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Abstract

This research combines recent advances in the Realized Volatility (RV) literature and
three specific commodity futures factors to improve the forecasts of commodity volatil-
ity. The three forecasting variables are the term structure slope, the time to maturity
and a measure of supply and demand uncertainty. I first assess these variables’ empiri-
cal contribution to commodity futures volatility, in adding them in RV forecast models.
First in the univariate HAR-RV of Corsi (2009) and second in the multivariate VAR-RV
of Andersen, Bollerslev, Diebold, and Labys (2003). The long-term memory of assets
RV justifies the former, whereas the “financialization” of commodities and the resulting
commodity connectedness, supports the latter. I evaluate the out of sample validity
of these forecast models and propose one risk management application. Hence, this
research is important for both economic understanding and risk management purposes.
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1. Introduction

I use three economic variable of commodity volatility, the slope of the term structure

(proxy for inventories), the time to maturity (Samuelson hypothesis) and uncertainty indices

(uncertainty resolution). Previous research use squared returns as proxy for unconditional

volatility or (G)ARCH family models for the conditional volatility and test whether the in-

clusion of volatility factors have additional forecast power. Instead, Andersen, Bollerslev,

and Meddahi (2005) show that using the RV as a proxy for the latent volatility in the left

side of the equation considerably improves the forecast power. In using the RV as a finer

proxy for the true latent volatility, I disentangle the validity of these hypotheses through the

various forecast power of the proxy variables. I test whether the variable inclusion improves

two existing advanced RV forecasting methods. The target models are the univariate HAR-

RV of Corsi (2009), and the multivariate VAR-RV of Andersen et al. (2003). The inclusion

of commodity specific factors in a HAR-RV is similar to Haugom, Langeland, Molnar, and

Westgaard (2014).1 Using a VAR is particularly appropriate to extract the volatility com-

monalities, as it allows the use of information shared across futures contracts. This new

model improves the explanatory power, in the light of the recent findings on financialization

of commodities. Indeed Masters (2008), Tang and Xiong (2012) and Singleton (2014) predict

or document the increase of volatility or return commonalities in commodity markets, due to

the massive, parallel entry of long only funds tracking popular indices such as the SP-GSCI

or the BCOM. Later in the estimation, I also include commodity indices tracking dummy

coded “one” if the commodity is part of a popular index. Despite my sample is too recent

to test for the effect of the addition of a particular commodity to an index, I am able to test

for index inclusion features in cross-section. Finally, I control for the out of sample validity

of these two extended RV forecasts and find that results hold.

The remainder of the article proceeds as follow, in the next section I present the literature

review on RV, stylized fact of assets volatility in general and of commodity futures in par-

ticular. In section three, I present the research design, including the data organization and

models to test. In section four, I discuss the empirical results and in section five, I introduce

one potential application of RV for the estimation of optimal hedge ratio with commodity

futures. Section six concludes.

1Haugom et al., 2014 use an HAR-RV, extended with implied volatility, and additional forecasting
variables (including one of the variable of the present article, the term structure slope, a proxy for the
inventory effect) on the crude oil contract.
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2. Literature review

2.1. Realized volatility

There are three families in volatility modeling. The first is the group of stochastic volatil-

ity such as the Heston (1993) model, where the volatility follows a diffusion process and

possibly jumps (see, e.g. Bates, 1996). The second is the (G)ARCH type of Engle (1982)

and Bollerslev (1986), which models volatility conditional on past realizations. Finally, the

approach of Andersen and Bollerslev (1998a,b) use the RV, estimated with data sampled at

high frequency, as a proxy for the integrated volatility (IV). Andersen and Bollerslev (1998a)

show that, as the frequency increases towards infinity, the estimation tends to the IV. For

instance, Andersen, Bollerslev, and Diebold (2007) summarize the theory with the following

formula.2 Let the RV be,

RVt+1 (∆) ≡
1/∆∑
j=1

(
r2

∆,t+j×∆

)
, (1)

where 1/∆ is the number of observations in one day and r2
∆ represents the squared returns

sampled at the frequency ∆. Then, as ∆→ 0,

RVt+1 (∆)→
∫ t+1

t

σ2 (s) ds+
∑

t<s≤t+1

κ2 (s) (2)

The right hand side of the equation is the IV from the stochastic volatility formulation,

with a diffusion process σ and with discrete jumps of size κ. The IV converges to the

increment of the diffusion process as the sampling frequency tends to infinity. I denote RV

the squared root of the realized variance expressed in eq.(1) and eq.(2). In theory, the ideal

frequency for the IV estimation through RV should be the tick or some sub-tick period to

keep evenly spread measurements.3 In practice however, because of market microstructure

noise, the “optimal” sampling (and the most common choice) is the five-minute intervals

(see, e.g., Liu, Patton, and Sheppard, 2015). This new proxy for volatility vastly improves

volatility modeling. These improvements include jumps (see, e.g., Andersen, Benzoni, and

Lund, 2002 and Andersen et al., 2007), realized bi-power variation (Barndorff-Nielsen and

Shephard, 2004), realized semi-variances, (Barndorff-Nielsen, Kinnebrock, and Shephard,

2008) or realized covariance, allowing for the estimations of more stable betas in the CAPM

or APT frameworks (Andersen, Bollerslev, Diebold, and Wu, 2006). Second, the inclusion of

2See also Comte and Renault (1998) and Meddahi (2002).
3Which is required e.g., in the presence of Epps effects (Epps, 1979) to correct for non-synchronous

observations.
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this parameter-free measure enhance the out of sample volatility forecasting, over (G)ARCH

and SV models. With Mincer-Zarnowitz type regressions (Mincer and Zarnowitz, 1969), the

empirical research shows that a VAR model using lagged-RV performs overall better than

advanced GARCH models to forecast n-days ahead daily squared returns (Andersen et al.,

2003). In addition, the replacement of the dependent variable, the daily volatility, by its

smoother intraday RV reciprocal, vastly improves the R2 of all forecast models (see, e.g.,

Andersen and Bollerslev, 1998b and Andersen et al., 2005).

Since the publication of these results, the literature considerably expanded the RV based

models. In particular, the Heterogeneous AutoRegressive RV (HAR-RV, Corsi, 2009), uses

past RV sampled over different periods as predictors. In a similar fashion, Engle (2002b) and

Hansen and Lunde (2011) augment the GARCH with an exogenous RV variable. Closely,

Shephard and Sheppard (2010) replace the GARCH AR term with its realized counterpart

in the High-frEquency-bAsed VolatilitY (HEAVY) model. Finally, Ghysels, Santa-Clara,

and Valkanov (2004) use a Mixed Data Sampling (MIDAS) model that averages the RV

computed with the same frequency, but at different time.

2.2. Common volatility property of asset returns

Unconditionally, asset returns sampled at daily frequency are leptokurtic, display a nega-

tive skewness and have a standard deviation that greatly dominates their mean.4 Moreover,

while returns are almost serially uncorrelated, the squared or absolute returns are highly

predictable and clustered over time. Asset returns’ volatility also follow mean reverting

processes. The heavy tail property is considered e.g., in GARCH models by Nelson (1991)

with alternative distributions such as the Generalized Error Distribution. Again, beyond

the high kurtosis, the Extreme Value Theory helps to model extreme events such as the

1987 US stock price drop, using alternative classes of distributions. Also, the Fractional

Integrated GARCH of Baillie, Bollerslev, and Mikkelsen (1996) and the HAR-RV of Corsi

(2009), account for the important long-term persistence of volatility. In addition, almost all

assets (and stocks in particular) experience an asymmetric volatility reaction depending on

the sign of the returns. The causes for this phenomenon also named “leverage effect” (Black,

1976) is controversial (see, e.g., Engle, 2004 and Bollerslev, Litvinova, and Tauchen, 2006).

Asymmetric models take the effect into account, in particular the Exponential-GARCH of

Nelson (1991) and the GJR-GARCH of Glosten, Jagannathan, and Runkle (1993).

Next, the intraday volatility of assets displays strong repeating diurnal patterns because

of microstructure and volume effects (Andersen and Bollerslev, 1997). Other peculiarities

4For instance, the daily returns on the SP-500 during the period from 1990 to 2008 displays a standard
deviation more than 40 times higher than its mean, a kurtosis of eight and a skewness of -0.26.
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and tackling research include the following non-exhaustive list. A GARCH-X extended with

cross-sectional volatility (Hwang and Satchell, 2005), the inclusion of Markov Switching

regimes (Hamilton, 1989) in GARCH such as the MS-GARCH of Cai (1994), or the volume

and news arrival effects, considered in the Mixture of Distribution Hypothesis of Clark (1973)

and based on SV models.

