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1 Introduction

Modern financial literature has given great importance to climate risk. There has been

a plethora of papers on how climate risk affects equities, bond, and credit markets1 While

this literature has primarily focused on climate risk, there is a related but distinct area

that has received less attention. This paper contributes to the literature in three ways.

First, it is the first study to examine how weather risk affects credit and equity markets,

offering a new perspective in this emerging area. Although climate risk and weather

risk are often conflated, they differ in their scope, magnitude, and predictability2 This

article investigates the consequences of weather risk on corporate credit risk, expected

stock returns, and company fundamentals, utilizing a unique dataset comprising both

quantitative and qualitative weather risk measures. The findings highlight the significant

predictive power of numerical and textual weather risk indicators for future credit risk,

expected stock returns, and business fundamentals.

Weather risk refers to short-term, localized weather events and their possible effects

on certain industries such as agriculture, transportation, and construction. It includes

events like storms, hurricanes, and flooding. In contrast, climate risk refers to the long-

term effects of climate change on ecosystems, economies, civilizations, and infrastructure

over decadal to centennial timelines. It entails changes in temperature patterns, precipi-

tation levels, and sea levels. Furthermore, weather events are usually ephemeral, lasting

hours, days, or weeks, while some calamities, such as extended droughts or floods, can

have long-term impacts. Climate change, on the other hand, is a continuing, long-term

trend caused by variables such as greenhouse gas emissions, deforestation, and indus-

trial activity, with long-term and probably permanent consequences for ecosystems and

weather patterns. To summarize, climate and weather risk differ in their timelines, pre-

1Please see, for example, Sautner et al. (2023a), Sautner et al. (2023b), Ilhan et al. (2023), Ilhan et al. (2021),
Painter (2020), Pankratz and Schiller (2024), Li et al. (2024), Addoum et al. (2023), Ginglinger and Moreau
(2023), Bartrama et al. (2022), and Engle et al. (2020), etc.

2Please see, for example, Keller and DeVecchio (2019), Arnell (2017), Muir-Wood (2016), Kunreuther and
Michel-Kerjan (2011), and Posner (2005)).
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dictability, and repercussions, with climate change causing long-term shifts in environ-

mental conditions and weather patterns, while weather disasters represent short-term

hazards requiring fast response and readiness.

The second contribution of this paper to the literature is that this paper utilizes a

unique and novel publicly available weather event database. This database encompasses

weather risk measures presented in both quantitative and qualitative formats. The weather

risk measures are derived from the ”Storm Events Database” provided by the National

Weather Service (NWS), which is part of the National Oceanic and Atmospheric Admin-

istration (NOAA). This database covers weather events from January 1997 to December

2023 across the United States. It contains detailed information about each event, includ-

ing the start date, location (state and county), event type (e.g., thunderstorm wind, winter

storm, tornado), episode and event identification numbers, magnitude or intensity mea-

sures, estimated property and crop damages in dollars, casualties (direct and indirect

deaths and injuries), and very importantly and textual narratives describing the overall

episode and specific event details. This dataset contains both textual narratives and nu-

meric measurements that are scientific in nature, pertaining specifically to weather events.

The integration of qualitative textual descriptions alongside quantitative numeric data re-

lated to meteorological phenomena provides a unique opportunity to analyze scientific

data from multiple perspectives.

The third major contribution of this study is its relevance to the rapidly evolving fields

of large language models (LLMs), artificial intelligence (AI), and natural language pro-

cessing (NLP), which have garnered significant attention recently. To effectively analyze

the textual representations of weather risk present in the database, this paper employs a

range of cutting-edge NLP techniques. These include traditional methods such as Term

Frequency-Inverse Document Frequency (TF-IDF) and more advanced approaches like

Word2Vec for generating dense word embeddings. Moreover, the study leverages the

power of state-of-the-art LLMs, specifically the Bidirectional Encoder Representations

from Transformers (BERT) model, to capture intricate semantic and contextual informa-
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tion from the textual narratives.

By combining these textual features extracted through NLP with the numerical mea-

surements from the weather event database, the paper demonstrates the potential for

integrating unstructured text and structured data to enhance predictive modeling tasks.

Specifically, it explores the ability of this multimodal data to forecast future credit risk

and expected stock returns. To streamline the analysis and modeling process, the paper

leverages the latest advancements in AI and deep learning (DL) frameworks. It employs

TensorFlow/Keras, a widely-used open-source platform for building and deploying DL

models, as well as traditional machine learning (ML) algorithms.

The paper has three major findings. The first finding is that both numeric and textual

weather risk measures significantly predict future conditions of credit/default risk. This

paper shows that weather risk measures like magnitude and property/crop damage sig-

nificantly and positively predict credit default swap (CDS) levels, changes in CDS levels,

percentage changes in CDS levels, and CDS slope across multiple maturity terms. A 1%

increase in magnitude corresponds to around a 40% increase in the 5-year CDS average

level, while a 1% rise in property damage leads to a 17% increase in the 5-year CDS aver-

age level. Similar positive impacts are seen for changes and percentage changes in CDS

levels from magnitude, property damage, and crop damage measures. The CDS slope,

which reflects the term structure, also increases significantly with higher magnitude and

property damage. These evidence show that when weather-related risks surge–whether

it’s due to more intense events, greater property damage, or increased casualties–the lev-

els and changes in CDS increase, too. This reflects investors’ anxieties about the potential

impact of weather risks on borrowers’ financial stability and their ability to fulfill debt

obligations.

Notably, this paper reveals that weather events have a disproportionately greater im-

pact on the creditworthiness of non-investment grade (speculative) firms compared to

investment grade firms, with the former experiencing an impact over three times greater.

This is likely due to the weaker financial positions and higher debt levels of non-investment
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grade firms, making them more vulnerable to weather-related disruptions and increased

costs. With limited access to capital markets and higher borrowing costs, these firms may

face exacerbated liquidity constraints and increased funding costs, ultimately affecting

their creditworthiness to a greater extent than their investment grade counterparts.

The second finding is that both numeric and textual weather risk measures signifi-

cantly predict expected stock returns. This paper shows that weather risk measures like

magnitude and crop damage significantly and negatively impact future stock returns. A

1% increase in magnitude corresponds to a 14% decrease in next month’s stock average

return, while a 1% rise in crop damage leads to a 30% reduction in the following month’s

return. Portfolio analyses further reinforce this negative relation between weather risk

proxies and expected equity returns. Stocks in the highest magnitude quartile underper-

form those in the lowest quartile by 0.59% per month on a raw return basis and 0.47-

0.57% per month on a risk-adjusted basis across different factor models, with statistically

significant alphas. This return spread is even more pronounced among smaller stocks

and low-priced firms, with a hedge portfolio going long the lowest magnitude tercile and

short the highest magnitude tercile generating significant positive returns of 0.80-0.92%

per month in these subsamples. Overall, the analyses provide robust evidence that ele-

vated weather risk negatively impacts future stock performance, especially for smaller,

more constrained firms potentially more vulnerable to such risks.

The third finding is that both numeric and textual weather risk measures significantly

predict firm fundamentals. This paper shows that higher weather risk, proxied by mea-

sures like crop damage and storm magnitude, negatively impacts firm leverage, prof-

itability, and growth opportunities while increasing capital expenditures in the following

period. Greater crop damage is associated with higher future leverage ratios and changes

in leverage. Higher storm magnitude predicts lower return on assets, sales growth, earn-

ings growth, and Tobin’s Q in the next period, suggesting weather events disrupt opera-

tions and reduce expected profitability and valuations. However, elevated storm magni-

tude also forecasts an increase in next period’s capital expenditures.
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The paper is organized as follows. Section 2 reviews recent literature related to this

paper. Section 3 describes the data source and the summary statistics for the key variables.

Section 4 presents empirical evidence and robustness checks. Section 5 concludes.

2 Literature Review

This paper is closely intertwined with the extensive body of literature on climate and

finance on credit markets, equity returns, and firm fundamentals, while also distinguish-

ing between the distinct yet interconnected concepts of climate and weather. Sautner et al.

(2023a) develop a method that identifies firms’ climate change exposures from earnings

call transcripts using machine learning, capturing opportunity, physical, and regulatory

shocks, and show that the measures predict outcomes related to the net-zero transition

like green job creation and patenting, and are priced in financial markets. Sautner et al.

(2023b) estimate the risk premium for S&P 500 stocks’ climate change exposure from 2005

to 2020, finding an overall insignificant unconditional risk premium but noting positive

trends pre-financial crisis and post-2014. Ilhan et al. (2023) demonstrate through a sur-

vey and empirical evidence that institutional investors highly value and actively seek

climate risk disclosures. Ilhan et al. (2021) highlight the necessity for robust regulatory

measures to address climate change, revealing how climate policy uncertainty is reflected

in option market pricing, with higher costs for downside tail risk protection observed for

firms with more carbon-intensive operations. Using a firm-level measure of temperature

sensitivity, Cuculiza et al. (2024) find that firms more sensitive to temperature changes

have lower future profitability, riskier policies, and lower subsequent returns, suggesting

mispricing that nonlocal investors and analysts contribute to, enabling a trading strategy

exploiting this mispricing to generate over 4% annual risk-adjusted returns from 1968-

2020. Using detailed geographic data on U.S. households’ exposure to future sea level

rise (SLR), Ilhan (2022) show that households more exposed to long-run SLR risks hold

less stock market participation compared to unexposed neighbors. Kölbel et al. (2024) use
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BERT to assess regulatory climate risk disclosures’ effects on CDS, finding that disclosing

transition risks tends to increase CDS spreads post-2015 Paris Climate Agreement, while

disclosing physical risks decreases them.

Pankratz and Schiller (2024) investigate how physical climate events like heat and

floods at supplier locations negatively impact the operating income of suppliers and their

customers, leading customers to terminate supplier relationships when suppliers’ real-

ized exposure exceeds expectations, and how customers learn from experience and adapt

by replacing suppliers with ones having lower expected and realized climate exposure.

Li et al. (2024) develop text-based measures to quantify firms’ exposure to physical and

transition climate risks from earnings call transcripts, and finds that firms with high tran-

sition risk exposure, especially non-responsive ones, have been discounted by investors

as climate concerns grow; it also documents how firms respond differently through in-

vestments, innovation, and employment policies when facing varying levels of climate

risk exposure. Addoum et al. (2023) examine the impact of extreme temperatures on

corporate profitability across different industries by combining temperature data with

locations of public companies’ establishments, finding that extreme temperatures signifi-

cantly affect earnings in over 40% of industries in a bidirectional manner. Ginglinger and

Moreau (2023) use firm-level data on forward-looking physical climate risk to examine

its impact on capital structure, finding that greater physical climate risk leads to lower

leverage in the post-2015 period after increased disclosure standards, with the reduction

in leverage driven by both firms’ lower optimal leverage and lenders increasing spreads

for riskier firms, consistent with the hypothesis that physical climate risk affects leverage

through higher expected distress and operating costs. Bartrama et al. (2022) show that lo-

calized climate risk mitigation policies like California’s cap-and-trade program can have

unintended consequences due to regulatory arbitrage, as financially constrained firms

shift emissions and output from California to underutilized plants in other states, leading

to an overall increase in total emissions among constrained firms and undermining the

policy’s effectiveness. Engle et al. (2020) propose and implements a procedure to dynam-
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ically hedge climate change risk by extracting innovations from constructed climate news

series through textual analysis, using a mimicking portfolio approach with firms’ ESG

scores to model climate risk exposures to build hedge portfolios that effectively hedge

innovations in climate news both in-sample and out-of-sample.

