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Abstract

We develop a real options model in which a firm exposed to seasonal variations in its output price is able to
produce output, store it, and sell it later, separating the production and selling decisions. The model suggests that
the optimal policy for a firm with low inventory costs is to spread out its production over some period up to its
high price season, hold its output in inventory until that season, and sell it then. Doing so, such a firm gradually
lowers its operating leverage and thus its expected return up until its high price season. Conversely, the optimal
policy for a firm with high inventory costs is to produce its output closer to its high price season, inducing its
expected return to be more stable over time. In accordance with our model, we show that Grullon et al.’s (2020)
result that single-stock returns tend to be lower (higher) in their high (low) seasonal sales quarters is attributable
to inventory building firms, suggesting that neoclassical finance theory aligns with that evidence.
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1 Introduction

A well-developed empirical literature in economics and finance documents seasonalities in many

stock, accounting, and macroeconomic variables. Chang et al. (2017) and Hartzmark and Solomon

(2018), for example, report strong seasonality in the earnings of a large set of firms. Heston and Sadka

(2008, 2010) and Keloharju et al. (2016, 2021) establish similarly strong seasonality in the stock

performance of a large set of firms. Ogden (2003) discovers seasonality in important macroeconomic

variables, such as aggregate production, consumption, and stock market capitalization. Interestingly,

Grullon et al. (2020) connect the seasonalities in firm-level stock and accounting data, revealing

that stocks tend to underperform (outperform) in their high (low) sales quarters (“seasonal sales

premium”). While they show that real options models may explain their findings, the ability of such

models to do so can be disputed based on existing models not featuring any type of seasonality.

In this paper, we develop a real options model in which a firm exposed to seasonal variations in

its output price is able to produce output, store it in inventory, and sell it either immediately or at a

later point, separating the production and selling decisions. We show that the optimal policy for a

firm with low inventory holding costs is to spread out production over a long time window before its

high price season, store the produced output, and sell it in the high price season. Doing so, the firm

minimizes its convex production costs. An interesting asset pricing implication of that policy is that

such a firm gradually lowers its operating leverage up until its high price season — and thus also

its expected return. Conversely, the optimal policy for a firm with high inventory holding costs is

to produce over a shorter time window closer to its high price season, leading such a firm to have a

more stable expected return over time. In striking agreement with those theoretical implications, we

offer empirical evidence that Grullon et al.’s (2020) result of a negative relation between sales and

stock return seasonalities only arises in the subsample of inventory-building firms.

In our theoretical work, we develop a real options model of an all-equity-financed firm operating

over an infinite horizon and facing a stochastic output price obeying a generalized geometric Brownian

motion whose drift contains a sine function component. In each instant, the firm optimally decides

how much output to produce and add to its inventory (“production decision”) and how much output

to sell out of its inventory (“selling decision”). The numerical solution suggests that the firm’s optimal
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policy is to build up output inventories to be sold all at once close to the price peak over some time

window before that peak but to produce to instantaneously sell over some time window after it. More

importantly, the solution further suggests that, as we raise inventory holding costs and make building

up inventories harder for firms, the seasonal variations in the expected return start disappearing. The

upshot is that inventory building constitutes a necessary condition for seasonal variations in price to

translate into seasonal variations in the expected return in our theoretical work.

We next look into an extension of our model in which we award the firm a growth option allowing

it to expand its production capacity at some investment cost. While the extension shows that, in a

world with seasonal output prices, corporate investment can also become seasonal, it further suggests

that the growth option does not greatly modify how seasonality in the output price translates into

seasonality in the expected firm return, at least not when the firm stays at a close to constant distance

from exercising the option. The lesson to take away is that our main theoretical conclusions are

attributable to the firm’s production and selling policies, and not its investment policies.

While our theoretical work yields a possible explanation for the negative relation between sales and

stock return seasonalities in the data, Grullon et al. (2020) offer evidence that financial leverage and

investor inattention could also be behind that relation. To offer stronger support for our explanation

and to further distinguish it from those others, we run empirical tests of the main novel implication

derived from our theory, which is that the ability to build up inventories should condition the negative

relation between sales and stock return seasonalities. In doing so, we calculate the historical ratio of

a firm’s sales in a specific fiscal quarter over its annual sales (which is Grullon et al.’s (2020) proxy

variable for identifying the firm’s high and low sales quarters) as well as the historical ratio of a firm’s

inventory holdings in a specific fiscal quarter over the sum of its inventory holdings over the fiscal

year. We next classify as “inventory builders” those firms with high (low) inventory holdings at the

end of the quarter before their high (low) sales quarter and all others as “non-inventory-builders.” To

acknowledge that some firms may not be exposed to seasonal variations in their sales, we finally also

distinguish between firms with a high variation in their historical quarterly sales-to-annual sales

ratios (“seasonal firms”) and those with a low variation (“non-seasonal firms”).

Our empirical work strongly supports our theory. Consistent with Grullon et al. (2020), we also
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find that seasonal firms earn significantly lower stock returns in their high sales relative to their low

sales quarters. Our portfolio sorts, for example, suggest that their mean monthly value-weighted

return is only 0.45% in their high sales quarters but 0.96% in their low sales quarter. The difference of

–0.51% is highly significant (t-statistic: –3.64). Similarly, Fama and MacBeth (1973, FM) regressions of

those firms’ stock returns on the historical quarterly sales-to-annual sales ratio and controls also yield

a significantly negative premium on that ratio. More crucially, we next show that inventory building

strongly conditions how sales seasonality translates into stock return seasonality. While seasonal

inventory builders, for example, generate a significant spread in their mean monthly value-weighted

returns across their high and low sales quarters of –0.91% (t-statistic: –5.82), the same spread is an

insignificant –0.27% (t-statistic: –0.83) for non-inventory-builders. In the same vein, while subsample

FM regressions run on seasonal inventory builders yield a historical quarterly sales-to-annual sales

ratio premium of –0.62% per month (t-statistic: –4.25), the same regressions run on seasonal non-

inventory builders yield a corresponding premium of only –0.20% (t-statistic: –1.79).

While our main empirical results rely on total inventory holdings to proxy for output (“finished

goods”) inventory holdings, we show that output and total inventory holdings are highly positively

correlated in the cross-section over the sample period for which both variables are available (April

2008-December 2019). Also, repeating our empirical tests using output inventory holdings over the

above twelve-year period does not change our conclusions. Excluding January observations from our

main tests, we finally show that our conclusions are not materially related to Rozeff and Kinney’s

(1976) result that stock returns tend to be significantly higher over that month.

We add to a recent literature on seasonalities in firm-level stock and accounting data. Chang

et al. (2017) report that the announcement of high earnings in fiscal quarters with historically high

earnings leads to high abnormal returns, and vice versa. They attribute their findings to investors

and analysts overweighting the information in the two to three most recent earnings announcements

and them neglecting seasonal patterns in earnings. Heston and Sadka (2008, 2010) and Keloharju

et al. (2016, 2021) establish that stocks tend to outperform (underperform) over the same calendar

months in consecutive years. While Keloharju et al. (2021) claim that these findings arise due to

temporary mispricing effects which cancel out over the calendar year, Hirshleifer et al. (2020) explain
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them using a stock’s exposure to seasonal aggregate investor mood. As already discussed, Grullon

et al. (2020) connect the seasonalities in sales and stock return data, revealing that stocks tend to

underperform (overperform) in their high (low) sales quarters. We contribute to these studies by

developing a real options asset pricing theory detailing how and under what conditions seasonalities

in sales translate into seasonalities in expected returns, with our empirical work offering significant

support for the new testable implications derived from that theory.

We further add to the real options asset pricing literature as pioneered by Berk et al. (1999) and

Gomes et al. (2003). While the real options models in those earlier studies focus on discount rate

risks, ours is closer to the more recent models of Carlson et al. (2004), Cooper (2006), Hackbarth and

Johnson (2015), and Aretz and Pope (2018) in focusing on cash flow risks. In contrast to those other

models, ours, however, allows for seasonality in the price for a firm’s output. A further difference to

the other models is that our model separates the production and selling decisions, allowing the firm

to produce output at one point, store that at some cost, and sell it at another point. In comparison,

the other models restrict the firm to instantaneously sell its production output.

We organize our paper as follows. In Section 2, we develop a model in which a firm exposed to

seasonal variations in its output price can build up output inventories to serve that seasonality. In

Section 3, we run empirical tests of the model’s main novel implication, which is that the ability to

build up inventories is necessary for seasonal variations in price to translate into seasonal variations

in stock returns. Section 4 offers robustness check results. Section 5 concludes. The appendix contains

mathematical proofs, an extension of the model to the case in which the firm owns a single growth

option allowing it to raise its production capacity, and variable definitions.

2 Theoretical Analysis

In this section, we develop a real options model in which a firm exposed to seasonality in its output

price is able to produce output, store that output in inventory, and sell it later. We start with stating

the model’s assumptions. We next derive the optimal production and selling policies before outlining

how we numerically solve the model. We then discuss the model’s implications. We finally offer an

extension of the model in which we award the firm a single investment option.
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2.1 Model Assumptions

Consider an all-equity-financed firm operating over the infinite time horizon t ∈ [0, ∞). In each instant,

the firm is able to produce a homogenous output good and sell it, either then or later, at a stochastic

price, Pt. We assume that the output price follows a generalized geometric Brownian motion whose

drift term displays seasonal variations modeled through an additive sine function component

dPt = (α + κ sin(ηt))Ptdt + σPtdBt, (1)

where α is the linear time trend, κ ≥ 0 controls the magnitude of seasonal fluctuations, η > 0 governs

the length of a seasonal cycle,1 σ > 0 is volatility, and Bt is a Brownian motion. Whenever κ = 0,

Equation (1) collapses to a standard geometric Brownian motion.

Consistent with Pindyck (1988) and Aretz and Pope (2018), the firm owns a fixed amount of

installed capacity equal to K̄ > 0. In each instant, the firm is able to costlessly switch on each capacity

increment to produce output, with one capacity unit producing one output unit per time unit. In

accordance, the firm’s output quantity at time t equals Qt ∈ [0, K̄] per time unit. The firm incurs

instantaneous costs from producing output determined by the convex function CP (Qt) = c1Qt+ 1
2c2Q2

t ,

where c1 ≥ 0 and c2 > 0 are parameters. Having finished production, the firm instantaneously shifts

each output increment into its output inventory, with the amount of output in inventory at time t

given by It. The firm pays a unit inventory cost of cI > 0 per time unit, so that the present-value

cost at time 0 from storing one output unit from time s until time t is

CI(s, t) =
∫ t

s
e−rucIdu = cI

r

(
e−rs − e−rt

)
, (2)

where r is the (constant) net risk-free rate of return. Finally, the firm is able to costlessly shift out

of inventory and instantaneously sell an amount of output equal to St ∈ [0, It] at each time t. As a

consequence, the law of motion for the amount of output in inventory, It, is

dIt = Qtdt − St. (3)

1The length of a seasonal cycle is 2π/η. Since we interpret a seasonal cycle as a year, we always set η = 2π.
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Setting St = Qtdt at each time t, the firm becomes an “instantaneous seller,” as in other models in the

real options asset pricing literature (see, e.g., Carlson et al. (2004), Cooper et al. (2005), Carlson

et al. (2006), Cooper (2006), Aguerrevere (2009), and Hackbarth and Johnson (2015)).

In a later extension, we also endow the firm with a single growth option enabling it to irreversibly

double its production capacity K̄ at an investment cost of k. To however illustrate that our main

theoretical conclusions about the relation between output price and expected return seasonalities

are driven by the firm’s production and selling options — and not its investment options, we refrain

from including the growth option in our main theoretical work in the initial sections.

Overall, the main model thus contains two choice variables, the amount of output to be produced,

Qt, and the amount of output to be sold out of inventory, St, both at time t. The extended model

adds the output price threshold at which the firm optimally exercises its growth option, P ∗
t . Moreover,

the state space of both models is described by time t (due to the seasonality in the output price), the

output price, Pt, and the amount of output in inventory, It, both at time t.

2.2 Optimal Production and Selling Policies

To calculate the value and expected return of the firm, we first need to determine its optimal production

and selling policies, described by its choices for Qt and St. To determine the optimal policies, we need

to find the optimal time at which the firm plans to sell its output, t∗ ∈ [t, ∞), noting that it always

plans to sell its entire output in inventory at that time due to the output price, Pt, being independent

of the amount of output sold, St.2 The optimal selling time t∗ maximizes the present value from

selling output at time t∗ minus the present value from producing that output at time t and storing it

from time t until t∗. Considering one output unit and noting that the present value of the production

costs do not depend on the selling time, the optimal selling time t∗ is the solution to

max
t′∈[t,∞)

EQ
t [Pt′ ]e−r(t′−t) − CI(t, t′), (4)

2Since the optimal selling time depends on the output price Pt, with it increasing with a higher output price, it may
be clearer to denote that time by t∗(Pt). For the sake of simplicity, we however do not do so.
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Figure 1: The figure plots five possible output price paths and their time-0 conditional expectation under
the real-world measure (the solid black line) over the time period from t = 0 to 4 (Panel A). Panel B plots
the present value at time t = 0 of the revenue from selling one output unit at a future time point t′ minus the
present value of storing it until then (Equation (4)). We describe the parameter values in the text.

where EQ
t is the time-t conditional expectation taken under the equivalent martingale measure under

which the discounted value of each self-financing asset in our model is a martingale. We give the

first-order condition of maximization problem (4) in the appendix, but highlight that this condition

has to be numerically solved for the optimal selling time t∗.