2.3. Commodity futures volatility

Despite many commonalities between commodity markets and other asset markets, some

stylized facts of commodity futures differ. A first noticeable discrepancy is the inverse

asymmetric reactions between commodity futures price and volatility or “inverse leverage

effect”, arising from shocks on inventories. In the theory of storage, Working (1933), Kaldor

(1939) and Brennan (1958) predict this behavior, arising from the non-negativity constraints

of inventories. When the resources are scarce, the market becomes inelastic, and a decrease

in one unit of inventory leads to a dramatic price upward revision. This effect is documented

in Ng and Pirrong (1994), Carpantier (2010), Carpantier and Dufays (2012) and Carpantier

and Samkharadze (2012). A second, and related, discrepancy with respect to other assets

comes from the distribution properties: commodities have a positive skewness, and contrary

to stock returns, this skewness also shows up at the individual level (see, e.g., Gorton and

Rouwenhorst, 2006).

To my knowledge, the first economic variable of volatility in (storable5) commodity fu-

tures markets comes from the theory of storage and implies an inverse, convex relationship

between inventories and volatility. More recent versions of the theory of storage in equi-

librium (e.g., Deaton and Laroque, 1992) also predict this relationship, which is confirmed

empirically by Fama and French (1988), Ng and Pirrong (1994), Geman and Nguyen (2005),

Geman and Ohana (2009) and Carpantier and Samkharadze (2012) among many others.

Interestingly, Kogan, Livdan, and Yaron (2009) extend the prediction to a non-monotonic

convex relationship between volatility and inventories, because of investment constraints.

They confirm the existence of this “v-shape” function as well as Haugom et al. (2014). This

implies that both low and high inventory states lead to high volatility.

The second economic theory of volatility in commodity futures, more controversial, is

the Samuelson (1965, 1976) hypothesis, which predicts an inverse relationship between time

to maturity and volatility. Despite many empirical tests, the Samuelson effect is still uncer-

tain. On the one hand, Rutledge (1976) and Grammatikos and Saunders (1986) reject the

hypothesis, on the other hand Milonas (1986) and Galloway and Kolb (1996) find support

5The research shows that intangible commodities like electricity or those whose exchange value is higher
than their use value such as gold or silver behave more like the rest of financial assets.
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in all commodities, but not in financial futures. In addition, Bessembinder, Coughenour,

Seguin, and Monroe-Smoller (1996) develop a model in support of the Samuelson hypoth-

esis, if the spot price has negative covariance with the slope of the term structure. This

implies a temporary price change, which is more likely to occur in real assets than in finan-

cial assets. Indeed, the empirical tests strongly reject the Samuelson hypothesis, with the

futures on NIKKEI (Chen, Duan, and Hung, 2000) and with the SP-500 (Moosa and Bollen,

2001), whereas Bessembinder et al. (1996) find empirical evidences in the commodity futures

markets.

The third hypothesis (see, Anderson and Danthine, 1983), does not contradict Samuelson

and links volatility to the uncertainty resolution ought to occur seasonally, for instance at the

end of a crop when the supply is publicly known. Anderson (1985), Khoury and Yourougou

(1993) and Galloway and Kolb (1996) find a seasonal volatility effect in parallel with support

to the Samuelson hypothesis. The literature tackles the uncertainty resolution with seasonal

effects since it is a convenient proxy for both supply and demand patterns in commodities.

For instance, the natural gas term structure has a strong seasonal component due to the

demand rising every winter in the North American market, whereas the agricultural prod-

ucts have a supply volatility component arising for instance from the US Department of

Agriculture figures during the crop season. Other uncertainty resolution variables might be

at play, however.

3. Methodology and hypotheses

3.1. Data

3.1.1. Data collection

From the Barchart API,6 I download five minutes continuous prices at close7 for the first

two m consecutive maturities of commodity futures contracts from May 6, 2008 until Jan-

uary 18, 2019. I choose a cross-section of C = 9 contracts evenly spread in three different

subgroups: i) energy, ii) agriculture and metals.8. I display the specificities of the contracts

in Table A. Contrary to daily computations of futures’ price change that must correct for

the regular contract expirations, intraday volatility computation implies no need to roll the

position from the nearest (hereafter nearby) to the second nearest (hereafter first deferred)

6https://www.barchart.com/
7Despite their higher frequency, intraday data also have “open”, “high”, “low”, “close” and “trading

volume” information, as with daily data.
8Energy: crude oil, natural gas and heating oil. Agriculture: wheat, corn and soybean. Metals: copper,

gold and silver. Softs: sugar, coffee and cocoa.
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contract, the day prior to maturity. However, following the standard approach in commodity

futures research I roll the contracts onto the first deferred contract before the actual matu-

rity.9 I choose the roll date as the settlement time of the 10th business day before maturity.

The data includes a time-stamp and the maturity date of each contract. I report descriptive

statistics at daily and five-minute sampling frequency in the Panel A of Table 1.

[Insert Table 1 here]

3.1.2. Data preparation

I compute five-minute log price changes for each futures contract available as rmc,t,j =

fmc,t,j+1−fmc,t,j. The subscripts c, t and j stand for commodity, day, and time10 of the observa-

tion, respectively. The superscript m indicates the maturity of the contract. I compute the

RV as RVt =

√
1/∆∑
j=1

r2
t,∆×j with 1/∆ equal to the number of five minutes observations available

given the market open hours of each contract. I present summary statistics for daily RV

measures sampled at 5-minute intervals in the Panel B of Table 1. A large strand of liter-

ature on theory of storage highlights the relation between the slope of the term structure

and inventories. Because this relationship finds strong empirical support (see, e.g., Gorton,

Hayashi, and Rouwenhorst, 2012), I use this proxy for inventories. I normalize the slope

of the term structure to take in account the maturity gap differences across contracts. For

instance, the raw sugar contract NY#11 has five maturities per year on March, May, July,

October and December, while the Brent crude oil contract has one per month. With the

normalization, I correct this maturity mismatch. Hence, the slope of the term structure

is defined as SLmc,t =
fm+1
c,t −fmc,t
δ(m)

× 250 where δ (m) indicates the time difference in days be-

tween the two consecutive maturities. I annualize the variable for ease of interpretation.

To test for the two alternative hypotheses of monotonic decreasing relationship (theory of

storage) and the “v-shape” (Kogan et al., 2009), I use two different specifications. The

first is just the continuous slope; the second is the measure of Haugom et al. (2014) who

halve the slope measure, conditional on its sign. Formally it is, SL+
c,t = max (SLc,t, 0) and

SL−
c,t = min (SLc,t, 0).

I compute the time to maturity in days for each daily observation, crossing the time

stamp with the contract maturity information available in the full ticker. I compute the

time to maturity both in calendar and business days for robustness and find virtually no

differences in the results. However, my first assumption is that the latent information exists

9Previous research justify this procedure by the possible market squeezes and thinly traded contracts
during the period immediately preceding the maturity.

10In terms of amount of five-minute periods elapsed for each day, i.e., j = 1, 2, . . . , 288.
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even when futures are not traded. Hence, I articulate the variable around calendar days.

Similarly, to capture the seasonal effects, in zero-intercept regressions, I use 12 dummies

variable coded one during a specific month and zero otherwise.

3.2. Methodology

3.2.1. Preliminary tests of commodity volatility factors

I begin with a univariate test of the specific commodity volatility factors alone as ex-

planatory variables of the realized volatility.

RVc,t = α1,c × SLc,t−1 + α2,c ×DTMc,t−1 +
i=14∑
i=3

αi,c ×DMi,t−1 + εc,t, (3)

Where SLc,t−1 is the slope, DTMc,t−1 stands for the days to maturity, DMi,t−1 are the

12 dummy variables set at one for each month. To disentangle the potential asymetric effect

of the slope, I test the measure of Haugom et al. (2014) in a second setting,

RVc,t = α+
1,c × SL+

c,t−1 + α−
1,c × SL−

c,t−1 + α2,c ×DTMc,t−1 +
i=14∑
i=3

αi,c ×DMi,t−1 + εc,t, (4)

where SL+
c,t−1 and SL−

c,t−1 stand for the conditional term structure. I report the results

in Table 2. In Panel A, I show the results for the eq. 3 and in Panel B for the eq. 4. In both

regressions, there is a clear evidence for a positive relationship between the days to maturity

and volatility, which goes against the Samuelson (Samuelson, 1965, 1976) hypothesis. The

seasonal pattern is very strong for each of the commodities, with at least one dummy pa-

rameter positively significant except for the Crude Oil contract in the second setting. The

following results detail this pattern further. Finally, in the first setting, the slope coefficient

appears significant at the 1% level in six of the nine contracts, but with varying signs. In the

second setting however, the patterns are perfectly consistent, as Haugom et al. (2014) show,

what matters is the magnitude of the slope and not its sign. The backwardation (contango)

stands for a negative (positive) slope and hence, all coefficients are negative (positive) and

significant. For the remainder of the study, I therefore choose to keep this conditional slope

setting.

[Insert Table 2 here]
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3.2.2. Univariate tests: HAR-RV and commodity factors

I start with the following extended HAR-RV model,

RVc,t = β1,c ×RV D
c,t−1 + β2,c ×RV W

c,t−1 + β3,c ×RV M
c,t−1 + βv,c ×Xc,t−1 + εc,t, (5)

where the superscripts, D, W and M stands for the estimation timespan of the RV of a

day, a week and a month, respectively. Xc,t−1 represents the volatility determinant vectors,

slope, days to maturity and seasonality dummies, stacked into a matrix; and βv,c is the

associated vector of coefficients with v from 4 to 15.

