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Abstract

Conditional consumption asset pricing has had limited success empirically - the im-

plied risk aversion ranges from -3000 to 2000 in Nagel and Singleton (2011) and -250

to 600 in Roussanov (2014). We develop an equilibrium model where heterogeneous

investors optimally choose to exit or enter the market. Non-financial income in con-

junction with a constraint gives rise to state-dependent market participation, resulting

in limited risk-sharing among remaining shareholders and hence a reasonable required

price of risk. Our model also shows why previous empirical tests assuming full market

participation can imply large or even negative risk aversion. We conduct an empirical

test of our theory using the Consumer Expenditure data. Our conditional test shows

that only a reasonable boundary of risk aversion (e.g., 4 to 40) is enough to explain
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1 Introduction

The standard conditional consumption-based asset pricing model implies that equity

premium at each time is determined by the amount of consumption risk and the required

compensation per unit of consumption risk at each time1. However, the empirical evidence

largely has failed to offer support for this theory. First, when the price of risk is assumed to

be time-invariant2, the empirically implied risk aversion is unreasonably high or negative3.

Second, when the conditional price of risk is estimated, the counter-cyclical variation in

the implied price of risk is found to be dramatic, reaching large positive values during bad

states and large negative values during good states4. The empirical boundaries in the extant

literature cannot be rationalized given reasonable risk aversion coefficient5 and positive risk-

return trade-off.

In this article, we argue that one reason for the empirical failure of the conditional

consumption asset pricing theory stems from relying on models that assume full participation

in the stock market. It is stockholders aggregate risk aversion and consumption that should

mainly affect stock valuations. The evidence on limited market participation in the U.S.

households has been well documented in the literature6. The recent 2016 Survey of Consumer

Finances documents only 29.7% of the U.S. households hold either a stock or a mutual fund

directly (60.2% when indirect holdings are accounted for7). Furthermore, the group of stock

1That is, Et[R
e
t+1] = γt︸︷︷︸ · Covt(R

e
t+1,∆Ct+1/Ct)︸ ︷︷ ︸

Price of risk Quantity of risk
where Ret+1 is the excess stock returns, ∆Ct+1

Ct
is consumption growth, and γt is the relative risk aversion.

2In this specification, the observed large risk aversion is linked to the large risk aversion from the uncondi-
tional test (Mehra and Prescott (1985)) because a large risk aversion obtained by OLS is attributable to low
covariance. For unconditional consumption-based asset pricing test, a better measure for the consumption
risk is suggested for potential resolution (See Mankiw and Zeldes (1991), Aı̈t-Sahalia et al. (2004), Parker
and Julliard (2005), Jagannathan and Wang (2007), Malloy et al. (2009), Savov (2011), and Kroencke (2017)
for example).

3Using different specifications, Attanasio (1991) documents 168, 201, 259, and 286. Ferson and Harvey
(1993) documents 42, 49, 80, 99, 169, and 184. Duffee (2005) documents -237, -181, -168, ..., -31, and -28.

4Duffee (2005) documents ranges from -88 to -4 and -91 to 1, -200 to 600 in Sarkar and Zhang (2009),
-3000 to 2000 in Nagel and Singleton (2011) and -250 to 600 in Roussanov (2014)

5Conine et al. (2017) document that the range of reasonable constant risk aversion estimated directly
from the past studies during the period from 1970 to 2014 is from 0.6 to 10

6See Mankiw and Zeldes (1991) and Gomes and Michaelides (2008) among others.
7This is based on variable name ‘HEQUITY’ in Survey of Consumer Finances.
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market participants is found to be time-varying (Vissing-Jorgensen (2002)). The aim of

this paper is to explore the implication of time-varying market participation for conditional

consumption-based asset pricing both theoretically and empirically.

We develop a general equilibrium model for an economy populated by N investors having

power utility of consumption. Investors differ in their risk aversion8. The stockholders

continuously trade in two securities - a riskless bond and a risky asset, whereas the non-

stockholders trade only in a riskless bond. All investors receive stochastic non-financial

income (which we refer to also as labor income or endowment) that is positively correlated

with aggregate dividend. The introduction of labor income in conjunction with short selling

constraints gives rise to endogenous entry or exit of stock market by investors given their

level of risk aversion. We solve in closed form for optimal investment policies, consumption

choices and asset prices. In doing so, and in contrast to the CARA setup9, our model

shows the importance of non-financial income on optimal consumption, investment policies,

equilibrium asset moments and decisions to exit or enter the stock market .

The main contribution of this paper is to present a novel consumption-based asset pricing

model (C-CAPM) for both market and an individual stock. The equity premium is given by

the covariance between the stockholders ’ consumption growth and stock returns multiplied

by the consumption-weighted harmonic mean of stockholders ’ risk aversions10. The implica-

tions of our conditional consumption asset pricing equation can be summarized as follows.

First, as for the level, the price of risk is lower than the one generated in the full market par-

ticipation case. This is because we find that the remaining stockholders are less risk-averse

than non-stockholders. This finding also leads to limited risk-sharing across the remaining

stockholders which, in turn, generates higher quantity of risk in our economy compared to

the full participation case.

Second, as for the dynamics, when the stock valuations are high (low), more risk-averse

8There can be heterogeneity of risk aversion among institutional investors given different regulations,
investment horizon or characteristics.

9See Appendix A for more details.

10That is, Et[R
e
k,t+1] =

∑h∗t
i=1 C

∗
i,t∑h∗t

i=1

C∗
i,t
γi

Covt(R
e
k,t+1,

∆
∑h∗t
i=1 C

∗
i,t+1∑h∗t

i=1 C
∗
i,t

) ∀k = m, 1, 2, ...,K for either market k = m

or individual stocks k = 1, ..,K in discrete time expression, see Proposition 4 and Appendix C.
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investors than existing stockholders enter (leave) the market. We find that this entry (exit)

of investors with high risk aversion raises (lowers) the harmonic mean of stockholders’ risk

aversion beyond the opposite effect of changes in the cross-sectional distribution of sharehold-

ers’ consumption. Thus, our model generates time-varying aggregate risk aversion mainly

through limited market participation along the suggestion in Brunnermeier and Nagel (2008).

Third, we find that the conditional covariance is counter-cyclical because more hetero-

geneous investors enter (exit) the market and hence risk-sharing is improved (worsened).

This is in contrast to the pro-cyclical covariance generated in Duffee (2005) where only the

composition effect drives the time-variation in the covariance term given the full market

participation in his setup. We find that endogenous limited market participation dominates

the composition effect in the dynamics of the covariance which, in turn, relaxes the required

dramatic counter-cyclical variation in the price of risk.

Given our CRRA preferences, we find that the sensitivity of optimal consumption to labor

is not unity and hence investors invest a part of labor income in financial assets. As a result,

we show that fluctuations in labor income affects the equilibrium stock price, returns and

volatility. Labor income shock is also necessary for generating limited market participation.

In our economy, investors face uninsurable labor income shock assumed to be positively

correlated with unexpected stock returns. Then, when there is a negative labor income

shock, this could be the moment that stock price crashes. To hedge against this unexpected

labor income shock, the optimal stock holding includes an intertemporal hedging demand

term in addition to the first term proportional to the mean-variance efficient portfolio. Then,

for investors with sufficiently high risk aversion the intertemporal hedging term dominates

the mean variance term and hence optimally hold a negative position in the stock.

Our model generates positive cross-sectional relation between the optimal consumption

and risk aversion - more risk-averse investors consume more given the same level of wealth.

This is different from the prediction in a heterogeneous economy without labor income.

Understanding this difference boils down to comparing consumption smoothing and precau-

tionary saving demands between these two economies. The magnitude of the precautionary

saving demand is mainly determined by the quantity of consumption risk. First, the hetero-

geneity of investors in our incomplete market setting improves the risk-sharing which in turn
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reduces the quantity of consumption risk, whereas in the complete market, the risk-sharing

is always perfect and the quantity of consumption risk does not vary considerably with the

degree of heterogeneity. Second, the inclusion of non-financial income in our setup further

lowers the quantity of consumption risk by generating an imperfect correlation between con-

sumption growth and stock returns, which is equal to 1 in the complete market setting.

Taken together, the consumption smoothing demand dominates the precautionary saving

demand in our economy while it is not the case in other complete market economies11.

This finding has a direct implication on the non-stationary cross-sectional distribution

of consumption (or severe inequality) across heterogeneous investors discussed in Chan and

Kogan (2002) and Cvitanić et al. (2012). Since we find that the least risk-averse investor

consumes the least at the beginning, when wealth is equal across investors, we show by

means of simulation, that it takes an astronomical amount of time for the least risk-averse

investor to asymptotically dominate the others in terms of consumption12.

Finally, we conduct an empirical test of our theory. Specifically, we explore the implica-

tion of time-varying market participation using the Consumer Expenditure data. Our main

results are summarized as follows. First, in the time-series regression with the assumption of

time-invariant price of risk, we confirm that the covariance of aggregate (full participation)

consumption growth with stock returns cannot predict the future excess stock returns and

the result implies a negative price of risk, similar to Duffee (2005). However, the test using

only stockholders’ consumption growth implies a reasonable positive price of risk level of 20.

Second, we allow the price of risk to vary as a function of a commonly used state variables.

Using aggregate consumption, we also confirm the dramatic counter-cyclical variation in the

implied price of risk. However, if only the consumption of stockholders is used, we find

that the time-varying implied price of risk is less counter-cyclical with reasonable boundary.

Third, we also impose the price of risk measures motivated by our theory. We show that our

equation produces reasonable range of time-varying price of risk (e.g., 4 to 40). Finally, we

11A detailed discussion is provided in Appendix F.
12Our simulation result shows that the consumption (wealth) of the least risk-averse investor accounts for

0.05% (5%) of the total consumption (the entire market wealth) in 50 years. With this speed, the linear
extrapolation predicts it takes 138,876 years (1,037 years) for the least risk-averse investor to fully dominate
the others. If the exponential extrapolation is used for the consumption, it takes 334 years.
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find that our price of risk measures rise when a higher proportion of households invests in

the stock market, consistent with our theory.

The rest of the paper is organized as follows: Section 2 reviews the literature which

could be skipped by informed readers. Section 3 discusses the economic setup and solves the

optimization problems. Section 4 solves and examines the equilibrium. Section 5 simulates

the model. Section 6 empirically tests the implications of our paper. Section 7 concludes.

2 Literature review

Several studies have theoretically examined the limited stock market participation to

explain broad asset pricing features. One class of these studies13 exogenously specifies a

group of investors excluded from the stock market. Basak and Cuoco (1998) examine the

equity premium in an economy where less risk-averse investor is the only stockholder out

of two investors. Guvenen (2009) considers a real business cycle model with two investors

who differ in their EIS. The investor with higher EIS is the only stockholder. Since there

is no dynamics in market entry or exit in this class of models, these models do not derive

implications of time-varying stock market participation for asset pricing which is the main

contribution of this article. Moreover, our article shows that, allowing market participation to

be determined by individuals’ optimal choice makes it harder to explain the equity premium.

This is because as long as the equity premium is sufficiently high, the non-stockholders are

willing to enter the market. This entry of more risk-averse investors decreases the equilibrium

equity premium given the improved risk-sharing.

The other class of studies14 more realistically endogenizes the stock market participation.

Even though the market participation is determined by individuals’ optimization at each time

in this class of papers, neither of these authors examines the implication of state-dependent

stock market participation as in our paper. This is because the main focus of these papers are

to examine either the unconditional asset moments, participation rate, or investors’ life-cycle

13See Basak and Cuoco (1998), Guo (2004), Polkovnichenk (2004), and Guvenen (2009), for example,
among others.

14See Allen and Gale (1994), Williamson (1994), Constantinides et al. (2002), Haliassos and Michaelides
(2003), Cao et al. (2005), Gomes and Michaelides (2005), Alan (2006), Gomes and Michaelides (2008), and
Fagereng et al. (2017), among others.
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behavior.

Our paper belongs to the large literature on the heterogeneous investors15. Chan and

Kogan (2002), for example, examine an economy with heterogeneous investors and show

that changes in the cross-sectional distribution of wealth among the heterogeneous agents

leads to counter-cyclical variation in Sharpe ratio, without assuming time-varying individual

risk aversion as in Campbell and Cochrane (1999). Our paper also generates time-varying

risk aversion but with a different mechanism. More specifically, in addition to the time-

variation in cross-sectional distribution of wealth, the optimal exit and entry of investors

constitute another channel of time variation. We show that this latter channel affects the

price of risk in opposite direction to the way time-variation in wealth distribution does. These

counterbalancing channels render the market price of risk less counter-cyclical (to even pro-

cyclical) compared to Chan and Kogan (2002). In contrast with the extant literature that

relies on high counter-cyclical price of risk, our theory relies on counter-cyclical risk-sharing

with moderate price of risk to match the observed counter-cyclicality in equity risk premium.

Our paper is also related to the work investigating labor income risk. Christensen et al.

(2012) is the first to solve the equilibrium of an economy with labor income in closed form

using CARA preferences. However, there is no stochastic dynamics in this economy because

neither CARA investors take into account wealth nor invest labor income in the financial

assets (A description of this economy is in Appendix A). Thus, we consider CRRA investors.

In general, there is no closed-form solution for the maximization problems associated with

CRRA investors in the presence of labor income risk which is not perfectly correlated with

stock returns. Using only one shock for the stock dynamics, Koo (1998) provides the optimal

solution in closed-form where financial wealth is always non-negative. Building upon Koo

(1998), our paper is the first to present, in closed form, expressions for optimal policies and

asset prices in a general equilibrium with heterogeneous investors facing labor income risks.

We verify that our solution holds exactly without assuming sufficient liquidity in the case

where the correlation between stock returns and labor income is perfect.

15See Constantinides and Duffie (1996), Basak and Cuoco (1998), Chan and Kogan (2002), Bhamra and
Uppal (2009) Chen et al. (2012), Cvitanić et al. (2012), Chabakauri (2013), and Bhamra and Uppal (2014),
for example, among others.
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Our paper is also related to studies that examine consumption and stock volatilities. Our

model helps match the consumption volatility as well as stock volatility fairly well. First, in

the case where there is no labor income, the consumption volatility is identical to dividend

volatility. By introducing labor income, the consumption volatility can be even lower than

labor income volatility, as in the data. Second, with regards to stock volatility, numerous

studies examined the excess volatility puzzle16. The mechanism in our model differs from

these studies. In addition to effect of labor shock, once heterogeneity is introduced, the

equilibrium stock volatility is a function of consumption and wealth distribution. We find

that the higher wealth inequality relative to consumption inequality, the greater gap be-

tween stock volatility and dividend volatility. Given that, as discussed above, risk-averse

investors consumer less in the beginning when wealth is equal, the speed of consumption

inequality is less than the dispersion of wealth in our economy, hence generating plausible

excess volatility17.

3 The Economy

3.1 The basic setup

We consider a continuous pure-exchange economy over the infinite time horizon. The

uncertainty in this economy is represented by a filtered probability space (Ω,F ,P). Ω is

the set of all possible states. F = {Ft}t∈τ is the filtration that represents the investors’

information available at time t where τ ∈ [0,∞). The probability measure P is defined on

(Ω,F∞) where F∞ =
⋃∞
t=0Ft, represents the investors’ common beliefs. The filtration F

is generated by two-dimensional standard Brownian motion W = [Wd,Wy]. All stochastic

processes introduced in the remainder of the paper are assumed to be adapted to Ft.
The stockholders continuously trade in two securities - a riskless bond and a risky asset,

whereas the non-stockholders trade only in a riskless bond. A riskless bond price at time t

is denoted by Bt and net supply of the bond is zero. The initial bond price is normalized

to unity B0 = 1. Therefore, the bond price follows the dynamics: dBt
Bt

= rtdt where the

16See Shiller (1981), LeRoy and Porter (1981), Keim and Stambaugh (1986), Campbell and Shiller (1988),
Cochrane (1992), Hodrick (1992), Gabaix (2012) and Wachter (2013) among others.

17A detailed discussion is provided in Appendix G.
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parameter rt denotes the risk-free rate. A risky asset is in unit net supply and a claim

to a continuous exogenous dividend Dt that follows Geometric Brownian Motion (GBM):

dDt
Dt

= µddt+ σddWd,t where µd > 0 is the expected dividend growth rate, and σd > 0 is the

dividend growth volatility. Moreover, the equilibrium price dynamics of risky asset has the

form18 :

dSt +Dtdt

St
= µs,tdt+ σds,tdWd,t + σys,tdWy,t (1)

where µs,t, σ
d
s,t, and σys,t > 0 and dWd,tdWy,t = ρdt, ρ > 0. The risk-free rate rt, the expected

stock returns µs,t, and the stock volatility σs,t =
√

(σds,t)
2 + (σys,t)

2 + 2ρσds,tσ
y
s,t are to be

endogenously determined in equilibrium.

The economy is populated by infinitely lived N investors all having time-separable power

utility of consumption. They differ in the coefficient of relative risk aversion. Since this

paper aims to examine the conditional asset pricing, the power utility is chosen over the

CARA utility whose economy does generate rich stochastic dynamics. The assumption of

power utility for individual investors is justified by the recent work of Brunnermeier and

Nagel (2008).

Investor i is maximizing ∀t ∈ [0,∞)

Et[
∫ ∞
t

e−δsC1−γi
i,s

1− γi
ds] (2)

For investors i = 1, ..., N whose risk aversion coefficient is γ1, ..., γN , respectively, with 0 <

γ1 < ... < γN . Ct ∈ R+ is one perishable consumption good that serves as the numéraire.

δ > 0 is the subjective time preference rate. Et denotes the expectation taken at time t. All

investors receive, for simplicity, the same level of stochastic exogenous non-financial income

(labor income) Yt that evolves as :

dYt
Yt

= µydt+ σydWy,t (3)

where µy > 0 is the expected labor income growth rate σy > 0 is the labor income growth

volatility.