Armed with the expected optimal selling time t∗, the firm finds the optimal amount of output to

be produced at time t and to be sold, in expectation, at time t∗, Q∗
t , by maximizing the present value

of its revenue from selling that amount of output at time t∗ minus the present value of producing it

at time t and storing it until time t∗. The optimal amount of output, Q∗
t , thus solves

max
Qt∈[0,K̄]

EQ
t [Pt∗ ]Qte

−r(t∗−t) − CP (Qt) − CI(t, t∗)Qt, (5)

which we give in quasi-closed-form in the appendix. Conversely, the firm also uses the optimal selling

time t∗ to find the optimal amount of output to be sold out of inventory at time t, S∗
t . To be precise,

the firm sells its entire output in inventory at time t (i.e., S∗
t = It) when it is optimal to sell output at

that time (i.e., when t = t∗) and else sells nothing (i.e., S∗
t = 0). The intuition is that if it is optimal

to sell one output unit, it is also optimal to sell all others since the output units are identical both in

terms of sales revenue but also in terms of inventory costs (“bang-bang solution”).

Crucially, we find it important to stress that the firm does not pre-commit to selling output at

the originally intended time t∗. In each instant, the firm decides whether it is optimal to sell right

now (i.e., t∗ = t) or whether it is better to wait (i.e., t∗ > t). Thus, even when the firm produced
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output with the intention to sell it at time t′, it can still alter its decision and sell off its entire output

earlier or later if the output price changes over the period starting from now.

Figure 1 helps us to understand the firm’s optimal policies. We assume a linear drift (α) of 8% per

annum, a seasonal strength (κ) of 0.50, and a periodicity (η) of 2π. Also, we set the initial output price

(P0) to one and its volatility (σ) to 10% per annum. We finally assume an expected price mimicking

portfolio return (µ) of 10%, a risk-free rate of return (r) of 3%, and an inventory cost (cI) of 10%, all

per annum. For later plots, we additionally set the production cost parameters (c1 and c2) to unity

and also set the number of production units (K̄) to one. Plotting five sample paths for the output

price Pt, Panel A suggests that the firm is exposed to seasonality in the output price arising through

its real-world expectation (solid black line; first summand in Equation (1)). To determine whether the

firm should sell output at time t, the firm calculates the present value from selling one output unit net

of inventory holding costs at a future time point t′ ∈ [t, ∞). Panel B plots this objective function from

Equation (4) for t = 0. If the present value takes on its maximum value at time t, the firm optimally

sells its entire instantaneous production plus output in inventory at that time. If the maximum value

occurs later, the firm optimally builds up its output in inventory without selling output.

In Figure 1, the firm expects to build up its output in inventory without selling until about time

t = 0.48 and to sell its entire output in inventory at that time. Conversely, it expects to produce to

instantaneously sell from about time t = 0.48 to 0.72, before again building up its output in inventory

without selling from about time t = 0.72 to 1.42, and so on. For simplicity, we shall from here on refer

to a firm building up its output in inventory without selling as an “inventory builder,” whereas we shall

refer to a firm producing output to be instantaneously sold as an “instantaneous seller.”

2.3 Market Value and Expected Excess Return

We next value the firm using contingent claims analysis. To do so, let W IB(t, Pt, It) denote the value

of the firm at time t conditional on an output price of Pt and an amount of output in inventory equal

to It whenever it is optimal for the firm to act like an inventory builder. Conversely, let W IS(t, Pt)

denote that value at time t conditional on an output price of Pt whenever it is optimal for the firm to

act like an instantaneous seller. Assuming complete markets, it is then easy to show that W IB(t, Pt, It)
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satisfies the three-dimensional partial differential equation (PDE)

∂W IB

∂t
+ Q∗

t

∂W IB

∂It
+ (r − δt)Pt

∂W IB

∂Pt
+ 1

2σ2P 2
t

∂2W IB

∂P 2
t

− rW IB − c1Q∗
t − 1

2c2Q∗2
t − cIIt = 0, (6)

subject to boundary conditions stated in Appendix A. The inhomogeneity in PDE (6), −c1Q∗
t −

1
2c2Q∗2

t −cIIt, are the instantaneous production and inventory cost cash outflows at time t. Conversely,

it is also easy to show that W IS(t, Pt) satisfies the two-dimensional PDE

∂W IS

∂t
+ (r − δt)Pt

∂W IS

∂Pt
+ 1

2σ2P 2
t

∂2W IS

∂P 2
t

− rW IS + PtQ
∗
t − c1Q∗

t − 1
2c2Q∗2

t = 0, (7)

subject to other boundary conditions also in Appendix A. The inhomogeneity in PDE (7), PtQ
∗
t −

c1Q∗
t − 1

2c2Q∗2
t , is now the instantaneous net cash flow from producing an amount of output equal to

Q∗
t at time t and instantaneously selling that amount of output at the output price Pt.

To obtain the value of the firm, W (t, Pt, It), we have to “knit together” the firm value components

W IB(t, Pt, It) and W IS(t, Pt) at the times at which the firm optimally switches from acting like an

inventory builder to acting like an instantaneous seller or vice versa, noticing that the set of optimal

switching times depends on the output price. At those times when the firm optimally switches from

inventory builder to instantaneous seller, we impose the value-matching condition

W IB(t, Pt, It) = W IS(t, Pt) + PtIt, (8)

where PtIt is the sales revenue generated from selling the entire output in inventory It at the output

price Pt. In contrast, at those times when the firm optimally switches from instantaneous seller to

inventory builder, we impose the corresponding value-matching condition

W IS(t, Pt) = W IB(t, Pt, It = 0), (9)

where W IB(t, Pt, It = 0) is the value of the inventory builder at time t conditional on an output price

of Pt and an empty output inventory (i.e., It = 0). To avoid negative firm values, we further impose

the general lower bound PtIt + W IB(t, Pt, 0) in the inventory building region, which implies that the
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Figure 2: The figure plots the regions in the output price-time state space in which the firm optimally acts
as inventory builder (white regions) and instantaneous seller (gray regions) over the time period from t = 0
to t = 4. It further plots one single output price sample path over the same period (solid black line), with
the circles indicating when the firm switches from inventory builder to instantaneous seller and the squares
indicating when it switches the other way round. The parameter values are described in Section 2.2.

firm always immediately sells off its entire inventory when it is optimal to do so.

Since we are unable to solve the model in closed-form, we use an explicit finite difference method

as solution technique. To do so, we first derive the set of optimal switching times conditional on the

output price Pt. We then set up finite difference grids with sufficiently high maximum values for time t,

price Pt, and output in inventory It. We now solve the two-dimensional grid for W IS(t, Pt) assuming

that the firm always acts like an instantaneous seller. We next solve the three-dimensional grid for

W IB(t, Pt, It) assuming that the firm acts as an inventory builder up until the final switching time,

taking the boundary values for the final switching time from the solution to the prior two-dimensional

grid. We then solve the two-dimensional grid for W IS(t, Pt) assuming that the firm acts as instantaneous

seller up until the penultimate switching time, taking the boundary values for the penultimate switching

time from the solution to the three-dimensional grid that follows. We continue doing so until we have

dealt with all inventory building and instantaneous selling regions. See Appendix A for details.

In Figure 2, we plot the inventory building (white) and instantaneous selling (gray) regions in the

output price-time state space and one output price sample path over time for the parameter values

described in Section 2.2. Interestingly, the figure suggests that the firm always acts as instantaneous

seller when the output price Pt is below a threshold of about 0.20. The reason is that the low seasonality

in the output price below that threshold never justifies incurring inventory holding costs. In accordance,

the figure further suggests that a higher price entices the firm to act more often as inventory builder

and less often as instantaneous seller, with the inventory builder to instantaneous seller (instantaneous
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Figure 3: The figure plots the initial firm value, W (0, Pt, It), against the output price, Pt, and the
output in inventory, It. The parameter values are described in Section 2.2.

seller to inventory builder) switching time monotonically rising (falling) with that price. Intuitively,

those patterns arise since a higher output price implies greater seasonality in the output price without

changing inventory holding costs (see Equation (4)). Looking at the sample path in Figure 2, we see

all the times at which the firm switched from inventory builder to instantaneous seller (the circles)

and all those times at which it switched in the other direction (the squares).

Having valued the firm, we next compute the firm’s expected excess return. Since the only

stochastic state variable demanding a risk premium in our setup is the output price, Pt, we can

calculate the conditional expected excess firm return, E[rW ] − r, from

E[rW ] − r = ΩW (µ − r), (10)

where ΩW is the elasticity of firm value W (t, Pt, It) with respect to the output price Pt, and µ is

the expected return of a portfolio perfectly positively correlated with that price. The elasticity

is defined as ratio of relative changes in the firm value to relative changes in the output price,

ΩW = ∂W (t,Pt,It)
∂Pt

Pt
W (t,Pt,It) (see also Carlson et al. (2004, 2006, 2010), Cooper et al. (2005), Cooper

(2006), Aguerrevere (2009), Hackbarth and Johnson (2015), and Aretz and Pope (2018)).
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Figure 4: The figure plots the firm’s optimal production quantity Q∗
t (Panel A), its accumulated output

in inventory It (Panel B), its value W (t, Pt, It) (Panel C), and its expected excess return E[rW ] − r
(Panel D) over the period from t = 0 to 4 under an output price trajectory at which firm value shows no
general tendency to rise or fall. The gray bars in each subplot indicate the periods during which the
firm acts as an instantaneous seller. The parameter values are described in Section 2.2.

2.4 Output Price Seasonality, Inventory Building, and Expected Return

We now study our model’s implications for how inventory building shapes the relation between

seasonalities in the output price and expected firm return. To do so, Figure 3 starts with plotting the

initial firm value W (0, Pt, It) against different output prices Pt and inventory holdings It conditional

on the parameter values in Section 2.2. We stress that the firm is in an inventory building period at

that time. In line with intuition, the figure shows that the initial firm value rises monotonically with

the output price because a higher output price shifts upward the distribution of future output price

values. It further shows that firm value also rises monotonically with the output in inventory since

the present value of selling one output unit at the next optimal selling time exceeds the present value

costs of holding the output unit in inventory until that time, at least in the current case.

Next, Figure 4 shows the firm’s optimal production decision (Q∗
t ; Panel A), its corresponding

output in inventory (It; Panel B), its value (W (t, Pt, It); Panel C), and its expected excess return

(E[rW ] − r; Panel D) over the time period from t = 0 to 4 under an output price trajectory at which

firm value shows no tendency to rise or fall.3 The gray bars in the panels indicate instantaneous

selling periods. Panel A suggests that the firm raises its output quantity both over the entire period
3In theory, this output price trajectory is equal to the expected output price under the real-world measure with the

linear drift rate, α, set to zero. Since we, however, use eight as maximum time value in our numerical solution, setting
α to zero leads firm value to exhibit a negative linear drift in our graphs. To counter that negative drift, we thus set α
equal to 0.03. Needless to say, our conclusions do not depend on the output price trajectory studied.
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Figure 5: The figure plots the firm’s expected excess return E[rW ] − r under an inventory holding cost
of 0.01 (“low;” Panel A), 0.10 (“medium;” Panel B), 0.40 (“high;” Panel C), and infinity (“no inventory
building;” Panel D) over the period from t = 0 to 4 under an output price trajectory at which firm value
shows no general tendency to rise or fall. The gray bars in each subplot indicate the periods during
which the firm acts as an instantaneous seller. The parameter values are described in Section 2.2.

but also over each inventory building period. While the overall increase is due to the positive linear

drift component of the output price (i.e., α = 0.03), the increase over each inventory building period

is attributable to the firm trading off the benefits from spreading production over time to minimize

production costs and the costs from holding inventory over time.4 In accordance, Panel B shows that

the firm’s output in inventory rises convexly over the inventory building periods, before jumping to

zero at the start of an instantaneous selling period and staying there until its end.

