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1. Introduction

During the COVID-19 pandemic in early 2020, the stock market crashed and then quickly

recovered in equally dramatic fashion. Pundits attribute much of this market volatility to

speculation by retail investors, such as “Robinhood Traders” (Zweig, 2020). More recently,

GameStop’s stock price surged more than 1,700% following a coordinated short squeeze at-

tempt by Reddit users. Market activity for this episode peaked on January 27th, 2021, when

over 24 billion shares and 57 million options were traded on GameStop. These patterns have

emerged more generally, as retail investors drive a larger fraction of equity and option vol-

ume, particularly during large market swings.1 Considering this trend, I investigate whether

retail investors contribute to tail risk in market behavior.

Existing literature has shown evidence that institutions are likely to be rational specula-

tors, as they ride the bubble and earn abnormal profits (Conrad et al., 2014; Jang and Kang,

2019), when arbitrage might be costly (Pontiff, 1996; Shleifer and Vishny, 1997). An impor-

tant assumption is that retail investors are more likely to be “noise traders” (De Long et al.,

1990a), driven by sentiment and attention-grabbing events (Barber and Odean, 2000; Barber

et al., 2020). When retail traders inflate the prices of lottery stocks, institutions are able to

take advantage of retail trades, driving the bubbles even bigger, consequently precipitating

crashes. However, literature is silent on any causal evidence as to whether retail trades can

contribute to ex-ante tail risk. In this paper, I first estimate ex-ante monthly crash and jack-

pot probabilities via novel machine learning methodologies, and then use these probabilities

as proxy for tail risk. I show that retail investors, proxied by “Robinhood Traders”, tend

to buy both high crash risk and high jackpot risk stocks, likely driving stock prices further

away from their fundamental values, exacerbating potential price bubbles, and resulting in

much lower returns in subsequent periods.

To show causal evidence that higher retail trading increases ex-ante crash risk, I exploit

1Estimates suggest that retail traders drive over 25% of total equity market volume (McCrank, 2021) and
they are leveraging their positions with options more than ever (Banerji, 2021). Moreover, roughly 15% of
retail traders are believed to be novice investors (Feuer, 2021).
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a quasi-natural experiment. Robinhood introduced commission-free option trading at the

end of 2017, providing a supply shock to inexpensive option trading opportunities, vastly

increasing user adoption. The influx of retail traders likely made prices of both options and

their underlying stocks more volatile, thus providing an ideal setting to study the causal

effect. One problem in studying this event is that Robinhood did not start disclosing user

data until 6 months after the event. To tackle this problem, I exploit a popular Reddit

forum “Wallstreetbets”, and scrape “regular” user comments that relate to option trading

activities. This forum has been active since 2012. A further advantage of using Reddit

posts for this experiment is that “regular” comments started to appear on this forum only

at the end of 2017, coinciding with the event date, thus alleviating potential endogeneity

issue. I classify stocks that Reddit users mention via both their ticker symbols and options

related keywords as “treatment” stocks. Further, I provide evidence that Reddit comments

are highly positively correlated with Robinhood users’ trading behavior. This allows me to

circumvent the data problem with Robinhood and identify stocks that are likely to have a

high degree of retail trading from the time of introduction of commission-free option trading.

I show that the ex-ante crash probability of such stocks increased by 0.11 standard deviations

after the introduction, and the effect is more pronounced in small stocks, which could be

due to limits to arbitrage (Diether et al., 2009; Chu et al., 2020).

Estimating ex-ante crash risk is important because though crashes are infrequent they

can be extremely painful. Prior literature (Campbell et al., 2008; Conrad et al., 2014; Jang

and Kang, 2019) employ logistic regressions to study extreme downside events at an annual

frequency. Since we are interested in retail investors’ trading behavior and their influence

on crash risk, a shorter-term measure is necessary. Therefore I add to this literature by

looking at monthly frequency, and define a “crash’ if a stock’s monthly log return drops

by more than 20%, and “jackpot” if it increases by more than 20%. The reason for this

cutoff is that the unconditional distribution resulting from this treatment is commensurate

with prior literature: crashes and jackpots constitute approximately 5% respectively of all
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observations.

One challenge of studying crashes is that the typical econometric toolkit is less ideal for

forecasting rare events. Importantly, given that “crashes” and “jackpots” occur at very low

frequency, this creates an “imbalanced sample” problem, where the “crashes” and “jackpots”

have far smaller sample sizes as compared to “plain” cases. Using generic classification

models such as logistic regression is likely to cause bias and substantively underestimate

rare event probabilities (King and Zeng, 2001). One intuition for this argument is that the

loss function in logistic regressions treats each individual observation equally, regardless of

its class label, and thus the algorithm is largely minimizing the log loss from classifying

the “plain” class, while the losses from “crashes” and “jackpots” are not given sufficient

attention. Furthermore, the cost structure of misclassfication is asymmetric. Misclassifying

a potential “crash” as “plain” case can cause substantial shareholder wealth loss, as compared

to misclassifying a “plain” case as “crash”.2

To alleviate this problem, I introduce the Synthetic Minority Over-Sampling Technique

(SMOTE) (Chawla et al., 2002) designed for imbalanced classification problems. I apply

SMOTE to create synthetic observations for “crashes” and “jackpots” via K-nearest neigh-

bors, such that all three classes in the transformed data have similar sample sizes. When

applying classification models on the transformed sample, the resulting loss function should

pay sufficient emphasis on the log loss of “crashes” and “jackpots”. Moreover, by using

an L − 2 penalized multinomial logistic regression (Ridge regression) coupled with valida-

tion, I tune the estimator to optimize out-of-sample (OOS) forecasting performance. Using

OOS F1-scores as the classification criterion, I show that the performance for classifying

both crashes and jackpots are substantially improved over the base logistic regressions. The

OOS F1-scores increase many folds, from 0.05 to 0.13 for crashes, and from 0.02 to 0.11 for

jackpots. Moreover, crashes and jackpots are more separated: the unconditional correlation

between estimated crash and jackpot probabilities is approximately -25%.3

2See Chawla et al. (2002) for more detailed discussion for the asymmetric cost structure.
3Conrad et al. (2014) estimate a positive correlation between crashes and jackpots, and so do Jang and
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Sorting stocks into decile portfolios based on estimates of monthly ex-ante crash proba-

bilities, a zero-cost strategy long in high-decile crash risk portfolios and short in low-decile

crash risk portfolios produces consistent and significant negative alphas, averaging approx-

imately -1% monthly, at 1% level of statistical significance, across various factor models.

The results are robust to both equal-weighting and value-weighting schemes. In subsequent

Fama-MacBeth cross-sectional regressions, controlling for conventional and anomaly charac-

teristics, including other tail risk measures such as MAX (Bali et al., 2011), the coefficient

on crash risk stays consistently and significantly negative throughout all specifications.

It is extremely difficult to distinguish between crashes and jackpots ex ante. Moreover,

crashes and jackpots could occur in tandem, due to possible short-term reversals. Therefore

it is reasonable to assume that retail investors, with limited resources and attention, could

misclassify the two tails ex ante. Since retail investors are shown to have lottery preferences

(Kumar, 2009), it seems logical to conjecture that they would mistakenly buy both high crash

risk and jackpot risk stocks. If investors mistake high crash risk stocks for high jackpot risk

stocks, then the high crash risk stocks would be overpriced, predicting lower returns in

the subsequent periods, consistent with what is revealed in the data. More importantly,

if retail investors overbought high crash risk stocks, exacerbating the individual stock price

bubble, then the probability of its crash would be higher in the subsequent period, effectively

rendering the already fat left tail even fatter.

To prove this conjecture, I combine two novel data sets to examine retail investors’

trading behavior with respect to the two tails. The first is the Robintrack data that records

the total number of users (shareholders) registered on Robinhood trading platform that are

holding each individual stock, at approximately hourly frequency.4 To match the frequency

of estimated crash risk and jackpot risk, I construct a Robinhood trading measure as the

Kang (2019). Thus according to their estimates, stocks that have high probability of crash also tend to have
high probability of jackpot in the same period. This leads to the question whether the models employed are
able to classify the data successfully.

4Robintrack: https://robintrack.net/. On its website: “Robintrack keeps track of how many Robin-
hood users hold a particular stock over time. It generates charts showing the relationship between price and
popularity, and compiles some lists using the data.”
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monthly change in log number of users for each stock. Then I regress this measure on crash

risk, jackpot risk, and other firm characteristics. Consistent with prior literature, retail

investors tend to buy stocks with high past returns, an attention-grabbing characteristic

(Barber et al., 2020), as shown by the positive and significant coefficients on the MAX

measure. Importantly, I find that “Robinhood Traders” tend to buy both high crash risk

and high jackpot risk stocks, even after controlling for other related characteristics including

MAX, idiosyncratic volatility, and illiquidity. This suggests that retail investors’ preference

for lottery stocks leads them to mistakenly buy high crash risk stocks while chasing ultra-

high returns. It is quite possible due to the extreme difficulty to distinguish between the two

tails ex ante, given retail investors’ lack of resources and attention.

Existing literature has shown causal evidence that retail trading contributes to increased

stock volatility (Foucault et al., 2011). Whether retail investors can contribute to higher

ex-ante crash probability of stocks is an open question. It has been suggested that retail

investors are likely “noise traders”, where they follow positive feedback trading strategy,

induced by their sentiment over the past winners (De Long et al., 1990a,b). If retail investors

chase past winners, then their action would push the stock price even higher in the short

term. Consequently the subsequent probability of crash should be higher. To my best

knowledge, this is the first study that provides causal evidence that higher retail participation

does increase crash risk. At the end of 2017, Robinhood introduced commission-free option

trading. In addition to its easy-to-use interface, the introduction provided a supply shock

to retail participation. This event should provide an ideal experiment for examining retail

influence on crash risk. Robinhood, however, does not disclose user trading data.

To circumvent the data limitation, I scraped comments posted on “Wallstreetbets”, a

“subreddit” and probably the most popular investment forum, to identify stocks with retail

option trading activities after the shock, and classify them as treatment stocks. Through

a difference-in-difference analysis, I show that on average treatment stocks with increased

retail participation experience a significant increase in monthly ex-ante crash probability.
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The crash probability of stocks with high retail investor participation increased by 0.11

standard deviations after the introduction. After the supply shock, investors are faced with

higher deep out-of-money option prices, increased stock trading volume, and increased total

volatility. The effects are stronger for smaller firms.

This paper makes several unique contributions to both crash risk and retail trading

literature. To the best of my knowledge, this is the first study that jointly estimates ex-ante

monthly crash and jackpot probabilities, and introduces imbalanced learning methodologies

to improve forecasting performance for rare events. It is also the first to utilize a quasi-

natural experiment to document causal evidence on the impact of retail trading on stock

crash risk. Finally, it is the first study that combines Robintrack data and Reddit textual

data to identify retail trading activities.

The paper is organized as follows. Section 2 discusses the contributions of the present

study to existing literature. Section 3 provides summary statistics and describes key variables

used in this study. Section 4 explains the prediction method and corresponding results for

estimating monthly crash probabilities. Section 5 conducts asset pricing tests for crash risk

in the cross-section of individual stocks; Section 6 analyzes retail investor behavior and their

impact on crash risk. Section 7 displays various robustness tests. Section 8 concludes.

2. Contributions to Literature

The literature on crash risk is extensive in both corporate finance and asset pricing. On

the corporate side, the literature is mostly concerned with the determinants of firm crash

risk. These determinants are often motivated by managers hoarding bad news (Jin and

Myers, 2006). The idea is that the hoarding delays the information transmission such that

when it is ultimately released, there is a sudden drop of price corresponding to the size of

the cumulative bad news. Motivated by this theory, the literature has proposed a list of

determinants that could endogenously influence crash risk, such as earnings management
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(Hutton et al., 2009), tax avoidance (Kim et al., 2011), annual report readability (Li, 2008),

CSR (Kim et al., 2014), liquidity (Chang et al., 2016), short interest (Callen and Fang,

2015), and governance (Andreou et al., 2016; An and Zhang, 2013). Almost all of these

determinants discussed in the literature can only be measured at an annual frequency, and

thus are not suitable for the present study, which focuses on the short-term behavior of retail

investors.

On the asset pricing side, there is a strand of option pricing literature that tries to extract

information from option prices to determine the size of tail risk. Bates (1991) was among the

early papers that study the relationship between option prices and crashes. They show that

the 1987 stock market crash can be predicted by the unusually high prices of out-of-money

S&P 500 futures put options. Further more, the paper indicates that the jump diffusion

parameters implied by the option prices show that the crash could be expected. Pan (2002)

provide theoretical support for the jump-risk premia implied by near-the-money short-dated

options that help explain volatility smirk. Xing et al. (2010) study the relationship between

implied volatility smirks and the cross-section of stock returns. They show that the difference

between implied volatility of out-of-money put options and at-the-money call options show

strong predicting power for future stock returns. Yan (2011) show that jump size proxied by

the slop of volatility smile predicts cross-section of stock returns. More recently, Barro and

Liao (2020) build a theoretical model that links the relative price of far out-of-money put

options with the probability of rare macro disasters. They show that the relative price of

far-out-of-money put options are positively associated with the probability of rare disasters,

which they infer from monthly fixed effects in empirical test. This literature is primarily

based on the theoretically motivated jump-diffusion model for asset prices, where return

process is modeled as a linear combination of a diffusion process that is a standard geometric

Brownian motion and a jump process. The size of the jump is frequently used to estimate

tail risk probabilities. The present study differs from this literature, as it takes no stand on

the underlying process of stock returns, but rather sets a fixed threshold for defining crashes
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and jackpots, i.e. the left and right tails. The benefit of this procedure is that the definition

is model free, and hence is invariant to model assumptions.

