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Abstract

Risk-neutral traders executing derivative trades on behalf of portfolio managers maximize their

expected profit compared to trading at pre-determined times by timing trades, using the quickly

changing risk exposures of derivative baskets. The optimal order submission strategy is a sequence

of stop orders with a time-varying stop price. Timing a straddle trade yields up to 20bps per day in

a frictionless world, and up to 72bps per day on the S&P500. A CRRA trader is willing to pay up

to 51bps of the value of the derivatives to switch from trading at a fixed time to the optimal timing

strategy.
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1 Introduction

In many investment banks and hedge/mutual funds, (derivative) traders who execute trades on behalf

of portfolio managers are given a deadline by which to execute certain trades, for example the end of

the trading day, reflecting the common industry practice of daily portfolio rebalancing. In addition,

the trader will be given an objective against which their performance will be benchmarked, for example

immediate execution, or a Time-Weighted Average Price (TWAP). The compensation of the trader,

acting as an agent for the portfolio manager, is often directly linked to realized profits/losses relative to

the benchmark strategy, providing incentives for the trader to maximize the expected profit relative to the

benchmark strategy. Importantly, the expected-profit maximizing strategy for the trader will maximize

the expected return on the portfolio from the moment it is initiated to the end of the trading period for

the portfolio manager. To a first order approximation, the trader can be seen to be risk-neutral with

respect to the price uncertainty associated with delayed execution. We show that when trading (baskets

of) derivative securities, timing the trade execution yields economically meaningful benefits compared to

benchmark trading strategies that use fixed trading times for a price-taking trader, even in the absence

of market frictions.

The frictionless world of the Black-Scholes model is a natural starting point for our analysis of the

optimal execution time. It is well-known that the Black-Scholes model cannot match observed option

prices (see, e.g., Rubinstein (1985) and Rubinstein (1994)), but the model is still often used in risk

management and its single source of risk provides a simple framework to study the implementation

problem of a derivative trader.

Rather than letting the trader be completely free in the execution timing, resulting in a potentially

large tracking error relative to the benchmark trading strategy, the portfolio manager may choose to

impose a risk-management constraint in the spirit of the Value-at-Risk condition used in Danielsson,

Shin, and Zigrand (2012). In our set up, such a constraint takes the form of a stop-loss level, which

maximizes the purchase price of the desired position to a predetermined value, presumably linked to the

value of the position at the start of the trading period. The stop-loss level can also be seen as introducing

risk aversion for the trader.

The strategy maximizing expected-profit, or optimally timing trade execution, as followed by the

risk-neutral, price-taking derivative trader is the solution to a finite-horizon multiple optimal stopping

problem which we formulate and solve using a finite-difference method in Section 2.2. Specifically, we split

the problem of trading the portfolio into a sequence of single optimal stopping problems, extending the

results of Haggstrom (1967). At each point in time, the trader has to decide how many of the remaining

baskets of options in the portfolio, if any, to trade immediately. Executing a trade will turn out to be

optimal only when the instantaneous expected excess return on the basket is sufficiently positive.

The optimal timing strategy translates into a dynamic order submission strategy, consisting of a

sequence of stop orders with a time-varying stop price, as opposed to a single limit order with a fixed
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price. When buying a straddle, a basket consisting of a long put and a long call with the same maturity

and strike, a sequence of buy-stop orders should be submitted to the market with stop prices that are

almost linearly decreasing over time.

In the Black-Scholes world, expected benefits (“gains”) from timing the buying/selling of a straddle

are economically meaningful – up to several tens of basis points with a one-day trading horizon – compared

to either of three benchmark strategies: trading at the opening of the market, at the close of the market,

or using a TWAP strategy, i.e., trading an equal fraction of the total position at regularly spaced intervals

in time. For a delta-neutral straddle, which has a zero instantaneous expected excess return, the expected

gains from trading optimally are unsurprisingly modest at about 2bps colorredof the opening straddle

price per day using the default parameters. The cost of imposing the stop-loss when trading the straddle

ranges between zero and 4.6bps per day, depending on moneyness, and amount to a bit over 1bp per day

for the delta-neutral straddle. In the special case that the value of the portfolio is a monotonic function

of the price of the underlying asset, for example when considering a single plain vanilla put or call option,

Proposition 2.1 provides sufficient conditions to determine the optimal trading time analytically in the

Black-Scholes world. Under the standard assumption that the equity premium is positive, it is optimal

to buy a single call and the stock itself immediately, while buying a single put would only occur at the

end of the allowed trading period.

In the empirical section, we employ the expected-return-maximizing trading strategy derived in the

Black-Scholes world to purchase a near-maturity straddle on the S&P500 index every day using an

extensive data set with high-frequency S&P500 option quotes between July 2000 and December 2012.

Economically meaningful gains of up to 33bps per day for an at-the-money (ATM) straddle are obtained

when compared to the three benchmark strategies. Surprisingly, adding the stop-loss level increases the

average gain from the optimal timing strategy for an ATM straddle to 72bps (compared to trading at

the close of the market), mainly because the stop-loss helps to avoid having to trade at the close on days

with substantially negative market movements. By doing so, the stop-loss reduces the left tail of the

gain distribution, so the average is raised while simultaneously the variance is reduced. This raises the

question how a trader with alternative, risk-averse, preferences would value the two strategies relative

to the benchmarks, even though the risk associated with delayed trade execution was not taken into

account in the derivation of the optimal timing strategy. A CRRA trader with a coefficient of risk

aversion equal to two would be willing to pay up to 32bps of the value of the straddle to switch from one

of the benchmark strategies to the optimal timing strategy, and up to 51bps to switch to the optimal

timing strategy that includes the stop-loss.

In both set ups, the average gain obtained when purchasing a straddle on the S&P500 index exceed

the theoretical expected gain from the Black-Scholes model. We argue that because of i.i.d. returns

and no market frictions, the expected gains in the Black-Scholes model are a conservative estimate of

the average gains that can be obtained using market data. We conduct extensive simulations using
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stylized facts in the data to show how the individual assumptions affect the performance of our strategy.

In particular, we show how the inclusion of the stop-loss level helps make the strategy robust against

serial correlation in intraday index returns, and how priced variance risk mainly affects the performance

of the strategy for straddles around the ATM level. We note that even though variance risk carries

a negative risk premium (see, e.g., Bollerslev, Tauchen, and Zhou (2009)) and the straddle’s variance

beta is positive, it is not optimal to always delay purchasing the straddle until the end of the trading

period. Like the equity risk beta in the Black-Scholes model, the variance beta will change as either

the underlying asset price or the spot volatility changes. Expected future changes in the betas and

their relative importance for the value of the straddle generate a trade-off between waiting and trading

immediately. The simulations also show that gains are robust to intraday seasonality in trading costs and

to potential synchronisation issues between the index and options market, although Muravyev, Pearson,

and Broussard (2013) note that latencies, the time it takes to transfer information from one end of a

communications network to another, for option markets are just as low as for equity markets nowadays.

Throughout, a portfolio is defined as an (ordered) collection of baskets, and a basket (or “option

strategy”) as a set of derivatives that have to be traded simultaneously for exogenous reasons. Option

strategies can be constructed with ease from the standard traded plain vanilla put and call options avail-

able on derivative exchanges. Major exchanges like the Chicago Board Options Exchange (CBOE) allow

investors to request a single quote for the whole strategy1 and trade the basket in a single transaction,

even though the actual holdings in the investor’s portfolio will show the puts and calls separately once

the trade is completed. The single transaction reduces execution risk and (fixed) transaction costs for

the investor and facilitates trading in option series that may be illiquid when traded in isolation like far-

out-of-the-money puts and calls. Trading in option strategies is an important part of the total market

for (equity index) derivatives. Fahlenbrach and Sand̊as (2010) report that for a sample of the FTSE-100

index option market spanning 2001-2004, 37% of all trades are related to baskets. Those trades represent

about 75% of total trading volume in the sample and a total premium revenue that is about three times

bigger than that generated by trades in individual options. In the FTSE-100 sample, almost one in five

basket trades involves a straddle or strangle2, with most trading taking place close to the ATM level.

The order in which various baskets have to be traded is often the result of risk management consid-

erations. As an example, a trader may be prohibited from entering into a naked short put position, but

may be able to invest in either a bear put spread or add a short put position with a long put position

in place already. Exchange margin rules may also favour a certain order of the baskets in the portfolio.

For example, CBOE margin requirements for a short ATM put combined with a long out-of-the-money

put are lower than for naked short positions3. Santa-Clara and Saretto (2009) show that margin require-

1See, e.g., CBOE Annual report 2004, page 8 and CBOE Annual report 2007, page 3 (https://www.cboe.com/AboutCBOE/

AnnualReportArchive/AnnualReport2007.pdf).
2A strangle is very similar to a straddle, the only difference being that the put and call option in a strangle have different

strike prices.
3See http://www.cboe.com/micro/margin/introduction.aspx for details.
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ments affect option returns in an economically meaningful way, providing an incentive to investors to

think about ordering their trades so as to lower margin impacts. Gârleanu and Pedersen (2011) present

evidence that margin requirements affect equilibrium holdings and prices.

The starting point of our analysis is a given portfolio of (baskets of) derivative securities, i.e., we

take the solution to the asset and security allocation problems as well as the order in which the various

baskets have to be traded as given4. The option to time trade execution can be seen as a generalized

version of a swing option, a derivative contract with multiple exercise rights, with a payoff function that

is specific to each exercising time5. As discussed in Section 4.8, optimal execution of stock portfolios

focuses purely on transaction costs and price impact6.

The remainder of the paper is structured as follows. In Section 2, we formulate and provide a

solution method for the trade execution timing problem of a given portfolio of derivatives. A simple

solution exists for portfolios whose value is a monotonic function of the price of the underlying asset, and

a dynamic programming algorithm can be used to find the optimal timing strategy for non-monotonic

portfolios. In Section 3, we use the algorithm to analyse in depth the optimal timing of purchasing or

selling a straddle in the Black-Scholes world, showing the value of being able to choose the trading time,

and demonstrating how to formulate the corresponding order submission strategy. In Section 4, we use

intraday data on both the S&P500 index and its associated options as traded on the CBOE to time

the purchase of a near-maturity straddle. We attribute the difference between the realized gains for the

S&P500 straddles and the expected gains under the Black-Scholes assumptions to three main factors:

intraday seasonality in option bid-ask spreads, serially correlated intraday index returns and the variance

risk premium/leverage effect. Section 5 concludes.

2 Timing value for single options and baskets

The starting point of our analysis is an investor/portfolio manager, seeking to hold a given portfolio (H)

of derivative securities on a single underlying asset by a given time (T ), for example the end of the day.

The elements of H, (hi), are baskets of securities to be traded simultaneously, indexed by i, i = 1, . . . , I.

A basket may contain a simple derivative like a plain vanilla call or put option, or a combination of them

like a straddle (long put and call with same time to maturity and exercise price).

If the investor has risk aversion equal to the representative agent and executes trades themselves,

the discounted derivative price process will be a martingale for the investor in utility terms and hence

she will be indifferent between trading now or any time before the end of the trading period. There are

4Dert and Oldenkamp (2000), Liu and Pan (2003) and Papahristodoulou (2004) study asset allocation/portfolio choice

models using derivatives.
5Carmona and Touzi (2008), Carmona and Dayanik (2008) and Benth (2011) among others study the pricing of these

kinds of options.
6Chan and Lakonishok (1995) is an early example. Harris and Hasbrouck (1996) study the choice between market and

limit orders.
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at least two ways to deviate from this set up and motivate the analysis below. Either the investor has

lower risk aversion than the representative agent or the investor delegates the execution of trades to a

third party with a different risk aversion or utility function. We will focus on the latter interpretation in

the remainder of the paper, although the results would be the same if the investor themselves were risk

neutral.

The portfolio manager (principal) delegates the execution of the portfolio trades to a dedicated risk-

neutral trader (agent), who is instructed to trade the baskets hi in sequence, i.e. h1 should be traded

first, then h2 and so on. Furthermore, all units of a basket should be traded at once, so order splitting is

not allowed. The manager also tells the trader the characteristics of each basket. For example, if basket

i consists of a single plain vanilla option, its characteristics are the expiration time T̂i, the strike price

Ki, the exercise style (European or American), and whether it is a call or a put option. Throughout,

we assume that the characteristics are set at the start of the trading period, either reflecting existing

holdings that need to be unwound or being determined as the output of an asset allocation model run

with the spot/forward price of the underlying asset at the start of the trading period as an input. The

price of basket i, denoted by fi(St, t), is a function of these characteristics as well as calendar time t and

the value of the underlying asset St.