As suggested by Panel C of Figure 4, the firm’s optimal production and selling policies induce its

value to sharply rise over inventory building periods but to stay more constant over instantaneous

selling periods. The reason for the sharp rises over the inventory building periods is that the firm

gradually pays off production plus inventory holding costs over those periods associated with output

to be sold for revenue only at their end. As a result, the firm becomes gradually more operationally

delevered over the inventory building periods. In contrast, the firm simultaneously earns the revenues

and pays the costs associated with output over the instantaneous selling periods, leading its operating

leverage to be more stable over such periods. Since operating leverage has a positive effect on the

expected excess return (see Carlson et al. (2004, 2006, 2010)), Panel D finally suggests that the

expected excess return markedly decreases over the inventory building periods — and toward the

optimal selling date — but stays more constant over the instantaneous selling periods.
4That the firm does not use its inventory building capabilities to smooth its production over time aligns with the

empirical findings of Miron and Zeldes (1988) and Milne (1994).
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The intuition behind the above operating leverage effect is that an inventory builder essentially

prepays “quasi-fixed” costs incurred in the sale of an output unit in comparison to an instantaneous

seller. While those costs do not affect how firm value responds to output price shocks, they do lower

firm value, raising the expected firm return through the Pt/W (t, Pt, It) component in the elasticity

in Equation (10). As a result, the dynamic operating leverage effect in our model closely aligns with

the static operating leverage effects used in other real options asset pricing models (see, e.g., Carlson

et al. (2004, 2006, 2010), Cooper (2006), and Hackbarth and Johnson (2015)).

In Figure 5, we study how the inventory holding cost cI affects the relation between seasonalities in

the output price and in the expected excess return. To do so, we redo Panel D of Figure 4 under the

assumption that cI is 0.01 (“low;” Panel A), 0.10 (“medium;” Panel B), 0.40 (“high;” Panel C), and

infinite (“no inventory building;” Panel D). Unsurprisingly, the grey bars in the figure suggest that a

higher cI induces the firm to act less (more) often as inventory builder (instantaneous seller). Since the

expected return is, however, almost stable over instantaneous selling periods, the higher cI also leads

to a weaker correlation between expected return and output price over time. In particular, when cI is

close to zero, the expected return unambiguously decreases up until the optimal sales date, jumps up

directly after, and then almost directly decreases again. Conversely, when cI is higher, the expected

return only decreases over some period before the optimal sales date, jumps up directly after, and then

stays close to constant for some period. In the limiting case, when cI is so high that the firm never

builds up inventories, the expected return is essentially constant over the firm’s lifetime.5

2.5 Endowing the Firm with a Capacity Expansion Option

We study an extension of our main model in which we award the firm a growth option allowing it to

irreversibly double its production capacity at an investment cost of k in Appendix B. The appendix

suggests that the firm is more likely to exercise the growth option earlier (rather than later) on in

an inventory building period, so that it can still use the new capacity to produce more output to

be sold during the next high output price season. More technically, Figure B.1 in that appendix
5We also ran comparative statics to gain further insights into the model’s implications. In line with intuition, weaker

seasonal output price fluctuations (lower κ), lower production costs (lower c1 and/or c2), and a lower production capacity
(lower K̄) all weaken the negative relation between expected firm return and output price since they either lower the
firm’s incentives or its ability to build up output inventories to be sold in the next high output price season.
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reveals that the optimal investment threshold P ∗
t is itself seasonal, with it taking on higher (lower)

values at the end (in the middle) of an inventory building period. Notwithstanding, Figure B.2 in

that same appendix suggests that awarding the firm a growth option does not materially change

how its expected excess return evolves over time, at least when the firm stays at a close to constant

distance from exercising the growth option. In particular, the figures shows that the expected excess

return still markedly drops over inventory building periods, jumps up directly at their end, and stays

close to constant over instantaneous sales periods, just like in Panel D of Figure 4.

2.6 Empirical Implications of our Theoretical Work

Taken together, we deduce the following implications from our theoretical work:

(1) A real options asset pricing model with seasonal sales and inventory building can generate a

negative relation between the seasonal variations in a firm’s output price and expected excess

return if inventory holding costs are sufficiently low for firms to build up significant amounts of

output inventories to be sold during the next high output price season.

(2) Since the model firm sells the lion share of its output on the date on which the output price

reaches its seasonal high, the model also generates a negative relation between the seasonal

variations in the firm’s sales and expected excess return under the same conditions.

(3) Raising the inventory holding costs, the model implies that the firm builds up fewer inventories

to be sold during the next high output price season, flattening the negative relation between

the seasonal variations in a firm’s output price (or: sales) and expected excess return. In fact,

as inventory holding costs become sufficiently high, seasonal variations in the output price (or:

sales) no longer translate into seasonal variations in the expected excess return.

While it is hard to empirically study implication (1) since we do not observe the prices at which firms

sell output, Grullon et al. (2020) offer strong empirical support for implication (2). Conversely, we

will offer strong empirical support for implication (3) in the next section.
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3 Empirical Evidence

In this section, we empirically study our main novel theoretical implication that a greater ability

to build up output inventories induces a more negative relation between seasonalities in sales and

expected firm returns. We first introduce our analysis variables and data sources, with Table C1 in

Appendix C offering more details about variable definitions. We next confirm Grullon et al.’s (2020)

conclusion that single-stock returns tend to be negatively related to a firm’s historical sales proportion

in the current fiscal quarter (“seasonal sales premium”). Most crucially, we finally show that the

negative relation between stock returns and historical sales proportions becomes more pronounced

with the extent to which firms are able to build up output inventories, supporting our theory.

3.1 Variables, Data Sources, and Descriptive Statistics

We use the methodology of Grullon et al. (2020) to identify a firm as a seasonal or non-seasonal firm

and to find the high and low sales quarters of seasonal firms. To find the high and low sales quarters of

seasonal firms, we first calculate how much each fiscal quarter of a firm contributes to its annual sales

separately for the two fiscal years ending directly before the prior, ensuring that all data would have

been available to a real-time investor. We next take averages of the proportions by fiscal quarter to

mitigate outliers, labelling the averaged proportion for the current fiscal quarter QSales. Intuitively,

we can view a firm with a high (low) QSales value as a firm which made a high (low) proportion

of its annual sales in the current fiscal quarter over the two fiscal years ending directly before the

prior. To identify a firm as seasonal or non-seasonal, we finally calculate the standard deviation of

the averaged sales proportions for the current fiscal year, labelling it Seasonality. Intuitively, we can

view a firm with a high (low) Seasonality value as a seasonal (non-seasonal) firm.6

We measure inventory building using an approach analogous to that used to calculate QSales. In

particular, we first calculate the ratio of quarterly inventories to the sum of quarterly inventories

over the fiscal year separately for the two fiscal years directly ending before the prior. We then again

take averages of those ratios by fiscal quarter to mitigate outliers, labelling the averaged ratio for the
6Our empirical conclusions are robust to excluding firm-fiscal year observations for which the sum of quarterly

sales does not equal annual sales. Moreover, they are also robust to calculating QSales and Seasonality using a larger
number of prior fiscal years (always excluding the most recent prior fiscal year).
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fiscal quarter prior to the current QInventory.7 Intuitively, we can view a firm with a high (low)

QInventory value as a firm which held an abnormally high (low) amount of inventory in the fiscal

quarter prior to the current over the two fiscal years ending directly before the prior.

Combining the information in QSales, Seasonality, and QInventory, we are able to distinguish

between seasonal inventory builders and non-inventory builders within and outside their high sales

quarters. In particular, we can classify an observation with high values for those variables as a seasonal

firm within a high sales quarter which built up inventories to be sold within that quarter (“inventory

builder”). Conversely, we can classify an observation with high values for QSales and Seasonality but

not for QInventory as a seasonal firm within a high sales quarter which did not build up inventories

to be sold within that quarter (“instantaneous seller”). To more parsimoniously distinguish between

those types of firms, we finally also define the dummy variable DummyInventoryBuilder to identify

inventory builders. We set that dummy variable equal to one if QSales and QInventory achieve

their maximum in the same fiscal quarter over the current fiscal year and else zero.

In our portfolio sorts, we control for Hou et al.’s (2015) q-theory, Fama and French’s (2015) five-

factor model, and Fama and French’s (2018) six-factor model factors. Conversely, we add MarketBeta,

MarketSize, BookToMarket, Momentum, Investment, and Profitability as control variables in our

single-stock FM regressions. We calculate MarketBeta from Lewellen and Nagel (2006) regressions

estimated over the prior twelve months of daily data. We define MarketSize as the log of the product

of stock price and common shares outstanding at the end of the prior calendar year. BookToMarket is

the log of the ratio of the book value of equity from the fiscal year end in the prior calendar year to the

market value of equity at the end of the prior calendar year; Momentum is the log gross past return

compounded over months t − 11 to t − 1; and Investment is the log gross percentage change in total

assets over the fiscal year ending in the prior calendar year. Finally, Profitability is the ratio of sales

minus costs of goods sold, selling, general, and administrative expenses, and interest expenses to the

book value of equity, where all variables are from the fiscal year end in the prior calendar year.
7Since inventory is a stock variable, we cannot interpret the inventory ratios as the contributions of the inventory

built up over the corresponding fiscal quarter to the total inventory built up over the entire fiscal year. Notwithstanding,
if we divided the denominators of the inventory ratios by four, which would yield a positive monotonic transformation
of QInventories, we could interpret them as the extents to which the inventory held at the end of the corresponding
fiscal quarter differs from the “normal inventory” held at the end of some arbitrary fiscal quarter.
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We obtain market data from CRSP, accounting data from Compustat, and factor model data

from Ken French and Lu Zhang. We study common stocks traded on the NYSE, Amex, or NASDAQ,

excluding financial and utility stocks. We replace a stock’s return with its delisting return whenever

the delisting return is available. We exclude observations for which quarterly sales and/or quarterly

inventory holdings are negative as well as those for which those variables are not available for the

entire fiscal year. We only include observations for which the sum of quarterly sales is within a 5%

bound of annual sales. In our FM regressions, we further exclude stocks with a price below $2 at the

start of each sample month. With the exception of the stock return, we winsorize all variables at

the 0.5th and 99.5th percentiles per month. Due to the availability of quarterly inventory data in

Compustat, our sample period ranges from January 1979 to September 2019.

In Table 1, we offer descriptive statistics on QSales, Seasonality, QInventory, and DummyInventory-

Builder (Panel A) as well as Spearman rank correlations for the set of those variables plus our control

variables (Panel B). The descriptive statistics are the mean, standard deviation, skewness, kurtosis,

several percentiles, and the number of observations. Except for the number of observations, we calculate

the statistics in both panels first by sample month and then average over our sample period. Panel A

reveals that the data contain 1,080,583 firm-month observations (including 9,531 unique firms). While

the QSales and QInventory means are close to 0.25 by construction, the Seasonality mean suggests

that the average firm observes a 0.03 standard deviation in QSales over an average fiscal year, while the

DummyInventoryBuilder mean indicates that we classify about 36% of our sample firms as inventory

builders. Panel B reports that the correlation between QSales and QInventory is 0.20, suggesting

that firms display some tendency to build up inventories before their high sales season. Interestingly,

the correlations between our main variables and the control variables are all close to zero. The only

exceptions are the negative correlations of DummyInventoryBuilder with MarketSize (–0.18) and

Profitability (–0.17), perhaps arising due to the fact that larger firms operating in more businesses

tend to diversify away seasonalities in the single goods and/or services sold by them.

Table 1 about here.
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3.2 The Seasonal Sales Premium

We next confirm that Grullon et al.’s (2020) finding that seasonal firms tend to have low (high) stock

returns in their high (low) sales season also exists in our data. At the end of each sample month t−1, we

thus first sort stocks into two portfolios according to the median of the Seasonality distribution in that

month, referring to the high (low) Seasonality value stocks as seasonal (non-seasonal) stocks. Within

each of these portfolios, we next sort stocks into three portfolios according to the tercile breakpoints

of the QSales distribution for that portfolio and in that month. We refer to high (low) QSales stocks

as stocks within (outside) their high sales quarter. We also form a spread portfolio long the highest

QSales portfolio and short the lowest. We value-weight the portfolios and hold them over month

t. To adjust portfolio returns for risk, we regress them on the q-theory, five-factor model, or six-factor

model factors, reporting the intercepts (“alphas”) from those regressions.

Table 2 gives the double-sorted portfolio results. While Panel A of the table reports mean portfolio

returns in excess of the risk-free rate of return (“excess returns”) and alphas, Panel B reports the mean

number of stocks per portfolio as well as the time-series means of the cross-sectional means of several

firm characteristics, all as plain numbers. The numbers in square brackets in Panel A are Newey

and West (1987) t-statistics with a lag length of twelve months. The firm characteristics in Panel B

include several of our control variables plus Heston and Sadka’s (2008) RSeason(xy) and Chang

et al.’s (2017) ESeason. RSeason(xy) is the same-calendar-month return averaged over the prior x

calendar years, whereas ESeason is the average sales rank of the current fiscal quarter (Q1, Q2, Q3, or

Q4) over the prior 20 fiscal quarters, with the ranking done in descending order. While columns (1),

(2), (3), and (3)–(1) show the univariate QSales sorts conditional on high Seasonality stocks, columns

(4), (5), (6), and (6)–(4) show those conditional on low Seasonality stocks.

Table 2 about here.

