if yes and ξ = 0 if no). In addition

to the private information, public information can also arrive during the course of trading,

represented by a martingale V . Whether there was an information event, and, if so, whether

the signal was low or high becomes public information after the close of trading at date 1,

producing an asset value of V1 + ξS. Without loss of generality, we take the signal S to

have a zero mean. We can always do this by taking the signal mean to be part of the public

information V0.

In addition to the strategic trades, there are liquidity trades represented by a Brownian

motion Z with zero drift and instantaneous standard deviation σ. Let Xt denote the number

9We call the strategic trader when there is no information event a “contrarian trader.” See Section 2.2
for discussion.

10Internet Appendix A extends the model to general signal distributions.
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of shares held by the strategic trader at date t (taking X0 = 0 without loss of generality),

and set Yt = Xt + Zt. The processes Y and V are observed by market makers. Denote the

information of market makers at date t by FV,Yt .

One requirement for equilibrium in this model is that the price equal the expected value

of the asset conditional on the market makers’ information and given the trading strategy

of the strategic trader:

Pt = E
[
V1 + ξS | FV,Yt

]
= Vt + E

[
ξS | FV,Yt

]
. (1)

We will show that there is an equilibrium in which Pt = Vt + p(t, Yt) for a function p. This

means that the expected value of ξS conditional on market makers’ information depends

only on cumulative orders Yt and not on the entire history of orders.

The other requirement for equilibrium is that the strategic trades are optimal. Let θt

denote the trading rate of the strategic trader (i.e., dXt = θt dt). The process θ has to

be adapted to the information possessed by the strategic trader, which is V , ξS, and the

history of Z (in equilibrium, the price reveals Z to the informed trader). The strategic trader

chooses the rate to maximize

E

∫ 1

0

[V1 + ξS − Pt] θt dt = E

∫ 1

0

[ξS − p(t, Yt)] θt dt , (2)

with the function p being regarded by the informed trader as exogenous. In the optimization,

we assume that the strategic trader is constrained to satisfy the “no doubling strategies”

condition introduced in Back (1992), meaning that the strategy must be such that

E

∫ 1

0

p(t, Yt)
2 dt <∞

with probability 1.

Let N denote the standard normal distribution function, and let n denote the standard
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normal density function. Set yL = σN−1(αpL) and yH = σN−1(1− αpH). This means that

the probability mass in the lower tail (−∞, yL) of the distribution of cumulative liquidity

trades Z1 equals αpL, which is the unconditional probability of bad news. Likewise, the

probability mass in the upper tail (yH ,∞) of the distribution of Z1 equals αpH , which is the

unconditional probability of good news. Set

q(t, y, s) =


E[Z1 − Zt | Zt = y, Z1 < yL] if s = L ,

E[Z1 − Zt | Zt = y, yL ≤ Z1 ≤ yH ] if s = 0 ,

E[Z1 − Zt | Zt = y, Z1 > yH ] if s = H .

(3)

From the standard formula for the mean of a truncated normal, we obtain the following more

explicit formula for q:

q(t, y, s)

σ
√

1− t =


− n

(
yL−y
σ
√

1−t

)
/N
(
yL−y
σ
√

1−t

)
if s = L ,[

n
(
yL−y
σ
√

1−t

)
− n

(
yH−y
σ
√

1−t

)]/[
N
(
yH−y
σ
√

1−t

)
− N

(
yL−y
σ
√

1−t

)]
if s = 0 ,

n
(
y−yH
σ
√

1−t

)
/N
(
y−yH
σ
√

1−t

)
if s = H .

(4)

The equilibrium described in Theorem 1 below can be shown to be the unique equilibrium in a

certain broad class, following Back (1992). The proof of Theorem 1 is given in Appendix A.11

Theorem 1. There is an equilibrium in which the trading rate of the strategic trader is

θt =
q(t, Yt, ξS)

1− t . (5)

Given market makers’ information at any date t, the conditional probability of an information

11The proof is based on a generalization of the Brownian bridge feature of the continuous-time Kyle model
established in Back (1992). Whereas a Brownian bridge is a Brownian motion conditioned to end at a
particular point, in this model (with a discrete rather than continuous distribution of the asset value) we
encounter a Brownian motion conditioned only to end in a particular interval. The generalization of the
Brownian bridge is established as a lemma in Appendix A.
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event with a low signal is N
(
yL−Yt
σ
√

1−t

)
and the conditional probability of an information event

with a high signal is N
(
Yt−yH
σ
√

1−t

)
. The equilibrium asset price is Pt = Vt + p(t, Yt), where the

pricing function p is given by

p(t, y) = L · N
(
yL − y
σ
√

1− t

)
+H · N

(
y − yH
σ
√

1− t

)
. (6)

In this equilibrium, the process Y is a martingale given market makers’ information and

has the same unconditional distribution as does the liquidity trade process Z; that is, it is a

Brownian motion with zero drift and standard deviation σ.

The last statement of the theorem implies that the distribution of order flows in the

model does not depend on the information asymmetry parameters α, H, and L. Thus, if

the model is correct, it is impossible to estimate those parameters using order flows alone.

In general, the theorem suggests that it may be difficult to identify information asymmetry

parameters using order flows alone, as discussed in the introduction and the next subsection.

When we estimate the hybrid model, we use both order flows and returns, in contrast to

related models that only use order flows.

Empirically, we test the relationship between α and price impacts of trades. Figure 1

plots the equilibrium price as a function of Yt for two different values of α. It shows that the

price is more sensitive to orders when α is larger. To investigate further how the sensitivity

of prices to orders depends on α in the hybrid model, we calculate the price sensitivity—that

is, we calculate Kyle’s lambda.

Theorem 2. In the equilibrium of Theorem 1, the asset price evolves as dPt = dVt +

λ(t, Yt) dYt, where Kyle’s lambda is

λ(t, y) = − L

σ
√

1− t · n
(
yL − y
σ
√

1− t

)
+

H

σ
√

1− t · n
(
yH − y
σ
√

1− t

)
. (7)

Furthermore, Kyle’s lambda λ(t, Yt) is a martingale with respect to market makers’ informa-
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tion on the time interval [0, 1).

Kyle’s lambda is a stochastic process in our model, but we can easily relate the expected

average lambda to α. Because lambda is a martingale, the expected average lambda is

λ(0, 0). Substitute the definitions of yL and yH in (7) to compute12

λ(0, 0) = −L
σ

n
(
N−1(αpL)

)
+
H

σ
n
(
N−1(1− αpH)

)
. (8)

Figure 2 plots the expected average lambda as a function of α for two values of H, taking

L = −H. Doubling the signal magnitudes doubles lambda. Furthermore, the expected

average lambda is increasing in α.

2.1. Nonidentifiability Using Order Flows Alone

A key result of Theorem 1 is that the aggregate order imbalance Y1 has the same distri-

bution as the liquidity trades Z1 and is invariant with respect to the information asymmetry

parameters.13 Further insight into this identification issue can be gained by noting that the

unconditional distribution of the order imbalance in our model is a mixture of three con-

ditional distributions. With probability αpL, Y1 is drawn from the distribution conditional

on a low signal; with probability αpH , Y1 is drawn from the distribution conditional on a

high signal; and with probability 1 − α, Y1 is drawn from the distribution conditional on

no information event. The first two distributions have nonzero means—there is an excess

of sells over buys in the first and an excess of buys over sells in the second. One might

conjecture that changing α—thereby changing the likelihood of drawing from the first two

distributions—will alter the unconditional distribution of Y1. If so, then one could perhaps

12If information events occur for sure (α = 1), then λ(0, 0) = (H − L) n(0)/σ. This is analogous to the
result of Kyle (1985) that lambda is the ratio of the signal standard deviation to the standard deviation of
liquidity trading. Of course, it is not quite the same as Kyle’s formula, because we have a binary signal
distribution, whereas the distribution is normal in Kyle (1985).

13This result on the nonidentifiability of information asymmetry parameters from order flows does not
depend on the binary signal assumption. Internet Appendix A presents the model with a general signal
distribution. The unconditional order flow distribution is the same as the distribution of liquidity order
flows in the general model as well.
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identify α from the distribution of Y1. In other models with a potential information event,

it is indeed true that changing α, holding other parameters constant, alters the uncondi-

tional distribution of the order imbalance. However, it is not true in our model, because the

distribution of informed trades in our model depends endogenously on α due to liquidity

depending on α. With a larger alpha, the market is less liquid (see the comparative statics

in Figure 2) and the informed trader trades less aggressively. Furthermore, with endoge-

nous informed orders, the arrival rate of informed orders depends on prior price changes

as shown in Figure 3, which is not the case in other models with a potential information

event. In particular, when prices have moved in the direction of the news, informed orders

slow down, and, when prices have moved in the opposite direction, informed orders speed

up. Figure 3 shows that these changes in intensity depend on the ex ante probability α

of an information event. Thus, the distributions over which we are mixing change when

the mixture probabilities change, leaving the unconditional distribution of Y1 invariant with

respect to α.

The change in the conditional distributions is illustrated in Figure 4. The top and

bottom panels of Figure 4 show that the strategic trader trades more aggressively when an

information event occurs if an information event is less likely (α = 0.1 versus α = 0.5). The

unconditional distribution of Y1 is standard normal for both α = 0.1 and α = 0.5 in Figure 4,

so we cannot hope to use the unconditional distribution to recover α.

Of course, identifying the information asymmetry parameters from the distribution of or-

der imbalances is a very different issue from using order imbalances to update the probability

of an information event in a particular instance of the model. Conditional on knowledge of

the parameters, the order imbalance does help in estimating whether an information event

occurred in a particular instance of the model; in fact, the market makers in the model

update their beliefs regarding the occurrence of an information event based on the order

12



imbalance. So, we can compute

prob(info event | Yt, parameters) ,

and this probability does depend on the information asymmetry parameters. We could use

this to identify the information asymmetry parameters if we had data on order imbalances

and data on whether information events occurred. Of course, we generally do not have data of

the latter type. Theorem 1 shows that the likelihood function of the information asymmetry

parameters given only data on order imbalances is a constant function of those parameters;

hence, the order imbalances alone cannot identify them.

In our empirical work, we estimate the model parameters using prices and order flows.

Armed with these parameter estimates and order flow observations, we can compute condi-

tional probabilities of an information event. We examine their time-series properties around

earnings announcements and around Schedule 13D filer trades in Section 4.1.

2.2. The Contrarian Trader Assumption

One way in which our model departs from related models like the PIN model is that the

strategic trader is present in our model even when there is no information event. When there

is no information event, this trader behaves as a contrarian, selling on price increases and

buying on price declines.14 The existence of such a contrarian trader seems likely if there are

always some traders who are best informed—corporate managers, for example. This would

be the case if information were truly idiosyncratic to the firm. If, on the other hand, there

is an industry or other aggregate components to the information, then it is possible that no

one knows when no one else has information. In that case, the contrarian trader that we

posit would not exist.

14We assume the existence of such a trader because it makes the model more tractable. Odders-White and
Ready (2008) describe the trader as also being present in their model when there is no information event,
but, because the trader has no opportunity to react to price changes in their one-period model, the trader
optimally chooses a zero trade in the absence of an information event. Goldstein and Guembel (2008) also
assume that the uninformed speculator trades as a contrarian in their benchmark model with no feedback.

13



In Internet Appendix B, we solve a variant of the PIN model in which contrarian traders

arrive at the market when there is no information event. The contrarian traders condition

their trading direction on the prevailing bid and ask quotes and the intrinsic value of the asset.

The distribution of order imbalances in that model is shown in Figure 5 for three different

values of α (the probability of an information event). The figure shows that the distribution

depends on α; thus, order imbalances can be used to identify information asymmetry in the

PIN model even when a contrarian trader is present. Thus, the contrarian trader assumption

is not the main driving force behind our nonidentifiability result. Instead, the result depends

on market makers reacting to information asymmetry and on strategic traders reacting both

to liquidity and to price changes. That is, order flows depend on market liquidity, which

depends on information asymmetry. This creates an indirect dependence of order flows on

information asymmetry that is countervailing to the direct relation.

3. Estimation of the Model

We estimate the hybrid model using trade and quote data from TAQ for NYSE firms

from 1993 through 2012.15 We sign trades as buys and sells using the Lee and Ready (1991)

algorithm: trades above (below) the prevailing quote midpoint are considered buys (sells).

If a trade occurs at the midpoint, then the trade is classified as a buy (sell) if the trade price

is greater (less) than the previous differing transaction price.16 We sample prices and order

imbalances hourly and at the close and define order imbalances as shares bought less shares

sold (denoted in thousands of shares).

We estimate the model by maximum likelihood, maintaining the standard assumptions

in the literature that each day is a separate realization of the model and that parameters

are constant within each year for each stock. We assume that the dispersion of the possible

15We require that firms have intraday trading observations for at least 200 days within the year. We also
require firms have the same ticker throughout the year and experience no stock splits.

16Prior to 2000, quotes are lagged five seconds when matched to trades. For 2000-2006, quotes are lagged
one second. From 2007 on, quotes are matched to trades in the same second.

14



signals on each day i is proportional to the observed opening price on day i, Pi0. Specifically,

we assume that, for each firm-year, there is a parameter κ such that the low signal value

each day is L = −2pHκPi0 and the high signal value is H = 2pLκPi0. This construction

ensures that the signal has a zero mean and (H −L)/Pi0 = 2κ. Thus, κ measures the signal

magnitude. We also assume that the public information process V is a geometric Brownian

motion on each day with a constant volatility δ. The likelihood function for the hybrid model

depends on the signal magnitude κ, the probability α of information events, the probability

pL of a negative signal conditional on an information event, the standard deviation σ of

liquidity trading, and the volatility δ of public information.

We derive the likelihood function for the model in Appendix B. Dropping constants, the

log-likelihood function L for an observation period of n days satisfies

− L = n(k + 1) log σ +
1

2σ2∆

n∑
i=1

Y ′i Σ
−1Yi + n(k + 1) log δ

+
1

2δ2∆

n∑
i=1

U ′iΣ
−1Ui +

nδ2

8
+

n∑
i=1

(
k∑
j=1

Uij +
3

2
Ui,k+1

)
, (9)

where k is the number of intraday observations sampled at regular intervals of length ∆. We

sample every hour and at the close, so k = 6 and ∆ = 1/6.5. Yi is the vector of cumulative

order flows for day i. Ui is the vector (Ui1, . . . , Ui,k+1)′ of log pricing differences

Uij = log

(
Pij
Pi0
− p(tj, Yij)

)
(10)

between the observed return and the model’s pricing function. Σ is a (k+1)× (k+1) matrix

that depends on ∆ as described in Appendix B. We minimize (9) in α, κ, pL, σ, and δ.

The private information parameters α, κ, and pL enter the likelihood function via the log

pricing errors Ui, because the parameters affect the pricing function p(t, Yt). As can be seen

from (9), α, κ, and pL are estimated by minimizing a quadratic function of the log pricing

errors. In the model, the pricing errors are due to public information. In minimizing the
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quadratic function, the estimation procedure tries to maximize the fit of the model prices

p(tj, Yij) to the observed returns and thereby to minimize how much we have to rely on

public information to explain the returns.

Figure 6 illustrates how the pricing errors depend on the private information parameters.

For simplicity, Figure 6 treats the case k = 0; that is, it only uses daily order imbalances

and returns. The pricing error each day is the difference between the daily return P1/P0

and the model price p(1, Y1). The price function p(1, ·) is a step function,17 with steps at yL

and yH defined in Section 2 as yL = σN−1(αpL) and yH = σN−1(1 − αpH). Thus, α and

pL affect the step locations. If α is larger, the step locations are closer together. If pL is

increased, both step locations shift to the right. The parameter κ determines the height of

the steps. Notice that σ and α play similar roles in determining the step locations—either

increasing σ or reducing α will spread out the steps. However, maximizing the likelihood

function also involves fitting the order imbalances to a Brownian motion with standard

deviation σ. Table 2 (see Section 3.1) shows that our empirical estimates of σ are almost

entirely determined by the standard deviations of order imbalances—likewise, the estimates

of δ (the standard deviation of the public information process) are almost entirely determined

by the standard deviations of returns.