18in contrast to Koo (1998) who uses one shock, this conjecture for the equilibrium stock price dynamics
is confirmed in Proposition 1 which shows that CRRA investors invest a part of labor income in financial
assets, and thus, labor income shock affects the equilibrium stock price eventually. This is not the case for
CARA investors. For more details, see Appendix A.
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3.2 The individual investor’s problem

In this section, we study the individual investors’ utility maximization problem in search

of the optimal portfolio and consumption choice. We consider a stockholder’s and non-

stockholder’s optimization separately. A stockholder’s financial wealth evolves according

to

dXi,t = πi,t(
dSt +Dtdt

St
) + (Xi,t − πi,t)rtdt+ (Yt − Ci,t)dt

= [πi,t(µs,t − rt) + rtXi,t + Yt − Ci,t]dt+ πi,tσ
d
s,tdWd,t + πi,tσ

y
s,tdWy,t (4)

∀i = 1, 2, ..., ht where the dollar amount of stock holding (not fraction of wealth) πi,t satisfies∫ t
0
π2
i,sds < ∞ and ht is index for the cut-off stock‘h’older who distinguishes the stockhold-

ers from the non-stockholders. It also denotes the number of stockholders at each time.

Similarly, a non-stockholder’s financial wealth evolves according to

dXi,t = [rtXi,t + Yt − Ci,t]dt (5)

∀i = ht + 1, ..., N . The value function V is defined by

Vi,t(x, y) = max
(ci,t,πi,t)∈A

Et[

∫ ∞
t

e−δsC1−γi
s

1− γi
ds] (6)

∀i = 1, 2, ..., N , ∀t ∈ [0,∞) and X
(c,π)
i,t = x, and Yt = y.

The investors maximize the lifetime sum of expected utility in (2) subject to the labor

income process (3) and the wealth dynamics (4) or (5). The closed form solution for this

maximization problem does not exist in general19. However, assuming as in Koo (1998),

that borrowing constraint (Xi,t ≥ 0 ∀t ∈ [0,∞)) never binds with sufficient liquidity (i.e.,

Xi,t/Yt →∞). We solve the maximization problem in closed form in our setting. Moreover,

this condition prevents the investors with relatively low risk aversion from being the non-

stockholders, which generate one key feature of economy: stockholders are more risk-averse

than non-stockholders for any point of time.

The following proposition shows the optimal consumption and investment as functions

of asset parameters. Since the asset parameters are also functions of the consumption and

19The closed form solution for the stockholders’ optimization problem exists if stock returns are perfectly
correlated with labor income growth.

9



investment as shall be shown in Section 4, they are jointly determined in the equilibrium.

Proposition 1. The investors’ optimal consumption, stock holdings, and the wealth dynam-

ics are given by

C∗i,t = (rt +
δ − rt
γi
− 1− γi

γ2
i

λ2
t

2
)(Xi,t +

Yt
rt + ρtσyλt − µy

) ∀i = 1, 2, ..., ht (7)

C∗i,t = (rt +
δ − rt
γi

)(Xi,t +
Yt

rt − µy
) ∀i = ht + 1, ..., N (8)

π∗i,t =
λt

γiσs,t
(Xi,t +

Yt
rt + ρtσyλt − µy

)− 1

σs,t

ρtσyYt
rt + ρtσyλt − µy

∀i = 1, 2, ..., ht (9)

dXi,t = [(
λ2
t

γi
− δ − rt

γi
+

1− γi
γ2
i

λ2
t

2
)(Xi,t +

Yt
rt + ρtσyλt − µy

)− µyYt
rt + ρtσyλt − µy

]dt

+ π∗i,tσ
d
s,tdWd,t + π∗i,tσ

y
s,tdWy,t ∀i = 1, 2, ..., ht (10)

dXi,t = [(−δ − rt
γi

)(Xi,t +
Yt

rt − µy
)− µyYt

rt − µy
]dt ∀i = ht + 1, ..., N (11)

∀t ∈ [0,∞)

where ρt ≡ Corrt(σ
d
s,tdWd,t + σys,tdWy,t, σydWy,t) =

σds,tρ+σys,t
σs,t

=
σds,tρ+σys,t√

(σds,t)
2+(σys,t)

2+2ρσds,tσ
y
s,t

20 and

λt is the Sharpe ratio

Proof : See Appendix B.1

First, concerning the optimal consumption, note that the sensitivity of the optimal con-

sumption to labor income (∂C∗i,t(Xi,t, Yt)/∂Yt) is not unity, different from CARA utility

case21. This means the investors invest a part of labor income in the financial assets, and

hence fluctuations in labor income eventually affects the equilibrium stock price.

Second, the non-stockholders’ financial wealth in (11) is deterministic, whereas the stock-

holders’ financial wealth in (10) is stochastic. This implies that the consumption of stock-

holders in (7), is more volatile and more correlated with stock returns than that of non-

stockholders in (8), consistent with the empirical finding (Mankiw and Zeldes (1991)).

Third, as illustrated in Figure 1, our model generates positive cross-sectional relation be-

20ρt is the correlation between stock returns and labor income growth. When the correlation between
dividend shock and labor income shock is perfect (ρ = 1), ρt is also equal to 1.

21For more details, see Appendix A.2.
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tween the optimal consumption and risk aversion - more risk-averse investors consume more

given the same level of wealth. This finding is opposite to the prediction in a heterogeneous

complete economy without labor income. In Appendix F we derive the derivative of optimal

consumption with respect to risk aversion and by arranging its terms, it is straightforward to

notice that understanding this difference boils down the magnitude of consumption smooth-

ing and precautionary saving demands between these two economies. The magnitude of the

precautionary saving demand is mainly driven by the quantity of consumption risk. First,

the heterogeneity of investors in our incomplete market setting improves the risk-sharing

which in turn reduces the quantity of consumption risk, whereas in the complete market,

the risk-sharing is always perfect and the degree of heterogeneity does not change the quan-

tity of consumption risk substantially. Second, the inclusion of non-financial income in our

setup further lowers the quantity of consumption risk by generating an imperfect correlation

between consumption growth and stock returns, which is equal to 1 in the complete mar-

ket setting. Because these two effects, the precautionary saving demand in our economy is

lower than in the complete market, the consumption smoothing demand is more likely to

dominate the precautionary saving demand in our economy while it is not the case in other

complete market economies. By making Sharpe ratio equal to zero in equation (F.1) for

non-stockholders, it is also straightforward to notice that optimal consumption is monotonic

with respect to risk aversion as well as higher than non-stockholders. See Appendix F for

further discussion.

This positive relation between the consumption and risk aversion has an important im-

plication. Since the least risk-averse investor consumes the least at the beginning, it takes

astronomical22 amount of time for the least risk-averse investor to asymptotically dominates

the others in terms of consumption as the wealth of the least risk-averse investor accounts

for the higher proportion of the market over time23. Through this channel, our model can

reduce the impact of non-stationary cross-sectional redistribution of consumption on our

22Our simulation result shows that the consumption (wealth) of least risk-averse investor accounts for
0.05% (5%) of the total consumption (the entire market wealth) in 50 years. With this speed, the linear
extrapolation predicts it takes 138,876 years (1,037 years) for the least risk-averse investor to fully dominate
the others. If the exponential extrapolation is used for the consumption, it takes 334 years.

23This is consistent with the empirical findings that market participation generates wealth inequality (e.g.,
Favilukis (2013) and Gabaix et al. (2016).)
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economy without assuming the ‘catching up with the Joneses’ preferences as in Chan and

Kogan (2002).

Regarding the optimal stock holding, and unlike CARA, the optimal stock holding for

CRRA investor is a function of the financial wealth and labor income. more importantly,

the optimal stock holding π∗i,t has the intertemporal hedging demand term in addition to the

first term which is proportional to the mean-variance efficient portfolio. It is straightforward

to see from equation (9) that without labor income, the optimal stock holding is always

non-negative and therefore every investor is a stockholder as long as the equity premium is

positive. Also, it is worth emphasizing that only first term is inversely associated with the

relative risk aversion γi. Therefore, the optimal stock holding is monotonically decreasing

with risk aversion and for investors with relatively high risk aversion can have a negative

optimal stock holding π∗i,t < 024. The economic intuition is when labor income innovations

are positively correlated with unexpected stock returns ρt > 0, an employed investor with

sufficiently high risk aversion hedges the consumption against an unexpected decrease in

income by short-selling the risky asset. With a negative holding, the investor’s portfolio will

pay off when labor income unexpectedly falls, providing a hedge. However, we impose a

short-selling constraint and therefore, the investors whose optimal holding is negative sub-

optimally have zero position25

In addition, rearranging the optimal stock holding equation shows what determines the

sign of stock holding. By rearranging terms in (9), the condition under which the stock

holding is positive is simply equivalent to

Xi,t

Yt
λt(rt + ρtσyλt − µy) + λt − γiρtσy > 0 (12)

This shows that the state variable which mainly drives the time-varying market participa-

tion is the ratio of financial wealth to labor income. When the financial wealth is sufficiently

24This finding is consistent with Koo (1998), Heaton and Lucas (2000), and Viceira (2001).
25In the literature, other mechanisms to generate the limited market participation are considered as follows.

Fixed setup or transaction costs: Allen and Gale (1994), Williamson (1994), Heaton and Lucas (1996),
Haliassos and Michaelides (2003), Alan (2006), Fagereng et al. (2017); Life-cycle model: Constantinides
et al. (2002), Gomes and Michaelides (2005), Alan (2006), Gomes and Michaelides (2008), Fagereng et al.
(2017); Model uncertainty: Cao et al. (2005); Borrowing constraint: Allen and Gale (1994), Heaton and Lucas
(1996), Constantinides et al. (2002), Haliassos and Michaelides (2003), Alan (2006), Gomes and Michaelides
(2008), Fagereng et al. (2017).
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high during the good states, then an investor has more liquidity to enter the market. As for

labor income, the higher labor income level, the higher labor income risk (given the GBM

assumption), and the stronger motive to hedge the labor income risk by short-selling the

stock. Equation (12) also shows that the higher risk aversion an investor has, the less likely

the investor has a positive stock holding.

4 Equilibrium

This section discusses the equilibrium of the model. Section 4.1 defines the equilibrium.

Section 4.2 examines the characteristics of equilibrium asset parameters in this economy.

Section 4.3 describes how the cut-off stockholder is determined in equilibrium. Finally,

Section 4.4 studies the consumption risk in equilibrium.

4.1 Description of the equilibrium

Definition 1. An equilibrium is a set of processes {rt, µs,t, σs,t} and consumption and in-

vestment policies {C∗i,t, π∗i,t}i∈1,...,ht
and {C∗i,t}i∈ht+1,...,N

which maximize the sum of life time

expected utility (2) for each investor and satisfy the securities market-clearing conditions:

1. Stock market clears:
ht∑
i=1

π∗i,t = St ∀t ∈ [0,∞) (13)

2. Bond market clears:
N∑
i=1

Xi,t −
ht∑
i=1

π∗i,t =
ht∑
i=1

Xi,t − St︸ ︷︷ ︸+
N∑

i=ht+1

Xi,t︸ ︷︷ ︸ = 0 ∀t ∈ [0,∞) (14)

Demand by stockholders by non-stockholders

The stock is in unit supply, and hence the stock market clearing condition is represented

by (13). The bond is in zero supply. Since
∑N

i=1Xi,t represents the total financial wealth

of all investors invested in both the stock and the bond,
∑N

i=1Xi,t − St represents the total

demand on the bond. Thus, the zero supply bond market clearing condition is represented

by
∑N

i=1Xi,t − St = 0. We can decompose this into the amount of bond owned by stock-

holders
∑ht

i=1Xi,t−St and by non-stockholders
∑N

i=ht+1Xi,t. Given the initial condition that∑h0
i=1 Xi,0 − S0 +

∑N
i=h0+1Xi,0 = 0, it suffices to satisfy the following equation for the bond

13



market clearing:

ht∑
i=1

dXi,t − dSt +
N∑

i=ht+1

dXi,t = 0 ∀t ∈ [0,∞) (15)

Lemma 1. The equation (15) together with the stock market clearing condition (13) implies

the consumption clearing condition :

ht∑
i=1

C∗i,t +
N∑

i=ht+1

C∗i,t = N · Yt +Dt (16)

Proof : See Appendix B.2

4.2 Derivation of the equilibrium

For an incomplete market where labor income is partially correlated with the stock, a

Martingale approach has not been developed yet26. Therefore, to the best of our knowledge

, it is not possible to specify the state price density and solve the equilibrium by maximizing

the ‘social planner’s welfare function as it is done in the existing studies on heterogeneous

investors27. Notwithstanding, we can solve for the general equilibrium without specifying the

SDF (Stochastic Discount Factor) based on the optimal consumption and portfolio choice

obtained by solving for the HJB (Hamilton-Jacobi-Bellman) equation. The equilibrium is

derived in five steps. First, from the stock market clearing condition (13), the equation for

the equilibrium Sharpe ratio is obtained. Second, by matching the deterministic terms of

the dynamics of both left and right hand side of (16), the equation for the equilibrium risk-

free rate is obtained. Third, by matching the diffusion terms of the dynamics of (16), the

equation(s) for the equilibrium stock volatility are obtained. Fourth, from the consumption

clearing condition (16), the optimal consumption in (7) and (8), and the market clearing

condition in (13) and (14), the closed form solution for the equilibrium stock price is com-

puted. Fifth, in a Nash equilibrium setting, searching for the investor who distinguishes

26He and Pearson (1991a) and He and Pearson (1991b) develop a martingale approach for a dynamic
consumption-portfolio problem with incomplete markets and short-sale constraint. However, they do not
consider non-financial income. Although He and Pagès (1993) develop a martingale approach for the economy
with labor income and borrowing constraints, the labor income risk does not constitute an additional source
of uncertainty in their paper. We investigated the martingale approach but we failed to find a solution.

27See Basak and Cuoco (1998), Chan and Kogan (2002), Bhamra and Uppal (2009) Chen et al. (2012),
Cvitanić et al. (2012), Chabakauri (2013), and Bhamra and Uppal (2014), for example, among others.
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the stockholders from the non-stockholders in such a way as to preclude any optimal devia-

tion from the stockholders to non-stockholders, and vice versa, the cut-off stockholder (h∗t )

and the equilibrium endogenous asset parameters are finally determined. Proposition 2

summarizes the set of equations for the equilibrium and stock price.

Proposition 2. In equilibrium, defined by Definition 1, the set of equations for the Sharpe

ratio λt, the risk-free rate rt, the stock volatility σs,t and the stock price are given by:28

λt = (σs,t

N∑
i=1

Xi,t + ρtσyg(θt)Ytht)(
ht∑
i=1

Xi,t + g(θt)Yt
γi

)−1 (17)

rt = δ + (µdDt + µyN · Yt)(
N∑
i=1

C∗i,t
γi

)−1 − λ2
t

2
(
N∑
i=1

C∗i,t
γi

)−1

ht∑
i=1

C∗i,t
γi

(1 +
1

γi
) (18)

σs,t = (
N∑
i=1

Xi,t)
−1[(

ht∑
i=1

C∗i,t
γi

)−1(σdDt
σs,t
σds,t

+
ht∑
i=1

ρtσyC
∗
i,t

Xi,t/Ytg(θt) + 1
)(

ht∑
i=1

Xi,t + g(θt)Yt
γi

)− ρtσyg(θt)Ytht] (19)

St =
Dt

rt
+ Yt[

N

rt
−
ht + 1

rt

∑ht
i=1( δ−rt

γi
− 1−γi

γ2i

λ2t
2

)

rt + ρtσyλt − µy
−
N − ht + 1

rt

∑N
i=ht+1( δ−rt

γi
)

rt − µy
]

+
1

rt
[(µdDt + µyN · Yt)(

N∑
i=1

C∗i,t
γi

)−1 − λ2
t

2
(
N∑
i=1

C∗i,t
γi

)−1

ht∑
i=1

C∗i,t
γi

(1 +
1

γi
)]

N∑
i=1

Xi,t

γi

− λ2
t

2rt

ht∑
i=1

(
γi − 1

γ2
i

)Xi,t (20)

∀t ∈ [0,∞) where g(θt) ≡ 1
rt+ρtσyλt−µy

29, θt ≡ [rt, ρt, σy, λt, µy]

Proof : See Appendix B.3.

Except for the equilibrium stock price, the endogenous asset parameters, as a function

of the cut-off stockholder, are obtained by computationally solving for the four unknowns

28There are two equations for equilibrium σs,t because there are two diffusion terms in the process of
(16) and two parameters (σds,t, σ

y
s,t) for stock volatility. Proposition 2 shows only the first equation for

expositional convenience. For more details, see Appendix B.3
29g(θt)Yt is the certainty equivalent present value (CEPV), which is the minimal amount of wealth that

any investor requires in order for her to permanently give up her status quo (with wealth Xi,t, and labor
income process under incomplete market and subject to borrowing constraints) and live with no labor income
thereafter.
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(λt, rt, σ
d
s,t, σ

y
s,t) from the set of four equations (B.60). To understand the role of labor

income, it is useful to compare the endogenous asset parameters of the current model with

the simpler case where there is no labor income. We study each endogenous asset parameter

and compare how it differs from the case where labor income does not exist. We also show

how our equilibrium equations reduces to known equations in nested economies (no-labor

income and no heterogeneity).

Sharpe ratio

From the Sharpe ratio, we can derive the equilibrium equity premium (µes,t = λtσs,t).

µes,t = λtσs,t =

∑N
i=1Xi,t∑ht

i=1
Xi,t+g(θt)Yt

γi

σ2
s,t +

g(θt)Ytht∑ht
i=1

Xi,t+g(θt)Yt
γi

Covt(
dSt
St
,
dYt
Yt

) (21)

Note that this equation is the same as in Roussanov (2014). Hence, our paper provides

an economic foundation and the derivation underlying this expression.

If we consider the case where the labor income does not exist (17)30, the market is

complete and only the market risk component remains31: λt = (
∑N

i=1
Xi,t∑N
i=1Xi,t

1
γi

)−1σs,t. By

substituting for the stock volatility σs,t in this case32, λt = (
∑N

i=1

C∗i,t∑N
i=1 C

∗
i,t

1
γi

)−1σd. The

only time-variation in the Sharpe ratio in this perfect market comes from the cross-sectional

distribution of consumption. As Chan and Kogan (2002) points out, the Sharpe ratio is

counter-cyclical even without assuming time-varying individual risk aversion (Campbell and

Cochrane (1999)). The mechanism is as follows. The relatively risk-tolerant investors hold

a higher proportion of their wealth in stock. Thus, at times when the stock market declines,

the consumption of relatively risk-tolerant investors decreases more than others. This makes

the consumption-weighted harmonic mean of risk aversion (
∑N

i=1

C∗i,t∑N
i=1 C

∗
i,t

1
γi

)−1 tilted towards

relatively high risk-averse investors, increasing the Sharpe ratio. In addition to this time-

varying distribution of consumption, the Sharpe ratio in our case with labor income, equation

(17), has another source of time-variation - market participation- which counterbalance the

30This economy is studied in heterogeneous agent literature. See Chan and Kogan (2002), Bhamra and
Uppal (2009), Cvitanić et al. (2012), Bhamra and Uppal (2014) and Cochrane (2017) for example.