The portfolio sort results in the table strongly support Grullon et al.’s (2020) empirical evidence

and the implications of our theoretical work. Panel A shows that the mean excess returns and alphas of

seasonal stocks in columns (1) to (3) decline monotonically over the QSales portfolios, with the spreads

in them over the portfolios always being highly significantly negative (see column (3)–(1)). While the
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mean excess return of seasonal stocks is, for example, 0.96% per month (t-statistic: 3.93) in their low

sales quarter, it is a much lower 0.45% (t-statistic: 1.93) in their high sales quarter. The difference is

a highly significant –0.50% (t-statistic: –3.64). In contrast, the mean excess returns and alphas of the

non-seasonal stocks in columns (4) to (6) do not form discernible patterns over the QSales portfolios,

leading the spreads in them over the portfolios to be economically and statistically insignificant (see

column (6)–(4)). While the mean excess return of non-seasonal stocks is, for example, 0.69% per

month (t-statistic: 3.47) in their low sales quarter, it is a close to identical 0.64% (t-statistic: 3.10) in

their high sales quarter. The difference is an insignificant –0.05% (t-statistic: –0.59).

The firm characteristic statistics in Panel B suggest that seasonal firms tend to generate about

30% of their sales in their high sales quarter but only about 20% in their low sales quarter (compare

QSales in columns (1) and (3)). Also, they show some weak tendency to build up output inventories to

be sold in their high sales quarters (compare QInventory in those columns). In contrast, non-seasonal

firms tend to generate about the same amount of sales in each quarter and do not tend to build up

inventories to be sold in any quarter (see QSales and QInventory in columns (4) to (6)). Recognizing

that firms with more seasonal sales are more likely to end up in the extreme QSales portfolios in

columns (1) and (3) (or (4) and (6)), the firm characteristic statistics further suggest that seasonal

stocks are, on average, smaller and less profitable than other stocks. Also, they tend to have similar

book-to-market ratios, intermediate-term past returns, and investment expenditures relative to those

other stocks. These findings are in agreement with the correlations in Table 1.

The final two rows of Panel B demonstrate that ESeason, which, just like QSales, also allows us

to identify a firm’s high and low earnings (and thus sales) quarters, rises over the QSales portfolios,

indicating that the two variables broadly agree on the classification of quarters. They further show

that RSeason(xy) decreases over those same portfolios, implying that seasonal firms do not only tend

to produce low (high) stock returns in their current high (low) sales quarters but also in the same

quarters over the prior three, five, and seven calendar years. Thus, the data do not only point to

strong persistence in sales seasonality, but also in the accompanying stock return seasonality.

Overall, this section shows that seasonal firms tend to have low (high) stock returns in their high

(low) sales quarters, in line with our theoretical conclusions. As this evidence has, however, already
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been reported in Grullon et al. (2020), we next study a novel implication of our theory.

3.3 Inventory Building and the Seasonal Sales Premium

We finally study the main novel implication of our theoretical work that a greater ability to build up

inventories leads seasonal stocks to tend to have a lower (higher) stock return in their high (low) sales

quarter. At the end of each sample month t − 1, we thus again first sort stocks into two portfolios

according to the median of the Seasonality distribution in that month. Within each of these portfolios,

we next independently sort them into portfolios first according to the tercile breakpoints of QSales in

that month and second according to the same breakpoints of QInventory in the same month. Within

each QSales (QInventory) portfolio inside each Seasonality portfolio, we finally form a spread portfolio

long the highest QInventory (QSales) portfolio and short the lowest. We value-weight the portfolios

and hold them over month t. To adjust for risk, we again regress portfolio returns on the same sets of

benchmark factors as before and report the intercepts (“alphas”) from those regressions.

To interpret the triple-sorted portfolio results, we stress that a seasonal (non-seasonal) inventory

builder ends up within the top QSales-top QInventory portfolio in the high (low) Seasonality portfolio

within their high sales quarter but within the bottom QSales-bottom QInventory portfolio in the

same Seasonality portfolio within their low sales quarter. As a result, we can measure the seasonal

sales premium of seasonal (non-seasonal) inventory builders from the spread portfolio long the former

triple-sorted portfolio and short the latter. In accordance, a seasonal (non-seasonal) non-inventory

builder ends up within the top QSales-bottom QInventory portfolio in the high (low) Seasonality

portfolio within their high sales quarter but within the bottom QSales-top QInventory portfolio in

the same Seasonality portfolio within their low sales quarter. In the same spirit as before, we can

thus measure the seasonal sales premium of seasonal (non-seasonal) non-inventory builders from the

spread portfolio long the former triple-sorted portfolio and short the latter.

Table 3 offers the mean excess returns of the triple-sorted portfolios (Panel A), the time-series

means of their cross-sectional QSales and QInventory means (Panels B and C, respectively), and their

mean number of stocks (Panel D). As before, the numbers in square brackets in Panel A are Newey

and West (1987) t-statistics with a twelve-month lag length. Also as before, columns (1), (2), (3), and
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(3)–(1) focus on the high Seasonality stocks, while columns (4), (5), (6), and (6)–(4) focus on the low

Seasonality stocks. Panel A strongly supports our theoretical conclusions, suggesting that seasonal

inventory builders produce a significantly lower seasonal sales premium than seasonal non-inventory

builders or non-seasonal stocks. While the mean excess return of seasonal inventory builders is an

insignificant 0.30% per month (t-statistic: 1.39) in their high sales quarter, it is a significant 1.22%

(t-statistic: 4.96) in their low sales quarter, yielding a seasonal sales premium of –0.91% (t-statistic:

–5.82). In contrast, the mean excess returns of seasonal non-inventory builders are a more similar 0.32%

and 0.59% (t-statistics: 0.97 and 1.57) in their high and low sales quarter, all respectively, yielding

an insignificant seasonal sales premium of –0.27% (t-statistic: –0.83). In the same vein, non-seasonal

inventory or non-inventory builders also fail to yield significant seasonal sales premiums.

Table 3 about here.

While Panel B confirms that seasonal and non-seasonal firms observe similar variations in QSales

as in the two-way sorts in Table 2, Panel C reveals that the inventory builders among those firms

observe close to equally large variations in QInventory as in QSales. Seasonal inventory builders, for

example, do not only see their mean QSales values rise from 0.20 to 0.30 from their low to high sales

quarters, but also their mean QInventory values from 0.21 to 0.29 over the same period. Panel D

finally shows that all triple-sorted portfolios are well diversified in terms of stock numbers.

Table 4 reports the q-theory model (Panel A), five-factor model (Panel B), and six-factor model

(Panel C) alphas of the triple-sorted portfolios. The design of each panel is identical to that of Panel A

of Table 3. The table offers strong evidence that controlling for the benchmark factors of those models

does not materially affect our conclusions. While the seasonal sales premium in the inventory builder

subsample is –0.91% per month (t-statistic: –5.82) in the absence of controls (see again Panel A of

Table 3), it is a close –0.86%, –0.91%, and –0.92% (t-statistics: –4.93, –5.48, and –5.50) controlling

for the q-theory, five-factor model, and six-factor model factors, all respectively. In the same vein, the

seasonal sales premiums in the seasonal non-inventory-builder and the non-seasonal inventory-builder

and non-inventory-builder subsamples also stay similar to their previous values.8

8Our triple-sorted portfolio results are robust to reasonable variations in methodology. Specifically, conducting an
entirely dependent triple-sort, the seasonal sales premium is –0.88% per month (t-statistic: –6.75) among seasonal
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Table 4 about here.

We finally conduct FM regressions to estimate the conditional effect of inventory building on the

seasonal sales premium, assessing the robustness of our conclusions to variations in the methodology

used. In the regressions, we project the excess returns of single stocks over month t on a monotonic

transformation of QSales and the controls measured at the end of month t − 1. We run the regressions

separately on the full samples of seasonal and non-seasonal stocks as well as the subsamples of seasonal

and non-seasonal inventory builders and non-inventory builders. While seasonal (non-seasonal) stocks

have a Seasonality value above (below) the median at the end of month t − 1, inventory builders

(non-inventory builders) have a DummyInventoryBuilder value equal to one (zero) at the end of that

month. To mitigate outlier effects and to ensure that results can be compared across subsamples,

we employ the rank of QSales (“QSalesRank”) rather than QSales in the regressions.9 To alleviate

microstructure issues, we also omit stocks with a below $2 price at the end of month t − 1.

Table 5 presents the FM regression results. While columns (1) to (3) focus on the full sample

of seasonal stocks, seasonal inventory builders, and seasonal non-inventory builders, columns (4) to

(6) focus on their non-seasonal counterparts, all respectively. Conversely, column (2)–(3) ((5)–(6))

shows the differences in estimates between the seasonal (non-seasonal) inventory and non-inventory

builders. Plain numbers are monthly premium estimates, whereas the numbers in square parentheses

are Newey and West (1987) t-statistics with a twelve-month lag length. The regressions yield results

in line with the portfolio sorts. In particular, columns (1) and (4) suggest that seasonal — but not

non-seasonal — stocks produce a significant seasonal sales premium. More crucially, while seasonal

inventory builders in column (2) yield a significantly negative QSalesRank premium of –0.62% per

month (t-statistic: –4.25), the same premium is a much less significant –0.20% (t-statistic: –1.79)

for seasonal non-inventory builders in column (3). The difference is a significant –0.40% (t-statistic:

inventory builders but only –0.28% (t-statistic: –1.06) among seasonal non-inventory builders. Moreover, exclusively
using NYSE stocks to compute breakpoints in the original sorts, that premium is –0.69% (t-statistic: –4.30) among
seasonal inventory builders but only 0.06% (t-statistic: 0.24) among seasonal non-inventory builders.

9We obtain similar results from subsample FM regressions on QSales and the controls. While the seasonal inventory
builder subsample, for example, yields a QSales premium of –3.79% per month (t-statistic: –4.07), the same subsample
yields a QSalesRank premium of –0.63% (t-statistic: –4.25). We also obtain similar results from FM regressions jointly
run on seasonal or non-seasonal stocks and featuring DummyInventoryBuilder and an interaction between QSales and
DummyInventoryBuilder. The seasonal-firm regression, for example, yields an insignificant QSales premium of –1.11%
per month (t-statistic: –1.47) but a highly significant interaction premium of –2.51% (t-statistic: –2.33).
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–2.45). Conversely, while non-seasonal inventory builders in column (5) yield a significantly negative

QSalesRank premium of –0.34% (t-statistic: –3.09), the same premium is an insignificant –0.02%

(t-statistic: –0.24) for non-seasonal non-inventory builders in column (6). The difference is a significant

–0.33% (t-statistic: –2.81). The controls yield premiums in line with the literature.

Table 5 about here.

Taken together, this section shows that a greater ability to build up inventories yields a significantly

more negative seasonal sales premium, in complete accordance with our theory. While prior studies

offer alternative explanations for that premium based on investor mood or inattention (see, e.g.,

Grullon et al. (2020), Hirshleifer et al. (2020), and Keloharju et al. (2021), etc.), it is unclear how

those could account for the conditioning effect of inventory building shown in this section.

4 Robustness Tests

In this section, we offer robustness test results. We first establish that conditioning the seasonal sales

premium on an inventory building proxy calculated from output — and not total — inventories does not

change our conclusions. We next show that excluding January months from our tests, as also done by

Heston and Sadka (2008) and Keloharju et al. (2016), neither changes those conclusions.

4.1 Using Output Inventories to Measure Inventory Building

Although our theory analyzes how a firm’s ability to build up output inventories shapes the relation

between seasonalities in its output price (or: sales) and expected return, we nonetheless use quarterly

total inventories (Compustat item: invtq) also including raw material and work-in-progress to measure

inventory building in our empirical work. We do so since, while quarterly total inventories data are

available in Compustat from 1979, quarterly finished goods inventories data (Compustat item: invfgq)

are available only from 2008 for a meaningful number of firms. Given, however, that quarterly finished

goods inventories make up the lion share of quarterly total goods inventories, and that the average

cross-sectional correlation between those two inventory variables (scaled by quarterly total assets) is

0.78, it is unlikely that using quarterly total inventories greatly distorts our findings.
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Notwithstanding, Table 6 repeats our triple portfolio sorts in Tables 3 and 4 using an alternative

version of QInventory, QFGInventory, computed analogous to QInventory except that we use quarterly

finished goods (and not total goods) inventories data in its computation. To be concise, the table only

reports the mean excess returns and alphas of spread portfolios long the top QSales-top QFGInventory

portfolio and short the bottom QSales-bottom QFGInventory portfolio (“inventory builder”) or long

the top QSales-bottom QFGInventory portfolio and short the bottom QSales-top QFGInventory

portfolio (“non-inventory builder”) formed using seasonal (column (1)) or non-seasonal (column (2))

stocks. While Panel A presents the mean excess returns of the spread portfolios, Panels B, C, and D

present their q-theory, five-factor model, and six-factor model alphas, respectively.

Table 6 about here.