Figure 6 depicts simulated data and three different sets of possible estimates for the

parameters α and κ. The fit of the price function p(1, Y1) to the daily returns is shown in

the left column. The log pricing errors in all three cases are shown in the right column.

The parameters that were used in the simulation are shown in the middle row. Of the three

sets of parameters shown in the figure, the parameters in the middle row give the largest

value for the likelihood function. The parameters in the top row produce steps that are too

far apart and too small, generating a price function that is too flat compared to the data.

Consequently, the log pricing errors shown in the top row of the right column are positively

correlated with order imbalances. The parameters in the bottom row produce steps that are

17The price function p(t, ·) for t < 1 (that is, for intra-day returns) is depicted in Figure 1.
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too close together and too large, generating a price function that is too steep compared to

the data. Consequently, the log pricing errors in the bottom row are negatively correlated

with order imbalances.

3.1. Estimates of the Hybrid Model

Table 1 reports summary statistics of the parameter estimates for the panel of firm-years

(summary statistics by year are plotted in Figure 7 in Section 3.5). To see which aspects

of the data determine the parameter estimates, Table 2 reports regressions of the parameter

estimates on various moments of order flows and returns. The table also reports variance

decompositions. The moments include correlations of order flows and returns split into two

subperiods of the day—the first three hours and the last three and a half hours. The price

function in the model is nonlinear, so we also include nonlinear measures of the comovement

of returns and order imbalances. Specifically, we include correlations of returns with squared

order imbalances for the two subperiods. We also include the fraction of the days on which

returns and order imbalances are both in the right tails of their distributions and the fraction

in which they are both in their left tails, defining a tail as a standard deviation away from

zero (a zero order imbalance or a zero rate of return).

The R-squareds and the variance decomposition show that the estimates of the stan-

dard deviation σ of order imbalances from the model are almost entirely determined by the

empirical standard deviations of order imbalances. Likewise, the estimates of the volatility

δ of the public news process are almost entirely determined by the standard deviations of

returns. The private information parameters κ, α and pL are naturally more complex.

The moments have little explanatory power for the pL estimates, though it is natural that

skewness of returns and order flows matter for this parameter. The non-linear comovement

measures are also related to pL. As shown in Table 1, the distribution of the pL estimates is

fairly tight around 50%, so there is not too much variation to explain.

The κ and α estimates are the most interesting. The magnitude κ of private information is

fairly well explained by the moments, with the most important moments being the standard
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deviation of returns and the correlations between order imbalances and returns. The variance

decomposition shows that all of the moments except skewness affect the estimated probability

α of information events. The nonlinear specification is important for α. Almost two-thirds

of the R-squared comes from the correlations and the right and left tail variables.

3.2. Testing Whether There is Always an Information Event in the Hybrid Model

Our hybrid model relaxes the assumption in Kyle (1985) that an information event occurs

in each instance of the model (in each day in our implementation). A natural question is

whether this relaxation is supported in the data. The Kyle framework is nested in our model

by the restriction that α = 1. Accordingly, we estimate the model with this restriction. The

standard likelihood ratio test of the null that α = 1 against the alternative that α ∈ [0, 1] is

rejected for 73% of the firm-years (with a test size of 10%). However, the usual regularity

conditions for the likelihood ratio test require that the restriction not be at the boundary of

the parameter space. To address this issue, we bootstrap the distribution of the likelihood

ratio statistic for a random sample of 100 firm-years as in Duarte and Young (2009).

Specifically, for a given firm-year, we estimate the restricted model (α = 1) and then

simulate 500 firm-years under the null using the estimated (restricted) parameters. We then

estimate the restricted and unrestricted models for each simulated firm-year to obtain the

distribution of the likelihood ratio under the null. The 90th percentile of this distribution is

the critical value to evaluate the empirical likelihood ratio. These bootstrapped likelihood

ratio tests reject the restricted Kyle model in favor of the hybrid model for 62 of the 100

randomly selected firm-years. The data thus supports the conclusion that the probability of

an information event is less than 1.

3.3. Estimated Parameters and Reduced-Form Price Impacts

The model places structure on the price and order flow data, allowing the econometrician

to identify components of Kyle’s lambda. Of course, one can estimate a reduced-form price

impact as well. As an initial test of whether our estimates relate to price impact as implied
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by theory, we test the comparative statics from Figure 2 that price impacts are increasing

in both the probability and magnitude of information events.

We employ three estimates of the price impact of orders. The first is the 5-minute percent

price impact of a given trade k as:

5-minute Price Impactk =
2Dk(Mk+5 −Mk)

Mk

, (11)

where Mk is the prevailing quote midpoint for trade k, Mk+5 is the quote midpoint five min-

utes after trade k, and Dk equals 1 if trade k is a buy and −1 if trade k is a sell. Goyenko,

Holden and Trzcinka (2009) use this measure as one of their high-frequency liquidity bench-

marks in a study assessing the quality of various liquidity measures based on daily data.18

For a given stock-day, the estimate of the percent price impact is the equal-weighted average

price impact over all trades on that day. We average these daily price impact estimates for

each stock-year.

We also estimate the cumulative impulse response function (Hasbrouck, 1991), which

captures the permanent price impact of an order. The cumulative impulse response is cal-

culated from a vector autoregression of log price changes and signed trades. Finally, we

estimate a version of Kyle’s lambda (denoted λ̂intraday) using a regression of 5-minute returns

on the square-root of signed volume following Hasbrouck (2009) and Goyenko, Holden and

Trzcinka (2009). We estimate these for each stock day, taking the median estimate across

days as the stock-year estimate.

The first panel of Table 3 reports panel regressions of the three price impact measures on

the hybrid model parameters that measure private information (the probability α of an in-

formation event and the magnitude κ of information events). Before running the regressions,

the price impacts and the structural parameters are winsorized at 1/99% and standardized

18Holden and Jacobsen (2014) show that liquidity measures such as the percent price impact can be biased
when constructed from monthly TAQ data, so we follow their suggested technique in processing the data.
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to have unit standard deviations. Price impacts are positively related to both α and κ. The

coefficients are positive even with the inclusion of firm fixed effects, indicating that α and κ

capture within-firm information asymmetry variation as well.

A summary measure of the amount of private information is the standard deviation of

the signal ξS, denoted SD(ξS), which equals

2κ
√
αpL(1− pL) . (12)

The second panel of Table 3 shows that the estimated SD(ξS) is strongly positively correlated

with the price impact estimates, as expected. Cross-sectionally, a one standard deviation

increase in SD(ξS) is associated with around three-quarters of a standard deviation increase

in 5-minute price impact and λ̂intraday and about half a standard deviation increase in the cu-

mulative impulse response measure. Variation in SD(ξS) within firm is positively correlated

with within-firm variation in all three price impact measures.

3.4. Kyle’s Lambda and Stochastic Volatility

In the model, prices evolve as dPt = dVt +λ(t, Yt) dYt. The changing sensitivity of prices

to order flows means that prices exhibit stochastic volatility. In Table 4, we investigate

this implication of the model for simulated and actual data. Volatility is measured as the

absolute return over the last three and a half hours of the trading day. We calculate λ(t, Yt)

from Equation (7) for each day using the cumulative order imbalance over the first three

hours of the day (i.e., t=3/6.5), along with the estimated parameters. We report predictive

regressions of volatility on λ(t, Yt).

The top panel of Table 4 reports results for a simulated panel created by generating 252

days for each set of parameter estimates. Higher levels of λ(t, Yt) predict higher volatility

in the second part of the day. The bottom panel shows that this phenomenon holds in the

actual data as well. Moreover, the magnitudes are similar across the simulated and actual

data controlling for firm and year fixed effects. Confidence intervals at standard significance
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levels overlap across the simulated and actual data. Of course, in the actual data, other

phenomena could lead to stochastic volatility. In the last column, we control for the prior

day’s realized absolute return as well as the absolute cumulative order imbalance over the first

part of the day. λ(t, Yt) continues to predict volatility, and the magnitude of its coefficient

is quite similar to that in the simulated data.

3.5. Time Series of Estimates

Figure 7 displays the time series of cross-sectional averages and interquartile ranges of the

parameter estimates. This supplements the summary statistics given for the panel in Table 1.

The average α is almost 70% in the early part of the sample and falls to about 50% by the end

of the sample. This effect starts in 2007 coincident with the introduction of the NYSE Hybrid

Market which increased automated electronic execution and increased execution speeds. It

is possible that market changes altered incentives to pursue private information, resulting in

lower α estimates. Hendershott and Moulton (2011) find that prices became more efficient

following the roll-out of the Hybrid Market, which aligns with a reduced probability of private

information events.19 The other components of private information events are the magnitude

κ of the signal and the likelihood pL of a bad event. The κ estimates initially rise during the

late 1990s but exhibit a strong downward trend thereafter. The average pL indicates that

the distribution of information is relatively symmetric between positive and negative events.

We combine these estimates into a single composite measure of information asymmetry by

calculating the expected average lambda from Equation (8). The estimates of this composite

measure indicate that the amount of private information has fallen across the twenty-year

sample with the exception of the late 1990s and the financial crisis.20

In general, the standard deviation σ of order imbalances and the volatility δ of public

19In untabulated results, we find that the decline in α starting in 2007 is more pronounced for larger
firms. Algorithmic traders (including high-frequency traders) disproportionately trade in large stocks, so it
is unsurprising that the increased automation and execution speed of the Hybrid Market affected large firms
more than small firms.

20As we discuss in Section 5.3, the same pattern is seen in reduced-form price impact measures.
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information appear to be roughly stationary. Despite the well-documented rise of high-

frequency trading and the associated sharp increase in trading volume, the volatility of order

imbalances has remained fairly stable over the twenty-year sample. Like private information,

public information volatility also spiked during the financial crisis. This suggests private

information may be proportional to public information rather than a fixed amount.

4. Applications

We now discuss potential applications of the estimation procedure. A large literature

uses the PIN model, as discussed previously. Broadly speaking, some of this work relates

PIN estimates to times when researchers believe information events have likely occurred.

Other research uses PIN to proxy for information asymmetry or price informativeness. We

discuss examples of how our estimates might be useful to research of either type.

4.1. Detecting Information Events

Information asymmetry is generally unobservable, so testing performance of adverse se-

lection measures is challenging. In this subsection, we study how the conditional probability

of an information event as measured by our model varies in two settings considered in the

literature: earnings announcements and trading by Schedule 13D filers.

4.1.1. Earnings Announcements

Many studies have examined the information environment surrounding earnings an-

nouncements. Some studies assume that information asymmetry is higher prior to infor-

mation events, while others note that private ability or knowledge to interpret public infor-

mation may result in adverse selection following announcements (Kim and Verrecchia, 1997).

Several recent papers (Duarte et al., 2016; Brennan et al., 2016) use conditional estimates

based on the PIN and OWR models around earnings announcements.

As we discuss in Section 2.1, one can assess the probability of an information event if

one observes cumulative order flows and knows the underlying parameters. In particular,
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Theorem 1 shows that market makers update their conditional probabilities of an information

event, CPIE t, as:

CPIE t(Yt) =


N
(
yL−Yt
σ
√

1−t

)
+ N

(
Yt−yH
σ
√

1−t

)
if t < 1 ,

1 (Y1 < yL) + 1 (Y1 > yH) if t = 1 .

(13)

Armed with our estimates of the parameters, we examine end-of-day conditional probabilities

of an information event, CPIE1, on the days around earnings announcements. We also

calculate conditional probabilities of positive and negative information events, CPIE+ and

CPIE−, respectively, which are the two components of CPIE in (13).

Figure 8 plots the cross-sectional average of model-implied CPIE in event time around

earnings announcements. The average CPIE rises significantly on day t− 1, consistent with

early leakage of some information prior to the announcement. The average CPIE is highest

on days t and t+ 1, and then falls over the next week or so. The results suggest that adverse

selection may actually be worse following an earnings announcement rather than before it,

as discussed in Kim and Verrecchia (1997).21

Pre-announcement information asymmetry is likely higher when a firm experiences an

earnings surprise. To test whether CPIE captures this, we use data from IBES to calculate

standardized unexpected earnings, SUE, calculated as

SUEt =
EPSactual,t − EPSmedian forecast,t

Pt
, (14)

where EPSmedian forecast,t is the median analyst forecast in the 90 days prior to the earnings

announcement. We expect there to be more informed trading when the absolute value of SUE

is higher. Moreover, the informed trading should correspond to the subsequent direction of

the earnings surprise. That is, higher (lower) signed earnings surprises should correspond to

21This conclusion is also reached by Krinsky and Lee (1996) using the adverse selection component of
bid-ask spreads and by Brennan et al. (2016) using conditional probabilities from the PIN model.
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higher CPIE+ (CPIE−) preceding announcements. The first three columns of Table 5 show

that this is indeed the case. The average conditional probability of an information event in

the five days preceding announcements is 80 bps higher for above median |SUE| observations

relative to below median magnitude surprises. The average CPIE preceding earnings where

the |SUE| is in the top decile is almost 3% higher than the average across smaller earnings

surprise events. Table 5 shows that the direction of the surprises also corresponds to positive

or negative event probabilities. Average CPIE+ is higher before more positive SUE events,

and average CPIE− is higher preceding more negative SUE events.

Greater amounts of new information also increase the likelihood that asymmetrically-

informed investors can trade advantageously following an announcement (Kim and Verrec-

chia, 1997). If this is the case, we expect larger magnitude |SUE| to be correlated with

informed trading in the post-announcement period. Column four of Table 5 confirms that

this is the case. In the five days following announcements, CPIE is higher for larger mag-

nitude surprises. Moreover, the differences are larger than those in the pre-announcement

period, again suggesting that there is more informed trading following earnings announce-

ments than preceding them. The well-known post-earnings announcement drift suggests that

private information is often in the same direction of the earnings surprise. Consistent with

this, the final two columns of Table 5 show that average CPIE+ is higher following more

positive surprises, while average CPIE− is higher following the most negative surprises.

4.1.2. Schedule 13D Filings

Collin-Dufresne and Fos (2015) examine whether various measures of adverse selection are

higher during periods in which Schedule 13D filers accumulate ownership positions. These

positions are generally associated with a positive stock price reaction, so these investors are

privately informed. These investors must disclose days on which they traded over a sixty-

day period preceding the filing date. Thus, this data provides the econometrician with a

laboratory concerning informed trading. Collin-Dufresne and Fos (2015) show that measures

designed to capture information asymmetry are actually lower on days when Schedule 13D

24



filers trade. As they discuss, this could be due to endogenous trading in times of greater

liquidity and due to the use of patient limit orders. The latter effect arises in part because

of the filers’ ability to control the timing of the private information revelation. This differs

from the pre-earnings announcement setting where an informed trader’s information is valid

only for an exogenous duration.