31In unreported results, we derive the endogenous asset parameters in this case using the Martingale
approach and show that it is the same as forcing labor income to zero in our expression.

32σs,t = (
∑N
i=1

C∗
i,t∑N

i=1 C
∗
i,t

1
γi

)−1
∑N
i=1

Xi,t∑N
i=1Xi,t

1
γi
σd
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consumption redistribution effect.

In addition to the above channels, Labor income also influences the Sharpe ratio through

risk-sharing. Without labor income risk-sharing is perfect, hence introducing more hetero-

geneous investors into this economy only changes the average risk aversion. In our economy

the risk-sharing is imperfect and hence the risk-sharing is improved with more heterogeneous

investors, decreasing the Sharpe ratio. More detailed discussion is provided in Appendix F.

Finally, if we further turn off the heterogeneity, our models reduces to the traditional

single investor economy (Lucas (1978)) and the Sharpe ratio is simply λt = γσd.

Risk-free rate

The equilibrium risk-free rate in (18) has the standard components: the subjective dis-

count rate δ, the consumption smoothing demand (µdDt + µyN · Yt)(
∑N

i=1

C∗i,t
γi

)−1, and the

precautionary saving demand −λ2t
2

(
∑N

i=1

C∗i,t
γi

)−1
∑ht

i=1

C∗i,t
γi

(1 + 1
γi

). First, the consumption

smoothing term is the expected aggregate consumption growth33 multiplied by aggregate

average risk aversion: µdDt+µyN ·Yt∑N
i=1 C

∗
i,t

· (
∑N

i=1

C∗i,t∑N
i=1 C

∗
i,t

1
γi

)−1. Note that the expected aggregate

consumption growth is time-varying in our economy while without labor income, the ex-

pected aggregate consumption growth is simply expected dividend. Second, the precaution-

ary saving demand term is a function of the Sharpe ratio and the stockholders’ consumption.

Therefore, if every investor is a non-stockholder, the precautionary saving demand is zero in

our model. When we consider the economy without labor income, the precautionary saving

term reduces to −σ2
d

2
(
∑N

i=1

C∗i,t∑N
i=1 C

∗
i,t

1
γi

)−3
∑N

i=1

C∗i,t∑N
i=1 C

∗
i,t

1
γi

(1 + 1
γi

). Finally, by shutting down

both heterogeneity and labor income, we recover the expression of the risk-free rate in the

simplest representative economy is rt = δ + µdγ −
σ2
d

2
γ(1 + γ).

Stock volatility

The equilibrium stock price in (1) has two Brownian motions given the power preference.

Accordingly, the total stock volatility is represented by two volatility parameters (i.e., σs,t =√
(σds,t)

2 + (σys,t)
2 + 2ρσds,tσ

y
s,t). The level of σds,t and σys,t are closely related to the parameters

values of σd and σy. Since the labor income volatility σy contributes to total stock volatility

33That is 1
dtEt[

d
∑N
i=1 C

∗
i,t∑N

i=1 C
∗
i,t

] =
µdDt+µyN ·Yt∑N

i=1 C
∗
i,t
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in addition to the dividend volatility σd, our model provides the setting under which labor

income risk plays a role in explaining the excess volatility puzzle34. The role of the labor

income volatility on the stock volatility is discussed in details in Appendix G.

If we turn off the labor income (Yt = 0). Then, the stock volatility is represented by one

parameter (i.e., σs,t = σds,t) and its value is σs,t = σd(
∑N

i=1

C∗i,t∑N
i=1 C

∗
i,t

1
γi

)−1
∑N

i=1
Xi,t∑N
i=1Xi,t

1
γi

. This

equation shows that the excess volatility can also be generated under the complete market35

if the cross-sectional wealth distribution is more tilted towards risk-tolerant investors than

consumption distribution (i.e.,
∑N

i=1
Xi,t∑N
i=1Xi,t

1
γi
>

∑N
i=1

C∗i,t∑N
i=1 C

∗
i,t

1
γi

). Bonsang et al. (2005)

indeed documents empirically that consumption is more evenly distributed than wealth. As

discussed in the Section 3, we find that in our economy more risk-averse investors consume

more than others and it takes a long time for the consumption redistribution to be tilted

toward the least risk-averse investor. This finding explains why the inequality holds in our

setting for a long time.

Stock price

We solve for the equilibrium stock price in closed form as follows. On one hand, from the

optimal consumption in (7) and (8), we have the relation between the optimal consumption

and financial wealth. The consumption clearing condition in (16) shows that the aggregate

consumption should be the sum of the dividend level and the aggregate labor income. Using

these latter three equations give the relation between the aggregate financial wealth level and

both dividend and labor income. On the other hand, relying on the asset market clearing

conditions in (13) and (14), we show that the equilibrium stock price is equal to the aggregate

financial wealth. Using these two expressions together, we obtain the closed form solution

for the equilibrium stock price without relying on the SDF in equation (20).

The first term Dt/rt is the stock price when µd = σd = Yt = 0. The second term shows

the effect of labor income on the stock price. The expected dividend and labor income growth

34See Shiller (1981), LeRoy and Porter (1981), Keim and Stambaugh (1986), Campbell and Shiller (1988),
Cochrane (1992), and Hodrick (1992), for example, among others.

35Other theoretical papers in the heterogeneous investor literature also suggest that heterogeneity ’may’
lead to excess volatility. See Bhamra and Uppal (2009), Cvitanić et al. (2012) and Bhamra and Uppal (2014),
for example.
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appear to be positively associated with the stock price as shown in the third term. However,

an increase in these quantities can also lead to the decrease in the stock price due to the

increase in the risk-free rate (discount rate channel). A positive shock to labor income leads

to an increase in financial wealth given the CRRA preference. Since the aggregate financial

wealth is equal to the equilibrium stock price - an increase in the financial wealth drives

up the equilibrium stock price. Since non-stockholders affect the stock price through this

channel, the stock price also depends on non-stockholders-related terms. Finally, the Sharpe

ratio appears to be negatively associated with the stock price as shown in the third and last

terms. However, an increase in the Sharpe ratio also leads to a decrease in the risk-free rate

through precautionary saving motive, driving up the stock price.

Without labor income, the stock price is St = Dt
rt

+ 1
rt

∑N
i=1

Xi,t
γi

[µd(
∑N

i=1

C∗i,t∑N
i=1 C

∗
i,t

1
γi

)−1 −
λ2t
2

((
∑N

i=1

C∗i,t
γi

)−1
∑N

i=1
Ci,t
γi

(1 + 1
γi

) + γi−1
γi

)]. If we further simplify the economy by considering

a representative investor, the equilibrium stock price is St = Dt
rt−µd+γσ2

d
= Dt

δ+µd(γ−1)−
σ2
d
2
γ(γ−1)

,

the same as in the existing studies (e.g., Cvitanić et al. (2012)). If there is no uncertainty

on dividend stream (σd = 0), the equilibrium stock price becomes the one in the Gordon’s

dividend model (St = Dt
rt−µd

).

4.3 Cut-off Stockholder

We turn to the problem of determining the cut-off stockholder (ht). As shown in

Proposition 2, all endogenous asset parameters are a function of the cut-off stockholder

(λt(ht), rt(ht), σs,t(ht)). Also, since each investor’s optimal stock holding is a function of

these endogenous asset parameters π∗i,t(λt, rt, σs,t), the optimal holding is also a function of

the cut-off stockholder π∗i,t(ht). Hence an investor i’s decision to be a cut-off stockholder

(ht = i) changes not only i’s optimal stock holding but also every other agent’ optimal

stock holding. In this nature of the problem, we further restrict the equilibrium to the

Nash Equilibrium to preclude each investor from optimally deviating from a stockholder to

non-stockholder or vice versa, given the cut-off stockholder (ht).

+

Definition 2. An equilibrium is a set of processes {rt(h∗t ), µs,t(h∗t ), σs,t(h∗t )} and consumption
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and investment policies {C∗i,t(h∗t ), π∗i,t(h∗t )}i∈1,...,h∗t
and {C∗i,t(h∗t )}i∈h∗t+1,...,N

which maximize

the sum of life time expected utility (2) for each investor and satisfy the securities market-

clearing conditions (13) and (14) such that short-selling is not allowed and h∗t satisfies the

following.

1. π∗i,t(ht;ht = h∗t ) ≥ 0 ∀i = 1, ..., h∗t (22)

2. π∗i,t(ht;ht = i) < 0 ∀i = h∗t + 1, ..., N (23)

The first condition in (22) states that given the cut-off stockholder ht = h∗t , the investors

who are less risk-averse than the investor h∗t have positive stock holding and therefore, they

remain in the stock market. The second condition in (23) guarantees that when an investor

who is more risk-averse than the investor h∗t enters the stock market and becomes the cut-off

stockholder, her optimal stock holding is negative and therefore, she cannot be a stockholder

given short-selling constraint. Proposition 3 shows how h∗t who satisfies the Definition 2

can be determined.

Proposition 3. The investor h∗t is

h∗t ≡ arg min
i
π∗i,t(ht;ht = i) s.t. π∗i,t(ht;ht = i) > 0 (24)

By the monotonicity of π∗i,t(ht;ht = h∗t ) with respect to i, h∗t defined as in Proposition 3

satisfies the first condition in (22). Also, By the monotonicity of π∗i,t(ht;ht = i) with respect

to i, h∗t satisfies the second condition in (23). Figure 2 also visually confirms that h∗t in

Proposition 3 guarantees no-deviation. Consequently, given the short-selling constraint,

the investors who are more risk-averse than the investor h∗t leave the stock market. However,

since the optimal stock holding is time-varying π∗i,t, non-stockholders can be a stockholder

at different point in time.

4.4 Consumption risk

In the canonical consumption-based asset pricing model with a representative investor,

under no-arbitrage assumption, the conditional equity premium is the quantity of consump-

tion risk measured by the conditional covariance between stock returns and consumption
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growth multiplied by the price of consumption risk represented by risk aversion36.

Et[dR
e
t ] = γt︸︷︷︸ ·Covt(dRe

t , dC
∗
t /C

∗
t )︸ ︷︷ ︸

Price of risk Quantity of risk (25)

where dRe
t ≡ dSt+Dtdt

St
− rtdt is the total instantaneous excess equity return,

dC∗t
C∗t

is the con-

sumption growth, and γt (≡ −C∗t u
′′(C∗t )

u′(C∗t )
) is the coefficient of relative risk aversion. The price

of risk measures the required compensation for one unit of risk. If the representative investor

has the power utility, γt is constant over time (γt = γ). By contrast, in habit preferences

(Constantinides (1990) and Campbell and Cochrane (1999)), γt is time-varying risk aversion.

The following proposition shows the equilibrium equity premium in the economy in which

stock market participation is time-varying37.

Proposition 4. In an economy where market participation is time-varying, the equilibrium

equity premium is given by

Et[dR
e
t ] =

∑h∗t
i=1C

∗
i,t∑h∗t

i=1

C∗i,t
γi︸ ︷︷ ︸
· Covt(dRe

t ,
d
∑h∗t

i=1C
∗
i,t∑h∗t

i=1 C
∗
i,t

)︸ ︷︷ ︸
Price of risk Quantity of risk (26)

Proof : See Appendix B.5

Proposition 4 shows that among all investors, it is the consumption of stockhold-

ers (∀i = 1, ..., h∗t ) which determines the equity premium and the consumption of non-

stockholders (∀i = h∗t + 1, ..., N) does not affect the equity premium directly. Moreover, in

this economy, time-varying market participation h∗t is one of the sources of time-variation in

both the price and quantity of risk.

The quantity of risk is proportional to the degree of imperfect risk-sharing among stock-

holders at each time. The higher the number of heterogeneous stockholders -good times-, the

higher risk-sharing and hence lower quantity of risk. This mechanism generates a counter-

cyclical quantity of risk in our economy. This is in contrast to the empirical findings assuming

the full market participation (See Duffee (2005), Santos and Veronesi (2006), and Sarkar and

36For proof, see Appendix B.4
37For individual stocks, see Appendix C.
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Zhang (2009)38). The reason for pro-cyclical covariance between the aggregate consumption

growth and stock returns in their paper is follows. During good times, the proportion of

stockholders increases which in turn makes aggregate consumption more correlated with

stock returns39. While in our economy it is the time for which risk-sharing is reduced.

In regards to the price of risk, it is derived as the consumption-weighted harmonic mean

of stockholders’ risk aversion
∑h∗t

i=1 C
∗
i,t/

∑h∗t
i=1

C∗i,t
γi

. The following Corollary describes one of

its properties.

Corollary 1. The price of consumption risk is positively associated with h∗t

Since stockholders are less risk-averse than non-stockholders, the non-stockholder who

enters the stock market is more risk-averse than the existing stockholders. Therefore, the

entry of an investor (increase in h∗t ), holding the consumption redistribution constant, leads

to the increase in the (harmonic) mean of stockholders’ risk aversion. In addition, if the

stock market participation is pro-cyclical, the stockholders’ average risk aversion is likely to

be even pro-cyclical.

To summarize, with time-varying market participation, a low level of the price of risk, a

high level of the quantity of risk, and a less counter-cyclical or even pro-cyclical variation in

the price of risk are generated. Corollary 2 shows how the equity premium is associated with

the covariance between aggregate consumption growth and stock returns. The expression in

this corollary helps understand, from the lenses of our model, the high levels of price of risk as

well negative risk return trade-off generated in the extant literature when full participation

was tested.

Corollary 2. In an economy where market participation is time-varying, the association

38Duffee (2005) and Sarkar and Zhang (2009) empirically find that the conditional covariance between ag-
gregate consumption and stock returns is positively associated with the stock market wealth-to-consumption
ratio. Santos and Veronesi (2006) theoretically predicts that the conditional covariance between aggregate
consumption and stock returns is negatively associated with labor-to-consumption ratio, which is consistent
with the positive association with the covariance and the stock market wealth-to-labor ratio in a setting
under which the source of consumption is only financial wealth and labor income.

39Another interpretation of this procyclicality was discussed in Duffee (2005). When stock market wealth
accounts for larger proportion of consumption, the change in consumption becomes more sensitive to the
change in stock market wealth. Therefore, when the ratio of stock market wealth to labor income is high
-good times- the covariance between aggregate consumption growth and stock returns becomes high.
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between the equilibrium equity premium and the conditional covariance of the aggregate con-

sumption growth with stock returns is given by

Et[dR
e
t ]

=

∑N
i=1C

∗
i,t∑h∗t

i=1

C∗i,t
γi

Covt(dR
e
t ,
d
∑N

i=1C
∗
i,t∑N

i=1 C
∗
i,t

)− 1∑h∗t
i=1

C∗i,t
γi

N∑
i=h∗t+1

C∗i,tσy(ρσ
d
s,t + σys,t)

Xi,t(rt − µy)/Yt + 1
(27)

Proof : See Appendix B.5

The previous empirical tests40 of the conditional consumption-based asset pricing have

modeled the equity premium as follows.

Et[dR
e
t ] = α + ΓtCovt(dR

e
t ,
d
∑N

i=1C
∗
i,t∑N

i=1C
∗
i,t

) (28)

By equating (27) with equation (28), the implied price of risk in the empirical studies using

both stock ‘h’older and ‘n’on-stockholders’ consumption can be recovered as

Γ̂HNt ≡
∑N

i=1C
∗
i,t∑h∗t

i=1

C∗i,t
γi

−
∑N

i=h∗t+1

C∗i,tσy(ρσds,t+σ
y
s,t)

Xi,t(rt−µy)/Yt+1
+ α∑h∗t

i=1

C∗i,t
γi
Covt(dRe

t ,
d
∑N
i=1 C

∗
i,t∑N

i=1 C
∗
i,t

)
≡

∑N
i=1C

∗
i,t∑h∗t

i=1

C∗i,t
γi

− at (29)

By contrast, the price of risk using the stockholders’ consumption only is Γ̂Ht ≡
∑h∗t
i=1 C

∗
i,t∑h∗t

i=1

C∗
i,t
γi

.

Note that, contrary to Γ̂Ht , Γ̂HNt could be negatively associated with h∗t unless the second

term at varies considerably as a function of h∗t . This is because, in the first term, a new

entry of investors (increase in h∗t ) raises only the denominator. This negative relation can

explain why the price of risk in the empirical studies assuming full participation is so counter-

cyclical. The conjecture of negative relation will be tested by the simulation in Section 5.

In addition, (29) shows that why Γ̂HNt could be negative. If OLS intercept α is sufficiently

large positive, Γ̂HNt can be negative as observed in the empirical findings. This suggests

a possibility that the negative price of risk from the data could be due to the full market

participation assumption that leads to a poor measure of consumption risk.

40For example, Duffee (2005) considers the time-varying price of risk Γt with the aggregate consumption∑N
i=1 C

∗
i,t.
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5 Simulation

To simulate the model, we map the current theoretical economy into the United States.

The continuous model is discretized and simulated in monthly time increments. To choose

parameter values, the U.S. dividend and labor income data from 1960 to 2015 are used and

for a similar time span, a total of 500 months is considered in the simulation. The annualized

parameter values in the simulation are reported in Table 1 and a detailed description of the

data source is in Appendix D. Section 5.1 studies how the equilibrium asset parameters vary

depending on the different cut-off stockholders. In Section 5.2, we study the dynamics of

stock market participation. In Section 5.3, we investigate the dynamics of consumption risk.

Finally, in Section 5.4, the unconditional asset moments are examined.

5.1 The Asset Parameters with Cut-off Stockholder

In this section, we examine how the endogenous asset parameters (λt, σs,t, rt) vary as

function of different cut-off with different risk aversion h0 = i at given time to understand

the effect of entry of investors. Figure 3 shows the result for the investors from i = 3 to

i = 30 at time 0 as an example. Panel A and B plot the Sharpe ratio and equity premium,

respectively41. Note that they are not monotonic in the entry of higher risk-averse investor.