Despite the much shorter sample period from July 2008 to April 2019, the triple portfolio sorts

based on QFGInventory yield results in agreement with those based on QInventory. While column (1)

in Panel A, for example, suggests that seasonal inventory builders yield a seasonal sales premium of

–1.50% per month (t-statistic: –3.62), the corresponding premium for non-inventory builders is an

insignificant 0.64% (t-statistic: 1.06). Also as before, column (2) in that panel shows that non-seasonal

inventory or non-inventory builders again only yield insignificant seasonal sales premiums. Adjusting

the mean excess returns for risk does again not change our conclusions (see Panels B to D).

4.2 Excluding January Months

Since the high sales season of a large number of firms is the Christmas season at the end of the

calendar year, and as stock returns tend to be higher in January (see, e.g., Rozeff and Kinney (1976)

and Keim (1983)), it is conceivable that the seasonal sales premium is a manifestation of the higher

January returns. To rule out that possibility, Table 7 follows Heston and Sadka (2008) and Keloharju

et al. (2016) in repeating our triple portfolio sorts in Tables 3 and 4 excluding January months. The

design of the table is identical to that of Table 6. Refuting the idea that January returns drive our

findings, the table suggests that the non-January months produce conclusions in agreement with our

main conclusions. While Panel A shows that the seasonal inventory builders yield a seasonal sales

premium of –1.07% per month (t-statistic: –6.64) outside of January, the corresponding premium for
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seasonal non-inventory builders is an insignificant –0.06% (t-statistic: –0.44) then. The same table

further shows that the non-seasonal firms continue to produce insignificant seasonal sales premiums,

while Panel B to D again suggest that adjusting for risk does not materially alter our results.

Table 7 about here.

5 Conclusion

We consider a real options asset pricing model featuring a firm exposed to seasonal variations in its

output price and able to build up output inventories to be sold later. The model yields the prediction

that the seasonality in the output price only translates into negatively-correlated seasonality in the

expected return if firms find it cheap to build up output inventories and thus start doing so long

before their high price season. Using quarterly sales and inventory data, we offer strong empirical

support for that prediction, showing that seasonal firms only produce low (high) mean stock returns

in their high (low) sales quarter if they hold abnormally high (low) amounts of inventories at the

start of that quarter. Our conclusions are important since they suggest that seasonalities in stock

returns unveiled in recent research are consistent with neoclassical finance theory.
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Table 1
Descriptive Statistics
The table presents descriptive statistics for QSales, Seasonality, QInventory, and DummyInventoryBuilder (Panel A)
and Spearman rank correlations between the set of those variables and controls (Panel B). We calculate both the
descriptive statistics and the correlations by sample month and then average over our sample period. All variables
are winsorized at the 0.5th and 99.5th percentiles computed per month. The sample period is January 1979 to
September 2019. See Table C1 in Appendix C for variable definitions.

Dummy
Inventory

QSales Seasonality QInventory Builder

(1) (2) (3) (4)

Panel A: Descriptive Statistics

Mean 0.25 0.03 0.25 0.36
Standard Deviation 0.04 0.03 0.03 0.48
Skewness 0.52 2.67 0.35 0.58
Excess Kurtosis 5.23 9.59 7.73 −1.65
Percentile 1 0.15 0.00 0.14 0.00
Percentile 5 0.20 0.01 0.20 0.00
Quartile 1 0.23 0.01 0.24 0.00
Median 0.25 0.02 0.25 0.00
Quartile 3 0.26 0.04 0.26 1.00
Percentile 95 0.31 0.09 0.30 1.00
Percentile 99 0.37 0.17 0.36 1.00
Observations 1,080,583 1,080,583 1,080,583 1,080,583

Panel B: Spearman Rank Correlations

Seasonality −0.06
QInventory 0.20 −0.03
DummyInventoryBuilder −0.02 0.15 −0.03
MarketBeta 0.00 0.05 0.00 −0.01
MarketSize 0.00 −0.18 0.00 0.00
BookToMarket 0.02 −0.04 0.02 0.01
Momentum 0.00 −0.07 0.01 0.00
Investment −0.03 0.08 −0.07 0.01
Profitability 0.00 −0.17 −0.02 0.02
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Table 2
Univariate QSales Sorts
The table presents the mean excess returns and alphas of portfolios sorted on QSales (Panel A) as well as
characteristics of those portfolios (Panel B). At the end of each sample month t − 1, we first sort stocks into
portfolios based on the median of the Seasonality distribution at that time. Within each Seasonality portfolio, we
next form three portfolios based on the 33rd and 66th percentiles of the QSales distribution at that time. We
value-weight the portfolios and hold them over month t. We also form spread portfolios long the highest QSales
portfolio and short the lowest within each Seasonality portfolio (“High–Low”). The plain numbers in Panel A
are monthly mean excess returns (Returne) and the q-theory model (q), Fama-French (2015) five-factor model
(FF5), and Fama-French (2018) six-factor model (FF6) alphas in percent, while the numbers in square brackets
are Newey and West (1987) t-statistics with a twelve-month lag length. The plain numbers in Panel B are the
mean number of stocks (# Stocks) and the time-series means taken over the cross-sectional means of several
well-known firm characteristics. See Table C1 in Appendix C for variable definitions.

Seasonality

High (Above Median) Low (Below Median)

QSales QSales
Low Med. High H–L Low Med. High H–L

(1) (2) (3) (3)–(1) (4) (5) (6) (6)–(4)

Panel A: Portfolio Returns and Alphas

Returne 0.96 0.60 0.45 −0.50 0.69 0.84 0.64 −0.05
[3.93] [2.75] [1.93] [−3.64] [3.47] [4.68] [3.10] [−0.59]

q Alpha 0.43 −0.04 −0.12 −0.55 −0.09 0.10 −0.07 0.01
[3.16] [−0.50] [−1.29] [−3.46] [−1.27] [1.44] [−0.99] [0.13]

FF5 Alpha 0.32 −0.13 −0.20 −0.52 −0.11 0.07 −0.12 −0.01
[3.07] [−1.59] [−2.35] [−3.61] [−1.68] [1.17] [−1.58] [−0.11]

FF6 Alpha 0.37 −0.09 −0.17 −0.54 −0.11 0.05 −0.10 0.01
[3.35] [−1.09] [−1.96] [−3.68] [−1.62] [0.92] [−1.30] [0.07]

Panel B: Portfolio Characteristics

# Stocks 338.60 371.15 361.27 22.67 382.52 359.67 396.48 13.96
QSales 0.20 0.25 0.30 0.10 0.24 0.25 0.26 0.03
QInventory 0.24 0.25 0.26 0.02 0.25 0.25 0.25 0.00
MarketBeta 1.09 1.09 1.09 0.00 1.02 1.00 1.02 0.00
Market Size 4.82 5.24 4.84 0.02 5.55 5.78 5.49 −0.05
BookToMarket −0.64 −0.63 −0.60 0.04 −0.55 −0.54 −0.52 0.04
Momentum −0.02 0.00 −0.02 0.00 0.05 0.06 0.04 0.00
Investment 0.13 0.14 0.14 0.01 0.07 0.07 0.07 0.00
Profitability 0.03 0.14 0.05 0.02 0.22 0.24 0.22 0.00
RSeason (3y) 2.30 1.82 1.80 −0.50 1.56 1.37 1.44 −0.12
RSeason (5y) 2.03 1.74 1.65 −0.39 1.57 1.33 1.46 −0.11
RSeason (7y) 1.82 1.59 1.50 −0.33 1.51 1.31 1.39 −0.12
ESeason 8.54 10.31 12.45 3.91 9.32 10.42 11.54 2.22
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Table 3
Double-Sorted QSales and QInventory Portfolios
The table presents the mean excess returns of portfolios independently-sorted based on QSales and QInventory
(Panel A), the mean QSales and QInventory values of those portfolios (Panels B and C, respectively), and the mean
number of stocks per portfolio (Panel D). At the end of each sample month t−1, we first sort stocks into portfolios
based on the median of the Seasonality distribution at that time. Within each Seasonality portfolio, we next
independently sort stocks into portfolios based on, first, the 33rd and 66th percentiles of the QSales distribution at
that time and, second, based on the same percentiles of the QInventory distribution at that time. We value-weight
the portfolios and hold them over month t. We also form spread portfolios long the highest QSales (QInventory)
portfolio and short the lowest within each QInventory (QSales) portfolio (“High–Low”) per Seasonality portfolio. In
addition, we also create spread portfolios long the top QSales/top QInventory portfolio and short the bottom
QSales/bottom QInventory portfolio (“inventory builders”) and long the top QSales/bottom QInventory portfolio
and short the bottom QSales/top QInventory portfolio (“non-inventory builders”) per Seasonality portfolio. The
plain numbers in Panel A are monthly mean excess returns in percent, while the numbers in square brackets are
Newey and West (1987) t-statistics with a twelve-month lag length. The plain numbers in Panels B to C are the
time-series means taken over the cross-sectional means of QSales and QInventory, respectively. The plain numbers
in Panel D are the average number of stocks. See Table C1 in Appendix C for variable definitions.

Seasonality

High (Above Median) Low (Below Median)

QSales QSales
QInventory Low Med. High H–L Low Med. High H–L

(1) (2) (3) (3)–(1) (4) (5) (6) (6)–(4)

Panel A: Value-Weighted Portfolio Returns

Low 1.22 0.75 0.32 −0.90 0.56 0.96 0.70 0.14
[4.96] [3.13] [0.97] [−4.19] [2.40] [4.66] [2.60] [0.94]

Medium 0.78 0.62 0.57 −0.21 0.90 0.82 0.70 −0.20
[3.18] [2.59] [2.21] [−1.28] [5.01] [4.52] [3.47] [−1.76]

High 0.59 0.45 0.30 −0.29 0.65 0.67 0.56 −0.09
[1.57] [1.98] [1.39] [−0.88] [2.78] [3.18] [2.60] [−0.65]

High–Low −0.63 −0.30 −0.01 0.09 −0.29 −0.14
[−1.94] [−1.80] [−0.06] [0.78] [−2.10] [−0.75]

Seasonal Sales PremiumInventory Builder −0.91 0.00
(QSales(3)&QInventory(3) – QSales(1)&QInventory(1)) [−5.82] [0.01]
Seasonal Sales PremiumNon-Inventory Builder −0.27 0.05
(QSales(3)&QInventory(1) – QSales(1)&QInventory(3)) [−0.83] [0.28]

Panel B: Mean QSales

Low 0.20 0.25 0.30 0.10 0.24 0.25 0.26 0.03
Medium 0.21 0.25 0.29 0.09 0.24 0.25 0.26 0.03
High 0.20 0.25 0.31 0.11 0.24 0.25 0.26 0.03
High–Low 0.00 0.00 0.01 0.00 0.00 0.00

(continued on next page)
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Table 3
Double-Sorted QSales and QInventory Portfolios (cont.)

Seasonality

High (Above Median) Low (Below Median)

QSales QSales
QInventory Low Med. High H–L Low Med. High H–L

(1) (2) (3) (3)–(1) (4) (5) (6) (6)–(4)

Panel C: Mean QInventory

Low 0.21 0.22 0.21 0.00 0.23 0.23 0.23 0.00
Medium 0.25 0.25 0.25 0.00 0.25 0.25 0.25 0.00
High 0.29 0.28 0.29 −0.01 0.27 0.27 0.27 0.00
High–Low 0.08 0.07 0.08 0.05 0.04 0.04

Panel D: Mean Number of Stocks in Portfolio

Low 148.88 123.68 77.49 135.09 111.13 100.11
Medium 102.32 148.54 115.35 132.19 144.71 148.84
High 87.46 98.98 168.49 115.28 103.86 147.58
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Table 4
Risk-Adjusted Double-Sorted QSales and QInventory Portfolios
The table presents the q-theory (Panel A), five-factor (Panel B), and six-factor (Panel C) model alphas of
portfolios independently-sorted based on QSales and QInventory. At the end of each sample month t − 1,
we first sort stocks into portfolios based on the median of the Seasonality distribution at that time. Within
each Seasonality portfolio, we next independently sort stocks into portfolios based on, first, the 33rd and
66th percentiles of the QSales distribution at that time and, second, based on the same percentiles of the
QInventory distribution at that time. We value-weight the portfolios and hold them over month t. We also
form spread portfolios long the highest QSales (QInventory) portfolio and short the lowest within each
QInventory (QSales) portfolio (“High–Low”) per Seasonality portfolio. In addition, we also create spread
portfolios long the top QSales/top QInventory portfolio and short the bottom QSales/bottom QInventory
portfolio (“inventory builders”) and long the top QSales/bottom QInventory portfolio and short the bottom
QSales/top QInventory portfolio (“non-inventory builders”) per Seasonality portfolio. The plain numbers in
each panel are the constants from time-series regressions of the portfolio excess return on the appropriate
benchmark factors in percent, while the numbers in square brackets are Newey and West (1987) t-statistics
with a twelve-month lag length. See Table C1 in Appendix C for variable definitions.