We revisit the Schedule 13D setting to assess whether the conditional probability of an

information event is higher on days when these informed investors trade. According to our

model, there are informed trades on days when there are information events. So, we regard

the days on which 13D filers trade as information event days. Consistent with this, Collin-

Dufresne and Fos (2015) show that days when Schedule 13D filers trade are characterized

by significant market-adjusted returns. 13D filers typically accumulate shares by trading on

occasional days over a period of weeks. Over the sixty-day disclosure window, the probability

that a Schedule 13D filer trades on a given day ranges from around 25% to 50% (Collin-

Dufresne and Fos, 2015, Figure 1). One potential reason for trading on particular days

is news that causes revisions in estimates of the value of activism. If activists are better

informed than the market about such valuation revisions, which is quite likely, these events

fit our model of private information.22

Table 6 reports average values of CPIE on days during the sixty-day disclosure window

when Schedule 13D filers do or do not trade. Just under two-thirds of the firm-days with

no Schedule 13D trades are identified as being event days. On the other hand, 70% of the

days when Schedule 13D filers do trade are identified as event days. The increase of 7.8%

is statistically significant and represents about a 13% increase in the conditional probability

relative to non-13D trading days. Thus, despite the fact that trading by Schedule 13D filers

is inversely correlated with the various measures of permanent price impact commonly used

22Another reason that 13D filers may choose to trade on particular days is that liquidity trading may be
time varying. This reason is proposed by Collin-Dufresne and Fos (2015). We could accommodate that by
allowing σ to be time varying, but that extension is beyond the scope of the paper. Our goal here is to show
that our current model, with constant σ, is informative about trading by 13D filers.
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in the literature and employed by Collin-Dufresne and Fos (2015), we find that the trading by

13D filers is manifested in higher conditional probabilities of an information event, calculated

according to our model.

We also report average CPIE for two subperiods, the first and second halves of the dis-

closure period (days [t − 60, t − 31] and [t − 30, t − 1], respectively). If block accumulation

by a 13D filer is detected by other strategic traders, then both the 13D filer and the other

strategic traders should trade aggressively to beat others to the market (Holden and Sub-

rahmanyam, 1992). This is more likely to have occurred during the second subperiod, so

we expect Schedule 13D filers to trade more aggressively (use more market orders rather

than limit orders) in the second subperiod. Furthermore, the second subperiod includes the

period after crossing the 5% threshold, after which the 13D must be filed within ten days.

We certainly expect more aggressive trading during that period. As a result of these consid-

erations, we expect signed order flow to reflect the presence of informed trade more in the

second subperiod than in the first. The second and third rows of Table 6 show that this is

indeed the case. There is a smaller difference of 5.3% in CPIE over the first 30 days of the

block-accumulation period between Schedule 13D trading days and non-trading days. In the

second half of the disclosure period however, the average CPIE is 9.2% higher on days when

informed Schedule 13D filers trade than on days they do not.

4.2. Measuring the Information Content of Prices

Some studies use PIN to measure the information content of prices in order to test

various economic theories. Applications in corporate finance include Chen, Goldstein and

Jiang (2007), Ferreira and Laux (2007), and Bharath, Pasquariello and Wu (2009), and

applications in accounting include Frankel and Li (2004), Jayaraman (2008), and Brown and

Hillegeist (2007).

Here, we demonstrate how our structural estimates could be used to augment one such

study. Chen et al. (2007) study how corporate managers learn from prices in making invest-

ment decisions. They find that investment sensitivity to prices (Q) is increasing with price

26



informativeness as proxied by PIN and by 1−R2 from an asset pricing model. In Table 7, we

replicate Chen et al. (2007) for our sample. Before running the regressions, we standardize

each information environment variable to have unit standard deviation. As in Chen et al.

(2007), the coefficient on Q is increasing in PIN (column 2).

To demonstrate how researchers might employ our methodology in this setting, we con-

sider two composite measures of the information environment from the hybrid model. The

first is the standard deviation of the signal (SD(ξS)) from Equation (12). We also calcu-

late the proportion of the return variance due to private information, which we term the

order-flow component of prices (OFC):

var(ξS)

var(ξS) + var(eδBi1−δ2/2)
=

SD(ξS)2

SD(ξS)2 + eδ2 − 1
. (15)

Columns 4 and 5 of Table 7 show that investment-price sensitivity is increasing in each of

these measures.

One advantage of our estimation procedure relative to PIN is that it allows us to sepa-

rately estimate the probability and magnitude of information events. Investment sensitivity

to prices is increasing in each of these components (column 6 of Table 7). Thus, when there

are more frequent or larger episodes of private information, investment is more sensitive to

prices. A one standard deviation increase in κ (the magnitude of information events) is

associated with about a 25% increase in investment-price sensitivity. A standard deviation

change in α (the probability of an information event) has an effect about two-thirds as large.

The positive effect of α conflicts with results from decomposing PIN into the probability of

an information event and the relative intensity of liquidity to informed traders (column 3).

An increase in the PIN α does not lead to increased investment sensitivity to prices.

4.3. Probability and Magnitudes of Private Information

Estimation of the probability and magnitude of information events could also prove use-

ful in other settings where researchers are interested in the information environment. For
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instance, the estimates can provide additional texture to studies of the effects of information-

related regulation such as insider trading laws, short-selling restrictions, or symmetric access

to managers for financial analysts (e.g., Reg FD in the US). Separating the probability and

magnitude of information events could be useful in the analyst literature more broadly. Do

analysts turn private information into public information? If so, one might expect to see

lower probabilities of information events for firms with greater analyst coverage. On the

other hand, analysts may produce private information, which could result in higher prob-

abilities of information events. Studies interested in how the investor base affects liquidity

could be more nuanced by including both α and κ. Index inclusion affects institutional own-

ership, so how does index inclusion affect the information environment? Greater institutional

ownership could result in lower magnitudes of private information if prices are more efficient

with institutional ownership. The accounting literature considers whether disclosure quality

and frequency affect the information environment of firms. Greater disclosure quality could

reduce the magnitude of private information, and greater disclosure frequency could reduce

the probability of private information events. In all of these cases, studying both α and κ

could improve our understanding relative to studying only composite measures of private

information.

5. Comparison to Other Models

In this section, we compare the estimates of our model to those of the three structural

models (PIN, APIN, OWR) and the reduced-form version of PIN (VPIN) discussed in the

introduction. The estimation procedure for the other models is detailed in Internet Appendix

C.

5.1. Correlations of Model Parameters

Panel A of Table 8 shows the correlations among PIN, APIN, VPIN, lambda from the

OWR model (λOWR), and the expected average lambda from our model (λhybrid) – see Equa-

tion (8). All of the correlations are positive. The largest correlations with λhybrid are those
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of the OWR lambda and VPIN. This is perhaps not surprising since each of these estimates

uses price changes in some form. The OWR lambda uses the joint distribution of returns

and order flows, while VPIN signs volume using price changes.

We call PIN, APIN, VPIN, λowr, and λhybrid composite measures of information asym-

metry because, with the exception of VPIN, they are functions of the underlying structural

parameters.23 We also examine the correlations of the structural parameters of the various

models. Panel B of Table 8 reports correlations of the estimated probability of an informa-

tion event from each model (except VPIN which does not identify α). The estimates of α

for the hybrid model are negatively correlated with estimates of α from the other models.

In each of the other models, the unconditional distribution of order flow imbalances changes

with α, unlike in our model, so the lack of correlation of the hybrid model α with the other

α’s is consistent with the identification discussion in Section 2.1. The implications of the

models for the unconditional distribution of order flow imbalances are discussed further in

Internet Appendix D.24

The positive correlation of λhybrid with the other composite measures is somewhat sur-

prising given that the α of the hybrid model is not positively correlated with the α’s of the

other models. The explanation lies in the estimates of liquidity trading. Equation (8) shows

that the expected average lambda is inversely related to the volatility of liquidity trading.

The other measures are also inversely related to liquidity trading (see Equations C.2, C.4,

and C.6 in the Internet Appendix). Panel C of Table 8 reports correlations of the liquidity

trading parameters of each model. We scale the PIN and APIN liquidity trading parameters

by the estimated µ, so the fractions ε/µ and (ε + θη)/µ represent the intensity of liquid-

ity trading relative to informed trading. Note that PIN and APIN are decreasing in these

23We refer to VPIN as reduced-form because it does not identify the underlying structural parameters.
Rather, it proxies for PIN by separately estimating the numerator and denominator of PIN—see Internet
Appendix C.4.

24Venter and de Jongh (2006), Duarte and Young (2009), Gan, Wei and Johnstone (2014), and Duarte,
Hu and Young (2016) all show that the PIN model fails to fit the empirical joint distribution of buy and sell
orders.
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ratios, respectively. The liquidity trading parameters are positively correlated across the

models. For this reason, the composite measures are positively correlated despite the lack of

correlation of the estimated alphas.

5.2. Cross-Sectional Variation in Parameters

It is interesting to see how estimates of private information differ in the cross-section of

firms across models. Table 9 reports average values of the estimates within market capi-

talization deciles. Across all of the models, composite measures of information asymmetry

decrease in firm size (Panel A). For the hybrid model, the average probability α of an in-

formation event decreases in firm size while the estimates for the other models are exactly

the opposite, increasing in firm size (Panel B). As in the unconditional correlation analysis,

the composite measures seem to behave similarly in the size cross section due to similarities

in liquidity trading measurement (Panel C). Estimates from all of the models indicate more

intense liquidity trading for larger capitalization stocks. For each of the models other than

the hybrid model, the effect of the more pronounced liquidity trading dominates the modest

increases in α as a function of size, so these composite measures are lower for larger firms as

a result of higher estimated liquidity trading.25

5.3. Relation to Price Impacts and Quoted Spreads

In theory, price impacts and quoted spreads should be larger when information asym-

metry is higher. This is shown in Section 2 for price impacts in the hybrid model. For

the PIN model, the opening quoted spread is the product of PIN and the magnitude of the

information, H − L.26 In this section, we assess how time-series and cross-sectional varia-

tions in price impacts and quoted spreads relate to the estimated composite measure from

each model. For price impacts, we use the three measures described in Section 3.3. Quoted

25The OWR lambda is also a function of its estimated magnitude of private information σi. For both the
hybrid model and the OWR model, the estimated magnitude of private information is also decreasing in
size.

26See Equation (11) of Easley et al. (1996), which assumes pL = pH .
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spreads are the time-weighted average proportional bid-ask spreads.

Figure 9 plots the time series of the cross-sectional averages and interquartile ranges of

the price impact measures, the quoted spread, and the five composite information asymmetry

measures. Over the twenty year sample, price impacts initially rose over the 1990s before

falling dramatically following the turn of the century, with the brief exception of the financial

crisis. Quoted spreads have also fallen over the sample period. Note that the time-series of

the hybrid model expected average lambda, λhybrid, and the magnitude of private information,

κ, exhibit similar patterns (Figure 7). The OWR lambda also exhibits similar behavior. PIN,

APIN, and VPIN are much less variable over time.

Table 10 explores the time-series relationships across these measures more formally. For

each firm with at least five years of estimates, we calculate the time-series correlations be-

tween the price impact or quoted spread measure and each model-based composite measure.

Table 10 reports the cross-sectional average of these time-series correlations. For all three

reduced-form price impact estimates and for quoted spreads, λhybrid is the most correlated

composite measure and is significantly more correlated than the other composite measures.

Using the approximately 1600 firms with at least five years of estimates, paired t-tests reject

the nulls that the correlation with λhybrid equals the correlations with the other composite

measures (Panel B of Table 10).

We also explore how the composite measures relate cross-sectionally to the price impact

and quoted spread benchmarks. Table 11 reports cross-sectional regressions of price impacts

and quoted spreads on the composite information asymmetry measures. We run univariate

regressions as well as bivariate regressions including λhybrid and another composite measure.

The information asymmetry measures are standardized to have unit standard deviations. In

univariate regressions, the reduced-form price impact measures and quoted spreads are posi-

tively related to each of the information asymmetry measures. λhybrid generally explains the

most (or second-most) cross-sectional variation in price impacts and explains over a quarter
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of the variation in quoted spreads.27 Perhaps more importantly, λhybrid adds explanatory

power to each of the other composite measures regardless of the benchmark when comparing

the bivariate and univariate regressions. This is true for both the price impact benchmarks

and for quoted spreads.

The hybrid model parameters are estimated using a sample of prices and order flows, so

it is perhaps unsurprising that λhybrid captures reduced-form price impacts well. However,

this critique does not apply to quoted spreads, which are not part of the data used in

the estimation. Tables 10 and 11 show that λhybrid also performs well vis-a-vis alternative

composite measures when quoted spreads are used as the benchmark.

Of course, there remains unexplained variation in both reduced-form price impacts and

quoted spreads. Some empirical work on information asymmetry has aggregated various em-

pirical proxies of information asymmetry to try to capture the multifaceted nature of liquidity

(e.g., Bharath et al., 2009; Korajczyk and Sadka, 2008). The fact that none of the compos-

ite measures, including λhybrid, completely explains price impacts or quoted spreads, lends

credence to such aggregations. Our results suggest that λhybrid or its underlying structural

parameters should be included when empirical researchers wish to aggregate information

asymmetry estimates.

6. Conclusion

We propose a model of informed trading that is a hybrid of the PIN and Kyle models.

Unlike the Kyle model, information events occur with probability less than one as in the

PIN model, and unlike the PIN model, informed orders are endogenously determined as in

the Kyle model. An important implication of the model is that both returns and order flows

are needed to identify information asymmetry parameters. The reason is that order flows

depend on market liquidity, which depends on information asymmetry. This is an indirect

27For the univariate quoted spreads regressions, VPIN has the largest average R2, but its coefficient
estimate is insignificant. This is because VPIN and quoted spreads are negatively correlated cross-sectionally
over the first five years of the sample.

32



dependence of order flows on information asymmetry that is countervailing to the direct

relation. This result suggests that measures of information asymmetry based solely on order

flows (like PIN) may be misspecified.

We estimate the hybrid model and provide several analyses that suggest the estimates

capture cross-sectional and time-series variation in information asymmetry. We illustrate

possible applications of our estimates: a new methodology to detect information events and

a corporate finance application. Our model allows the econometrician to identify distinct

components of information asymmetry such as the probability and magnitude of potential

information events. We hope such refinements will prove useful to future finance and ac-

counting research.

Finally, we compare the parameter estimates to those from other structural models and to

price impacts and quoted spreads. While composite information asymmetry measures from

all of the models are positively correlated with price impacts, the measure from the hybrid

model exhibits higher time-series correlations and incremental cross-sectional explanatory

power for price impacts. To a certain extent, this might be expected, since the measure

from the hybrid model is the expected average Kyle’s lambda, and Kyle’s lambda should

be highly correlated with price impacts. However, the measure from the Odders-White and

Ready (2008) model is also an estimate of a Kyle’s lambda, and it is dominated by the

hybrid model in explaining both time-series and cross-sectional variation in price impacts.

Moreover, the hybrid model measure is also more correlated with quoted spreads than other

measures in the time series and adds explanatory power to each of the other measures in

explaining the cross-section of quoted spreads.
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Appendix A. Proofs

The process Y described in the following lemma is a variation of a Brownian bridge. It

differs from a Brownian bridge in that the endpoint is not uniquely determined but instead is

determined only to lie in an interval—either the lower tail (−∞, yL), the upper tail (yH ,∞) or

the middle region [yL, yH ]—depending on whether there is an information event and whether

the news is good or bad. Part (C) of the lemma follows immediately from the preceding

parts, because the probability (A.3) is the probability that Y1 /∈ [yL, yH ] calculated on the

basis that Y is an FY –Brownian motion with zero drift and standard deviation σ.

Lemma. Let N denote the standard normal distribution function. Let FY = {FYt | 0 ≤ t ≤

1} denote the filtration generated by the stochastic process Y defined by Y0 = 0 and

dYt =
q(t, Yt, ξS)

1− t dt+ dZt . (A.1)

Then, the following are true:

(A) Y is an FY –Brownian motion with zero drift and standard deviation σ.