When the least risk-averse investor is the only stockholder, the highest Sharpe ratio and

equity premium are attained because there should be substantial compensation for bearing

the market risk alone. As more investors enter the market, the Sharpe ratio and equity

premium keep decreasing. However, at some point, they are turning to increasing as the

investors who want to optimally short-sell the stock enter the market. This is because a

higher compensation is required in the market in response to increasing selling demand. Since

we impose short-selling constraint, the cut-off stockholder is h∗t who has the lowest positive

stock holding. This finding implies that allowing market participation to be determined by

individuals’ optimal choice makes it harder to explain the equity premium. As long as the

equity premium is sufficiently high, the non-stockholders are willing to enter the market. This

entry of more risk-averse investors decreases the equilibrium, whereas in a setting where the

41To save space, the result for the stock volatility is not reported. It has the same pattern as the Sharpe
ratio and equity premium.
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limited market participation is exogenous, a high equity premium can be attained because

no matter how high the equity premium is, the non-stockholder cannot enter the market,

thus not decreasing the equity premium.

Panel C decomposes the equity premium into the quantity and price of risk as given in

Proposition 4. This shows that the price of risk with limited market participation (i = 12)

is lower than one in full market participation (i = 30). This is because under limited market

participation, the remaining stockholders are less risk-averse than non-stockholders and thus

they do not require a huge compensation for the risk. Also, due to limited risk-sharing

across the remaining stockholders, the quantity of risk is higher than the one in full market

participation. This result also provides another intuition of why the equity premium is

increasing at some point. The increasing price of risk dominates the decreasing quantity of

risk at h∗t .

Panel D plots the risk-free rate with different cut-off stockholder (ht = i). As studied

in Section 4.2, the market participation affects the risk-free rate only through precautionary

saving motive. The precautionary saving term depends on the Sharpe ratio and the stock-

holders’ aggregate consumption42. The precautionary saving motive initially decreases due

to decreasing consumption risk with better risk-sharing. But, at some point, increasing the

stockholders’ consumption level drives up the the precautionary saving term, decreasing the

risk-free rate.

5.2 The Dynamics of Stock market participation

In this section, we discuss the behavior of time-varying stock market participation. At

first, in order to examine the general distribution of stock market participation across time,

we simulate 10,000 economies at a monthly frequency. Panel A of Figure 4 presents the

simulated kernel distribution of the cut-off stockholder h∗t . It shows the symmetric distri-

bution of h∗t with mean near 12th agent. Second, we study how stock market participation

varies over time depending on the economic states represented by the stock market wealth-

42If the economy is populated only by non-stockholders, the precautionary saving terms do not exist in
this model.
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to-(aggregate) labor ratio St
N ·Yt

43. Panel B of Figure 4 plots one sample path of time-variation

of the stock market participation h∗t in association with the stock market wealth-to-labor

ratio St
N ·Yt . Notably, it shows that they are strongly positively correlated each other44. The

economic intuition for positive relation is as follows. A positive shock to the stock price

relative to labor income shock induces investors to invest in the stock market more due to

sufficient liquidity and also reduced labor income risk. This leads a non-stockholder who is

more risk-averse than the existing stockholders to invest in the stock.

5.3 The Dynamics of Consumption Risk

In this section, we test how both the price and quantity of risk behave along with the

economic state if the aggregate consumption is used to measure the consumption risk in an

economy where the stock market participation is limited. To compare this case with the one

using the only consumption of stockholders, we test following hypothesis.

Hypothesis 1 : Γ̂HNt =
∑N
i=1 C

∗
i,t∑h∗t

i=1

C∗
i,t
γi

− at is negatively associated with St
N ·Yt and ht because

market participation changes only denominator.

Hypothesis 2 : Γ̂Ht =
∑h∗t
i=1 C

∗
i,t∑h∗t

i=1

C∗
i,t
γi

is positively associated with St
N ·Yt and ht by Corollary 1.

Hypothesis 3 : Covt(dR
e
t ,
d
∑N
i=1 C

∗
i,t∑N

i=1 C
∗
i,t

) is positively associated with St
N ·Yt and ht, due to the

composition effect for St
N ·Yt and, as for ht, due to the larger proportion of stockholders whose

consumption is strongly correlated with stock returns.

Hypothesis 4 : Covt(dR
e
t ,
d
∑h∗t
i=1 C

∗
i,t∑h∗t

i=1 C
∗
i,t

) is negatively associated with St
N ·Yt and ht due to higher

risk-sharing with more stockholders.

We run the pooled OLS panel regression with 100 simulated economies. Panel A of Table

2 reports the regression of the price of risk on St
N ·Yt or ht. The dependent variable in the

first and second row of the table is the Γ̂HNt when both stockholders’ and non-stockholders

consumption (denoted by HN ) are used. The dependent variable in the third and last row

of the table is Γ̂Ht . The result shows that Γ̂HNt has a counter-cyclical variation, similar to the

43We use this ratio as a state variable because of its role in determining the market participation as
demonstrated in (12). Also, the literature uses the ratio or similarly the stock market wealth-to-consumption
ratio as a state variable (See Koo (1998), Lettau and Ludvigson (2001), Duffee (2005), Roussanov (2014),
Wang et al. (2016))

4431.58% on average for 10,000 simulations

26



implied price of risk in the existing studies45, confirming Hypothesis 1. Contrary to this,

Γ̂Ht is pro-cyclical, confirming Hypothesis 246. This result implies that an increase in the

market participation level during good states leads to the higher stockholders’ average risk

aversion.

Also, Panel B shows that the quantity of risk measured by the aggregate consumption is

pro-cyclical, replicating the composition effect of Duffee (2005). By contrast, when it comes

to the quantity of risk measured by the stockholders’ consumption, it is counter-cyclical due

to higher risk-sharing with more participation ht when the stock valuations St
N ·Yt are high,

confirming Hypothesis 4. To summarize, the result shows that if the aggregate consumption

is used in an economy where stock market participation is time-varying, the quantity of risk

is pro-cyclical and hence requires a huge counter-cyclical variation in the price of risk to

account for the time-variation in the equity premium as in the current empirical studies.

However, the counter-cyclical quantity of risk measured only by stockholders’ consumption

relaxes the required dramatic counter-cyclical variation in the price of risk

5.4 The Unconditional of Asset Prices

In this section, we study the unconditional moments based on the simulated data. First,

we examine how the consumption of stockholders differs from the aggregate consumption.

Table 3 presents the standard deviation, covariance, and implied price of risk given the

equity premium 4.44% the model generates. As in the previous empirical finding (Mankiw

and Zeldes (1991)), the consumption of stockholders is more volatile and correlated with

stock returns than that of the aggregate investors, implying the low level of the price of risk

(Γ̂). This simulation result provides a part of the explanation for why the previous empirical

studies document the high level of the implied price of risk using the aggregate consumption.

Second, we compare the unconditional moments of consumption growth and stock returns

which the model generates to the corresponding empirical moments for the U.S. Table 3

reports the result. Consumption is endogenous in the model, and therefore it is of particular

interest to produce empirically plausible moments for consumption growth. Panel A presents

45Duffee (2005), Sarkar and Zhang (2009), and Roussanov (2014)
46Although our model generates the pro-cyclical price of risk with CRRA investors, the result with habit-

forming utility function would be a less counter-cyclical variation in the price of risk.
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the unconditional consumption growth moments observed in the data and the model. In a

theoretical model, without labor income, the consumption is equal to dividend stream, and

therefore the moments of consumption growth should be equal to those of dividend growth.

However, the empirically observed moments of dividend growth (4% and 9%) are much higher

than those of consumption growth (1.8% and 1.37%). In our model, with labor income as an

additional source of consumption, the moments of consumption growth have the reasonable

values because the moments of labor income growth (1% and 3%) reduces the moments of

consumption growth.

Panel B reports the unconditional moments of the equity premium, stock volatility, and

correlation between stock returns and aggregate consumption growth. First, the average

equity premium the present model generates is 4.44% that compares to 5.98% in the data.

We further decompose the equity premium into the price of risk
∑h∗t

i=1C
∗
i,t/

∑h∗t
i=1

C∗i,t
γi

and

the quantity of risk Cov(dRe
t ,

∆
∑h∗t
i=1 C

∗
i,t∑h∗t

i=1 C
∗
i,t

). When it comes to the quantity of risk, the model

generates the slightly higher quantity by 0.14%. As for the stock volatility, its value is higher

than the volatility of its fundamental - dividend volatility. As studied in Section 4, this is

because a heterogeneity and labor volatility account for the stock volatility in the excess

of dividend volatility. Finally, we compute the the average market participation rate. The

model generates around 40% market participation rate which is higher than 30% market

participation.

6 Empirical test

In this section, we empirically test our conditional consumption asset pricing model using

micro-level household data from the Consumer Expenditure Survey (CE) for the period

1996-2015. The CE data provide monthly data on expenditure, income, and demographic

characteristics of the sample households in the United States. Throughout the section,

our aim is to compare the empirical result using consumption of stockholders only to the

ones using aggregate consumption as in the extant literature. The aggregate consumption

including both stock‘h’olders and ‘n’on-stockholders’ consumption is denoted by HN and

the consumption of stockholders is denoted by H. we describe our data briefly in the next
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section but we leave a a detailed description of the data to Appendix D.

6.1 Specification

We mainly follow Duffee (2005) for the empirical specification. We first model excess

stock returns and consumption growth as a function of respective set of instruments (First

stage regression). The forecasting regressions for excess stock returns and consumption

growth are given by

ret = X ′re,t−1βre + εre,t, ∆cj,t = X ′cj ,t−1βcj + ε∆cj ,t ∀j = HN,H (30)

where ret denotes the log change in real per capita total market value for NYSE/Amex/Nasdaq

minus 1-month real U.S. T-bill, ∆cj,t denotes the log change in real per capita consumption,

βre and βcj are parameter vectors and the vectors Xre,t−1 and Xcj ,t−1 are instrument variables

for excess stock returns and consumption growth, respectively. The product of the residuals

from the first stage regression is the ex-post covariance between excess stock returns and

consumption growth.

Cov∗(ret ,∆cj,t) = ε̂re,tε̂∆cj ,t ∀j = HN,H (31)

To capture the conditional covariance which is the expected covariance given the condi-

tional information available to investors at time t− 1, the ex-post covariance is projected on

a set of instruments Xt−1 in the second stage regression.

Cov∗(ret ,∆cj,t) = X ′t−1βj + εj,t ∀j = HN,H (32)

Finally, a realized excess stock returns corrected for the Jensen’s inequality is regressed

on the conditional covariances obtained from the second stage regression.

ret +
1

2
ε̂2re,t = b0,j + [b1,j + b2,jpt−1]Ĉovt−1(ret ,∆cj,t) + uj,t ∀j = HN,H (33)

ε̂2re,t is the term to capture V ar(ret ) for the Jensen’s inequality correction. pt−1 is an

observable proxy for the price of risk. Ĉovt−1(ret ,∆cj,t) denotes the fitted value of second

stage regression. In the end, Γ̂j,t ≡ b̂1,j+ b̂2,jpt represents the empirically implied price of risk.

In testing the above equation, we first consider the time-invariant price of risk case where

b2,j = 0. We also examine time-varying price of risk case where b2,j 6= 0. In this case, b1,j

allows for capturing the value of price of risk when the observable proxy is zero (pt−1 = 0).
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Finally, to directly test the equilibrium equity premium equation in Proposition 4, we

consider the specification of b1,H = 0 with pt =
∑h∗t
i=1 C

∗
i,t∑h∗t

i=1

C∗
i,t
γ̂i

as prescribed by theory. Throughout

the empirical analysis, we use OLS with Newey and West (1987) robust standard error.

6.2 Instrument variables

We cannot observe the true conditional excess stock returns, consumption growth and

conditional covariance which investors had at each point of time. Therefore, it is essential

to infer the conditional expectation using the instrument variables that are most likely to be

an element of investors’ information set. First, we run a ‘Kitchen-Sink’ regression based on

fourteen variables in Welch and Goyal (2008) and Rapach and Zhou (2013). Based on the

explanatory power of those variables, we select the the specification which fits the empirical

model the best. For (Xre,t−1) we select log dividend-price ratio (logD/Pt−1), Book-to-market

ratio (BMt−1), Net equity expansion (NTISt−1), and Long-term yield (LTYt−1). As for the

instruments of consumption growth (Xc,t−1), given the autocorrelation of monthly growth

rate, we use the lagged consumption growth for month t through t−3 (∆cj,t−1, ∆cj,t−2, ∆cj,t−3

∀j = HN,H). Following our theoretical derivation of optimal consumption we also include

the lagged variable of 1-month T-bill (rt−1) as an instrument for consumption growth. For the

instruments of the conditional covariance (Xt−1), the stock market wealth-to-consumption

ratio (M/Cj,t−1 ∀j = HN,H) is considered in light of the composition effect (Duffee (2005),

Lustig and Nieuwerburgh (2008), and Lustig et al. (2013)). Also, the log dividend-price

ratio (logD/Pt−1) is included to capture the economic states which the composition effect

cannot pick up. Moreover, following Duffee (2005), we include the lagged variable of ex-post

covariance (ε̂re,t−1ε̂∆cj ,t−1 ∀j = HN,H). We also consider the volatility of stock returns and

consumption growth (
√
ε̂2re,t and

√
ε̂2∆cj ,t) in a sense that the covariance is the product of

these two volatilities and correlation.

For the instruments for the pt−1, we consider the stock market wealth-to-consumption

ratio as in (Duffee (2005)), the the log dividend-price ratio and surplus consumption as
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measured in Wachter (2002)47:

st ≡
1− 0.96

1− 0.9640

40∑
j=0

0.96j∆ct−j (34)

In order to directly test Proposition 4, we still need to proxy for relative risk aversion

in the implied price of risk. We use two proxies. The first is to assume that the relative risk

aversion is inversely associated with financial wealth invested in a stock (γi ∝ 1
Wi

) based on

the literature48. Theoretically, the more risk-averse the investor is, the less amount of wealth

invested in stock. The second proxy is to assume that the relative risk aversion is inversely

associated with the probability of having a positive financial wealth (γi ∝ 1
Prob(W̃i>0)

). Based

on these two assumptions, we construct two measures for the model-implied price of risk∑h∗t
i=1 C

∗
i,t∑h∗t

i=1

C∗
i,t

γ̂m,i

. ∀m = 1, 2

where γ̂1,i =
k

Wi

, γ̂2,i =
k

Φ(X ′i,CEβ̂SCF )
, k is any constant. (35)

In CE survey, a household is asked the total value of stocks, mutual funds, and bonds in

his/her fifth interview. Thus, we can obtain one numerical value for one household and we

convert it to real dollar value using September 2010 dollars for γ̂1,i. as a result, we can only

identify ‘likely’ stockholders in CE because the question is based on responses to the com-

bined holdings of ‘Stocks, mutual funds, and bonds’. By contrast, in the Survey of Consumer

Finances (SCF) we can accurately identify who owns stocks and mutual funds. We estimate

a Probit regression of whether a household owns stock on a set of observable characteristics

known to affect stock-holdings49. The estimates of the coefficients from the Probit model in

the SCF are applied to the CE data to calculate the probability of being a stockholder for

each household in our CE sample. Since the observable households characteristics Xi,CE are

time-invariant variable, we can obtain the time-invariant probability of being a stockholder

47Since CE data are based on sample households, it is limited to accurately represent the habit level
and economic states. Therefore, in measuring the stock market wealth-to-consumption ratio and surplus
consumption, we rely on the consumption (nondurables and services) from the total U.S consumption data
(NIPA; National Income and Product Accounts) as in Duffee (2005).

48See King and Leape (1998), Riley and Chow (1992), Donkers et al. (2001), Guiso and Paiella (2008),
and Bucciol and Miniaci (2011), for example, among others.

49A detailed description of SCF data, a set of characteristics, and Probit regression results are in Appendix
E.
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for each household and construct a proxy of time-invariant risk aversion γ̂2,i. Note that the

constant k in γ̂1,i and γ̂2,i does not affect the estimated price in our following regression.

ret +
1

2
ε̂2re,t = b0,m + b2,m

∑h∗t−1

i=1 C∗i,t−1∑h∗t−1

i=1

C∗i,t−1

γ̂i,m

Ĉovt−1(ret ,∆cH,t) + um,t ∀m = 1, 2 (36)

After constructing the measures, we simply examine two things. First, we calculate the

correlation between the two measures (
∑h∗t
i=1 C

∗
i,t∑h∗t

i=1

C∗
i,t

γ̂1,i

,
∑h∗t
i=1 C

∗
i,t∑h∗t

i=1

C∗
i,t

γ̂2,i

) and the correlation coefficient is

0.463, implying that they contain similar information. Second, we also test whether two

measures for the model-implied price of risk are positively associated with the time-varying

stock market as in the model. For this end, we separately regress two measures on time-

varying stock market participation captured by the participation rate at each point of time.

Table 4 reports the result. Consistent with our Corollary 1, the model-implied price of

risk is positively associated with time-varying stock market participation at 1% significance

level. This indicates that empirically when a higher proportion of households invests in the

stock market, the average stockholders’ risk aversion captured as in this paper increases50.

6.3 Empirical Findings

Table 5 reports the first and second stage regressions to obtain the conditional covari-

ance. Panel A shows low AdjR2 of predicting stock returns compared to that of consump-

tion growth as in the literature on return prediction. Although not reported, all selected

instruments are significant at the conventional level. Note that the 1-month T-bill is highly

significant in predicting future consumption growth consistent with our theory. Different

from Panel A, the results in Panel B show that time-variation in ex-post covariance between

consumption growth and excess stock returns are not well explained by the set of instru-

ments. As Duffee (2005) points out, it is difficult to capture time-variation in conditional

covariance.

Based on the constructed ex-post conditional covariance between excess stock returns

and consumption growth, we first calculate the unconditional covariance. The result is

50Moreover, unreported regression of h∗t on M/Ct−1 shows that its coefficient is 0.021 and statistically
significant at 5 percent level using T-statistic based on Newey and West (1987). This implies, consistent
with our theory, that many households choose to enter the market in response to the favorable state of the
market.
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reported in Table 6. The consumption growth of stockholders is more volatile and more

correlated with excess stock returns than that of aggregate investors by more than twice.

This higher covariance of stockholders’ consumption with excess stock returns leads to the

more plausible price of risk (22.16) than the one calculated by the aggregate consumption

(49.74). This results shed lights on why the previous studies find extremely high price of

risk unconditionally (Ferson and Harvey (1993) and Duffee (2005))51.