A third strand of literature on crash risk attempts to directly predict the probability of

crashes. Chen et al. (2001) employs cross-sectional regressions to forecast skewness of daily

stock returns. They show that negative skewness can be predicted by recent increase in

trading volume and positive returns. Campbell et al. (2008) use a dynamic logit model to

predict distress probabilities for the cross section of firms. They show that high-distress-risk

stocks suffer from lower subsequent returns. Conrad et al. (2014) show that high-distress-risk

stocks are also likely to become jackpots. They use a logit model to predict the probability

of deaths and jackpots. Most recently, Jang and Kang (2019) exploits a multinomial logit

model to jointly predict probabilities of crashes and jackpots at an annual horizon. They

show that institutions appear to ride the bubble instead of trading against high crash risk

stocks, and overpricing cannot be fully explained by investor sentiment. Since the estimation

strategies in this literature are largely conducted at an annual frequency, the timing of

crashes is highly uncertain, and thus not suitable for he present study, where our focus is on

short-term behavior of retail investors. Moreover, these studies do not pass the test of new

empirical asset pricing factor models. For example, Jang and Kang (2019) uses Fama-French

three-factor model (Fama and French, 1993) plus a momentum factor (Carhart, 1997) as the

benchmark. I show in Appendix B that, using more recent sample period from 1996 to 2019,

while benchmarking against CAPM, Fama-French three-factor, and momentum augmented

four-factor models, a replication of their zero-cost high-minus-low crash risk portfolios show

significantly negative alpha. However, the alphas quickly turn economically and statistically

insignificant when the five-factor model (Fama and French, 2015) is used.

Another important issue with this literature is a severe imbalanced sample problem. By

definition, tail probabilities are very low compared to normal conditions, where the crashes

and jackpots are extremely rare. As noted in Ripley (1996) and King and Zeng (2001), the

poor finite sample properties in the imbalanced sample context would bias the coefficients, as
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the majority class will be much better estimated than the minority class, while we care more

about minority class than the majority class. The reason is two fold. First, it is the minority

class that provides most incremental information. Second, the cost of misclassifying the

minority class as the majority one is much higher than the opposite. In our case, if investors

misclassify a crash-prone stock into a “plain” case, they would suffer huge monetary loss in

the subsequent period for including this stock in their portfolios since the mean of portfolio

return is lowered. On the contrary, if investors misclassify a “plain” case as crashes, it

would be comparatively less costly. This asymmetric cost structure calls into question the

loss function used in a typical classification method such as logistic regression. Since the

generic loss function takes into account all observations, regardless of the class composition,

in our case the “plain” cases would overwhelm the algorithm, leaving much less attention to

the classification loss for “crashes” and “jackpots”. The present study contributes to this

literature by introducing novel machine learning technique “SMOTE” to address the issue

of imbalanced sample problem, and shows that forecasting performance is greatly improved

with this technique.

This study is also related to the literature on the relationship between investor trading and

market efficiency and bubble formation. For example, De Long et al. (1990a), De Long et al.

(1990b), and Abreu and Brunnermeier (2003) provide the theoretical and empirical evidence

of positive feedback traders and their potential impact on market. Greenwood and Nagel

(2009) show that inexperienced institutional investors might help the formation of bubbles.

On the other hand, the literature shows that retail investors are by and large “noise traders”

that could trade too much (Barber and Odean, 2000). Speculative retail traders tend to

chase lottery-like stocks, experiencing subsequent negative trading alpha, and affect stock

prices accordingly (Han and Kumar, 2013). Recent evidence from “Robinhood Traders”

shows that they tend to herd more on extreme past-return stocks, which are more attention-

grabbing (Barber et al., 2020), while there is also evidence that mimicking portfolios based

on the characteristics of “Robinhood Traders” do not seem to underperform the market,
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but instead could be a market stabilizing force (Welch, 2020). These seemingly conflicting

results point to the difficulties in studying retail trading behavior due to data limitations.

This present study is closely associated with this literature. First, I show consistent evidence

that retail investors, proxied by “Robinhood Traders”, do show preference for lottery-like

stocks, manifested by their buying activity in both high-crash and high-jackpot probability

stocks. Moreover, this paper contributes to the literature in showing that retail investors

have no apparent ability to distinguish left and right tails ex ante, and thus their buying

activity would potentially push the high crash risk stock prices high, predicting a lower

return subsequently. More importantly, this paper utilizes a quasi-natural experiment to

provide causal evidence that retail trading can contribute significantly to higher ex-ante

stock crash risk. In this regard, Foucault et al. (2011) was one of the first papers that use

a quasi-natural experiment to identify the causal effect of retail trading on stock volatility.

This paper focuses on tail risk instead of the second moment.

Finally, this study is related to the emerging literature that studies the implications

and applications of machine learning methodologies in asset pricing. The literature largely

focuses on the “factor zoo” problem. For example, Kozak et al. (2020) applies a shrinkage

method to construct an SDF that can summarize a large portion of the cross section of stock

returns. Feng et al. (2020) introduces a novel machine learning methodology to test whether

any new factor matters. Bianchi et al. (2021) applies machine learning techniques to estimate

bond risk premiums. Another strand of this literature focuses on the forecasting power of

machine learning techniques. For example, Gu et al. (2020) conducts a comprehensive study

of various machine learning models and their superior power in estimating risk premiums, and

shows large gains for investors. Erel et al. (2021) forecasts director performance via machine

learning. The present study enriches this literature by introducing a novel technique from

“imbalanced learning” methodologies to solve rare event prediction problems. The findings

in this paper has many implications for future research in finance, especially in studying low

probability events, such as firm bankruptcy and defaults and insurance policies. By applying
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proper adjustment to the data, we can greatly alleviate the bias resulting from classifying

rare events data, and thus improve the probability of avoiding misclassification of disaster

events, increasing investor welfare.

3. Data

3.1. Variables

For definition of crashes and jackpots, I use log monthly returns of -20% and 20% as

the cutoff points. The choice is reasonable in the following sense. Prior literature uses

log annual returns of -70% and 70% as the cutoff points. The unconditional probabilities

of crashes and jackpots defined this way at the annual frequency are roughly 5%. My

definition for monthly crashes and jackpots at the cutoff points of -20% and 20% agrees to

this distribution. It follows that the dependent variables are defined as categorical, where

crash = −1, jackpot = 1, and plain = 0. For independent variables, I use Compustat

quarterly data to construct accounting variables, analogous to the annual measures used in

Jang and Kang (2019), where I transform the frequency to short-term intervals to match

the predicting task. These fundamental variables include: past three month market return,

past three month stock excess return relative to the CRSP value-weighted market return,

book-to-market ratio, asset growth, return on equity, total stock return volatility, total

skewness, size, detrended turnover, firm age, tangibility, and sales growth. On top of these

fundamental and stock return variables, I draw insight from option literature that shows

predicting power of option pricing information for tail risks. I follow Xing et al. (2010) to

construct the implied volatility smirk measure, which is defined as the difference between

the implied volatility of out-of-money put option and the implied volatility of at-the-money

call option. This measure is frequently used as a proxy for stock crash risk. Then I follow

Barro and Liao (2020) to construct deep out-of-money relative option price measure, which
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is motivated by their pricing equation for deep out-of-money put option:

Ω =
αzα0 · pT · ε1+α−γ

(α− γ)(1 + α− γ)
(1)

Where Ω is the ratio of option price to implied stock forward price, and p is the proba-

bility of a macro disaster event. Since the put option price implies extreme left tail event,

then it follows naturally that the counterpart measure from call option price should contain

information for extreme right tail events.

I use Option Metrics to construct these measures. Due to availability of option data, I

limit my sample between the year 1996 and 2019. Following Xing et al. (2010) and Barro

and Liao (2020), I perform the following screening for put options: 1) days to expiration

between 10 and 180 days; 2) implied volatility between 0.03 and 2; 3) open interest greater

than zero; 4) option price greater than $0.125; 5) non-missing volume; 6) moneyness between

0.1 and 0.9. Analogously, to aid the joint prediction of jackpots, I also include the relative

price of deep out-of-money call options, which obey the screening for put options, but with

moneyness between 1.05 and 1.8. The option price is defined as the mean of offer and ask

prices for each option contract. The relative price of a contract is the ratio between the

option price and the implied forward stock price. I use open interest as weight to calculate

a weighted-average relative price. Then I average the daily relative price for each month to

construct a monthly measure for each stock. I require at least 10 days of available data for

each month.

For return data, I use CRSP for daily and monthly stock returns and volumes. Following

asset pricing convention, I require common stocks with share code of 10 or 11, and with stock

prices greater than $1 to avoid extreme outliers. For retail trading, I use Robintrack, which

tracks Robinhood user holding of individual stocks. This dataset is available from May 2018

to August 2020. Finally, I scraped user comments from Reddit “Wallstreetbets” to conduct

analysis on the impact of Robinhood introduction of commission-free option trading on retail
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trading, and consequently its impact on stock crash risk. The comments are available from

the end of 2017, coinciding with the introduction of commission-free trading, to the end

of my sample. I will provide more detailed discussion of these two data sets in Section 6.

Definitions of variables are in Appendix.

3.2. Summary Statistics

The summary statistics for selected variables are shown in Table 1. I separately report

the characteristics of “crashes”, “plain” cases, and “jackpots” to examine their differences.

[Table 1 about here.]

As was discussed earlier, since our forecast horizon is one month, long-term explanatory

variables might not be desirable as they may not account for regime change and hence lack

sufficient flexibility (Elliott and Timmermann, 2016). Therefore, the variables are defined

such that the longest lag used is one year in the case of sales growth, where I use quarter-on-

quarter changes to account for seasonality.5 All the other variables are lagged by less than

6 months, and in some cases, three months or one month.6

As shown in Table 1, we can discern some of the patterns to separate the three classes.

For example, Crash and jackpot cases have smaller size and lower tangibility than plain cases.

They tend to have lower past excess returns, and tend to happen when past three-month

market return is low. They have lower detrended turnover, higher total volatility, higher total

asset growth, higher sales growth, and higher skewness, while jackpots have the highest mean

skewness among the three classes. Crash and jackpot stocks tend to be younger and value

firms. Crash stocks tend to have negative mean return on equity, and jackpot stocks have

high past ROE. Both crash and jackpot cases has higher SMIRK measure than the plain

cases. Finally, deep out-of-money put and call option prices relative to underlying prices are

5For example, quarter one of this year on quarter one of last year.
6See Appendix for variable definitions.
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far higher for crash and jackpot stocks, almost two times that of plain cases. These summary

statistics are consistent with the findings in existing literature.

In the next section, I describe the estimation methodology for ex-ante crash and jackpot

probabilities, and compare the baseline logit results and improved results of machine learning

models.

4. Estimating Ex-Ante Monthly Crash Risk

In this section, I discuss the methodologies used in both the baseline model and improved

machine learning models, and show comparisons of key performance metrics for out-of-sample

forecasting.

4.1. Multinomial Logit Regression

As a precursor to out-of-sample predictions, I first run an in-sample multinomial logit

regression to examine whether the selected variables are strongly correlated with future

realized crashes and jackpots, and whether the model is economically sound. Table 2 shows

the results. Standard errors are clustered at both firm and time levels per Petersen (2009).

[Table 2 about here.]

All independent variables are standardized, so that we can directly compare the impor-

tance of each variable with others. Table 2 shows that the relative option prices of deep

out-of-money puts and calls are significant predictors of crashes and jackpots in next month.

Though they have the same positive sign, the coefficient on put options for crashes are

greater than that for jackpots, while the coefficient on call options for crashes are less than

that for jackpots. This makes intuitive sense: high relative price for deep out-of-money put

options signals greater demand for protection for that particular stock, which precedes the

pending crash; high relative price for deep out-of-money call options signals greater demand
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for speculation for that particular stock, which precedes the pending jackpot. On the other

hand, surprisingly, the implied volatility SMIRK measure shows no significance in predicting

crashes and jackpots. All the other variables show coefficients in signs that are largely con-

sistent with literature. Importantly, the size of the coefficients show that only size, volatility

and age have comparable importance to option variables. This exercise shows that the model

has substantial explanatory power with these selected variables. Next, I move on to discuss

the machine learning models used to predict ex-ante crash and jackpot probabilities.