(B) With probability one,

ξ = 1 and S = L ⇒ Y1 < yL , (A.2a)

ξ = 0 ⇒ yL ≤ Y1 ≤ yH , (A.2b)

ξ = 1 and S = H ⇒ Y1 > yH . (A.2c)

(C) For each t < 1, the probability that ξ = 1 conditional on FYt is

N

(
yL − Yt
σ
√

1− t

)
+ 1− N

(
yH − Yt
σ
√

1− t

)
. (A.3)
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Proof of the Lemma. Set

k(1, y, s) =


1{y<yL} if s = L ,

1{yL≤y≤yH} if s = 0 ,

1{y>yH} if s = H ,

and, for t < 1,

k(t, y, s) =


N
(
yL−y
σ
√

1−t

)
if s = L ,

N
(
yH−y
σ
√

1−t

)
− N

(
yL−y
σ
√

1−t

)
if s = 0 ,

N
(
y−yH
σ
√

1−t

)
if s = H .

Define

`(t, y, s) =
∂ log k(t, y, s)

∂y
,

for t < 1. Then, (1 − t)σ2`(t, y, s) = q(t, y, s) for t < 1, and the stochastic differential

equation (A.1) can be written as

dYt = σ2 `(t, Yt, ξS) dt+ dZt (A.4)

The process Y is an example of a Doob h-transform—see Rogers and Williams (2000).

To put (A.4) in a more standard form, define the two-dimensional process Ŷt = (ξS, Yt)

with random initial condition Ŷ0 = (ξS, 0), and augment (A.4) with the equation d(ξS) = 0.

The existence of a unique strong solution Ŷ to this enlarged system follows from Lipschitz

and growth conditions satisfied by `. See Karatzas and Shreve (1988, Theorem 5.2.9).

The uniqueness in distribution of weak solutions of stochastic differential equations

(Karatzas and Shreve, 1988, Theorem 5.3.10) implies that we can demonstrate Properties

(A) and (B) by exhibiting a weak solution for which they hold. To construct such a weak
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solution, define a new measure Q on F1 using k(1, Z1, ξS)/k(0, 0, ξS) as the Radon-Nikodym

derivative. The definition of k implies that k(t, Zt, ξS) is the Ft–conditional expectation of

the indicator function k(1, Z1, ξS), so k(t, Zt, ξS) is a martingale on the filtration F. By

Girsanov’s Theorem, the process Z∗ defined by Z∗0 = 0 and

dZ∗t = −σ2 `(t, Zt, ξS) dt+ dZt

is a Brownian motion (with zero drift and standard deviation σ) on the filtration F relative

to Q. It follows that Z is a weak solution of (A.4) relative to the Brownian motion Z∗ on

the filtered probability space (Ω,F,Q).

To establish Property (A) for the weak solution, we need to show that Z is a Brownian

motion on (Ω,G,Q). Because Z is a Brownian motion on (Ω,G,P), it suffices to show that

Q = P when both are restricted to G1. This holds if for all t1 < · · · < tn ≤ 1 and all Borel

B we have

P((Zt1 , . . . , Ztn) ∈ B) = Q((Zt1 , . . . , Ztn) ∈ B) . (A.5)

The right-hand side of (A.5) equals

E

[
k(1, Z1, ξS)

k(0, 0, ξS)
1B(Zt1 , . . . , Ztn)

]
,

which can be represented as the following sum:

αpLE

[
k(1, Z1, ξS)

k(0, 0, ξS)
1B(Zt1 , . . . , Ztn) | ξS = L

]
+ (1− α)E

[
k(1, Z1, ξS)

k(0, 0, ξS)
1B(Zt1 , . . . , Ztn) | ξ = 0

]
+ αpHE

[
k(1, Z1, ξS)

k(0, 0, ξS)
1B(Zt1 , . . . , Ztn) | ξS = H

]
.
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Using the definitions of yL, yH , and k, this equals

E
[
1{Z1<yL}1B(Zt1 , . . . , Ztn) | ξS = L

]
+ E

[
1{yL≤Z1≤yL}1B(Zt1 , . . . , Ztn) | ξ = 0

]
+ E

[
1{Z1>yH}1B(Zt1 , . . . , Ztn) | ξS = H

]
.

The P–independence of Z and ξS imply that the conditional expectations equal the uncon-

ditional expectations, so adding the three terms gives

E [1B(Zt1 , . . . , Ztn)] = P((Zt1 , . . . , Ztn) ∈ B) .

This completes the proof that Z is a Brownian motion on (Ω,G,Q).

To establish Property (B) for the weak solution of (A.4), we need to show that

Q(Z1 < yL | ξS = L) = 1 , (A.6a)

Q(yL ≤ Z1 ≤ yH | ξ = 0) = 1 , (A.6b)

Q(Z1 > yH) | ξS = H) = 1 . (A.6c)

Consider (A.6a). We have

Q(ξS = L) = E

[
k(1, Z1, ξS)

k(0, 0, ξS)
1{ξS=L}

]
= E

[
k(1, Z1, L)

k(0, 0, L)
1{ξS=L}

]
= E

[
1{Z1<yL}1{ξS=L}

]/
αpL

= αpL ,

using the definition of k for the third equality and the P–independence of Z and ξS for the
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last equality. By similar reasoning,

Q(Z1 < yL, ξS = L) = E

[
k(1, Z1, ξS)

k(0, 0, ξS)
1{Z1<yL}1{ξS=L}

]
= E

[
k(1, Z1, L)

k(0, 0, L)
1{Z1<yL}1{ξS=L}

]
= E

[
1{Z1<yL}1{ξS=L}

]/
αpL

= αpL .

Thus,

Q(Z1 < yL | ξS = L) =
Q(Z1 < yL, ξS = L)

Q(ξS = L)
=
αpL
αpL

= 1 .

Conditions (A.6b) and (A.6c) can be verified by the same logic.

Proof of Theorem 1. It is explained in the text why the equilibrium condition (1) holds. It

remains to show that the strategy (5) is optimal for the informed trader. Let G def
= {Gt | 0 ≤

t ≤ T} denote the completion of the filtration generated by Z, form the enlarged filtration

with σ–fields Gt ∨ σ(ξS), and let F def
= {Ft | 0 ≤ t ≤ T} denote the completion of the

enlarged filtration. The filtration F represents the informed trader’s information.

Define

J(1, y, L) = −L(y − yL)1{y>yL} +H(y − yH)1{y>yH} ,

J(1, y, 0) = −L(yL − y)1{y<yL} +H(y − yH)1{y>yH} ,

J(1, y,H) = −L(yL − y)1{y<yL} +H(yH − y)1{y<yH} .

For t < 1 and s ∈ {L, 0, H}, set J(t, y, s) = E[J(t, Z1, s) | Zt = y]. Then, J(t, Zt, ξS) is an

F–martingale, so it has zero drift. From Itô’s formula, its drift is

∂

∂t
J(t, Zt, ξS) +

1

2
σ2 ∂

2

∂z2
J(t, Zt, ξS) .
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Equating this to zero, Itô’s formula implies

J(1, Y1, ξS) = J(0, 0, ξS) +

∫ 1

0

dJ(t, Yt, ξS) = J(0, 0, ξS) +

∫ 1

0

∂J(t, Yt, ξS)

∂y
dYt .

Therefore,

E[J(1, Y1, ξS)− J(0, 0, ξS)] = E

∫ 1

0

∂J(t, Yt, ξS)

∂y
dYt . (A.7)

To calculate ∂J(t, y, s)/∂y, use the fact that, by independent increments,

J(t, y, s) = E[J(t, Z1, s) | Zt = y] = E[J(t, Z1 − Zt + y, s)]

to obtain

∂J(t, y, s)

∂y
= E

[
∂

∂y
J(t, Z1 − Zt + y, s)

]
.

Now, note that, for any real number a excluding the kinks at yL − y and yH − y,

∂

∂y
J(1, a+ y, L) = −L1{a>yL−y} +H1{a>yH−y} ,

∂

∂y
J(1, a+ y, 0) = L1{a<yL−y} +H1{a>yH−y} ,

∂

∂y
J(1, a+ y,H) = L1{a<yL−y} −H1{a<yH−y} .

Therefore,

∂J(t, y, L)

∂y
= −LN

(
y − yL
σ
√

1− t

)
+H N

(
y − yH
σ
√

1− t

)
,

∂J(t, y, 0)

∂y
= LN

(
yL − y
σ
√

1− t

)
+H N

(
y − yH
σ
√

1− t

)
,

∂J(t, y,H)

∂y
= LN

(
yL − y
σ
√

1− t

)
−H N

(
yH − y
σ
√

1− t

)
.
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Now, the definition (6) gives us

∂J(t, y, s)

∂y
= p(t, y)− s

for all s ∈ {L, 0, H}. Substituting this into (A.7) gives us

E[J(1, Y1, ξS)− J(0, 0, ξS)] = E

∫ 1

0

[p(t, Yt)− ξS] dYt . (A.8)

The “no doubling strategies” condition implies that
∫
p dZ is a martingale, so the right-hand

side of this equals

E

∫ 1

0

[p(t, Yt)− ξS]θt dt .

Rearranging produces

E

∫ 1

0

[ξS − p(t, Yt)]θt dt = E[J(0, 0, ξS)− J(1, Y1, ξS)] ≤ E[J(0, 0, ξS)] ,

using the fact that J(1, y, s) ≥ 0 for all (y, s) for the inequality. Thus, E[J(0, 0, ξS)] is an

upper bound on the expected profit, and the bound is achieved if and only if J(1, Y1, ξS) = 0

with probability one. By the definition of J(1, y, s), this is equivalent to Y1 < yL with

probability one when ξS = L, yL ≤ Y1 ≤ yH with probability one when ξ = 0, and Y1 > yH

with probability one when ξS = H. By part (B) of the proposition, the strategy (5) is

therefore optimal.

Proof of Theorem 2. By Itô’s formula and the fact that (dY )2 = (dZ)2 = σ2 dt, we have

dp(t, Yt) =

(
pt(t, Yt) +

1

2
σ2pyy(t, Yt)

)
dt+ py(t, Yt) dYt ,

where we use subscripts to denote partial derivatives. Both Y and p(t, Yt) are martingales

with respect to the market makers’ information, so the drift term must be zero. That can

also be verified by direct calculation of the partial derivatives, using the formula (6) for
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p(t, y). Thus,

dp(t, Yt) = py(t, Yt) dYt .

A direct calculation based on the formula (6) for p(t, y) shows that py(t, y) = λ(t, y) defined

in (7).

To see that λ(t, Yt) is a martingale for t ∈ [0, 1), with respect to market makers’ infor-

mation, we can calculate, for t < u < 1,

E[λ(u, Yu) | Yt = y] = − L

σ
√

1− u ·
∫ ∞
−∞

n

(
yL − y′
σ
√

1− u

)
f(y′ | u− t, y)dy′

+
H

σ
√

1− u ·
∫ ∞
−∞

n

(
yH − y′
σ
√

1− u

)
f(y′ | u− t, y)dy′ ,

where f(· | τ, y) denotes the normal density function with mean y and variance σ2τ . A

straightforward calculation shows that this equals λ(t, y). For example, to evaluate the first

term, use the fact that

1

σ
√

1− u n

(
yL − y′
σ
√

1− u

)
f(y′ | u− t, y)

=
1

σ
√

1− t n

(
yL − y
σ
√

1− t

)
× 1√

2πσ2(1− u)(u− t)/(1− t)

× exp

(
−
(

1− t
2(1− u)(u− t)σ2

)(
y′ − (1− u)y + (u− t)yL

1− t

)2
)
,

which integrates to

1

σ
√

1− t n

(
yL − y
σ
√

1− t

)
,

because the other factors constitute a normal density function.
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Appendix B. Hybrid Model Likelihood Function

Assume the trading period [0, 1] corresponds to a day. This implies that any private

information becomes public before trading opens on the following day.28 We can estimate

the model parameters using intraday price and order flow information. If we assume further

that the model parameters are stable over time, then the price and order flow information

from multiple days can be merged to estimate the parameters with greater precision.

To obtain stationarity in returns, assume that the possible signal realizations on each

day are proportional to the observed opening price. Specifically, on each day i, assume that

the possible signal realizations are

Li = 2(pL − 1)κPi0 ,

Hi = 2pLκPi0 ,

where Pi0 denotes the opening price on day i and where κ is a parameter to estimated.

With this specification, the signal on each day has a zero mean, and (Hi − Li)/Pi0 = 2κ.

Thus, κ measures the signal magnitude. Denote the pricing function on day i (as specified

in Theorem 1) by pi(t, y), and let p(t, y) denote the pricing function when the possible signal

realizations are L = 2(pL − 1)κ and H = 2pLκ. Then, pi(t, y)/Pi0 = p(t, y).

The price at time t on day i is Vit + pi(t, Yit), and in particular the opening price is

Pi0 = Vi0, so the gross return through time t is

Pit
Pi0

=
Vit
Vi0

+
pi(t, Yit)

Pi0
=
Vit
Vi0

+ p(t, Yit) . (B.1)

28In contrast to Odders-White and Ready (2008), our estimation does not use overnight returns. In our
theoretical model, private information that is made public at the close of trading is incorporated into prices
before trading ends (convergence to strong-form efficiency). Thus, overnight returns in our model are due
to arrival of new public information, which does not aid in estimating the model.
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Assume

dVit
Vit

= δ dBit

for a constant δ and a Brownian motion Bi, so we have

Pit
Pi0

= p(t, Yit) + eδBit−δ2t/2 .

Assume the price and order imbalance are observed at times t1, . . . , tk+1 each day with

tk+1 = 1 being the close and the other times being equally spaced: tj = j∆ for ∆ > 0 and

j ≤ k. Let Pij denote the observed price and Yij the observed order imbalance at time tj on

date i. Let Γ denote the (k+1)–dimensional vector defined by Γj = tj/∆ for j = 1, . . . , k+1.

Let Σ denote the (k + 1)× (k + 1) matrix defined by Σjj′ = min(Γj,Γj′).

Let Ui denote the vector of log pricing differences as defined in (10). The density function

of (Pi1/Pi0, . . . , Pi,k+1/Pi0) conditional on Yi is

f(Ui1, . . . Ui,k+1)e−
∑k+1

j=1 Uij ,

where f denotes the multivariate normal density function with mean vector −(δ2∆/2)Γ and

covariance matrix δ2∆Σ. Furthermore, on each day i, the vector Yi = (Yi,t1 , . . . , Yi,tk+1
)′ is

normally distributed with mean 0 and covariance matrix σ2∆Σ.

Let Li denote the log-likelihood function for day i. Dropping terms that do not depend

on the parameters, we have

− Li = (k + 1) log σ +
1

2σ2∆
Y ′i Σ

−1Yi + (k + 1) log δ

+
1

2δ2∆

(
Ui +

δ2∆

2
Γ

)′
Σ−1

(
Ui +

δ2∆

2
Γ

)
+

k+1∑
j=1

Uij .
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Using the facts that Γ′Σ−1 = (0, . . . , 0, 1) and Γ′Σ−1Γ = 1/∆, this simplifies to

− Li = (k + 1) log σ +
1

2σ2∆
Y ′i Σ

−1Yi + (k + 1) log δ

+
1

2δ2∆
U ′iΣ

−1Ui +
1

2
Ui,k+1 +

δ2

8
+

k+1∑
j=1

Uij .

Hence, the log-likelihood function L for an observation period of n days satisfies (9).
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Easley, D., López de Prado, M., O’Hara, M., 2014. VPIN and the flash crash: A rejoinder.
Journal of Financial Markets 17, 47–52.

Fama, E.F., MacBeth, J.D., 1973. Risk, return, and equilibrium: Empirical tests. Journal
of Political Economy 81, 607–636.

Ferreira, M.A., Laux, P.A., 2007. Corporate governance, idiosyncratic risk, and information
flow. Journal of Finance 62, 951–989.

Foster, F.D., Viswanathan, S., 1995. Can speculative trade explain the volume-volatility
relation? Journal of Business & Economic Statistics 13, 379–396.