Turing to a conditional test, we assess whether the conditional covariance using our

setting can improve over the previous tests in predicting excess stock returns with positive

and reasonable level of the implied price of risk. First, Table 7 reports the result with the

assumption of the time-invariant price of risk (i.e., ret + 1
2
ε̂2re,t = b0,j + b1,jĈovt−1(ret ,∆cj,t) +

uj,t). The coefficient on conditional covariance constructed by the aggregate consumption

(HN) is not significant and negative, similar to the result in Duffee (2005). By contrast,

if the only consumption of stockholders is considered, first, the statistical relation between

risk-return improves. Also, most importantly, its coefficient, which is the implied price of

risk (Γ̂) in this specification, has nonnegative and plausible value (19.73). This result shows

a positive risk-return trade-off and also support for our limited participation consumption-

based asset pricing model.

Panel A of Table 8 reports the regression results with the assumption of time-varying

price of risk (i.e., ret + 1
2
ε̂2re,t = b0,j + [b1,j + b2,jpt−1]Ĉovt−1(ret ,∆cj,t) + uj,t) with the stock

market wealth-to-consumption as a proxy for pt−1. The implied price of risk ranges from -137

to 100 when the aggregate consumption is used, whereas it ranges from -19 to 58 using the

consumption of stockholders only. Although 7.59% of the sample produces a negative price

of risk, in this case, this compares to 66.2% of the sample when the aggregate consumption

is used. Most notably, the magnitude of the coefficient for H is lower than the one using

the aggregate consumption case HN and the coefficient is indistinguishable from zero. This

result implies the statistical evidence of the counter-cyclical time-variation in the price of risk

is very weak when the consumption of stockholders only is used to measure the consumption

51Using NIPA dataset instead,Ferson and Harvey (1993) find the implied coefficients of price of risk are
147.493, 318.265, 39.828, and 193.748 for non-seasonally adjusted services, seasonally adjusted services, non-
seasonally adjusted nondurables, and seasonally adjusted nondurables, respectively in their Table 3. Also,
Duffee (2005) documents 160 as the implied price of risk.
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risk. If time-variation in the price of risk is mainly driven by time-varying individual risk

aversion, we expect the statistical significant counter-cyclical variation in the price of risk.

The quite similar results are obtained in Panel B and C using the surplus consump-

tion and log dividend-to-price ratio, respectively. However, the implied price of risk is

never negative in these two panels. To summarize the results in this table, conditional

covariance constructed by the consumption of stockholders produces a plausible price of

risk and counter-cyclicality is not supported compared to the the one using the aggregate

consumption. to explore teh countercyclicality a bit more, Figure 5 depicts the estimated

time-varying price of risk Γ̂j,t as a linear function of the stock market wealth-to-consumption

ratio (b̂1,j + b̂2,jpt) based on the result in Panel A of Table 8. The shaded area is rescaled

kernel density of the stock market wealth-to-consumption. Both HN and H cases have the

negative slope with respect to the stock market wealth-to-consumption ratio, implying the

counter-cyclical price of risk. However, when the consumption of stockholders is used, the

slope is less steep. This shows that the implied price of risk is less counter-cyclical when the

consumption of stockholders is only used than the one using the aggregate consumption.

Table 9 shows the result of (36). Since the model-implied price of risk
∑h∗t−1
i=1 C∗i,t−1∑h∗t−1
i=1

C∗
i,t−1
γ̂i

is

only for stockholders, the aggregate consumption (HN) is not considered. As predicted in

theory, all coefficients are positive and significant at the conventional level. Compared to

the coefficients in Table 8, these are more significant. Also, the implied price of risk has rea-

sonable boundary. Overall, this empirical result supports time-varying market participation

as viable extension to conditional consumption asset pricing.

7 Conclusion

This paper shows that an equilibrium model with time-varying market participation can

offer support for conditional consumption asset pricing. Heterogeneous investors facing labor

income risk in the presence of short-selling constraint optimally choose to enter or exit the

market. This mechanism generates counter-cyclical quantity of risk due to time-varying

risk-sharing, relaxing the required dramatic counter-cyclical variation in the price of risk.

In addition, our model explains why an implausibly high or negative risk aversion can be
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obtained in the empirical studies assuming full market participation. We also empirically

test our theory using Consumer Expenditure data. Using the stockholders’ consumption

considerably lowers the counter-cyclical variation in the price of risk, and positive risk return

tradeoff is always supported by the data in contrast to using full participation case.

Our model can be extended in several directions for future research. We rely on het-

erogeneity on risk aversion, labor income risk, and short-selling constraint to generate the

limited market participation. Considering other frictions 52 or another source of heterogene-

ity53 can further improve the predictability results of stock returns as well as generate more

realistic time-varying market participation. We also argue that while we rely on power util-

ity for deriving the basic setup, a better improvement of our results for matching the levels

of the asset moments may be achieved if combining recursive utilities with heterogeneity in

both EIS and risk aversion.

52Fixed setup or transaction costs: Allen and Gale (1994), Williamson (1994), Heaton and Lucas (1996),
Haliassos and Michaelides (2003), Alan (2006), Fagereng et al. (2017); Life-cycle model: Constantinides et al.
(2002), Gomes and Michaelides (2005), Alan (2006), Gomes and Michaelides (2008), Fagereng et al. (2017);
Model uncertainty: Cao et al. (2005); Borrowing constraint: Allen and Gale (1994), Heaton and Lucas
(1996), Constantinides et al. (2002), Haliassos and Michaelides (2003), Alan (2006), Gomes and Michaelides
(2008), Fagereng et al. (2017).

53EIS: Gomes and Michaelides (2008), Guvenen (2009); Belief: Cao et al. (2005), Cvitanić et al. (2012),
Bhamra and Uppal (2014); time preference rate: Cvitanić et al. (2012), Bhamra and Uppal (2014); age:
Constantinides et al. (2002), Gomes and Michaelides (2005), Alan (2006), Gomes and Michaelides (2008),
Fagereng et al. (2017)
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Figure 1: Variation of optimal consumption across stockholders
This figure plots the cross-sectional variation of the optimal consumptions at time 0 (t = 0).
The cut-off stockholder h∗t is 12th stockholder i = 12. Therefore, the stockholders range
from the first stockholder to 12th stockholder and non-stockholders range from 13th to the
last stockholder (30th).
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Figure 2: Optimal stock holdings across stockholders
This figure plots the cross-sectional variation of the optimal stock holdings at time 0 (t =
0). The optimal stock holding depends on the cut-off stockholder ht. The solid line is
the optimal stock holdings of each stockholder i when each one believes she is the cut-off
stockholder (ht = i). The dashed line is the optimal stock holdings of each stockholder when
all stockholders know the true cut-off stockholder (ht = h∗t ). The cut-off stockholder h∗t
is 12th stockholder i = 12. Therefore, the stockholders from the first stockholder to 12th
stockholder and non-stockholders range from 13th to the last stockholder (30th).
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Figure 3: Asset moments as a function of the cut-off stockholder
This figure plots the variation of the asset parameters when each stockholder from i = 3 to
i = 30 is the cut-off stockholder at time 0 (t = 0). Panel A illustrates the Sharpe ratio,
Panel B is the stock volatility. Panel C is the equity premium. Panel D is the decomposition
of equity premium into the quantity of risk and price of risk.
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Figure 4: Distribution and time-variation of the cut-off stockholder h∗t
Panel A presents the simulated kernel distribution of the cut-off stockholder h∗t . Mean value
and standard deviation of the entire sample are reported in northwest. Panel B presents
one sample path of time-variation in the cut-off stockholder h∗t in response to the stock
market wealth-to-labor ratio St

N ·Yt . The left (right) y-axis represents the value for St
N ·Yt (h∗t ).

Correlation coefficient reports the sample correlation between two variables and the p-value
for the null hypothesis of zero correlation is reported in the parenthesis. For this analysis,
we simulate 10,000 sample paths of the model economy. Each path consists of 500 monthly
observations. The first 60 observations (5 years) are discarded to reduce the dependence on
initial condition.

44



Figure 5: Conditional Price of Risk using Stock market wealth-to-Consumption
ratio
This figure depicts the estimated price of risk implied by the regression of excess stock
returns on the conditional covariance between the consumption growth and excess stock
returns together with a time-varying price of risk as a function of the stock market wealth-
to-consumption ratio. The dashed line shows the price of risk when the aggregate households’
consumption including both stock‘h’olders and ‘n’on-stockholders (HN) is used. The solid
line is the price of risk when the consumption of stockholders (H) is used. Rescaled kernel
density of the conditioning variable is shaded in the background.
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Figure 6: Sharpe ratio as a function of the cut-off stockholder
As in Figure 3, the Sharpe ratio is illustrated as a function of the cut-off stockholder from
i = 3 to i = 30. The dashed line is the result for the case where investors do not face the
labor income risk under the complete market. The solid line is the result for the case where
investors face with the labor income risk under the incomplete market (The sample plot in
Panel A in Figure 3. from i = 3). The same parameter values as in Table 1 are used for
both cases.
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Figure 7: Stock volatility as a function of dividend and labor income volatility
In Panel A, stock volatility is plotted as a function of dividend volatility σd and labor income
volatility σy. The range of σd is from 5.5% to 9% and the range of σy is from 1.5% to 5%.
In Panel B, for each value of dividend volatility, the stock volatility is decomposed into
dividend volatility and labor income volatility. The black area denotes the proportion of
dividend volatility in stock volatility. The gray area denotes the proportion of labor income
volatility. The white area and gray area together denote the excess volatility.
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Table 1: Model Parameters

Table 1 presents the annualized model parameters used to simulate the model. The moments of Dividend
and labor income are chosen based on the U.S. real data from 1960 to 2015. Dividend and labor income
growth are calculated by log change in real per capita and first moments of growth are corrected for Jensen’s
inequality. A detailed description of the data is Appendix D. We use the same boundary of risk aversion
from 1 to 100 as in Chan and Kogan (2002).

Parameter Symbol Value

Panel A: Dividend and Labor income parameters

Dividend growth mean µd 0.04
Dividend growth volatility σd 0.09
Labor income growth mean µy 0.01
Labor income growth volatility σy 0.03
Corr(dWd,t, dWy,t) ρ 0.4

Panel B: Investor-related parameters

Subjective time preference δ 0.01
Lowest risk aversion coefficient γ1 1
Highest risk aversion coefficient γN 100
Number of investors N 30

Panel C: Initial value

Initial dividend stream D0 0.05×N
Initial labor income Y0 1
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Table 2: Dynamics of Consumption risk

Table 2 reports the pooled OLS panel regression of the price or quantity of risk on St
N ·Yt or h∗t based on

the simulated data. We simulate 100 sample paths of the economy. Each path constitutes the individual
of the panel and consists of 500 monthly observations. Parameter values for the simulation are in Table 1.
The first 60 observations (5 years) are discarded to reduce the dependence on the initial condition. HN
denotes the aggregate consumption including both stock‘h’olders and ‘n’on-stockholders’ consumption. H

denotes the consumption of stock‘h’olders. h∗t denotes the cut-off stock‘h’older.
∑N
i=1 and

∑h∗
t
i=1 denote the

summation over all investors and stockholders, respectively. For convenience, all variables are normalized to
have zero mean and unit standard deviation. T-statistics based on Newey and West (1987) are in brackets
and statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively.

Consumption Dependent var. St
N ·Yt h∗t Constant R2 N

Panel A: The Price of consumption risk

HN Γ̂HNt =
∑N

i=1 C
∗
i,t/

∑h∗t
i=1

C∗i,t
γi
− at -0.486*** 5.1× 10−7 0.072 44,000

(-58.37) (0.00)

HN Γ̂HNt =
∑N

i=1 C
∗
i,t/

∑h∗t
i=1

C∗i,t
γi
− at -0.062*** 7.6× 10−7 4.9× 10−4 44,000

(-4.65) (0.00)

H Γ̂Ht =
∑h∗t

i=1C
∗
i,t/

∑h∗t
i=1

C∗i,t
γi

0.099*** 5.3× 10−6 0.002 44,000

(10.39) (0.00)

H Γ̂Ht =
∑h∗t

i=1C
∗
i,t/

∑h∗t
i=1

C∗i,t
γi

0.743*** 3.9× 10−6 0.198 44,000

(104.22) (0.00)

Panel B: The Quantity of consumption risk

HN Covt(dR
e
t , d

∑N
i=1C

∗
i,t/

∑N
i=1C

∗
i,t) 0.514*** -0.002 0.065 44,000

(55.19) (-0.22)

HN Covt(dR
e
t , d

∑N
i=1C

∗
i,t/

∑N
i=1C

∗
i,t) 0.052*** -0.002 0.001 44,000

(6.54) (-0.19)

H Covt(dR
e
t , d

∑h∗t
i=1C

∗
i,t/

∑h∗t
i=1C

∗
i,t) -0.081*** -0.001 0.002 44,000

(-8.92) (-0.11)

H Covt(dR
e
t , d

∑h∗t
i=1C

∗
i,t/

∑h∗t
i=1C

∗
i,t) -0.627*** -0.001 0.172 44,000

(-95.73) (-0.14)
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Table 3: Simulated Unconditional Moments of Consumption growth and Stock Returns

Table 3 presents the annualized consumption and stock returns moments. Target values for the moments
are obtained by the U.S. data from 1960 to 2015. To estimate the model-implied unconditional moments of
consumption growth and stock returns, 10,000 sample paths of the model are simulated. Each path consists
of 500 monthly observations. The first 60 observations (5 years) are discarded to reduce the dependence on
the initial condition. The mean value of each moment is calculated across time and paths. The aggregate
consumption data are from NIPA (National Income and Product Account). For excess stock returns Re, the
simple return on CRSP value-weighted NYSE/Amex/Nasdaq minus 1-month U.S. T-bill is used. Consump-

tions are in the end of September 2010 dollars. h∗t denotes the cut-off stock‘h’older.
∑N
i=1 and

∑h∗
t
i=1 denote

the summation over all investors and stockholders, respectively.

Input/Moment U.S. data Model

Panel A: Consumption moments (%)

E[
∆

∑N
i=1 C

∗
i,t∑N

i=1 C
∗
i,t

] 1.80 1.11

σ[
∆

∑N
i=1 C

∗
i,t∑N

i=1 C
∗
i,t

] 1.37 2.79

Cov(Re,
∆

∑N
i=1 C

∗
i,t∑N

i=1 C
∗
i,t

) 0.04 0.19

Corr(Re,
∆

∑N
i=1 C

∗
i,t∑N

i=1 C
∗
i,t

) 17.06 38.12

Panel B: Stock returns moments (%)

E[Re] 5.98 4.44

Cov(Re,
∆

∑h∗t
i=1 C

∗
i,t∑h∗t

i=1 C
∗
i,t

) 0.201 0.34∑h∗t
i=1C

∗
i,t/

∑h∗t
i=1

C∗i,t
γi

30.152 13.02

σ[Re] 15.34 17.89

Panel C: Market Participation rate (%)

E[htN ] 29.73 38.91
1 Due to data availability of stockholders’ consumption, conditional covariance of consumption growth stock-
holders with stock returns is obtained based on the data from 1996 to 2015. A detailed description of the
way we calculate ex post conditional covariance is in Section 6.
2 This is obtained by dividing unconditional equity premium E[Re] by unconditional ex post conditional

covariance Cov(Re,
∆

∑h∗t
i=1 C

∗
i,t∑h∗t

i=1 C
∗
i,t

).

3 This is from 2016 SCF. The market participation rate is 60.2% when indirect holdings are accounted for.
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Table 4: Regressions of the model-implied price of risk on time-varying market participation

Table 4 reports the regression of model-implied price of consumption risk on time-varying market participa-
tion based on the households survey data by Consumer Expenditure (CE).∑h∗

t
i=1 C

∗
i,t∑h∗

t
i=1

C∗
i,t

γ̂m,i

= b0 + b1(
h∗

N
)t + ut ∀m = 1, 2

h∗t denotes the cut-off stock‘h’older.
∑h∗

t
i=1 denotes the summation over all stockholders. (h

∗

N )t is the propor-
tion of stockholders in the total sample households. In order to capture the individual relative risk aversion
γi, we construct two measures. The first measure uses the total value of wealth invested in stock and the
second measure uses the probability of being a stockholder based on the coefficients obtained from the Probit
regression using the SCF (The Survey of Consumer Finances) data.

γ̂1,i =
k

Wi
γ̂2,i =

k

Φ(X ′i,CE β̂SCF )

All data are in monthly frequency and September 2010 dollars. The sample is 238 observations from April
1996 through December 2015. A detailed description of data and Probit regression result are in Appendix D
and E, respectively. T-statistics based on Newey and West (1987) are in brackets and statistical significance
at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively.

Relative risk aversion b1 Constant R2

γ̂1,i 0.897*** -0.007 0.335
(10.86) (-0.61)

γ̂2,i 0.731*** 1.011*** 0.045
(3.33) (28.87)
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Table 5: Predicting Covariances between Stock Returns and Consumption Growth

Table 5 reports the regression of excess stock returns and consumption growth on the respective set of
instruments (Panel A) and the regression of ex post covariance on the set instruments (Panel B) based on
the households survey data by Consumer Expenditure (CE).

ret = X ′re,t−1βre + εre,t, ∆cj,t = X ′cj ,t−1βcj + ε∆cj ,t Cov∗(ret ,∆cj,t) = X ′t−1βj + εj,t ∀j = HN,H

The definition of a variable is as follows. Log change in real per capita total market value for
NYSE/Amex/Nasdaq minus 1-month real U.S. T-bill (ret ), log change in real per capita aggregate con-
sumption including both stock‘h’olders and ‘n’on-stockholders (∆cHN,t), log change in real per capita
consumption of stock‘h’olders (∆cH,t), log dividend-price ratio (logD/Pt), Book-to-market ratio (BMt),
Net equity expansion (NTISt), Long-term yield (LTYt), and stock market wealth-to-consumption ratio
(M/Ci,t). The ex post covariance is the product of the residuals from the first stage regression (i.e.,
Cov∗(ret ,∆cj,t) = ε̂re,t−1ε̂∆cj ,t−1). All data are in monthly frequency and September 2010 dollars. The
sample is 238 observations from April 1996 through December 2015. A detailed description of data is in
Appendix D.