Gounopoulos and Zhang (2024) find companies increase cash reserves in response to

rising climate risks driven by heightened environmental enforcement and physical risks,

especially for financially constrained firms with low environmental awareness who rely

more on equity issuance and cost cuts than debt to bolster cash holdings precautionar-

ily. Lin et al. (2023) show that production inflexibility coupled with product price un-

certainty creates price risk, which significantly impacts firms’ liquidity management, as

evidenced by the finding that higher electricity price volatility leads to increased cash

holdings among firms using inflexible production technologies in the deregulated elec-

tricity industry, with the effect most pronounced for financially constrained firms and

those lacking hedging opportunities, suggesting capital market and balance sheet liquid-

ity are substitutes. Pankratz et al. (2022) link firm performance, analyst forecasts, and

earnings announcement returns to firm-specific heat exposure measures , finding that in-

creased exposure to extremely high temperatures reduces firms’ revenues and operating

income, with analysts and investors failing to fully anticipate the economic repercussions

of heat as a physical climate risk..

Additionally, the paper intricately connects with the body of literature concerning

CDS, such as Kölbel et al. (2024), Zhang et al. (2009) and Ericsson et al. (2009). Zhang

et al. (2009) propose a novel method to explain the factors influencing credit default swap

(CDS) premiums. This approach involves analyzing high-frequency equity price data

to identify the volatility and jump risks associated with individual firms. The empiri-

cal findings demonstrate that volatility risk alone can account for 48% of the variation

observed in CDS spread levels. Additionally, jump risk independently forecasts 19% of

the variation. Furthermore, after incorporating credit ratings, macroeconomic conditions,

and firms’ balance sheet information into the analysis, the model can explain 73% of the
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total variation in CDS premiums. Ericsson et al. (2009) find that a minimal set of theoret-

ical determinants of default risk, particularly volatility and leverage, have substantial ex-

planatory power in predicting default swap spreads through univariate and multivariate

regressions, and a principal component analysis indicates limited evidence for a residual

common factor, suggesting that the theoretical variables explain a significant amount of

variation in the data.

This paper contributes to the fast growing literature on using BERT family models to

process contextual information for predicting financial variables. Chen et al. (2023) em-

ploy advanced large language models to extract contextualized representations of news

text for predicting returns, surpassing traditional word-based methods like bag-of-words

or word vectors. By capturing both syntax and semantics, these representations offer a

more comprehensive understanding of text meaning. Lin Tan and Zhang (2024) discuss

the use of LLMs to generate article-level representations of Chinese financial news arti-

cles. These representations are then employed for two key modeling tasks: sentiment

classification to assess the overall positive or negative tone of the articles, and to predict

daily cross-sectional stock returns. Kim and Nikolaev (2023) utilize the combination of

textual and numeric information in Management Discussion and Analysis (MD&A) to

examine the impact of narrative context on financial disclosures, particularly in MD&A

sections. Leveraging machine learning techniques like BERT and ANN, it quantifies how

narrative communication affects the interpretation of financial data. Results show that

contextual information notably enhances predicting future earnings changes and stock re-

turns, indicating its growing significance. Kim and Nikolaev (2024) emphasize the signif-

icance of contextual information mandated by the Securities and Exchange Commission

(SEC) in interpreting reported numbers, particularly concerning operating profitability.

Through the use of a bidirectional recurrent neural network with Long Short-Term Mem-

ory (LSTM) cells, the model integrates contextual insights to enhance the understanding

of reported profitability.

This paper contributes to the recent increase in research on the application of deep
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learning methods in AI in finance. Balachandran et al. (2024) examine how market reac-

tions to the tone of voluntary disclosures in 8-K filings, assessed using a new algorithm

focusing on adjectives and adverbs, reveal a positive association with market response,

affecting stock liquidity and bid-ask spreads, indicating firms strategically use tone to

communicate qualitative information, with the algorithm surpassing traditional meth-

ods by considering linguistic nuances. Glasserman et al. (2023) construct a measure of

news novelty or unusualness called entropy, using a recurrent neural network applied to

a large news corpus. An increase in news entropy predicts negative stock market returns

and negative macroeconomic outcomes over the next year. Cao et al. (2023) analyzes cor-

porate executive presentations to assess the impact of visual information on market reac-

tions, finding that short-term abnormal returns correlate positively with forward-looking

operational data extracted from presentation slides using deep learning.

3 Data

The weather risk proxies are obtained from the ”Storm Events Database”3 made avail-

able by the National Weather Service (NWS) of the National Oceanic and Atmospheric

Administration (NOAA). This database contains data from January 1997 to December

2023. The database contains the following variables: begin yearmonth refers to the year

and month when the weather event started. year denotes the specific year when the

weather event commenced. month name indicates the name of the month corresponding

to the weather event record, such as January, April, July, or September. state identifies the

state where the weather event took place. cz name specifies the county name where the

weather event occurred. event type specifies the type of weather event, such as Thunder-

storm Wind, Winter Storm, or Strong Wind. episode id refers to the identification number

assigned by the NWS to denote a storm episode. Episodes encompass significant weather

phenomena with the potential for loss of life, injuries, property damage, and disruption

3https://www.ncei.noaa.gov/pub/data/swdi/stormevents/csvfiles/
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to commerce. event id is the identification number assigned by the NWS to identify a

single component contributing to a specific storm episode. A weather event is a distinct,

short-term meteorological occurrence, while an episode is a prolonged period of consis-

tent weather conditions that may include multiple events. Magnitude measures the scale

of the event, primarily used for wind speeds (in knots). For each county and each year-

month, the maximum value of Magnitude is selected. Damage Property quantifies the es-

timated property damage in dollars caused by the weather event. Damage Crops quanti-

fies the estimated damage to crops in dollars caused by the weather event. Deaths Indirect

specifies the number of deaths indirectly associated with the weather event. death is the

summation of Deaths Direct and Deaths Indirect. Injuries Direct indicates the number

of injuries directly resulting from the weather event. Injuries Indirect represents the

number of injuries indirectly related to the weather event. Injury is the summation of

Injuries Direct and Injuries Indirect. Deaths Direct denotes the number of deaths di-

rectly attributed to the weather event. For each county and each year-month, the vari-

ables Damage Property, Damage Crops, Death, and Injury are aggregated by summing

their values. episode narrative provides a comprehensive overview of the episode’s gen-

eral nature and overall activity, as reported by the NWS. event narrative offers descriptive

details of the individual event, as reported by the NWS. The event type covered in this

sample are: thunderstorm wind, high wind, marine thunderstorm wind, strong wind,

marine high wind, marine strong wind, tornado, flash flood, dust devil, heavy snow, win-

ter storm, blizzard, seiche, wildfire, heavy rain, waterspout, flood, hurricane (typhoon),

dust storm.

To give an example: in March 2023, in Simpson County, Mississippi, there was a thun-

derstorm wind event with a magnitude of 524. The episode id is 180848. The event id is

1106736. The damage property is 10.00K. The event narrative is Multiple trees were downed

near Pinola near MS-28. The episode narrative is

4Please see https://www.weather.gov/bmx/event 03242023.
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In the afternoon and evening of the 24th, clusters of strong to severe storms were
stretched from southwest to northeast across southeastern Arkansas as robust insta-
bility and very strong wind shear served to produce a volatile severe weather environ-
ment. To the east in Mississippi, storm activity proved to be more isolated as deep
convection struggled develop across the state. With much of the area not being con-
vectively overturned, an area of thunderstorm activity near the Mississippi River near
Vicksburg, MS began to become stronger and took advantage of the open warm sec-
tor environment, well east of the competitive storm environment to the west that had
thus far impeded tornado development. This area of thunderstorm activity quickly
consolidated into an organized supercell and produced a family of long track, strong
to violent tornadoes from the Mississippi Delta, across central Mississippi, and finally
into portions of northeast Mississippi. This cyclical tornado-producing supercell was
responsible for the vast majority of severe weather reports from the day and would
claim 22 lives across the state. Dozens more were injured, and hundreds of homes
were damaged or destroyed by these tornadoes. Having wrought widespread destruc-
tion across the area, this tornado event by most any measure represents a historic
degree of devastation for the state of Mississippi and the region at large.

Figure 1 and Figure 2 are graphical depiction of textual information of episode narrative

and event narrative, in which the magnitude of each word signifies its frequency or sig-

nificance within the provided text. In textual layout, less frequent words are typically

rendered in smaller font sizes, whereas more frequently occurring words are presented

in larger font sizes. Figure 1 highlights the overall weather conditions and main activities

during the episode, including terms like ”severe thunderstorm,” ”shower thunderstorm,”

and ”heavy rain,” among others. Figure 2 pays direct attention to specific descriptive el-

ements of the individual event, such as ”large tree,” ”tree blow,” and ’tree limb,’ etc.

One of the goals of this paper is to predict credit risk using weather risk measures. The

credit risk is proxied by the month-end credit default swap spread provided by Mark-it. A

credit default swap (CDS) is a financial transaction in which the seller agrees to reimburse

the buyer in the case of debt default or other credit-related catastrophes. In effect, the

seller of the CDS insures the customer against the default of a certain asset. The buyer of

the CDS pays the seller a periodic fee, known as the CDS ”fee” or ”spread,” in exchange

for potential compensation if the asset fails. In the event of a default, the CDS buyer

receives compensation, typically the loan’s face value, while the seller gains custody of the
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failed loan or its equivalent market value in cash. The CDS spread indicates the market’s

assessment of the credit risk associated with an individual firm. A bigger gap indicates

that investors perceive a higher chance of default, whereas a narrower spread implies a

lesser perceived risk. Investors use CDS spreads to assess credit risk and market opinion

about a borrower’s creditworthiness. Widening spreads may signal deteriorating credit

quality or increasing market uncertainty, whilst narrowing spreads may reflect improved

credit conditions or a reduction in perceived risk. CDS maturity ranges from one to ten

years, with the five-year CDS being the most commonly traded. The combined dataset,

merging the ”Storm Events Database” with Mark-it’s CDS dataset, spans from January

2001 to October 2019. The sample size is 38,927.

The other goal of this paper is predict stock return using using weather risk measures.

The Center for Research in Security Prices (CRSP) monthly returns dataset comprises data

on monthly stock returns, stock prices, trading volumes, and shares outstanding for a

broad spectrum of companies listed on major U.S. stock exchanges, encompassing stocks

listed on NYSE, AMEX, and Nasdaq exchanges. Firm-specific control variables utilized

in the study are obtained from firm quarterly balance-sheet and annual accounting data

provided by Compustat Industrial Quarterly and Annual files (COMPUSTAT) from from

Wharton Research Data Services (WRDS).