3.2.3. Multivariate test: VAR-HAR-RV and commodity factors

Subsequently I test a multivariate model as the inclusion of the lagged RV of other

commodity contracts helps to decompose the commodity futures volatility. In fact, An-

dersen et al. (2003) and Andersen et al. (2005) use a VAR-RV model and reach enhanced

results. In this research, I assume that a VAR-RV improves the forecast power due to

the financialization-induced connectedness.11 Since I have both common and idiosyncratic

variables in the system, I jointly estimate the nine equations with Seemingly Unrelated

Regressions (SUR) procedure,

RVc,t = γ1,c ×RV agriculture
c,t−1 + γ2,c ×RV energy

c,t−1 + γ3,c ×RV metal
c,t−1 + γv,c ×Zc,t−1 + εc,t, (6)

where RV sector
c,t−1 stands for the realized volatility average over the three sectors, agriculture,

energy and metal. Zc,t−1 includes all explanatory variables of eq. 5 and v goes from 4 to

18. In this formulation, I estimate RV sector
c,t−1 over one day but I drop the superscript D. I

use sector index of commodity RV instead of a complete VAR system to limit the number

of parameters to estimate and assuming that the average volatility of each sector is a valid

proxy.12.

11All contracts of the studies are constituents of the two most popular indices SP-GSCI and BCOM, with
the exception of the copper contract traded on COMEX that is only part of BCOM. The SP-GSCI uses the
copper contract traded on the LME instead.

12Robustness checks with the full VAR show virtually no differences. Tables are available upon request
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3.3. Out of sample tests

I test the validity of the parameters estimated in eq.(5) and eq.(6) on one day ahead

period. I use a rolling training window of 500 days, which I assume being a good trade-

off between accuracy at capturing all the effects, in particular the seasonal pattern, and

flexibility in adapting faster to new market volatility features. I run the regression for

each day of the eight remaining years and collect the predicted value for the next day.

I then compare the accuracy of the forecast series versus a simple AR(1) RV model and

a GARCH(1,1) computed on the daily returns, using actual daily RV as the dependant

variable. To test the out of sample forecast power I use first a Mincer-Zarnowitz (Mincer

and Zarnowitz, 1969) type regressions, similar to e.g., Andersen and Bollerslev (1998b),

RVc,t = ψ0 + ψ1 × R̂Vc,t + εc,t, (7)

where R̂Vc,t is the estimate of the RV given the parameters of eq.(5) and eq.(6) applied

on the training sample. If the out of sample prediction is not biased, I expect the parameters

ψ0 and ψ1 to be not significantly different from zero and one, respectively. I use a F-statistic

to test that these two parameters are jointly equal to zero and one. Andersen and Bollerslev

(1998b) explain that the R2 is typically low in forecasts using daily squared returns as

dependent variable, whereas the use of intraday RV considerably improves the explanatory

power of all models. Second, and jointly with the Mincer-Zarnowitz regression, I compute

the mean squared error (MSE) and mean absolute error (MAE) of each of the models tested.

In a second step, I directly compare the accuracy of the three forecasting models, using

the modified Diebold-Mariano Diebold and Mariano (1995) test of Harvey, Leybourne, and

Newbold (1997).

4. Empirical results

In Table 3 I display the results of the commodity volatility factors augmented HAR-RV

model and in Appendix B I display the complete results including all coefficients for all

month dummies.

[Insert Table 3 here]

In Table 4 I report the results of the multivariate HAR-RV model and in appendix C I

display the complete results including all coefficients for all month dummies.

[Insert Table 4 here]

[Insert Figure 1 here]

9



In Table 5 I report the out of sample Tests. In the Panel A I report the absolute

performance of the univariate, multivariate and of a GARCH(1,1) models. The measures

are a F-statistic of Mincer-Zarnowitz regressions, the MAE and MSE. In Panel B, I report

the F-statistics and p-values of the modified Diebold-Mariano test of relative performance

in the context of absolute and squared errors.

[Insert Table 5 here]

Finally, in Figure 1, I plot the multivariate HAR-RV model out of sample forecast series

versus the actual RV series for each of the nine commodities.

5. Risk management application

One way to compute the optimal hedge ratio (OHR), that is, the amount of futures

contracts relative to a position in the underlying is (see, Ederington, 1979),

OHRt =
Cov

(
rsc,t, r

f
c,t

)
Var

(
rfc,t

) (8)

This measure is also the slope parameter in a regression of the spot on the futures price,

estimated for instance on a prior window of observations. Baillie and Myers (1991) propose

a bivariate GARCH (BGARCH) to improve the OHR estimation and to obtain parameters

that follow more closely the time-varying properties of the distribution of returns. One main

issue with this procedure is that the estimation of multivariate GARCH models is complex

(see, e.g., Bollerslev, 1990; Engle, 2002a and Bauwens, Laurent, and Rombouts, 2006).

I propose an alternative estimation of the OHR, inspired by the realized beta of Andersen

et al. (2006) in the CAPM framework. I define the realized OHR (ROHR) as,

ROHRt =
RCov

(
rsc,t, r

f
c,t

)
RVar

(
rfc,t

) , (9)

where RCov and RVar stand for the realized covariance and the realized variances re-

spectively. Moreover, because forecasts of these parameter-free measures are available, it is

possible to compute them forward, using the predicted values of the eq.(5) or eq.(6) model

as follow,

R̂OHRt =
R̂Covt

(
rsc,t, r

f
c,t

)
R̂Vart

(
rfc,t

) , (10)
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However in preliminary tests I find that despite very high in-sample explanatory power

for RCov factors (the HAR-RCov and multivariate HAR-RCov), the out-of-sample power

for RCov is extremely low.13. Hence I choose a restricted but more efficient model, relating

directly the ROHR with the RV factors. The model becomes,

ROHRc,t = θ1,c×RV agriculture
c,t−1 + θ2,c×RV energy

c,t−1 + θ3,c×RV metal
c,t−1 +θv,c×Zc,t−1 + εc,t, (11)

where the independent variables are the same as in eq. (6).

I display the in-sample results in 6 and the complete results with each dummy variables

in the Appendix D. I display the out-of-sample test in 7 and I plot in Figure 2 the predicted

and actual ROHR.

[Insert Table 6 here]

[Insert Figure 2 here]

6. Conclusion

In combining traditional economic theories of commodity futures market volatility and

recent advances in the estimation of the true latent volatility, this research improves com-

modity volatility modeling. I use two models of RV. One uses the long-term properties of

volatility common to all asset classes. The second builds on the recent evidences of com-

modity connectedness and considers the volatility information shared in the cross-section of

commodity contracts. These new volatility-modeling settings for commodities have imme-

diate practical applications. In particular, I introduce one utilization of RV and RV models

in the context of optimal hedge ratios estimation, which is of importance for both financial

and industrial commodity sectors.

13The tables for in- and out-of-sample modeling are available upon request
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Table 1: descriptive statistics of daily returns and realized volatility on futures
contracts

In Panel A, I report the annualized mean, standard deviation, skewness, kurtosis of the
daily returns on the nearby futures contracts of the nine selected commodities. I also
report the proportion of days during which the corresponding contract was in contango,
the AR(1) coefficient of squared returns and its t-statistic. In Panel B, I report the mean
of the daily realized-volatility with five-minutes sampling for the nearby and first deferred
contracts as well as the mean daily realized covariance. I also report the AR(1) coefficient
and its t-statistic for the nearby contract realized volatility. The period is from May 2008
to January 2019.

Panel A: daily returns of nearby contracts
Ticker (contract) Mean % σ % Skewness Kurtosis Contango % AR(1) % t-statistic
C (corn) −6.91 27.86 0.00 0.02 14 2.63 1.36
CL (WTI crude oil) −20.96 34.99 0.00 0.02 14 28.76 15.56
GC (gold) 4.58 17.00 −0.01 0.02 12 18.21 9.41
HG (copper) −1.35 25.01 0.00 0.02 35 30.93 16.79
HO (heating oil) −5.24 29.48 0.00 0.02 22 17.63 9.28
NG (natural gas) −36.53 42.44 0.01 0.01 12 18.18 9.58
S (soybeans) 9.52 22.66 −0.01 0.02 43 3.65 1.89
SI (silver) 3.77 30.60 −0.02 0.02 8 18.40 9.48
W (wheat) −12.93 30.47 0.00 0.01 3 8.88 4.59

Panel B: daily realized-volatility
Ticker (Contract) Nearby % First deferred % Realized Covariance ×10−4 AR(1) nearby t-statistic
C (corn) 1.73 1.65 3.12 0.42 24.02
CL (WTI crude oil) 1.99 5.09 4.99 0.81 72.13
GC (gold) 1.01 1.00 1.15 0.60 38.32
HG (copper) 1.50 1.49 2.43 0.64 42.52
HO (heating oil) 1.79 1.74 3.34 0.78 64.31
NG (natural gas) 2.72 2.54 7.56 0.48 27.97
S (soybeans) 1.41 1.36 2.08 0.43 24.86
SI (silver) 1.77 1.72 2.99 0.48 27.80
W (wheat) 1.94 1.85 3.67 0.48 27.89
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Table 2: Univariate regressions of commodity volatility factors on daily RV

In Panel A, I report the coefficients of the nine univariate regressions of daily RV in date t
sampled at five minutes interval on commodity volatility factors in date t − 1 that are, (i)
the log term structure, i.e., the log price difference between the nearby and first deferred
contracts, scaled by the number of days between their two maturities; (ii) the time to
maturity in days and (iii) 12 dummy vectors set to one for each different month from
January to December. The model is eq. 3 In Panel B, I repeat the test with the conditional
term structure of Haugom et al. (2014). The model is, eq. 4 and SL+

c,t = max (SLc,t, 0)

and SL−
c,t = min (SLc,t, 0), with SLc,t =

fm+1
c,t −fmc,t
δ(m)

× 250. I indicate by an abbreviation
the month of highest positive significance, and leave empty when no month is significantly
positive. I modify the magnitude of the variables by a power of 10 to improve the coefficients
readability. The t-statistics are in parenthesis. The study period is from May 2008 to
January 2019.