A straightforward way to obtain the portfolio would be to trade all baskets at t = 0, the start of

the trading period. This strategy carries no execution risk because all current prices are known, and

therefore it constitutes a natural benchmark trading strategy. In this section, we seek to find the trading

strategy that will maximize the expected performance relative to this benchmark strategy. Trading at

the start of the period will turn out to be optimal only in very specific cases. The problem faced by the

trader can be seen as finding the stopping/trading time τi for each basket i = 1, . . . , I that minimizes

(maximizes) the expected purchase (sale) price of the total portfolio,

V = inf
0≤τ1≤τ2≤...≤τI≤T

E

{
I∑
i=1

hie
−rτifi(Sτi , τi)

}
, (1)

where r is the risk-free rate, which we assume constant. In words, (1) says that at time τi, the trader

trades hi units of basket i and adds hi times the discounted cost e−rτifi(Sτi , τi) to the total cost. The

value function V in (1) can be interpreted as the amount of money the investor needs to set aside in

expectation to obtain the desired portfolio exposure. Trading all securities at the start of the period

amounts to choosing τ1 = τ2 = . . . = τI = 0. The difference between the two strategies is the current

value of the “option to time the trade”. We write “option” although it contains both a right and an

obligation for its holder. For t ∈ [0, T ), the trader has the option to either trade or wait. At the same

time, she is also obliged to trade any remaining baskets at the market price at time T .

Other than through combining subsequent baskets, there is no provision for risk aversion with respect

to trading at uncertain future prices included in (1). Including risk aversion in a general sense, for example

by specifying the agent’s utility function, is hard because the non-linearity will introduce dependence on

higher-order moments and path-dependence. As discussed in the introduction, as an alternative heuristic
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to account for risk aversion, we propose the inclusion of a stop-loss level, i.e., a maximum (minimum)

price to pay (receive) for the total portfolio. The instant that price is observed in the market (either as the

sum of current market prices before the first basket is traded, or as the sum of the prices paid/received for

baskets traded previously and the currently observed market prices for baskets not yet traded), trading

of all remaining baskets will be triggered. In a model where the value of the underlying asset is the only

source of uncertainty, such a stop-loss level can be modelled as a (potentially time-varying) value of the

underlying asset itself (S̄τ ). Denoting by τi the trading times obtained from (1), and defining τSL as the

hitting time of the stop-loss level,

τSL = min
{

0 ≤ t ≤ T : St = S̄t
}
, (2)

the trading times with the stop-loss added (τi,SL) are given by

τi,SL = min {τi, τSL} , i = 1, . . . , I. (3)

Two remarks apply to the problem descriptions in (1) and (3). First, as stated in the introduction we

assume that portfolio weights are given and think of them being the outcome of a portfolio optimization

exercise. Note that the holdings can be negative which means selling/writing the options, in which case

(1) maximizes the expected revenue from selling/writing.

Second, as stated above, the portfolio H does not only describe the holdings of the different baskets,

but also the order in which the baskets should be traded. This order could be motivated by risk

management arguments. Consider, for example, a put spread, consisting of a short position in one put

and a long position in another put with the same maturity but a lower strike. Selling the put with the

high strike before buying the put with the low strike entails a risk when the underlying asset moves by

a large amount in between the sale and purchase. Imposing that the total position should be traded

simultaneously reduces this risk. As documented in Fahlenbrach and Sand̊as (2010) for example, major

option exchanges provide infrastructure to trade option baskets in one trade rather than a basket of

trades exactly for this reason. In the remainder of this section we first consider the set of problems for

which (1) a corner solution is optimal. Subsequently, we present a numerical algorithm to solve the more

general problem.

2.1 Optimal trading of a single derivative

Suppose the trader wants to hold by time T the portfolio H consisting of a position h in a single

derivative security. The price of the derivative equals f(St, t), which we assume to be twice continuously

differentiable with respect to S. In addition, assume the risk-free rate r to be constant and suppose the

stock price follows an Itô process where the drift µ(St, t)St is continuous in both arguments, and where

the volatility σ(St, t)St satisfies the usual regularity conditions7,

dSt = µ(St, t)Stdt+ σ(St, t)StdWt, (4)

7See e.g. Theorem 4.5.3 in Kloeden and Platen (1999).
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where Wt is a standard Brownian motion. Finally, assume no arbitrage in continuous time. Under these

assumptions, Proposition 2.1 extends results in Kukush, Mishura, and Shevchenko (2006) (compare their

Lemma 2.2). The optimal time to buy the security depends only on the sign of the product of three

factors: the difference between the drift and the risk-free rate, the derivative of the security price with

respect to the stock price and the sign of the position.

Proposition 2.1 Suppose the agent wants to trade h units (h > 0 for a buy) of a single security with

price function f(St, t) on an arbitrage-free market where the dynamics of the stock is given by (4) and

the risk-free rate equals r. Then, optimizing (1), the agent optimally trades the asset

i) at t = 0 if h∂f(s,t)
∂s (µ(s, t)− r)s is positive for all s, t,

ii) at t = T if h∂f(s,t)
∂s (µ(s, t)− r)s is negative for all s, t,

iii) The agent is indifferent about the trading time τ if f(s, t) just depends on t or if µ(s, t) = r for all

s, t.

The proof is in Appendix A. Proposition 2.1 essentially states that, for derivatives whose value is a

monotonic function of the underlying asset, the timing problem (1) is equivalent to maximizing the

exposure to equity risk of the derivative portfolio in a frictionless world.

In the remainder, we focus on a Black-Scholes world, i.e. µ(s, t) ≡ µ and σ(s, t) ≡ σ in (4). Corol-

lary 2.1 describes the optimal trading decisions when the desired portfolio consists of a single call or put

or a stock, being equivalent to a call option with zero strike price.

Corollary 2.1 Suppose that the stock price S follows a geometric Brownian motion with drift µ > r.

Then it is optimal to

i) buy a call option or sell a put option immediately,

ii) buy a put option or sell a call option at the end of the trading horizon.

Translated into an order submission strategy, Corollary 2.1 states that, for plain vanilla options, a market

order at either the start or end of the period should be used, a result which differs from the general order

submission strategy we discuss below. In the remainder of this paper, we assume a positive equity

premium (µ > r).

Proposition 2.1 and Corollary 2.1 both require the value of the derivative portfolio to be a monotonic

function of the underlying asset price. Note that market frictions, like intraday seasonality patterns

in bid-ask spreads as considered in Section 4.4, will generate an optimal trading time that is different

from the corner solution for monotonic securities, independent of whether the agent is the representative

agent. However, the point we want to stress in this paper, even without such frictions, for portfolios

whose value is not a monotonic function of the underlying asset price the optimal time to trade will in

general be different from either the start or end of the trading period. The next section makes explicit

the trade-offs that underlie that optimal timing result.
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2.2 Dynamic programming solution to the optimal trading of baskets

Suppose we want to trade a portfolio of (baskets of) options in a given order. Proposition 2.1 and

Corollary 2.1 imply that, for any basket whose value is monotonic in the value of the underlying asset,

the expected excess return on the basket until its maturity determines whether we trade at the start

or end. A positive (negative) expected excess return leads to trading immediately (at the end). From

Corollary 2.1, this idea can be used as long as the ordering of baskets in the portfolio is such that all call

purchases and put sales are to be completed before any call sales or put purchases, so that the portfolio

can be split into two baskets of options. The first basket will contain all call purchases/put sales and the

second basket all call sales/put purchases. In this section we develop the intuition as to why this decision

is no longer optimal when trading baskets whose value is not monotonic in the value of the underlying

asset, for example a straddle.

We will study trading the straddle in detail in Sections 3 and 4 below, and use it here to illustrate the

intuition behind the dynamic programming algorithm. The delta, the first derivative of the straddle with

respect to the value of the underlying asset, is negative for low values of the underlying asset and positive

for high values. Proposition 2.1 appears to suggest the following optimal strategy for purchasing such a

straddle. As long as the delta is negative, delay the purchase. When delta changes sign, buy immediately.

However, this logic is not correct as it ignores the value of having the flexibility of choosing the time to

buy and the implications of surrendering that flexibility. Even when delta is slightly positive, it may still

be optimal to wait because of the possibility that future movements in the underlying asset value make

the delta negative again. This reasoning is similar to the exercise decision for real or American options:

it is only optimal to exercise directly (trade immediately in our context) if the option is sufficiently in

the money (if the delta of the basket is sufficiently positive).

As an alternative way to obtain the intuition for the optimal timing strategy in a general setting, use

the stochastic differential equation in (4) to rewrite the agent’s optimization problem (1) in terms of the

expected return on the portfolio as follows8. Include in (1) either the price of the portfolio at the start of

the trading period or it’s discounted expected value at the end of the trading period as a normalisation.

Doing so will change the level of the value function, but will not alter the optimal decision. Then, employ

the Black-Scholes partial differential equation (PDE) in the same way as in the proof of Proposition 2.1

to obtain

Ṽ1 ≡ V −
I∑
i=1

hifi(S0, 0)

= inf
0≤τ1≤τ2≤...≤τI≤T

E

{
I∑
i=1

hi

∫ τi

0

(µ(Su, u)− r) e−ru
∂fi

∂ logS
(Su, u)du

}
, (5)

8Thanks to Leonidas Rompolis for suggesting this alternative interpretation.
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or, equivalently,

Ṽ2 ≡ E

{
I∑
i=1

hie
−rT fi(ST , T )

}
− V

= sup
0≤τ1≤τ2≤...≤τI≤T

E

{
I∑
i=1

hi

∫ T

τi

(µ(Su, u)− r) e−ru
∂fi

∂ logS
(Su, u)du

}
, (6)

where the log-delta ∂fi/∂ logS =: fi,logS is a positive transformation of the delta of the derivative

∂fi/∂S =: fi,S . In words, (5) states that the optimal trading time minimizes the expected risk exposure

of the portfolio before it is acquired, while (6) maximizes the expected risk exposure of the portfolio

from the moment the position is taken until the end of the trading period. Proposition 2.1 as well as

Equations (5) and (6) show that the optimal timing decision in the Black-Scholes world is driven by

the exposure to the equity risk premium, the compensation for the single risk factor in that model.

Importantly, and perhaps counter-intuitively, changes in the time value of the baskets does not influence

the optimal timing strategy. Summarizing, for general baskets of options whose deltas may change sign,

there is no a priori reason to conclude that always trading at a fixed time will be optimal, but such

a strategy can still serve as a benchmark. The delta of the straddle changes from negative to positive

around the ATM level.

We use a trinomial tree to solve the optimal stopping problem in (1) following Hull (2012). Rubinstein

(2000) and Hull (2012) show the trinomial tree to be equivalent to an explicit finite difference method

as used, for example, in Bender and Dokuchaev (2014). The tree has an evenly spaced grid in the time

dimension with N+1 points, 0 = t0 < t1 < . . . < tN = T . Let ∆ := tn−tn−1 denote the time-step. From

one time point to the next, the underlying asset price S moves either up by a factor u ≡ exp(σ
√

3∆),

down by a factor d ≡ 1/u, or remains at the same level. The associated probabilities for the up and

down move are

pup =
1

6
+

√
∆

12σ2

(
µ− δ − σ2

2

)
, pdown =

1

6
−
√

∆

12σ2

(
µ− δ − σ2

2

)
. (7)

At time step n ∈ {0, 1, . . . , N} in the tree, there are 2n + 1 nodes indexed by j = 0, 1, . . . , 2n, with the

top node corresponding to j = 0. In the last period, the option prices in each node are computed using

a Black-Scholes formula9. Option prices at nodes earlier in time then follow by working backwards in

the tree, using the risk-neutral probabilities obtained by replacing µ in (7) with the risk free rate r.

The discrete-time equivalent of problem (1) reads, with τi ∈ Π∆ ≡ {tn}n=0,...,N ,

V̂ (0, 0, 0) = min
τ1≤τ2≤...≤τI

E

{
I∑
i=1

hie
−rτifi(Sτi , τi)

}
, (8)

with V̂ (n, j,m) the value function of the discrete-time version of the dynamic program in (1), starting

at time step n and node j, given that m baskets have been traded so far. We do not impose that basket

i needs to be traded strictly after basket i − 1 in (1). Therefore, at any node in the tree we have to

9Extending the tree up to the maturity of the option contract (T̂ ) and working backwards to obtain option prices at

time T yields identical results but is computationally more cumbersome.

10



determine the optimal number of remaining baskets to trade immediately given the number of baskets

already traded.

Starting from an arbitrary node j at time step n with m baskets already traded, immediate trading

of the next k baskets adds an amount
∑m+k
i=m+1 hifi(S(n, j), n) to the total cost (with m + k ≤ I). By

Bellman’s principle of optimality, the value of waiting for the remaining I −m − k baskets equals the

expectation of the optimal policy starting next period, given that at that point m+ k baskets have been

traded already. From node (n, j), the next period node (n+ 1, j) will be reached with probability pup,

node (n+ 1, j + 2) with probability pdown and node (n+ 1, j + 1) with probability 1− pup − pdown, so

the discounted expected value of waiting equals

En,j,m+k

{
V̂ (n+ 1)

}
=
[
pupV̂ (n+ 1, j,m+ k) + pdownV̂ (n+ 1, j + 2,m+ k)

+(1− pup − pdown)V̂ (n+ 1, j + 1,m+ k)
]

e−r∆t.

The algorithm now reads:

1. Start at T = tN (n = N) and compute the value function of the dynamic programming problem

at each node j = 0, . . . , 2N for each m = 0, . . . , I,

V̂ (N, j,m) =

I∑
i=m+1

hifi(S(N, j), N), j = 0, . . . , 2N.