To examine the impact of weather risk on future stock returns, we merge the ”Storm

Events Database” with CRSP/COMPUSTAT from WRDS, creating additional variables

for empirical analysis. SIZE is defined as the natural logarithm of the market value

(MKV), where MKV is the product of the stock price (PRC) and the number of pub-

licly held shares (SHROUT), recorded in thousands. TO represents the turnover and is

calculated by dividing the sum of trading volumes (VOL), expressed in hundred shares

for monthly data, by the product of the shares outstanding (SHROUT) and 1,000. MOM

refers to the cumulative return over the last six months. Leverage is defined as the lever-

age measure, calculated as the ratio of the book value of total liability to the sum of the

book value of total liability and the market value of equity. ROA represents the return on
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assets, defined as net income scaled by total assets. SALE is natural logarithm of sales.

P/E is the price-earnings ratio. TobinsQ is defined as the market capitalization of com-

mon stock plus the liquidation value of preferred shares plus the book value of long-term

debt divided by total assets. CAPEX is defined as capital expenditures scaled by sales.

The combined dataset, merging the ”Storm Events Database” with CRSP/COMPUSTAT,

covers the period from January 1997 to December 2023. The sample size is 674,201.

Panels A and B of Table 1 provide the mean and standard deviation of the aforemen-

tioned variables, while Panel C displays the correlation matrix between Log(Magnitude),

Log(Damage Property), Log(Damage Crops), Death, and Injury. Notably, a high correla-

tion is observed between Log(Magnitude) and Log(Damage Property), whereas the cor-

relation coefficients for the other weather risk measure variables are low, all below 0.25.

4 Empirical analysis

4.1 Numeric weather risk measure predicts credit risk, expected stock
returns and firm fundamentals

In Table 2–Table 11, the standard errors are clustered on the county levels and year-

month levels to control for the cross-sectional and time-series autocorrelations, respec-

tively, following Petersen (2009). The climate risk is captured by the county variables.

With this empirical setting, the climate risk is effectively controlled. All regression con-

trol for the lagged dependent variables to address unobserved firm heterogeneity.

Table 2 demonstrates that both Magnitude and Damage Property significantly and

positively predict CDS levels across all maturity terms. In Model 1, CDS5−Year
t+1 regressed

on Log(Magnitude)t yields a coefficient of 0.568, statistically significant at the 5% level.

This implies that a 1% increase in Magnitudet corresponds to a 56.8 basis points (bp)

increase in CDS5−Year
t+1 . Given that the mean of CDS5−Year is 143.73, a 1% increase in

Magnitudet raises CDS5−Year
t+1 by 40% of its mean. Similar results are observed in Mod-

els 3 to 6 for CDS3−Year
t+1 , CDS7−Year

t+1 , CDS10−Year
t+1 , and CDS20−Year

t+1 , respectively. In Model
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2, regressing CDS5−Year
t+1 on Log(DamageProperty)t yields a coefficient of 0.245, statisti-

cally significant at the 5% level. This implies that a 1% increase in Damage Property

leads to a 24.5 basis points (bp) increase in CDS5−Year
t+1 . Consequently, a 1% increase in

Damage Property raises CDS5−Year
t+1 by 17% of its mean. The empirical results show that

as weather risk intensifies, CDS levels escalate, reflecting the heightened concerns of bond

investors over the potential impact of climatic uncertainties on the ability of borrowers to

meet their obligations.

Table 3 illustrates that Magnitude, Damage Property, and Damage Crops significantly

and positively predict changes in CDS across all maturity terms. In Models 1 and 2, a

1% increase in Damage Crops is associated with an increase of 25.1 bp and 25.5 bp in

Chg CDS5−Year
t+1 , respectively. Similarly, Models 3 and 4 indicate that a 1% increase in

Magnitude results in increases of 20.8 bp and 24.4 bp in Chg CDS3−Year
t+1 and Chg CDS7−Year

t+1 ,

respectively. As weather risk escalates, CDS changes exhibit a more pronounced trajec-

tory, mirroring the financial market’s amplified concerns over the potential reverberations

of weather risk on borrowers’ ability to service their debt obligations.

Table 4 demonstrates that Magnitude, Damage Property, and Damage Crops signifi-

cantly and positively predict percentage changes in CDS across all maturity terms. The

coefficients for Magnitude, Damage Property, and Damage Crops are almost all statisti-

cally significant at the 1% level. These results further support the findings presented in

Table 3 and Table 4. As weather risk intensifies, CDS percentage changes become more

pronounced, reflecting the financial market’s heightened sensitivity to the potential im-

pacts of weather risk on borrowers’ creditworthiness.

Table 5 demonstrates that both Magnitude and Damage Property significantly and

positively predict Slope across all maturity terms. In Model 1, Slopet+1 regressed on

Log(Magnitude)t yields a coefficient of 0.432, statistically significant at the 5% level. This

implies that a 1% increase in Magnitudet corresponds to a 43.2 basis points (bp) increase

in Slopet+1. Given that the mean of Slope is 69.56, a 1% increase in Magnitudet raises

Slopet+1 by 62% of its mean. In Model 2, regressing Slopet+1 on Log(Damage Property)t
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yields a coefficient of 0.187, statistically significant at the 5% level. This implies that a 1%

increase in Damage Property leads to a 18.7 basis points (bp) increase in Slopet+1. Con-

sequently, a 1% increase in Damage Property raises Slopet+1 by 27% of its mean. These

results underscore the financial market’s perception that heightened weather risk ampli-

fies the credit risk profile of borrowers, thereby increasing the premium demanded by

investors for longer-dated credit protection.

The empirical findings unveil a clear pattern: as weather risk escalates, be it through

intensifying event magnitudes, rising property damages, increasing deaths or injuries,

CDS levels, changes, and percentage changes exhibit a pronounced upward trajectory,

mirroring investors’ apprehensions over the potential reverberations of weather risk on

borrowers’ creditworthiness and ability to service debt obligations. This underscores the

market’s perception that heightened weather risk amplifies the overall credit risk profile

of borrowers, thereby commanding a steeper premium for longer-dated credit protection.

Models 1 and 2 of Table 6 reveal intriguing results, indicating that the weather event

has a significantly greater impact on the creditworthiness of non-investment grade firms

compared to investment grade firms, with the former experiencing an impact more than

three times greater than the latter. Non-investment grade firms, also known as specula-

tive firms, typically have weaker financial positions and higher levels of debt compared to

investment grade firms. As a result, they may have less financial resilience to withstand

the adverse effects of weather events, such as disruptions to operations or increased costs

for repairs. Non-investment grade firms may also have limited access to capital markets

or face higher borrowing costs compared to investment grade firms. Consequently, the

impact of adverse weather events on their financial performance may exacerbate liquid-

ity constraints or increase the cost of raising additional funds, further impacting their

creditworthiness.

Table 7 demonstrates that both Magnitude and Damage Crops significantly and neg-

atively predict RET. In Model 1, where RETt+1 is regressed on Log(Magnitude)t, the

coefficient is −0.153, which is statistically significant at the 5% level. This indicates that a
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1% increase in Magnitudet corresponds to a decrease of 0.00153 in RETt+1. Given that the

mean of RET is 0.011, a 1% increase in Magnitudet decreases RETt+1 by 14% of its mean.

In Models 2 and 3, we observe the even stronger effect of Magnitudet on RETt+1. In

Model 1, where RETt+1 is regressed on Damage Cropst, the coefficient is −0.332, which is

statistically significant at the 1% level. This indicates that a 1% increase in Damage Cropst

corresponds to a decrease of 0.00332 in RETt+1. Given that the mean of RET is 0.011, a

1% increase in Damage Cropst decreases RETt+1 by 30% of its mean.

Table 8 displays the average raw returns of the quartile portfolios that are equally

weighted based on the Magnitude variable. It also shows the differences in average raw

returns between the portfolios in the bottom and top quartiles. Additionally, the table

presents the alphas of the portfolios in relation to three different models: the capital asset

pricing model (CAPM) (Fama and French (1992)), the Fama-French three-factor model

(which includes market, size, and book-to-market factors) (Fama and French (1993)), and

the Carhart four-factor model (which includes market, size, book-to-market factors, and

momentum) (Carhart (1997)).

In Table 8, both Panels A and B categorize stocks into four quartiles based on their

Magnitude from the previous month, and this categorization is done every month. Once

equities have been allocated to portfolios, they are retained for a duration of one month.

The monthly portfolio return is computed by taking the average returns of all the stocks

in the portfolio, using both equal-weighted (Panel A) and value-weighted (Panel B) meth-

ods. We create quartile portfolios based on the variable Magnitude and adjust them on

a monthly basis. Portfolio 1 (Low) consists of equities with the lowest Magnitude value

in the previous month, whereas Portfolio 4 (High) consists of stocks with the highest

Magnitude value in the previous month. In our approach, we assign equal weight to

stocks in Panel A and value weight to stocks in Panel B for each quartile portfolio. Addi-

tionally, we rebalance these portfolios on a monthly basis.

In Table 8, Panel A demonstrates that the average raw return of stocks in the bot-

tom quartile with the lowest Magnitude is 0.96% per month, which monotonically falls
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to 0.37% per month for stocks in the top quartile. The average difference in raw returns

between the bottom and top quartiles is 0.59% per month (7.08% per year), with a signif-

icant Newey-West t-statistic of 1.96. The variations in returns between quartiles 1 and 4

are fairly comparable whether we risk-adjust using the CAPM, at 0.57% per month (t −

statistic = 1.85), the Fama-French three-factor model, at 0.55% per month (t − statistic =

1.75), and the Carhart four-factor model, at 0.47% per month (t − statistic = 1.68). The

three alphas are statistically significant at the 10% level.

Panel B of Table 8 shows that the average raw return of stocks in the bottom quartile

with the lowest Magnitude is 1.46% per month, and this number decreases to 0.47% per

month for stocks in the top quartile. The average difference in raw returns between the

bottom and top quartiles is 0.99% per month (11.88% per year), with a very significant

Newey-West t-statistic of 2.21. The risk-adjusted returns between quartiles 1 and 4 are

quite comparable if we use the CAPM, at 0.87% per month (t − statistic = 2.01), the

Fama-French three-factor model, at 0.88% per month (t− statistic = 1.97), and the Carhart

four-factor model, at 0.75% per month (t − statistic = 1.83). The first two alphas show

statistical significance at the 5% level.