(C) (CL) (GC) (HG) (HO) (NG) (S) (SI) (W)

RVc,t
Panel A: continuous term structure

term structure 0.23 11.82∗∗∗ −12.79∗∗∗ 8.84∗∗∗ 5.97∗∗∗ 2.56∗∗∗ 0.26 −1.12 6.14∗∗∗

(0.59) (37.76) (−6.06) (6.32) (11.00) (11.05) (1.05) (−0.58) (8.43)

days to maturity ×10−7 37.60∗∗∗ 14.54∗∗∗ 24.16∗∗∗ 37.50∗∗∗ 20.08∗∗∗ 29.09∗∗∗ 26.09∗∗∗ 42.36∗∗∗ 27.01∗∗∗

(23.56) (8.88) (25.20) (24.78) (12.85) (12.92) (20.80) (22.59) (20.74)

seasonality (+) Jul∗∗∗ Sep∗∗∗ Sep∗∗∗ Oct∗∗∗ Feb∗∗∗ Jan∗∗∗ Aug∗∗∗ Nov∗∗∗ Aug∗∗∗

Observations 2,653 2,657 2,639 2,648 2,657 2,657 2,653 2,580 2,653
Adjusted R2 0.80 0.85 0.79 0.77 0.82 0.83 0.81 0.75 0.88

Panel B: conditional term structure

contango 6.09∗∗∗ 12.34∗∗∗ 31.34∗∗∗ 36.95∗∗∗ 17.82∗∗∗ 4.31∗∗∗ 12.79∗∗∗ 10.54∗∗∗ 6.60∗∗∗

(4.57) (37.53) (9.68) (12.74) (22.51) (17.48) (6.02) (4.25) (8.71)

backwardation −1.29∗∗ 3.38∗ −47.00∗∗∗ −6.85∗∗∗ −5.54∗∗∗ −5.51∗∗∗ −0.32 −26.51∗∗∗ −13.64
(−2.52) (1.95) (−16.72) (−3.46) (−7.12) (−10.04) (−1.21) (−6.75) (−1.51)

days to maturity ×10−7 37.72∗∗∗ 15.86∗∗∗ 24.37∗∗∗ 35.76∗∗∗ 15.84∗∗∗ 28.73∗∗∗ 28.55∗∗∗ 40.98∗∗∗ 27.05∗∗∗

(23.72) (9.60) (26.82) (24.03) (10.72) (13.37) (21.74) (21.97) (20.79)

seasonality (+) Jul∗∗∗ Nov∗∗∗ Oct∗∗∗ Oct∗∗∗ Feb∗∗∗ Jan∗∗∗ Aug∗∗∗ Nov∗∗∗ Aug∗∗∗

Observations 2,653 2,657 2,639 2,648 2,657 2,657 2,653 2,580 2,653
Adjusted R2 0.80 0.85 0.81 0.78 0.84 0.85 0.81 0.76 0.88

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3: Univariate regressions of daily RV on HAR-RV extended with
commodity volatility factors

I report the coefficients of the nine univariate regressions of daily RV in date t sampled
at five minutes interval on commodity volatility factors in date t − 1 that are, (i) the
halved log term structure, i.e., the log price difference between the nearby and first deferred
contracts, scaled by the number of days between their two maturities differentiated when
in backwardation or in contango; (ii) the days to maturity and (iii) 12 dummy vectors set
to one for each different month from January to December. The model is eq. 5. I indicate
by an abbreviation the month of highest positive significance, and leave empty when no
month is significantly positive. I modify the magnitude of the variables by a power of 10 to
improve the coefficients readability. The t-statistics are in parenthesis. The study period is
from May 2008 to January 2019.

(C) (CL) (GC) (HG) (HO) (NG) (S) (SI) (W)

RVc,t

RV D
c,t−1 0.22∗∗∗ 0.29∗∗∗ 0.14∗∗∗ 0.08∗∗∗ 0.27∗∗∗ 0.10∗∗∗ 0.14∗∗∗ 0.13∗∗∗ 0.13∗∗∗

(9.77) (12.46) (6.38) (3.56) (11.91) (4.15) (6.15) (5.66) (5.79)

RV W
c,t−1 0.07∗∗ 0.31∗∗∗ 0.17∗∗∗ 0.39∗∗∗ 0.23∗∗∗ 0.24∗∗∗ 0.08∗∗ 0.24∗∗∗ 0.28∗∗∗

(2.13) (8.50) (4.12) (8.95) (6.71) (6.55) (2.30) (5.77) (7.26)

RV M
c,t−1 0.06 0.30∗∗∗ 0.46∗∗∗ 0.38∗∗∗ 0.38∗∗∗ 0.30∗∗∗ 0.39∗∗∗ 0.32∗∗∗ 0.28∗∗∗

(1.46) (8.28) (11.51) (9.26) (12.11) (7.40) (9.43) (7.26) (6.28)

contango 4.67∗∗∗ 0.98∗∗∗ 14.26∗∗∗ 5.43∗∗ 2.89∗∗∗ 1.18∗∗∗ 6.76∗∗∗ 5.22∗∗ 1.34∗

(3.61) (2.98) (5.25) (2.33) (5.19) (4.45) (3.40) (2.38) (1.83)

backwardation −0.84∗ −0.62 −32.81∗∗∗ −1.72 −1.88∗∗∗ −2.80∗∗∗ 0.20 −17.04∗∗∗ 1.86
(−1.69) (−0.53) (−13.87) (−1.14) (−3.77) (−5.47) (0.81) (−4.90) (0.23)

days to maturity ×10−7 24.48∗∗∗ 1.45 4.60∗∗∗ 4.96∗∗∗ 1.24 9.50∗∗∗ 11.03∗∗∗ 10.97∗∗∗ 7.78∗∗∗

(11.86) (1.26) (4.86) (3.68) (1.27) (4.42) (7.42) (5.28) (5.26)

seasonality (+) Jun∗∗∗ Nov∗∗∗ Feb∗∗∗ Oct∗∗∗ Nov∗∗∗ Jan∗∗∗ Jul∗∗∗ Nov∗∗∗ Jun∗∗∗

Observations 2,649 2,657 2,623 2,639 2,657 2,657 2,649 2,528 2,649
Adjusted R2 0.81 0.93 0.87 0.87 0.93 0.87 0.84 0.81 0.90

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4: Multivariate regressions of daily RV on HAR-RV extended with
commodity volatility factors

I report the coefficients of the nine multivariate regressions of daily RV in date t sampled
at five minutes interval on commodity volatility factors in date t − 1 that are, (i) the
halved log term structure, i.e., the log price difference between the nearby and first deferred
contracts, scaled by the number of days between their two maturities differentiated when
in backwardation or in contango; (ii) the days to maturity and (iii) 12 dummy vectors set
to one for each different month from January to December. The model is eq. 6. I indicate
by an abbreviation the month of highest positive significance, and leave empty when no
month is significantly positive. I modify the magnitude of the variables by a power of 10 to
improve the coefficients readability. The t-statistics are in parenthesis. The study period is
from May 2008 to January 2019.