4.2. Out-of-Sample Forecasting via Machine Learning

4.2.1. L− 2 Penalized Multinomial Logistic Regressions

The in-sample logit shows significant explanatory power. However, it is well known that

in-sample fit has substantial overfitting problem that leads to poor out-of-sample perfor-

mance.

To address this issue, I follow prior literature and conduct a rolling window estimation

procedure, where I use 6 months of data as the training sample and 1 month data as the

test sample in each window. For example, the first window consists of training sample from

January 1996 to June 1996, and test sample of July 1996; the second window consists of

training sample from February 1996 to July 1996, and test sample of August 1996, and so

on. This procedure produces true out-of-sample estimates of crash and jackpot probabilities

for next month.

To improve the forecasting power and address the overfitting issue, I apply logistic Ridge

regression as my main model.7 There are several reasons that Ridge is chosen. First, it is an

extension of logistic regression, and hence relatively easy to interpret. The model produces

interpretable coefficients. We are able to tune the model by the penalty factor λ to search

7In Section 7 and Appendix, I explore two set of tests: one set uses the same underlying variables as the
main test, but use other machine learning models; the other set expands the variables to 134, transforms the
data via PCA, and then applies ridge regression, XGBoost and neural networks. I show that using either
alternative algorithms or more complex models do not materially change the results. Hence for simplicity
and interpretability, I present the simple ridge regression as the main model.
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for the best estimator with respect to out-of-sample performance. The multinomial logistic

Ridge seeks to estimate:

Pr(G = k|X = x) =
exp β0k + βTk x∑K
l=1 exp β0l + βTl x

(2)

Where K is number of classes. The general elastic net (Zou and Hastie, 2005) penalized

negative log-likelihood function can be written as:

`({β0k, βk}K1 ) = −[
1

N

N∑
i=1

(
K∑
k=1

yil(β0k + xTi βk)− log (
K∑
l=1

exp β0l + xTi βl))]

+ λ[
1

2
(1− α)‖β‖2F + α

p∑
j=1

‖βj‖q]
(3)

Where λ is the penalty factor for the weighted L-1 and L-2 penalties, α is the weight of L-

1 penalty. Hence Ridge regression is a special case when α = 0. L−2 penalty is particularly

suitable in our setting, since model sparsity is not a concern (number of variables are far less

than number of observations).

In each rolling window, I split the training sample into two parts: first 5 months as the

training set, and the last 1 month as the validation part.8 Then I use the training set to

tune the penalty factor λ of the Ridge model, and use the validation set to find the best

Ridge estimator. Then this estimator is used to fit the test sample in the same window.

This rolling window data split scheme can be represented in Figure 1.

[Fig. 1 about here.]

As shown in the figure, the bars represent months of data in a window. From top to

bottom: the first bar represents the training set, which consists of five months of data; the

8Cross validation is usually used in training machine learning models, where the data is assumed to be
i.i.d. However, in this setting, the data is in a panel structure, where observations might show substantial
temporal structure. This time structure contains valuable information, and hence generic cross validation
would ignore this structure and hence produce possibly inferior results. See for example Roberts et al. (2017)
for detailed discussion. Nonetheless, in robustness tests, I show that by using three fold cross validation, the
results are not materially altered.
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second bar is the validation set, consisting one month of data; the last bar is the test set,

consisting one month of data. For example, the first rolling window consists training data

(January 1996 to May 1996), validation data (June 1996), and test data (July 1996). The

training set is used to fit the model; the validation set is used to tune the hyper parameters

to find the best estimator in terms of forecasting metric (e.g., F1 score); the resulting optimal

estimator is then used to fit the test data, and compare the prediction with the ground truth,

in order to generate the test performance metrics. As a comparison, I also apply the simple

logit model on the whole training sample (6 months), and use the coefficients to directly fit

the test sample.

4.2.2. Imbalanced Learning

Since crashes and jackpots are rare events with unconditional probabilities of occurrence

at less than 5%, the usually logistic estimator would produce biased estimates due to the

poor finite sample properties.9 I provide a simple intuition for this argument. The cost of

misclassifying either crashes or jackpots as “plain” cases is far higher than misclassifying

“plain” cases as crashes or jackpots. If the former situation happens, investors are either

faced with huge unexpected losses or missed opportunities, whereas the latter would be

analogous to giving up average returns. Thus, the cost of misclassification is asymmetric.

On the other hand, the loss function in a generic logit regression is not cost sensitive, meaning

that it treats each observation equally.

For simplicity, let’s only consider two classes: “crashes” and “plain” cases. When using

logistic regression, its loss function is log loss, or cross-entropy, as represented by Equation

4.

logLoss = − 1

N

N∑
i=1

[yi log(pi) + (1− yi) log(1− pi)] (4)

Now we separate the two classes and denote the sizes of them as Nplain and Ncrash,

where Nplain denotes the number of “normal” observations, and Ncrash denotes the number

9See for example King and Zeng (2001) for discussion.
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of crashes. Then the log loss function can be written as:

logLoss = − 1

Nplain +Ncrash

[

Nplain∑
i=1

log(pplaini )]− 1

Nplain +Ncrash

[

Ncrash∑
i=1

log(pcrashi )] (5)

Where the first term refers to the log loss of classifying “plain” cases, and the second

term refers to that of “crashes”.

Now consider the “imbalanced sample” case, whereNplain >> Ncrash. In the extreme case,

consider fixed Ncrash and Nplain/Ncrash →∞. Then the second term of Equation 5 tends to

zero, and effectively we are only minimizing the log loss on the “plain” cases. King and Zeng

(2001) shows that in finite sample, using generic logistic regression on imbalanced sample,

or “rare event classification” problems, would produce biased coefficients and underestimate

the probability of rare events. The argument can be easily extended to cases of multiple

classes.

To address this issue, I introduce a widely used machine learning technique that is novel

to finance literature: Synthetic Minority Over-sampling Technique (SMOTE), introduced in

the seminal paper by Chawla et al. (2002). Oversampling is achieved by creating synthetic

observations along the lines in the feature space that join the minority class K-nearest

neighbors.10 More formally, let Xminority be an observation of minority class observed in the

training sample, let X̃minority be a random neighbor sampled adjacent to Xminority. Then a

synthetic minority observation can be generated as in Equation 6:

Xsyn
minority = w ·Xminority + (1− w) · X̃minority (6)

Where w ∈ (0, 1) is a random number. The k−nearest neighbors are sampled repeatedly

with replacement, and corresponding synthetic observations are created until the desired

balance between minority and majority classes are achieved.11

10See Friedman et al. (2001) for introduction to K-nearest neighbors.
11In our case, balance means that crashes, jackpots, and plain cases have the same number of (synthetic

and real) observations.
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The intuition is that assuming the features (characteristics) of the minority class are

sufficiently clustered, it is reasonable to create “similar” observations within that cluster. In

this paper, in order not to lose information of the majority class, I use SMOTE to create

synthetic observations for both crashes and jackpots using oversampling, while keeping all

“plain” examples without under-sampling. Since all classes are balanced, the loss function

would pay equal attention to the log losses of all three classes, thus alleviating the “imbal-

anced sample” problem. I show that using this technique can greatly improve the metrics

for crashes and jackpots.

4.2.3. Metrics and Results

I follow machine learning literature and choose the following metrics: precision, recall,

and F1-score (Seliya et al., 2009). The common accuracy measure that is used in most

forecasting literature is not suitable in imbalanced sample classifications (Batista et al.,

2004). Therefore I do not report accuracy. The definitions for precision, recall, and F1-score

are as follows:

Precision =
TruePositives

TruePositives+ False Positives
(7)

Recall =
TruePositives

TruePositives+ FalseNegatives
(8)

F1Score = 2× Precision×Recall
Precision+Recall

(9)

These metrics are computed for each of the three classes: crash, plain, and jackpot. Since

I use rolling window estimations, each rolling window exercise can generate a set of metrics

that evaluate out-of-sample performance, then I compute the mean metrics. There are in

total 281 rolling windows and the same amount of associated sets of metrics. I summarize

the mean metrics for simple logit and Ridge in Table 3.

[Table 3 about here.]

Table 3 show that across the board, especially in crash and jackpot categories, Ridge
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regression shows far superior performance than the simple logit. For example, the recall of

crashes on average improves by a factor of nearly 70, while the F1 score of crashes on average

improves by a factor of around 2.5. In the case of jackpots, the recall improves by a factor

of 25, while the F1 score improves by a factor of 6. It is important to note that precision for

both tail classes suffer a bit, though if looked at alone, they are misleading in that it only

cares about how many observations are true out of all the predicted observations in that

class. In our case, the recall measure is more important, as it identifies the model’s ability

to capture the true classes as much as possible. F1 score seeks to balance the two measures,

and provides a more nuanced view of the model’s power.

To visually demonstrate the comparison of metrics between models, I also plot the con-

fusion matrices for the two models in the aggregate sense, where I simply add up predicted

classes across time. A confusion matrix is a square matrix, where the rows are designated

as true classes, and the columns are designated as predicted classes. Hence the diagonal

elements are true classes that are successfully predicted. Then it follows that if we normalize

the matrix row by row, the diagonal elements can be viewed as recall for each class. Figure

2 plots the matrices for all models.

[Fig. 2 about here.]

As shown in Figure 2, the Ridge model performs substantially better than the simple

logit, as it is shown that The gravity of each class is more heavily concentrated along the

diagonal, which is more ideal.

As an illustration of the predicted probabilities, I plot the monthly mean crash and

jackpot probabilities in Figure 3.

[Fig. 3 about here.]

On top of the improved out-of-sample performance, the Ridge model seems to separate

the left and right tails pretty well: the unconditional correlation between crash and jackpot
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probabilities is around -25%, while prior studies (for example, Conrad et al. (2014)) often

show strong positive correlation between the two tails. Overall, machine learning models

combined with SMOTE produce far superior out-of-sample results as compared to simple

logit.12

To further understand what variables have relatively large effect on predicting crash

and jackpot probabilities, I plot coefficients for crash and jackpot classes. Since we have

281 windows, we have 281 sets of coefficients for both classes. We want to understand the

relative importance of each feature, hence I obtain the absolute value of each coefficient. All

variables are standardized before training, and thus the absolute values represent relative

“size” of their importance. I plot them in two separate heat maps as in Figure 4 and Figure

5.

[Fig. 4 about here.]

[Fig. 5 about here.]

As each heat map plots the size of the coefficients with different degrees of depth of colors,

the deeper the color, the larger the absolute value of the coefficient, and hence the impor-

tance. The two figures have very similar patterns across time, meaning that the variables

have consistently relative importance across classes and time. Importantly, the two option

variables stay relatively important throughout the periods, thus contributing significantly

towards the forecasting power of the model. Another interesting result to note is that the

variable RM3 seems to have the deepest colors across classes and time. This is not surpris-

ing, as RM3 is the excess return of the market in past three months. Our target responses,

“crash” and “jackpot”, are defined by setting a fixed set of thresholds, thus do not distin-

guish between systematic and unsystematic part of the returns. When market experiences

extreme returns, individual stocks are also likely experiencing extreme returns due to their

exposure to market risk. Therefore in this estimation procedure, market excess return is a

12I show in Section 7 and in Appendix that more complex models can be used; however, they produce
similar results. Thus the simple model is presented as main result for its simplicity and interpretability.
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strong predictor. An interesting question would be that what if we separate systematic and

unsystematic part of return and try to see if we can successfully predict the idiosyncratic

extreme returns? This is beyond the scope of this paper, but one thing might be certain

that it would be extremely hard to predict idiosyncratic tail risks, since by definition and

assumption of the underlying asset pricing models, idiosyncratic tail risks are unpredictable.

Of course, in reality, we are never sure if we can successfully tease out all systematic part of

the returns. As shown in Herskovic et al. (2016), idiosyncratic volatility has strong factor

structure, likewise, the idiosyncratic tail risks likely also have factor structure that one can

exploit. This is an interesting path for future research that is beyond the scope of this paper.

Next, armed with a set of estimates that can more reliably predict crashes and jackpots,

I turn to implications of monthly crash risk for cross-section of stock returns.

5. Are Monthly Crash Risk Priced?

In this section, I examine whether ex-ante monthly crash risk is priced in the market.

Literature has long shown that tail risk is priced, as investors have hedging demand against

extreme tail events.13 Prior studies such as Conrad et al. (2014) and Jang and Kang (2019)

show that the two tails are likely negatively priced, as investors follow positive feedback

strategies, which renders these lottery like stocks overpriced, and they subsequently experi-

ence lower returns. While they focus on the next year’s crash risk, this paper studies more

short-term phenomenon, where I estimated firms’ ex-ante monthly crash risk, jointly with

jackpot risk. Following the same rationale, we would expect these risks to be priced in the

market. I proceed first in a portfolio test, and then examine the issue in the cross section.