Panel C of Table 8 demonstrates that the negative link between Magnitude and ex-

pected stock returns is particularly pronounced for small and low-priced firms. Panel C

of Table 8 shows the return of an equal-weighted portfolio that is long the lowest tercile of

stocks and short the top tercile ranked by Magnitude, in subsamples of stocks sorted by

proxies of arbitrage–size and stock price level. The entry in the first cell of the first column

of Panel C corresponding to the Magnitude signal indicates that among firms in lower

market capitalization, a strategy that is long on firms in the lowest Magnitude tercile and

short on firms in the highest Magnitude tercile produces a monthly average raw return of

0.92% with the statistical significance at the 1% level. In the subsample with lower market

capitalization, the average raw returns of the portfolio strategy that buys low Magnitude

stocks and shorts high Magnitude, as well as the alphas with respect to the CAPM, the

Fama-French three-factor model, or the Carhart four-factor model, are all positive and
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significant at the 1% level. The fifth cell of the sixth column of Panel C corresponding

to the Magnitude signal indicates that among firms in the lower price, a strategy that is

long on firms in the lowest Magnitude tercile and short on firms in the highest Magnitude

tercile produces a monthly average raw return of 0.80% with the statistical significance

at the 5% level. In the subsample with the lower price, the average raw returns of the

portfolio strategy that buys low Magnitude stocks and shorts high Magnitude, as well as

the alphas with respect to the CAPM, the Fama-French three-factor model, or the Carhart

four-factor model, are all positive and significant at the 5% level.

The above empirical results uncover a significant inverse relationship between weather

risk measures and expected equity returns. Weather risk proxies like event magnitude

and crop damage exhibit pronounced predictive power, exerting a substantial negative

influence on future stock performance. A 1% increase in magnitude foreshadows a con-

siderable 14% decline in average stock returns the following month, while a 1% increase

in crop damage forecasts a significant 30% decrease in returns. over the next month.

Portfolio-level examinations reinforce this negative association, with stocks in the highest

magnitude quartile significantly underperforming those in the lowest quartile by 0.59%

per month on a raw basis and 0.47-0.57% per month on a risk-adjusted basis across factor

models. This return disparity is amplified among smaller, lower-priced firms, poten-

tially reflecting heightened vulnerability to weather risks. A hedge strategy going long

the lowest magnitude tercile and short the highest generates significant positive returns

of 0.80-0.92% monthly for these subsamples. Collectively, the empirical analyses unveil

robust evidence that elevated weather risk adversely impacts subsequent equity perfor-

mance, with the effect being particularly acute for smaller, financially constrained firms

plausibly less resilient to such weather hazards.

Table 9 demonstrates that Damage Crops significantly and negatively predict Leverage.

In Model 1, where Leveraget+1 is regressed on Damage Cropst, the coefficient is 0.001,

which is statistically significant at the 5% level. In Model 2, where Chg Leveraget+1 is

regressed on Damage Cropst, the coefficient is 0.001, which is statistically significant at
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the 5% level. In Model 3, where PChg Leveraget+1 is regressed on Damage Cropst, the

coefficient is 0.002, which is statistically significant at the 5% level. Thus, higher values of

Damage Crops are associated with higher values of Leverage.

Table 10 demonstrates that Magnitude significantly and negatively predict future prof-

itability. In Model 1, where ROAt+1 is regressed on Log(Magnitude)t, the coefficient is

−0.0003, which is statistically significant at the 5% level. This indicates that a 1% in-

crease in Magnitudet corresponds to a decrease of 0.0003% in ROAt+1. Given that the

mean of ROA is 0.0006, a 1% increase in Magnitudet decreases ROAt+1 by 0.5% of its

mean. In Models 2 to 5, we observe the negative effect of Magnitudet on Chg ROAt+1,

Chg SALEt+1, PChg SALEt+1, and PChg P/Et+1, which are significant at either the 5%

or 1% levels. These results indicate the disruption in operations due to the weather event

leads to lower future profitability.

Table 11 demonstrates that Magnitude significantly and negatively predict future TobinsQ.

In Models 1 and 3, where TobinsQt+1 is regressed on Log(Magnitude)t, the coefficient is

−0.004, which is statistically significant at the 1% level. Table 11 also demonstrates that

Magnitude significantly and positively predict future CAPEX. In Models 4 and 6, where

CAPEXt+1 is regressed on Log(Magnitude)t, the coefficient is 0.001, which is statistically

significant at the 1% level.

A lower TobinsQ generally indicates that the market perceives the growth prospects of

the firm to be less favorable or that its assets are overvalued relative to their replacement

cost. This could be due to the negative impact of the severe weather event on the firm’s

operations, revenues, and future cash flows. The results indicate that while higher storm

magnitudes may reduce TobinsQ by decreasing the market value of assets due to the dis-

ruption in operations, they can also lead to higher CAPEX in the next period. Companies

may invest more in capital expenditures in the next period to repair or replace damaged

assets, infrastructure, or facilities resulting from the severe weather event.

The empirical analyses highlight the strong effects of weather risk on various aspects

of corporate financial strategies and performance. Following crop damage, there’s a no-
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table positive correlation with increased leverage, indicating firms may turn to height-

ened debt financing post-events. Simultaneously, larger event magnitudes negatively im-

pact profitability metrics such as return on assets, sales growth, and price-to-earnings

multiples, signaling disruptive consequences for operational performance. Furthermore,

while higher storm intensities reduce Tobin’s Q, reflecting diminished growth prospects,

they also prompt increased capital expenditures in subsequent periods. This apparent

contradiction may signify market concerns about growth limitations alongside strategic

investments by firms to address damages, mitigate risks, or capitalize on opportunities

post-event. Collectively, these findings accentuate the intricate interplay between weather

risk factors and corporate financial decision-making, profitability, valuation, and invest-

ment dynamics.

4.2 Textural weather risk measure predicts credit risk, expected stock
returns and firm fundamentals

The ”Storm Events Database” offers two innovative textual measures for assessing

weather risk: episode narrative and event narrative. To retrieve the information contained

in episode narrative and event narrative, we employ feature extraction techniques using

the following natural language processing (NLP) methods to transform textual data into

numerical representations suitable for machine learning algorithms: TF-IDF, Word2Vec,

and BERT.

TF-IDF, also known as Term Frequency-Inverse Document Frequency, is a quantitative

measure utilized to assess the importance of terms within a document. Term Frequency

(TF) quantifies the frequency of a term’s occurrence in a document, whereas Inverse Doc-

ument Frequency (IDF) evaluates the scarcity of a word throughout the complete collec-

tion of documents. The TF score is calculated by tallying the number of times a term

appears in the document, with greater frequency leading to higher scores. In contrast, the

IDF score is calculated by dividing the total number of documents by the number of doc-

uments containing the term, and then applying a logarithmic transformation. As a result,
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less common terms in the collection of texts have higher IDF values. The TF-IDF score for

a phrase in a document is determined by the product of its TF (phrase Frequency) and

IDF (Inverse Document Frequency) values. This approach modifies the weight of each

term according to its significance and infrequency, thus enabling a precise depiction of

the document’s content.

Lopez-Lira and Tang (2023) use TF-IDF scores to quantify the qualitative information

in ChatGPT’s explanations and analyze the words with the highest TF-IDF scores in the

positive, negative, and neutral explanations to identify patterns and indicators of finan-

cial performance, uncertainty, and other relevant factors. Imerman et al. (2023) use TF-IDF

for the bigram frequency of the climate change disclosure in the earnings call transcript.

Word2Vec is a collection of models that are utilized to generate word embeddings.

Word embeddings are numerical representations of words that capture both the meaning

and structure of those words, derived from their context in a collection of texts. The core

concept underlying Word2Vec is that words that occur in comparable settings exhibit

comparable meanings. Word2Vec utilizes a neural network to train itself in predicting

words by considering the words that surround them. This enables Word2Vec to acquire

compact vector representations that capture semantic similarities. Word2Vec consists of

two primary model architectures which we use in my analysis–the Continuous Bag-of-

Words (CBOW) model which aims to forecast the present word by considering the con-

text words surrounding it and the Skip-gram which attempts to forecast the neighboring

context words within a window, based on the current word. Word2Vec embeddings are

commonly utilized as inputs for deep learning models in NLP tasks such as text classifi-

cation.

BERT (Bidirectional Encoder Representations from Transformers) developed by re-

searchers at Google AI in 2018 revolutionized NLP with its bidirectional training of Trans-

former. BERT is a pre-trained deep learning model that achieves excellent performance

on many natural language processing tasks. BERT employs a bidirectional training tech-

nique, unlike earlier language models that process text input in a sequential manner
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(either left-to-right or right-to-left). This implies that it acquires knowledge about the

connections between words in a given context by examining text in both forward and

backward directions at the same time. The system utilizes the Transformer encoder archi-

tecture, which exploits multi-head self-attention to calculate representations of input se-

quences. BERT’s bidirectional architecture and pre-training on extensive datasets enabled

it to acquire sophisticated language comprehension abilities. It initiated a fundamental

change in the field of NLP by emphasizing the use of transfer learning from extensive

pre-trained language models.

Chen et al. (2023) uses BERT as one of the benchmark models for its empirical analysis.

Specifically, the paper adopts BERT as an initial benchmark model for comparison with

LLMs. They show that LLMs like BERT achieve better results in sentiment analysis tasks

compared to traditional word-based methods. Lin Tan and Zhang (2024) employ BERT to

derive contextualized depictions of Chinese news text and forecast stock returns within

the Chinese equity market. Kirtac and Germano (2024) use BERT to measure the senti-

ment of the news of the previous 3 days to forecast daily stock returns. Kim and Nikolaev

(2024) employ BERT and artificial neural networks and develops a context-based proxy

for future operating profitability, refining traditional measures and emphasizing the im-

portance of qualitative insights in financial analyses. Kölbel et al. (2024) use BERT to

classify transition and physical climate risk from 10-K reports.

After performing TF-IDF, Word2Vec, or BERT for feature extraction, we merge the tex-

tual features (episode narrative or event narrative) with the numeric features–magnitude,

damage crops, damage property, deaths, and injuries. Additionally, we incorporate dummy

variables for state, county, and year-month to account for climate-related risks. we ag-

gregate all of these features into a unified feature set for analysis. The length of the

episode narrative or event narrative is winsorized at the 10th percentile level.

To conduct the empirical analysis, we employ four supervised machine learning (ML)

models: Linear Regression (LR), Decision Tree (DT) Regression, Extreme Gradient Boost-

ing (XGBoost) Regression, and Random Forest (RF) Regression. Additionally, we utilize

22



three artificial intelligence (AI) and deep learning (DL) models: Deep Neural Networks

(DNN), Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN).

Linear Regression (LR) is a statistical technique employed to establish a mathemat-

ical model that describes the association between a dependent variable, also known as

the target variable, and one or more independent variables, referred to as features. This

is achieved by fitting a linear equation to the obtained data. Regression projects often

employ this method when the target variable is of a continuous nature.

Decision Tree (DT) Regression is a supervised learning technique that works in a non-

parametric manner to do regression tasks. The prediction of a target variable is achieved

through the acquisition of basic decision rules derived from the properties of the data.

Decision trees partition the dataset into subsets by selecting the attribute with the highest

significance at each node, hence constructing a hierarchical tree structure.

Extreme Gradient Boosting (XGBoost) Regression is an ensemble learning methodol-

ogy that constructs a robust predictive model by employing a set of weak learners, specif-

ically decision trees. The process involves the successive addition of trees to the ensemble,

wherein each subsequent tree is trained to rectify the faults made by its preceding tree.