Seasonality

High (Above Median) Low (Below Median)

QSales QSales
QInventory Low Med. High H–L Low Med. High H–L

(1) (2) (3) (3)–(1) (4) (5) (6) (6)–(4)

Panel A: q-Theory Model Alphas

Low 0.57 0.16 −0.16 −0.72 −0.17 0.23 0.19 0.36
[3.35] [1.05] [−0.96] [−3.12] [−1.82] [1.59] [1.15] [1.91]

Medium 0.11 −0.08 −0.06 −0.17 0.11 0.02 −0.12 −0.23
[0.85] [−0.64] [−0.46] [−1.02] [1.23] [0.25] [−1.28] [−1.75]

High 0.23 −0.18 −0.29 −0.52 −0.22 0.03 −0.16 0.06
[0.60] [−1.27] [−1.98] [−1.18] [−1.91] [0.36] [−1.51] [0.36]

High–Low −0.34 −0.34 −0.13 −0.05 −0.20 −0.35
[−0.77] [−1.57] [−0.70] [−0.36] [−1.25] [−1.78]

Seasonal Sales PremiumInventory Builder −0.86 0.01
(QSales(3)&QInventory(3) – QSales(1)&QInventory(1)) [−4.93] [0.08]
Seasonal Sales PremiumNon-Inventory Builder −0.38 0.41
(QSales(3)&QInventory(1) – QSales(1)&QInventory(3)) [−0.90] [1.64]

(continued on next page)
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Table 4
Risk-Adjusted Double-Sorted QSales and QInventory Portfolios (cont.)

Seasonality

High (Above Median) Low (Below Median)

QSales QSales
QInventory Low Med. High H–L Low Med. High H–L

(1) (2) (3) (3)–(1) (4) (5) (6) (6)–(4)

Panel B: Fama-French 5-Factor Model Alphas

Low 0.50 0.04 −0.22 −0.72 −0.18 0.22 0.08 0.26
[3.49] [0.30] [−1.41] [−3.37] [−2.02] [1.67] [0.53] [1.56]

Medium 0.03 −0.13 −0.16 −0.19 0.08 0.00 −0.16 −0.24
[0.24] [−1.08] [−1.23] [−1.13] [0.96] [−0.02] [−1.81] [−1.96]

High 0.07 −0.28 −0.41 −0.49 −0.24 −0.03 −0.22 0.01
[0.24] [−1.97] [−3.36] [−1.31] [−2.31] [−0.33] [−1.96] [0.08]

High–Low −0.43 −0.32 −0.19 −0.06 −0.25 −0.30
[−1.09] [−1.61] [−1.06] [−0.49] [−1.59] [−1.58]

Seasonal Sales PremiumInventory Builder −0.91 −0.04
(QSales(3)&QInventory(3) – QSales(1)&QInventory(1)) [−5.48] [−0.29]
Seasonal Sales PremiumNon-Inventory Builder −0.30 0.31
(QSales(3)&QInventory(1) – QSales(1)&QInventory(3)) [−0.80] [1.45]

Panel C: Fama-French 6-Factor Model Alphas

Low 0.57 0.10 −0.13 −0.70 −0.18 0.19 0.11 0.28
[4.13] [0.72] [−0.85] [−3.10] [−1.90] [1.58] [0.65] [1.51]

Medium 0.09 −0.09 −0.14 −0.23 0.08 −0.01 −0.13 −0.21
[0.66] [−0.77] [−1.07] [−1.36] [0.87] [−0.16] [−1.57] [−1.67]

High 0.06 −0.25 −0.35 −0.41 −0.22 −0.03 −0.20 0.02
[0.21] [−1.84] [−3.04] [−1.20] [−2.09] [−0.28] [−1.77] [0.13]

High–Low −0.50 −0.35 −0.22 −0.05 −0.22 −0.30
[−1.41] [−1.73] [−1.24] [−0.37] [−1.50] [−1.57]

Seasonal Sales PremiumInventory Builder −0.92 −0.02
(QSales(3)&QInventory(3) – QSales(1)&QInventory(1)) [−5.50] [−0.15]
Seasonal Sales PremiumNon-Inventory Builder −0.19 0.33
(QSales(3)&QInventory(1) – QSales(1)&QInventory(3)) [−0.56] [1.37]
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Table 5
Fama-MacBeth Regressions of Stock Returns on QSales
The table presents the results from Fama-MacBeth (1973) regressions of excess stock returns over month t on
pricing variables measured until the start of that month. In columns (1), (2), and (3), we run the regressions on
stocks with a Seasonality value above the median, whereas in columns (4), (5), and (6) we run them on stocks with
a value below the median. Conversely, in each set of columns, we run the regressions on all firms (columns (1) and
(4)), those with a DummyInventoryBuilder value equal to one (“inventory builders;” columns (2) and (5)), and
those with a DummyInventoryBuilder value equal to zero (“non-inventory builders;” columns (3) and (6)). We
also report the differences in outcomes across the subsample estimations (columns (2)–(3) and (5)–(6)). Plain
numbers are risk premiums or differences in those, by month and in percent. The numbers in square brackets are
Newey and West (1987) t-statistics with a lag length of twelve months. We exclude stocks whose price is below
$2 at the start of month t. See Table C1 in Appendix C for variable definitions.

Fama-MacBeth Regressions

Seasonality Above Median Seasonality Below Median

Non- Non-
All Inv. Inv. All Inv. Inv.

Firms Builder Builder Diff. Firms Builder Builder Diff.

(1) (2) (3) (2)–(3) (4) (5) (6) (5)–(6)

QSalesRank −0.43 −0.63 −0.20 −0.40 −0.11 −0.34 −0.02 −0.33
[−4.18] [−4.25] [−1.79] [−2.45] [−1.41] [−3.09] [−0.24] [−2.81]

MarketBeta 0.16 0.23 0.12 0.06 0.15 0.13 0.16 −0.11
[0.99] [1.22] [0.75] [0.65] [0.84] [0.69] [0.95] [−1.36]

MarketSize −0.01 0.01 −0.03 0.05 −0.04 −0.02 −0.05 0.04
[−0.41] [0.27] [−0.81] [1.92] [−1.11] [−0.46] [−1.46] [1.85]

BookToMarket 0.23 0.24 0.26 0.03 0.17 0.21 0.15 0.06
[3.22] [2.92] [3.37] [0.49] [2.37] [2.53] [2.11] [0.93]

Momentum 1.04 1.22 0.90 1.22 0.56 0.69 0.50 0.69
[6.07] [6.80] [4.64] [6.77] [2.79] [2.65] [2.63] [2.63]

Investment −0.40 −0.67 −0.20 −0.37 −0.19 −0.61 0.00 −0.62
[−3.49] [−4.55] [−1.34] [−1.96] [−1.64] [−2.97] [0.03] [−2.49]

Profitability 0.35 0.55 0.32 0.20 0.45 0.35 0.56 −0.24
[3.20] [3.72] [2.67] [1.41] [3.45] [1.96] [3.27] [−1.09]

Constant 0.73 0.62 0.75 −0.26 0.83 0.86 0.82 −0.01
[2.19] [1.80] [2.23] [−1.50] [2.52] [2.63] [2.36] [−0.09]
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Table 6
Double-Sorted QSales and QInventory Portfolios Based On Finished-Goods Inventories
The table presents the mean excess returns (Panel A) as well as the q-theory (Panel B), five-factor (Panel C), and
six-factor (Panel D) model alphas of independently-sorted portfolios based on QSales and QFGInventory. At
the end of each sample month t − 1, we first sort stocks into portfolios based on the median of the Seasonality
distribution at that time. Within each Seasonality portfolio, we next independently sort stocks into portfolios
based on, first, the 33rd and 66th percentiles of the QSales distribution at that time and, second, based on the
same percentiles of the QInventory distribution at that time. We value-weight the portfolios and hold them over
month t. We next create spread portfolios long the top QSales/top QInventory portfolio and short the bottom
QSales/bottom QInventory portfolio (“inventory builders”) and long the top QSales/bottom QInventory portfolio
and short the bottom QSales/top QInventory portfolio (“non-inventory builders”) per Seasonality portfolio. Plain
numbers are monthly mean excess returns in percent, while the numbers in square brackets are Newey and West
(1987) t-statistics with a twelve-month lag length. See Table C1 in Appendix C for variable definitions.

Seasonality

Above Median Below Median

(1) (2)

Panel A: Value-Weighted Portfolio Returns

Seasonal Sales PremiumInventory Builder −1.50 0.12
[−3.62] [0.39]

Seasonal Sales PremiumNon-Inventory Builder 0.64 −0.23
[1.06] [−0.69]

Panel B: q-Theory Model Alphas

Seasonal Sales PremiumInventory Builder −1.61 0.18
[−3.23] [0.52]

Seasonal Sales PremiumNon-Inventory Builder 0.82 −0.28
[1.10] [−0.73]

Panel C: Fama-French 5-Factor Model Alphas

Seasonal Sales PremiumInventory Builder −1.78 0.03
[−3.68] [0.08]

Seasonal Sales PremiumNon-Inventory Builder 1.22 −0.44
[1.80] [−1.06]

Panel D: Fama-French 6-Factor Model Alphas

Seasonal Sales PremiumInventory Builder −1.79 0.01
[−3.74] [0.04]

Seasonal Sales PremiumNon-Inventory Builder 1.22 −0.46
[1.76] [−1.09]
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Table 7
Double-Sorted QSales and QInventory Portfolios Excluding January Observations
The table presents the mean excess returns (Panel A) as well as the q-theory (Panel B), five-factor (Panel C), and
six-factor (Panel D) model alphas of independently-sorted portfolios based on QSales and QInventory derived
from our sample data excluding January observations. At the end of each sample month t − 1, we first sort
stocks into portfolios based on the median of the Seasonality distribution at that time. Within each Seasonality
portfolio, we next independently sort stocks into portfolios based on, first, the 33rd and 66th percentiles of the
QSales distribution at that time and, second, based on the same percentiles of the QInventory distribution at
that time. We value-weight the portfolios and hold them over month t. We next create spread portfolios long the
top QSales/top QInventory portfolio and short the bottom QSales/bottom QInventory portfolio (“inventory
builders”) and long the top QSales/bottom QInventory portfolio and short the bottom QSales/top QInventory
portfolio (“non-inventory builders”) per Seasonality portfolio. Plain numbers are monthly mean excess returns
in percent, while the numbers in square brackets are Newey and West (1987) t-statistics with a twelve-month
lag length. See Table C1 in Appendix C for variable definitions.

Seasonality

Above Median Below Median

(1) (2)

Panel A: Value-Weighted Portfolio Returns

Seasonal Sales PremiumInventory Builder −1.07 −0.06
[−6.64] [−0.44]

Seasonal Sales PremiumNon-Inventory Builder −0.32 −0.01
[−0.99] [−0.04]

Panel B: q-Theory Model Alphas

Seasonal Sales PremiumInventory Builder −1.11 −0.07
[−5.64] [−0.50]

Seasonal Sales PremiumNon-Inventory Builder −0.53 0.34
[−1.16] [1.25]

Panel C: Fama-French 5-Factor Model Alphas

Seasonal Sales PremiumInventory Builder −1.11 −0.11
[−6.23] [−0.87]

Seasonal Sales PremiumNon-Inventory Builder −0.40 0.26
[−1.04] [1.16]

Panel D: Fama-French 6-Factor Model Alphas

Seasonal Sales PremiumInventory Builder −1.17 −0.12
[−6.32] [−0.91]

Seasonal Sales PremiumNon-Inventory Builder −0.29 0.24
[−0.84] [1.00]
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A Model Solution

In this appendix, we offer details on how we numerically find the value and the expected return of the

firm in the model. We start with detailing the firm’s optimal production and selling decisions. We then

continue with introducing our finite difference scheme. We finally derive the boundary conditions for our

finite difference scheme and discuss how we “knit together” the separate solution components.

A.1 The Firm’s Optimal Policies

Recall that the differential of the output price Pt in our main model obeys

dPt = (α + κ sin(ηt))Ptdt + σPtdBt, (A1)

and let µ be the expected return of a portfolio replicating the stochastic variations in the output price and

thus reflecting its systematic risk. The “expected-return shortfall” of the output price can then be written

as δt = µ − 1
PtdtE[dPt] = µ − α − κ sin(ηt), which is a sinusoidal function of time. Using the expected-return

shortfall δt, we can rewrite the output price differential in Equation (A1) as

dPt = (µ − δt)Ptdt + σPtdBt, (A2)

whose closed-form solution is well known to be equal to

Pt = P0 exp
(∫ t

0
(µ − δu)du − 1

2σ2t + σBt

)
(A3)

= P0 exp
((

α − 1
2σ2

)
t + κ

η
(1 − cos(ηt)) + σBt

)
. (A4)

Under the martingale measure, the instantaneous drift µ − δt changes to r − δt, yielding

Pt = P0 exp
(∫ t

0
(r − δu)du − 1

2σ2t + σBQ
t

)
(A5)

= P0 exp
((

r − µ + α − 1
2σ2

)
t + κ

η
(1 − cos(ηt)) + σBQ

t

)
, (A6)

where BQ
t is a Brownian motion under the martingale measure.
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Using Equation (A6), we can easily show that the martingale-measure expectation of the output price

at time t taken at time s can be written as

EQ
s [Pt] = Ps exp

(
(r − µ + α)(t − s) + κ

η
(cos(ηs) − cos(ηt))

)
, (A7)

allowing us, in turn, to write the first-order condition for maximization problem (4) as

Pt exp
(

−
∫ t∗

t
(µ − α − κ sin(ηu))du

)
(µ − α − κ sin(ηt∗)) + cIe−rt∗ = 0, (A8)

which has to be numerically solved for t∗. Using the same equation, we can also calculate the amount of

production output yielding a local maximum for objective function (5) from

Q′
t = EQ

t [Pt∗ ]e−r(t∗−t) − c1 − CI(t, t∗)
c2

. (A9)

We ensure feasibility by setting Q∗
t = min{max{0, Q′

t}, K̄}.