13See for example Kelly and Jiang (2014).
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5.1. Time-Series Portfolio Tests of Monthly Crash Risk

I run time-series portfolio return regressions on time-series factors benchmarking various

asset pricing models. The asset pricing models include: CAPM market model, Fama-French

three-factor model (FF3) (Fama and French, 1993), then augmented with a momentum factor

(FF4) (Carhart, 1997), Fama-French five-factor model (FF5) (Fama and French, 2015), and

finally FF5 augmented with momentum factor (FF6). At the end of each month, I sort the

stocks based on their predicted next-month crash probabilities from the Ridge model into

decile portfolios, then I calculate either equal-weighted or value-weighted portfolio returns

for the top decile and bottom decile, and form a zero-cost trading strategy by longing the

top decile and shorting the bottom decile, and regress the excess returns on pricing factors.

I apply common asset pricing filters to the stocks: stocks with a share code of 10 or 11, and

month-end price of greater than $5. The results are shown in Table 4.

[Table 4 about here.]

As shown in Table 4, when we long highest crash risk decile portfolio and short lowest

decile portfolio, we produce consistent and significant negative alphas across different asset

pricing models, equal-weighted or value-weighted, with t-statistics of magnitude of well over

3. Next I show more detailed results for the ten value-weighted decile portfolios, to examine

the return behavior of crash risk. The results are shown in Table 5.

[Table 5 about here.]

As shown in Table 5, Panel A reports the resulting alpha estimates from regressing excess

portfolio returns on various asset pricing factors, from simple one-factor CAPM model all the

way up to most recent Fama-French five factor model. The value-weighted decile portfolio

alphas largely decrease monotonically from bottom decile in crash risk to top decile. It shows

that monthly crash risk is negatively priced, consistent with the results from using annual

measures of crash risk in prior literature. Panel B reports the coefficients from regressing
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the ten decile portfolio excess returns on Fama-French five factors plus a momentum fac-

tor. Again the alphas largely decrease from the bottom to top decile portfolios. The beta

estimates on the factors make intuitive sense: higher ex-ante crash risk portfolios tend to

have higher market beta, suggesting they are more risky and have higher exposure to market

risk; high crash risk portfolios tend to concentrate in small firms, as evidenced by the large

and positive loadings on SMB factor; they tend to be growth firms, with lower profitability,

and low past year returns; the loadings on CMA is not very significant, however the sign

suggests that high crash risk firms tend to have less aggressive asset growth. These results

conform with the multinomial regression results we obtained when estimating ex-ante crash

risk. Taken together, there is strong evidence that this monthly ex-ante crash risk is priced

in the market, and is negative correlated with future returns.

5.2. Monthly Crash Risk and Cross-Section of Stock Returns

Next, I examine the relationship between monthly crash risk and cross-section of stock re-

turns. I run Fama-MacBeth regressions (Fama and MacBeth, 1973) following the procedure

in Fama and French (2020), where I regress raw stock returns on cross-sectionally stan-

dardized lagged firm characteristics. Then the coefficients on characteristics can be directly

interpreted as average priced return spread of one standard deviation of the corresponding

firm risk. I include common risk characteristics such as size, book-to-market (B2M), as-

set growth (ATG), profitability (ROE), momentum (MOM), short-term reversal (REV ),

and my estimated crash probabilities and jackpot probabilities. On top of these variables, I

follow Jang and Kang (2019) and control for a battery of anomaly characteristics that are

shown to be significantly correlated with future stock returns: abnormal capital investment

ACI (Titman et al., 2004), illiquidity ILLIQ (Amihud, 2002), turnover TURN , idiosyn-

cratic volatility IV OL, asset growth AG (Cooper et al., 2008), composite equity issues CEI

(Daniel and Titman, 2006), gross profitability GP (Novy-Marx, 2013), net operating assets

NOA (Hirshleifer et al., 2004), net stock issues NSI (Ritter, 1991), and O-score OSCR
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(Ohlson, 1980).

Importantly, Bali et al. (2011) propose a measure MAX that represents investors’ pref-

erence for lottery like stocks. MAX stands for the maximum daily return achieved by each

stock in the prior month. To see if my measure carries additional information that dis-

tinguishes from MAX, I add MAX measure as a control variable in the Fama-MacBeth

regressions. I report the regression results in Table 6.

[Table 6 about here.]

Table 6 show that even after controlling for common risk characteristics and a plethora

of anomaly variables, and finally the MAX measure, the loadings on ex-ante monthly crash

risk remains economically and statistically significant, with comparable magnitude with the

time-series portfolio alpha results. One-standard-deviation change in ex-ante monthly crash

risk predicts negative return spread between -0.308% to -0.251%. The coefficient on jackpot

risk is positive and significant at conventional statistical levels, consistent with the findings in

Jang and Kang (2019). These results provide strong support for the efficacy of the prediction

model combining multinomial ridge regression and SMOTE, and show consistent evidence

that ex-ante monthly crash risk is robustly priced in the market.

5.3. Where Are the Arbitrageurs?

Given the large and negative return spread between the bottom decile and top decile

ex-ante crash risk portfolios, an obvious question is why this is not arbitraged away. After

all, if market is efficient, such opportunities would be quickly taken advantage of by rational

arbitrageurs, and hence on average we should not be able to see consistent alphas. One

possibility is limits to arbitrage (Shleifer and Vishny, 1997), that it might be prohibitively

costly to short the high ex-ante crash risk stocks. To shed some light on this issue, I examine

the mean characteristics of each decile portfolios. I’m especially interested in size, MAX,

idiosyncratic volatility, and illiquidity. Table 7 reports these simple statistics.
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[Table 7 about here.]

Table 7 gives a simple and clear picture that, from bottom decile to top decile crash risk

portfolios, size goes monotonically down, while MAX, idiosyncratic volatility, and illiquidity

go monotonically up. This is not surprising, since the coefficients on these variables are

consistent with the multinomial logit regression when we try to estimate the crash risk.

Nevertheless, this shows that the higher the ex-ante crash risk, the more difficult it might

become to short the stock. The following simple test would reinforce this notion. I run

a panel regression of monthly short interest on ex-ante crash risk, jackpot risk, and other

lagged stock characteristics. Short interest is defined as adjusted shares sold short scaled

by total shares outstanding for each stock. All variables are standardized cross-sectionally

to be mean zero and standard deviation of one so that we may interpret the results easily.

To control for possible unobserved heterogeneity, I include both firm and time fixed effects.

The results are reported in Table 8.

[Table 8 about here.]

Table 8 shows some interesting results. First, from Column (1), there seems no concrete

evidence that crash risk is being actively shorted, when controlling for other firm character-

istics. However, in Column (2), when we add an interaction term between crash risk and

size, the loading on crash risk turns positive and significant at statistical level of 1%. Note

that since all variables are standardized, this means that a one standard deviation increase

in ex-ante crash risk is associated with 0.02 standard deviation increase in short interest

ratio. More interestingly, when we look at the interaction term, if the stock is one standard

deviation below the mean size, while one standard deviation above mean crash risk, the

netted effect is -0.025 standard deviation decrease in short interest ratio. On the flip side, if

the firm is a large firm with high crash risk, it is more likely to be shorted.

These results seem to convey a simple message, that since high ex-ante crash risk stocks

tend to be small with low liquidity, they are difficult to short, and in reality indeed they are
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less likely to be shorted even when there is money left on the table. Hence this speaks to

the result that the negative alpha on the top decile portfolio remains economically large and

consistent. To further explore the issue of how investors perceive crash risk and trade this

risk, next I turn to institutions and retail investors to explore their trading behavior with

respect to the left tail.

6. The Impact of Retail Trading on Crash Risk

Prior literature primarily focuses on the institutional trading behavior with respect to

stock crash risk. For example, Conrad et al. (2014) and Jang and Kang (2019) show evidence

that institutional investors tend to “ride the bubble” as rational speculators, instead of

trading against crash risk as rational arbitragers. They argue that such behaviors may drive

the stock prices further away from fundamentals, exacerbating the bubble conditions à la

De Long et al. (1990a), De Long et al. (1990b), and Abreu and Brunnermeier (2003).

On the other hand, retail investors are assumed to be “noise traders” that could trade too

much (Barber and Odean, 2000), and those speculative retail traders tend to chase lottery-like

stocks, experiencing subsequent negative trading alpha, and affect stock prices accordingly

(Han and Kumar, 2013). Recent evidence from “Robinhood Traders” show that they tend to

herd more on extreme past-return stocks, which are more attention-grabbing (Barber et al.,

2020), while there is also evidence that mimicking portfolios based on the characteristics

of “Robinhood Traders” do not seem to underperform the market, but instead could be a

market stabilizing force (Welch, 2020). In summary, literature shows that as price takers,

retail investors chase lottery-like stocks, which is consistent with theory.

However, none of these studies touch on the impact of retail trading on crash risk. First,

prior literature usually groups left tail and right tail together, and studies the relationship

between investor trading and lottery-like characteristics of stocks. Therefore, there is no

clear research on how retail investors trade with respect to the two tails. Given the difficulty
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of separating the two tails ex ante, it is reasonable to assume that retail investors, with

limited resources and attention, would find it hard to distinguish high crash risk stocks and

high jackpot risk stocks. Following this confusion, if retail investors have a preference for

lottery characteristics, they would tend to buy both tails for lack of perfect foresight. Second,

recent episodes of retail trading introduced in the first page of this present study show that

retail investors can be marginal price setters under certain circumstances. However, there

has been scant research that shows causal evidence for this conjecture.

In this section, I first look at trading behavior of retail investors with respected to the

estimated ex-ante crash and jackpot probabilities. Then I explore a quasi-natural experiment

to infer the causal effect that retail investors do tend to increase ex-ante stock crash risk.

6.1. Retail Trading of Crash Risk

To examine the trading behavior of retail investors, I construct retail trading imbalance

measure from Robintrack data. As has been extensively discussed in Barber et al. (2020) and

Welch (2020), Robintrack data contains hourly stock popularity numbers that are measure

by how many users on Robinhood hold a particular stock at certain hour. Since we cannot

observe the number of shares they hold for each stock, and there is no data for total number

of users for each time period, the next best thing we can do is to measure the change in

number of users for each stock. As my risk measures for crashes and jackpots are estimated

at monthly frequency, I use month-end numbers of Robinhood users to merge the data.

Therefore the measure for retail trading can be constructed as in Equation 10:

Change#User = log(#Useri,t)− log(#Useri,t−1) (10)

Where t is at monthly frequency.

With this measure, I now explore their trading behaviors. The Robinhood sample runs

from May 2018 to November 2019, subject to data limitation. On top of ex-ante monthly
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crash risk and jackpot risk measures, I control for common risk characteristics, which include

size, excess return over the market over the last quarter, detrended turnover over the last

quarter, asset growth rate over the last quarter, tangible assets, sales growth, ROE of the

most recent quarter, firm age, and book-to-market ratio. I also add the following variables

as additional controls: betas of Fama-French 3-factor models by running daily regressions of

excess returns on factor returns over the last quarter, idiosyncratic volatility as the residual

volatility obtained from the above regressions, and total volatility of the stock over the last

quarter. Finally I add MAX (Bali et al., 2011) measure as a control for lottery characteris-

tics.

I now examine the trading behavior of retail investors proxied by Robinhood traders,

using the imbalance measure inferred from Robintrack data. Following the prior procedure,

but at a monthly frequency, I first run Fama-MacBeth cross-sectional regressions of retail

trading imbalance on ex-ante monthly crash and jackpot risks, controlling for other charac-

teristics, and then run a panel regression, where I add firm and time fixed effects to control

for unobserved heterogeneities. The results are shown in Table 9.

[Table 9 about here.]

If retail investors are able to perfectly distinguish between left and right tails ex ante,

we should see a negative coefficient on crash risk and a positive coefficient on jackpot risk.

However, Table 9 shows consistently that the coefficients on both crash and jackpot risks are

positive and significant in both Fama-MacBeth regressions and panel regression, suggesting

that Robinhood traders are buying both high crash risk stocks and high jackpot risk stocks,

consistent with prior literature that they have a preference for lottery-like stocks. Impor-

tantly, the regressions control for MAX, another proxy for lottery characteristics, which

shows that the ex-ante crash risk and jackpot risk capture additional information about

retail investor preferences. Moreover, the significant and positive loadings on MAX provide

evidence that is consistent with literature that retail traders tend to buy attention-grabbing

stocks (Barber et al., 2020). In summary, their buying activities would likely push both
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high crash risk and high jackpot risk stock prices high, and subsequently leading to negative

returns in the next month, as shown in previous pricing tests.

6.2. The Impact of Retail Trading on Crash Risk

We have established evidence that retail investors, as proxied by Robinhood traders,

seem to display a strong preference for high ex-ante crash and jackpot risk stocks, even after

controlling for other characteristics and MAX. Since retail traders are generally considered

as “noise traders”, their trading activities would logically add noise to stock return distri-

bution. Then it seems logical to reach a conjecture that more retail trading would lead to

increased ex-ante crash risk. This section explores this question.