XGBoost has gained recognition for its notable strengths in terms of efficiency, scalability,

and exceptional performance across several machine learning contests.

Random Forest (RF) Regression is also an ensemble learning technique that involves

the construction of several decision trees during the training process. The resulting mod-

els are then used to perform regression tasks by calculating the average prediction of the

individual trees. By aggregating many trees, it enhances the performance of decision trees

by mitigating overfitting and improving prediction accuracy.

Deep Neural Networks (DNNs), Convolutional Neural Networks (CNNs), and Recur-

rent Neural Networks (RNNs) are three types of Artificial Neural Network (ANN) which

is a broad family or umbrella term that encompasses various types of neural network

architectures, including DNNs, CNNs, and RNNs, among others, such Autoencoders,

Generative Adversarial Networks (GANs) and many more.
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DNNs refers to a type of ANN composed of multiple layers of interconnected nodes

(neurons) arranged in a feedforward manner. Each layer in a DNN typically performs a

transformation on the input data, gradually extracting higher-level features as informa-

tion propagates through the network. DNNs are characterized by their depth, meaning

they have multiple hidden layers between the input and output layers. These hidden lay-

ers allow DNNs to learn complex patterns and representations from the data. By learning

hierarchical representations of features, DNNs can capture intricate relationships and de-

pendencies in the input data, making them powerful models for various machine learning

tasks.

In Kim and Nikolaev (2024), textual vectors are utilized as input for training a deep

neural network to determine adjustments for profitability context. The model consists of

multiple layers, including an input layer with 768 neurons, three hidden layers with de-

creasing neuron sizes, and an output layer producing structural parameters. The training

objective is to minimize the root mean squared error (RMSE) between predicted and ac-

tual operating profitability values, with ReLU activation functions applied to all neurons

except those in the output layer.

This paper uses a DNN constructed using TensorFlow’s Keras API for regression anal-

ysis, comprising three hidden layers. These layers apply weights to concatenated text and

numeric features, followed by Rectified Linear Unit (ReLU) activation functions, facilitat-

ing nonlinear transformations crucial for capturing complex data patterns. With varied

neuron sizes and ReLU activation functions, the architecture is designed to progressively

capture intricate relationships in the data through multiple layers. The output layer, con-

sisting of a single neuron, utilizes a linear activation function, aligning with the regression

objective to estimate continuous outcomes. The model is optimized using the Adam op-

timizer and mean squared error (MSE) as the loss function, leveraging adaptive learning

rates derived from first and second moment estimates of gradients. This optimization ap-

proach combines the strengths of AdaGrad and RMSProp, ensuring efficient parameter

updates for enhanced model performance.
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CNNs is a type of ANNs designed to process structured grid-like data, such as images.

CNNs are particularly well-suited for tasks related to computer vision, such as image

classification, object detection, and image segmentation. The key feature of CNNs is their

ability to automatically learn hierarchical representations of features from raw pixel data.

This is achieved through the use of convolutional layers, which apply filters (also known

as kernels or feature detectors) to small, overlapping regions of the input image. These

filters detect specific patterns or features, such as edges, textures, or shapes, at different

spatial locations within the image. CNNs typically consist of multiple layers, including

convolutional layers, pooling layers, and fully connected layers. Convolutional layers

perform the feature extraction process, pooling layers reduce the spatial dimensions of

the feature maps, and fully connected layers perform the final classification or regression

task.

Cao et al. (2023) investigates using convolutional neural networks (CNN) to analyze

visual data from corporate presentations, categorizing images into Operations Forward,

Operations Summary, and Others. Employing transfer learning, CNN models are re-

fined to improve prediction accuracy and minimize training data requirements. Results

indicate that visual information, especially forward-looking operational data identified

by CNNs, positively affects short-term stock returns, particularly when stocks are pre-

dominantly held by AI-equipped institutional investors, highlighting the impact of AI on

market responses to visual corporate data.

The CNN neural network architecture in this paper, mirroring the structure of the

DNN regression model, integrates three hidden layers with input layers for text and nu-

meric features followed by dense layers for prediction. Text and numeric features are

combined and processed through convolutional layers tailored for sequential input, fa-

cilitating feature extraction pertinent to tasks like sentiment analysis or text classifica-

tion. The convolutional layer applies one-dimensional convolutions with 128 filters and

a kernel size of 3, utilizing ReLU activation to capture complex patterns. Global max-

pooling extracts key features, while dropout regularization prevents overfitting by ran-
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domly dropping 10% of neurons. TensorFlow’s Keras API is employed for model devel-

opment, including steps to clear sessions, establish random seeds, and compile the model

with MSE loss, followed by training and evaluation utilizing validation data. The CNN

model’s performance closely resembles that of the DNN.

RNNs is a type of ANNs designed to process sequential data by maintaining internal

memory or state. Unlike feedforward neural networks, which process data in a single

direction (from input to output), RNNs have connections that form directed cycles, al-

lowing them to capture temporal dependencies in sequential data. The key feature of

RNNs is their ability to handle input sequences of varying lengths and to maintain mem-

ory of past inputs while processing current inputs. This makes them well-suited for tasks

involving sequential data, such as time series prediction. In an RNN, each time step in

the input sequence is processed one at a time, with the network’s hidden state being up-

dated at each step based on both the current input and the previous hidden state. This

recurrent connection enables the network to retain information about past inputs, allow-

ing it to capture long-term dependencies in the data. However, traditional RNNs suffer

from the vanishing gradient problem, which makes it difficult for them to learn long-

range dependencies in sequences. To address this issue, several variants of RNNs have

been developed, including Long Short-Term Memory (LSTM) networks used in this pa-

per, which incorporate mechanisms to better control the flow of information through the

network and mitigate the vanishing gradient problem.

Glasserman et al. (2023) use RNN model the probability distributions of words in

the articles, allowing calculation of entropy scores that reflect how unusual the text is

compared to recent prior months. The process involves training a RNN on articles from

the preceding 6 months from t − 6 to t − 1 to establish a model, which is then utilized to

compute the average entropy score of articles in month t.

The RNN architecture in this paper adopts a bidirectional LSTM design to capture se-

quential dependencies, with concatenated features fed into dense layers with ReLU acti-

vation functions, culminating in a linear activation function in the output layer. Compris-
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ing three hidden layers akin to the DNN model, the architecture integrates input layers

for both text and numeric features, followed by dense layers for prediction. Each layer

applies weights to the input data and ReLU activation, facilitating nonlinear changes to

learn complex patterns. Utilizing a bidirectional RNN with LSTM cells, the model incor-

porates a 64-unit LSTM layer and wraps it with a bidirectional wrapper to process input

sequences forward and backward, aiding in capturing information from both past and

future contexts. Training the RNN involves employing the Adam optimizer with mean

squared error as the loss function. Developed using TensorFlow’s Keras API, the RNN

regression model undergoes a structured process involving clearing sessions, setting ran-

dom seeds, and purging log directories, with unique logs generated for each run. The

RNN model’s performance closely resembles that of the DNN.

Below we will present the empirical results of four ML models (LR, DT, XGBosst, and

RF) and three AI/DL models (DNN, CNN, and RNN), after utilizing techniques such as

TF-IDF, Word2Vec, or BERT for feature extraction.

We merge the textual features (episode narrative or event narrative) with the numeric

featuresmagnitude, damage crops, damage property, deaths, and injuries. Additionally, we

incorporate dummy variables for state, county, and year-month to account for climate-

related risks. We aggregate all of these features into a unified feature set for analysis.

Likewise, Kim and Nikolaev (2024) investigates the crucial role of contextual narrative

alongside numerical data in empirical asset pricing models, highlighting the impact of

qualitative factors often overlooked in traditional analyses.

For Table 12 to Table 16, Panel A utilizes the textual feature episode narrative, while

Panel B employs event narrative. Both panels utilize the following numeric features:

magnitude, damage crops, damage property, deaths, and injuries. Additionally, dummy

variables for state, county, and year-month are included to account for climate-related

risks, along with the value of the target variable of the current month to control for all the

firm-specific characteristics. The target variables are defined as follows: for Table 12, it is

the 5-year CDS spread of the next month; for Table 13, it is the CDS slope, defined as the
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difference between the 5-year CDS spread and the 1-year CDS spread of the next month;

for Table 14, it is the next month-end stock price; for Table 15, it is the next month leverage

as defined in Table 9; and for Table 16, it is the TobinsQ of the next month as defined in

Table 11. The target variables are all winsorized at 5% level.

For Table 12 to Table 16, Models 1 to 4 and Models 5 to 8 represent four supervised

machine learning (ML): Linear Regression (LR), Decision Tree Regression (DT), Random

Forest Regression (RF), and Extreme Gradient Boosting (XGB). Models 1 to 4 utilize TF-

IDF for textual feature extraction, while Models 5 to 8 utilize Word2Vec. Similarly, Models

9 to 11 and Models 12 to 14 represent three artificial intelligence (AI) and deep learning

(DL) models: Deep Neural Networks (DNN), Convolutional Neural Networks (CNN),

and Recurrent Neural Networks (RNN). Models 9 to 11 utilize TF-IDF for textual feature

extraction, whereas Models 10 to 14 utilize BERT.

Using the input features, we first train the machine learning (ML) models and the

artificial intelligence (AI) and deep learning (DL) models. We fit each model to the train-

ing data and then use them to predict the target variable on the test data. We evaluate

each model using the statsmodels library, fitting a linear regression model to the actual

and predicted target values. Finally, we obtain the model summaries, providing detailed

information about each model’s performance, including coefficients, standard errors, p-

values, and goodness-of-fit statistics for the predicted target values.

ML and AI/DL models approach data analysis with a predictive perspective. They

aim to uncover patterns and relationships within data to facilitate predictions or decisions

without heavily relying on specific assumptions about the underlying data generation

process. ML and DL models exhibit greater flexibility in terms of assumptions, enabling

them to manage nonlinear relationships, high-dimensional data, and intricate patterns

without strict adherence to particular data distribution assumptions. These models learn

patterns directly from data, allowing them to handle both structured and unstructured

datasets. ML and AI/DL models are frequently referred to as ’black boxes’ because of

their complex architectures and vast parameter space. Unlike traditional panel regres-
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sion analysis, these models do not provide coefficients, t-stats for the regressors, or other

interpretable measures of relationship between variables. Instead, their evaluation pri-

marily relies on predictive accuracy5. For Table 12 to Table 16, we report the regression

results of the target values on the predicted values of the test set, including the coeffi-

cients, standard errors, p-values, and the adjusted R2s.

Table 12 illustrates that the ensemble combination of the textual weather risk mea-

sures, episode narrative and event narrative, and the numeric weather risk measures, magnitude,

damage crops, damage property, deaths, and injuries, significantly predict future 5-year

CDS levels, which serve as proxies for a firm’s credit risk. The statistical significance of

the predicted target values is at the 1% level. The average adjusted R2 values are 93%

for Panel A and 92% for Panel B. Consequently, when controlling for climate risk and

lagged credit risk measures, these weather risk measures effectively forecast the future

creditworthiness of the firm.