(C) (CL) (GC) (HG) (HO) (NG) (S) (SI) (W)

RVc,t

RV D,agriculture
t−1 0.29∗∗∗ 0.03∗ −0.01 0.01 0.02 −0.01 0.05∗ 0.04 0.01

(5.67) (1.84) (−0.95) (0.73) (1.00) (−0.42) (1.71) (1.28) (0.20)

RV D,energy
t−1 0.04∗ −0.01 0.01 0.01 −0.01 0.10∗∗ 0.02 −0.05∗∗ 0.01

(1.88) (−0.34) (0.75) (0.46) (−0.60) (2.37) (1.47) (−2.18) (0.56)

RV D,metal
t−1 0.12∗∗∗ 0.10∗∗∗ 0.06∗∗∗ 0.11∗∗∗ 0.07∗∗∗ 0.02 0.08∗∗∗ 0.28∗∗∗ 0.06∗∗∗

(4.66) (5.19) (3.43) (4.26) (4.65) (0.74) (4.11) (4.74) (3.20)

RV D
c,t−1 0.01 0.26∗∗∗ 0.09∗∗∗ 0.03 0.26∗∗∗ 0.04 0.09∗∗∗ −0.00 0.12∗∗∗

(0.17) (9.93) (3.56) (0.95) (10.05) (1.40) (2.86) (−0.08) (4.11)

RV W
c,t−1 0.05 0.31∗∗∗ 0.16∗∗∗ 0.37∗∗∗ 0.22∗∗∗ 0.24∗∗∗ 0.07∗∗ 0.22∗∗∗ 0.28∗∗∗

(1.53) (8.50) (4.09) (8.43) (6.38) (6.49) (2.05) (5.33) (7.09)

RV M
c,t−1 0.01 0.28∗∗∗ 0.43∗∗∗ 0.38∗∗∗ 0.38∗∗∗ 0.28∗∗∗ 0.36∗∗∗ 0.27∗∗∗ 0.25∗∗∗

(0.16) (7.73) (10.60) (9.26) (11.98) (6.80) (8.55) (5.98) (5.68)

contango 2.13 1.40∗∗∗ 13.81∗∗∗ 5.63∗∗ 3.38∗∗∗ 1.33∗∗∗ 4.78∗∗ 4.34∗∗ 1.48∗∗

(1.61) (4.19) (5.08) (2.44) (5.96) (4.90) (2.37) (1.97) (2.02)

backwardation −0.92∗ −0.07 −32.99∗∗∗ −1.11 −2.06∗∗∗ −3.01∗∗∗ 0.07 −16.00∗∗∗ 2.15
(−1.86) (−0.06) (−13.97) (−0.74) (−4.13) (−5.82) (0.28) (−4.57) (0.26)

days to maturity ×10−7 20.27∗∗∗ −2.29∗ 4.33∗∗∗ 3.13∗∗ −1.27 8.37∗∗∗ 7.66∗∗∗ 9.95∗∗∗ 6.16∗∗∗

(9.63) (−1.72) (4.43) (2.21) (−1.13) (3.41) (4.73) (4.68) (3.95)

seasonality (+) Jul∗∗∗ Nov∗∗∗ Aug∗∗∗ Oct∗ Jan∗∗∗ Jan∗∗∗ Jul∗∗∗ Nov∗∗∗ Jun∗∗∗

Observations 2,649 2,653 2,619 2,635 2,653 2,653 2,649 2,524 2,649
Adjusted R2 0.82 0.93 0.87 0.87 0.94 0.87 0.84 0.81 0.90

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5: Out of sample forecasting accuracy and model comparison

In Panel A, I report the F-statistic of a Mincer-Zarnowitz regression where the dependent
variable is the actual daily realized volatility and the independent variable are the one day
ahead predicted value for volatility from the three models: (i) a GARCH(1,1) on the daily
return, (ii) The extended univariate HAR-RV, and (iii) the multivariate HAR-RV. The F-
statistic is on the joint significance that the intercept and the coefficient of the regression are
of zero and one, respectively. I also report the mean absolute error (MAE) and mean squared
error (MSE) of the models. In panel B, I report the statistics of the modified Diebold-Mariano
Diebold and Mariano (1995) test of Harvey et al. (1997). The first (second) setting tests
whether the univariate (multivariate) extended HAR-RV performs better than the variance
forecast of the GARCH(1,1). For each setting, I report the F-statistic and its p-value of the
test for a MAE (1) and MSE (2).

C CL GC HG HO NG S SI W
Panel A: Mincer-Zarnowitz F-test, MSE and MAE

GARCH(1,1)
MZ F-test 260.83 48.64 65.56 41.70 61.01 34.29 335.54 29.09 49.78
MAE % 0.52 0.40 0.29 0.42 0.34 0.67 0.43 0.59 0.47
MSE ×10−4 0.86 0.32 0.16 0.34 0.29 1.34 0.43 0.71 0.47
Ex-HAR-RV
MZ F-test 19.57 6.85 16.57 13.35 14.32 7.62 20.16 6.08 7.87
MAE % 0.40 0.30 0.26 0.37 0.27 0.54 0.32 0.52 0.39
MSE ×10−4 0.41 0.21 0.14 0.27 0.18 0.86 0.28 0.58 0.39
Multi-HAR-RV
MZ F-test 26.86 5.04 10.01 15.12 12.46 7.92 28.11 8.90 8.10
MAE % 0.39 0.30 0.26 0.37 0.27 0.54 0.32 0.53 0.40
MSE ×10−4 0.38 0.21 0.14 0.25 0.18 0.86 0.27 0.59 0.40

Panel B: Modified Diebold-Marino test

Ex-HAR-RV > GARCH(1,1)
HLN-DM(1) F-test 6.89 7.85 2.42 3.03 4.10 6.26 −1.39 0.80 3.39

[0.00] [0.00] [0.01] [0.00] [0.00] [0.00] [0.92] [0.21] [0.00]
HLN-DM(2) F-test 3.71 5.74 1.98 1.99 2.90 4.73 0.06 0.45 −0.04

[0.00] [0.00] [0.02] [0.02] [0.00] [0.00] [0.48] [0.33] [0.52]
Multi-HAR-RV > GARCH(1,1)
HLN-DM(1) F-test 8.32 7.80 2.20 3.01 4.34 5.98 −1.01 0.28 3.17

[0.00] [0.00] [0.01] [0.00] [0.00] [0.00] [0.84] [0.39] [0.00]
HLN-DM(2) F-test 4.07 5.66 1.75 1.90 3.02 4.60 0.11 0.28 −0.21

[0.00] [0.00] [0.04] [0.03] [0.00] [0.00] [0.46] [0.39] [0.58]
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Table 6: Multivariate realized beta (optimal hedging ratio) modeling with RV
factors

I report the coefficients of the nine multivariate SUR estimations of daily realized beta
(or optimal hedging ratio) in date t, computed with the five-minute sampling realized
covariance of the nearby and first deferred contracts, divided by the RV of the nearby
contract. The independent variables are the three sector index factors of RV, the HAR-RV
variables and the commodity volatility factors in date t− 1. The model is eq. 11. I indicate
by an abbreviation the month of highest positive significance, and leave empty when no
month is significantly positive. I modify the magnitude of the variables by a power of 10 to
improve the coefficients readability. The t-statistics are in parenthesis. The study period is
from May 2008 to January 2019.

(C) (CL) (GC) (HG) (HO) (NG) (S) (SI) (W)

ROHRc,t

RV D,agriculture
t−1 −29.66∗∗∗ 4.97∗∗∗ 7.67 −1.92 −4.64 −1.01 1.51 −1.44 −0.37

(−2.77) (2.89) (1.25) (−0.22) (−1.48) (−0.30) (0.32) (−0.11) (−0.09)

RV D,energy
t−1 −8.82∗∗ −1.23 −8.03 −19.26∗∗ −3.36 −16.62∗∗∗ 1.11 −19.22∗ −6.45∗

(−2.44) (−0.69) (−1.53) (−2.45) (−1.07) (−3.45) (0.33) (−1.72) (−1.92)

RV D,metal
t−1 11.74∗ 3.74 16.75 −26.34 −4.82 −7.87 11.55∗ −15.67 −4.64

(1.88) (1.43) (1.17) (−1.60) (−1.01) (−1.56) (1.95) (−0.33) (−0.80)

RV D
c,t−1 11.14∗∗ 1.10 −83.62∗∗∗ 2.78 2.61 4.45∗∗ −8.95 21.79 13.69∗∗

(2.45) (0.66) (−3.18) (0.16) (0.55) (2.05) (−1.53) (1.01) (2.08)

RV W
c,t−1 5.97 −0.14 −8.58 31.20 −12.95 4.14 53.06∗∗∗ −51.41∗∗ −0.58

(1.24) (−0.04) (−0.20) (0.99) (−1.29) (1.18) (4.34) (−2.23) (−0.04)

RV M
c,t−1 2.74 −1.82 85.13∗ 19.62 28.12∗∗∗ −18.77∗∗∗ −120.73∗∗∗ 52.71∗ 15.39

(0.31) (−0.42) (1.73) (0.67) (2.69) (−3.72) (−6.68) (1.71) (0.90)

contango ×101 −13.82∗∗∗ −4.54∗∗∗ −84.76∗∗∗ −64.97∗∗∗ −3.84∗∗∗ −2.11∗∗∗ 15.08∗∗∗ −74.00∗∗∗ −6.92∗∗∗