Frankel, R., Li, X., 2004. Characteristics of a firm’s information environment and the infor-
mation asymmetry between insiders and outsiders. Journal of Accounting and Economics
37, 229–259.

Gan, Q., Wei, W.C., Johnstone, D., 2014. Does the probability of informed trading model
fit empirical data? Working Paper.

46



Glosten, L.R., Harris, L.E., 1988. Estimating the components of the bid/ask spread. Journal
of Financial Economics 21, 123–142.

Glosten, L.R., Milgrom, P.R., 1985. Bid, ask and transaction prices in a specialist market
with heterogeneously informed traders. Journal of Financial Economics 14, 71–100.

Goldstein, I., Guembel, A., 2008. Manipulation and the allocational role of prices. Review
of Economic Studies 75, 133–164.

Goyenko, R.Y., Holden, C.W., Trzcinka, C.A., 2009. Do liquidity measures measure liquid-
ity? Journal of Financial Economics 92, 153–181.

Hasbrouck, J., 1988. Trades, quotes, inventories, and information. Journal of Financial
Economics 22, 229–252.

Hasbrouck, J., 1991. Measuring the information content of stock trades. Journal of Finance
46, 179–207.

Hasbrouck, J., 2009. Trading costs and returns for U.S. equities: Estimating effective costs
from daily data. Journal of Finance 64, 1445–1477.

Hendershott, T., Moulton, P., 2011. Automation, speed, and stock market quality: The
NYSE’s hybrid. Journal of Financial Markets 14, 568–604.

Holden, C.W., Jacobsen, S., 2014. Liquidity measurement problems in fast, competitive
markets: Expensive and cheap solutions. Journal of Finance 69, 1747–1785.

Holden, C.W., Subrahmanyam, A., 1992. Long-lived private information and imperfect
competition. Journal of Finance , 247–270.

Hwang, L.S., Lee, W.J., Lim, S.Y., Park, K.H., 2013. Does information risk affect the implied
cost of equity capital? An analysis of PIN and adjusted PIN. Journal of Accounting and
Economics 55, 148–167.

Jayaraman, S., 2008. Earnings volatility, cash flow volatility, and informed trading. Journal
of Accounting Research 46, 809–851.

Karatzas, I., Shreve, S.E., 1988. Brownian Motion and Stochastic Calculus. Springer-Verlag,
New York.

Kim, O., Verrecchia, R.E., 1997. Pre-announcement and event-period private information.
Journal of Accounting and Economics 24, 394–419.

Korajczyk, R.A., Sadka, R., 2008. Pricing the commonality across alternative measures of
liquidity. Journal of Financial Economics 87, 45–72.

Krinsky, I., Lee, J., 1996. Earnings announcements and the components of the bid-ask
spread. Journal of Finance 51, 1523–1535.

Kyle, A.S., 1985. Continuous auctions and insider trading. Econometrica 53, 1315–1336.

47



Lee, C.M., Ready, M.J., 1991. Inferring trade direction from intraday data. Journal of
Finance 46, 733–746.

Li, H., Wang, J., Wu, C., He, Y., 2009. Are liquidity and information risks priced in the
Treasury bond market? Journal of Finance 64, 467–503.

Mohanram, P., Rajgopal, S., 2009. Is PIN priced risk? Journal of Accounting and Economics
47, 226–243.

Newey, W.K., West, K.D., 1987. A simple, positive semi-definite, heteroskedasticity and
autocorrelation consistent covariance matrix. Econometrica 55, 703–708.

Odders-White, E.R., Ready, M.J., 2008. The probability and magnitude of information
events. Journal of Financial Economics 87, 227–248.

Rogers, L.C.G., Williams, D., 2000. Diffusions, Markov Processes and Martingales: Vol. 2:
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Table 1: Hybrid model parameter estimate summary statistics
The model is estimated on a stock-year basis for NYSE stocks from 1993 through 2012 using prices and
order imbalances in six hourly intraday bins and at the close. The model parameters are α = prob-
ability of an information event, κ = signal scale parameter, σ = standard deviation of liquidity trading,
δ = volatility of public information, and pL = probability of a negative event.

α κ pL σ δ
Mean 0.64 0.0068 0.51 0.12 0.0213

Std Deviation 0.25 0.0050 0.15 0.11 0.0087

First Quartile 0.54 0.0032 0.46 0.05 0.0149

Median 0.68 0.0058 0.50 0.08 0.0197

Third Quartile 0.81 0.0095 0.56 0.16 0.0258
N 19,965 19,965 19,965 19,965 19,965



Table 2: Hybrid model parameter estimates and moments of order flow and returns
The dependent variables are the estimated parameters from the hybrid model. The explanatory variables
are various moments of order flows and returns. The unit of observation is a firm-year. OIB denotes the
cumulative order flow over the full day. OIB1 and OIB2 are the order flows over the first 3 and last 3.5 hours
of the trading day. Similarly, R is the return over the full day, and R1 and R2 are returns over the first 3 and
last 3.5 hours of the trading day. The indicated moments of these variables are calculated across days for
each firm-year. # Right Tail OIB & R is the fraction of days where both OIB > sd(OIB) and R−1 > sd(R).
# Left Tail OIB & R is the fraction of days where both OIB < −sd(OIB) and R − 1 < −sd(R). Panel A
reports estimates where all variables are standardized to have a unit standard deviation. Standard errors
are clustered by firm and year. t statistics are in parentheses, and statistical significance is represented by
* p < 0.10, ** p < 0.05, and *** p < 0.01. Panel B reports a variance decomposition. Each number in Panel
B represents the fraction of the model’s total partial sum of squares corresponding to the moment in the
row. The sum of each column is thus one.

Panel A. Standardized Regression α κ pL σ δ
sd(OIB) -0.129∗∗∗ 0.007 -0.089∗∗∗ 0.986∗∗∗ -0.000

(-5.57) (0.38) (-6.17) (135.67) (-0.02)
sd(R) 0.155∗∗∗ 0.460∗∗∗ 0.016 -0.007 0.963∗∗∗

(5.15) (7.89) (1.39) (-1.46) (138.47)
skew(OIB) 0.007 0.003 -0.058∗∗∗ 0.003 0.006∗

(1.02) (0.39) (-6.11) (0.79) (1.69)
skew(R) -0.008 0.009 0.047∗∗∗ -0.001 0.005∗

(-1.05) (1.51) (4.33) (-0.41) (1.95)
corr(R1,OIB1) 0.258∗∗∗ 0.484∗∗∗ -0.018 0.009 0.039∗∗∗

(5.40) (17.25) (-0.80) (1.26) (2.96)
corr(R1,OIB2

1) -0.039∗∗∗ -0.018 0.185∗∗∗ -0.003 -0.008∗

(-3.16) (-1.29) (5.73) (-1.12) (-1.92)
corr(R2,OIB2) 0.218∗∗∗ 0.314∗∗∗ -0.034 -0.012∗∗ -0.022∗∗

(6.10) (14.92) (-1.26) (-2.14) (-1.97)
corr(R2,OIB2

2) -0.049∗∗∗ -0.028∗∗ 0.099∗∗∗ -0.001 -0.009∗∗

(-5.79) (-2.04) (4.19) (-0.41) (-2.52)
# Right Tail OIB & R -0.122∗∗∗ -0.103∗∗∗ -0.128∗∗∗ 0.011∗ -0.074∗∗∗

(-4.17) (-5.59) (-3.86) (1.76) (-5.95)
# Left Tail OIB & R -0.163∗∗∗ -0.063∗∗∗ 0.029 0.005 0.012∗

(-7.39) (-6.66) (1.38) (0.65) (1.67)
Constant 2.159∗∗∗ -0.482∗∗∗ 3.439∗∗∗ 0.068∗∗∗ 0.118∗∗∗

(17.04) (-4.53) (60.66) (3.56) (5.39)
Observations 19965 19965 19965 19965 19965
Adjusted R2 0.152 0.680 0.040 0.978 0.938

Panel B. Variance Decomposition α κ pL σ δ
sd(OIB) 0.125 0.000 0.127 1.000 0.000

sd(R) 0.237 0.636 0.005 0.000 0.997

skew(OIB) 0.000 0.000 0.075 0.000 0.000

skew(R) 0.001 0.000 0.047 0.000 0.000

corr(R1,OIB1) 0.221 0.240 0.002 0.000 0.001

corr(R1,OIB2
1) 0.009 0.001 0.458 0.000 0.000

corr(R2,OIB2) 0.159 0.101 0.008 0.000 0.000

corr(R2,OIB2
2) 0.016 0.002 0.137 0.000 0.000

# Right Tail OIB & R 0.055 0.012 0.128 0.000 0.002

# Left Tail OIB & R 0.176 0.008 0.012 0.000 0.000
Observations 19965 19965 19965 19965 19965
Adjusted R2 0.152 0.680 0.040 0.978 0.938
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Table 3: Panel regressions of price impacts
The independent variables are the estimated probability α of an information event, the magnitude κ of an
information event (Panel A) and the standard deviation of the signal (SD(ξS)) (Panel B). The dependent
variables are the 5-minute price impact, the cumulative impulse response estimated following Hasbrouck
(1991), and an estimate of Kyle’s lambda (λ̂intraday) using a regression of 5-minute returns on the square-
root of signed volume following Hasbrouck (2009) and Goyenko et al. (2009). All variables are standardized
to have a unit standard deviation. Standard errors are clustered by firm and year. t statistics are in
parentheses, and statistical significance is represented by * p < 0.10, ** p < 0.05, and *** p < 0.01.

Panel A. Probability and Magnitude of Information Events

5-Minute Cumulative

Price Impact Impulse Response λ̂intraday

(1) (2) (3) (4) (5) (6)

α 0.22∗∗∗ 0.09∗∗∗ 0.17∗∗∗ 0.06∗∗∗ 0.23∗∗∗ 0.12∗∗∗

(5.15) (4.00) (3.95) (2.93) (4.88) (4.13)

κ 0.58∗∗∗ 0.35∗∗∗ 0.42∗∗∗ 0.23∗∗∗ 0.67∗∗∗ 0.48∗∗∗

(16.03) (9.29) (9.86) (6.44) (10.74) (8.27)

Observations 19965 19965 19965 19965 19965 19965
R2 0.591 0.800 0.625 0.829 0.369 0.642
Year FE Yes Yes Yes Yes Yes Yes
Firm FE No Yes No Yes No Yes

Panel B. Unconditional Signal Standard Deviation

5-Minute Cumulative

Price Impact Impulse Response λ̂intraday

(1) (2) (3) (4) (5) (6)

SD(ξS) 0.72∗∗∗ 0.50∗∗∗ 0.54∗∗∗ 0.34∗∗∗ 0.83∗∗∗ 0.67∗∗∗

(26.04) (18.11) (13.27) (8.72) (11.64) (12.46)

Observations 19965 19965 19965 19965 19965 19965
R2 0.635 0.823 0.655 0.842 0.438 0.679
Year FE Yes Yes Yes Yes Yes Yes
Firm FE No Yes No Yes No Yes
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Table 4: Panel regressions of end-of-day absolute returns
The dependent variable is the absolute return over the last three and a half hours of the day (expressed
in basis points). The model-implied price impact, λ(t, Yt), is defined in Equation (7) and is based on the
cumulative order flow over the first three hours of the day. Lag Abs Ret is the absolute daily return from
the previous day. Abs OIB is the absolute value of the cumulative order flow over the first three hours of
the day. Panel A uses daily data simulated from the panel of estimated parameters for NYSE firms. Panel
B uses the actual daily data. Standard errors are clustered by firm and year and are reported in brackets.
Statistical significance is represented by * p < 0.10, ** p < 0.05, and *** p < 0.01.

Panel A. Simulated
(1) (2) (3) (4)

λ(t, Yt) 122.90∗∗∗ 101.80∗∗∗ 50.91∗∗∗ 50.91∗∗∗

[17.63] [15.14] [9.44] [9.44]

Constant 121.30∗∗∗

[7.67]

Observations 5031180 5031180 5031180 5031180
R2 0.013 0.073 0.157 0.157
Year FE No Yes Yes Yes
Firm FE No No Yes Yes
Data Simulated Simulated Simulated Simulated

Panel B. Actual
(1) (2) (3) (4)

λ(t, Yt) 96.28∗∗∗ 83.81∗∗∗ 37.76∗∗∗ 48.94∗∗∗

[9.80] [7.35] [5.18] [4.90]

Lag Abs Ret 0.15∗∗∗

[0.01]

Abs OIB 7.10∗∗∗

[0.37]

Constant 83.91∗∗∗

[5.11]

Observations 4918667 4918667 4918667 4918667
R2 0.012 0.056 0.114 0.136
Year FE No Yes Yes Yes
Firm FE No No Yes Yes
Data Actual Actual Actual Actual
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Table 5: Average conditional probabilities and earnings surprises
The conditional probability of an information event (CPIE) is defined in Equation (13). CPIE is the sum
of the conditional probabilities of good and bad events, CPIE+ and CPIE−, respectively. The conditional
probabilities are expressed as percents. The reported estimates are the differences in average conditional
probabilities of information events for the indicated quantile of absolute earnings surprises (|SUE|) or earnings
surprise (SUE) relative to other observations. Panel A divides the sample into above and below median
absolute or signed surprises. Panel B uses the top and bottom quartiles, and Panel C uses the top and
bottom deciles. The first three columns report the incremental averages of CPIE, CPIE+, and CPIE−,
respectively, for the five days preceding the earnings announcement. The last three columns report the
incremental average conditional probabilities for the five days following the earnings announcement. The
regressions control for firm and year fixed effects, and standard errors are clustered by firm and year. t
statistics of the differences are in parentheses, and statistical significance is represented by * p < 0.10, **
p < 0.05, and *** p < 0.01.

Panel A. Above/Below Median Absolute or Signed Surprise
Pre-Announcement Post-Announcement

CPIE CPIE+ CPIE− CPIE CPIE+ CPIE−

Top Half |SUE| 0.79∗∗ 1.52∗∗∗

(2.45) (4.40)

Top Half SUE 0.47∗ 1.45∗∗∗

(1.89) (3.31)

Bottom Half SUE 0.60∗∗ 2.10∗∗∗

(2.24) (6.14)

Panel B. Top/Bottom Quartile Absolute or Signed Surprise
Pre-Announcement Post-Announcement

CPIE CPIE+ CPIE− CPIE CPIE+ CPIE−

Top Quartile |SUE| 1.57∗∗∗ 3.06∗∗∗

(4.48) (8.80)

Top Quartile SUE 0.73∗∗ 2.32∗∗∗

(2.40) (5.87)

Bottom Quartile SUE 1.15∗∗∗ 3.07∗∗∗

(3.02) (6.32)

Panel C. Top/Bottom Decile Absolute or Signed Surprise
Pre-Announcement Post-Announcement

CPIE CPIE+ CPIE− CPIE CPIE+ CPIE−

Top Decile |SUE| 2.77∗∗∗ 4.76∗∗∗

(5.22) (9.38)

Top Decile SUE 1.24∗∗∗ 3.29∗∗∗

(3.63) (6.90)

Bottom Decile SUE 1.97∗∗∗ 4.11∗∗∗

(3.74) (7.51)
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Table 6: Average levels of the CPIE on days when Schedule 13D filers do or do not trade
The conditional probability of an information event (CPIE) is defined in Equation (13). CPIE is expressed
as a percent. The sample contains trading days in the sixty-day disclosure period prior to a Schedule 13D
filing date for NYSE firms in the sample of Collin-Dufresne and Fos (2015). The first column reports the
average CPIE on days when Schedule 13D filers trade. The second column reports the average CPIE on
days when Schedule 13D filers do not trade. The third column reports the differences between the two types
of days. We report the analysis for two subperiods, the first and second halves of the disclosure period (days
[t − 60, t − 31] and [t − 30, t − 1], respectively). Standard errors are clustered by event. t statistics of the
differences are in parentheses, and statistical significance is represented by * p < 0.10, ** p < 0.05, and ***
p < 0.01.