Table 13 confirms the results observed in Table 12, demonstrating a similar predic-

tive relationship with alternative credit risk measures, specifically CDS slope. The textual

weather risk measures, episode narrative and event narrative and the numeric weather

risk measures, magnitude, damage crops, damage property, deaths, and injuries, signifi-

cantly predict future CDS slopes. The statistical significance of the predicted target values

is at the 1% level. The average adjusted R2 values are 89% for both Panels A and B.

In Table 14, the label variable represents the stock price at time t + 1. The feature set

comprises textual weather risk measures, including episode narrative and event narrative,

numeric weather risk measures such as magnitude, damage crops, damage property, deaths,

and injuries, and lagged stock prices at times t, t − 1, and t − 2. This is on the monthly

frequency, as compared to Chen et al. (2023), Lopez-Lira and Tang (2023) and Kim and

Nikolaev (2024) which all predict stock returns on the daily frequency. The average ad-

justed R2 values are 96% for both Panels A and B. The statistical significance of the pre-

5We thank Gregory Ryslik at COMPASS Pathways for insightful discussion about how to evaluate ML
and AI/DL models.
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dicted target values is at the 1% level. This indicates that when controlling for climate

risk and lagged stock prices, these weather risk measures effectively forecast stock prices.

In Table 15 and Table 16, weather risk measures significantly forecast future firm fun-

damentals, including leverage (Table 15) and TobinsQ (Table 16), respectively. This fore-

casting remains significant after controlling for climate risk measures and lagged firm

fundamentals. The predicted target values demonstrate statistical significance at the 1%

level. The average adjusted R2 values exceed 93% for both Panels A and B across both

tables.

The empirical analyses leveraging machine learning and AI techniques and textual

data underscore the significant predictive power of weather risk measures for an array of

corporate outcomes. Tables 12 and 13 demonstrate that an ensemble of textual narratives

and numerical indicators pertaining to weather events exhibits remarkable forecasting

ability for firms’ future credit risk proxies, including 5-year CDS levels and CDS slopes,

even after accounting for lagged credit risk factors. This predictive prowess extends to

equity markets, as evidenced by Table 14, where weather risk measures effectively an-

ticipate subsequent stock price movements when combined with historical pricing data.

Furthermore, Tables 15 and 16 reveal the capacity of these weather risk metrics to presage

future firm fundamentals, accurately forecasting leverage ratios and Tobin’s Q, a gauge of

growth prospects. Notably, these predictive relationships persist after controlling for cli-

mate risk factors and past firm characteristics. The exceptionally high adjusted R-squared

values, exceeding 90% across all analyses, coupled with the robust statistical significance

of the predicted targets, accentuate the remarkable explanatory power of weather risk

indicators. These findings underscore the pressing need for market participants and cor-

porate decision-makers to integrate weather risk assessments into their analytical frame-

works and strategic planning processes.
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5 Conclusion

This research makes a substantial contribution to the body of knowledge regarding the

effects of weather risk, as opposed to long-term climate risk, on corporate fundamentals

and financial markets. Through the utilization of an extensive NWS database contain-

ing qualitative narratives and quantitative measurements of weather phenomena such as

floods and cyclones, the analyses combine state-of-the-art natural language processing

methods with conventional structured data.

Elevated weather risk is predictive of increased credit risk and wider spreads, par-

ticularly for speculative-grade firms with limited financial flexibility, according to the

findings. Furthermore, this augurs diminished anticipated stock returns due to the ra-

tional pricing by equity investors of these transient operational disruptions and cash flow

disturbances. In response to the negative impact of weather hazards on short-term prof-

itability, growth prospects, and valuations, companies increase their capital expenditures

the following period, most likely for investments in long-term positioning, resilience, and

recovery.

This research demonstrates the potential of modern AI/machine learning frameworks,

such as deep learning and large language models, to enable multimodal analyses that in-

tegrate numerical and textual data in order to extract novel predictive signals from scien-

tific datasets. Qualitative textual indicators and quantitative weather risk measures both

accurately forecast future conditions pertaining to corporate fundamentals, credit risk,

and equity returns.
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Figure 1: The Word Cloud Graph for Episode Narrative

This figure is a graphical representation of the textual information from the
episode narrative, depicted in a word cloud format and employing a Bag of Words (BoW)
methodology. The visibility of each word in the visualization is determined by its fre-
quency within the specified corpus of text.
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Figure 2: The Word Cloud Graph for Event Narrative

This figure is a graphical representation of the textual information from the
event narrative, depicted in a word cloud format and employing a Bag of Words (BoW)
methodology. The visibility of each word in the visualization is determined by its fre-
quency within the specified corpus of text.
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Table 1: Summary Statistics

This table presents the summary statistics, including the mean and standard deviation of the variables. In
Panel A, Magnitude is the weather event’s scale for wind speeds (measured in knots). Damage Property is

the estimated property damage caused by the weather event. Damage Crops is the estimated crop
damage. Additionally, the logarithm of these variables is used for analysis. Death comes from the total of
Deaths Direct and Deaths Indirect. Deaths Direct and Deaths Indirect show the number of deaths directly

and indirectly caused by the weather event, respectively. Injury is the sum of Injuries Direct and
Injuries Indirect. Injuries Direct and Injuries Indirect represent the number of injuries directly and

indirectly caused by the weather event, respectively. The sample size is 674,201. CDSX−Year represent the
CDS level of the maturity term of X years in basis points, where X is set to 5, 3, 7, 10, and 20, respectively.
Slope is the difference between 5-year CDS and 1-year CDS levels. The CDS sample size is 38,927. In Panel

B, RET represent the stock return for the month. SIZE is defined as the natural logarithm of the market
value (MKV), where MKV is the product of the stock price (PRC) and the number of publicly held shares
(SHROUT), recorded in thousands. TO represents the turnover and is calculated by dividing the sum of

trading volumes (VOL), expressed in hundred shares for monthly data, by the product of the shares
outstanding (SHROUT) and 1,000. MOM refers to the cumulative return over the last six months.

Leverage is defined as the leverage measure, calculated as the ratio of the book value of total liability to the
sum of the book value of total liability and the market value of equity. ROA represents the return on
assets, defined as net income scaled by total assets. SALE is the natural logarithm of sales. P/E is the

price-earnings ratio. TobinsQ is defined as the market capitalization of common stock plus the liquidation
value of preferred shares plus the book value of long-term debt divided by total assets. CAPEX is defined

as capital expenditures scaled by sales. The sample size is 674,201. Panel C is the correlation matrix
between Log(Magnitude), Log(Damage Property), Log(Damage Crops), Death and Injury.

Panel A

Variable Mean SD

Log(Magnitude) 0.36 1.15
Log(Damage Property) 0.56 2.35

Log(Damage Crops) 0.02 0.40
Death 0.005 0.10
Injury 0.03 0.65

CDS5-Year 143.73 254.60
CDS3-Year 109.37 260.32
CDS7-Year 158.62 241.74
CDS10-Year 168.70 228.01
CDS20-Year 177.70 226.52

Slope 69.56 128.37

Panel B

Variable Mean SD

RET 0.011 0.20
SIZE 13.03 2.17
TO 0.22 3.80

MOM 0.07 0.48
Leverage 0.21 0.17

ROA 0.0006 0.80
SALE 9.08 1.10
P/E 24.92 67.73

TobinsQ 1.82 1.65
CAPEX 0.03 0.04

Panel C

Variable Log(Magnitude) Log(Damage Crops) Log(Damage Property) Death Injury

Log(Magnitude) 1.00
Log(Damage Crops) 0.14 1.00

Log(Damage Property) 0.76 0.16 1.00
Death 0.15 0.07 0.13 1.00
Injury 0.15 0.03 0.18 0.25 1.00
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Table 2: The levels of CDS of multiple terms and numeric weather risk measures

This table presents the results of the panel regression with two-way clustering of standard errors to con-
trol for potential correlations within time periods (years and months) and cross-sectional units (counties).
In Models 1 to 6, the dependent variables CDSX−Year

t+1 represent the CDS level for the next period of the
maturity term of X years, where X is set to 5 for Models 1 and 2, and to 3, 7, 10, and 20 for Models 3 to 6 re-
spectively. In all models, the independent variables include several metrics, in addition to the CDS level for
the current period CDSX−Year

t . Magnitude represents the event’s scale, primarily utilized for wind speeds
(measured in knots). Damage Property quantifies the estimated property damage incurred by the weather
event, while Damage Crops quantifies the estimated damage to crops. Additionally, the logarithm of these
variables is taken for analysis. Death is derived from the summation of Deaths Direct and Deaths Indirect.
Deaths Direct and Deaths Indirect represent the count of deaths directly and indirectly attributed to the
weather event, respectively. Injury is derived from the summation of Injuries Direct and Injuries Indirect.
Injuries Direct and Injuries Indirect signify the count of injuries directly and indirectly resulting from the
weather event, respectively. For each county and each year-month, the maximum value of Magnitude is se-
lected, and the variables Damage Property, Damage Crops, Death, and Injury are aggregated by summing
their values. The sample period is from January 2001 to October 2019. t-statistics are shown in parentheses.
∗p < .1; ∗ ∗ p < 0.05; ∗ ∗ ∗p < 0.01..

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

CDS5−Year
t+1 CDS5−Year

t+1 CDS3−Year
t+1 CDS7−Year

t+1 CDS10−Year
t+1 CDS20−Year

t+1

Log(Magnitude)t 0.568** 0.466* 0.553** 0.550** 0.618**
(2.08) (1.72) (2.16) (2.14) (2.06)

Log(Damage Property)t 0.245**
(2.03)

Log(Damage Crops)t −0.248 −0.220 −0.349 −0.228 −0.255 −0.320
(−0.88) (−0.82) (−1.61) (−0.82) (−0.87) (−0.87)

Deatht 2.532 2.528 0.693 1.772 2.061 2.203
(0.78) (0.78) (0.30) (0.58) (0.64) (0.81)

Injuryt 0.05 0.03 0.054 0.069 −0.011 0.032
(0.18) (0.11) (0.23) (0.23) (−0.03) (0.11)

CDS5−Year
t 0.947*** 0.947***

(87.50) (87.50)
CDS3−Year

t 0.927***
(65.43)

CDS7−Year
t 0.956***

(97.51)
CDS10−Year

t 0.958***
(109.04)

CDS20−Year
t 0.953***

(92.85)
Constant 5.927*** 5.985*** 5.593*** 5.745*** 6.030*** 7.306***

(6.47) (6.51) (6.25) (6.30) (6.99) (6.13)

N 37,733 37,733 35,620 35,703 35,395 26,930

R2 94.1% 94.1% 92.9% 94.8% 95.0% 94.3%
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Table 3: The changes of CDS of multiple terms and numeric weather risk measures

This table presents the results of the panel regression with two-way clustering of standard errors to
control for potential correlations within time periods (years and months) and cross-sectional units
(counties). In Models 1 to 6, the dependent variables Chg CDSX−Year

t+1 represent the CDS change for
in next period of the maturity term of X years, where X is set to 5 for Models 1 and 2, to 3 for Model
3, and to 7 for Model 4, respectively. In all models, the independent variables include several met-
rics, in addition to the CDS change for the current period Chg CDSX−Year

t . Magnitude represents
the event’s scale, primarily utilized for wind speeds (measured in knots). Damage Property quan-
tifies the estimated property damage incurred by the weather event, while Damage Crops quanti-
fies the estimated damage to crops. Additionally, the logarithm of these variables is taken for anal-
ysis. Death is derived from the summation of Deaths Direct and Deaths Indirect. Deaths Direct
and Deaths Indirect represent the count of deaths directly and indirectly attributed to the weather
event, respectively. Injury is derived from the summation of Injuries Direct and Injuries Indirect.
Injuries Direct and Injuries Indirect signify the count of injuries directly and indirectly resulting
from the weather event, respectively. For each county and each year-month, the maximum value
of Magnitude is selected, and the variables Damage Property, Damage Crops, Death, and Injury
are aggregated by summing their values. The sample period is from January 2001 to October 2019.
t-statistics are shown in parentheses. ∗p < .1; ∗ ∗ p < 0.05; ∗ ∗ ∗p < 0.01.