A.2 Finite Difference Scheme

We next discretize PDEs (6) and (7) on three and two-dimensional grids, respectively, approximate the

partial derivatives in those PDEs using finite differences, and derive an explicit scheme relating firm value

on some grid point to its values on other points. To begin with, we first replace the output price in both

PDEs with its log counterpart pt = ln(Pt). Doing so, PDE (6) becomes equal to

∂W IB

∂t
+ Q∗

t

∂W IB

∂It
+
(

r − δt − 1
2σ2

)
∂W IB

∂pt
+ 1

2σ2 ∂2W IB

∂p2
t

− rW IB − c1Q∗
t − 1

2c2Q∗2
t − cIIt = 0, (A10)

while PDE (7) becomes equal to

∂W IS

∂t
+
(

r − δt − 1
2σ2

)
∂W IS

∂pt
+ 1

2σ2 ∂2W IS

∂p2
t

− rW IS + PtQ
∗
t − c1Q∗

t − 1
2c2Q∗2

t = 0. (A11)
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We next consider the three-dimensional mesh on [tmin, tmax] × [pmin, pmax] × [Imin, Imax] given by



ti = tmin + i∆t; i = 0, ..., Nt,

pj = pmin + j∆p; j = 0, ..., Np,

In = Imin + n∆I; n = 0, ..., NI

(A12)

to discretize PDE (A10) and the two-dimensional mesh on [tmin, tmax] × [pmin, pmax] given by


ti = tmin + i∆t; i = 0, ..., Nt,

pj = pmin + j∆p; j = 0, ..., Np

(A13)

to discretize PDE (A11). In either case, we choose constant step sizes, tmin = 0, Imin = 0, and pmin sufficiently

negative such that Pmin, the minimum non-logged output price, is close to zero. We further choose Np

such that the output price is within a five standard deviation window around its unconditional real-world

expectation at time tmax. Because inventory building periods never last longer than one seasonal cycle, we

finally choose NI such that the inventory axis goes up to K̄ 2π
η , which is the output in inventory at the end

of a cycle if the firm produced at full capacity over the entire cycle without selling output.

We now let W IB
i,j,n denote the value of W IB(t, Pt, It) at point (i, j, n) in grid (A12). We employ central

and forward differences to approximate the partial derivatives in PDE (A10), assuming that the partial

derivatives with respect to the log-price pt and the inventory It have the same values on grid points (i, j, n)

and (i + 1, j, n) to obtain an explicit scheme. To be specific, we use the following approximations

∂W

∂t
= Wi+1,j,n − Wi,j,n

∆t
+ O(∆t), (A14)

∂W

∂It
= Wi+1,j,n+1 − Wi+1,j,n

∆I
+ O(∆I), (A15)

∂W

∂pt
= Wi+1,j+1,n − Wi+1,j−1,n

2∆p
+ O(∆p2), (A16)

∂2W

∂p2
t

= Wi+1,j+1,n − 2Wi+1,j,n + Wi+1,j−1,n

∆p2 + O(∆p2) (A17)
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in PDE (A10), leading the inventory builder’s value at grid point (i, j, n) to be equal to

W IB
i,j,n = 1

1 + r∆t

∆t

∆I
Q∗

ti
W IB

i+1,j,n+1 − 1
1 + r∆t

∆t

∆I
Q∗

ti
W IB

i+1,j,n

= + 1
1 + r∆t

(
−
(

r − δti − 1
2σ2

) ∆t

2∆p
+ 1

2σ2 ∆t

∆p2

)
W IB

i+1,j−1,n

= + 1
1 + r∆t

(
1 − σ2 ∆t

∆p2

)
W IB

i+1,j,n

= + 1
1 + r∆t

((
r − δti − 1

2σ2
) ∆t

2∆p
+ 1

2σ2 ∆t

∆p2

)
W IB

i+1,j+1,n

= − 1
1 + r∆t

(
c1Q∗

ti
+ 1

2c2Q∗2
ti

+ cIIn

)
∆t.

(A18)

Denoting by W IS
i,j the value of W IS(t, Pt) at point (i, j) in grid (A13), we also use Equations (A14),

(A16), and (A17) in PDE (A11), leading the instantaneous seller’s value at grid point (i, j) to be equal to

W IS
i,j = 1

1 + r∆t

(
−
(

r − δti − 1
2σ2

) ∆t

2∆p
+ 1

2σ2 ∆t

∆p2

)
W IS

i+1,j−1

= + 1
1 + r∆t

(
1 − σ2 ∆t

∆p2

)
W IS

i+1,j

= + 1
1 + r∆t

((
r − δti − 1

2σ2
) ∆t

2∆p
+ 1

2σ2 ∆t

∆p2

)
W IS

i+1,j+1

= + 1
1 + r∆t

(
PjQ∗

ti
− c1Q∗

ti
− 1

2c2Q∗2
ti

)
∆t.

(A19)

A.3 Recursive Solution and Boundary Conditions

We finally explain how we knit together the grids in Equations (A12) and (A13) to obtain the value of a

firm which optimally decides to act as inventory builder in some time periods and as instantaneous seller

in others. To that end, we solve for that firm’s value recursively, starting at the terminal time tmax and

assuming that the firm ceases to exist after that time. Choosing a sufficiently large tmax, we can ensure that

our finite difference estimate is arbitrarily close to the true value of the firm with an infinite horizon. While

not strictly necessary, we also ensure that the firm is always an instantaneous seller at time tmax.

We then solve the two-dimensional instantaneous-seller PDE (A11) on the entire two-dimensional grid

in Equation (A13). To that end, we use the following boundary condition at t = tmax

W IS(tmax, Pt) =
(
PjQ∗

tmax − CP (Q∗
tmax)

)
∆t ≈ 0, (A20)
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where Q∗
tmax = min

{
max

{
Ptmax −c1

c2
, 0
}

, K̄
}

. We can interpret that condition as the terminal instantaneous

profit of an instantaneous seller before ceasing to exist. Realizing that Pt = 0 is an absorbing barrier for

the stochastic process in Equation (1), we next use W IS(t, Pmin) = 0 as boundary condition at P = Pmin.

We finally realize that, as Pt → ∞, the firm optimally produces at full capacity over its remaining lifetime,

consistently setting Q∗
t = K̄. We thus use the following boundary condition at P = Pmax

W IS(ti, Pmax) =
∫ tmax

ti

(
EQ

ti
[Pu]K̄ − CP (K̄)

)
e−r(u−ti)du (A21)

= PmaxK̄

∫ tmax

ti

e
−
∫ u

ti
δτ dτ du −

(
c1K̄ + 1

2c2K̄2
) 1 − e−r(tmax−ti)

r
, (A22)

noticing that the exterior integral requires a numerical solution. Relying on those boundary conditions, we

can use Equation (A19) to fill in the entire two-dimensional grid in Equation (A13).

As a next step, we turn to the three-dimensional inventory-builder PDE (A10), solving it on the three-

dimensional grid in Equation (A12) down until that output price below which the firm always acts as

instantaneous seller (the lower output price boundary) and right until those output price-time combinations

at which the firm conducts its final switch from inventory builder to instantaneous seller (the upper time

boundary). In Figure 2, the lower output price boundary is, for example, close to 0.20, and the upper time

boundary is the upward sloping part of the final parabola before the firm ceases to exist. We set the value

of the firm on the lower output price boundary, W IB(t, P l
t , It), equal to

W IB(t, P l
t , It) = W IS(t, P l

t ), (A23)

where P l
t is the lower output price boundary, and W IS(t, P l

t ) is the value of the instantaneous seller at time

t and output price P l
t taken from the two-dimensional grid solved before. Conversely, we set the value of

the firm on the upper time boundary, W IB(tBtSn , P BtSn
t , It), equal to

W IB(tBtSn , P BtSn
t , It) = W IS(tBtSn , P BtSn

t ) + PtIt, (A24)

where the tBtSn-P BtSn
t pair is a time-output price combination at which the firm conducts its final switch

from inventory builder to instantaneous seller, and W IS(tBtSn , P BtSn
t ) is the value of the instantaneous seller

at that combination taken from the two-dimensional grid solved before. Boundary condition (A24) implies
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that, on the optimal sales date, the value of the inventory builder is equal to the value of the corresponding

instantaneous seller plus the sales revenue generated from liquidating the inventory.

While we again set the firm’s value on the lower output-price boundary, W IB(t, Pmin, It), equal to zero, we

need to generalize our calculations in Equations (A21) and (A22) to find its value on the upper output-price

boundary, W IB(t, Pmax, It). To that end, we first recall that, as Pt → ∞, the firm optimally produces at

full capacity over its remaining lifetime, consistently setting Q∗
t = K̄. For each grid point ti on the upper

output price boundary, we then use objective function (4) to identify all remaining inventory building and

instantaneous sales regions until time tmax (see Panel B of Figure 1 for an illustrative example). We finally

set W IB(ti, Pmax, It) equal to the sum of the present values of the firm’s net cash flows over each of those

inventory building and instantaneous sales periods, including the remainder of the current period.

To calculate the time-s present value of the net cash flows generated by the firm over an inventory

building period lasting from time t to t′, with s < t < t′, we start with assuming that the firm holds no

inventory at time t. In that case, the firm grows its inventory from zero to
∫ t′

t Q∗
udu = K̄(t′ − t) from time t

to t′, before depleting its entire inventory and selling K̄(t′ − t) output units out of it at a price of Pt′ at

time t′. Given that, the time-s present value of the net cash flows, V IB
s (t, t′), is

V IB
s (t, t′) = EQ

s [Pt′ ]K̄(t′ − t)e−r(t′−s) −
∫ t′

t
CP (K̄)e−r(u−s)du −

∫ t′

t
K̄(u − t)cIe−r(u−s)du (A25)

= PmaxK̄(t′ − t)e−
∫ t′

s
δudu −

(
c1K̄ + 1

2c2K̄2
)

e−r(t−s) − e−r(t′−s)

r

= − cI

r2 K̄
(
e−r(t−s) − e−r(t′−s)(1 + r(t′ − t))

)
,

(A26)

where
∫ t′

s δudu = (µ − α)(t′ − s) + κ
η (cos(ηt′) − cos(ηs)). If, in contrast, the firm already holds an amount

of inventory equal to Īt at time t, we need to add the present value of the incremental cash flows associated

with that inventory to V IB
s (t, t′). We can calculate that present value, V IB+

s (t, t′), using

V IB+
s (t, t′) = EQ

s [Pt′ ]Īte
−r(t′−s) −

∫ t′

t
ĪtcIe−r(u−s)du (A27)

= Īt

(
Pmaxe−

∫ t′

s
δudu − cI

e−r(t−s) − e−r(t′−s)

r

)
. (A28)

To calculate the time-s present value of the net cash flows generated by the firm over an instantaneous

selling period lasting from time t to t′, with again s < t < t′, we first recall that, over each instant within
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that period, the firm produces an amount of output equal to Q∗
udu = K̄du and instantaneously sells that

at a price of Pu. Given that, the time-s present value of the net cash flows, V IS
s (t, t′), is

V IS
s (t, t′) =

∫ t′

t

(
EQ

s [Pu]K̄ − CP (K̄)
)

e−r(u−s)du (A29)

= PmaxK̄

∫ t′

t
e−
∫ u

s
δτ dτ du −

(
c1K̄ + 1

2c2K̄2
)

e−r(t−s) − e−r(t′−s)

r
. (A30)

We finally find the firm’s value on the upper, W IB(t, Pt, Imax), and on the lower inventory boundary,

W IB(t, Pt, Imin). To do so, we start from the forward finite difference approximation

∂W IB(ti, Pt, It)
∂t

≈ W IB(ti+1, Pt, It) − W IB(ti, Pt, It)
∆t

. (A31)

We then notice that, keeping the output price, Pt, and the amount of inventory, It, constant, the difference

in firm value between time ti and ti+1 is the present value of the additional output produced and put into

inventory over that period. That present value is approximately equal to

W IB(ti+1, Pt, It) − W IB(ti, Pt, It) = −
(
EQ

ti
[Pt∗ ]Q∗

ti
e−r(t∗−ti) − CP (Q∗

ti
) − Q∗

ti
CI(ti, t∗)

)
∆t, (A32)

allowing us to write the firm’s value on the upper inventory boundary, W IB(t, Pt, Imax), as

W IB(ti, Pt, Imax) = W IB(ti+1, Pt, Imax) +
(
EQ

ti
[Pt∗ ]Q∗

ti
e−r(t∗−ti) − CP (Q∗

ti
) − Q∗

ti
CI(ti, t∗)

)
∆t, (A33)

and the firm’s value on the lower inventory boundary, W IB(t, Pt, Imin), as

W IB(ti, Pt, Imin) = W IB(ti+1, Pt, Imin) +
(
EQ

ti
[Pt∗ ]Q∗

ti
e−r(t∗−ti) − CP (Q∗

ti
) − Q∗

ti
CI(ti, t∗)

)
∆t. (A34)

Having used Equation (A18) in conjunction with the above boundary conditions to fill in the three-

dimensional grid, we finally always replace W IB(t, Pt, It) with PtIt+W IB(t, Pt, 0) when PtIt+W IB(t, Pt, 0) >

W IB(t, Pt, It). Doing so, we ensure that the firm always immediately sells off its entire output in inventory

when it is value-maximizing to do so. We further ensure that firm value cannot turn negative.