Days with Days with No
Informed Trading Informed Trading Difference

(1) (2) (3)

Full Disclosure Window:
Days [t− 60, t− 1]

CPIE 69.5 61.7 7.8∗∗∗

(4.86)

1st Half of Disclosure Window:
Days [t− 60, t− 31]

CPIE 66.7 61.3 5.3∗∗

(2.35)

2nd Half of Disclosure Window:
Days [t− 30, t− 1]

CPIE 71.2 62.0 9.2∗∗∗

(4.94)
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Table 7: Panel regressions of corporate investment
The dependent variable is capital expenditures. The independent variable Q is market-to-book of assets.
PIN is the probability of informed trading from Easley et al. (1996). SD(ξS) is the standard deviation of
the signal ξS as in Equation (12). OFC is the proportion of return variance due to private information (the
order-flow component of prices) as in Equation (15). α is the probability of an information event in either the
PIN or hybrid model. κhybrid is the magnitude of an information event and σhybrid is the standard deviation
of liquidity trading from the hybrid model. ε/µ is the ratio of the liquidity to informed trading intensities
from PIN. Each information environment variable is standardized to have unit standard deviation. CF is
firm cash flows. RET is the cumulative return over the next three years. INV ASSET is the inverse of the
book value of assets. Standard errors are clustered by firm and year. t statistics are in parentheses, and
statistical significance is represented by * p < 0.10, ** p < 0.05, and *** p < 0.01.

(1) (2) (3) (4) (5) (6)

Q 1.62∗∗∗ 1.19∗∗∗ 2.08∗∗∗ 1.16∗∗∗ 1.28∗∗∗ 0.98∗∗∗

(8.27) (4.67) (7.24) (4.50) (5.33) (3.11)
Q× PIN 0.19∗∗∗

(2.63)
Q× αPIN 0.00

(0.01)
Q× ε

µ -0.29∗∗∗

(-2.61)
Q× SD(ξS) 0.28∗∗∗

(3.31)
Q×OFC 0.22∗∗

(2.44)
Q× αhybrid 0.17∗∗∗

(3.91)
Q× κhybrid 0.26∗∗∗

(3.43)
Q× σhybrid -0.19∗

(-1.80)
CF 7.55∗∗∗ 7.58∗∗∗ 7.72∗∗∗ 7.74∗∗∗ 7.86∗∗∗ 7.56∗∗∗

(5.35) (5.37) (5.45) (5.49) (5.47) (5.43)
RET -0.18 -0.18 -0.19 -0.16 -0.19 -0.19

(-1.52) (-1.49) (-1.62) (-1.48) (-1.64) (-1.64)
INV ASSET 0.56∗∗∗ 0.52∗∗ 0.51∗∗ 0.55∗∗∗ 0.52∗∗ 0.46∗∗

(2.72) (2.57) (2.51) (2.67) (2.53) (2.29)
PIN -0.23∗∗∗

(-2.73)
αPIN 0.01

(0.11)
ε
µ 0.31∗∗

(2.20)
SD(ξS) -0.52∗∗∗

(-4.04)
OFC -0.16

(-1.38)
αhybrid -0.22∗∗∗

(-3.36)
κhybrid -0.40∗∗∗

(-3.68)
σhybrid -0.32

(-1.41)

Adjusted R2 0.745 0.746 0.746 0.747 0.746 0.748
Year FE Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes



Table 8: Correlations of structural parameters from the hybrid and other models
For all models, α = probability of an information event. For the hybrid model, λhybrid is the expected
average lambda λ(0, 0) based on Equation (8). PIN, APIN, and VPIN are the probabilities of informed
trading estimated using the methodologies in Easley et al. (1996), Duarte and Young (2009), and Easley
et al. (2012), respectively. λOWR is the estimate of Kyle’s lambda from Odders-White and Ready (2008).
σhybrid and σu are the standard deviations of liquidity trading from the hybrid and OWR models, respectively.
ε/µ and (ε + θη)/µ are the ratios of the liquidity to informed trading intensities from the PIN and APIN
models, respectively.

Panel A. Composite Measures
λhybrid PIN λOWR APIN VPIN

λhybrid 1.00

PIN 0.35 1.00

λOWR 0.55 0.17 1.00

APIN 0.42 0.58 0.19 1.00

VPIN 0.56 0.42 0.26 0.48 1.00

Panel B. Probability of an Information Event
αhybrid αPIN αOWR αAPIN VPIN

αhybrid 1.00

N/AαPIN -0.09 1.00

αOWR -0.09 0.05 1.00

αAPIN -0.01 0.25 0.04 1.00

Panel C. Liquidity Trading

σhybrid
ε
µ σu

ε+θη
µ VPIN

σhybrid 1.00

N/A
ε
µ 0.57 1.00

σu 0.92 0.51 1.00
ε+θη
µ 0.53 0.83 0.48 1.00
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Table 9: Average values of parameter estimates within market capitalization deciles
Stocks are sorted into capitalization deciles annually. For all models, α = probability of an information
event. For the hybrid model, λhybrid is the expected average lambda λ(0, 0) based on Equation (8). PIN,
APIN, and VPIN are the probabilities of informed trading estimated using the methodologies in Easley
et al. (1996), Duarte and Young (2009), and Easley et al. (2012), respectively. λOWR is the estimate of
Kyle’s lambda from Odders-White and Ready (2008). σhybrid and σu are the standard deviations of liquidity
trading from the hybrid and OWR models, respectively. ε/µ and (ε + θη)/µ are the ratios of the liquidity
to informed trading intensities from the PIN and APIN models, respectively.

Panel A. Composite Measures
λhybrid PIN λOWR APIN VPIN

1 (Small) 0.200 0.18 0.139 0.15 0.28
2 0.144 0.15 0.089 0.13 0.27
3 0.111 0.14 0.068 0.12 0.25
4 0.085 0.13 0.058 0.12 0.24
5 0.066 0.13 0.048 0.11 0.23
6 0.052 0.12 0.040 0.10 0.23
7 0.042 0.12 0.034 0.10 0.22
8 0.035 0.11 0.032 0.09 0.21
9 0.025 0.09 0.024 0.08 0.20
10 (Large) 0.020 0.08 0.020 0.07 0.18

Panel B. Probability of an Information Event
αhybrid αPIN αOWR αAPIN VPIN

1 (Small) 0.74 0.31 0.11 0.41

N/A

2 0.71 0.33 0.12 0.44
3 0.69 0.34 0.12 0.44
4 0.67 0.35 0.12 0.45
5 0.65 0.36 0.14 0.45
6 0.63 0.36 0.14 0.45
7 0.62 0.38 0.15 0.46
8 0.59 0.38 0.17 0.46
9 0.56 0.39 0.18 0.46
10 (Large) 0.52 0.39 0.23 0.47

Panel C. Liquidity Trading

σhybrid
ε
µ σu

ε+θη
µ VPIN

1 (Small) 0.06 0.73 0.04 1.24

N/A

2 0.06 0.94 0.04 1.51
3 0.07 1.06 0.05 1.69
4 0.08 1.19 0.06 1.84
5 0.09 1.28 0.08 1.97
6 0.11 1.38 0.09 2.08
7 0.12 1.55 0.11 2.26
8 0.15 1.74 0.14 2.50
9 0.19 2.13 0.19 2.83
10 (Large) 0.29 2.64 0.33 3.42
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Table 10: Time-series correlations of reduced-form and structural estimates
The table reports cross-sectional averages of the time-series correlation between reduced-form liquidity es-
timates (each column) and the composite structural information asymmetry variables (each row). The
reduced-form liquidity variables are the 5-minute price impact, the cumulative impulse response estimated
following Hasbrouck (1991), an estimate of Kyle’s lambda (λ̂intraday) using a regression of 5-minute returns
on the square-root of signed volume following Hasbrouck (2009) and Goyenko et al. (2009), and the pro-
portional quoted spread. The time-series correlation is calculated for each firm with at least five years of
observations. Panel A reports the cross-sectional average of the time-series correlations. Panel B reports
t-statistics of paired t-tests of the time-series correlation of λhybrid with the variable in the column header
relative to the corresponding correlation for the composite variable in each row.

Panel A. Average time-series correlations
5-Minute Cum. Impulse Quoted

Price Impact Response λ̂intraday Spread
λhybrid 0.641 0.702 0.584 0.619
PIN 0.297 0.327 0.238 0.346
λOWR 0.331 0.343 0.309 0.331
APIN 0.379 0.448 0.310 0.449
VPIN 0.513 0.520 0.407 0.441

Panel B. t-statistics of paired t-tests of differences
5-Minute Cum. Impulse Quoted

Price Impact Response λ̂intraday Spread
PIN 30.5∗∗∗ 34.1∗∗∗ 30.7∗∗∗ 23.5∗∗∗

λOWR 33.5∗∗∗ 39.9∗∗∗ 29.3∗∗∗ 30.6∗∗∗

APIN 24.3∗∗∗ 23.8∗∗∗ 25.6∗∗∗ 15.1∗∗∗

VPIN 11.0∗∗∗ 15.7∗∗∗ 15.7∗∗∗ 13.7∗∗∗
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Table 11: Fama and MacBeth (1973) cross-sectional regressions of price impacts and quoted
spreads
The dependent variables in Panels A-D are the 5-minute price impact, the cumulative impulse response
estimated following Hasbrouck (1991), an estimate of Kyle’s lambda (λ̂intraday) using a regression of 5-
minute returns on the square-root of signed volume following Hasbrouck (2009) and Goyenko et al. (2009),
and the proportional quoted spread, respectively. Each panel reports univariate and bivariate regressions.
All variables are standardized to have a unit standard deviation. The reported R2 is the time-series average
R2 from the cross-sectional regressions. Standard errors are adjusted for serial correlation following Newey
and West (1987) with 5 lags. t statistics are in parentheses, and statistical significance is represented by
* p < 0.10, ** p < 0.05, and *** p < 0.01.

Panel A. 5-Minute Price Impact
(1) (2) (3) (4) (5) (6) (7) (8) (9)

λhybrid 0.47∗∗∗ 0.39∗∗∗ 0.48∗∗∗ 0.37∗∗∗ 0.30∗∗

(9.10) (7.48) (8.58) (5.68) (2.52)
PIN 0.37∗∗∗ 0.25∗∗∗

(9.37) (8.10)
λOWR 0.26∗∗∗ -0.01

(5.25) (-0.70)
APIN 0.43∗∗∗ 0.30∗∗∗

(8.17) (7.85)
VPIN 0.41∗∗∗ 0.28∗∗

(3.95) (2.30)
Constant 0.05 0.06 0.04 0.08 0.05 0.09 0.06 0.08 0.07

(0.25) (0.28) (0.20) (0.31) (0.24) (0.46) (0.33) (0.40) (0.36)

Observations 19965 19965 19965 19965 19965 19965 19965 19965 19965
R2 0.317 0.200 0.400 0.097 0.320 0.255 0.421 0.356 0.474

Panel B. Cumulative Impulse Response
(1) (2) (3) (4) (5) (6) (7) (8) (9)

λhybrid 0.48∗∗∗ 0.42∗∗∗ 0.50∗∗∗ 0.41∗∗∗ 0.36∗∗

(4.34) (4.02) (4.23) (3.63) (2.57)
PIN 0.32∗∗∗ 0.20∗∗∗

(5.28) (4.81)
λOWR 0.26∗∗∗ -0.03∗∗

(3.32) (-2.19)
APIN 0.36∗∗∗ 0.23∗∗∗

(7.22) (7.27)
VPIN 0.38∗∗∗ 0.23∗∗∗

(5.71) (4.28)
Constant 0.07 0.08 0.05 0.12 0.07 0.07 0.04 0.07 0.05

(0.23) (0.27) (0.17) (0.35) (0.22) (0.27) (0.15) (0.27) (0.20)

Observations 19965 19965 19965 19965 19965 19965 19965 19965 19965
R2 0.419 0.205 0.490 0.120 0.423 0.263 0.507 0.396 0.548

Panel C. λ̂intraday
(1) (2) (3) (4) (5) (6) (7) (8) (9)

λhybrid 0.35∗∗∗ 0.27∗∗∗ 0.35∗∗∗ 0.23∗∗∗ 0.15
(12.90) (10.27) (13.53) (6.22) (1.27)

PIN 0.31∗∗∗ 0.23∗∗∗

(5.50) (4.72)
λOWR 0.20∗∗∗ 0.00

(7.16) (0.37)
APIN 0.41∗∗∗ 0.32∗∗∗

(4.08) (3.51)
VPIN 0.35∗∗ 0.30

(2.23) (1.38)
Constant -0.03 -0.00 -0.02 -0.02 -0.03 0.05 0.02 0.06 0.06

(-0.47) (-0.03) (-0.31) (-0.23) (-0.45) (0.50) (0.24) (0.75) (0.67)

Observations 19965 19965 19965 19965 19965 19965 19965 19965 19965
R2 0.191 0.115 0.245 0.066 0.194 0.153 0.270 0.185 0.332
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Table 11: (continued) Fama and MacBeth (1973) cross-sectional regressions of price impacts and
quoted spreads

Panel D. Quoted Spread
(1) (2) (3) (4) (5) (6) (7) (8) (9)

λhybrid 0.42∗∗∗ 0.34∗∗∗ 0.42∗∗∗ 0.31∗∗∗ 0.34∗∗

(6.51) (5.80) (6.71) (4.58) (2.24)
PIN 0.37∗∗∗ 0.27∗∗∗

(6.97) (5.82)
λOWR 0.24∗∗∗ -0.00

(4.32) (-0.29)
APIN 0.44∗∗∗ 0.34∗∗∗

(11.32) (10.42)
VPIN 0.19 0.06

(1.27) (0.34)
Constant 0.10 0.09 0.07 0.13 0.10 0.08 0.06 0.15 0.13

(0.39) (0.36) (0.31) (0.43) (0.38) (0.40) (0.31) (0.56) (0.53)