Dependent variable Instruments Adj R2

Panel A: 1st stage regression
ret logD/Pt−1, BMt−1, NTISt−1, LTYt−1 0.04
∆cHN,t ∆cHN,t−1, ∆cHN,t−2, ∆cHN,t−3, rt−1 0.42
∆cH,t ∆cH,t−1, ∆cH,t−2, ∆cH,t−3, rt−1 0.24

Panel B: 2nd stage regression

ε̂re,tε̂∆cHN ,t ε̂re,t−1ε̂∆cHN ,t−1, M/CHN,t−1, logD/Pt−1,
√
ε2re,t−1,

√
ε̂2∆cHN ,t−1 0.02

ε̂re,tε̂∆cH ,t ε̂re,t−1ε̂∆cH ,t−1, M/CH,t−1, logD/Pt−1,
√
ε2re,t−1,

√
ε̂2∆cH ,t−1 0.01
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Table 6: Unconditional moments of Consumption Growth

Table 6 reports annualized standard deviation, covariances, correlations between log excess stock return and
log change in real per capita consumption based on the households survey data by Consumer Expenditure
(CE). Unconditional mean excess return is mean of Jensen’s inequality corrected log change in real per capita

total market value for NYSE/Amex/Nasdaq minus 1-month U.S. T-bill 1
T

∑T
t=1 r

e
t + 1

2T

∑T
t=1 ε̂

2
re,t (4.39%).

The unconditional standard deviation is calculated by
√

1
T

∑T
t=1 ε̂

2
∆cj ,t

∀j = HN,H. The unconditional

covariance is 1
T

∑T
t=1 ε̂re,tε̂∆cj ,t ∀j = HN,H. ε̂∆cj ,t and ε̂re,t are obtained from the 1st stage regression as

reported in Table 5. The implied price of risk (Γ̂j) is calculated by dividing unconditional excess returns by
covariance. ∆cHN,t denote log change in real per capita aggregate consumption including both stock‘h’olders
and ‘n’on-stockholders. ∆cH,t denote log change in real per capita consumption of stock‘h’olders. All data
are in monthly frequency and September 2010 dollars. The sample is 238 observations from April 1996
through December 2015. A detailed description of data is in Appendix D.

Consumption (j =) Standard Deviation (%) Covariance (%) Γ̂

HN 6.28 0.09 49.74 (= Γ̂F )

H 13.79 0.20 22.16 (= Γ̂T )
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Table 7: Regressions of Stock Returns on the Conditional Covariance

Table 7 reports the regression of excess equity returns on the conditional covariance with time-invariant price
of risk based on the households survey data by Consumer Expenditure (CE).

ret +
1

2
ε̂2re,t = b0,j + b1,jĈovt−1(ret ,∆cj,t) + uj,t ∀j = HN,H

The table reports the regression results with different sets of instruments for ex post covariance. ret denotes
the log change in real per capita total market value for NYSE/Amex/Nasdaq minus 1-month U.S. T-bill.
∆cHN,t denote log change in real per capita aggregate consumption including both stock‘h’olders and ‘n’on-
stockholders. ∆cH,t denote log change in real per capita consumption of stock‘h’olders. All data are in
monthly frequency and September 2010 dollars. The sample is 238 observations from April 1996 through
December 2015. A detailed description of data is in Appendix D. T-statistics based on Newey and West
(1987) are in brackets and statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and
***, respectively.

Consumption (j =) b1,j (= Γ̂j) Constant R2

HN -14.688 0.005 0.002
(-0.75) (1.38)

H 19.728* 0.001 0.01
(1.73) (0.15)
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Table 8: Nonlinear Regressions of Stock Returns on the Conditional Covariance

Table 8 reports the regression of excess equity returns on the conditional covariance with time-varying price
of risk based on the households survey data by Consumer Expenditure (CE).

ret +
1

2
ε̂2re,t = b0,j + [b1,j + b2,jpt−1]Ĉovt−1(ret ,∆cj,t) + uj,t ∀j = HN,H

The table reports the regression results with different sets of instruments for ex post covariance and proxy
for pt−1. Panel A uses stock market wealth-to-consumption, Panel B uses Surplus consumption, and Panel
C uses dividend-to-price ratio for pt−1. ret denotes the log change in real per capita total market value for

NYSE/Amex/Nasdaq minus 1-month U.S. T-bill. Γ̂t denotes the implied time-varying price of risk which

is measured by b̂j,1 + b̂j,2pt−1. Prob(Γ̂t < 0) calculates the proportion of the negative implied price of
consumption risk in the entire time-series sample. ∆cHN,t denote log change in real per capita aggregate
consumption including both stock‘h’olders and ‘n’on-stockholders. ∆cH,t denote log change in real per capita
consumption of stock‘h’olders. All data are in monthly frequency and September 2010 dollars. The sample
is 238 observations from April 1996 through December 2015. A detailed description of data is in Appendix
D. T-statistics based on Newey and West (1987) are in brackets and statistical significance at the 10%, 5%,
and 1% levels is denoted by *, **, and ***, respectively.

Consumption (j =) b1,j b2,j Constant Adj R2 Γ̂j,t Prob(Γ̂j,t < 0) (%)
Panel A (pt =) : Stock market wealth-to-Consumption ratio

HN 225.541** -115.660** 0.006* 0.03 [-137, 100]t 66.2
(2.23) (-2.55) (1.66)

H 98.158 -37.274 −1.0× 10−4 0.01 [-19, 58]t 7.59
(1.39) (-1.22) (-0.03)

Panel B (pt =) : Surplus consumption

HN 40.026 −14.7× 103* 0.005 0.02 [-76, 72]t 67.1
(1.06) (-1.89) (1.38)

H 33.809 −3.9× 103 −3.1× 10−5 0.01 [3, 42]t 0
(1.30) (-0.77) (-0.01)

Panel C (pt =) : Log dividend-to-Price ratio

HN 499.960 127.737 0.005 0.01 [-78, 81]t 71.3
(1.56) (1.62) (1.39)

H 167.817 36.496 5.3× 10−7 0.01 [3, 48]t 0
(0.62) (0.56) (0.00)
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Table 9: Nonlinear Regressions of Stock Returns on the Conditional Covariance

As a direct test of Proposition 4, the following regression equation is considered based on the households
survey data by Consumer Expenditure (CE).

ret +
1

2
ε̂2re,t = b0,m + b2,m

∑h∗
t−1

i=1 C∗i,t−1∑h∗
t−1

i=1

C∗
i,t−1

γ̂m,i

Ĉovt−1(ret ,∆cH,t) + um,t ∀m = 1, 2

In order to capture the individual relative risk aversion γi, we construct two measures. The first measure uses
the total value of wealth invested in stock (Panel A) and the second measure uses the probability of being
a stockholder based on the coefficients obtained from the Probit regression using the SCF (The Survey of

Consumer Finances) data (Panel B). Γ̂H,t denotes the implied time-varying price of risk which is measured

by b̂2,H
∑h∗

t−1

i=1 C∗i,t−1/
∑h∗

t−1

i=1

C∗
i,t−1

γ̂m,i
. Prob(Γ̂t < 0) calculates the proportion of the negative implied price

of consumption risk in the entire time-series sample. A detailed description of data and Probit regression
result are in Appendix D and E. T-statistics based on Newey and West (1987) are in brackets and statistical
significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively.

γ̂1,i =
k

Wi
γ̂2,i =

k

Φ(X ′i,CE β̂SCF )

Consumption (j =) b2,m Constant R2 Γ̂H,t Prob(Γ̂H,t < 0) (%)
Panel A: Harmonic measure using Wealth γ̂1,i

H 121.065** 0.001 0.02 [4, 40]t 0
(2.35) (0.36)

Panel B: Harmonic measure using the Probability of Stockholder γ̂2,i

H 16.974* 0.001 0.01 [14, 24]t 0
(1.72) (0.18)
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Table 10: Probit Regression of Stock Ownership

Table 10 reports the Probit regression of whether household owns stock or not on the observable characteris-
tics. The SCF data from 1989, 1992, 1995, 1998, 2001, 2004, 2007, 2010, and 2013. The dependent variable
takes one if a household has positive holding either in stock (hstocks=1) or mutual funds excluding MMMFs
(hnmmf=1) otherwise zero. The regressors are age of household (age), age squared (age2), an indicator for
race not being white/Caucasian (race=1), the number of kids (kids), an highschool indicator for at least 12
but less than 16 years of education for head of household (educ>11 and educ>16), an college indicator for
16 or more years of education (educ >16), the log of real total household income before taxes (income), the
log of real dollar amount in checking and savings account (log(checking+saving)) (set to zero if checking
and savings = 0), and indicator for checking and savings account = 0, an indicator for dividend income
(X5709=1), and year dummies. Robust standard errors are used for z-statistic and statistical significance at
the 10%, 5%, and 1% levels are denoted by *, **, ***, respectively. The second column reports the estimated
coefficient and the third column reports the z-statistic.

Variable Coefficient Z-statistic

age 0.004** 2.57
age2 −3.5× 10−5*** -2.77
1i∈nonwhite -0.346*** -32.26
kids -0.039*** -11.82
1i∈highschool -0.118*** -14.81
1i∈college 0.199*** 19.19
log(income) 0.256*** 69.00
log(chk + saving) 0.088*** 38.76
1chk+saving=0 0.486*** 22.34
1Div>0 1.426*** 160.71
11992 −4.4× 10−4 -0.03
11995 0.077*** 4.73
11998 0.293*** 18.27
12001 0.304*** 19.00
12004 0.182*** 11.17
12007 0.040** 2.41
12010 -0.078** -5.11
12013 -0.181** -11.42
Cons -4.492** -96.11
Number of Obs. 206,106
Pseudo R2 0.409
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Appendix A. CARA investors case

In this section, we study the economy populated by heterogeneous CARA(Constant Ab-
solute Risk Aversion) investors based on the setting in Christensen et al. (2012). While
Christensen et al. (2012) studies the full participation case with finite time horizon and
idiosyncratic labor income, we solve the equilibrium of an economy where there are non-
stockholders which arises from the short-selling constraint in an infinite time horizon. Also
as in the main section, we consider the systematic labor income.

A.1 The basic setup

As in the main section, there is a single riskless bond such that dBt
Bt

= rtdt in zero net
supply and risky asset in unit net supply, which is a claim to a dividend Dt that follows
Arithmetic Brownian Motion

dDt = µddt+ σddWt (A.1)

The equilibrium stock price dynamics has the following form :

dSt = (Strt + µes,t −Dt)dt+ σs,tdWd,t (A.2)

where µes,t denotes the total expected excess return over the risk-free rate and σs,t is the
(absolute) price volatility. Thus ratio λs,t = µes,t/σs,t is the Sharpe ratio. The economy is
populated by infinitely lived N (types of) investors and all having exponential utility with
different risk aversion. Investor i is maximizing ∀t ∈ [0,∞)

Et[
∫ ∞
t

−e−aiCi,sds] (A.3)

∀i = 1, 2, ..., ht, ..., N whose absolute risk aversion coefficient is a1, a2, ..., aht , ..., aN , respec-
tively, with 0 < a1 < a2 < ... < aht < ... < aN . All stockholders receive the same level
(systematic) of stochastic exogenous income Yt that evolves as :

dYt = µydt+ σydWy,t (A.4)

where dWd,tdWy,t = ρdt.

A.2 The individual investor’s problem

The stockholders and non-stockholders financial wealth dynamics are

dXi,t = [rtXi,t + πi,tµ
e
s,t + Yt − Ci,t]dt+ πi,tσi,tdWd,t ∀i = 1, 2, ..., ht (A.5)

dXi,t = [rtXi,t + Yt − Ci,t]dt ∀i = ht + 1, ..., N (A.6)
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,respectively where πi,t represents the number of units of the risky asset owned by the investor
at time t. With the value function Vi,t(x, y) = max

(ci,t,πi,t)∈A
Et[

∫∞
t
−e−aiCi,sds]. The HJB

equations are

0 = max
(ci,t,πi,t)∈A

−e−aiCi,t − δV + [πi,tµ
e
s,t + rtXi,t + Yt − Ci,t]Vx +

1

2
π2
i,tVxxσ

2
s,t

+ µyVy +
1

2
σ2
yVyy + πi,tρσs,tYtσyVxy ∀i = 1, 2, ..., ht (A.7)

0 = max
(ci,t,πi,t)∈A

−e−aiCi,t − δV + [rtXi,t + Yt − Ci,t]Vx + µyVy +
1

2
σ2
yVyy

∀i = ht + 1, ..., N (A.8)

Under mild integrability conditions (Christensen et al. (2012)), the solution for this maxi-
mization problem exists. The investors’ optimal consumption, portfolio policy, and in turn
the wealth dynamics are

C∗i,t =rtXi,t + Yt +
1

airt
(δ − rt − aiρσyλs,t +

λ2
s,t

2
+ µyai −

σ2
ya

2
i (1− ρ2)

2
)

∀i = 1, 2, ..., ht (A.9)

C∗i,t = rtXi,t + Yt +
1

airt
(δ − rt + µyai −

σ2
ya

2
i

2
) ∀i = ht + 1, ..., N (A.10)

π∗i,t =
λs,t

airtσs,t
− ρσy
rtσs,t

∀i = 1, 2, ..., ht (A.11)

dXi,t =
1

airt
[−(δ − rt) +

λ2
s,t

2
− µyai +

σ2
ya

2
i (1− ρ2)

2
]dt+ π∗i,tσs,tdWd,t

∀i = 1, 2, ..., ht (A.12)

dXi,t =
1

airt
[−(δ − rt)− µyai +

σ2
ya

2
i

2
]dt ∀i = ht + 1, ..., N (A.13)

A.3 Equilibrium

From the stock market clearing condition, the Sharpe ratio is identified. Also, by match-
ing terms from the dynamics of the consumption clearing condition equation (

∑N
i=1 C

∗
i,t =
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Dt + N · Yt), the equilibrium risk-free rate and stock volatility are determined. They are
given by

λs,t = (
ht∑
i=1

1

ai
)−1(σd + ρσyht) (A.14)

rt =δ + (µd + µyN)(
N∑
i=1

1

ai
)−1 − σ2

d

2
(
ht∑
i=1

1

ai
)−1(

N∑
i=1

1

ai
)−1 − σdρσyht(

ht∑
i=1

1

ai
)−1(

N∑
i=1

1

ai
)−1

−
σ2
y

2
(
N∑
i=1

1

ai
)−1[(

ht∑
i=1

1

ai
)(1− ρ2) +

N∑
i=ht+1

1

ai
+ ρ2h2

t (
ht∑
i=1

1

ai
)−1] (A.15)

σs,t =
σd
rt

(A.16)

St =
Dt

rt
+
σ2
y

2r2
t

[
ht∑
i=1

ai(1− ρ2) +
N∑

i=ht+1

ai]−
λ2
s,t

2r2
t

ht∑
i=1

1

ai

− (µy − ρσyλs,t)ht
r2
t

− µy(N − ht)
r2
t

−
(δ − rt)

∑N
i=1

1
ai

r2
t

(A.17)

Since the sensitivity of the optimal consumption to labor income is unity as in (A.9)
and (A.10), labor income shock does not affect the equilibrium stock price. Also, most
importantly, contrary to power utility case, financial wealth (Xi,t) and labor income (Yt)
no-longer play a role as a state variable. Thus, neither does financial nor labor income
shock change the optimal unit demand for stock π∗s,t or any asset parameters (λs,t, rt, σs,t).
Therefore, together with the fact that the only time-varying terms which determine the asset
parameters are ht and accordingly Nh

t , the cut-off stockholder who distinguishes stockholders
from non-stockholders is the same for all horizons (ht = h0 ∀t > 0), and in turn, all asset
parameters are time-constant (λs,t = λs,0, rt = r0, σs,t = σs,0 ∀t > 0). Also, the equilibrium
stock price varies only through the cash flow shock (change in Dt).

To summarize, since there is no wealth effect in CARA investor case, there is no stochastic
dynamics in this economy, and hence it is impossible to study conditional asset pricing using
CARA preference. Even though dynamics can be generated as in Christensen et al. (2012)
by considering the finite horizon, this dynamics is only deterministic, and therefore, perfectly
predictable at any point in time.
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Appendix B. Proofs

B.1 Proof of Proposition 1

The following proof is based on Koo (1998). To ensure the existence of an optimal policy,
we impose the following well-posedness conditions as in Koo (1998) and Wang et al. (2016).

Condition 1 : δ > (1− γi)(rt +
λ2
t

2γi
) ∀t ≥ 0 and i = 1, 2, ..., N (B.1)

where λt denotes the Sharpe ratio.

Condition 2 : rt − µy > 0 ∀t ≥ 0 (B.2)

Condition 3 : δ − µy(1− γi) +
σ2
yγi(1− γi)

2
> 0 ∀t ≥ 0 and i = 1, 2, ..., N (B.3)

The Hamilton-Jacobi-Bellman (HJB) equation associated with the problem (4) for a
stockholder i is

0 = max
(ci,t,πi,t)∈A

C1−γi
i,t

1− γi
− δV + [πi,t(µs,t − rt) + rtXi,t + Yt − Ci,t]Vx

+
1

2
π2
i,tVxx((σ

d
s,t)

2 + (σys,t)
2 + 2ρσds,tσ

y
s,t) + µyYtVy +

1

2
σ2
yY

2
t Vyy + πi,t(ρσ

d
s,t + σys,t)YtσyVxy

∀i = 1, 2, ..., ht (B.4)

This can be re-written as

0 = max
(ci,t,πi,t)∈A

C1−γi
i,t

1− γi
− δV + [πi,t(µs,t − rt) + rtXi,t + Yt − Ci,t]Vx

+
1

2
π2
i,tVxxσ

2
s,t + µyYtVy +

1

2
σ2
yY

2
t Vyy + πi,tρtσs,tYtσyVxy

∀i = 1, 2, ..., ht (B.5)

where ρt ≡ Corrt(σ
d
s,tdWd,t + σys,tdWy,t, dWy,t) =

σds,tρ+σys,t
σs,t

If σys,t = 0, σs,t = σds,t and ρt = ρ.