2. Given V̂ (n, j,m) for each j and m, go one step backwards in the tree to time step n − 1. By

Bellman’s principle of optimality, the value function at node j when m baskets have already been

traded before time step n− 1 equals

V̂ (n− 1, j,m) = min
0≤k≤I−m

{[
pupV̂ (n, j,m+ k) + pdownV̂ (n, j + 2,m+ k)

+(1− pup − pdown)V̂ (n, j + 1,m+ k)
]

e−r∆t

+

m+k∑
i=m+1

hifi(S(n, j), n− 1)

}
, j = 0, . . . , 2(n− 1), m = 0, . . . , I. (9)

3. Repeat Step 2., iterating backwards in time until t0 = 0 (n = 0) and obtain V̂ (0, 0, 0).

The value function V̂ (0, 0, 0) equals the minimum expected discounted value of the portfolio acquired

between time 0 and time T . For each node in the tree we determine the optimal decision. Therefore, at

each point in time the algorithm also outputs a collection of underlying asset values for which trading

at least one basket immediately is optimal (the stopping region). Depending on the number and type of

baskets in the option portfolio, there can be multiple stopping regions at any given point in time. The

trinomial tree approach is convenient in that we do not need to make assumptions about the shape of

the continuation and stopping regions a priori. Hence, alternating stopping and continuation regions in

the underlying asset value dimension can be dealt with.
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The level of the underlying asset which leaves the agent indifferent between waiting at least one

more period and trading immediately is called the stopping boundary. In time-homogeneous optimal

stopping problems, such as the valuation of a perpetual American option, the stopping boundary is a

constant value S∗. However, in (1) the optimal action to take for a given value of the underlying asset

will generally depend on calendar time, so the stopping boundary will be a function of calendar time,

S∗t
10.

The additional complexity from trading I different baskets instead of 1 for a given ordering of the

baskets is of order I2. At each node we have to keep track of I possible values, each of which describes the

optimal policy given a number of baskets already traded. For each of the I values, we have to compute

at most I numbers to determine the optimal future policy. Hence, solving the optimal trading problem

for a portfolio with a reasonably sized number of baskets is feasible.

To conclude this section, we note that our algorithm can be used to find the optimal trading strategy

when various sequences of baskets are allowed, as long as the sequence will be fixed before the first

basket is traded. This can be achieved by examining every allowed sequence and picking the one with

the lowest value function at time zero. A more flexible approach, which we leave for future research,

would be to allow switching between sequences after trading has commenced. In such a set up, it may

be optimal to trade the first basket in one node but to trade only the second basket in the neighbouring

node, introducing an additional path-dependency going forward.

3 Trading a Black-Scholes straddle

The remainder of the paper focuses on trading a straddle: a simple basket of options whose value is

a non-monotonic function of the underlying asset value and which can be traded directly in various

markets. In this section, we study in detail trading this option strategy in the Black-Scholes world,

using the algorithm of Section 2.2. To assess the economic value of optimally timing the trades, we

use parameter values in line with the S&P500 data used in Section 4. Specifically, the volatility of the

underlying asset is set to σ = 16% annualized, the equity premium 5%, the risk-free rate to r = 2.4%

and dividend rate equal to δ = 1.8%. The current price of the underlying asset is normalized to 1. The

maturity (T̂ ) is set equal to one month and the trading horizon (T ) to one trading day. We consider a

range of moneyness levels, defined as the ratio of strike price relative to forward price at the start of the

trading period, between 0.98 and 1.05, with the focus mostly on the delta-neutral straddle having strike

K = exp((r − δ + σ2/2)T̂ ).

To make the results in this section comparable to Section 4, we define a normalized gain from using

the optimal timing strategy as compared to a fixed trading time benchmark strategy as the difference

in purchase price, divided by the cost of trading at the start of the trading period (market open). For

10In calculations, we extend the tree backwards in time past the current time far enough to ensure that the dimensions

of the tree are not binding.
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example, the gain from trading using the optimal timing strategy relative to trading at the close equals

gain =
cost@close− cost@optimal timing

|cost@open|
. (10)

The absolute value function ensures a correct sign when there is a cash inflow rather than outlay, for

example when writing a straddle. In this section, “gain” refers to the expected gain, whereas in the

empirical analysis of Section 4 it will refer to a time-series of realized gains. Trading at the open is

a natural strategy when portfolio holdings are determined at the open, since this strategy entails no

execution risk. The market close is a natural time to trade when the trading horizon equals a single

trading day, although it implies exposure to substantial price uncertainty from the point of view of the

start of the trading period.

3.1 Buying a straddle

The two main results of purchasing a straddle can be summarized as follows. First, expected gains

from using the optimal strategy versus buying at the start or the end are economically meaningful with

values up to 24 basis points (bps) for moneyness 1.05 (compared to trading at the open) or 26bps for

moneyness 0.95 (compared to the close). Second, the optimal strategy corresponds to submitting a

sequence of buy-stop orders11.

The expected gain compared to the open (close) increases (decreases) with moneyness, as shown

in Figure 1. For the short-term delta-neutral straddle, the expected gain from following the optimal

timing strategy versus the open or close equals 2bps. As Figure 1 shows, adding the stop-loss reduces

the expected gains, leading to negative expected gains for high moneyness straddles when compared to

trading at the close. For a delta-neutral straddle, the gain is reduced to about 0.7bps when the stop-loss

constraint is added.

Intuition about the pattern of gains as a function of moneyness as well as the level of gains can be

obtained from (5) or (6). Gains are increasing in moneyness for the straddle when compared to trading

at the open. For low moneyness levels, the straddle delta is positive at the start of the trading period,

and, since the expected return on the underlying asset is positive, is expected to increase further over

time. For those straddles, there is only a small probability of the delta turning negative before the end

of the trading period. Hence, the expected return until the end of the trading period is maximized by

trading immediately, obtaining a zero gain when benchmarked against trading at the open and a high

expected gain when benchmarked against trading at the close. For moneyness levels above the delta-

neutral moneyness, the straddle delta is negative initially, which makes it attractive to delay trading.

For moneyness levels close to delta-neutral, neither strategy that trades at a fixed time will maximize

the expected return. Either the initial delta is negative, or, if it’s positive, the probability of it turning

11A stop or stop-loss order is an order to buy or sell a security via a market order once its price reaches a specified price,

the stop price. When the stop price is reached, the stop order becomes a market order (http://www.sec.gov/investor/

alerts/trading101basics.pdf).
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negative before the end of the trading horizon is too high, both of which give rise to value of waiting.

Turning to the level of gains: for the delta-neutral straddle its log-delta, flnS(St, t), is zero at t = 0

and will be close to zero in expectation for the remainder of the trading period, leading to relatively low

expected gains. In Section 4 we argue that the expected gains obtained here are a (very) conservative

estimate of what can be achieved when buying a straddle using data on the S&P500 index, for which

the Black-Scholes assumptions of i.i.d. returns and no market frictions do not hold.

Figure 1: Expected gain of buying straddle using optimal timing strategy (with and without stop-loss),

as function of moneyness (forward price at start of trading day/strike) in Black-Scholes world, compared

to trading at start or end of trading day. Parameter values as detailed in Section 3.

Turning to the order submission strategy, a buy is triggered when the delta becomes sufficiently

positive. This is illustrated in Figure 2(a)12. Starting from the current price of the underlying (log-

return = 0), the straddle is bought as soon as the right-hand side stopping boundary in Figure 2(a) is

hit, which can be implemented as a buy-stop order. Since the straddle price at which trading is triggered

is not fixed over time, a sequence of buy-stop orders is needed with stop prices that decrease almost

linearly over time. This is in contrast to the results for single options for which Corollary 2.1 established

the optimality of a market order at either the start or end of the trading period.

This stopping region takes the form {S : S > S∗t }. This means that as long as the cumulative return

on the underlying asset since the start of the trading period is negative, it will always be optimal to delay

trading even though the straddle price will increase when the underlying asset price decreases. In such

cases, one can imagine a trader deciding not to wait but to cut their loss by overruling the strategy and

buying the straddle at market price. Such behaviour can be captured by considering the version of the

optimal timing problem that includes a stop-loss level S < S(0) which triggers immediate purchase of the

straddle when hit. Like the optimal stopping boundary itself, this stop-loss level can be implemented as

a sequence of buy-stop orders, with the stop price illustrated by the left-hand boundary in Figure 2(a).

Note that such an additional stop-loss adds an (ex-post) constraint to optimization problem (1), so

12In both this section as well as Section 4, the time of day refers to New York time.
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the expected gain of the optimal timing strategy with the stop-loss will be smaller than the expected

gain of the optimal timing strategy without stop-loss. As we will argue in Section 4, the motivation to

include the stop-loss is that it makes our results more robust against violations of the assumptions of

i.i.d. returns and frictionless markets.

In the tree, the expected excess return on the underlying asset is positive, so for a positive delta the

straddle value is expected to go up which would suggest that trading immediately would be optimal. Yet,

for small delta values the expected increase is more than offset by the benefits derived from keeping alive

the option to trade at a later point in time. Figure 2(b) illustrates how it is optimal to wait purchasing

the zero-delta straddle by plotting the value of the straddle delta at the optimal stopping boundary.

Specifically, close to the start of the trading period it is only optimal to trade the straddle when the

delta is about 0.11, corresponding to a value of the underlying asset of about 1.007, i.e. 70bps above

the (normalized) value at the start of the trading period, 1. As the end of the trading horizon draws

closer the value of the option to delay trading decreases and it becomes optimal to trade for values of

delta closer to zero (i.e. lower prices of the underlying asset), as indicated by the decreasing pattern in

Figure 2(b).

Finally, Figures 2(c) and (d) zoom in on the problem at the start of the trading period. The current

price of the straddle, and its delta, as a function of the underlying asset price, are plotted in 2(c).

As shown in Figure 2(d), the solution to (1) satisfies the usual value-matching and smooth pasting

conditions of free boundary problems where the payoff is a sufficiently smooth function, see Dixit and

Pindyck (1994).

3.2 Comparative statics

We briefly examine the effect that changing the value of key input parameters moneyness, risk-free rate,

and volatility has on the optimal timing decision and expected gain. We once again concentrate on

buying the straddle, but include in Figure 3 already the results for selling a straddle that is the subject

of the next section. As the moneyness level changes, the stopping boundary shifts almost in a parallel

fashion as shown in Figure 3(a). The shift is not completely parallel, which can be seen from (5) or (6),

realising that the straddle delta as a function of the underlying asset value will become sharper as time

passes (at expiration, the delta will be either -1, 0 or 1). It is optimal to buy the straddle with moneyness

0.99 at the start of the period, as implied by the stopping boundary lying below zero. Although not

presented here, we note that the delta at the optimal stopping boundary is independent of the moneyness

level and that the length of the time step in the tree has no influence on the expected gain. As shown

in Figure 3(c), an increase in the risk-free rate makes trading at a later instant more attractive because

the effect of discounting will be larger. Nevertheless, changing the interest rate has hardly any effect on

the expected gains compared to trading at the open or close. This is driven by the fact that we keep the

ratio of strike price over the initial forward price constant at one, so a change in interest rate implies a
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(a) Optimal stopping and stop-loss boundaries

(b) Optimal stopping boundary in terms of straddle delta

(c) Straddle value ($) and delta at t = 0 (d) Straddle value ($) and value function at t = 0

Figure 2: Purchasing a delta-neutral straddle in the trinomial tree (K = exp((r− δ+ σ2/2)T )). Default

parameter values: µ = 5% + r, r = 2.4%, dividend rate 1.8%, σ = 16%, time step 15 sec, trading horizon

1 day, option maturity 1 month, initial value of underlying asset 1. The stop-loss level in (a) is set to

−1% log-return from the start of the trading period.
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(a) Buy, moneyness K/F0 (b) Sell, moneyness K/F0

(c) Buy, risk-free rate r (d) Sell, risk-free rate r

(e) Buy, volatility σ (f) Sell, volatility σ

Figure 3: Optimal stopping boundary (S∗t ) for buying (left panels) and selling (right panels) a straddle.

Default parameter values: moneyness K/F0 = 1, µ = 5% + r, r = 2.4%, dividend rate 1.8%, σ = 16%,

time step 15 sec, trading horizon 1 day, option maturity 1 month, initial value of underlying asset 1.
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different dollar strike price. If we would keep the strike price fixed instead, the expected gain relative to

the open is inversely related to the interest rate with a zero interest rate yielding an expected gain of

3bps. Compared to the close, the expected gain is increasing with an increasing interest rate, yielding

6bps with an interest rate of 10%.