Observations 19965 19965 19965 19965 19965 19965 19965 19965 19965
R2 0.257 0.204 0.353 0.081 0.259 0.279 0.390 0.347 0.461
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Figure 1: The equilibrium price Vt + p(t, Yt) as a function of the order imbalance Yt
The parameter values are t = 0.5, Vt = 50, H = 10, L = −10, σ = 1, and pH = pL = 1/2.
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Figure 2: Expected average lambda (8) as a function of α
The parameter values are σ = 1, pL = pH = 1/2 and L = −H.
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Figure 3: The equilibrium informed trading rate θt as a function of the price Vt + p(t, Yt)
The parameter values are t = 0.5, ξS = H, Vt = 50, H = 10, L = −10, σ = 1, and pH = pL = 1/2.
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Figure 4: The conditional density function of the net order flow Y1
The density is conditional on either a low signal, no information event, or a high signal. The parameter
values are σ = 1 and pL = pH = 1/2.
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Figure 5: The simulated distribution of order imbalances for a variant of the Easley et al.
(1996) model in which contrarian traders arrive in the event of no information
The model is described in Internet Appendix B. Order imbalance is the number of buys minus number of
sells. The histograms plot 50,000 instances of the model. The parameter values are α ∈ {0.25, 0.5, 0.75},
pL = 0.5, ε = 10, µ = 10, L = −1, H = 1, V ∗ = 0.
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Figure 6: Returns, order flows, and log pricing differences for various parameters
Simulations of 1000 instances of the hybrid model. The data-generating parameters are α = 0.5, κ = 0.015,
pL = 0.5, σ = 0.1, δ = 0.01. Standardized order flows are on the horizontal axis. The left column plots end-of-
day net returns, P1/P0−1, and the pricing function, p(1, Y1). The right column plots log pricing differences,
U1 = ln(P1/P0 − p(1, Y1)). The pricing function p(1, Y1) depends on the indicated hatted parameters in
each panel header. Each row plots the pricing function and log pricing differences for different parameter
estimates (hatted values). The vertical lines indicate the thresholds yL/σ and yH/σ for the true parameters.
The first row uses parameter estimates in which α and κ are too low relative to the true parameters. These
generate log pricing differences that are still positively correlated with order flows. The second row uses the
data-generating parameters. The log pricing differences are uncorrelated with order flows. The third row
uses parameter estimates in which α and κ are too high relative to the true parameters. These generate log
pricing differences that are negatively correlated with order flows.
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(b) α̂ = 0.25, κ̂ = 0.01, p̂L = 0.5
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(c) α̂ = 0.50, κ̂ = 0.015, p̂L = 0.5
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(d) α̂ = 0.50, κ̂ = 0.015, p̂L = 0.5
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(e) α̂ = 0.75, κ̂ = 0.02, p̂L = 0.5
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(f) α̂ = 0.75, κ̂ = 0.02, p̂L = 0.5
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Figure 7: The annual cross-sectional mean and 25th and 75th percentiles of parameter esti-
mates for the hybrid model
The model is estimated on a stock-year basis for NYSE stocks from 1993 through 2012 using prices
and order imbalances in six hourly intraday bins and at the close. The mean, 25th percentile, and
75th percentile are shown. The model parameters are α = probability of an information event, κ =
signal scale parameter, σ = standard deviation of liquidity trading, δ = volatility of public information, and
pL = probability of a negative event. λhybrid is the expected average lambda λ(0, 0) based on Equation (8).
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Figure 8: Averages of the end-of-day conditional probability of an information event (CPIE)
in event time around earnings announcements
The CPIE is defined in Equation (13). It is calculated using the estimated parameters and order flows.
Dashed lines indicate the 95% confidence interval.
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Figure 9: The annual cross-sectional mean and 25th and 75th percentiles of reduced-form price
impacts, quoted spreads, and composite information asymmetry measures
Five-minute price impacts are estimated daily and averaged annually for each stock-year for NYSE stocks
from 1993 through 2012. The stock-year estimates of the cumulative impulse response and λintraday are the
medians of daily estimates. Quoted spread is the time-weighted proportional bid-ask spread. λhybrid is the
expected average lambda λ(0, 0) based on Equation (8). PIN, APIN, and VPIN are the probabilities of
informed trading estimated using the methodologies in Easley et al. (1996), Duarte and Young (2009), and
Easley et al. (2012), respectively. λOWR is the estimate of Kyle’s lambda from Odders-White and Ready
(2008).
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Internet Appendix to

Identifying Information Asymmetry in Securities Markets

Internet Appendix A. Hybrid Model with General Signal Distribution

We present the hybrid model with a general signal distribution. For simplicity, we omit

public news arrival, which is straightforward to add as in the paper.

Internet Appendix A.1. Model

Assume the single strategic trader receives a signal S at time 0 with probability α. The

value of the asset at the end of the day conditional on all available information is V1 + ξS.

The standard continuous-time Kyle (1985) model is a special case of this model in which

α = 1, V is constant, and S is normally distributed.

Assume the signal S has a continuous distribution function G. Set s = inf{s | G(s) > 0}

and s̄ = sup{s | G(s) < 1}. Assume −∞ ≤ s < 0 < s̄ ≤ ∞. Assume G is strictly

increasing on (s, s̄) except possibly on some interval containing zero. If there is such an

interval with zero in its interior, then there is zero probability of very small good or bad

news. Including this feature in the model would make it possible to ensure that information

events are nontrivial. Under these assumptions, G−1 is uniquely defined on (0, 1), except

possibly at G(0).

Internet Appendix A.2. Brownian Bridge

Let F denote the distribution function of the normally distributed variable Y1. Set

yL = F−1(αG(0)) and yH = F−1(1− α + αG(0)). This means that

α prob(S ≤ 0) = prob(Y1 ≤ yL) ,

and

α prob(S > 0) = prob(Y1 > yH) .
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Thus, the unconditional probability of bad news is equal to the probability that Y1 ≤ yL,

and the unconditional probability of good news is equal to the probability that Y1 > yH .

Set

q(t, y, s) =


F−1(αG(s))− y if G(s) < G(0) ,

E[Y1 | Yt = y, yL ≤ Y1 ≤ yH ]− y if G(s) = G(0) ,

F−1(1− α + αG(s))− y if G(s) > G(0) .

(A.1)

Note that if G(s) < G(0), then y
def
= F−1(αG(s)) satisfies

F (y) = αG(s) < αG(0) = F (yL) .

Thus, the function s 7→ F−1(αG(s)) maps {s | G(s) < G(0)} to {y | y < yL}. Symmetrically,

the function s 7→ F−1(1− α + αG(s)) maps {s | G(s) > G(0)} to {y | y > yH}.

Lemma. Let N denote the standard normal distribution function. Let FY = {FYt | 0 ≤ t ≤

1} denote the filtration generated by the stochastic process Y defined by Y0 = 0 and

dYt =
q(t, Yt, ξS)

1− t dt+ dZt . (A.2)

Then, the following are true:

(A) Y is an FY –Brownian motion with zero drift and standard deviation σ.

(B) With probability one,

ξ = 1 and S < 0 ⇒ Y1 = F−1(αG(S)) < yL , (A.3a)

ξ = 0 ⇒ yL ≤ Y1 ≤ yH , (A.3b)

ξ = 1 and S > 0 ⇒ Y1 = F−1(1− α + αG(S)) > yH . (A.3c)
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(C) For each t < 1, the probability that ξ = 1 conditional on FYt is

N

(
yL − Yt
σ
√

1− t

)
+ 1− N

(
yH − Yt
σ
√

1− t

)
. (A.4)

The process Y described in the lemma is a variation of a Brownian bridge. It differs from a

Brownian bridge in that the endpoint is not uniquely determined when there is no information

event (ξ = 0). Part (C) of the proposition follows immediately from the preceding parts,

because the probability (A.4) is the probability that Y1 /∈ [yL, yH ] calculated on the basis

that Y is an FY –Brownian motion with zero drift and standard deviation σ.

Internet Appendix A.3. Equilibrium

Let f(· | t, y) denote the density function of Y1 conditional on Yt = y, that is, the normal

density function with mean y and variance (1− t)σ2.

Theorem. There is an equilibrium in which the trading rate of the strategic trader is

θt =
q(t, Yt, ξS)

1− t . (A.5)

The equilibrium asset price is Pt = Vt + p(t, Yt), where the pricing function p is given by

p(t, y) =

∫ yL

−∞
G−1

(
F (z)

α

)
f(z | t, y) dz +

∫ ∞
yH

G−1

(
F (z)− 1 + α

α

)
f(z | t, y) dz . (A.6)

The asset price evolves as dPt = dVt + λ(t, Yt) dYt, where Kyle’s lambda is

λ(t, y) =
1

σ2(1− t)

∫ yL

−∞
(z − y)G−1

(
F (z)

α

)
f(z | t, y) dz

+
1

σ2(1− t)

∫ ∞
yH

(z − y)G−1

(
F (z)− 1 + α

α

)
f(z | t, y) dz . (A.7)

There is convergence to strong-form efficiency in the sense that limt→1 Pt = V1 + ξS with

probability one.
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The probability that an information event occurred, conditional on the market’s informa-

tion at any date t < 1, is given by (A.4). The probability is generally an increasing function

of the absolute net order imbalance at t; more precisely, it is an increasing function of the

distance of the net order imbalance from the midpoint of yL and yH . The strong-form effi-

ciency condition means that the market learns by the close of trading whether the strategic

trader is informed and, if so, what her information is. From the lemma, we know that if

ξ = 1 and S < 0, then

Yt → F−1(αG(S)) < yL (A.8a)

with probability one as t→ 1. On the other hand, if ξ = 1 and S > 0, then

Yt → F−1(1− α + αG(S)) > yH (A.8b)

with probability one. In each case, the market learns S from Y as t → 1. If the strategic

trader is uninformed (ξ = 0), then

yL ≤ lim inf
t→1

Yt ≤ lim sup
t→1

Yt ≤ yH , (A.8c)

and the difference between Pt and Vt converges to zero as t→ 1.

The proofs of the lemma and theorem are similar to those in the paper and are available

upon request.
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Internet Appendix B. The PIN Model with a Contrarian

The primary difference between the hybrid model and the PIN model is that, in the

former model, the strategic trader endogenously trades based on liquidity in the market.

A second difference is that the strategic trader acts as a contrarian in the absence of an

event. We now present evidence that the result on identification of information asymmetry

parameters does not result from this assumption.

We analyze an alteration of the original EKOP Glosten-Milgrom model to include the

presence of contrarian informed traders on non-event days, as in the hybrid Kyle model.

However, we maintain the assumption of exogenous trading by these contrarians. Contrarians

have Poisson arrival rate µ and buy the asset if the known value on an non-event day, V ∗,

is above the ask price (a(t) < V ∗), sell the asset if the bid price is above the fundamental

value (b(t) > V ∗), and refrain from trade if the known value V ∗ is within the spread.

Let 1
over be an indicator variable for b(t) > V ∗. This is an indicator for whether a

contrarian finds the asset over-priced on a non-event day n. Let 1
under be an indicator

variable for a(t) < V ∗. This is an indicator for whether a contrarian finds the asset under-

priced on a non-event day n. Let 1inside be an indicator variable for V ∗ ∈ [b(t), a(t)]. This

is an indicator for when a contrarian on non-event days finds it optimal not to trade on a

non-event day n due to the spread.

Internet Appendix B.1. Bid prices

Following Section I.B of EKOP, the market maker’s posterior probability of no news at

time t conditional on a sell order arriving, St, is

Pr(n|St) = Pn(t|St) =
Pr(St|n) Pr(n)

Pr(St|n) Pr(n) + Pr(St|g) Pr(g) + Pr(St|b) Pr(b)
(B.1)

=
(ε+ 1

overµ)Pn(t)

ε+ µ (Pb(t) + 1overPn(t))
. (B.2)
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The posterior probability for bad news conditional on a sell order arriving, St, is

Pr(b|St) = Pb(t|St) =
Pr(St|b) Pr(b)

Pr(St|n) Pr(n) + Pr(St|g) Pr(g) + Pr(St|b) Pr(b)
(B.3)

=
(ε+ µ)Pb(t)

ε+ µ (Pb(t) + 1overPn(t))
. (B.4)

The posterior probability for good news conditional on a sell order arriving, St, is

Pr(g|St) = Pg(t|St) =
Pr(St|g) Pr(g)

Pr(St|n) Pr(n) + Pr(St|g) Pr(g) + Pr(St|b) Pr(b)
(B.5)

=
εPg(t)

ε+ µ (Pb(t) + 1overPn(t))
. (B.6)

Then the bid price will be

b(t) = V ∗ · Pn(t|St) + L · Pb(t|St) +H · Pg(t|St) (B.7)

=
V ∗ · (ε+ 1

overµ)Pn(t) + L · (ε+ µ)Pb(t) +H · εPg(t)
ε+ µ (Pb(t) + 1overPn(t))

. (B.8)

Let b0 denote the value of b(t) when we substitute 1
over = 0 into the formula and let b1

denote the value of b(t) when we substitute 1over = 1. Define p as

p =
εPg(t)

εPg(t) + [ε+ µ]Pb(t)
.

Then

b0 = V ∗ + [pH + (1− p)L− V ∗]× (ε+ µ)Pb + εPg
ε+ µPb

,

and

b1 = V ∗ + [pH + (1− p)L− V ∗]× (ε+ µ)Pb + εPg
ε+ µPb + µPn

.

Note that the formulas for b0 and b1 are the same except that the denominator in the
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fraction is larger for b1, so the fraction is larger for b0. This shows that

pH + (1− p)L− V ∗ > 0⇒ b0 > b1 > V ∗ ,

and

pH + (1− p)L− V ∗ < 0⇒ b0 < b1 < V ∗ .

So, b(t) = b1 in the former case (1over = 1), and b(t) = b0 in the latter case (1over = 0).

Internet Appendix B.2. Ask prices

The market maker’s posterior probability of no news at time t conditional on a buy order

arriving, Bt, is

Pr(n|Bt) = Pn(t|Bt) =
Pr(Bt|n) Pr(n)

Pr(Bt|n) Pr(n) + Pr(Bt|g) Pr(g) + Pr(Bt|b) Pr(b)
(B.9)

=
(ε+ 1

underµ)Pn(t)

ε+ µ (Pg(t) + 1underPn(t))
. (B.10)

The posterior probability for bad news conditional on a buy order arriving, Bt, is

Pr(b|Bt) = Pb(t|Bt) =
Pr(Bt|b) Pr(b)

Pr(Bt|n) Pr(n) + Pr(Bt|g) Pr(g) + Pr(Bt|b) Pr(b)
(B.11)

=
εPb(t)

ε+ µ (Pg(t) + 1underPn(t))
. (B.12)

The posterior probability for good news conditional on a buy order arriving, Bt, is

Pr(g|Bt) = Pg(t|Bt) =
Pr(Bt|g) Pr(g)

Pr(Bt|n) Pr(n) + Pr(Bt|g) Pr(g) + Pr(Bt|b) Pr(b)
(B.13)

=
(ε+ µ)Pg(t)

ε+ µ (Pg(t) + 1underPn(t))
. (B.14)
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Then the ask price will be

a(t) = V ∗ · Pn(t|Bt) + L · Pb(t|Bt) +H · Pg(t|Bt) (B.15)

=
V ∗ · (ε+ 1

underµ)Pn(t) + L · εPb(t) +H · (ε+ µ)Pg(t)

ε+ µ (Pg(t) + 1underPn(t))
. (B.16)

Let a0 denote the value of a(t) when we substitute 1
under = 0 into the formula and let a1

denote the value of a(t) when we substitute 1under = 1. Define p̄ as

p̄ =
εPb(t)

εPb(t) + [ε+ µ]Pg(t)
.

Then

a0 = V ∗ + [p̄L+ (1− p̄)H − V ∗]× (ε+ µ)Pb + εPg
ε+ µPb

,

and

a1 = V ∗ + [p̄L+ (1− p̄)H − V ∗]× (ε+ µ)Pb + εPg
ε+ µPb + µPn

.

Note that the formulas for a0 and a1 are the same except that the denominator in the

fraction is larger for a1, so the fraction is larger for a0. This shows that

p̄L+ (1− p̄)H − V ∗ > 0⇒ a0 > a1 > V ∗ ,

and

p̄L+ (1− p̄)H − V ∗ < 0⇒ a0 < a1 < V ∗ .

So, a(t) = a0 in the former case (1under = 0), and a(t) = a1 in the latter case (1under = 1).