Model 1 Model 2 Model 3 Model 4

Chg CDS5−Year
t+1 Chg CDS3−Year

t+1 Chg CDS7−Year
t+1

Log(Magnitude)t 0.079* 0.208** 0.244**
(1.71) (2.16) (2.03)

Log(Damage Property)t 0.035*
(1.77)

Log(Damage Crops)t 0.251*** 0.255*** 0.027 0.042
(2.63) (2.73) (0.20) (0.24)

Deatht −0.38 −0.385 −0.771 −0.607
(−0.59) (−0.59) (−1.07) (−0.54)

Injuryt 0.031 0.029 0.019 0.102
(0.32) (0.28) (0.11) (0.48)

Chg CDS5−Year
t 0.009** 0.009**

(2.03) (2.03)
Chg CDS3−Year

t 0.036***
(3.61)

Chg CDS7−Year
t 0.037***

(3.45)
Constant −0.517*** −0.510*** −0.524*** −0.145

(−8.96) (−9.11) (−5.80) (−1.50)

N 34,303 34,303 35,053 35,143

R2 0.1% 0.1% 0.6% 0.4%
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Table 4: The percentage changes of CDS of multiple terms and numeric weather risk
measures

This table presents the results of the panel regression with two-way clustering of standard errors
to control for potential correlations within time periods (years and months) and cross-sectional
units (counties). In Models 1 to 6, the dependent variables PChg CDSX−Year

t+1 represent the CDS
percentage change for the next period of the maturity term of X years, where X is set to 5 for
Models 1 and 2, to 3 for Models 3 and 4, and to 7 for Models 5 and 6, respectively. In all mod-
els, the independent variables include several metrics, in addition to the CDS percentage change
for the current period PChg CDSX−Year

t . Magnitude represents the event’s scale, primarily uti-
lized for wind speeds (measured in knots). Damage Property quantifies the estimated property
damage incurred by the weather event, while Damage Crops quantifies the estimated damage
to crops. Additionally, the logarithm of these variables is taken for analysis. Death is derived
from the summation of Deaths Direct and Deaths Indirect. Deaths Direct and Deaths Indirect
represent the count of deaths directly and indirectly attributed to the weather event, respectively.
Injury is derived from the summation of Injuries Direct and Injuries Indirect. Injuries Direct and
Injuries Indirect signify the count of injuries directly and indirectly resulting from the weather
event, respectively. For each county and each year-month, the maximum value of Magnitude is
selected, and the variables Damage Property, Damage Crops, Death, and Injury are aggregated by
summing their values. The sample period is from January 2001 to October 2019. t-statistics are
shown in parentheses. ∗p < .1; ∗ ∗ p < 0.05; ∗ ∗ ∗p < 0.01.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

PChg CDS5−Year
t+1 PChg CDS3−Year

t+1 PChg CDS10−Year
t+1

Log(Magnitude)t 0.162** 0.222** 0.144**
(2.29) (2.46) (2.28)

Log(Damage Property)t 0.110*** 0.081* 0.052*
(3.06) (1.71) (1.66)

Log(Damage Crops)t 0.487*** 0.675*** 0.522*** 0.543*** 0.323*** 0.338***
(3.68) (2.73) (3.73) (4.16) (2.63) (2.92)

Deatht −0.285 −0.036 −0.517 −0.472 −0.427 −0.392
(−0.32) (−0.05) (−0.59) (−0.52) (−0.47) (−0.42)

Injuryt −0.023 −0.034 0.058 0.058 −0.019 −0.019
(−0.20) (−0.20) (0.45) (0.44) (−0.17) (−0.17)

PChg CDS5−Year
t 0.069*** 0.070***

(6.15) (6.76)
PChg CDS3−Year

t 0.032*** 0.032***
(3.66) (3.67)

PChg CDS7−Year
t 0.028*** 0.028***

(2.97) (2.99)
Constant 0.589*** 0.607*** 0.818*** 0.851*** 0.699*** 0.721***

(10.85) (11.53) (11.08) (11.55) (13.05) (13.70)

N 36,639 35,746 35,059 35,059 35,153 35,153

R2 0.5% 0.6% 0.2% 0.2% 0.2% 0.1%
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Table 5: CDS Slope and numeric weather risk measures

This table presents the results of the panel regression with two-way clustering of standard errors to
control for potential correlations within time periods (years and months) and cross-sectional units
(counties). The dependent variables Slopet+1 represent the next period CDS slope which is defined
as the difference of 5-Year CDS level and 1-Year CDS level. The independent variables include
several metrics, in addition to the current period CDS slope Slopet. Magnitude represents the
event’s scale, primarily utilized for wind speeds (measured in knots). Damage Property quantifies
the estimated property damage incurred by the weather event, while Damage Crops quantifies the
estimated damage to crops. Additionally, the logarithm of these variables is taken for analysis.
Death is derived from the summation of Deaths Direct and Deaths Indirect. Deaths Direct and
Deaths Indirect represent the count of deaths directly and indirectly attributed to the weather
event, respectively. Injury is derived from the summation of Injuries Direct and Injuries Indirect.
Injuries direct and Injuries Indirect signify the count of injuries directly and indirectly resulting
from the weather event, respectively. For each county and each year-month, the maximum value
of Magnitude is selected, and the variables Damage Property, Damage Crops, Death, and Injury
are aggregated by summing their values. The sample period is from January 2001 to October 2019.
t-statistics are shown in parentheses. ∗p < .1; ∗ ∗ p < 0.05; ∗ ∗ ∗p < 0.01.

Model 1 Model 2 Model 3 Model 4

Log(Magnitude)t 0.432** 2.844***
(2.45) (3.10)

Log(Damage Property)t 0.187** 1.070**
(2.42) (2.21)

Log(Damage Crops)t 0.033 0.053 −0.374 −0.120
(0.15) (0.26) (−0.50) (−0.15)

Deatht 0.467 0.444 2.234 2.683
(0.44) (0.43) (0.52) (0.62)

Injuryt 0.018 0.006 0.002 −0.006
(0.12) (0.04) 0.00 (−0.01)

Slopet 0.871*** 0.871***
(21.50) (21.53)

Constant 8.792*** 8.828*** 63.305*** 63.707***
(3.32) (3.32) (17.23) (17.44)

N 32,907 32,907 33,606 33,606

R2 84.5% 84.5% 0.3% 0.2%
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Table 6: Investment Grade vs Speculative Grade

This table presents the results of the panel regression with two-way clustering of standard errors
to control for potential correlations within time periods (years and months) and cross-sectional
units (counties). The dependent variables CDS5−Year

t+1 represent the CDS level for the next period
of the maturity term of 5 years. The independent variables include several metrics, in addition to
the CDS level for the current period CDSX−Year

t . Magnitude represents the event’s scale, primarily
utilized for wind speeds (measured in knots). Damage Crops quantifies the estimated damage
to crops. Additionally, the logarithm of these variables is taken for analysis. Death is derived
from the summation of Deaths Direct and Deaths Indirect. Deaths Direct and Deaths Indirect
represent the count of deaths directly and indirectly attributed to the weather event, respectively.
Injury is derived from the summation of Injuries Direct and Injuries Indirect. Injuries direct and
Injuries Indirect signify the count of injuries directly and indirectly resulting from the weather
event, respectively. For each county and each year-month, the maximum value of Magnitude is
selected, and the variables Damage Crops, Death, and Injury are aggregated by summing their
values. The sample period is from January 2001 to October 2019. t-statistics are shown in paren-
theses. ∗p < .1; ∗ ∗ p < 0.05; ∗ ∗ ∗p < 0.01.

Model 1 Model 2

Investment Junk

Log(Magnitude)t 0.260* 0.909**
(1.96) (2.23)

Log(Damage Crops)t 0.018 −1.211
(0.13) (1.59)

Deatht 0.427 12.667
(0.37) (1.13)

Injuryt 0.085 −0.068
(0.63) (−0.09)

CDS5−Year
t 0.921*** 0.927***

(86.75) (109.23)
Constant 5.791*** 16.838***

(6.85) (7.74)

N 27,212 10,521

R2 90.1% 91.5%
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Table 7: Expected stock return and numeric weather risk measures

This table presents the results of the panel regression with two-way clustering of standard errors to con-
trol for potential correlations within time periods (years and months) and cross-sectional units (coun-
ties). In all models, the dependent variables RETt+1 represent the stock return for the next month. In
all models, the independent variables include several metrics, in addition to the stock return for the cur-
rent month RETt. Magnitude represents the event’s scale, primarily utilized for wind speeds (measured
in knots). Damage Crops quantifies the estimated damage to crops. Additionally, the logarithm of these
variables is taken for analysis. Death is derived from the summation of Deaths Direct and Deaths Indirect.
Deaths Direct and Deaths Indirect represent the count of deaths directly and indirectly attributed to the
weather event, respectively. Injury is derived from the summation of Injuries Direct and Injuries Indirect.
Injuries direct and Injuries Indirect signify the count of injuries directly and indirectly resulting from the
weather event, respectively. For each county and each year-month, the maximum value of Magnitude is se-
lected, and the variables Damage Crops, Death, and Injury are aggregated by summing their values. SIZE
is defined as the natural logarithm of the market value (MKV), where MKV is the product of the stock
price (PRC) and the number of publicly held shares (SHROUT), recorded in thousands. TO represents the
turnover and is calculated by dividing the sum of trading volumes (VOL), expressed in hundred shares for
monthly data, by the product of the shares outstanding (SHROUT) and 1,000. MOM refers to the cumula-
tive return over the last six months. The sample period is from January 1997 to December 2023. t-statistics
are shown in parentheses. ∗p < .1; ∗ ∗ p < 0.05; ∗ ∗ ∗p < 0.01.