If the volatility of the underlying asset approaches zero, problem (1) becomes deterministic. Assuming

that the equity premium is positive, (5) shows that trading is optimal when the (log-)delta becomes

positive for the first time, making it a special case for which the logic laid out at the start of Section 2.2

holds. As the volatility increases, the risk associated with delaying trade execution will decrease because

the straddle delta as a function of the underlying asset flattens with increasing volatility. Combined with

the favourable effect of discounting over a longer period of time, keeping the option to trade alive becomes

more attractive. The increased value of waiting shows up as an outward shift of the stopping boundary

as shown in Figure 3(e). This result is in line with observations in Criscuolo and Waelbroeck (2014), who

study optimal stock portfolio liquidation when the stock price dynamics follows the Heston stochastic

volatility model. They note that high volatility makes waiting more interesting, but also increases the

execution risk, i.e., uncertainty about future prices. The expected gain for different volatility levels is

a combination of the expected gain in the deterministic problem and the value of waiting. Keeping the

straddle delta-neutral (which again implies changing the dollar strike price as the volatility changes),

halving the volatility from 16% to 8% annualized about doubles the expected gain to 4bps relative to

trading at the open or close.

As can be seen from (5), plugging in the Black-Scholes assumption (µ(s, t) ≡ µ), the first-order effect

of an increase in the drift µ is to drive up the expected gain from timing the trade. Since the expectation

in (5) is taken over the real-world probability measure, there is a second-order effect as well. A higher µ

implies higher values of delta are more likely, and for a given value of delta the probability of it turning

negative in the future will be lower. Hence, a higher µ makes trading earlier more attractive so the

stopping boundary will be pushed down when µ increases.

Summarizing, although dependent on moneyness, the optimal time to buy a straddle is generally

strictly between the begin and the end of the trading horizon. The value of the trade option when

purchasing a straddle is determined by the trade-off for positive delta values between trading immediately

which allows capturing the equity risk premium, and waiting which allows the trader to avoid the

consequences of any future negative delta values.

3.3 Selling a straddle

In (1), selling a straddle is equivalent to putting hi = −1 for the put and call, yielding a globally concave

payoff function. Alternatively, keep hi = 1 and replace inf by sup in (1). Both formulations illustrate the

key message of this section: optimal selling is not just the mirror image of optimal buying, as displayed

in Figure 3(b). As shown in Figures 3(d) and 3(f), changing the risk-free rate or volatility causes the
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stopping boundaries to shift in a different way when selling the straddle compared to buying it.

The intuition is as follows. In contrast to the case of buying a straddle, a higher risk-free rate hurts

when selling a straddle because it will increase the discounting of the option premium to be received at

some point in the future. Since the discounting is larger the further in the future trading takes place, the

stopping boundary is pushed towards zero rather than away from zero as in the case of buying, compare

Figure 3(d) to Figure 3(c).

Similarly, the delta of the short straddle is negative for sufficiently high values of the underlying

asset. Note that the price of the straddle is negative in this case, representing the premium received

when selling it. Hence, a negative delta implies that a further increase in the underlying asset price

increases the premium income received from selling the straddle. Combined with the positive expected

return on the underlying asset, the trader optimally defers trading when the current delta is negative.

Trading immediately is only optimal when the stock price drops far enough below the zero-delta

stock price, where the short straddle delta is positive and the possibility of a sufficiently positive return

on the underlying asset to make the delta change sign again is outweighed by the risk of the delta

staying positive or becoming even more positive due to further declines in the underlying asset price.

When volatility is high, the straddle delta is a relatively flat function of the underlying asset value, so

the potential change in delta is low, which means waiting does not carry a lot of risk. At the same

time, waiting means increased discounting of any premium income received from selling the straddle, so

volatility and risk-free rate work in opposite directions when selling a straddle.

To conclude, we note that although the trade-offs and, therefore, decisions are different when selling

a straddle compared to buying a straddle, the magnitudes of gains are quite similar with the pattern in

the moneyness dimension generally reversed. For the delta-neutral straddle using the default parameter

values, the expected gain is 2bps compared to trading at either the open or close. The expected gain

compared to the close increases with moneyness to obtain an expected gain of 15bps at moneyness 1.02.

Compared to the open, the expected gain decreases with moneyness; for moneyness 0.98, an expected

gain of 18bps can be obtained in the tree. Similar to the case of buying, changing the risk-free rate but

keeping the moneyness fixed has a negligible affect on gains. Keeping the strike fixed instead leads to

gains that are increasing with moneyness compared to the open and decreasing compared to the close.

Only for the volatility is the pattern the same: a lower volatility means a higher expected gain also when

selling the delta-neutral straddle.

4 Buying an S&P500 straddle

Section 3 documents that economically meaningful expected gains are possible when optimally timing

trading a straddle in the Black-Scholes world. The question then becomes how the optimal timing

strategy derived in the Black-Scholes world performs when applied to market data, where the Black-

Scholes assumptions do not hold. In this section, we study the actual gains from using the stopping
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boundary as derived in Section 2 ’as is’. We show that these actual gains are often even larger than

those found in Section 3; in Sections 4.4-4.6 we point out that such additional gains are the natural result

of well-known deviations from Black-Scholes assumptions, in particular time-varying bid-ask spreads in

option markets, serial correlation in high-frequency index returns and the presence of volatility as a

priced risk factor.

4.1 Data

We implement the optimal timing trading strategy outlined above to buying a near-maturity straddle on

the S&P500 index every day when the CBOE is open13. The options quotes and S&P500 index values

at the one second frequency are from Thomson Reuters Tick History (TRTH), which started recording

S&P500 index option prices on July 7, 2000. Our sample runs until December 31, 2012, so it contains

both the 2001 and 2008 market downturns. On net, the S&P500 index value did not change much during

our sample period, opening at 1456 on July 7, 2000 and closing at 1426 on December 31, 2012. While the

TRTH coverage is generally quite good, all quotes are missing from October 2001 till the end of January

2002, as well as for a large part of February 2002. This leaves 123 days in 2000, 163 in 2001, 213 in 2002

and 250-252 in other years, for a total of 3011 days on which option quotes are recorded.

The S&P500 index options traded on the CBOE are European-style, cash-settled contracts. The

expiration date is the Saturday following the third Friday of the month. The options are AM-settled

which means that the expiration value of the index is determined by its opening value on the third

Friday of the month. The S&P500 index options market is one of the most liquidly traded equity options

market, with the CBOE reporting a daily volume of about 700,000 contracts in 201214, with each contract

representing a notional value of $100 times the index level15.

The TRTH data contains both trades and quotes at the one-second level, but for our purposes we

retain the quotes only. The following filters apply. Option quotes are only retained if they have

1. both a bid and ask quote,

2. a bid-ask spread that is non-negative,

3. a time-stamp within the regular CBOE trading hours (8:30AM-3:15PM Chicago time, 9:30AM-

4:15PM New York time as used in all figures) and after the first observed quote for the underlying

S&P500 index itself on that day,

4. satisfy a simple arbitrage bound for calls (and similarly for puts), with δ the index dividend yield,

C(K,S, r, T − t, σ, δ) ≥ max
(
Se−δ(T−t) −Ke−r(T−t), 0

)
,

13The CBOE is the exclusive exchange for S&P500 index options, see CBOE’s Annual Report 2013, p1.
14http://www.cboe.com/micro/spx/introduction.aspx
15http://www.cboe.com/products/indexopts/spx_spec.aspx
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5. are arbitrage-free in the strike dimension,

Cbid(K1)− Cask(K2) ≤ K2 −K1 ∀K2 > K1,

and similarly for puts.

In order to increase the comparability of strategies between trading days and to reduce expiration effects,

we focus on short-term options, being those with the shortest time-to-maturity with a minimum of two

weeks. The average time-to-maturity of the options in the sample equals 28 calendar days. Market

makers on the CBOE are required to provide continuous markets and firm quotes which can be traded

against for a reasonable size. This makes buying at the ask and selling at the bid a feasible strategy. We

therefore interpret observed quotes as remaining valid until a new quote is observed.

The current tick size for S&P500 index call and put options trading above $3.00 is 10 cents, so for a

straddle the spread will be 20 cents minimum, when computed as the sum of the call and put spreads.

This sum is a conservative estimate of the actual straddle spread, since market makers facing a quote

request for a straddle rather than a single option are free to quote a tighter spread on the combination

order as long as they stick to the minimum price increment rules. However, we only observe spreads on

plain vanilla put and call options in the data, so in the remainder we will infer the straddle spread and

price as the sum of the quotes observed for the legs. The first percentile of the distribution of dollar

spreads equals $1.40, with the median spread being $3.50, so the 10 cent tick size is only occasionally

binding. We note that the 2008 financial crisis had a profound effect on S&P500 index option spreads.

For an ATM straddle, the minimum spread of 20 cents was observed each year from 2002 to 2007. In

2008 however, the minimum spread for the straddle was $0.70, and in the remainder of our sample a

spread of 20 cents was not observed anymore.

The number of pairs of puts and calls having the same strike varies considerably over time. The

median number of pairs per day equals 35, but it ranges between 7 and 56, with more strike pairs

available towards the end of the sample. Figure 4 plots the time series. The S&P500 index dividend

yield and the risk-free rate are obtained from OptionMetrics. The continuously compounded zero coupon

rates are linearly interpolated to the maturity of the options. Together with the index value at the time

the first option quotes of the day are observed, these inputs are used to determine the index forward

price with the same the maturity as the option contracts. We assume a positive equity premium of five

percent annually, noting that in Section 2.1 we established that the magnitude of the equity premium

has only a second order effect on the optimal timing decision.

Finally, we use realized volatility data downloaded from the Oxford-Man realized library, see Heber,

Lunde, Shephard, and Sheppard (2009). This realized volatility is computed during the time the market

is open. In theory, the variance during the time the market is closed should be added to obtain the

total variance. For the S&P500 index however, about 99% of the total variance is realized during active

trading hours so we choose to use only that part.
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Figure 4: Number of strike pairs available each day for straddle trading in the S&P500 option data.

4.2 Empirical implementation

An important input into the option pricing model is the volatility parameter. An extensive literature

on volatility has demonstrated that volatility is time-varying, with a high persistence. At the start of

the trading period, we need a prediction for the volatility of the underlying asset over the remaining

life of the options. Using the Corsi (2009) HAR-RV regression model, we capture this randomness by

generating volatility forecasts based on historical realized volatilities from Heber, Lunde, Shephard, and

Sheppard (2009). The parsimonious HAR-RV model, which uses historical volatilities averaged over

different frequencies to capture both short-term and long-term movements, has been shown to perform

well, see e.g. Bollerslev and Todorov (2011) and Shephard and Sheppard (2010). We use daily, weekly

(last 5 days), and monthly (last 22 days) realized volatilities as regressors. We generate a volatility

forecast for an horizon of h days as follows. On day t, we estimate the HAR-RV volatility model using

five years (1250 observations) of historical data up to date t− 1. The estimated coefficients are used to

generate a prediction for the volatility over the period [t, t + h) as the average of the daily forecasts on

days t, t+ 1, . . . , t+ h− 1. The volatility forecast generated this way has an average annualized value of

15.9% with a standard deviation of 8.5% in the sample, ranging between 7% and 141% (during the 2008

financial crisis).

Using the optimal timing strategy, we buy straddles with different moneyness levels ranging from

0.98 to 1.05, in increments of at least 0.01. Each day and for each moneyness level m, the strike (Km) is

selected from the set of available strikes K in the data as the closest strike to the product of moneyness

and forward price at the market open (F0) under the condition that the absolute difference does not

exceed 50 basis points,

Km = argmink∈K

(
k

F0
−m

)2

s.t.

∣∣∣∣ kF0
−m

∣∣∣∣ ≤ 0.0050. (11)

The combination of a 100bps increment in moneyness and a 50bps limit on the absolute deviation ensures
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that any given strike in the data will be associated with at most one moneyness levels. The trade-off

is that for some days, an appropriate strike may not be available, which happens mainly in the earlier

years of the sample when the strike grid is coarser. In the tables below, for each moneyness level the

number of available days is indicated in the column “Days”.

The average actual moneyness in the sample equals the desired moneyness. For the ATM straddle,

Figure 5 displays the dispersion around that average in two ways. The kernel estimate of the density

in Figure 5(a) is almost symmetric with the probability mass concentrated between actual moneyness

0.998 and 1.002. Figure 5(b) shows that the distribution has become more concentrated over time as the

S&P500 index options market grew more liquid and the strike grid became denser.

(a) Kernel density estimate (b) Time series

Figure 5: Moneyness level (strike/forward price at market open) as used for the ATM straddle on the

S&P500 index.

For each day and moneyness level, we calculate the appropriate stopping region as the output of the

dynamic programming algorithm of Section 2.2, using the actual moneyness level of the strike as input

and a time step equal to 15 seconds. From the time series of index values we find the first time the

index value hits the stopping region or, following the discussion in Section 3, the stop-loss level which

is implemented at a -1% log-return. The -1% level corresponds to a one-standard deviation decrease on

a daily basis using the average volatility. Denoting the optimal stopping boundary at time t by S∗t , the

stopping time is thus given by

τ∗ = min
0≤τ≤T

{
Sτ ≥ S∗τ ∨ Sτ ≤ S0e−0.01

}
. (12)

The trade is assumed to take place at that time against the prevailing bid quote for a sale or ask quote

for a purchase. If the stopping region is not hit before the end of the trading day, then we trade against

the closing quotes, determined by the final option quote observed before 3:15PM Chicago local time

(4:15PM New York time as used in the figures).