There has been much debate in literature whether and how much retail investors can

affect stock prices. Classical asset pricing models assume rational investors are price takers,

and there is no room for price impact (Merton, 1973). Recent evidence suggests that retail

investors do affect stock volatility (Foucault et al., 2011). They may be marginal price setters

for small stocks (Graham and Kumar, 2006). Retail short sellers predict negative future

returns, and they seem to have superior knowledge of small firm fundamentals (Kelley and

Tetlock, 2017). Much of the literature focus on predictive tests, as it is extremely difficult

to find ideal settings for proper identification for any claims for causality. Foucault et al.

(2011) was one of the papers that use quasi-natural experiments to identify the causal effect

of retail trading on stock volatility.

Another strand of literature that is relevant to this study is the feedback effect between

option trading and stock trading, as two significant predictors of crash and jackpot risks

are far-out-of-money put and call option relative prices with respect to stock forward price.

Anthony (1988) was among the first to examine the sequential information flow from options

to stocks. Hence the deep out-of-money options themselves are good proxies for ex-ante stock

crash risk. Therefore, in subsequent tests, I look at both predicted crash risk and the deep

out-of-money option variables.
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I explore a quasi-natural experiment: Robinhood introduced commission-free option trad-

ing on its platform on December 12, 2017, which would take effect in 2018 (Robinhood, 2017).

Even today, option trading is generally not free on other platforms.14 While the option trad-

ing fees are declining in recent years partly perhaps due to Robinhood, the fees today still

ranges around $0.65 per contract.

After the introduction of commission free option trading, Robinhood traders appear to

have developed a zeal for option trading, so much that they actively discuss their Robinhood

positions and gains and losses on social platforms, especially on Reddit. After all, option

trading brings the benefit of cheap leverage that enables them to bet big with relatively

small amount of money. In fact, around 13% of Robinhood users trade options, according

to the firm disclosure.15 This is not a small number, considering the total users amount to

13 million in 2020, and hence there are at least 1.69 million users on Robinhood actively

trading options.16 This influx of Robinhood option trader army should drive the demand

for options for popular stocks, and thus affect option prices. The trading of popular stock

options should in turn transmit to the elevated trading activities in the underlying stocks.

This event was not caused by underlying option or stock returns or volatilities, and hence

should serve as a suitable experiment.

Based on prior analysis, I hypothesize that after the introduction of commission-free

option trading, those stocks whose options experienced influx of Robinhood traders should

observe their ex-ante crash risk increasing, compared to similar stocks that do not have this

influx around the event. One source of the increase might come from increased demand of

deep out-of-money options. This increased trading of options should in turn translate into

increased trading of the underlying stocks. One difficult issue, however, is that there is no

direct way to identify which stocks experienced influx of Robinhood traders with respect

to their options. Even though we do observe which stocks are popular among Robinhood

14See for example an article comparing option trading fees for all major discount brokerage houses on
https://www.bankrate.com/investing/best-brokers-options-trading/.

15See article McCabe (2020).
16See https://www.businessofapps.com/data/robinhood-statistics/.
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traders, but unfortunately Robinhood do not share their option trading data.

To circumvent this issue, I explore textual information from the popular online social

media platform “Reddit” and its particularly popular subreddit “WallstreetBets”.17 As of

January 2021, this subreddit has 1.8 million total active users, who post regularly everyday. I

explore two “flairs” in this subreddit: “daily discussions” and “what’s your move tomorrow?”.

I choose these two flairs because users post here every trading day, such that I have a steady

number of posts and comments. I scraped all the first-level and second-level comments each

day from December 2017 to September 2020. These comments are short in nature, with

colorful languages. I perform two layers of pre-processing: first, I find out all the posts that

contain valid ticker names. I discard those tickers that are also common English words,

slangs, or month abbreviations (e.g. SEP). Second, I find out all the posts with tickers that

mention “option”, “call’, or “put” to identify possible option buying activities. I assume that,

if a user posts a comment with tickers in it, and mentions option terms in the same post,

then he/she is more likely to have traded in these options, which is a reasonable assumption.

Through this methodology, I can identify which stocks are likely to experience sudden influx

of retail traders with respect to both options and underlying stocks.

To illustrate the extent to which they mention stocks and options in their comments, for

each day in the sample, I summarize the number of unique posts that contain tickers, of

which number of posts that mention options, number of unique firms mentioned, of which

number of firms that mention options. I then plot the two series as in Figure 6 and Figure

7.

[Fig. 6 about here.]

[Fig. 7 about here.]

Subsequently, I use the firms that are co-mentioned with options in Wallstreetbets com-

ments as a proxy that retail investors participate in the option trading of these stocks after

17Wallstreetbets: https://www.reddit.com/r/wallstreetbets/.
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Robinhood introduction of commission-free option trading in December 2017. Therefore, the

sample can be divided as following: I restrict my attention to the year 2017 and 2018, with

2018 as post event period. The aforementioned firms will be the treatment group, and the

rest with valid crash probability estimates as the control group.

Before the actual estimation begins, we must examine whether Reddit mentioning is a

reasonable proxy for retail trading activities. If this assumption is true, then the stocks whose

ticker and option keywords are mentioned in Wallstreetbets comments would experience

higher trading and user popularity on Robinhood. To examine this assumption, I focus on

the sample period where I observe both Reddit comments and Robintrack data, which is

between May 2018 to December 2019. Note that our experiment happened at the end of

2017, and thus this test is outside of that event period.

Then I regress the following dependent variables on a dummy “WSB Option Flag” and

a set of control variables: Robinhood trade imbalance, measured by the change in log of

number of users; log of number of users, as a proxy for the popularity of a certain stock;

trading volume; and change in trading volume. All variables are measured at daily frequency

to take advantage of the data. I use both Fama-MacBeth regressions and panel regressions to

examine the loadings on the variable of interest: “WSB Option Flag”, which means on day

t, stock i is mentioned together with either “option”, “call”, or “put” in the same comment.

I report in Table 10 that in all specifications, the loadings on “WSB Option Flag” is positive

and highly statistically significant. This provides evidence that Wallstreetbets mentioning

is an effective identifier of retail participation.

[Table 10 about here.]

Following the aforementioned reasoning, I conduct a standard difference-in-difference

analysis similar to that in Foucault et al. (2011). I estimate the following equation as in

Equation 11:

CrashRiski,t+1 = α + β0Treated+ β1Post+ β2Treated× Post+ γControlsi,t + εi,t (11)
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Where I use subscript t because I use 12 months of data for both before and after periods

to improve test power. Specifically, I run two sets of tests: first, I run the diff-in-diff test

with cluster robust standard errors per Petersen (2009), clustering on both firm and time

level. Second, I add firm and time fixed effects, which would absorb the treatment and post

dummies, leaving the interaction term intact. The dependent variable is the estimated ex-

ante monthly crash risk. Treatment is a dummy variable that equals one if both firm ticker

and option are mentioned in comments in Wallstreetbets in 2018, and zero otherwise. Post

is a dummy variable that equals one if the year is 2018, and zero otherwise. I also separately

add controls to account for imperfect matching from possibly confounding factors. The

results are reported in Table 11.

[Table 11 about here.]

As shown in table 11, the coefficient of interest is the interaction term, which accounts

for the difference in treatment effect. The interaction term between Treatment and Post is

significantly positive across all specifications, even after controlling for a battery of possible

confounding firm characteristics. The estimated average effect is between around 1% to 1.6%,

at less than 1% statistical significance level. This is strong evidence that retail participation

tends to significantly increase stock ex-ante monthly crash risk.

The next important question is whether the effect of retail participation is stronger in

smaller firms. As is often shown in literature, retail investors are more likely marginal price

setters for smaller stocks, where arbitrage is costly (Pontiff, 1996). It follows naturally that

in the case of ex-ante monthly crash risk, retail investors should have a greater impact on

smaller firms. To test this hypothesis, I subset the firms at the beginning of 2017 into two

groups, one with market value greater than the cross-sectional median, the other lower than

the median. In this way, I generate a dummy variable Big = 1 if it belongs to the larger

cohort, or zero otherwise. Then I conduct a triple difference-in-difference analysis, where

I interact Treatment, Post, and Big in the same setting as the prior tests, such that the
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triple interaction term can be interpreted as the incremental treatment effect on large firms.

The resulting specification can be represented as follows:

CrashRiski,t+1 = α + β0Treated+ β1Post+ β2Treated× Post

+ β3Big + β4Post×Big + β5Treated×Big

+ β6Treated× Post×Big + γControlsi,t + εi,t

(12)

As before, I first run panel regressions with clustered standard errors on both firm and

time level, and then run another test with firm and time fixed effects. The results are shown

in Table 12.

[Table 12 about here.]

Table 12 shows evidence that, consistent with the literature, retail participation has a

larger impact on the ex-ante monthly crash risk of smaller firms, while the impact on large

firms is more muted on average. The coefficient on the interaction between Treatment

and Post can be read as the effect on small firms, which is statistically significant and

positive, which means that retail participation will on average increase the ex-ante crash

risk of smaller than median size firms by about 1.4% to 1.9%. The coefficient on the triple

interaction between Treatment, Post, and Big is statistically significant and negative, which

means that the retail impact on larger firms is smaller by about 0.6% to 1%.

The above results are done through examining all stocks that are available at the time

in the sample with valid data. However, there might be legitimate concern that there is still

underlying variables that correlate with being selected as treatment, that might confound the

results. To alleviate that concern, I also perform propensity score matching before conducting

the diff-in-diff analysis. Specifically, at the beginning of the sample (January 2017), I run

a logistic regression of the dummy variable Treatment ∈ 0, 1 on the pertinent explanatory

variables. These variables include: size, past three-month excess return, detrended turnover,

total volatility, total skewness, asset growth, tangibility, sales growth, return on equity,
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firm age, book-to-market ratio, SMIRK, relative deep out-of-money put option price, and

relative deep out-of-money call option price. Then I generate the propensity score for each

stock based on the fitted values of the logistic regression. For each treatment stock, I find

the five stocks that have the closest propensity scores to the treatment stock, and randomly

select two of them, with replacement. In this way, I match each treatment stock with at least

one control stock. Then I run the same specifications as before. The results are presented

in Table 13.

[Table 13 about here.]

Table 13 shows that, consistent with prior results using full sample, with PSM matched

control firms, the treatment stocks display increased ex-ante crash risk by around 1% to

2.2%, depending on the specification. Moreover, there is consistent evidence that this effect

differs between big and small firms: the effect on larger firms is around 0.6% to 1.7% less

than the small firms, supporting the notion that retail investors might be marginal price

setters for small firms.

Finally, it would also be interesting to see whether retail participation will impact the

underlying variables that I use to predict ex-ante monthly crash probabilities. This would

point to some channels that could also partially drive the increase of crash risk.18 I choose

the following dependent variables to examine: the relative deep out-of-money put and call

option prices; trading volume as volume scaled by shares outstanding; total return volatility;

and total return skewness. I follow the last test to run a triple difference-in-difference spec-

ification, with firm characteristics as controls. Therefore, the variables of interest are the

interaction between Treatment and Post, and the triple interaction between Treatment,

Post, and Big. I present the results by using firm and time clustered standard errors ad-

justment in Table 14.19

18Note that in Table 11, I add predictor variables in the last two specifications as controls, and the results
are still robust. But nonetheless it is interesting to examine the additional effects of retail participation on
firm characteristics.

19I also ran panel regressions with firm and time fixed effects, and the results are largely similar. I omit
them for brevity.
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[Table 14 about here.]

Consistent with intuition, across the board, there is positive treatment effect for the five

variables, as shown by the interaction term between Treatment and Post, though the coef-

ficients for trade volume and total return skewness are not significant. In addition, all the

triple interactions between Treatment, Post, and Big are shown as negative, supporting the

prior finding that retail investors have a much less impact on bigger firms. One interesting

results is that the relative prices of both deep out-of-money put and call options are signifi-

cantly increased for small firms, suggesting a larger demand for these options, but the effect

for large firms is muted since the triple interaction offsets it almost entirely. There is further

anecdotal evidence that on Wallstreetbets, traders often boast how they trade options on

small stocks. Another interesting results is that retail participation tends to significantly

increase firm’s stock return volatility, consistent with the findings in Foucault et al. (2011),

and the effect is smaller for larger firms.

Taken together, these results enrich our understanding of how retail investors shape

the tail risks of firms. Overall, the experiment provides evidence that retail participation

would significantly increase firm ex-ante monthly crash risk, and a host of related underlying

characteristics. Moreover, these effects are stronger in smaller firms, consistent with theory

and empirical evidence. In other words, retail investors tend to make the left tail fatter,

while chasing the left tail.

7. Robustness Tests

7.1. Alternative Simple Models

In this section I present results from using alternative machine learning models with

the same set of 15 variables as in the main results, where I use the same rolling window

estimation procedure, but use three-fold cross validation to tune the model. The zero-cost

portfolio alphas for these models are presented in Table 15.
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[Table 15 about here.]

The results show that the estimates of ex-ante monthly crash risk are robust to different

underlying estimating models.