(−6.57) (−13.27) (−6.47) (−6.10) (−3.53) (−7.50) (3.79) (−7.37) (−4.91)

backwardation ×101 7.79∗∗∗ 15.01∗∗∗ 4.11 42.45∗∗∗ 13.88∗∗∗ 6.67∗∗∗ 6.00∗∗∗ 126.20∗∗∗ 21.59
(9.92) (13.74) (0.36) (6.12) (13.87) (12.72) (12.14) (7.90) (1.36)

days to maturity ×10−6 43.93∗∗∗ −11.61∗∗∗ −4.78 −5.54 −24.95∗∗∗ −4.85∗∗ −1.15 7.52 −0.16
(15.13) (−10.22) (−1.13) (−0.93) (−12.13) (−2.14) (−0.40) (0.86) (−0.06)

seasonality (+) Apr∗∗∗ Oct∗∗∗ Aug∗∗∗ Oct∗∗∗ Aug∗∗ Aug∗∗∗ Jun∗∗∗ Oct∗∗∗ Apr∗∗

Observations 2,648 2,653 2,619 2,635 2,653 2,653 2,648 2,523 2,648
Adjusted R2 0.97 1.00 0.94 0.87 0.99 0.98 0.98 0.73 0.98

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

23



Table 7: Out of sample forecasting accuracy of RBeta (ROHR) and model
comparison

In Panel A, I report the F-statistic of a Mincer-Zarnowitz regression where the dependent
variable is the actual daily ROHR and the independent variable are the one day ahead
ROHR predicted value from the two models of (5) and (6) (univariate and multivariate HAR
respectively on the ROHR. The F-statistic is on the joint significance that the intercept and
the coefficient of the regression are of zero and one, respectively. I also report the mean
absolute error (MAE) and mean squared error (MSE) of the models. In panel B, I report the
statistics of the modified Diebold-Mariano Diebold and Mariano (1995) test of Harvey et al.
(1997). The null is that the univariate HAR does not perform better than the multivariate
model. I report the F-statistic and its p-value of the test for a MAE (1) and MSE (2).

C CL GC HG HO NG S SI W

Panel A: Mincer-Zarnowitz F-test, MSE and MAE

AR-RBeta
MZ F-test 795.76 850.63 4, 528.65 5, 887.81 329.89 758.36 1, 585.90 1, 674.76 1, 116.11
MAE ×102 6.99 2.45 8.97 14.75 4.65 5.62 6.23 17.34 6.97
MSE ×103 5.62 0.80 3.13 6.15 5.35 4.89 3.66 21.06 6.10
Multi-HAR-RBeta
MZ F-test 63.50 63.51 17.79 62.12 104.60 71.31 34.32 22.02 57.59
MAE ×102 9.95 3.43 14.80 22.89 6.06 6.76 8.72 27.70 8.33
MSE ×103 19.93 2.81 39.28 86.76 6.69 11.92 16.90 172.67 17.40

Panel B: Modified Diebold-Marino tests

AR-RBeta > Multi-HAR-RBeta
HLN-DM(1) F-test 21.39 25.57 44.14 43.31 21.10 18.37 22.33 31.91 16.27

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]
HLN-DM(2) F-test 9.76 6.84 23.44 17.56 8.43 6.18 7.82 5.78 4.96

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]
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Appendix A.

Table 8: Description of futures contracts

I report the specifications of the futures contracts written on the nine selected commodities.
The specifications include their trading venues, ticker, underlying commodities and unit. I
also report their maturity months with the appropriate code letter.

Ticker Trading venue Underlying Unit Maturity
C CBT Corn bu (5,000) HKNUZ
CL NYMEX/ICE WTI crude oil bbl (1,000) FGHJKMNQUVXZ
GC CMX Gold oz (100) GJMQVZ
HG COMEX Copper lb (25,000) FGHJKMNQUVXZ
HO NYMEX Heating oil gal (42,000) FGHJKMNQUVXZ
NG NYMEX/ICE Natural gas MMBtu (10,000) FGHJKMNQUVXZ
S CBT Soybeans bu (5,000) FHKNQUX
SI CMX Silver oz (5,000) FHKNUZ
W CBT Chicago wheat bu (5,000) HKNUZ

Maturity month code: F = January, G = February, H = Mars, J = April, K = May, M = June,
N = July, Q = August, U = September, V = October, X = November, Z = December.

27



Appendix B.

Table 9: Univariate regressions of daily RV on HAR-RV extended with
commodity volatility factors

I report the coefficients of the nine univariate regressions of daily RV in date t sampled
at five minutes interval on commodity volatility factors in date t − 1 that are, (i) the
halved log term structure, i.e., the log price difference between the nearby and first deferred
contracts, scaled by the number of days between their two maturities differentiated when
in backwardation or in contango; (ii) the days to maturity and (iii) 12 dummy vectors set
to one for each different month from February to December. The model is eq. 5. I modify
the magnitude of the variables by a power of 10 to improve the coefficients readability. The
t-statistics are in parenthesis. The study period is from May 2008 to January 2019.

(C) (CL) (GC) (HG) (HO) (NG) (S) (SI) (W)

RVc,t

RV D
c,t−1 0.22∗∗∗ 0.29∗∗∗ 0.14∗∗∗ 0.08∗∗∗ 0.27∗∗∗ 0.10∗∗∗ 0.14∗∗∗ 0.13∗∗∗ 0.13∗∗∗

(9.77) (12.46) (6.38) (3.56) (11.91) (4.15) (6.15) (5.66) (5.79)

RV W
c,t−1 0.07∗∗ 0.31∗∗∗ 0.17∗∗∗ 0.39∗∗∗ 0.23∗∗∗ 0.24∗∗∗ 0.08∗∗ 0.24∗∗∗ 0.28∗∗∗

(2.13) (8.50) (4.12) (8.95) (6.71) (6.55) (2.30) (5.77) (7.26)

RV M
c,t−1 0.06 0.30∗∗∗ 0.46∗∗∗ 0.38∗∗∗ 0.38∗∗∗ 0.30∗∗∗ 0.39∗∗∗ 0.32∗∗∗ 0.28∗∗∗

(1.46) (8.28) (11.51) (9.26) (12.11) (7.40) (9.43) (7.26) (6.28)

contango 4.67∗∗∗ 0.98∗∗∗ 14.26∗∗∗ 5.43∗∗ 2.89∗∗∗ 1.18∗∗∗ 6.76∗∗∗ 5.22∗∗ 1.34∗

(3.61) (2.98) (5.25) (2.33) (5.19) (4.45) (3.40) (2.38) (1.83)

backwardation −0.84∗ −0.62 −32.81∗∗∗ −1.72 −1.88∗∗∗ −2.80∗∗∗ 0.20 −17.04∗∗∗ 1.86
(−1.69) (−0.53) (−13.87) (−1.14) (−3.77) (−5.47) (0.81) (−4.90) (0.23)

days to maturity ×10−7 24.48∗∗∗ 1.45 4.60∗∗∗ 4.96∗∗∗ 1.24 9.50∗∗∗ 11.03∗∗∗ 10.97∗∗∗ 7.78∗∗∗

(11.86) (1.26) (4.86) (3.68) (1.27) (4.42) (7.42) (5.28) (5.26)

Jan ×10−4 40.41∗∗∗ 17.39∗∗∗ 8.42∗∗ 8.40 16.66∗∗∗ 92.71∗∗∗ 22.42∗∗∗ 12.31 30.03∗∗∗

(4.85) (3.24) (2.34) (1.54) (3.58) (8.26) (3.69) (1.51) (4.62)

Feb ×10−4 29.33∗∗∗ 10.97∗∗ 10.26∗∗∗ 0.99 13.14∗∗∗ 61.91∗∗∗ 15.34∗∗ 20.67∗∗∗ 31.73∗∗∗

(3.58) (1.98) (2.84) (0.18) (2.68) (5.47) (2.50) (2.62) (4.90)

Mar ×10−4 43.52∗∗∗ 1.58 2.15 1.01 −9.80∗∗ 48.10∗∗∗ 20.56∗∗∗ 9.45 37.86∗∗∗

(5.61) (0.29) (0.62) (0.20) (−2.17) (4.79) (3.54) (1.27) (5.88)

Apr ×10−4 41.40∗∗∗ 8.13 8.05∗∗ 4.53 3.55 52.41∗∗∗ 13.20∗∗ 29.83∗∗∗ 33.02∗∗∗

(5.16) (1.57) (2.32) (0.87) (0.82) (5.45) (2.22) (3.82) (5.03)

May ×10−4 55.86∗∗∗ 12.54∗∗ 3.25 7.90 11.09∗∗∗ 56.60∗∗∗ 24.50∗∗∗ 21.17∗∗∗ 36.56∗∗∗

(6.79) (2.40) (0.91) (1.53) (2.60) (5.96) (4.30) (2.70) (5.44)

Jun ×10−4 70.02∗∗∗ 11.31∗∗ 6.31∗ 1.29 9.33∗∗ 55.74∗∗∗ 30.08∗∗∗ 15.90∗∗ 48.02∗∗∗

(8.61) (2.16) (1.88) (0.26) (2.24) (5.78) (5.30) (2.11) (7.21)

Jul ×10−4 82.69∗∗∗ 11.49∗∗ −1.22 0.06 4.86 56.11∗∗∗ 40.70∗∗∗ 12.16∗ 34.72∗∗∗

(8.36) (2.12) (−0.36) (0.01) (1.17) (5.87) (6.28) (1.67) (4.74)