In contrast to the tree, the opening price in dollars of an S&P500 straddle of a given moneyness

varies considerably over time. For example, the opening ask price of a straddle with a moneyness

(strike/forward price at market open) equal to 1, ranges from $20.40 to $184.80, which is due both to

changing volatility as well as a changing S&P500 level16.

16The opening price of the straddle is lowest on 29/06/2005 (strike price $1205) with an implied volatility based on the
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For each day t and moneyness level i, we compute the gain or cost saving from trading using the

optimal timing strategy relative to trading using the benchmark strategy following (10), and report the

time series average (along with its t-statistic) for each moneyness level in the second column of Table 1.

The default analysis takes a conservative approach by buying at the prevailing ask quote. In Section 4.4

we also consider trading at the average of the bid and ask quotes to gauge the effect of intraday seasonality

in option bid-ask spreads. In each panel of Table 1, we report the fraction of days on which the two

competing strategies coincide and the fraction on which the optimal timing strategy outperforms the

alternative in the fourth and fifth column of Table 1.

In addition to trading at the open and the close, we consider as third benchmark strategy a TWAP

schedule where an equal part of the straddle is purchased every 15 minutes between 9.45AM and 4PM

New York time. This strategy is introduced to reduce the influence of the specific sample that we

have at our disposal and can be seen as a buy-side agency algorithm as defined in Hasbrouck and Saar

(2013). Such algorithms aim to minimize the execution cost and are heavily used in practice. A survey

on 750 institutional investors in Trade Magazine (2012) reports that the majority of them use either

VWAP or TWAP-based algorithms to execute their (equity) trades. Brugler (2014) documents clock-

time periodicity in the form of regular spikes in trading activity for FTSE100 stocks during 2012 at one

and five-minute intervals, and attributes those to the use of Value-Weighted Average Price (VWAP) and

Time-Weighted Average Price (TWAP) algorithms being used by investors to execute their trades, in

line with results in Schied, Schöneborn, and Tehranchi (2010) that deterministic liquidation strategies

for stock portfolios are optimal for mean-variance and exponential utility investors. Hasbrouck and Saar

(2013) and Easley, de Prado, and O’Hara (2012) report similar spikes for trading in NASDAQ stocks and

S&P500 E-mini futures, respectively. We do not take any fixed trading costs of the trading strategies

into account. Hence, insofar as fees on a per-trade basis exist, the total gains of the TWAP strategy are

overestimated relative to the alternative strategies that use only a single time point to trade.

4.3 Purchasing using the optimal timing strategy with stop-loss

Table 1 presents our main empirical result: using the trading strategy from Section 3 with a stop-

loss yields consistent and economically meaningful cost savings relative to all benchmark strategies for

straddles that are close to ATM over a long sample period. Average gains up to 72.6 basis points per

day can be obtained for the ATM (moneyness equal to 1) straddle, being the most interesting security

for multiple reasons. Firstly, this straddle can be bought on the largest number of days in the sample,

which is consistent with the idea that the strike grid is generally finest around the ATM level. For the

TWAP strategy, we require quotes to be available on all 15-minute intervals between 9.45AM and 4PM,

so this strategy cannot be implemented on days when the market opens late or closes early. Examples

opening midquote of 8.3%, and an opening spread of $2.00. The opening price is highest on 24/10/2008 (strike price $860)

when the midquote-based implied volatility reaches 62.2% and the opening spread equals $80, which gradually decreases

to about $20 later in the day.
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of such days are the Friday following Thanksgiving, and Boxing Day. The open and close strategies

automatically adjust in that case to the actual opening/closing time of the exchange.

Secondly, recall that for the parameter settings of Section 3.1 it is not optimal to buy the ATM

straddle at the start of the trading period. In the data, the optimal timing strategy buys at the open on

3% of all days, at the close on 13% of all days, at an intermediate time by hitting the stop-loss on 20%

of all days and at an intermediate time by hitting the stopping boundary on the remaining 64% of all

days.

There are two reasons why the optimal timing strategy sometimes buys at the open in the data.

Firstly, the moneyness of the options in the data is not exactly equal to the desired moneyness, as shown

in Figure 5. Secondly, moneyness is defined relative to the forward index price at the start of the trading

period, while the strike used in the dynamic programming algorithm is defined relative to the spot index

value at the start of the trading period. The difference between spot and forward prices is driven by

time-variation in dividend yields, interest rates and the time-to-maturity of the forward contract, see

Figure 6. A high forward factor happens when the interest rate is high and the dividend yield low, as

in the early 2000s. On days where the forward factor is below one, it may be optimal to trade the ATM

straddle at the opening of the market.

Figure 6: S&P500 index forward price at the market open as a fraction of the spot index value over

time. Sample period July 2000 to December 2012. Dividend and zero-coupon yield data are from

OptionMetrics.

Section 3 also established that straddles with a low (high) moneyness should optimally be bought

at the open (close), which is partially confirmed by columns four and five in Table 1. Buying at the

open indeed outperforms buying at the close as can be seen from panel (b) of Table 1. Panel (c) of that

same table however suggests that buying the straddle following a TWAP strategy leads to a lower price

than buying at the open. In Section 4.4, we will show that this difference is largely driven by intraday

seasonality in bid-ask spreads that is not accounted for in the Black-Scholes world of Section 3.
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While the optimal timing strategy with stop-loss outperforms its competitors on average, the time

series of cost savings is skewed and fat-tailed, with profits and losses of up to several tens of percentage

points on some days. The skewness for the gains of the ATM straddle compared to the open (close)

equals -0.4 (4.6) and the kurtosis 11.6 (66.7). We note that the inference about the average remains valid

even with the non-normality of the raw distribution.

Trading using the TWAP strategy outperforms the optimal timing strategy for the low moneyness

straddles. This is largely driven by the optimal timing strategy buying directly at the opening of the

market, when spreads are generally higher than during the rest of the day, see Figure 8 in Section 4.4.

Figure 7 shows that for moneyness levels equal to or slightly larger than one, the outperformance of the

optimal timing strategy with stop-loss over the TWAP strategy is consistent over the trading day.

Figure 7: Buying a short-maturity (minimum two weeks) straddle with different moneyness levels

(strike/forward index value at market open). The average gain of the optimal timing strategy with

a stop-loss level at -1% intraday log-return relative to buying at a fixed point in time is plotted. Sample

period July 2000 to December 2012 (3011 trading days). All purchases are conducted at the prevailing

ask quotes.

In Table 2, we redo the analysis without the stop-loss. Following the arguments in Section 3 and

the simulation results in Appendix B, removing the stop-loss level should increase the average gain. In

contrast, in the data the average cost saving from using the optimal timing strategy decreases. For the

ATM straddle for example, the average gain of the optimal timing strategy slips by about 39-40bps.

Without the stop-loss, the cost of the TWAP strategy is slightly lower than that of the optimal timing

strategy, albeit not statistically significant.

Comparing the results in Tables 1 and 2, the main effect of introducing the stop-loss level is to cut off

a large part of the left tail of the gain distribution. In Section 4.5 we will argue that the most extreme

negative gains are driven by strings of negative intraday index returns. As an example of the effect of this

positive serial correlation, consider the worst day in the sample in terms of performance of the optimal
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Moneyness Opt vs open Days Opt equals open Opt better than open

gain (t-stat) fraction of days

0.98 0.0 (0.0) 2773 1.00 0.00

0.99 0.5 (1.42) 2821 0.98 0.01

1 57.6 (9.90) 2830 0.03 0.62

1.01 42.6 (3.89) 2817 0.01 0.59

1.02 34.6 (2.27) 2788 0.00 0.56

1.05 36.0 (1.93) 2551 0.00 0.52

(a) Optimal timing versus opening

Moneyness Opt vs close Days Opt equals close Opt better than close

gain (t-stat) fraction of days

0.98 14.7 (1.22) 2773 0.00 0.44

0.99 21.7 (2.10) 2821 0.00 0.42

1 72.6 (7.77) 2830 0.13 0.43

1.01 65.1 (6.85) 2817 0.58 0.23

1.02 51.9 (4.95) 2788 0.70 0.16

1.05 38.7 (3.22) 2551 0.73 0.15

(b) Optimal timing versus close

Moneyness Opt vs TWAP Days Opt equals TWAP Opt better than TWAP

gain (t-stat) fraction of days

0.98 -24.4 (-3.22) 2722 0.00 0.42

0.99 -16.8 (-2.68) 2766 0.00 0.41

1 32.4 (6.19) 2777 0.00 0.53

1.01 29.1 (3.95) 2755 0.00 0.56

1.02 22.4 (2.31) 2730 0.00 0.55

1.05 22.4 (1.91) 2490 0.00 0.54

(c) Optimal timing versus TWAP

Table 1: Buying a short-maturity (minimum two weeks) straddle with different moneyness levels

(strike/forward index value at market open), with a stop-loss level at -1% intraday log-return. Sample

period July 2000 to December 2012 (3011 trading days). All purchases are conducted at the prevailing

ask quotes. Column 2 in each panel contains the realized average gain in basis points of following the op-

timal timing strategy instead of a fixed trading time benchmark (market open, market close or TWAP),

with t-statistics in parentheses. Column 3 contains the number of days on which the strategy could be

implemented. Columns 4 and 5 show the fraction of days on which the optimal timing strategy equals

the competing strategy or performs strictly better, respectively.
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timing strategy without the stop-loss relative to trading at the opening, February 27, 2007. During this

so-called ”Chinese correction”, the S&P500 index gradually lost more than 3% of its value. The stopping

boundary was never hit, but option prices had spiked up along with volatility. The straddle was only

bought at the close of the market, at a price 110% higher than its opening value (contributing about

-3bps to the average gain over the whole sample). The stop-loss was hit at 12:10PM New York time,

when the straddle price had only gone up by 14% compared to the open price.

As suggested above, the model as postulated in Section 2 is only a crude approximation to the true

data-generating process of the S&P500 index and its options. In the following three sub-sections, we will

demonstrate how the Black-Scholes world in which we solve for the optimal trading strategy can be seen

as a conservative setting for the potential gains when purchasing a straddle. In particular, we argue that

the data contains at least three sources of predictability, driving the difference between the gains from

the model and the gains documented in Tables 1 and 2 and adding value to the stop-loss level: intraday

seasonality in bid-ask spreads, serial correlation in intraday index returns and the leverage effect.

4.4 Intraday seasonality in option bid-ask spreads

There model of Section 2 abstracts from bid-ask spreads, while in the data put and call option spreads

are time-varying and generally highest near the opening of the market. Figure 8 illustrates the bid-ask

spread intraday seasonality pattern by plotting the distribution of the relative bid-ask spread during the

day for an ATM straddle on the S&P500 index17. This pattern is consistent with results in Duarte, Lou,

and Sadka (2006), who find that, for a sample of intraday S&P500 index option quotes during 2001-2002,

the average intraday spread is very close to the closing spread. The simulations in Appendix B show

how the intraday seasonality pattern has a positive effect on the gains compared to trading at the open

in the Black-Scholes world. For the S&P500 data, we assess the effect of intraday seasonality by buying

at the midpoint of the bid and ask quotes (“midquote”) instead of the ask, while noting that, being price

takers, small traders may not be able to trade at the midquote in practice. It is also appropriate at this

stage to recall that we compute the straddle spread as the sum of the call and put spread that make

up the straddle. Our results remain valid if actual straddle spreads when quoted as a single trade are

lower than the sum of the call and put spread, as long as the straddle spread shows the same intraday

seasonality pattern as displayed in Figure 8.