Then, the optimal consumption and portfolio are given by

Ci,t = V
− 1
γi

x πi,t = −(µs,t − rt)Vx
Vxxσ2

s,t

− ρtσs,tYtσyVxy
Vxxσ2

s,t

(B.6)

By substituting these expressions into the HJB equation, we obtain the following PDE,

0 =
γiV

− 1−γi
γi

x

1− γi
− δV − (µs,t − rt)2V 2

x

2Vxxσ2
s,t

+ (rtXi,t + Yt)Vx + µyYtVy +
1

2
σ2
yY

2
t Vyy

− (µs,t − rt)VxρtYtσyVxy
Vxxσs,t

−
ρ2
tY

2
t σ

2
yV

2
xy

2Vxx
(B.7)
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We define two following functions for the value function. p is defined as

p ≡ Vy(x, y)

Vx(x, y)
∀x > 0, y > 0 (B.8)

Due to homogeneity of value function, p is a continuous function of the financial wealth to
income ratio z ≡ x

y
for x > 0 and y > 0. q is defined as

q ≡ (1− γi)V (x, y)

(x+ p(z)y)1−γi
(B.9)

By homogeneity of value function, q is also a continuous function of z. Then, the value
function is given by

V (x, y) =
q(z)

1− γi
(x+ p(z)y)1−γi ∀x > 0, y > 0 (B.10)

Define φ(z) ≡ V (z, 1). By homogeneity,

V (x, y) = V (y · z, y) = y1−γiV (z, 1) = y1−γiφ(z) (B.11)

Vx(x, y) = y1−γiφ′(z)y−1 = y−γiφ′(z) (B.12)

Vy(x, y) = (1− γi)φ(z)y−γi − φ′(z)zy−γi (B.13)

Therefore,

p(z) =
Vy(x, y)

Vx(x, y)
= (1− γi)

φ(z)

φ′(z)
− z (B.14)

By rearranging term,

φ′(z) = (1− γi)
φ(z)

p(z) + z
= (1− γi)

q(z)(z + p(z))1−γi/(1− γi)
p(z) + z

= q(z)(p(z) + z)−γi

(B.15)

By substituting this into (77) and (78),

Vx(x, y) = y−γiq(z)(p(z) + z)−γi

Vxx(x, y) = −q(z)y−γi−1(z + p(z))−1−γi(γi + p′(z))

Vy(x, y) = q(z)p(z)(z + p(z))−γiy−γi

Vyy(x, y) = −y−γi−1(z + p(z))−γi−1q(z)(γip(z)2 + z2p′(z))

Vxy(x, y) = −y−γi−1q(z)(z + p(z))−γi−1(γip(z)− zp′(z)) (B.16)
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Then, the optimal consumption is expressed by

Ci,t = q(z)
− 1
γi (x+ p(z)y) (B.17)

πi,t =
(µs,t − rt)(x+ p(z)y)

σ2
s,t(γi + p′(z))

− ρtσy
σs,t

γiyp(z)− xp′(z)

γi + p′(z)
(B.18)

Then HJB equation can be re-written as

0 = [
γi(p(z) + z)2q(z)

− 1
γi

1− γi
− δ (z + p(z))2

1− γi
+ (rtz + 1)(z + p(z))

+ µyp(z)(z + p(z))− 1

2
σ2
y(γip(z)2)]γi +

λ2
t (p(z) + z)2

2
− λtρtσyγip(z)(z + p(z))

+
ρ2
tσ

2
y(γip(z))2

2
+ p′(z)A (B.19)

where A ≡ γi(p(z)+z)
2q(z)

− 1
γi

1−γi −δ (z+p(z))2

1−γi +(rtz+1)(z+p(z))+µyp(z)(z+p(z))− 1
2
σ2
y(γip(z)2 +

z2p′(z)) + λtρtσyz(z + p(z)) +
ρ2tσ

2
y(−2γip(z)z+z

2p′(z))

2

Each term can be factorized by the order of z.

0 = z2[
γ2
i q(z)

− 1
γi

1− γi
− δγi

1− γi
+ rtγi +

λ2
t

2
]

+ z[
γ2
i 2p(z)q(z)

− 1
γi

1− γi
− δγi

2p(z)

1− γi
+ rtp(z)γi + γi + µyp(z)γi + λ2

tp(z)− λtρtσyγip(z)]

+ zo(z) + p′(z)A (B.20)

where o(z) is a function such that limz→∞
o(z)
z

= 0
After dividing all terms by z2, as z →∞ goes to infinity, because of limz→∞ p

′(z) = 0 (Koo

(1998)) and limz→∞
o(z)
z

= 0.

0 = [
γ2
i q
∗(z)

− 1
γi

1− γi
− δγi

1− γi
+ rtγi +

λ2
t

2
]

+
1

z
[
γ2
i 2p

∗(z)q∗(z)
− 1
γi

1− γi
− δγi

2p∗(z)

1− γi
+ rtp

∗(z)γi + γi + µyp
∗(z)γi + λ2

tp
∗(z)− λtρtσyγip∗(z)]

(B.21)

The above PDE can be solved by q∗(z) and p∗(z) satisfying the following equations.

0 =
γ2
i q
∗(z)

− 1
γi

1− γi
− δγi

1− γi
+ rtγi +

λ2
t

2

0 =
γ2
i 2p

∗(z)q∗(z)
− 1
γi

1− γi
− δγi

2p∗(z)

1− γi
+ rtp

∗(z)γi + γi + µyp
∗(z)γi + λ2

tp
∗(z)− λtρtσyγip∗(z)

(B.22)
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We obtain the following function to solve the PDE under z →∞.

lim
z→∞

q(z) = q∗(z) = (rt +
δ − rt
γi
− 1− γi

γ2
i

λ2
t

2
)−γi (B.23)

lim
z→∞

p(z) = p∗(z) =
1

rt + ρtσyλt − µy
(B.24)

Then, the value function under z →∞ is

V ∗(x, y) =
(rt + δ−rt

γi
− 1−γi

γ2i

λ2t
2

)−γi

1− γi
(x+

y

rt + ρtσyλt − µy
)1−γi ∀x > 0, y > 0 (B.25)

Based on the value function, the optimal consumption and stock-holding for stockholder i is

C∗i,t = (rt +
δ − rt
γi
− 1− γi

γ2
i

λ2
t

2
)(Xi,t +

Yt
rt + ρtσyλt − µy

)

π∗i,t =
λt

γiσs,t
(Xi,t +

Yt
rt + ρtσyλt − µy

)− 1

σs,t

ρtσyYt
rt + ρtσyλt − µy

∀Xi,t > 0, Yt > 0, i = 1, 2, ..., ht (B.26)

The financial wealth dynamics of a stockholder is

dXi,t = [π∗i,t(µs,t − rt) + rtXi,t + Yt − C∗i,t]dt+ π∗i,tσ
d
s,tdWdt + π∗i,tσ

y
s,tdWy,t

= [
λ2
t

γi
(Xi,t +

Yt
rt + ρtσyλt − µy

)− λtρtσyYt
rt + ρtσyλt − µy

+ rtXi,t + Yt

− (rt +
δ − rt
γi
− 1− γi

γ2
i

λ2
t

2
)(Xi,t +

Yt
rt + ρtσyλt − µy

)]dt+ π∗i,tσ
d
s,tdWdt + π∗i,tσ

y
s,tdWy,t

= [(
λ2
t

γi
− δ − rt

γi
+

1− γi
γ2
i

λ2
t

2
)(Xi,t +

Yt
rt + ρtσyλt − µy

)− µyYt
rt + ρtσyλt − µy

]dt

+ π∗i,tσ
d
s,tdWdt + π∗i,tσ

y
s,tdWy,t (B.27)

In the same way, let us consider the non-stockholder’s problem. Non-stockholder’s HJB
equation is given by

0 = max
(ci,t)∈A

C1−γi
i,t

1− γi
− δV + (rtXi,t + Yt − Ci,t)Vx + µyYtVy +

1

2
σ2
yY

2
t Vyy ∀i = ht + 1, 2, ..., N

(B.28)

By substituting the optimal consumption, the HJB equation can be re-written as

0 =
γiV

− 1−γi
γi

x

1− γi
− δV + (rtXi,t + Yt)Vx + µyYtVy +

1

2
σ2
yY

2
t Vyy i = ht + 1, 2, ..., N (B.29)
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The above HJB can re-written by using the same functions and notation as before,

0 =
γiy

1−γiq(z)
− 1−γi

γi (p(z) + z)1−γi

1− γi
− δ y

1−γiq(z)(p(z) + z)1−γi

1− γi
+ (rtz + 1)y1−γiq(z)(p(z) + z)−γi + µyyq(z)p(z)(z + p(z))−γiy−γi

− 1

2
σ2
yy

2y−γi−1(z + p(z))−γi−1q(z)(γip(z)2 + z2p′(z)) (B.30)

Again, each term can be factorized by the order of z.

0 = z2[
γiq(z)

− 1
γi

1− γi
− δ

1− γi
+ rt] + z[

2p(z)γiq(z)
− 1
γi

1− γi
− 2p(z)δ

1− γi
+ rtp(z) + 1 + µyp(z)]

− zo(z) + p′(z)
σ2
yz

2

2
(B.31)

where o(z) is a function such that limz→∞
o(z)
z

= 0.

0 = [
γiq(z)

− 1
γi

1− γi
− δ

1− γi
+ rt] +

1

z
[
2p(z)γiq(z)

− 1
γi

1− γi
− 2p(z)δ

1− γi
+ rtp(z) + 1 + µyp(z)]

+
o(z)

z
+
p′(z)

z2

σ2
yz

2

2
(B.32)

After dividing all terms by z2, as z → ∞ goes to infinity, because of limz→∞ p
′(z) = 0 and

limz→∞
o(z)
z

= 0

0 = [
γiq
∗(z)

− 1
γi

1− γi
− δ

1− γi
+ rt] +

1

z
[
2p∗(z)γiq

∗(z)
− 1
γi

1− γi
− 2p∗(z)δ

1− γi
+ rtp

∗(z) + 1 + µyp
∗(z)]

(B.33)

The above PDE can be solved by q∗(z) and p∗(z) satisfying the following equations.

0 =
γiq
∗(z)

− 1
γi

1− γi
− δ

1− γi
+ rt

0 =
2p∗(z)γiq

∗(z)
− 1
γi

1− γi
− 2p∗(z)δ

1− γi
+ rtp

∗(z) + 1 + µyp
∗(z) (B.34)

lim
z→∞

q(z) = q∗(z) = (rt +
δ − rt
γi

)−γi (B.35)

lim
z→∞

p(z) = p∗(z) =
1

rt − µy
(B.36)
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Then, the optimal consumption for a non-stockholder is

C∗i,t = (rt +
δ − rt
γi

)(Xi,t +
Yt

rt − µy
) ∀Xi,t > 0, Yt > 0, i = ht + 1, ..., N (B.37)

As in the same way for the stockholders, the financial wealth dynamics of a non-stockholder
is

dXi,t = [(−δ − rt
γi

)(Xi,t +
Yt

rt − µy
)− µyYt

rt − µy
]dt ∀Xi,t > 0, Yt > 0, i = ht + 1, ..., N

(B.38)

B.2 Proof of Lemma 1

Bond market clearing condition is

ht∑
i=1

Xi,t − St +
N∑

i=ht+1

Xi,t = 0 (B.39)

This can be achieved by
∑h0

i=1 Xi,0−S0+
∑N

i=h0+1 Xi,0 = 0 and d
∑ht

i=1Xi,t−dSt+d
∑N

i=ht+1 Xi,t =
0. Thus, consider the following dynamics of bond market clearing condition.

d
ht∑
i=1

Xi,t − dSt + d
N∑

i=ht+1

Xi,t

=
ht∑
i=1

[π∗i,t(µs,t − rt) + rtXi,t + Yt − C∗i,t]dt+ σds,t

ht∑
i=1

π∗i,tdWd,t + σys,t

ht∑
i=1

π∗i,tdWy,t

− (µs,tSt −Dt)dt− Stσds,tdWd,t − Stσys,tdWy,t

+
N∑

i=ht+1

[rtXi,t + Yt − C∗i,t]dt = 0 (B.40)

Stock market clearing condition is
∑ht

i=1 π
∗
i,t = St and bond market clearing condition implies∑ht

i=1Xi,t +
∑N

i=ht+1Xi,t = St. Applying these equations to (B.40) and rearranging terms
yield,

ht∑
i=1

C∗i,t +
N∑

i=ht+1

C∗i,t = N · Yt +Dt (B.41)
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B.3 Proof of Proposition 2

1. Sharpe ratio
From above, the optimal stock holding is

π∗i,t =
λt

γiσs,t
(Xi,t +

Yt
rt + ρtσyλt − µy

)− 1

σs,t

ρtσyYt
rt + ρtσyλt − µy

∀Xi,t > 0, Yt > 0, i = 1, 2, ..., ht (B.42)

Considering the stock market clearing condition,

ht∑
i=1

(
λt

γiσs,t
(Xi,t +

Yt
rt + ρtσyλt − µy

)− 1

σs,t

ρtσyYt
rt + ρtσyλt − µy

) =
N∑
i=1

Xi,t (B.43)

This provides the equation for the Sharpe ratio. For expositional convenience, we can define
g(θt) ≡ 1

rt+ρtσyλt−µy .

ht∑
i=1

(
λt

γiσs,t
(Xi,t + g(θt)Yt))−

htρtσyYtg(θt)

σs,t
=

N∑
i=1

Xi,t (B.44)

λt =
σs,t

∑N
i=1 Xi,t + htρtσyYtg(θt)∑ht

i=1
Xi,t+g(θt)Yt

γi

(B.45)

2. Risk-free rate
From the consumption clearing condition,

ht∑
i=1

C∗i,t +
N∑

i=ht+1

C∗i,t = N · Yt +Dt (B.46)

Dynamics of the above equation is

ht∑
i=1

(rt +
δ − rt
γi
− 1− γi

γ2
i

λ2
t

2
)([(

λ2
t

γi
− δ − rt

γi
+

1− γi
γ2
i

λ2
t

2
)(Xi,t +

Yt
rt + ρtσyλt − µy

)

− µyYt
rt + ρtµyλt − µy

]dt+ π∗i,tσ
d
s,tdWdt + π∗i,tσ

y
s,tdWy,t +

Ytµydt+ YtσydWy,t

rt + ρtσyλt − µy
)

+
N∑

i=ht+1

(rt +
δ − rt
γi

)([(−δ − rt
γi

)(Xi,t +
Yt

rt − µy
)− µyYt

rt − µy
]dt+

Ytµydt+ YtσydWy,t

rt − µy
)

= N · Ytµydt+N · YtσydWy,t +Dtµddt+DtσddWd,t (B.47)
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After some terms canceling out,

ht∑
i=1

(rt +
δ − rt
γi
− 1− γi

γ2
i

λ2
t

2
)[(
λ2
t

γi
− δ − rt

γi
+

1− γi
γ2
i

λ2
t

2
)(Xi,t +

Yt
rt + ρtµyλt − µy

)dt

+ π∗i,tσ
d
s,tdWdt + π∗i,tσ

y
s,tdWy,t +

YtσydWy,t

rt + ρtσyλt − µy
]

+
N∑

i=ht+1

(rt +
δ − rt
γi

)[(−δ − rt
γi

)(Xi,t +
Yt

rt − µy
)dt+

YtσydWy,t

rt − µy
]

= N · Ytµydt+N · YtσydWy,t +Dtµddt+DtσddWd,t (B.48)

Deterministic terms of the above equation is

ht∑
i=1

(rt +
δ − rt
γi
− 1− γi

γ2
i

λ2
t

2
)(
λ2
t

γi
− δ − rt

γi
+

1− γi
γ2
i

λ2
t

2
)(Xi,t +

Yt
rt + ρtσyλt − µy

)

+
N∑

i=ht+1

(rt +
δ − rt
γi

)(−δ − rt
γi

)(Xi,t +
Yt

rt − µy
) = N · Ytµy +Dtµd (B.49)

This provides the equation for the risk-free rate. For expositional convenience, we can re-
write the equation using the optimal consumption.

ht∑
i=1

C∗i,t

(Xi,t + Yt
rt+ρtσyλt−µy )

(
λ2
t

γi
− δ − rt

γi
+

1− γi
γ2
i

λ2
t

2
)(Xi,t +

Yt
rt + ρtσyλt − µy

)

+
N∑

i=ht+1

C∗i,t

(Xi,t + Yt
rt−µy )

(−δ − rt
γi

)(Xi,t +
Yt

rt − µy
) = N · Ytµy +Dtµd (B.50)

Solving the above equation for rt gives

rt = δ + (µdDt + µyNYt)(
N∑
i=1

C∗i,t
γi

)−1 − (
N∑
i=1

C∗i,t
γi

)−1λ
2
t

2

ht∑
i=1

C∗i,t
γi

(1 +
1

γi
) (B.51)

3. Stock volatility
Diffusion terms of (B.48) is

ht∑
i=1

(rt +
δ − rt
γi
− 1− γi

γ2
i

λ2
t

2
)(π∗i,tσ

d
s,tdWdt + π∗i,tσ

y
s,tdWy,t +

YtσydWy,t

rt + ρtσyλt − µy
)

+
N∑

i=ht+1

(rt +
δ − rt
γi

)(
YtσydWy,t

rt − µy
) = DtσddWd,t +N · YtσydWy,t (B.52)
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This gives the following two equations for the stock volatility.

ht∑
i=1

(rt +
δ − rt
γi
− 1− γi

γ2
i

λ2
t

2
)π∗i,tσ

d
s,t = Dtσd (B.53)

ht∑
i=1

(rt +
δ − rt
γi
− 1− γi

γ2
i

λ2
t

2
)(π∗i,tσ

y
s,t +

Ytσy
rt + ρtσyλt − µy

)

+
N∑

i=ht+1

(rt +
δ − rt
γi

)(
Ytσy
rt − µy

) = N · Ytσy (B.54)

For expositional convenience, we can re-write (B.53)

ht∑
i=1

(
C∗i,t

Xi,t + g(θt)Yt
)[
λt
γi

(Xi,t + g(θt)Yt)− ρtσyYtg(θt)]
σds,t
σs,t

= Dtσd (B.55)

By solving the above equation for λt

λt = (
ht∑
i=1

C∗i,t
γi

)−1[Dtσd
σs,t
σds,t

+
ht∑
i=1

(
C∗i,t

Xi,t + g(θt)Yt
)ρtσyYtg(θt)] (B.56)

From (B.45),

σs,t
∑N

i=1 Xi,t + htρtσyYtg(θt)∑ht
i=1

Xi,t+g(θt)Yt
γi

= (
ht∑
i=1

C∗i,t
γi

)−1[Dtσd
σs,t
σds,t

+
ht∑
i=1

(
C∗i,t

Xi,t + g(θt)Yt
)ρtσyYtg(θt)]

(B.57)

Then, we obtain the expression for σs,t

σs,t

= [(
ht∑
i=1

Xi,t + g(θt)Yt
γi

)−1(
ht∑
i=1

C∗i,t
γi

)−1(Dtσd
σs,t
σds,t

+
ht∑
i=1

C∗i,tρtσyYtg(θt)

Xi,t + g(θt)Yt
)

− htρtσyYtg(θt)](
N∑
i=1

Xi,t)
−1 (B.58)

(B.54) also can be re-written as

σs,t =

∑ht
i=1(rt + δ−rt

γi
− 1−γi

γ2i

λ2t
2

)[λt
γi

(Xi,t + g(θt)Yt)− ρtσyYtg(θt)]σ
y
s,t

σyYt(N −
∑ht

i=1(rt + δ−rt
γi
− 1−γi

γ2i

λ2t
2

)g(θt)−
∑N

i=ht+1(rt + δ−rt
γi

) 1
rt−µy )

(B.59)
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To summarize, the following four equations constitute the set of equations to determine the
four asset parameters (λt, rt, σ

d
s,t, σ

y
s,t).