Aug ×10−4 58.29∗∗∗ 14.53∗∗∗ 9.34∗∗∗ 2.54 9.24∗∗ 57.09∗∗∗ 34.61∗∗∗ 22.94∗∗∗ 43.61∗∗∗

(6.63) (2.77) (2.82) (0.51) (2.27) (6.28) (5.31) (3.00) (6.10)

Sep ×10−4 59.57∗∗∗ 16.18∗∗∗ 7.62∗∗ 8.00 9.92∗∗ 56.23∗∗∗ 19.81∗∗∗ 28.94∗∗∗ 35.34∗∗∗

(7.06) (2.96) (2.13) (1.59) (2.34) (5.99) (3.01) (3.79) (5.09)

Oct ×10−4 56.83∗∗∗ 12.80∗∗ 2.55 14.23∗∗∗ 8.61∗∗ 51.43∗∗∗ 24.10∗∗∗ 11.34 32.37∗∗∗

(6.68) (2.43) (0.73) (2.84) (2.09) (5.46) (3.82) (1.43) (4.89)

Nov ×10−4 46.21∗∗∗ 23.85∗∗∗ 6.20∗ 4.79 17.84∗∗∗ 66.70∗∗∗ 24.01∗∗∗ 30.05∗∗∗ 33.31∗∗∗

(5.59) (4.57) (1.76) (0.91) (4.21) (6.31) (3.86) (3.91) (5.18)

Dec ×10−4 38.45∗∗∗ 7.82 3.19 −11.67∗∗ 4.92 68.88∗∗∗ 13.12∗∗ 11.92 25.48∗∗∗

(4.63) (1.47) (0.89) (−2.17) (1.10) (6.46) (2.14) (1.50) (3.82)

Observations 2,649 2,657 2,623 2,639 2,657 2,657 2,649 2,528 2,649
Adjusted R2 0.81 0.93 0.87 0.87 0.93 0.87 0.84 0.81 0.90

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Appendix C.

Table 10: Multivariate regressions of daily RV on HAR-RV extended with
commodity volatility factors

I report the coefficients of the nine multivariate regressions of daily RV in date t sampled
at five minutes interval on commodity volatility factors in date t − 1 that are, (i) the
halved log term structure, i.e., the log price difference between the nearby and first deferred
contracts, scaled by the number of days between their two maturities differentiated when
in backwardation or in contango; (ii) the days to maturity and (iii) 12 dummy vectors set
to one for each different month from January to December. The model is eq. 6. I modify
the magnitude of the variables by a power of 10 to improve the coefficients readability. The
t-statistics are in parenthesis. The study period is from May 2008 to January 2019.

(C) (CL) (GC) (HG) (HO) (NG) (S) (SI) (W)

RVc,t

RV D,agriculture
t−1 0.29∗∗∗ 0.03∗ −0.01 0.01 0.02 −0.01 0.05∗ 0.04 0.01

(5.67) (1.84) (−0.95) (0.73) (1.00) (−0.42) (1.71) (1.28) (0.20)

RV D,energy
t−1 0.04∗ −0.01 0.01 0.01 −0.01 0.10∗∗ 0.02 −0.05∗∗ 0.01

(1.88) (−0.34) (0.75) (0.46) (−0.60) (2.37) (1.47) (−2.18) (0.56)

RV D,metal
t−1 0.12∗∗∗ 0.10∗∗∗ 0.06∗∗∗ 0.11∗∗∗ 0.07∗∗∗ 0.02 0.08∗∗∗ 0.28∗∗∗ 0.06∗∗∗

(4.66) (5.19) (3.43) (4.26) (4.65) (0.74) (4.11) (4.74) (3.20)

RV D
c,t−1 0.01 0.26∗∗∗ 0.09∗∗∗ 0.03 0.26∗∗∗ 0.04 0.09∗∗∗ −0.00 0.12∗∗∗

(0.17) (9.93) (3.56) (0.95) (10.05) (1.40) (2.86) (−0.08) (4.11)

RV W
c,t−1 0.05 0.31∗∗∗ 0.16∗∗∗ 0.37∗∗∗ 0.22∗∗∗ 0.24∗∗∗ 0.07∗∗ 0.22∗∗∗ 0.28∗∗∗

(1.53) (8.50) (4.09) (8.43) (6.38) (6.49) (2.05) (5.33) (7.09)

RV M
c,t−1 0.01 0.28∗∗∗ 0.43∗∗∗ 0.38∗∗∗ 0.38∗∗∗ 0.28∗∗∗ 0.36∗∗∗ 0.27∗∗∗ 0.25∗∗∗

(0.16) (7.73) (10.60) (9.26) (11.98) (6.80) (8.55) (5.98) (5.68)

contango 2.13 1.40∗∗∗ 13.81∗∗∗ 5.63∗∗ 3.38∗∗∗ 1.33∗∗∗ 4.78∗∗ 4.34∗∗ 1.48∗∗

(1.61) (4.19) (5.08) (2.44) (5.96) (4.90) (2.37) (1.97) (2.02)

backwardation −0.92∗ −0.07 −32.99∗∗∗ −1.11 −2.06∗∗∗ −3.01∗∗∗ 0.07 −16.00∗∗∗ 2.15
(−1.86) (−0.06) (−13.97) (−0.74) (−4.13) (−5.82) (0.28) (−4.57) (0.26)

days to maturity ×10−7 20.27∗∗∗ −2.29∗ 4.33∗∗∗ 3.13∗∗ −1.27 8.37∗∗∗ 7.66∗∗∗ 9.95∗∗∗ 6.16∗∗∗

(9.63) (−1.72) (4.43) (2.21) (−1.13) (3.41) (4.73) (4.68) (3.95)

Jan ×10−4 26.11∗∗∗ 15.19∗∗∗ 7.62∗ 3.34 15.94∗∗∗ 90.10∗∗∗ 16.94∗∗∗ 16.32∗ 27.60∗∗∗

(3.03) (2.66) (1.93) (0.56) (3.27) (7.91) (2.63) (1.83) (4.05)

Feb ×10−4 14.16∗ 10.16∗ 9.85∗∗ −2.98 13.33∗∗∗ 58.61∗∗∗ 10.35 24.02∗∗∗ 29.46∗∗∗

(1.66) (1.75) (2.50) (−0.50) (2.65) (5.12) (1.59) (2.76) (4.34)

Mar ×10−4 28.97∗∗∗ 0.09 1.99 −2.52 −10.54∗∗ 46.01∗∗∗ 15.94∗∗∗ 11.07 36.85∗∗∗

(3.62) (0.02) (0.54) (−0.46) (−2.29) (4.49) (2.64) (1.38) (5.61)

Apr ×10−4 28.98∗∗∗ 4.84 7.78∗∗ 0.08 1.80 50.49∗∗∗ 8.83 30.26∗∗∗ 31.99∗∗∗

(3.56) (0.89) (2.11) (0.01) (0.40) (5.09) (1.44) (3.63) (4.82)

May ×10−4 40.61∗∗∗ 8.29 2.13 2.90 8.18∗ 54.30∗∗∗ 17.45∗∗∗ 23.12∗∗∗ 34.80∗∗∗

(4.83) (1.51) (0.56) (0.53) (1.83) (5.47) (2.92) (2.77) (5.11)

Jun ×10−4 58.43∗∗∗ 9.48∗ 6.41∗ −2.73 7.85∗ 54.94∗∗∗ 24.63∗∗∗ 17.12∗∗ 47.59∗∗∗

(7.05) (1.72) (1.77) (−0.51) (1.80) (5.52) (4.12) (2.12) (7.05)

Jul ×10−4 77.37∗∗∗ 7.70 −0.86 −6.11 1.99 55.81∗∗∗ 36.21∗∗∗ 11.20 35.64∗∗∗

(7.71) (1.29) (−0.22) (−1.06) (0.43) (5.33) (5.26) (1.32) (4.75)

Aug ×10−4 43.36∗∗∗ 10.92∗ 9.52∗∗∗ −2.89 6.34 55.16∗∗∗ 31.44∗∗∗ 23.35∗∗∗ 43.63∗∗∗

(4.76) (1.94) (2.59) (−0.53) (1.43) (5.64) (4.68) (2.76) (6.03)

Sep ×10−4 44.60∗∗∗ 12.13∗∗ 7.10∗ 0.51 6.35 52.21∗∗∗ 16.02∗∗ 30.67∗∗∗ 33.59∗∗∗

(5.19) (2.10) (1.85) (0.09) (1.41) (5.23) (2.38) (3.70) (4.76)

Oct ×10−4 44.40∗∗∗ 8.40 2.26 9.01∗ 4.97 47.23∗∗∗ 19.73∗∗∗ 11.37 30.01∗∗∗

(5.18) (1.50) (0.60) (1.66) (1.13) (4.68) (3.05) (1.35) (4.44)

Nov ×10−4 30.48∗∗∗ 19.74∗∗∗ 4.81 −0.39 14.61∗∗∗ 64.99∗∗∗ 18.79∗∗∗ 32.46∗∗∗ 30.09∗∗∗

(3.60) (3.56) (1.26) (−0.07) (3.24) (5.97) (2.93) (3.90) (4.53)

Dec ×10−4 24.64∗∗∗ 5.51 3.02 −16.67∗∗∗ 3.37 66.54∗∗∗ 8.01 16.40∗ 23.57∗∗∗

(2.90) (0.99) (0.79) (−2.90) (0.73) (6.13) (1.25) (1.92) (3.44)

Observations 2,649 2,653 2,619 2,635 2,653 2,653 2,649 2,524 2,649
Adjusted R2 0.82 0.93 0.87 0.87 0.94 0.87 0.84 0.81 0.90

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

29



Appendix D.