Comparing Table 3 to Table 1 confirms the intuition. Consider Panel (a) first, where the benchmark

is trading at the open. In that case, the trade decision of the open and optimal timing strategies coincide

for the 0.98 and 0.99 moneyness straddles, so the gain is the same whether trading at the midquote or

17It is not clear what generates the spikes around 10AM and 4PM New York time. The 10AM spike could be due to

the release of the daily position and daily margin reports by the Options Clearing Corporation at 10AM. Upon closer

inspection, the 10AM spike is only present in the data from 2009 onwards. The drift lower towards 4PM and subsequent

spike up could be due to the NYSE and NASDAQ markets closing, although the S&P500 index futures contract, which is

the default hedge product for S&P500 index options, continues to trade until 4:15PM without interruption.
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Moneyness Opt vs Open Days Opt equals Open Opt better than Open

gain (t-stat) fraction of days

0.98 0.0 (0.0) 2773 1.00 0.00

0.99 -1.5 (-1.52) 2821 0.98 0.01

1 18.4 (1.93) 2830 0.03 0.63

1.01 -2.7 (-0.18) 2817 0.00 0.61

1.02 -12.4 (-0.65) 2788 0.00 0.60

1.05 -1.9 (-0.09) 2551 0.00 0.56

(a) Optimal timing versus opening

Moneyness Opt vs Close Days Opt equals Close Opt better than Close

gain (t-stat) fraction of days

0.98 14.7 (1.22) 2773 0.00 0.44

0.99 19.8 (1.91) 2821 0.00 0.42

1 33.4 (5.42) 2830 0.29 0.34

1.01 19.7 (6.66) 2817 0.81 0.11

1.02 4.9 (3.45) 2788 0.94 0.03

1.05 0.7 (0.85) 2551 0.99 0.00

(b) Optimal timing versus close

Moneyness Opt vs TWAP Days Opt equals TWAP Opt better than TWAP

gain (t-stat) fraction of days

0.98 -24.4 (-3.22) 2722 0.00 0.42

0.99 -18.8 (-3.00) 2766 0.00 0.41

1 -7.9 (-1.19) 2777 0.00 0.52

1.01 -17.8 (-1.94) 2755 0.00 0.57

1.02 -26.0 (-2.27) 2730 0.00 0.56

1.05 -17.2 (-1.28) 2490 0.00 0.55

(c) Optimal timing versus TWAP

Table 2: Buying a short-maturity (minimum two weeks) straddle with different moneyness levels

(strike/forward index value at market open). Sample period July 2000 to December 2012 (3011 trading

days). All purchases are conducted at the prevailing ask quotes. Column 2 in each panel contains the

realized average gain in basis points of following the optimal timing strategy instead of a fixed trading

time benchmark (market open, market close or TWAP), with t-statistics in parentheses. Column 3

contains the number of days on which the strategy could be implemented. Columns 4 and 5 show the

fraction of days on which the optimal timing strategy equals the competing strategy or performs strictly

better, respectively.
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Figure 8: Intraday pattern of dollar bid-ask spreads as a fraction of the midquote for an S&P500

index ATM straddle at the open of the market (Strike/Forward price = 1). Straddle dollar spreads are

computed as the sum of the dollar spread on the put and the call. Sample period July 2000 to December

2012. “P05” and “P95” denote the 5th and 95th percentiles, respectively.

the ask price. For moneyness 1 and higher the gain decreases when trading at the midquote instead

of at the ask, partially because the optimal timing strategy trades after the open, avoiding the higher

opening spread. Not all of the gain can be explained this way however. For the ATM straddle, the

median bid-ask spread starts at around 8.1% of the midquote at the open, and decreases steadily during

the day to about 7.2% of the open midquote at 4PM. Using those values, the maximum gain from not

trading at the open would be 90/2 = 45bps, still smaller than the 57bps in Table 1. For most of the day,

the bid-ask spread hovers around 7.6% of the straddle midquote, so a more reasonable estimate would be

that about 50/2 = 25bps of the 57bps average gain could possibly be attributed to intraday seasonality

in option bid-ask spreads.

Figure 7 shows the same point in a different way. Focusing on the 0.99 moneyness again, the average

gain increases with calendar time during the second half of the trading day, even though the relative

spread decreases with calendar time, at least up to 4PM. If intraday seasonality in spreads were the only

explanation for the performance of the optimal timing strategy (which buys at the high spread at the

market open), then the average gain should be decreasing with calendar time. This result holds true for

all moneyness levels, but for moneyness equal to 1 and up, the comparison is not as clean as the trading

epoch of the optimal timing strategy is not a fixed point in time.

If the benchmark is TWAP, the gains for the low moneyness straddles are higher when the trades are

executed at the midquote than at the ask price. The optimal timing strategy still buys at the open, but

the price improvement from switching to midquote is bigger at the open than at later points in time.

The improvement ranges between 8-16bps, slightly smaller than the difference in the half or effective

spread.
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Moneyness Opt vs open Days Opt equals open Opt better than open

gain (t-stat) fraction of days

0.98 0.0 (0.0) 2773 1.00 0.00

0.99 0.5 (1.55) 2821 0.98 0.01

1 31.2 (5.95) 2830 0.03 0.60

1.01 20.8 (1.87) 2817 0.01 0.58

1.02 26.0 (1.65) 2788 0.00 0.55

1.05 30.3 (1.59) 2551 0.00 0.52

(a) Optimal timing versus opening

Moneyness Opt vs close Days Opt equals close Opt better than close

gain (t-stat) fraction of days

0.98 23.3 (1.89) 2773 0.00 0.45

0.99 35.9 (3.45) 2821 0.00 0.43

1 67.0 (7.36) 2830 0.13 0.42

1.01 62.6 (6.47) 2817 0.58 0.22

1.02 52.4 (4.86) 2788 0.70 0.16

1.05 39.6 (3.23) 2551 0.73 0.15

(b) Optimal timing versus close

Moneyness Opt vs TWAP Days Opt equals TWAP Opt better than TWAP

gain (t-stat) fraction of days

0.98 -14.5 (-1.89) 2722 0.00 0.43

0.99 -2.7 (-0.43) 2766 0.00 0.42

1 28.1 (5.79) 2777 0.00 0.52

1.01 24.5 (3.28) 2755 0.00 0.56

1.02 22.6 (2.25) 2730 0.00 0.55

1.05 26.6 (2.22) 2490 0.00 0.54

(c) Optimal timing versus TWAP

Table 3: Buying a short-maturity (minimum two weeks) straddle with different moneyness levels

(strike/forward index value at market open), with a stop-loss level at -1% intraday log-return. Sam-

ple period July 2000 to December 2012 (3011 trading days). All purchases are conducted at the mid

price of the prevailing bid and ask quotes. Column 2 in each panel contains the realized average gain in

basis points of following the optimal timing strategy instead of a fixed trading time benchmark (market

open, market close or TWAP), with t-statistics in parentheses. Column 3 contains the number of days

on which the strategy could be implemented. Columns 4 and 5 show the fraction of days on which the

optimal timing strategy equals the competing strategy or performs strictly better, respectively.
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4.5 Serial correlation in intraday returns

The Black-Scholes model used in Section 2 assumes returns are i.i.d. over any time period. Prior research,

for example Fisher (1966) and Froot and Perold (1995), suggests that this is a reasonable assumption

for low-frequency portfolio returns, but may break down when considering higher frequencies, with non-

synchronous trading of portfolio constituents generating positive autocorrelation in portfolio returns.

Fleming, Ostdiek, and Whaley (1996) show this for an early sample of five minute returns on the

S&P500 index. They find that for their sample, which spans January 1988 to March 1991, the first-order

autocorrelation of S&P500 index returns measured on a five-minute horizon is 31%.

As Figure 9 shows, increased trading activity and market liquidity have led to the i.i.d. assumption

being reasonable for S&P500 index returns measured at a frequency of at least 5 minutes during our more

recent sample. Five minute intervals are often used in realized volatility calculations for that reason (see

e.g. Zhang, Mykland, and Aı̈t-Sahalia (2005) for a discussion). However, when returns are measured at

the 15-second frequency as used in the trinomial tree, Figure 9 shows that there is substantial positive

serial correlation in returns for low lags with a first order autocorrelation of about 28%.

Figure 9: Autocorrelation functions of intraday S&P500 index returns, measured on different frequencies

as indicated in the figure. The autocorrelation function is computed per day, and the time-series average

is shown.

The positive autocorrelation can negatively affect the gains from our optimal timing trading strategy

when buying the (ATM) straddle, because trading is only triggered if the cumulative intraday return hits

a certain positive threshold. Strings of negative returns in particular, for example during the “Chinese

correction” as discussed in Section 4.3, will delay the purchase until the end of the trading period at

a potentially much higher option price. A stop-loss level provides a simple way to mitigate the effect

of serially correlated intraday returns, without reverting to a much more complicated data generating

process when deriving the optimal timing strategy. In this case, the stop-loss can be interpreted as a

way to deal with (aversion to) model risk. To show this, we conduct the following experiment. Assume
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that the only deviation from geometric Brownian motion in the underlying asset price process is due

to serial correlation that only affects the drift. Option prices, which do not depend on the drift, can

then still be computed using the Black-Scholes formula. We take the trading epochs from the S&P500

data as derived in Section 4.3 for the optimal timing strategy both with and without stop-loss. At each

trading epoch, rather than trading at the observed option price in the data, we buy the option at the

Black-Scholes price, using the actual strike, the observed S&P500 index value at the time of trading

and the volatility forecast from the HAR-RV model for that day as inputs, with risk-free rate, dividend

yield and time-to-maturity directly taken from the OptionMetrics database. Figure 10 shows that the

stop-loss consistently adds value, up to 31bps for the straddle with moneyness 1.02. In contrast, when

the data-generating process is the geometric Brownian motion of the Black-Scholes model, adding the

stop-loss decreases the average gain by up to 3bps, see Figure 1 and the simulation results in Appendix B.

Figure 10: Average gains from trading using optimal timing strategy with or without stop-loss, compared

to trading at either the open or close of the market or a TWAP strategy. Trading epochs are taken from

the analysis in Section 4.3. Option prices are computed using Black-Scholes formula using a volatility

forecast from the HAR-RV model.

We note that even though trading activity in general and high-frequency trading in particular have

increased during our sample, the serial correlation of high-frequency index returns remains high. At the

15 second frequency, the time-series average of first order autocorrelation computed per day decreases

from about 0.4 in 2001 to around 0.25 in 2012. If the serial correlation in returns would be the only

factor driving the cost savings from using the optimal timing strategy, then this should be visible as a

downward trend in average gains over time. Figure 11 does not show such trend.
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Figure 11: Buying a short-maturity (minimum two weeks) S&P500 straddle with different moneyness

levels (strike/forward index value at market open), with a stop-loss level at -1% intraday log-return.

Average gains per year from trading using optimal timing strategy with or without stop-loss, compared

to trading at either the open or close of the market or a TWAP strategy. Sample period July 2000 to

December 2012 (3011 trading days).

4.6 Stochastic volatility, the variance risk premium and the leverage effect

In the previous section, by computing option prices using the Black-Scholes formula, we shut down the

effect of stochastic volatility and the variance risk premium on option prices and hence the performance

of our optimal timing trading strategy. For stock market indices, there is plenty of evidence that index

return volatility is stochastic and a priced risk factor, see for example Bollerslev, Tauchen, and Zhou

(2009) and Bollerslev, Gibson, and Zhou (2011). Option pricing models have long incorporated stochastic

volatility, see, e.g., the continuous-time Heston (1993) model and discrete-time Heston and Nandi (2000)

model. Under the physical measure, the dynamics of the underlying asset S and its spot variance V in

the Heston (1993) model are given by

dSt = (µ− δ)Stdt+
√
VtStdZ1,t,

dVt = κ (θ − Vt) dt+ ω
√
VtdZ2,t,

where Z1,t and Z1,t are standard Brownian motions under the physical measure with d < Z1,t, Z2,t >=

ρdt. Following Heston (1993) and specifying the market price of variance risk as λ
√
Vt/ω, the dynamics

under the risk-neutral measure can be written as

dSt = (r − δ)Stdt+
√
VtStdZ̃1,t, (13)

dVt = κ̃
(
θ̃ − Vt

)
dt+ ω

√
VtdZ̃2,t, (14)

where Z̃1,t and Z̃1,t are standard Brownian motions under the risk-neutral distribution with d <

Z̃1,t, Z̃2,t >= ρdt, κ̃ = κ+ λ and κθ = κ̃θ̃.
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Empirically, priced stochastic volatility has been shown to be an important factor in explaining option

prices; see, e.g., Bakshi, Cao, and Chen (1997). If variance risk is indeed priced, then the exposure of

the option portfolio to variance risk over time will be a determinant of the trading strategy that seeks to

minimize the expected purchase price of the straddle. Using the same PDE-based argument as employed

in the proof of Proposition 2.1, and letting the variance risk premium be a constant λ times the spot

variance Vt, we can express (6), the expected return from the moment of trading τ until the end of the

trading period, in the Heston (1993) stochastic volatility model as

E
{

e−rT f(ST , VT , T )− e−rτf(Sτ , Vτ , τ)
}

= (µ− r)E
∫ T

τ

e−ruflnS(Su, Vu, u)du

+ λE

∫ T

τ

e−ruflnV (Su, Vu, u)du. (15)

Empirically, λ has been found to be negative, while for a long straddle flnV = V fV , with fV the vega of

the straddle, is positive. Therefore, an optimal timing strategy in the Heston model will delay trading

relative to the Black-Scholes model. In other words, the optimal stopping boundary derived in a Heston

model would generally lie above that of a Black-Scholes model with comparable parameter values.

Simulation results documented in Appendix B confirm that using a stopping boundary derived in a

Black-Scholes world when the underlying asset price process follows Heston dynamics with a negative

variance risk premium and negative correlation between return and volatility innovations generates sub-

stantial positive gains compared to trading at the open. The largest gains are obtained for straddles that

are closest to being delta- and vega-neutral, corresponding to a moneyness close to 1.01 for the chosen

parameters as shown in Figure 12. At the same time, compared to the close the optimal timing strategy

realizes small negative gains. As suggested by (15), the variance risk premium is the main driver of these

results. Switching off the leverage effect leads to small increases in the magnitude of gains and losses.

Gains and losses are smaller in the presence of a leverage effect because the joint occurrence of a negative

return and positive spot variance innovation will reduce both the log-delta flnS and the log-vega flnV

at the same time for moneyness levels below about 1.01, so that the reduction in the exposure to the

positive equity premium is (partly) offset by a reduction in the exposure to the negative variance risk

premium. The stop-loss does not add value in this set up; the intuition is that hitting the stop-loss

means trading earlier than otherwise, and hence being exposed to the negative variance risk premium

for a longer period of time, decreasing the expected return on the straddle position. We conclude that

the presence of a priced volatility risk factor can explain some of the difference between theoretical and

empirical gains, mainly when comparing against trading at the open.