Internet Appendix B.3. Updating probabilities and prices between arrival of traders

Pi(t) denotes the probability of an event i day (i ∈ {n, g, b}) conditional on information

up to time t. This includes both past trades and the absence of trades. We need to calculate
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the updating about day type over intervals without trades. Let Nt denote the absence of buys

or sells at time t. The market maker’s posterior probability of no news at time t conditional

on no order arriving Nt is

Pn(t|Nt) =
Pr(Nt|n) Pr(n)

Pr(Nt|n) Pr(n) + Pr(Nt|g) Pr(g) + Pr(Nt|b) Pr(b)
(B.17)

=

(
1− 2ε dt− (1− 1

inside)µ dt
)
Pn(t)

1− (µ+ 2ε) dt+ Pn(t)1insideµ dt
(B.18)

=

(
1− (µ+ 2ε) dt+ 1

insideµ dt
)
Pn(t)

1− (µ+ 2ε) dt+ Pn(t)1insideµ dt
. (B.19)

The posterior probability for bad news conditional on no order arriving Nt is

Pb(t|Nt) =
Pr(Nt|b) Pr(b)

Pr(Nt|n) Pr(n) + Pr(Nt|g) Pr(g) + Pr(Nt|b) Pr(b)
(B.20)

=
(1− (µ+ 2ε) dt)Pb(t)

1− (µ+ 2ε) dt+ Pn(t)1insideµ dt
. (B.21)

The posterior probability for good news conditional on no order arriving Nt is

Pg(t|Nt) =
Pr(Nt|g) Pr(g)

Pr(Nt|n) Pr(n) + Pr(Nt|g) Pr(g) + Pr(Nt|b) Pr(b)
(B.22)

=
(1− (µ+ 2ε) dt)Pg(t)

1− (µ+ 2ε) dt+ Pn(t)1insideµ dt
. (B.23)

Because the informed traders do not trade when the value is within the spread on non-event

days, market makers update slightly more towards the occurrence of a non-event day relative

to good or bad events in the absence of trade when V ∗ falls within the spread.

Internet Appendix B.4. Expected values and spreads

The expected value of the asset conditional on the history of trades and prices is

Et[V ] = V ∗ · Pn(t) + L · Pb(t) +H · Pg(t) . (B.24)
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Substituting into the bid and ask equations:

b(t) = Et[V ]− µ (Pb(t) + 1
overPn(t))

ε+ µ (Pb(t) + 1overPn(t))
(Et[V ]− L) (B.25)

a(t) = Et[V ] +
µ
(
Pg(t) + 1

underPn(t)
)

ε+ µ (Pg(t) + 1underPn(t))
(H − Et[V ]) (B.26)

When the bid (and expected asset value) is above V ∗ (i.e., 1over = 1), market-makers lower

the bid beyond the level in EKOP to protect against selling by a contrarian informed trader.

Similarly, when the ask (and expected asset value) is below V ∗ (i.e., 1under = 1), then the ask

is above the EKOP ask as market-makers protect against buying by a contrarian informed

trader. The resulting bid-ask spread is

a(t)−b(t) =
µ
(
Pg(t) + 1

underPn(t)
)

ε+ µ (Pg(t) + 1underPn(t))
(H − Et[V ])+

µ (Pb(t) + 1
overPn(t))

ε+ µ (Pb(t) + 1overPn(t))
(Et[V ]− L) .

(B.27)

When the expected asset value (and bid) is above V ∗ (i.e., 1over = 1), then the spread is

µPg(t)

ε+ µPg(t)
(H − Et[V ]) +

µ (Pb(t) + Pn(t))

ε+ µ (Pb(t) + Pn(t))
(Et[V ]− L) . (B.28)

When the expected asset value (and ask) is below V ∗ (i.e., 1under = 1), the spread is

µ (Pg(t) + Pn(t))

ε+ µ (Pg(t) + Pn(t))
(H − Et[V ]) +

µPb(t)

ε+ µPb(t)
(Et[V ]− L) . (B.29)

Internet Appendix B.5. Distribution of Order Imbalances and Identification

We simulate the model to characterize the end-of-day distribution of order imbalances.

We discretize the day (T = 1) into 1000 equal-spaced bins and determine at each bin whether

a buy order, a sell order, or no order arrives. The probabilities of each of these events differ

based on the type of day realized (i ∈ {n, g, b}) and on the price path for non-event days.

The assumption of contrarian informed traders for non-event days does not change the

ability of the econometrician to identify information asymmetry parameters from the distri-
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bution of order imbalances. The simulated distribution of order imbalances in the EKOP

model with contrarians is plotted in Figure 5 in the paper. The distribution consists of three

conditional distributions. On good or bad event days, the conditional distributions have

positive or negative order imbalances on average as in the standard EKOP model. These

are distributed Skellam as in the original PIN model. The distribution of order imbalances

conditional on a non-event day are more balanced. However, this is no longer Skellam since

the arriving informed traders may either buy, sell, or abstain from trade based on prices.

However, the general intuition of the EKOP identification holds. 1 − α is estimated as the

mass of balanced trade corresponding to the non-event days. pL is estimated using the mass

of days with sell order imbalances relative to the mass of days with buy order imbalances.

The location of each of these Skellam distributions is used to determine µ, while ε is identified

based on the variance of each of the conditional distributions.
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Internet Appendix C. Likelihoods and Estimates of Other Models

Internet Appendix C.1. PIN Model

The likelihood of the PIN model is:

L(B, S|α, pL, µ, ε) =
T∏
t=1


(1− α)

[
exp (−2ε) εBt+St

Bt!St!

]
+αpL

[
exp (−(µ+ 2ε)) (µ+ε)StεBt

Bt!St!

]
+α(1− pL)

[
exp (−(µ+ 2ε)) (µ+ε)BtεSt

Bt!St!

]
 (C.1)

where Bt (St) is the number of buys (sells) on day t, α is the probability of an information

event, pL is the probability that an information event is bad news, and µ and ε are the arrival

rates of informed and uninformed traders. PIN, the probability of informed trade, is given

by the formula:

PIN =
αµ

αµ+ 2ε
. (C.2)

Figure C.1 displays the time series of average parameter estimates for the PIN model. The

average estimated α is much lower than in the hybrid model at 30 to 40%. The uninformed

trading intensity ε and informed trading intensity µ each rise markedly in the mid-2000’s

reflecting the dramatic rise in trading volume. The average estimated PIN falls from about

15% in 1993 to 10% in 2012.

Internet Appendix C.2. Odders-White and Ready Model (OWR)

The parameter vector for the Odders-White/Ready model is Θ = (α, σu, σz, σi, σp,d, σp,o)

where α is the probability of an information event, σu is the standard deviation of liquidity

trading, σz is the volatility of the error with which the econometrician observes order flow,

and σi is the standard deviation of the normally distributed private information. σp,d and

σp,o are the standard deviations of the intraday and overnight returns. The likelihood of the
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Odders-White/Ready model is:

L(ye,t, rd,t, ro,t|Θ) =
T∏
t=1

 (1− α)fN(ye,t, rd,t, ro,t; Θ)

+αfE(ye,t, rd,t, ro,t; Θ)

 (C.3)

where ye,t is the order flow observed on day t, rd,t is the intraday return, and ro,t is the

overnight return. fN and fE are multivariate normal densities conditional on no event or an

event occurring, respectively. Both fN and fE are mean zero with the following variances

and covariances. Conditional on no event, they are:

var(ye,t) = σ2
u + σ2

z ,

var(rd,t) = σ2
p,d + ασ2

i /4 ,

var(ro,t) = σ2
p,o + ασ2

i /4 ,

cov(rd,t, ro,t) = −ασ2
i /4 ,

cov(rd,t, ye,t) = α1/2σiσu/2 ,

cov(ro,t, ye,t) = −α1/2σiσu/2 .

Conditional on an event, they are:

var(ye,t) = (1 + 1/α)σ2
u + σ2

z ,

var(rd,t) = σ2
p,d + (1 + α)σ2

i /4 ,

var(ro,t) = σ2
p,o + (1 + α)σ2

i /4 ,

cov(rd,t, ro,t) = (1− α)σ2
i /4 ,

cov(rd,t, ye,t) = α−1/2σiσu/2 + α1/2σiσu/2 ,

cov(ro,t, ye,t) = α−1/2σiσu/2− α1/2σiσu/2 .
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The OWR λ is:

λOWR =
α1/2σi
2σu

. (C.4)

We measure rd,t and ro,t as open-to-VWAP (all on day t) and VWAP-to-open (from day t

to day t + 1) returns. As in the hybrid model, ye,t is total share imbalance in thousands

of shares. Figure C.2 displays the time series of average parameter estimates for the OWR

model. All three of the return variables, σi, σp,d, and σp,o, rise during the late 1990’s and

the financial crisis.

Internet Appendix C.3. Adjusted PIN Model (APIN)

The likelihood of the Duarte-Young model is:

L(B, S|α, pL, µ, ε, θ, η) =
T∏
t=1



(1− α)(1− θ)
[
exp (−2ε) εBt+St

Bt!St!

]
(1− α)θ

[
exp (−2(ε+ η)) (ε+η)Bt+St

Bt!St!

]
+α(1− θ)pL

[
exp (−(µ+ 2ε)) (µ+ε)StεBt

Bt!St!

]
+αθpL

[
exp (−(µ+ 2ε+ 2η)) (µ+ε+η)St (ε+η)Bt

Bt!St!

]
+α(1− θ)(1− pL)

[
exp (−(µ+ 2ε)) (µ+ε)BtεSt

Bt!St!

]
+αθ(1− pL)

[
exp (−(µ+ 2ε+ 2η)) (µ+ε+η)Bt (ε+η)St

Bt!St!

]


(C.5)

where Bt (St) is the number of buys (sells) on day t, α is the probability of an information

event, pL is the probability that an information event is bad news, µ and ε are the arrival

rates of informed and uninformed traders, θ is the probability of a shock to buy and sell

intensities, and η is the increment to buy and sell intensities when such a symmetric order

flow shock occurs. We calculate Adjusted PIN using the formula:

APIN =
αµ

αµ+ 2ε+ 2θη
. (C.6)

Figure C.3 displays the time series of average parameter estimates for the APIN model. The

parameters exhibit similar time-series dynamics to their counterparts in the PIN model.
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Internet Appendix C.4. Volume-Synchronized PIN Measure (VPIN)

VPIN of Easley et al. (2012) builds on the intuition of the PIN model that the numerator

in PIN is the expected order imbalance while the denominator is expected volume. In order

to estimate each of these components, the trading day is divided into equal size volume

bins occurring in volume time τ . Let n denote the number of volume bins and V denote

the volume in a single bin. For every volume bin τ , volume is signed to buying or selling

volume based on the price change occurring over that bin. Let t(τ) denote the clock time

corresponding to volume time τ and N(·) denote the standard normal cumulative distribution

function. Then volume in bin τ is assigned to buying and selling activity, respectively, as:

V B
τ =

t(τ)∑
i=t(τ−1)+1

Vi · N
(
Pi − Pi−1

σ∆P

)

V S
τ =

t(τ)∑
i=t(τ−1)+1

Vi ·
[
1− N

(
Pi − Pi−1

σ∆P

)]
,

where the summation is over the number of 1-minute time intervals contained within volume

bin τ , Vi is the volume in time bin i, Pi − Pi−1 is the price change over time bin i, and σ∆P

is an estimate of the standard deviation of price changes within the day. We estimate VPIN

using n = 20 volume bins per day. Volume-synchronized PIN is then defined as:

VPIN =

∑n
τ=1

∣∣V B
τ − V S

τ

∣∣
nV

. (C.7)

We calculate VPIN each day and average across days to create an average VPIN for each

firm-year.
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Figure C.1: Time Series of PIN Model Estimates
The annual cross-sectional mean, 25th and 75th percentiles of parameter estimates for the Easley et al.
(1996) model. The model is estimated on a stock-year basis for NYSE stocks from 1993 through
2012 using daily buys and sells. The model parameters are α = probability of an information event,
pL = probability of a negative event, ε = Poisson intensity of uninformed trades, µ =
Poisson intensity of informed trades, and PIN = Probability of informed trade.
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Figure C.2: Time Series of Odders-White and Ready Model Estimates
This figure plots the annual cross-sectional mean, 25th and 75th percentiles of parameter estimates for the
Odders-White and Ready (2008) model. The model is estimated on a stock-year basis for NYSE stocks from
1993 through 2012 using daily order imbalances, intraday open-to-VWAP returns, and overnight VWAP-
to-open returns. The model parameters are α = probability of an information event, σi = the standard
deviation of the mean zero, normally distributed private information conditional on an information event,
σu = the standard deviation of the mean zero, normally distributed net order flow from uninformed traders,
σpD = the standard deviation of mean zero, normally distributed intraday public news, σpO = the standard
deviation of mean zero, normally distributed overnight public news, and λ = the price impact. Estimates
of σz, the error with which the econometrician observes order flow, is suppressed for space.
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Figure C.3: Time Series of Adjusted PIN Model Estimates
This figure plots the annual cross-sectional mean, 25th and 75th percentiles of parameter estimates for the
Duarte and Young (2009) model. The model is estimated on a stock-year basis for NYSE stocks from 1993
through 2012 using daily buys and sells. The model parameters are α = probability of an information event,
pL = probability of a negative event, ε = Poisson intensity of uninformed trades, µ = Poisson intensity
of informed trades, θ = probability of a shock to buy and sell intensities, η = increment to buy and sell
intensities when a symmetric order flow shock occurs, and APIN = Probability of informed trade.
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Figure C.3: (continued) Time Series of Adjusted PIN Model Estimates
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Internet Appendix D. Empirical and Theoretical Order Flow Distributions

Each of the models have different implications for the unconditional distribution of order

imbalances. For all four structural models, the order flow distribution is a mixture distribu-

tion. Figure D.1 shows how the distributions can differ based on the underlying parameter

values, plotting the model-implied order imbalance distributions based on the estimates for

the smallest and largest NYSE firm deciles. Under the hybrid model, end-of-day order flows

are normally distributed with standard deviation σ. Under the OWR model, order flows are

a mixture of two normal distributions, one for non-event days and a higher variance one for

event days. Both of the Kyle-based models result in unimodal order flow distributions. On

the other hand, the PIN and Adjusted PIN models imply order imbalance distributions that

can be trimodal. Indeed, this is generally the case for order imbalances implied by structural

estimates of the PIN and Adjusted PIN models. The PIN and Adjusted PIN models must

fit volume as well as order imbalances since the input data are buy and sell volumes. On the

other hand, the hybrid and OWR models need only fit the order flow distribution.

How do the model-implied order imbalance distributions compare to those found em-

pirically? Figure D.2 shows the empirical standardized order imbalance distributions for

the smallest and largest NYSE size deciles in our sample. The figure displays both share

and trade imbalances since these are the underlying data for the Kyle-based and Glosten-

Milgrom-based models, respectively. The empirical distributions do not exhibit strong mul-

timodal behavior. This is more consistent with the modeling assumption of the Kyle-based

models than that of the Glosten-Milgrom-based models.
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Figure D.1: Model-implied Order Imbalance Distributions and Market Capitalization
The mixture distributions of standardized order imbalances implied by structural estimates from the struc-
tural models for the smallest and largest size deciles. Order imbalances are standardized by the standard
deviation of order imbalances. For the hybrid model, the order imbalance variance is σ2. For the PIN model,
the order imbalance variance is 2ε+ αµ(1 + µ)− (αµ(1− 2pL))2. For the APIN model, the order imbalance
variance is 2(ε + θη) + αµ(1 + µ) − (αµ(1 − 2pL))2. For the OWR model, the order imbalance variance is
σ2
u. For the hybrid and OWR model, the order imbalances are measures in shares. For the PIN and APIN

model, the order imbalances are measures in number of trades. The parameters for each size decile are based
on the structural estimates, some of which are reported in Table 9.
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Figure D.1: (continued) Model-implied Order Imbalance Distributions and Market Capitalization

(e) Smallest Size Decile (OWR)
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Figure D.2: Empirical Order Imbalance Distributions and Market Capitalization
The distributions of daily standardized order imbalances for the smallest and largest size deciles. For each
firm-year, daily order imbalances are standardized by the firm-year standard deviation. The Kyle-based
models are estimated using order imbalances measured in shares (top row) and the Glosten-Milgrom-based
models are estimated using order imbalances measured in number of trades (bottom row).

(a) Smallest Size Decile (Empirical Shares) (b) Largest Size Decile (Empirical Shares)

(c) Smallest Size Decile (Empirical Trades) (d) Largest Size Decile (Empirical Trades)
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