We then return to the two-dimensional instantaneous-seller PDE (A11), solving it on the two-dimensional
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grid in Equation (A13) down until that output price below which the firm always acts as instantaneous seller

(the lower output price boundary) and right until those output price-time combinations at which the firm

conducts its final switch from instantaneous seller to inventory builder (the upper time boundary). While

the lower output price boundary in Figure 2 is, for example, again close to 0.20, the upper time boundary

is now the downward sloping part of the final parabola before the firm ceases to exist. While we else use the

same boundary conditions as for the prior two dimensional grid, we now set the firm’s value on the upper

time boundary at which the firm switches from instantaneous seller to inventory builder to

W IS(tStBn , P StBn) = W IB(tStBn , P StBn
t , It = 0), (A35)

where the tStBn-P StBn
t pair is a time-output price combination at which the firm switches, and W IB(tStBn , P StBn

t ,

It = 0) is the value of an inventory builder holding zero inventory. As before, we take the lower output

price and upper time boundary values from the solution to the prior three dimensional grid.

We continue in that manner, next solving the three-dimensional inventory-builder PDE (A10) on the

three-dimensional grid in Equation (A12) down until that output price below which the firm always acts as

instantaneous seller (the lower output price boundary) and right until those output price-time combinations

at which the firm conducts its penultimate switch from inventory builder to instantaneous seller (the upper

time boundary). We again take the lower output price and upper time boundary values from the solution to

the prior two dimensional grid. Having solved all available grids, we finally merge them into one firm value

grid, always collecting firm value during instantaneous selling periods from the appropriate two-dimensional

grids and during inventory building periods from the appropriate three-dimensional grids.

We compute the firm’s expected excess return as in Equation (10). To this end, let ERi,j,n denote that

return at grid point (i, j, n) in the firm value grid. Approximating the partial derivative in Equation (10)

using central differences, we can calculate the expected excess return at grid point (i, j, n) as

ERi,j,n = Wi,j+1,n − Wi,j−1,n

Pj+1 − Pj−1

Pj

Wi,j,n
(µ − r). (A36)
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B Growth Option Extension

In this appendix, we endow the firm in our main theoretical model with a single growth option allowing it

to instantaneously and irreversibly double its production capacity at an investment cost of k. In technical

jargon, the growth option is thus a perpetual American call option written on K̄ additional production

units. To make sure that the firm’s total production costs continue to be described by the convex function

c1Qt + 1
2Q2

t , we assume that the cost of producing Qt output units with the additional production units is

CP (Qt) = c1(K̄ + Qt) + 1
2c2(K̄ + Qt)2, with Qt ∈ [0, K̄]. Under that assumption, we are able to compute

the value of the additional production units, which we denote by U(t, Pt, It), using the methodology in

Appendix A, using slightly amended versions of maximization problem (5), the upper output price boundary

condition derived in Equations (A26), (A28), and (A30) in Appendix A, and the upper and lower inventory

boundary conditions in, respectively, Equations (A33) and (A34) in that appendix.

We next value the growth option written on the K̄ additional production units. Given that exercising

the option yields production units with an empty inventory, the value of the growth option is independent

of the output in inventory It, allowing us to write it as F = F (t, Pt). As generally the case for American

call options, the firm optimally exercises the growth option whenever the output price Pt rises above the

time-varying threshold P ∗
t . Before the firm exercises the growth option, it is then easy to show that the

value of the growth option has to satisfy the two-dimensional PDE

∂F

∂t
+
(

r − δt − 1
2σ2

)
∂F

∂pt
+ 1

2σ2 ∂2F

∂p2
t

− rF = 0. (B1)

We solve PDE (B1) subject to the usual spatial boundary conditions for American call options, F (ti, Pmin) = 0

and F (ti, Pmax) = U(ti, Pmax, 0) − ke−r(tmax−ti) as well as the terminal boundary condition F (tmax, Pj) =

max{U(tmax, Pj , 0) − k, 0}. We further determine the free exercise boundary, P ∗
t , from

F (t, P ∗
t ) = U(t, P ∗

t , 0) − k. (B2)

To solve PDE (B1) using an explicit finite difference scheme, we let Fi,j be the value of F (t, Pt) at

point (i, j) in grid (A13). We next plug Equations (A14), (A16), and (A17) into PDE (B1), allowing us to
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Figure B.1: The figure plots the optimal output price threshold P ∗
t above which the firm exercises its

growth option over the period from t = 0 to 4 under an output price trajectory at which firm value shows
no general tendency to rise or fall. The vertical line shows the exercise time. The gray bars indicate the
periods during which the firm acts as an instantaneous seller. We describe the parameter values in the text.

calculate the option’s value at grid point (i, j) from

Fi,j = 1
1 + r∆t

(
−
(

r − δti − 1
2σ2

) ∆t

2∆p
+ 1

2σ2 ∆t

∆p2

)
Fi+1,j−1

= + 1
1 + r∆t

(
1 − σ2 ∆t

∆p2

)
Fi+1,j

= + 1
1 + r∆t

((
r − δti − 1

2σ2
) ∆t

2∆p
+ 1

2σ2 ∆t

∆p2

)
Fi+1,j+1.

(B3)

To incorporate option exercises, we replace each Fi,j value in the grid with the corresponding exercise payoff

max{U(ti, Pj , 0) − k, 0} if the exercise payoff exceeds the original value. We finally set P ∗
t to the lowest

output price in the grid for which the exercise payoff exceeds the original value per time t.

The value of the firm, W (t, Pt, It), then becomes the sum of its production capacity-in-place, V (t, Pt, It),

valued as described in Appendix A, and its growth option, F (t, Pt)

W (t, Pt, It) = V (t, Pt, It) + F (t, Pt), (B4)

whereas its conditional expected excess return, E[rW ] − r, turns into the value-weighted average of the

expected return on the production capacity-in-place and the growth option

E[rW ] − r =
(

V (t, Pt, It)
W (t, Pt, It)

ΩV + F (t, Pt)
W (t, Pt, It)

ΩF

)
(µ − r), (B5)

where ΩF = ∂F (t,Pt)
∂Pt

Pt
F (t,Pt) is the elasticity of the growth option.
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Figure B.2: The figure plots the firm’s optimal production quantity Q∗
t (Panel A), its accumulated output in

inventory It (Panel B), its value W (t, Pt, It) (Panel C), and its expected excess return E[rW ]−r (Panel D) over
the period from t = 0 to 4 under an output price trajectory at which firm value shows no general tendency to
rise or fall. The gray bars in each subplot indicate the periods during which the firm acts as an instantaneous
seller. We describe the parameter values in the text.

Figure B.1 plots the optimal output price threshold above which the firm exercises its growth option

P ∗
t (solid black line) under the output price trajectory also used in the main paper (broken black line)

over the time period from t = 0 to 4. We use the same parameter values as in Section 2.2 to construct the

figure. The exception is the starting value of the output price, P0, which we set to three to ensure that the

growth option captures a meaningful fraction of total firm value. We set the investment cost, k, to two. The

figure suggests that the seasonality in the output price translates into seasonality in the optimal output

price threshold. Interestingly, however, it further shows that the firm is more likely to invest during a low

rather than high output price season (i.e., the output price threshold is high when the seasonal output

price is high, and vice versa). The reason is that adding new production capacity during a low output price

season allows the firm to raise its production over that season to sell more output over the next high output

price season, boosting its profitability and, as a consequence, maximizing its value.

Figure B.2 plots the optimal production quantity Q∗
t (Panel A), accumulated inventory It (Panel B),

value (Panel C), and expected excess return (Panel D) of the firm with a growth option at the same output

price trajectory as above over the time period from t = 0 to 4. Given that we assume a higher starting

value for the output price, P0, to ensure that the growth option captures a meaningful fraction of total firm

value, Panel A shows that the firm consistently produces at its full capacity K̄. In accordance, Panel B

shows that the firm’s accumulated inventory rises more rapidly than in Panel B in Figure 4 in the main

text, while Panel C indicates that firm value is higher than in Panel C in that same figure. Notwithstanding

the growth option, Panel D, however, shows that the expected excess return of the firm with growth option
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behaves similarly over time as that of the firm without growth option (compare with Panel D in 4). To be

precise, the expected excess return still markedly rises over inventory building periods, shoots up at their

end, but then stays close to constant over instantaneous selling periods.
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C Variable Definitions

Table C1
Variable Definitions
The table presents the definitions of our analysis variables. In our asset pricing tests, we update the variables
indexed by “M” (“Q”) [“A”] on a monthly (quarterly) [annual] basis and use their values to condition returns over
month t + 1 (month t + 1) [the period from July of year t to June of year t + 1]. We show the data-provider
(CRSP and Compustat) mnemonics of the variables in parentheses.

Variable Name Variable Definition

Panel A: Seasonality Variables

QSales (Q) Mean of sales proportion of the current quarter in year t − 2 and t − 3.
The sales proportion equals quarterly sales (saleq) divided by sum of all
quarterly sales in that fiscal year (see Grullon et al. (2020)).

QSalesRank (Q) Monthly rank of QSales scaled by the monthly number of observations.
Seasonality (A) Standard deviation of the four QSales values within one fiscal year.
QInventory (Q) Mean of inventory proportion of the previous quarter in year t − 2 and

t − 3. The proportion equals quarterly total inventory (invtq)) divided
by sum of all quarterly inventory in that fiscal year.

DummyInventoryBuilder (A) Dummy equal to one if QSales and QInventory take their maximum
value in the same quarter of that year, else zero.

QFGInventory (Q) Mean of inventory proportion of the previous quarter in year t − 2 and
t − 3. The proportion equals quarterly finished goods inventory (invfgq)
divided by sum of all quarterly inventory in that fiscal year.

Panel B: Control Variables

MarketBeta (M) Sum of slope coefficients from a stock-level regression of excess stock
returns (ret) on current, one-day lagged, and the sum of two-, three-,
and four-day lagged excess market returns, where the regression is run
using daily data over the prior 12 months. We require that the regression
is run on at least 200 observations (see Lewellen and Nagel (2006)).

MarketSize (A) Log of the product of the stock price (abs(prc)) and common shares
outstanding (shrout) at the end of the prior calender year (in millions).

BookToMarket (A) Log of the ratio of the book value of equity to the market value of
equity (abs(prc) times shrout), where the book value of equity equals
stockholder’s equity (seq) plus deferred taxes (txditc) plus investment
tax credit (itcb, zero if missing) minus preferred stock (pstkrv, pstkl,
pstk, or zero, in that order of availability). The variables are from the
fiscal year-end in calendar year t−1 (see Fama and French (1992, 1993)).

(continued on next page)
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Table C1
Variable Definitions (cont.)

Variable Name Variable Definition

Momentum (M) Log of one plus the stock return (ret) compounded over the period from month t − 11
to month t − 1 (see Jegadeesh and Titman (1993)).

Investment (A) Log of the gross percentage change in total assets (at) from the fiscal year-end in
calendar year t − 2 to the fiscal year-end in year t − 1 (see Fama and French (2015)).

Profitability (A) Ratio of sales (sale) net of costs of goods sold (cogs), selling, general, and administrative
expenses (xsga, zero if missing), and interest expenses (xint, zero if missing) to the
book value of equity, which equals stockholder’s equity (seq) plus deferred taxes
(txditc) plus investment tax credit (itcb, zero if missing) minus preferred stock (pstkrv,
pstkl, pstk, or zero, in that order of availability). The variables are from the fiscal
year-end in calendar year t − 1 (see Fama and French (2015)).

Panel C: Portfolio Characteristics

RSeason(xy) (M) Mean of the same calendar-month return (ret) taken over the prior x calendar years,
with x equal to three, five, and seven (see Heston and Sadka (2008)).

ESeason (Q) Average rank of the current fiscal quarter in a ranking of the last 20 quarterly earnings
(measured as earnings per share excluding extraordinary items adjusted for stock
splits (epsfxq)) from highest to lowest (see Chang et al. (2017)).
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