Finally, we consider the combination of serial correlation and leverage effect/variance risk premium.

In Section 4.5 we analysed the value of the stop-loss in relation to serial correlation, without taking into

account a leverage effect or changes in the variance risk premium. If innovations in returns and volatility

are negatively correlated, then the value added of the stop-loss is potentially even higher on days when

strings of negative intraday index returns are realized. This is the case when the variance risk premium
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Figure 12: Delta and vega of a straddle in the Heston model as a function of moneyness (K/F0). The

parameters in (13) and (14) are set to r = 0.024, δ = 0.018, κ̃ = 3.2, θ̃ = 0.04, V0 = 0.0256, ω = 1,

ρ = −0.8.

is time-varying and co-moves with the level of (implied) volatility, as documented empirically by, for

example, Bollerslev, Tauchen, and Zhou (2009) and Carr and Wu (2009), because then the negative

returns tend to coincide with an increase in volatility and the variance risk premium, which in turn

pushes option prices up.

The prediction for the performance of the optimal timing strategy when faced with the combination

of strings of positively correlated positive intraday index returns and the leverage effect/variance risk

premium is more subtle. On the one hand, positively serially correlated returns increase the attractiveness

of trading earlier, suggesting the boundary should be lowered relative to the i.i.d. returns case. At the

same time, the leverage effect in this case implies a positive return will be associated with a decrease

in (implied) volatility and hence decreasing option prices. This will make delaying the purchase more

attractive, which can be achieved by shifting the boundary upward. We examine the net effect by using

an alternative definition of the stopping boundary, which lies slightly above the stopping boundary used

in the remainder of the paper. If the serial correlation is more important, then the gains from the optimal

strategy using the alternative boundary should be lower, whereas the gains will be higher if the leverage

effect dominates.

Using the alternative stopping boundary (“UB” in Table 4) for the optimal timing strategy generates

a slight improvement in performance for most moneyness levels with the largest gain for the ATM straddle

at 2.8 basis points, which is statistically significant at the 10% level. In addition, for the 0.99 moneyness

straddle, the improvement of 1 bps is statistically significant at the 5% level. As far as the time at which

the trade is triggered is concerned, the effect of switching between the upper and lower boundary is very

small for both low and high moneyness levels. Trading times are the same for the vast majority of days

for low and high moneyness straddles, as indicated in the fourth column of Table 4. However, for the
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ATM straddle the trading time when using the upper boundary will be different from the trading time

using the lower boundary on about two out of three days. On 40% of days, the strategy using the upper

bound outperforms the strategy using the lower bound. On these days, the median trade for the ATM

straddle takes place 92 seconds later when using the upper bound. While the economic significance of

the performance improvement from using the alternative stopping boundary is limited, the results in

Table 4 suggest that as far as positively correlated strings of positive index returns are concerned, the

performance of the strategy is more sensitive to a decrease in (implied) volatility stemming from the

leverage effect than to the serial correlation itself. For future reference, we also include the metrics

analyzed in Section 4.7 in the table.

4.7 Alternative risk preferences

The stop-loss level has been introduced to capture, in a simple way, risk-aversion of agents. In the

previous section we studied deviations from the assumed Black-Scholes model, i.e., the stop-loss level

can be interpreted as an aversion to model risk. We now analyse the risk-return properties of the optimal

timing strategy in more detail. We consider three metrics in particular.

The first metric we consider is the risk premium ψ for a CRRA investor with risk aversion coefficient

γ = 2, solving

(1− ψ)
1−γ

= E
{

(1 + gain)
1−γ
}
, (16)

where the expectation is estimated by the sample average of gains as defined in (10). A positive value

of ψ means that the investor would have to be paid this fraction of the portfolio value in order to prefer

the optimal timing strategy over the competitor. Hence, a negative amount means that the investor is

willing to pay to get exposure to the optimal timing strategy.

The second metric is the maximum value of the risk aversion coefficient A such that a mean-variance

investor would still prefer the optimal timing strategy over a specific competitor,

A = 2
E {gain}

Var {gain}
. (17)

A negative value means that only a risk-seeking mean-variance investor would be willing to use the

optimal timing strategy versus the competing strategy. Once again, expectations and variances are

estimated by sample equivalents.

The third metric is the annualized Sharpe ratio SR, implicitly assuming that the gain is realized at

the end of the day,

SR =
√

252
E {gain}√
Var {gain}

, (18)

which is conservative because the actual gain is often realized on a horizon much shorter than one day.

Given the earlier discussion, we focus on the ATM straddle. Table 5 shows that the optimal timing

strategy with stop-loss scores well in risk-reward terms, with the expection of the comparison with the

TWAP strategy. For the open strategy for example, the CRRA investor would be willing to pay 48
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Moneyness UB vs LB Days UB = LB UB cheaper ψ (bps) A SR

gain (t-stat) fraction of days

0.98 0.0 (0.0) 2763 1.00 0.00 0.00 NA NA

0.99 1.0 (2.30) 2811 0.97 0.02 -0.91 39.41 0.69

1 2.8 (1.65) 2820 0.40 0.40 -1.99 6.82 0.49

1.01 -0.6 (-0.77) 2805 0.84 0.10 0.83 -6.64 -0.23

1.02 -0.0 (-0.05) 2778 0.96 0.02 0.06 -0.97 -0.02

1.05 0.1 (0.27) 2541 1.00 0.00 -0.05 8.82 0.09

(a) Optimal timing strategy with stop-loss

Moneyness UB vs LB Days UB = LB UB cheaper ψ (bps) A SR

gain (t-stat) fraction of days

0.98 0.0 (0.0) 2773 1.00 0.00 0.00 NA NA

0.99 -0.3 (-0.39) 2821 0.97 0.02 0.47 -3.65 -0.12

1 1.5 (0.73) 2830 0.36 0.43 -0.29 2.60 0.22

1.01 -0.1 (-0.12) 2817 0.83 0.11 0.32 -0.96 -0.04

1.02 0.1 (0.15) 2788 0.95 0.03 0.01 1.93 0.04

1.05 0.2 (0.76) 2551 0.99 0.00 -0.19 21.60 0.24

(b) Optimal timing strategy

Table 4: Buying a short-maturity (minimum two weeks) straddle with different moneyness levels

(strike/forward index value at market open), with a stop-loss level at -1% intraday log-return. Sam-

ple period July 2000 to December 2012 (3011 trading days). The comparison is between the optimal

timing strategy using the default stopping boundary (“LB”) and the optimal timing strategy using an

alternative stopping boundary (“UB”) that provides an upperbound on the continuous-time, continuous-

state stopping boundary. All purchases are conducted at the prevailing ask quotes. Column 2 in each

panel contains the realized gain in basis points of following the optimal timing strategy instead of trading

at the opening or close, respectively (with t-statistics in parentheses). Column 3 contains the number of

days on which the strategy could be implemented. Columns 4 and 5 show the fraction of days on which

the optimal timing strategy equals the competing strategy or performs strictly better, respectively. The

last three columns refer to the metrics discussed in Section 4.7. ψ is the risk premium of a CRRA investor

with γ = 2. A is the maximum coefficient of risk aversion for a mean-variance investor such that she

prefers the optimal timing strategy. SR is the annualized Sharpe ratio of the daily gains distribution.
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basis points of the value of the derivative portfolio to get access to the optimal timing strategy. Any

mean-variance investor with a coefficient of risk aversion smaller than 12.0 would prefer the optimal

timing strategy with the stop-loss over trading at the open.

Comparing panel 5a with panel 5b demonstrates the interpretation of the stop-loss level as a means

to incorporate risk aversion into the problem. The stop-loss strategy is consistently preferred on all risk-

return metrics to the strategy without the stop-loss, mainly because adding the stop-loss substantially

reduces the variance of the gain distribution. This is in contrast with the results of the simulations of

the Black-Scholes model in Appendix B, where the strategy without stop-loss is preferred on all metrics.

Competing Strategy ψ (bps) A SR

Open -48.02 12.02 2.96

Close -50.77 5.88 2.31

TWAP -23.39 8.01 1.77

(a) Optimal timing strategy with stop-loss

Competing Strategy ψ (bps) A SR

Open -32.06 1.43 0.58

Close -23.07 6.22 1.62

TWAP 29.94 -1.33 -0.37

(b) Optimal timing strategy

Table 5: Risk-return analysis of gains from trading using optimal timing (stop-loss) strategy versus fixed

time benchmark strategies for an ATM straddle (Strike/Forward price = 1), with all trades completed

at the prevailing ask quote. ψ is the risk premium of a CRRA investor with γ = 2. A is the maximum

coefficient of risk aversion for a mean-variance investor such that she prefers the optimal timing strategy.

SR is the annualized Sharpe ratio of the daily gains distribution.

4.8 Trading with a lag

Trading of S&P500 index options was historically done in a trading pit, and only moved to the CBOE’s

hybrid trading system that combines electronic and open out-cry trading in 200718. This may potentially

introduce a lag in reporting option quotes back to the OPRA feed, leading to the time series of the S&P500

index and its options being out of sync. In addition, Ding, Hanna, and Hendershott (2014) show that

consolidated data feeds like the Thomson Reuters Tick History data base we use here are frequently

lagging direct exchange data feeds when multiple exchanges are involved. To address these issues, we

rerun the analysis using a trading lag of 60 seconds for the optimal timing and stop-loss strategy. That

is, the moment the stopping boundary or stop-loss level is hit, we wait 60 seconds before trading at the

then current quotes. Table 6 shows that while cost savings decrease somewhat compared to Table 1, they

remain both economically and statistically significant for straddle around the ATM level. The decrease

is about 15bps across the board, independent of the benchmark strategy used.

The analysis conducted so far suggests several avenues for further research. The focus in this paper

18See http://www.cboe.com/AboutCBOE/AnnualReportArchive/AnnualReport2007.pdf.
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Moneyness Opt vs Open Days Opt equals Open Opt better than Open

gain (t-stat) fraction of days

0.98 0.0 (0.0) 2773 1.00 0.00

0.99 0.9 (2.21) 2821 0.98 0.01

1 42.0 (7.18) 2830 0.03 0.60

1.01 29.7 (2.66) 2817 0.00 0.59

1.02 21.6 (1.39) 2788 0.00 0.56

1.05 19.9 (1.05) 2551 0.00 0.52

(a) Optimal timing versus opening

Moneyness Opt vs Close Days Opt equals Close Opt better than Close

gain (t-stat) fraction of days

0.98 14.7 (1.22) 2773 0.00 0.44

0.99 22.2 (2.14) 2821 0.00 0.42

1 57.0 (6.26) 2830 0.13 0.41

1.01 52.1 (5.59) 2817 0.59 0.22

1.02 38.9 (3.73) 2788 0.70 0.15

1.05 22.6 (1.90) 2551 0.73 0.14

(b) Optimal timing versus close

Moneyness Opt vs TWAP Days Opt equals TWAP Opt better than TWAP

gain (t-stat) fraction of days

0.98 -24.4 (-3.22) 2722 0.00 0.42

0.99 -16.4 (-2.62) 2766 0.00 0.41

1 16.6 (3.31) 2777 0.00 0.50

1.01 16.2 (2.20) 2755 0.00 0.55

1.02 9.4 (0.96) 2730 0.00 0.55

1.05 6.2 (0.52) 2490 0.00 0.53

(c) Optimal timing versus TWAP

Table 6: Buying a short-maturity (minimum two weeks) straddle with different moneyness levels

(strike/forward index value at market open), with a stop-loss level at -1% intraday log-return. Sample

period July 2000 to December 2012 (3011 trading days). All purchases are conducted at the prevailing

ask quotes, 60 seconds after the trade signal was generated. Column 2 in each panel contains the real-

ized average gain in basis points of following the optimal timing strategy instead of a fixed trading time

benchmark (market open, market close or TWAP), with t-statistics in parentheses. Column 3 contains

the number of days on which the strategy could be implemented. Columns 4 and 5 show the fraction

of days on which the optimal timing strategy equals the competing strategy or performs strictly better,

respectively.
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has been on index options because of the higher liquidity in these markets, but the analysis can be used

when trading options on individual stocks as well. Duan and Wei (2009) and Christoffersen, Fournier,

and Jacobs (2013) show the importance of the systematic risk exposure of the underlying stocks for the

dynamics of individual equity option prices, while Driessen, Maenhout, and Vilkov (2009) argue that

individual stock options do not carry a variance risk premium. Muravyev and Pearson (2015) argue that

sophisticated option traders are able to time trade execution, using recent stock price changes to predict

the direction of option quote updates and limit the effective spread paid.