7.2. More Complex Models

One of the benefits of using machine learning models, more specifically, shrinking meth-

ods, is the ability to utilize more independent variables, or “features”. In other words, we

can use more conditioning information. In extreme situations, the number of features can be

greater than the number of observations, while the rank condition in such situation dictates

that ordinary least squares (OLS) would not have unique solutions. To explore this advan-

tage, I enlarge the set of features from 15 variables to 134 variables. On top of the original

variables, I add past one-month excess return, past year accruals per Dechow et al. (1995)

(Modified Jones Model), and option-based variables. To take advantage of the rich infor-

mation from option market, I create option-related variables as follows: for each stock each

month, I divide the options into calls and puts; for calls, they are categorized further into

four groups per moneyness: [1.05, 1.1], (1.1, 1.15], (1.15, 1.2], and (1.2,∞); likewise, for puts,

they are grouped into four moneyness classes: (0, 0.8], (0.8, 0.85], (0.85, 0.9], and (0.9, 0.95];

finally, compute the mean, median, min, max, and standard deviation for relative option

price (as defined in previous sections), volume, and implied volatility. Therefore, there are

in total 2× 4× 5× 3 = 120 option-related variables.

To handle large set of features efficiently, and to increase their signal-to-noise ratio, I apply

principal component transformation (PCA) to these variables to reduce dimensionality before

feeding them into machine learning models.20 The procedure is as follows: for each window,

first standardize the training set, and use the information to transform validation data and

test data; second, transform the resulting training set into either 5, 10, or 20 principal

20This is to ensure that the computation can be done within a short period of time, mimicking the urgency
of trading by investors; otherwise, the computation can be unwieldy and takes too much time, which might
be unrealistic.
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components, and use the underlying transformation to transform the validation and test

data; finally, apply SMOTE to balance the training data. With the transformed data ready,

three machine learning models are used: ridge regression; XGBoost tree methods (Chen and

Guestrin, 2016); and feed forward neural network (multi-layer perceptrons, or MLP).

I show in Appendix, that using more complex models produce quantitatively similar

results. Therefore, to maintain parsimony and interpretability, I present simple model as the

main results.

7.3. Endogeneity Concern for the Experiment

There is concern for possible endogeneity for the quasi-natural experiment. Due to data

limitation, we cannot perfectly observe whether the traders post their positions on “Wall-

streetbets” after their trade, or simply trade whatever they see on Wallstreetbets. For this

I offer one possible counter argument. That is, the two flairs I used, “Daily discussions”

and “What’s your move tomorrow?”, only started at the end of 2017, coinciding with the

timing that Robinhood announced they would offer commission-free trading. Before that,

there were no regular posts, but only random individual posts scattered on Wallstreetbets.

Therefore it would be much less likely that traders would scout over Wallstreetbets for stock

actions and trade accordingly. Even if we accept the assumption that there are indeed a

subset of Robinhood traders would participate in such a trade, what we would capture in

our setting is the incremental demand from traders that emerged after the introduction of

commission-free option trading, which jointly represent the demand for stocks and their

underlying options.

Second, if indeed there is influx of option traders on Robinhood as we hypothesized, we

should observe that more Reddit users would post comments on “Wallstreetbets” concerning

Robinhood. This should be another piece of evidence that the introduction of commission-

free option trading induced more traders to jump in. To see this, I scraped all posts on “Wall-

streetbets” that contain keywords “Robinhood”, “robinhood”, “ROBINHOOD” or “RH”,
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as the search keywords are case sensitive. Then I count the number of posts per day and

number of authors that made these comments per day, and plot them in Figure 8.

[Fig. 8 about here.]

As shown in Figure 8, the blue line is number of posts, while the red line is number of

unique authors/users. The green vertical line indicates the last day of 2017 as the water-

shed of the event where Robinhood introduced commission-free option trading. Between the

beginning of 2017 and the end of 2018, there are in total 2913 posts and 2784 users on “Wall-

streetbets” that mention Robinhood keywords. Before the end of 2017, both the number of

posts and number of authors that mentioned “Robinhood” remained quite stable. The mean

daily number of posts before the end of 2017 is approximately 2.7, and the mean daily num-

ber of users that mention Robinhood keywords before the end of 2017 is approximately 2.6.

After the event, mean daily number of posts becomes 6.3, and mean daily number of users

becomes 6.0, more than double those before the event. Moreover, a simple t-test shows that

the differences in means before and after the event are highly statistically significant, with

p-values well below 0.001. Therefore, this provides evidence that there was indeed significant

increases in users that paid more attention to Robinhood after the introduction event, and

consequently reinforce our claim that the event could have potentially induced more trading

on Robinhood.

To further bolster this claim, I conduct a separate test to see whether there is signifi-

cant increase in option trading volume after the introduction of commission-free trading. If

Robinhood users began to trade options because they see comments from “Wallstreetbets”,

then they should be equally likely to do so before and after the introduction of commission-

free trading. Thus we should not see a significant increase in option trading volume around

the event. If instead there is significant increase in option trading volume around the event,

after controlling for other factors, then the event should be a major factor that causes the

increase of option trading volume, thus validating the proposed experiment. I first plot the

daily total volume of out-of-money option trading before and after the event in Figure 9.
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[Fig. 9 about here.]

As shown in Figure 9, there is dramatic increase in the out-of-money option trading

volume for both puts and calls after the end of 2017. Interestingly, there is a significant

jump in volume during the first three months of 2018. This could be correlated with the

rolling out of option trading feature. However without further evidence, this is where we

stop speculating. Nevertheless, comparing 2017 and 2018, there is an apparent increase in

trading volume for out-of-money options.

Next I conduct formal analysis of whether there is significant increase in out-of-money

option trading volume after the event, especially for those treatment stocks where I outlined

the identification strategy in the previous section. Control groups are selected via PSM

matching, which is also outlined in the previous section. The results are shown in Table 16.

[Table 16 about here.]

In Table 16, Panel A regresses log volume of out-of-money daily put options on treatment,

post, and big dummies, their interactions, and control variables, while Panel B examines

calls. The tests use either two-way clustered standard errors or fixed effects. As shown in

both panels, the results conform nicely with the difference-in-difference tests we have shown

in the previous section. That is, there is significant increase in total trading volume of

both out-of-money puts and calls after the introduction of commission-free option trading.

Moreover, the increase is more dramatic in small stock options. This is an important piece

of evidence that the experiment did provide a shock to the demand for out-of-money option

trading, thus supporting our use of this shock as a quasi-natural experiment.

8. Conclusion

Tails are fat, and they are fatter now thanks to higher retail participation in the stock

market. This paper shows that a subset of retail investors, proxied by “Robinhood Traders”
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and “Reddit Traders”, through their chasing of extreme returns, also known as lottery char-

acteristics, reinforce this characteristic.

This study builds on prior literature to develop an ex-ante measure for firm-level monthly

crash and jackpot probabilities via machine learning. I combine novel imbalanced learning

techniques with Ridge regression to show superior forecasting power for subsequent one

month crashes and jackpots. The estimated crash risk is robustly priced both in time-series

portfolio tests and cross-sectional tests. High crash risk stocks are difficult to short, since they

tend to be smaller and less liquid. Building on these findings, I show that retail investors,

proxied by Robinhood traders, seem to buy the left tail, likely causing high crash risk stocks

overpriced, which subsequently leads to lower returns. Using Robinhood introduction of

commission-free option trading at the end of 2017 as a quasi-experiment setting, together

with textual information from Reddit, I show that retail participation significantly increased

ex ante stock crash risk, and this effect is stronger for small firms.
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Fig. 1. Data Split in Window. This figure plots how the data of one rolling window is split.
The bars represent months of data in a window. From top to bottom: the first bar represents
the training set, which consists of five months of data; the second bar is the validation set,
consisting one month of data; the last bar is the test set, consisting one month of data.
For example, the first rolling window consists training data (January 1996 to May 1996),
validation data (June 1996), and test data (July 1996). The training set is used to fit the
model; the validation set is used to tune the hyper parameters to find the best estimator in
terms of forecasting metric (e.g., F1 score); the resulting optimal estimator is then used to
fit the test data, and compare the prediction with the ground truth, in order to generate the
test performance metrics.
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Fig. 2. Aggregate Confusion Matrices. This figure plots the aggregate confusion matrices
for simple logit and Ridge, where the predicted classes are add up across time. The rows
are true classes, while the columns are predicted classes. All elements are normalized row
by row, such that the diagonal elements can be viewed as recall for each class.
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Fig. 3. Mean Monthly Predicted Crash and Jackpot Probabilities. This figure plots the mean
monthly predicted crash and jackpot probabilities over time, per Ridge model. Each month,
I calculate the cross-sectional mean predicted crash and jackpot probabilities respectively,
and then plot them against time. The sample runs from July 1996 to December 2019.
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Fig. 6. Number of Posts Over Time. This figure plots the number of unique posts that
contain ticker names, and of which, number of posts that mention options on Wallstreetbets
of Reddit. The sample runs from December 2017 to December 2019.
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Fig. 7. Number of Firms Mentioned Over Time. This figure plots the number of unique
firms that were mentioned, and of which, number of firms that are also co-mentioned with
options on Wallstreetbets of Reddit. The sample runs from December 2017 to December
2019.
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Fig. 8. Number of Posts and Number of Authors Mentioning Robinhood. This figure plots
the number of posts and number of authors that mentioned the keywords “Robinhood”,
“robinhood”, “ROBINHOOD” or “RH” on “Wallstreetbets”, the subreddit. The sample
runs from January 2017 to December 2018. Numbers are displayed in daily frequency. The
blue line is number of posts, while the red line is number of unique authors/users. The green
vertical line indicates the last day of 2017 as the watershed of the event where Robinhood
introduced commission-free option trading.
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Fig. 9. Daily Volume of Out-of-Money Option Trading. This figure plots the daily total
volume of out-of-money option trading. The blue line is put volume, and red line call
volume. Out-of-money puts are defined as moneyness less than or equal to 0.95, while
out-of-money calls are defined as moneyness greater than or equal to 1.05. For both puts
and calls, the following filter is used: days to expiration between 10 and 180 days, implied
volatility between 0.03 and 2, positive open interest, option price greater than or equal to
$0.125, and non-missing volume. Numbers are displayed in daily frequency. The green
vertical line indicates the last day of 2017 as the watershed of the event where Robinhood
introduced commission-free option trading. The sample starts from the beginning of 2017
to the end of 2018.
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Table 2: Mutlinomial Logit
The table runs a multinomial logit regression predicting crashes and jackpots for sample
period 1996 - 2019. “plain” cases are set as base and are omitted. Variable definitions
are shown in Appendix. Each variable is properly lagged. The crashes and jackpots are
classified as one-month ahead monthly log returns of less than -20% and greater than 20%
respectively. SMIRK is the implied volatility smirk measure per Xing et al. (2010). FOMP
and FOMC are deep out-of-money put option and call option relative price measure per
Barro and Liao (2020), and is computed as option price scaled by forward stock price. All
independent variables are standardized to aid interpretation and comparison. Standard
errors are clustered at stock and month levels per Petersen (2009) and are included in
parentheses.

(1) (2)
Crash Jackpot

Relative FOMP price 0.149*** 0.121***
(0.022) (0.027)

Relative FOMC price 0.264*** 0.357***
(0.031) (0.030)

SMIRK -0.008 -0.032
(0.018) (0.020)

RM3 -0.170** -0.110*
(0.069) (0.063)

Exret3 -0.022 -0.054*
(0.022) (0.029)

B2M -0.046 0.040
(0.033) (0.028)

ATG 0.036*** 0.025*
(0.010) (0.013)

ROE -0.076*** 0.040***
(0.013) (0.015)

Tvol 0.562*** 0.490***
(0.057) (0.052)

Tskew -0.006 0.011
(0.010) (0.012)

Size -0.207*** -0.376***
(0.048) (0.045)

Dturn -0.115*** -0.110***
(0.019) (0.016)

Age -0.173*** -0.134***
(0.022) (0.023)

Tang 0.028 0.039**
(0.023) (0.019)

Salesg 0.044*** 0.066***
(0.015) (0.016)

Observations 403,379
Pseudo R2 0.123

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3: Mean Performance Metrics
The table reports mean performance metrics for simple logit and Ridge across the rolling
prediction windows from January 1996 to December 2019. Each window consists of 6-month
training set and 1-month test set. In the case of simple logit, the whole training set is fitted
and used to fit the test set. In the case of Ridge, the training set is further split into 5
months of training data and 1 month of validation data, where the training data is used to
tune the Ridge estimator (through penalty factor λ), and then the best estimator is chosen
to fit the test set. The metrics are defined as follows:

Precision = TruePositives
TruePositives+False Positives

Recall = TruePositives
TruePositives+FalseNegatives

F1Score = 2× Precision×Recall
Precision+Recall

These metrics are computed for each of the three classes. There are in total 281 windows,
and hence 281 sets of metrics are generated in total for each underlying model. These metrics
are then averaged across time.