1.
ht∑
i=1

(
λt

γiσs,t
(Xi,t +

Yt
rt + ρtσyλt − µy

)− 1

σs,t

ρtσyYt
rt + ρtσyλt − µy

) =
N∑
i=1

Xi,t

2.
ht∑
i=1

(rt +
δ − rt
γi
− 1− γi

γ2
i

λ2
t

2
)(
λ2
t

γi
− δ − rt

γi
+

1− γi
γ2
i

λ2
t

2
)(Xi,t +

Yt
rt + ρtσyλt − µy

)

+
N∑

i=ht+1

(rt +
δ − rt
γi

)(−δ − rt
γi

)(Xi,t +
Yt

rt − µy
) = N · Ytµy +Dtµd

3.
ht∑
i=1

(rt +
δ − rt
γi
− 1− γi

γ2
i

λ2
t

2
)[
λtXi,t

γiσs,t
+
λt − ρtσyγi
γiσs,t

(
Yt

rt + ρtσyλt − µy
)]σds,t = Dtσd

4.
ht∑
i=1

(rt +
δ − rt
γi
− 1− γi

γ2
i

λ2
t

2
)([
λtXi,t

γiσs,t
+
λt − ρtσyγi
γiσs,t

(
Yt

rt + ρtσyλt − µy
)]σys,t

+
Ytσy

rt + ρtσyλt − µy
) +

N∑
i=ht+1

(rt +
δ − rt
γi

)(
Ytσy
rt − µy

) = N · Ytσy (B.60)

4. Stock price
Consumption clearing condition is

ht∑
i=1

(rt +
δ − rt
γi
− 1− γi

γ2
i

λ2
t

2
)(Xi,t +

Yt
rt + ρtσyλt − µy

)

+
N∑

i=ht+1

(rt +
δ − rt
γi

)(Xi,t +
Yt

rt − µy
) = N · Yt +Dt (B.61)

By taking rt from summation and considering
∑N

i=1Xi,t = St. We can obtain the following
equation.

rtSt = NYt +Dt − rt
Ytht

rt + ρtσyλt − µy
− rt

Yt(N − ht)
rt − µy

−
ht∑
i=1

(
δ − rt
γi
− 1− γi

γ2
i

λ2
t

2
)(Xi,t +

Yt
rt + ρtσyλt − µy

)−
N∑

i=ht+1

(
δ − rt
γi

)(Xi,t +
Yt

rt − µy
)

(B.62)
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By solving for St and rearranging term, St can be expressed as

St =
Dt

rt
+ Yt[

N

rt
− ht
rt + ρtσyλt − µy

− N − ht
rt − µy

]

− 1

rt

ht∑
i=1

(
δ − rt
γi
− 1− γi

γ2
i

λ2
t

2
)(Xi,t +

Yt
rt + ρtσyλt − µy

)− 1

rt

N∑
i=ht+1

(
δ − rt
γi

)(Xi,t +
Yt

rt − µy
)

(B.63)

By factoring terms with respect to Yt and substituting the equilibrium risk-free rate for rt,

St =
Dt

rt
+ Yt[

N

rt
−
ht + 1

rt

∑ht
i=1( δ−rt

γi
− 1−γi

γ2i

λ2t
2

)

rt + ρtσyλt − µy
−
N − ht + 1

rt

∑N
i=ht+1( δ−rt

γi
)

rt − µy
]

+
1

rt
[(µdDt + µyNYt)(

N∑
i=1

C∗i,t
γi

)−1 − λ2
t

2
(
N∑
i=1

C∗i,t
γi

)−1

ht∑
i=1

C∗i,t
γi

(1 +
1

γi
)]

N∑
i=1

Xi,t

γi

− λ2
t

2rt

ht∑
i=1

(
γi − 1

γ2
i

)Xi,t (B.64)

B.4 Proof of the equation (25)

Consider a representative agent economy where there is no labor income risk. The Euler
equation in continuous time is

0 = ΛtDtdt+ Et[d(ΛtSt)] (B.65)

where Λt is the state price density and St is the stock price. By applying the Itô’s product
and dividing terms by ΛtSt,

0 =
ΛtDt

ΛtSt
dt+ Et[

StdΛt + ΛtdSt + dStdΛt

ΛtSt
] = Et[dRt]− rtdt+ Et[

dStdΛt

StΛt

] (B.66)

where dRt ≡ dSt+Dtdt
St

. By rearranging terms,

Et[dRt]− rtdt = −Et[dRt
dΛt

Λt

] (B.67)

In the meantime, the state price density is defined as

Λt ≡ e−δtu′(Ct) (B.68)

Also, its dynamics is

dΛt

Λt

= −δdt+
Ctu

′′(Ct)

u′(Ct)

dCt
Ct

+
1

2

u′′′(Ct)

u′(Ct)
dCtdCt (B.69)
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Therefore, (B.67) is

Et[dRt]− rtdt = −Et[dRt
Ctu

′′(Ct)

u′(Ct)

dCt
Ct

] = γtEt[dRt
dCt
Ct

] = γtCovt[dRt,
dCt
Ct

] (B.70)

where γt ≡ −Ctu′′(Ct)
u′(Ct)

. (B.70) can be re-written as

Et[dR
e
t ] = γtCovt[dRt,

dCt
Ct

] = γtCovt[dR
e
t ,
dCt
Ct

] (B.71)

where Et[dR
e
t ] = Et[dRt]− rtdt

B.5 Proof of Proposition 4

Consider conditional covariance between stock returns and aggregate consumption growth.
The aggregate consumption can be decomposed into the consumption of stockholders and
that of non-stockholder.

Covt(dR
e
t ,
d
∑N

i=1C
∗
i,t∑N

i=1 C
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We only need to consider the diffusion terms of dynamics
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By substituting πi,t into the equation
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After some terms canceling out,
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Solving (B.75) for λtσddt yields
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Also, from (B.75)
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Therefore,
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Appendix C. Conditional CCAPM

In this section, we provide a novel equation for the conditional consumption-based asset
pricing model. First, when there are K number of individual stocks. Then, the HJB equation
for the stockholder i is
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where σk,l,t is the covariance between stock returns k and l and σk,y,t is the covariance between
stock returns k and the labor income growth.

Similar to solving the HJB under one stock, its optimal stock holding for the stock k is
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(C.2)

It shows that investors not only care about the intertemporal hedging motive arising from
the labor income risk, but also care about the hedging among the stocks.

Second, the covariance of stockholders’ consumption growth with a stock returns k is

73



Covt(dR
e
k,t,

d
∑h∗t

i=1C
∗
i,t∑h∗t

i=1 C
∗
i,t

)

=

∑h∗t
i=1

C∗i,t
Xi,t+g(θt)Yt

(
∑

k 6=l πi,l,tσk,l,t + πi,k,tσ
2
k,t + g(θt)Ytσk,y,t)∑h∗t

i=1C
∗
i,t

(C.3)

By substituting (C.2) for πi,k,t to obtain,
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Finally, the equilibrium excess returns of stock k is
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Using the Proposition 4 in (26), it can re-written as
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where dRe
m,t denotes the market excess returns.

If there is no labor income, the ratio of covariances in (C.6) becomes to the standard

CAPM beta (=
Covt(dRek,t,dR

e
m,t)

σ2
m,t

).

Appendix D. Data

In this section, we describe the data sources and variables used in this paper. Throughout
the paper, we use monthly frequency. All data are converted to the real dollars using
September 2010 dollars. The sample number is 238 observations from April 1996 through
December 2015. April 1996 is chosen by the data availability of CE (Consumer Expenditure).

Excess equity returns and instruments

Excess monthly returns to the aggregate stock market is measured by log real per capita
growth of the CRSP value-weighted NYSE/Amex/Nasdaq index minus 1-month Treasury
bill. Equity data and 1-month Treasury bill data are obtained from the Center for Research
in Security Prices (CRSP). All instruments for excess equity returns Xre,t−1 are obtained
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from Amit Goyal website54. They are measured as follows. 1. Log dividend-price ratio
(D/Pt−1) : log of a 12-month moving sum of dividends paid on the S&P500 index minus the
log of stock prices. 2. Stock variance (SV ARt−1) : monthly sum of squared daily returns on
the S&P 500 index. 3. Book-to-market ratio (BMt−1) : book-to-market value ratio for the
DJIA. 4. Net equity expansion (NTISt−1) : ratio of a 12-month moving sum of net equity
issues by NYSE-listed stocks to the total end-of-year market capitalization of NYSE stocks.
5. Long-term yield (LTYt−1) : Long-term government bond yield.

Consumption data

Monthly consumption data are collected from two data sets. One is from sample house-
hold data CE (Consumption Expenditure) where we can ‘likely’ identify stockholders. The
other is from the total U.S. consumption (NIPA; National Income and Product Accounts)
measured by the Bureau of Economic Analysis. We calculate separate quarterly consump-
tion growth rate at a monthly frequency for stockholders, aggregate sample households from
CE, and aggregate total U.S. households from NIPA. For NIPA, we calculate log real per
capita change in nondurable and services. The NIPA total U.S. consumption data from 1960
to 2016 is used to obtain target consumption growth moments in Table 4. These are also
used to construct the surplus consumption measure in Section 5.

CE survey is conducted for the Bureau of Labor Statistics by the U.S. Census Bureau
as a monthly basis. A selected family is interviewed every 3 months over four times. After
the last interview (fourth), the sample family is dropped from the survey and a new sample
family is introduced. Therefore, the composition of interviewed households in a month is
different from the next month, and thus, we can calculate the quarterly consumption growth
at a monthly frequency. Finance asset holding information is collected in the last interview.55

We construct consumption based on the Interview Survey part of the CE. As a definition
of consumption, we use items in CE which match the definitions of nondurables and services
in NIPA. We exclude housing expenses (but not costs of household operations), medical
care costs, and education costs due to its substantial durable components, following Malloy
et al. (2009) and Attanasio and Weber (1995). We also mainly follow Malloy et al. (2009)
for the sample choice. We drop household-quarters in which a household reports negative
consumption. Extreme outliers having consumption growth (Ci,t+1/Ci,t) more than 5.0 and
less than 0.2 are dropped since these could be reporting or coding errors. Moreover, nonurban
households and households residing in student housing are dropped due to incomplete income
responses. To identify the stockholders, we refer to the question of ”As of today, what is the
total value of all directly-held stocks, bonds, and mutual funds?”. After constructing the
aggregate consumption growth and aggregate stockholders’ consumption growth, we regress
them on the monthly dummies to control for seasonality and use the residual series for
analysis.

54http://www.hec.unil.ch/agoyal/
55For a more detailed information, see https://www.bls.gov/opub/hom/cex/data.htm
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Dividend and labor income data

Both dividend and labor income data from 1960 to 2015 are obtained from U.S. Bureau
of Economic Analysis (BEA Account Code: A2218C1 and A4102C1, respectively). By
calculating log change in real per capita dividend and labor, the first and second moments
of dividend and labor income growth corrected for Jensen’s inequality are used to choose the
parameter values in Table 1.

Appendix E. Description of Probit regression

In order to proxy for the time-invariant relative risk aversion coefficient for each household
in CE data, we consider a Probit regression model to predict the probability that household
owns stock based on the SCF (Survey of Consumer Finances) data. The Survey of Consumer
Finances (SCF) is a cross-sectional survey of U.S. families conducted by the Federal Reserve
Board every three years. The survey data cover a wide variety of information on families
balance sheets, pensions, income, and demographic characteristics. Unlike CE data, the
SCF directly asks households whether respondents have any stock (Variable name:hstocks)
or mutual funds excluding MMMFs (hnmmf). However, since the survey is conducted on a
triennial basis, the data cannot be used for conditional asset pricing test. Using the SCF data
from 1989, 1992, 1995, 1998, 2001, 2004, 2007, 2010, and 2013, we run a Probit regression
of whether a household owns stock or mutual fund on a set of observable characteristics
that are known to affect the stock investment and exist in the CE data. They are age of
household, age squared, an indicator for race not being white/Caucasian, the number of
kids, an indicator for at least 12 but less than 16 years of education for head of household
(highschool), an indicator for 16 or more years of education (college), the log of real total
household income before taxes, the log of real dollar amount in checking and savings account
(set to zero if checking and savings = 0), and indicator for checking and savings account = 0,
an indicator for dividend income, and year dummies. They are chosen by Malloy, Moskowitz,
and Vissing-Jorgensen (2009) and we additionally include the number kids which has a strong
explanatory power. All dollar values are in 2013 dollars. The Probit model estimation is
reported in Table X.

The estimates of the coefficients from the Probit model in the SCF data are applied to the
CE data to obtain the probability of being a stockholder for each household. In calculating
the probability of being stockholders in CE data, we use the 1992 dummy coefficient for the
years 1991-1993, the 1995 dummy coefficient for the years for 1994-1996, the 1998 dummy
coefficient for the years for 1997-1999, the 2001 dummy coefficient for the years for 2000-
2002, the 2004 dummy coefficient for the years for 2003-2005, the 2007 dummy coefficient
for the years for 2006-2008, the 2010 dummy coefficient for the years for 2009-2011, and
the 2013 dummy coefficient from 2012 onward. We then define the relative risk aversion of
each household is 0.5 divided by the estimated probability of being a stockholder. The value
0.5 is chosen to make the household whose probability of being stockholder is average cross
households after 1.5% and 98.5% winsorization have the relative risk aversion 5.
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Appendix F. Cross-sectional variation in Consumption

Our model finds the consumption level is positively associated with risk aversion. To un-
derstand the underlying mechanism which drives the association, we can study the following.

The optimal consumption of stockholders in Proposition 1. in Section 2 is
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Given the same level of Xi,t for all stockholders, the partial derivative of the optimal
consumption with respect to risk aversion is
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Since the equilibrium risk-free rate is following,
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we can rewrite the partial derivative as
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The first term is the expected aggregate consumption growth multiplied by the consumption-
weighted harmonic mean of aggregate risk aversion. If the expected aggregate consumption
growth is high enough to offset the second term, the more risk-averse the investors are, the
more they consume. This is because the investors with relatively high risk aversion have rel-
atively low EIS (Elasticity of Intertemporal Substitution) and the consumption smoothing
motive is very strong. Therefore, when the consumption is expected to grow fast, investors
with high risk aversion (low EIS) consume a lot for the consumption smoothing.

The second term consists of the Sharpe ratio and other term. When the economic un-
certainty and volatility are high, the Sharpe ratio is high. This is the moment the more
risk-averse investors really care about. Since the more risk-averse investors are more sensi-
tive to the consumption risk, they consume less than the other investors if the second term
is higher than the first term.
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Please note that only the second term depends on the market participation level. In
the case where investors are faced with labor income risk, the market risk-sharing is not
perfect. However, as more investors decide to be a stockholder, the risk is more effectively
shared out and thus the Sharpe ratio is decreasing. By contrast, without labor income
risk, the market is complete and the Sharpe ratio is simply dividend volatility multiplied
by the consumption-weighted harmonic mean of stockholders’ risk aversion. Although the
full market participation is attained in this case, we can consider the hypothetical Sharpe
ratio depending on the market participation to compare the Share ratio in the one under the
incomplete market.

Figure 6 plots the Sharpe ratio when each stockholder from i = 1 to i = 30 is the cut-off
stockholder at time 0 (t = 0) as in Figure 3. The dashed line represents the result for the
incomplete market case. Since the risk-sharing is perfect, the variation in the Sharpe ratio
only comes from the stockholders’ average risk aversion. As investors whose risk aversion
is higher than the existing stockholders enter the market, the average risk aversion level
increases, thus increasing the Sharpe ratio. Since the market is perfect, the full market
participation is attained at i = N = 30. Contrary to this, for the case where the market
is incomplete, the Sharpe ratio is decreasing as risk-sharing is more effective. Due to this
mechanism, the second term in (F.5) is sufficiently low under the incomplete market, resulting
in the positive association between the consumption level and risk aversion.

Furthermore, note that the general level of Sharpe ratio is higher without labor income
than the one with labor income. This is because with labor income, the perfect correlation
between consumption growth and stock returns is no longer the case because labor income
is only partially correlated with stock returns. Therefore, the consumption risk is lower than
otherwise without labor income, resulting in the low level of the Sharpe ratio. This in turn
leads to the positive relation between the consumption level and risk aversion.

Appendix G. Stock Volatility

Since the equilibrium stock price is affected by labor income shock as well as dividend
shock in our model, the stock volatility is affected by both dividend volatility and labor
income volatility. Therefore, it is of particular interest to examine the role of labor income
volatility on the stock volatility. In the simulation of the current paper, the dividend volatility
9% and the labor income volatility 3% are used based on the U.S. data. We examine how the
stock volatility varies depending on different dividend volatility and labor income volatility.
In Panel A of Figure 7, stock volatility is plotted as a function of dividend volatility σd
and labor income volatility σy. The range of σd is from 5.5% to 9% and the range of σy
is from 1.5% to 5%. The figure shows given higher dividend volatility than labor income
volatility, the stock volatility varies more sensitively with dividend volatility than labor
income volatility.

To decompose the stock volatility, for each value of dividend volatility, we compute the
average of stock volatility levels which differ due to different labor income volatility levels.
Then, in Panel B, the stock volatility is decomposed into dividend volatility, labor volatility,
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and other remaining part. It shows the dividend volatility accounts for 30% to 47% stock
volatility while the labor income volatility accounts for only 16% on average (The range
is 12% to 20%.). Also, as the dividend volatility level increases, it accounts for higher
proportion of the stock volatility. This implies that one unit increase in dividend volatility
lead to an increase in stock volatility less than one unit. In addition, this figure shows that
labor income volatility does not fully explain the excess volatility. As discussed in Section
3, the remaining excess volatility (white area) is generated by heterogeneity.
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