The trinomial tree model could be extended to account for (some of) the stylized facts that we

have identified as creating a wedge between the gains from trading in the S&P500 data vis-á-vis the

Black-Scholes world. In addition to the factors analysed here, recent work in derivative pricing has

shown that the value of derivatives is also affected by volatility-of-volatility risk. In particular, Huang

and Shaliastovich (2014) argue that delta-hedged equity index option strategies are exposed to volatility

and volatility-of-volatility risk, both of which carry negative risk premiums, and therefore earn negative

returns on average. In determining whether extending the trinomial model is worthwhile, one has to

balance the improved fit to stylized facts against the increased complexity and loss of tractability.

In an extended model where the price of the underlying asset is no longer the sole source of risk,

the definition of the stop-loss level may have to be modified too as the equivalence between a maximum

portfolio price and an underlying asset value will cease to exist. A definition of the stop-loss in terms

of the price of the derivative basket itself will have to be used, for example a deviation of 10% relative

to the price at the start of the trading period. In the current empirical analysis, the stop-loss level is

independent of the spot volatility of the index, i.e., on high-volatility days it is more likely to be hit than

on low-volatility days. Alternatively, the stop-loss could be defined as a fixed number of daily return

standard deviations.

The results so far highlight the high-frequency changes in option deltas and therefore also their betas,

which in the Black-Scholes world equal the product of the underlying asset beta and the option elasticity,

βOption = βasset∆option
Asset price

Option price
. (19)

This may have consequences for return measurement of delta-hedged strategies as in Bertsimas, Kogan,

and Lo (2000) and Bakshi and Kapadia (2003), and for dynamic factor loadings as studied by Engle

(2014).

Throughout, we have assumed no price impact from trading to focus solely on the benefits from trade

timing in view of high-frequency changes in option risk exposures for trade timing. In stock markets,

the optimal liquidation of large positions with the aim of minimizing the price impact has been studied

extensively, see for example Bertsimas and Lo (1998), Almgren and Chriss (2000), Gatheral (2009),

Huberman and Stanzl (2004), Huberman and Stanzl (2005) and Schied, Schöneborn, and Tehranchi

(2010). Hasbrouck (1991) develops an empirical measure to quantify price impact in the stock market.
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For derivatives markets, much less work has been done to date. While the market for S&P500 options

is quite liquid and the contract size is large, implying that positions of reasonable size can be traded

without affecting the market price, the supply of S&P500 index options is not perfectly elastic. A few

papers that take a look at a specific form of price impact in options markets are Cho and Engle (1999) and

Muravyev (2014). Bollen and Whaley (2004), Gârleanu, Pedersen, and Poteshman (2009) and Ni, Pan,

and Poteshman (2008) show that order flow imbalances affect daily movements in the implied volatility

surface.

5 Conclusion

We study the trade execution part of the portfolio delegation problem where a portfolio manager hires a

trader to do the trading. The trader is a) given a certain amount of time to complete trading a derivatives

portfolio, and b) evaluated based on profits/losses relative to an execution strategy that trades at a time

during the day. In this setting, the trader holds an option to delay trading whenever the value of a

basket of options to be traded simultaneously is a non-monotonic function of the value of the underlying

asset. The optimal trading strategy, defined as maximizing the expected profit for the trader, uses a

random execution time, which is the solution of an optimal stopping problem. Equivalently, the optimal

trading strategy corresponds to an order submission strategy that consists of a series of stop-orders with

time-varying stop prices, rather than a fixed-price limit order.

In a Black-Scholes world, we solve the optimal stopping problem using an explicit finite difference

method and demonstrate the option to trade has substantial value when trading a straddle of up to

several tens of basis points. Using the trading strategy derived in the Black-Scholes model to trade

a straddle on the S&P500 index, average gains up to 72bps per day are achieved for short-maturity,

at-the-money straddles.

A risk management constraint in the form of a stop-loss level can be added to the optimal timing

strategy. This stop-loss level can be interpreted as a way to reduce model risk since it enhances the

robustness of the optimal timing strategy when the Black-Scholes assumptions are violated. When

trading the S&P500 index straddle, the addition of the stop-loss leads to a substantial improvement in

the value of the trading option, even though it lowers the value of the trading option in the Black-Scholes

world.

We identify and analyse three ways in which the data-generating process of S&P500 index options

deviates from the Black-Scholes assumptions of i.i.d. returns and no transaction costs. Firstly, S&P500

straddle bid-ask spreads display intraday seasonality: they are high at the market open and slowly

decrease during the day until the moment the market for the S&P500 stocks closes at 4PM New York

time. The performance of the optimal timing strategy is qualitatively similar when trading at the

midquote instead of the bid/ask.

Secondly, high-frequency returns on the S&P500 index display considerable positive serial correlation
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when measured at sub five-minute intervals. The autocorrelation gives value to the stop-loss, which we

demonstrate by taking the observed time-series of S&P500 returns and the trading strategy generated in

the Black-Scholes model, but, rather than trading at market prices, trade the options at Black-Scholes

prices with a constant volatility.

Thirdly, the presence of volatility as a priced risk factor with a negative price of risk makes delaying

purchasing the straddle more attractive, because it has a positive exposure to volatility risk. A simulation

study in which we apply the trading strategy derived under the Black-Scholes assumptions on a sample of

option prices and underlying asset returns generated from the Heston (1993) stochastic volatility model

confirms this. The negative correlation between innovations in the asset price and its volatility has a

small dampening effect on the magnitude of gains and losses.

The optimal timing strategy was derived under the assumption of risk-neutrality, so for any risk-averse

agent the utility improvement gained by using the optimal timing strategy relative to some fixed-time

trading strategy provides a lower bound on the potential utility improvement. Buying the S&P500

straddle using the optimal timing strategy, a CRRA-trader with risk aversion coefficient equal to two

would be willing to pay up to 50bps of the value of the straddle to switch from a fixed-time strategy to

the optimal timing strategy.
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A Proofs

Proof of Proposition 2.1: We follow the reasoning of Dixit and Pindyck (1994). The agent’s

optimization problem is given by

V (S0, 0) = min
0≤τ≤T

E {h exp(−rτ)f(Sτ , τ)} , (20)

where the minimum is taken over all stopping times τ ∈ [0, T ]. In the following, let fx be the partial

derivative of f(., .) with respect to x. By Itô’s Lemma, the dynamics of the discounted portfolio value

h exp(−rt)f(St, t) is given by

he−rt
{[
−rf(St, t) + fsµ(St, t)St +

1

2
fssσ

2(St, t)S
2
t + ft

]
dt+ fsσ(St, t)StdWt

}
. (21)

We employ the Black-Scholes partial differential equation (PDE) to show that the bracketed term only

contains the product of fs and (µ(s, t)− r)s. This no-arbitrage argument yields

ft = rf(s, t)− fsrs−
1

2
fssσ

2(s, t). (22)
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Plugging in (22) into (21), the dynamics of the discounted portfolio value h exp(−rt)f(St, t) becomes

he−rt {fs [µ(St, t)− r]Stdt+ fsσ(St, t)StdWt} . (23)

To prove the first statement we need to show that the expectation of the discounted portfolio value at

any stopping time is at least equal to the current value.

Assume hfs [µ(s, t)− rs] > 0 ∀(s, t) and the standard regularity conditions on µ(s, t) and σ(s, t), so

that the discounted portfolio value is a submartingale. The optional stopping theorem (see for example

Peskir and Shiryaev (2006), Theorem A2 on p60) for a submartingale states that

E
{
he−rτf(Sτ , τ) | F0

}
≥ hf(S0, 0) ∀τ ∈ [0, T ],

which proves the first statement. The second and third statement follow similarly by showing that the

discounted portfolio value process is a supermartingale (second statement) or a martingale (third state-

ment). �

B Simulation results

We conduct a series of Monte Carlo simulations to examine the effects of including a stop-loss level, study

the impact of relaxing assumptions about bid-ask spreads and the leverage effect/variance risk premium.

In the default setting, we simulate 100,000 paths of an underlying asset that follows a Geometric Brownian

Motion, simulated on a time step of 15 seconds with 16% annualized return volatility, a continuously-

compounded risk-free rate of 2.4%, an equity premium of 5% and a dividend rate of 1.8%. In the Heston

model, the correlation between the two Brownian motions (ρ) is set to either 0 or -0.8, and the constant

(λ) in the variance risk premium is set to either 0 or -1.8, which is similar to the average value found in

Bollerslev, Gibson, and Zhou (2011). The volatility-of-volatility is set to 1, the long-run average variance

under the physical distribution and the current spot variance are set to 0.162 = 0.0256, and the mean

reversion parameter under the physical distribution is set to 5. We use the same seed for each simulation,

so the Brownian motion driving the asset price takes the same values in each model.

The straddles to be purchased have a maturity of 1 month, and the trading horizon equals 1 day. The

moneyness is defined as the ratio of the strike over the forward price at the start of the trading period;

we analyse the moneyness levels used in Section 4: 0.98, 0.99, 1, 1.01, 1.02 and 1.05. In the default set

up and when studying the impact of intraday seasonality in bid-ask spreads, the Black-Scholes formula

is used to compute the price of the straddle. Option prices in the Heston model are computed using the

code for direct integration of the Heston characteristic function by Rouah (2013). For all simulations,

the stopping boundary that determines the trading epoch is derived in the frictionless market underlying

the dynamic programming algorithm of Section 2.2, using a trinomial tree with a time-step equal to 15

seconds. Where applicable, the stop-loss level is set to a constant −1% intraday log-return measured

from the start of the trading period. The gain is computed using (10).
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For the different simulation models, Figure 13 plots the average gains of the optimal timing strategy

against the usual benchmark strategies of trading at either the open or close of the market, or a TWAP

strategy. The Black-Scholes model without any modifications (solid blue line) is included as a comparison;

the pattern of gains as a function of moneyness is very similar to the one displayed in Figure 1, albeit

less smooth because fewer moneyness levels are analysed here. As expected, adding the stop-loss does

not add value to our strategy in the Black-Scholes world as shown in Figure 13(d).

Adding a transaction cost in the form of a time-varying average bid-ask spread as displayed in Figure 8

to the Black-Scholes option prices increases the gain of the optimal timing strategy compared to buying

at the open by an economically meaningful 15-20 bps for ATM straddles. The spread at the close is lower

than during most of the rest of the day, which explains why the gains of the optimal timing strategy are

low when comparing to trading at the close. The exception is the 0.98 moneyness straddle, which the

optimal timing strategy always buys at the open and hence it has a fixed price in the simulations where

the starting values are the same for each run. Trading at the close will incur a lower transaction cost,

but it turns out that the variance of the close price from the perspective of the open is so large that

it more than offsets the effect of the spread. Adding a stop-loss to the optimal timing strategy in this

setting affects performance adversely, albeit by an almost negligible single basis point at most.

The pattern of gains from using the optimal timing strategy in the Heston model simulation is similar

to that of the Black-Scholes with transaction costs, but it is driven by an additional factor. Without

a leverage effect or variance risk premium, the gains are slightly higher than for Black-Scholes when

compared to the open, which is caused by the combination of the specific simulation run, the relatively

high volatility-of-volatility and the relatively high persistence of volatility shocks, causing the average

spot variance to decrease slightly over the day, thereby lowering option prices later in time. Repeating the

simulation with a mean reversion parameter equal to 100 will yield gains that are almost indistinguishable

from those in the Black-Scholes model.

Adding a (negative) variance risk premium leads to higher option prices and, through (15), additional

value of waiting and thus higher gains. As argued in Section 4.6, the optimal stopping boundary for a

straddle in the Heston model lies above the Black-Scholes boundary, so the Black-Scholes-based boundary

used here will trigger trading too early, leading to lower, even negative, gains when the benchmark

strategy is buying at the close. The optimal timing strategy outperforms the TWAP strategy for most

moneyness levels, so timing the transaction still has value, even when the trading trigger is derived in a

misspecified model. The stop-loss does not add value in the Heston model, the reason being that adding

the stop-loss implies that trading is potentially triggered earlier in time, implying a larger exposure to

the negative variance risk premium. Extending the Heston model to also incorporate the leverage effect

results in a reduction of both gains and losses compared to all benchmark strategies, but also further

lowering the value of adding a stop-loss. In unreported results, we verify that when the persistence of

the volatility shocks is very high (κ = 0.156 and κ̃ = 0.1), then the stop-loss does add value for straddles
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with a moneyness around 1.0.

Comparing the patterns of gains in Figure 13 to those in Table 1, we conclude that the different

simulation models, in combination with the results in Figure 10, go a long way in explaining the difference

between the gains in the Black-Scholes world and those in the S&P500 data.

50



(a) Optimal timing versus Open

(b) Optimal timing versus Close

Figure 13: Realized gains for purchasing a straddle in simulation studies with parameter values as outlined

in Appendix B. “Black-Scholes” refers to the standard Black-Scholes model analysed in Section 3. “Black-

Scholes + bid-ask spread” assumes Black-Scholes dynamics and theoretical option prices, but the price

paid includes a spread that is time-varying using the average value in Figure 8. The three versions of the

Heston model differ in the assumption about the correlation between return and volatility innovations

(ρ), and the presence of a variance risk premium (λ).
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(c) Optimal timing versus TWAP

(d) Differential gain of including stop-loss

Figure 13: Realized gains for purchasing a straddle in simulation studies with parameter values as

outlined in Appendix B (cont’d).
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