Class Metrics logit Ridge

Crash Precision 0.177 0.128
Recall 0.062 0.412
F1 0.049 0.128

Plain Precision 0.891 0.935
Recall 0.970 0.626
F1 0.922 0.730

Jackpot Precision 0.100 0.090
Recall 0.014 0.344
F1 0.018 0.108
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Table 4: Decile High-Minus-Low Alphas
This table presents the high-minus-low long-short zero-cost strategy alphas, per asset pricing
model, for both equal-weighted and value-weighted portfolios. At the end of each month,
stocks are ranked by their ex-ante crash probabilities produced by Ridge model into ten
decile portfolios each month. Then the high-minus-low return series for both equal-weighted
and value-weighted returns where we long highest decile portfolio and short lowest decile
portfolio, are regressed on various risk factor return series. The asset pricing models include:
CAPM market model, Fama-French three-factor model (FF3) (Fama and French, 1993), then
augmented with a momentum factor (FF4) (Carhart, 1997), Fama-French five-factor model
(FF5) (Fama and French, 2015), and finally FF5 augmented with momentum factor (FF6).
t-statistics are included. Time-series regressions are estimated with Newey-West standard
errors with 12 lags.

Value-weighted Equal-weighted

Pricing model Alpha t-stat Alpha t-stat

CAPM -1.523*** -2.999 -1.594*** -3.303

FF3 -1.467*** -3.810 -1.557*** -4.259

FF4 -1.054*** -2.861 -1.125*** -3.272

FF5 -0.932*** -2.881 -1.186*** -3.567

FF6 -0.664** -2.384 -0.898*** -3.289

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 6: FMB Cross-Sectional Regressions
This table reports Fama-MacBeth regressions of raw returns on lagged firm characteristics
in the spirit of Fama and French (2020). Independent variables are standardized cross-
sectionally each month. Control variables include : size, book-to-market ratio, asset growth,
ROE, momentum, short-term reversal. In Column (3), I add MAX (Bali et al., 2011), which is
the highest daily return of the past month. In column (4), I add illiquidity ILLIQ (Amihud,
2002), turnover TURN , and idiosyncratic volatility IV OL. In Column (5), I add other
anomaly variables: abnormal capital investment ACI (Titman et al., 2004), asset growth
AG (Cooper et al., 2008), composite equity issues CEI (Daniel and Titman, 2006), gross
profitability GP (Novy-Marx, 2013), net operating assets NOA (Hirshleifer et al., 2004), net
stock issues NSI (Ritter, 1991), and O-score OSCR (Ohlson, 1980). Standard errors are
adjusted according to Newey-West procedures.

(1) (2) (3) (4) (5)
Dep Var: Returns

Crash prob -0.274*** -0.258*** -0.267*** -0.251*** -0.308***
(0.065) (0.084) (0.089) (0.088) (0.098)

Jackpot prob 0.352*** 0.369** 0.361* 0.383* 0.429*
(0.097) (0.172) (0.200) (0.219) (0.259)

Size -0.151 -0.144 -0.059 -0.064
(0.103) (0.112) (0.131) (0.149)

B2M -0.107** -0.092** -0.067* 0.009
(0.048) (0.043) (0.040) (0.069)

ROE 0.315*** 0.349*** 0.354*** 0.352***
(0.036) (0.049) (0.051) (0.040)

ATG -0.033 -0.065 -0.065 -0.064
(0.074) (0.053) (0.050) (0.049)

REV -0.156*** -0.157** -0.251*** -0.269***
(0.048) (0.068) (0.081) (0.089)

MOM 0.067 0.049 0.048 0.058
(0.044) (0.050) (0.050) (0.044)

MAX 0.096 0.288** 0.282**
(0.070) (0.112) (0.115)

ILLIQ 2.010 1.747
(2.071) (1.893)

Turnover -0.032 -0.043
(0.061) (0.073)

IVOL -0.240** -0.288***
(0.095) (0.103)

Anomalies NO NO NO NO YES

Observations 398,604 398,604 398,604 398,604 398,604
Average R2 0.010 0.031 0.035 0.050 0.069
Number of groups 281 281 281 281 281

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 8: Short Interest and Crash Risk
This table reports panel regressions of monthly percentage of short interest on ex-ante crash
risk, jackpot risk, and a host of other stock characteristics. All variables are standardized
cross-sectionally to be mean zero and standard deviation of one to aid interpretability. Col-
umn (2) includes an interaction term between crash risk and lagged size to examine the
differential effect between large and small firms. Robust standard errors are reported in
parentheses.

(1) (2)
VARIABLES Dep Var: short Interest

Crash prob 0.003 0.020***
(0.002) (0.002)

Jackpot prob -0.007*** -0.014***
(0.002) (0.002)

Crash prob×Size 0.045***
(0.002)

Size -0.630*** -0.634***
(0.006) (0.006)

B2M -0.020*** -0.016***
(0.003) (0.003)

ROE 0.000 0.000
(0.002) (0.002)

ATG -0.004*** -0.005***
(0.001) (0.001)

Lag ret 0.015*** 0.015***
(0.001) (0.001)

Turnover 0.432*** 0.428***
(0.003) (0.003)

Tvol -0.151*** -0.149***
(0.002) (0.002)

Tskew 0.001 0.001
(0.001) (0.001)

Tang 0.010*** 0.011***
(0.003) (0.003)

Salesg 0.007*** 0.006***
(0.001) (0.001)

Observations 342,419 342,419
R-squared 0.614 0.615
Firm & Time FE YES YES

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9: Retail Trading Imbalance and Monthly Crash Risk
This table shows the results that examine the relationship between retail trading imbalance
and monthly crash risk. In Column (1), I run Fama-MacBeth cross-sectional regressions
to estimate the average coefficients on crash and jackpot risks, controlling for other firm
characteristics, including MAX measure as another proxy for lottery characteristics. In
Column (2), I run panel regression, with both firm and time fixed effects to control for
unobserved heterogeneities. Retail trading imbalance is defined as:

Change#User = log(#Useri,t)− log(#Useri,t−1)
The user data is from Robintrack, which provides hourly data on the number of users that
hold a particular stock. The user change here is defined at monthly frequency. All variables
are at [0.5%, 99.5%] level to remove the effects of outliers. The sample runs from June 2018
to December 2019 at monthly frequency.

(1) (2)
Dep Var: Retail%Imbalance

VARIABLES FMB Panel

Crash prob 0.127** 0.152***
(0.052) (0.026)

Jackpot prob 0.311** 0.222***
(0.123) (0.025)

MAX 0.773*** 0.852***
(0.072) (0.048)

Size 0.014*** 0.051***
(0.003) (0.007)

B2M 0.004 0.002
(0.004) (0.008)

ROE 0.002 0.007
(0.006) (0.010)

ATG 0.033*** 0.009
(0.010) (0.008)

Exret3 0.033*** 0.025***
(0.008) (0.006)

Ivol -0.009 -0.003
(0.006) (0.003)

Tvol -0.018** -0.022***
(0.007) (0.003)

FF3 βs YES YES

Observations 27,159 27,105
R-squared 0.113 0.162
Firm & Time FE NO YES

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 10: WSB Mentioning and Retail Trading
The table examines the relationship between Wallstreetbets co-mentioning of stock tickers
and option keywords and retail trading for sample period between May 2018 to December
2019. Variables are measured at daily frequency. Dependent variables include: Robinhood
trade imbalance, measured by the change in log of number of users; log of number of users,
as a proxy for the popularity of a certain stock; trading volume; and change in trading
volume. The control variables are all one-day lagged and include: price, log of Market
Value, idiosyncratic volatility, total volatility, and Fama-French 3-factor alphas and betas,
which are measured by regressing each stock’s daily excess returns on daily factors. The key
independent variable of interest is the dummy “WSB option flag”, which equals one if the
stock ticker and words like “option”, “call”, or “put” are co-mentioned in the same comment
on the same day, or zero otherwise. Fama-MacBeth regression results and panel regression
results are reported separately in Panel A and Panel B.

Panel A: Fama-MacBeth regressions

(1) (2) (3) (4)
change in change in

VARIABLES log user log user trade vol trade vol

WSB options flag 0.006*** 1.237*** 12.983*** 2.189***
(0.001) (0.110) (1.012) (0.424)

Controls YES YES YES YES
Observations 1,209,101 1,212,063 1,212,063 1,212,063
Avg R-squared 0.050 0.421 0.223 0.073
Number of groups 600 601 601 601

Panel B: Panel regressions

(1) (2) (3) (4)
change in change in

VARIABLES log user log user trade vol trade vol

WSB options flag 0.005*** 1.545*** 10.222*** 1.829***
(0.000) (0.127) (1.400) (0.161)

Controls YES YES YES YES
Observations 1,209,101 1,212,063 1,212,063 1,212,063
R-squared 0.003 0.392 0.156 0.004
Firm Cluster YES YES YES YES
Time Cluster YES YES YES YES

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 11: The Impact of Retail Participation on Monthly Crash Risk
This table reports the result of a difference-in-difference analysis for the impact of retail
participation on ex-ante monthly firm-level crash risk. The dependent variable is the esti-
mated ex-ante monthly crash risk from the Ridge model. Treatment is a dummy variable
that equals one if both firm ticker and option terms are mentioned in comments in Reddit
Wallstreetbets in 2018. Post is a dummy variable that equals one if the year is 2018. In
Column (1) to (4), Standard errors are clustered at both firm and month levels. In Column
(2) and (3), I add a plethora of firm characteristics; in Column (4), I add predictor variables
used in estimating ex-ante monthly crash risk. Column (5) adds firm and time fixed effects.
Sample runs from January 2017 to December 2018. The base specification (without fixed
effects) is:

CrashRiski,t+1 = α + β0Treated+ β1Post+ β2Treated× Post+ γControlsi,t + εi,t

(1) (2) (3) (4) (5)
Dep Var: ex-ante Monthly Crash Risk

Clustered FE

1.treatment -0.032*** 0.011*** 0.011*** -0.001
(0.005) (0.003) (0.003) (0.002)

1.post -0.087*** -0.085*** -0.085*** -0.088***
(0.028) (0.029) (0.029) (0.029)

1.treatment#1.post 0.016*** 0.015*** 0.015*** 0.010*** 0.009***
(0.003) (0.003) (0.003) (0.002) (0.001)

Size -0.043*** -0.043*** -0.023*** -0.028***
(0.003) (0.003) (0.002) (0.002)

B2M -0.001 -0.002 -0.008 -0.003
(0.006) (0.006) (0.005) (0.004)

ROE -0.000*** -0.000*** -0.000*
(0.000) (0.000) (0.000)

ATG -0.004 -0.007 -0.008**
(0.010) (0.010) (0.004)

Exret3 -0.016 -0.019 -0.027***
(0.019) (0.018) (0.003)

Predictors NO NO NO YES YES

Observations 39,482 39,482 39,482 39,482 39,411
R-squared 0.120 0.416 0.416 0.532 0.868
Firm Cluster YES YES YES YES NO
Time Cluster YES YES YES YES NO
Firm FE NO NO NO NO YES
Time FE NO NO NO NO YES

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 12: The Impact of Retail Participation on Crash Risk: Big vs Small Firms
This table reports the result of a triple difference-in-difference analysis for the impact of
retail participation on ex-ante monthly firm-level crash risk for big and small firm cohorts.
The dependent variable is the estimated ex-ante monthly crash risk from the Ridge model.
Treatment is a dummy variable that equals one if both firm ticker and option terms are
mentioned in comments in Reddit Wallstreetbets in 2018. Post is a dummy variable that
equals one if the year is 2018. Big is a dummy variable that equals one if the firm is larger
than the medium size at the beginning of the sample, or zero otherwise. In Column (1) to
(3), Standard errors are clustered at both firm and month levels. In Column (2) and (3), I
add a plethora of firm characteristics. Column (4) adds firm and time fixed effects. Sample
runs from January 2017 to December 2018.