Model 1 Model 2 Model 3
RETt+1 RETt+2 RETt+3

Log(Magnitude)t −0.153** −0.239** −0.200*
(−2.24) (−2.41) (−1.78)

Log(Damage Crops)t −0.332*** −0.084 −0.157
(−2.74) (−0.66) (−0.78)

Deatht −0.267 −0.127 −1.021
(−0.38) (−0.40) (−1.18)

Injuryt 0.097 −0.038 −0.015
(1.33) (−0.43) (−0.22)

RETt −1.190 0.783 −0.188
(−1.35) (0.59) (−0.17)

SIZEt −0.054 −0.209*** −0.217***
(−1.05) (−2.63) (−2.60)

TOt −0.191*** −0.265** −0.022
(−2.68) (−2.27) (−1.40)

MOMt 0.133 0.538 0.108
(0.35) (1.02) (0.20)

Constant 1.991** 3.830*** 3.976***
(2.50) (3.03) (2.98)

N 600,256 589,596 604,931

R2 0.1% 0.1% 0.1%
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Table 8: Expected portfolio return and numeric weather risk measures

This table reports the average monthly returns of portfolios. Panel A reports the equal-weighted
quartile portfolio returns sorted by Magnitude. Panel B reports the value-weighted quartile port-
folio returns sorted by Magnitude. Panel C reports the return of an equal-weighted portfolio that
is long the bottom tercile of stocks and short the top tercile ranked by Magnitude, in the subsam-
ples of stocks sorted by proxies of limits to arbitrage–size and stock price level. The table reports
the average raw returns Ret, the capital asset pricing model (CAPM) alphas αCAPM, Fama-French
3-factor alphas (FF3) alphas αFF3, and Carhart four-factor (Carhart-4) alphas αC4. All returns are
in percent. The sample period is from January 1997 to December 2023. The numbers enclosed in
brackets represent t-statistics adjusted by the Newey-West method. ***, **, and * denote statistical
significance at the 1%, 5%, and 10% levels, respectively.

Panel A: Equal-Weighted Quartile Portfolio Returns and Alphas for Magnitude
Magnitude 1 (Low) 2 3 4 (High) Low−High

Ret 0.96 0.70 0.70 0.37 0.59**
(2.59) (1.82) (1.91) (0.94) (1.96)

αCAPM 0.88 0.69 0.58 0.31 0.57*
(2.22) (1.69) (1.47) (0.71) (1.85)

αFF3 0.91 0.69 0.57 0.36 0.55*
(2.31) (1.68) (1.45) (0.81) (1.75)

αC4 0.95 0.75 0.62 0.48 0.47*
(2.39) (1.79) (1.53) (1.09) (1.68)

Panel B: Value-Weighted Quartile Portfolio Returns and Alphas for Magnitude
Magnitude 1 (Low) 2 3 4 (High) Low−High

Ret 1.46 0.93 1.01 0.47 0.99**
(3.51) (2.29) (2.56) (1.28) (2.21)

αCAPM 1.33 0.90 0.99 0.46 0.87**
(3.08) (2.06) (2.25) (1.17) (2.01)

αFF3 1.34 0.88 1.00 0.46 0.88**
(3.11) (2.03) (2.28) (1.18) (1.97)

αC4 1.32 0.94 1.04 0.57 0.75*
(3.18) (2.11) (2.33) (1.45) (1.83)

Panel C: Double Sort Portfolio Returns and Alphas for Magnitude
Size Stock Price

Ret αCAPM αFF3 αC4 Ret αCAPM αFF3 αC4

1 (low) 0.92*** 1.01*** 0.98*** 0.90** 0.80*** 0.81** 0.77** 0.68*
(2.51) (2.72) (2.66) (2.46) (2.10) (2.11) (2.01) (1.77)

2 (high) −0.18 −0.19 −0.18 −0.23 −0.04 −0.02 −0.01 −0.04
(−0.66) (−0.68) (−0.67) (−0.84) (−0.18) (−0.08) (−0.02) (−0.18)
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Table 9: Leverage and numeric weather risk measures

This table presents the results of the panel regression with two-way clustering of standard errors
to control for potential correlations within time periods (years and months) and cross-sectional
units (counties). In all models, the dependent variables Leveraget+1 represent Leverage for the
next month. Leverage is defined as the leverage measure, calculated as the ratio of the book value
of total liability to the sum of the book value of total liability and the market value of equity. In
all models, the independent variables include several metrics. Magnitude represents the event’s
scale, primarily utilized for wind speeds (measured in knots). Damage Crops quantifies the es-
timated damage to crops. Additionally, the logarithm of these variables is taken for analysis.
Death is derived from the summation of Deaths Direct and Deaths Indirect. Deaths Direct and
Deaths Indirect represent the count of deaths directly and indirectly attributed to the weather
event, respectively. Injury is derived from the summation of Injuries Direct and Injuries Indirect.
Injuries direct and Injuries Indirect signify the count of injuries directly and indirectly resulting
from the weather event, respectively. For each county and each year-month, the maximum value
of Magnitude is selected, and the variables Damage Crops, Death, and Injury are aggregated by
summing their values. The sample period is from January 1997 to December 2023. t-statistics are
shown in parentheses. ∗p < .1; ∗ ∗ p < 0.05; ∗ ∗ ∗p < 0.01.

Model 1 Model 2 Model 3

Leveraget+1 Chg Leveraget+1 PChg Leveraget+1

Log(Magnitude)t 0.000 0.000 0.001
(1.27) (1.07) (0.79)

Log(Damage Crops)t 0.001** 0.001*** 0.002**
(2.51) (2.64) (2.33)

Deatht 0.004 0.004 0.012
(1.35) (1.38) (1.20)

Injuryt 0.000 0.000 −0.001
(0.89) (0.91) (−0.94)

Leveraget 0.991***
(487.51)

Constant 0.004*** 0.000 0.002
(4.33) (0.37) (0.81)

N 38,693 38,693 38,693

R2 98.4% 0.1% 0.1%
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Table 10: Profitability and numeric weather risk measures

This table presents the results of the panel regression with two-way clustering of standard errors
to control for potential correlations within time periods (years and months) and cross-sectional
units (counties). In Model 1, the dependent variable ROAt+1 represents the return on assets,
defined as net income scaled by total assets in the next period. In Model 2, the dependent variable
is the change in ROA in the current period. In Models 3 and 4, the dependent variables are
the change and percentage change in SALE (natural logarithm of sales) in the next period. In
Model 5, the dependent variable is the percentage change in P/E (price-earnings ratio) in the next
period. In all models, the independent variables include several metrics. Magnitude represents the
event’s scale, primarily utilized for wind speeds (measured in knots). Damage Crops quantifies
the estimated damage to crops. Additionally, the logarithm of these variables is taken for analysis.
Death is derived from the summation of Deaths Direct and Deaths Indirect. Deaths Direct and
Deaths Indirect represent the count of deaths directly and indirectly attributed to the weather
event, respectively. Injury is derived from the summation of Injuries Direct and Injuries Indirect.
Injuries direct and Injuries Indirect signify the count of injuries directly and indirectly resulting
from the weather event, respectively. For each county and each year-month, the maximum value
of Magnitude is selected, and the variables Damage Crops, Death, and Injury are aggregated by
summing their values. The sample period is from January 1997 to December 2023. t-statistics are
shown in parentheses. ∗p < .1; ∗ ∗ p < 0.05; ∗ ∗ ∗p < 0.01.

Model 1 Model 2 Model 3 Model 4 Model 5

ROAt+1 Chg ROAt+1 Chg SALEt+1 PChg SALEt+1 PChg P/Et+1

Log(Magnitude)t −0.0003** −0.0002** −0.001** −0.0001** −0.008***
(−2.56) (−2.40) (−2.34) (−2.48) (−3.35)

Log(Damage Crops)t 0.000 0.000 0.000 0.000 −0.003**
(0.01) (0.27) (0.26) (0.21) (−2.45)

Deatht 0.003 0.003 0.001 0.000 −0.014
(0.93) (0.88) (0.81) (0.88) (−1.29)

Injuryt 0.000 0.000 0.000 0.000 0.000
(0.76) (0.73) (0.98) (1.03) (0.07)

ROAt 0.956***
(67.10)

Constant 0.002*** 0.000 0.003* 0.000** 0.040***
(2.74) (0.43) (1.89) (1.98) (4.06)

N 38,693 38,693 38,693 38,693 33,352

R2 91.5% 0.1% 0.1% 0.1% 0.1%
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Table 11: Corporate investment and numeric weather risk measures

This table presents the results of the panel regression with two-way clustering of standard errors
to control for potential correlations within time periods (years and months) and cross-sectional
units (counties). In Models 1 to 3, the dependent variables TobinsQt+1 represent TobinsQ for
the next month, which is defined as the market capitalization of common stock plus the liqui-
dation value of preferred shares plus the book value of long-term debt divided by total assets. In
Models 4 to 6, the dependent variables CAPEXt+1 represent capital expenditures (CAPEX) for
the next month, which is defined as capital expenditures scaled by sales. In all models, the in-
dependent variables include several metrics. Magnitude represents the event’s scale, primarily
utilized for wind speeds (measured in knots). Damage Crops quantifies the estimated damage
to crops. Additionally, the logarithm of these variables is taken for analysis. Death is derived
from the summation of Deaths Direct and Deaths Indirect. Deaths Direct and Deaths Indirect
represent the count of deaths directly and indirectly attributed to the weather event, respectively.
Injury is derived from the summation of Injuries Direct and Injuries Indirect. Injuries direct and
Injuries Indirect signify the count of injuries directly and indirectly resulting from the weather
event, respectively. For each county and each year-month, the maximum value of Magnitude is
selected, and the variables Damage Crops, Death, and Injury are aggregated by summing their
values. The sample period is from January 1997 to December 2023. t-statistics are shown in paren-
theses. ∗p < .1; ∗ ∗ p < 0.05; ∗ ∗ ∗p < 0.01.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

TobinsQt+1 TobinsQt+1 TobinsQt+1 CAPEXt+1 CAPEXt+1 CAPEXt+1

Log(Magnitude)t −0.004*** −0.004*** 0.001*** 0.001***
(−2.80) (−2.65) (4.53) (4.48)

Log(Damage Crops)t −0.004* −0.002 0.0004** 0.0001
(−1.65) (−0.86) (2.02) (0.63)

Deatht −0.006 0.001
(−0.89) (0.93)

Injuryt 0.001 0.0005
(0.61) (0.53)

TobinsQt 0.963*** 0.963*** 0.963***
(78.74) (78.77) (78.73)

CAPEXt 0.855*** 0.856*** 0.855***
(32.15) (32.28) (32.15)

Constant 0.070*** 0.068*** 0.070*** 0.004*** 0.004*** 0.004***
(3.37) (3.31) (3.37) (10.99) (11.18) (10.99)

N 162,719 162,719 162,719 162,465 162,465 162,465

R2 92.2% 92.2% 92.2% 73.2% 73.1% 73.2%
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