Table 11: Multivariate realized beta (optimal hedging ratio) modeling with RV
factors

I report the coefficients of the nine multivariate SUR estimations of daily realized beta (or
optimal hedging ratio) in date t, computed with the five-minute sampling realized covariance
of the nearby and first deferred contracts, divided by the RV of the nearby contract. The
independent variables are the three sector index factors of RV, the HAR-RV variables and
the commodity volatility factors in date t− 1. The model is eq. 11. I modify the magnitude
of the variables by a power of 10 to improve the coefficients readability. The t-statistics are
in parenthesis. The study period is from May 2008 to January 2019.

(C) (CL) (GC) (HG) (HO) (NG) (S) (SI) (W)

ROHRc,t

RV D,agriculture
t−1 −29.66∗∗∗ 4.97∗∗∗ 7.67 −1.92 −4.64 −1.01 1.51 −1.44 −0.37

(−2.77) (2.89) (1.25) (−0.22) (−1.48) (−0.30) (0.32) (−0.11) (−0.09)

RV D,energy
t−1 −8.82∗∗ −1.23 −8.03 −19.26∗∗ −3.36 −16.62∗∗∗ 1.11 −19.22∗ −6.45∗

(−2.44) (−0.69) (−1.53) (−2.45) (−1.07) (−3.45) (0.33) (−1.72) (−1.92)

RV D,metal
t−1 11.74∗ 3.74 16.75 −26.34 −4.82 −7.87 11.55∗ −15.67 −4.64

(1.88) (1.43) (1.17) (−1.60) (−1.01) (−1.56) (1.95) (−0.33) (−0.80)

RV D
c,t−1 11.14∗∗ 1.10 −83.62∗∗∗ 2.78 2.61 4.45∗∗ −8.95 21.79 13.69∗∗

(2.45) (0.66) (−3.18) (0.16) (0.55) (2.05) (−1.53) (1.01) (2.08)

RV W
c,t−1 5.97 −0.14 −8.58 31.20 −12.95 4.14 53.06∗∗∗ −51.41∗∗ −0.58

(1.24) (−0.04) (−0.20) (0.99) (−1.29) (1.18) (4.34) (−2.23) (−0.04)

RV M
c,t−1 2.74 −1.82 85.13∗ 19.62 28.12∗∗∗ −18.77∗∗∗ −120.73∗∗∗ 52.71∗ 15.39

(0.31) (−0.42) (1.73) (0.67) (2.69) (−3.72) (−6.68) (1.71) (0.90)

contango ×101 −13.82∗∗∗ −4.54∗∗∗ −84.76∗∗∗ −64.97∗∗∗ −3.84∗∗∗ −2.11∗∗∗ 15.08∗∗∗ −74.00∗∗∗ −6.92∗∗∗

(−6.57) (−13.27) (−6.47) (−6.10) (−3.53) (−7.50) (3.79) (−7.37) (−4.91)

backwardation ×101 7.79∗∗∗ 15.01∗∗∗ 4.11 42.45∗∗∗ 13.88∗∗∗ 6.67∗∗∗ 6.00∗∗∗ 126.20∗∗∗ 21.59
(9.92) (13.74) (0.36) (6.12) (13.87) (12.72) (12.14) (7.90) (1.36)

days to maturity ×10−6 43.93∗∗∗ −11.61∗∗∗ −4.78 −5.54 −24.95∗∗∗ −4.85∗∗ −1.15 7.52 −0.16
(15.13) (−10.22) (−1.13) (−0.93) (−12.13) (−2.14) (−0.40) (0.86) (−0.06)

Jan ×10−1 7.09∗∗∗ 9.74∗∗∗ 8.60∗∗∗ 8.87∗∗∗ 9.08∗∗∗ 9.16∗∗∗ 8.40∗∗∗ 9.12∗∗∗ 7.91∗∗∗

(56.81) (207.88) (51.48) (35.50) (105.67) (97.34) (73.06) (25.99) (71.57)

Feb ×10−1 7.37∗∗∗ 9.68∗∗∗ 8.79∗∗∗ 8.04∗∗∗ 8.81∗∗∗ 8.58∗∗∗ 8.96∗∗∗ 5.62∗∗∗ 8.37∗∗∗

(58.78) (200.19) (52.88) (31.84) (98.43) (90.32) (76.28) (16.15) (74.24)

Mar ×10−1 7.17∗∗∗ 9.72∗∗∗ 8.27∗∗∗ 7.98∗∗∗ 8.86∗∗∗ 9.02∗∗∗ 8.37∗∗∗ 8.28∗∗∗ 8.22∗∗∗

(61.00) (217.96) (51.79) (34.75) (107.92) (105.36) (75.71) (25.80) (77.28)

Apr ×10−1 7.89∗∗∗ 9.71∗∗∗ 8.64∗∗∗ 8.40∗∗∗ 9.09∗∗∗ 8.94∗∗∗ 9.10∗∗∗ 5.41∗∗∗ 8.75∗∗∗

(66.57) (214.05) (54.05) (36.04) (112.48) (103.69) (81.49) (15.81) (81.38)

May ×10−1 7.25∗∗∗ 9.64∗∗∗ 8.24∗∗∗ 8.43∗∗∗ 9.17∗∗∗ 8.94∗∗∗ 8.05∗∗∗ 8.60∗∗∗ 8.23∗∗∗

(60.76) (217.78) (49.83) (37.04) (115.46) (105.20) (76.88) (26.45) (74.87)

Jun ×10−1 7.82∗∗∗ 9.82∗∗∗ 8.53∗∗∗ 8.30∗∗∗ 9.07∗∗∗ 8.96∗∗∗ 8.73∗∗∗ 5.62∗∗∗ 8.57∗∗∗

(65.31) (225.57) (54.63) (36.99) (116.57) (107.58) (82.84) (17.21) (77.79)

Jul ×10−1 7.51∗∗∗ 9.73∗∗∗ 8.50∗∗∗ 7.37∗∗∗ 8.95∗∗∗ 8.97∗∗∗ 8.69∗∗∗ 7.94∗∗∗ 8.65∗∗∗

(58.22) (210.87) (52.84) (32.49) (112.00) (105.49) (76.48) (24.61) (77.02)

Aug ×10−1 8.04∗∗∗ 9.67∗∗∗ 8.71∗∗∗ 8.43∗∗∗ 9.05∗∗∗ 9.04∗∗∗ 8.38∗∗∗ 4.83∗∗∗ 8.57∗∗∗

(66.26) (221.16) (56.77) (37.81) (117.98) (111.02) (77.53) (14.47) (78.48)

Sep ×10−1 7.04∗∗∗ 9.74∗∗∗ 7.77∗∗∗ 7.26∗∗∗ 9.04∗∗∗ 8.83∗∗∗ 8.08∗∗∗ 7.24∗∗∗ 7.71∗∗∗

(58.10) (217.84) (47.55) (32.07) (114.60) (99.20) (70.86) (22.58) (71.37)

Oct ×10−1 7.27∗∗∗ 9.74∗∗∗ 8.72∗∗∗ 8.29∗∗∗ 8.95∗∗∗ 8.31∗∗∗ 8.99∗∗∗ 8.79∗∗∗ 8.03∗∗∗

(60.96) (229.73) (56.70) (38.11) (117.39) (91.69) (80.52) (27.48) (77.34)

Nov ×10−1 7.35∗∗∗ 9.70∗∗∗ 7.89∗∗∗ 8.13∗∗∗ 8.99∗∗∗ 8.65∗∗∗ 8.52∗∗∗ 5.08∗∗∗ 8.30∗∗∗

(61.22) (225.43) (49.20) (35.91) (114.29) (100.13) (76.06) (15.71) (79.52)

Dec ×10−1 6.76∗∗∗ 9.66∗∗∗ 8.59∗∗∗ 7.29∗∗∗ 8.94∗∗∗ 8.97∗∗∗ 9.01∗∗∗ 7.69∗∗∗ 7.55∗∗∗

(54.91) (213.97) (53.44) (31.09) (108.71) (101.59) (78.70) (23.15) (69.37)

Observations 2,648 2,653 2,619 2,635 2,653 2,653 2,648 2,523 2,648
Adjusted R2 0.97 1.00 0.94 0.87 0.99 0.98 0.98 0.73 0.98

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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