(1) (2) (3) (4)
Dep Var: ex-ante Monthly Crash Risk

Clustered FE

1.treatment 0.006 0.011*** 0.012***
(0.005) (0.004) (0.004)

1.post -0.096*** -0.090** -0.090**
(0.032) (0.033) (0.033)

1.treatment#1.post 0.014*** 0.019*** 0.018*** 0.015***
(0.004) (0.004) (0.005) (0.002)

1.big -0.108*** -0.013* -0.014*
(0.007) (0.007) (0.007)

1.treatment#1.big -0.023*** 0.001 0.001
(0.007) (0.005) (0.005)

1.post#1.big 0.016 0.012 0.012 0.012***
(0.014) (0.013) (0.014) (0.001)

1.treatment#1.post#1.big -0.006 -0.010** -0.010** -0.006**
(0.004) (0.004) (0.004) (0.003)

Size -0.041*** -0.041*** -0.051***
(0.003) (0.003) (0.003)

B2M -0.001 -0.002 0.007
(0.006) (0.006) (0.006)

ROE -0.000*** -0.000*
(0.000) (0.000)

ATG -0.005 -0.007*
(0.010) (0.004)

Exret3 -0.017 -0.026***
(0.019) (0.003)

Observations 39,482 39,482 39,482 39,411
R-squared 0.298 0.416 0.417 0.840
Firm Cluster YES YES YES NO
Time Cluster YES YES YES NO
Firm FE NO NO NO YES
Time FE NO NO NO YES

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 13: The Impact of Retail Participation on Crash Risk: PSM Approach
This table reports the result of various difference-in-difference analyses for the impact of
retail participation on ex-ante monthly firm-level crash risk for big and small firm cohorts,
by using propensity score matching. The dependent variable is the estimated ex-ante monthly
crash risk from the Ridge model. Treatment is a dummy variable that equals one if both
firm ticker and option terms are mentioned in comments in Reddit Wallstreetbets in 2018.
Post is a dummy variable that equals one if the year is 2018. Big is a dummy variable
that equals one if the firm is larger than the medium size at the beginning of the sample,
or zero otherwise. Each treatment stock is matched with at least one control firm, based
on propensity score matching. The propensity scores are generated by logistic regression of
treatment dummy on firm characteristics at the beginning of the sample. In Column (4) and
(5), control variables are added. Sample runs from January 2017 to December 2018.

(1) (2) (3) (4) (5)
Dep Var: ex-ante Monthly Crash Risk

PSM matched

1.treatment -0.004 0.010 0.014**
(0.005) (0.007) (0.006)

1.post -0.087*** -0.101*** -0.095***
(0.026) (0.031) (0.031)

1.treatment#1.post 0.017*** 0.018*** 0.010*** 0.022*** 0.015***
(0.003) (0.006) (0.003) (0.006) (0.003)

1.big -0.109*** -0.018**
(0.009) (0.008)

1.treatment#1.big -0.022** -0.008
(0.009) (0.006)

1.post#1.big 0.023* 0.018*** 0.019 0.015***
(0.013) (0.002) (0.013) (0.002)

1.treatment#1.post#1.big -0.014** -0.006 -0.017** -0.009***
(0.006) (0.003) (0.006) (0.003)

Controls NO NO NO YES YES

Observations 19,584 19,584 19,574 19,584 19,574
R-squared 0.111 0.322 0.832 0.449 0.844
Firm Cluster YES YES NO YES NO
Time Cluster YES YES NO YES NO
Firm FE NO NO YES NO YES
Time FE NO NO YES NO YES

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 14: The Impact of Retail Participation on Crash Related Characteristics
This table reports the result of a triple difference-in-difference analysis for the impact of
retail participation on ex-ante monthly characteristics for big and small firm cohorts. The
dependent variables include: the relative deep out-of-money put and call option prices;
trading volume as volume scaled by shares outstanding; total return volatility; and total
return skewness. Treatment is a dummy variable that equals one if both firm ticker and
option terms are mentioned in comments in Reddit Wallstreetbets in 2018. Post is a dummy
variable that equals one if the year is 2018. Big is a dummy variable that equals one if
the firm is larger than the medium size at the beginning of the sample, or zero otherwise.
Standard errors are clustered at both firm and month levels. Sample runs from January 2017
to December 2018.

(1) (2) (3) (4) (5)
Dep Vars:

VARIABLES FOMP FOMC Trade Vol Tvol Tskew

1.treatment 0.004*** 0.005*** 1.327*** 0.003*** 0.025
(0.001) (0.001) (0.256) (0.001) (0.017)

1.post 0.001*** 0.000 0.041 0.003** -0.037
(0.000) (0.001) (0.088) (0.001) (0.042)

1.treatment#1.post 0.003*** 0.003*** 0.332 0.003*** 0.003
(0.001) (0.001) (0.238) (0.001) (0.027)

1.big 0.002** 0.001 0.588*** -0.000 -0.011
(0.001) (0.001) (0.125) (0.001) (0.041)

1.treatment#1.big -0.000 -0.001 -0.865*** -0.001 -0.021
(0.001) (0.002) (0.274) (0.001) (0.035)

1.post#1.big -0.000 -0.000 0.061 0.001 -0.011
(0.000) (0.000) (0.058) (0.001) (0.058)

1.treatment#1.post#1.big -0.002** -0.003** -0.230 -0.002** -0.017
(0.001) (0.001) (0.226) (0.001) (0.041)

Controls YES YES YES YES YES

Observations 39,482 39,482 39,482 39,482 39,482
R-squared 0.350 0.339 0.062 0.213 0.078
Firm Cluster YES YES YES YES YES
Time Cluster YES YES YES YES YES

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 16: Out-of-Money Option Trading Around Experiment
The table examines whether there is significant increase in out-of-money option trading
volume after the introduction of commission-free option trading by Robinhood. The tests
use the same difference-in-difference specifications employed in the retail trading section.
Control groups are selected via PSM matching. Control variables include log market value
of equity, log underlying stock trading volume, log price, rolling one-month stock return
volatility, and one-day lagged stock return. All control variables are lagged one day. All
variables are measured at daily frequency.

Panel A: Out-of-Money Put Volume

(1) (2) (3) (4)
VARIABLES log volp log volp log volp log volp

1.treatment 0.507*** 0.251**
(0.079) (0.107)

1.post -0.141*** -0.122**
(0.040) (0.052)

1.treatment#1.post 0.112*** 0.157*** 0.145** 0.245***
(0.039) (0.009) (0.066) (0.015)

1.big all -0.641***
(0.127)

1.treatment#1.big all 0.349**
(0.151)

1.post#1.big all -0.034 -0.008
(0.059) (0.013)

1.treatment#1.post#1.big all -0.090 -0.151***
(0.080) (0.019)

Controls YES YES YES YES
Observations 429,320 429,320 429,320 429,320
R-squared 0.502 0.701 0.507 0.701
Firm & Time Cluster YES NO YES NO
Firm & Time FE NO YES NO YES

Panel B: Out-of-Money Call Volume

(1) (2) (3) (4)
VARIABLES log volc log volc log volc log volc

1.treatment 0.497*** 0.287**
(0.087) (0.116)

1.post 0.057 -0.030
(0.042) (0.058)

1.treatment#1.post 0.141*** 0.215*** 0.226*** 0.341***
(0.046) (0.009) (0.077) (0.015)

1.big all -0.491***
(0.140)

1.treatment#1.big all 0.298*
(0.165)

1.post#1.big all 0.136* 0.158***
(0.069) (0.013)

1.treatment#1.post#1.big all -0.151 -0.203***
(0.095) (0.019)

Controls YES YES YES YES
Observations 429,320 429,320 429,320 429,320
R-squared 0.515 0.720 0.517 0.720
Firm & Time Cluster YES NO YES NO
Firm & Time FE NO YES NO YES

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Appendix A. Complex Models

This section provides results from using more complex machine learning models to predict

monthly crash risk. Here complexity refers to both number of independent variables (fea-

tures) and the underlying machine learning model. In terms of features, the set is enlarged

to include 134 variables in total, the vast majority of which consist of option-related vari-

ables. Section 7 gives detailed construction of the features. In terms of underlying machine

learning models, two more models are explored: XGBoost tree methods and feed forward

neural network.

Before feeding data into machine learning models, the following pre-processing for each

window is conducted: first, standardize the training data, and use the information to trans-

form the validation and test data into standardized data; second, extract principal compo-

nents (either 5, 10, or 20) from training data, then use the information to extract the same

number of PCs from validation and test data; finally, apply SMOTE to balance the training

data. Then the training data is fed into each of the machine learning models to train the

model; then I tune hyper-parameters using the validation data to find the best estimator,

and finally fit the test data using the best estimator. The tuning parameters for each model

are shown in Table A.1.

[Table A.1 about here.]

I report the mean performance metrics for all three machine learning models in the

complex setting using either 5, 10, or 20 principal components, as well as the simple ridge

regression used as the main results in Table A.2.

[Table A.2 about here.]

As shown in Table A.2, compared with main results in Column (3), the results from more

complex models are quantitatively similar. To main parsimony and interpretability, I show

the simple model as the main results in Section 4.
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Appendix B. Replications

I replicate the main results of Jang and Kang (2019) for the sample period 1996 - 2019.

First, I confirm the main results of multinomial logistic regression of exploring the rela-

tionship between crashes and jackpots and various firm characteristics. Table A.3 show the

results that are fairly consistent with the original test.

[Table A.3 about here.]

I then use the expanding training data to run the multinomial regressions and then

predict one-year-ahead probability of crashes and jackpots out-of-sample. Starting from

4 years of training sample, the prediction window starts from January 2001 and ends at

December 2019. For each month, I form high-minus-low portfolios by sorting stocks based

on the predicted crash probabilities into deciles, and then regress either equally weighted

or value weighted portfolio returns on CAPM, Fama-French 3-, 4-, 5- and 6-factor models.

Table A.4 show the resulting alphas and associated t-statistics estimated using Newey-West

standard errors with 12 lags (Newey and West (1986)).

[Table A.4 about here.]

As the table shows, the results from value-weighted portfolios on CAPM, and FF3 and

FF4 models are consistent with Jang and Kang (2019). However, they are no longer signif-

icant when FF5 and FF6 factors are used, and they are not significant under the equally

weighted scheme.

69



Appendix C. Selected Variable Definitions

ACI = CAPX ratio increase over the previous three periods mean. CAPX

ratio is CAPX/SALE.

AG = asset growth over the previous year

Book value equity = SEQ+ TXDITC − Perferred, preferred is PSTKRV , or

PSTKL, or PSTK, whichever is first available.

Crash Risk = predicted monthly ex ante probability of stock crash, with log

return less than -20%

FOMC = ratio between deep out-of-money call option price and the

underlying implied forward stock price

FOMP = ratio between deep out-of-money put option price and the

underlying implied forward stock price

GP = gross profitability, equals (REV T − COGS)/AT

Illiquidity = monthly mean of daily absolute return over price times volume of

that day, see Amihud (2002).

Jackpot Risk = predicted monthly ex ante probability of jackpot, with log return

greater than 20%

NOA = net operating assets/lag AT

NSI = natural log of changes in adjusted shares

OSCR = −1.32−0.407×ASIZE+ 6.03×TLTA−1.43×WCTA+ 0.0757×

CLCA− 1.72×OENEG− 2.37×NITA− 1.83× FUTL+

0.285× INTWO − 0.521× CHIN , O-score, see Ohlson (1980).

ROA = NI/AT

SMIRK = difference between the implied volatility of out-of-money put

option and at-the-money call option, see Xing et al. (2010)

Tang = PPENT/AT

70



Table A.1: Tuning Parameters
The table shows the hyper-parameters for each underlying machine learning model in the
complex setting, where there are 134 features (independent variables). The machine learning
models include ridge regression, XGBoost tree methods, and feed forward neural network
(NN, or multi-layer perceptrons, or MLP).

Parameter Range

Ridge λ 100 λs between 10−4 and 104

XGBoost max depth 1,2,3,4,5,6
learning rate 0.001
early stopping 10 rounds

MLP (NN) λ 100 λs between 10−4 and 104

hidden layers (50,), (50,50), or (50,50,50)
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Table A.3: Replication of Jang and Kang (2019)
The table replicates the multinomial logit regression from Jang and Kang (2019) for sample
period 1996 - 2019. Variable definitions follow the paper referenced. Standard errors are
clustered at stock and month levels and are included in parentheses.

Crash Jackpot

Coefficient Coefficent

rm12 1.038*** (0.294) -0.994*** (0.244)
exret12 -0.191*** (0.0509) -0.211*** (0.0398)
tvol 28.53*** (1.761) 25.20*** (1.178)
tskew 0.0323*** (0.00680) 0.0217*** (0.00766)
size -0.00731 (0.0121) -0.154*** (0.0156)
dturn -0.0238 (0.0494) -0.315*** (0.0554)
age -0.0222*** (0.00177) -0.0149*** (0.00171)
tang 0.121*** (0.0352) 0.119*** (0.0320)
salesg 0.200*** (0.0237) 0.0375 (0.0263)
Constant -2.968*** (0.273) -0.511 (0.325)

Observations 965,401 Pseudo R2 0.102

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.4: High-Minus-Low Alphas per Jang and Kang (2019)
The table presents the results from regressing high-minus-low crash risk portfolio returns on
various asset pricing factors, following Jang and Kang (2019). Each month, I sort stocks
into deciles based on the predicted crash probabilities, and then calculate either equally
weighted or value weighted portfolio returns. Then the time series of returns are regressed
on time series of asset pricing factors. The sample runs from January 2001 to December
2019. Standard errors are Newey-West standard errors with 12 lags.

Equal-weighted Value-weighted

pricing model alpha T-stat alpha T-stat

CAPM -0.348 -0.624 -1.078*** -2.814
FF3 -0.400 -0.920 -1.067*** -3.487
FF4 -0.128 -0.335 -0.866** -2.635
FF5 0.583 1.156 0.088 0.256
FF6 0.571 1.458 0.081 0.259

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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