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1 Introduction

Introduced by the Chicago Board Options Exchange (CBOE), the Volatility Index (VIX) is the
leading volatility indicator for the U.S. stock market. To meet investors demand on hedge volatility
risk directly, VIX futures and VIX options are introduced by CBOE in 2004 and 2006 accordingly.
Together with VIX ETFs such as VXX and VIXY, the volatility derivatives market has become a
new important component of the capital market (Luo et al., 2019). The average daily trading volume
of both instruments increases dramatically over the last decade and inspired a growing literature on
pricing issues.

Technically, there are two major strategies for pricing VIX derivatives. The first (indirect) ap-
proach starts with a model for the underlying S&P 500 index dynamics (returns and/or realized
volatility). The dynamics is then linked to VIX index through a pricing kernel. Zhang and Zhu
(2006) made the first attempt to price VIX futures based on the classical continuous-time Heston
model. Adding jumps and/or mean-reverting features are also investigated by Lin (2007), Sepp
(2008), Zhang et al. (2010), Zhu and Lian (2012), etc. Rely on varieties of GARCH models, Wang
et al. (2017), Yang and Wang (2018), Yang et al. (2019), Wang and Wang (2021), Cao et al. (2020),
Tong and Huang (2021) also use this indirect approach to price VIX derivatives. The second (direct)
approach starts with VIX index dynamics and skips the risk neutralization process as well. This ap-
proach includes Griinbichler and Longstaff (1996), Goard and Mazur (2013), Park (2016), Kaeck
and Alexander (2013), Mencia and Sentana (2013), Psychoyios et al. (2010), Cao et al. (2020) and
Jing et al. (2020) and others. For these models, the current level of VIX always serves as a state
variable in the VIX derivatives pricing formulas.

In this paper, we focus on the providing a simple and effective method to price VIX options.
To do this, we follow the second approach as we build our model directly on the logarithm of VIX
index using ARMA(p,q) process with jumps in innovations. The jump part is assumed to follow
the double exponential distribution (Kou, 2002) to model the possible asymmetry and the explicit
pricing formula using VIX index is then provided through the Fourier inverse transformation. As
documented in Yin et al. (2021) using the special case of the current model, the implied VIX futures
price is an exponential affine function of VIX index. Using similar technique, we provide a explicit
link between VIX options and futures that enable us to further use VIX futures as state variables for
pricing VIX options.

Instead of introducing additional parameters or volatility factors to boost the pricing perfor-
mance as previous researches did, switching state variables from VIX series to VIX futures panel
greatly increases the number of states and, therefore, the pricing accuracy without complicating the
model. We provided extensive empirical evidence based on CBOE VIX options from 2006 to 2020
that support the new framework’s significant performance gains over existing frameworks based on
SPX daily returns, realized variance, or VIX index itself. Among these models, the futures-based
model provides the best pricing performance, with a reduction in RMSE up to 50% (compared with
the VIX-based model).

Our paper contributes to the literature on pricing VIX options using discrete-time models from



several aspects. Firstly, it provides a simple but rich framework for VIX option pricing with long-
memory and mean-reverting in log features. The framework includes special cases such as het-
erogeneous autoregressive (HAR) model (Yin et al., 2021) and the continuous time limit is linked
to log-OU process (Detemple and Osakwe, 2000). Secondly, we not only provide the conventional
VIX based pricing formula but also provide a VIX futures based pricing formula. The latter formula
is motivated by the fact that investor use tradable VIX futures to hedge VIX options rather than the
non-tradable VIX index. Our method is related to Lin (2013) which use forward VIX (calculated
from VIX futures and VIX term structure) to price VIX options with two notable differences: 1)
our model is much simpler as we do not need VIX term structure as input; 2) our model builds
on logarithm of VIX which which has received considerable empirical support in modeling VIX.
Thirdly, our research provide a way to quantitatively demonstrate the richer information embedded
in VIX futures. Results suggest VIX futures should be used as a default choice of state variables.
The rest of the paper is organized as follows. Section 2 introduces the model setup and derives
the pricing formula for VIX options; Section 3 describes the data and discusses the model estimation

results; Section 4 presents the empirical results; and Section 5 concludes.

2 The model

Our model starts with the logarithm of VIX (i.e., V; = log(VIX;)) which is a common technique
to deal with nonnegative series (Nelson, 1991), restore normality, and reduce the adverse effect of
extreme values (Andersen et al., 2003). It is also a popular form to model VIX in continuous-time
models such as Detemple and Osakwe (2000), Mencia and Sentana (2013)and Park (2016). The
dynamics of V; in risk-neutral measure Q is assumed to follow an ARMA(p,q) process with jumps:
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where the innovation & is the mixture of a standard normal distribution z; and a double exponential
jump J;:

& = 62; + J, t

The double exponential jump J; is introduced by Kou (2002) to describe the asymmetry of positive
and negative jumps between period r — 1 and ¢:
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where A is the common intensity of jumps. Each jump is a mixture of two exponential distributions
whose average jump size equals to 1/1; and 1/m; respectively. p, and p, represent the probability
of upward and downward jumps. J; is widely used in pricing options such as in Kou and Wang

(2004), Yang (2018) and others. The Kou’s specification can be reduced to no jumps J;, = 0 and



asymmetric jumps 1| = 12, both of them can be tested with real data.
Our framework has several cases as well. For example, if we omit moving average part and

constrain autoregressive parameters as follows:
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The ARMA(p,q) will reduce to a HAR model described in Yin et al. (2021). Together with two

additional quarterly and yearly components:
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The ARMA(p,q) will reduce to a similar HARG-Y model introduced in Huang et al. (2019). We

also test the model with short memory settings where we only keep the first order lag of V; and &,.

3 The pricing strategies
By definition, the theoretical value of VIX call option at time ¢ with a maturity date at time T equals:
C; = e "TIEQ [max (VIX7 — K,0)]

In this section, we provide two pricing strategies using VIX index and VIX futures as state
variables accordingly. To begin with, the moment generating function (MGF) of V; under the
ARMA(p,q) with jumps follows an exponential affine structure on lagged (log) volatility index
Vi-1,...,Vi41-p and innovations &_1, ..., &1—4 with parameters calculated through simple iteration.

We summarized this in the following proposition.

PROPOSITION 1. Under the proposed model, the moment generating function of Vi, at time t

follows the exponential affine structure in V;_1,...,Viy1—p as well as &_1,..., &1
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where k =T —t and A(k,s), Bi(k,s), Cj(k,s) are defined by the following recursive formulas:
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Where W(s) = logEQ(exp(s&+1)). Initial conditions are
o
A(O,S):O, Bi(O,s): s Cj(O,S)ZO (jZl,...,q)
0 I<i<p

Proof. See the Appendix. O

The theoretical price of VIX futures at time ¢ with a maturity T is equal to the risk-neutral

expectation of VIX7 conditional on time ¢:
Fir = EX(VIXr) = EX(exp(Vr)) = g(t.T —1.1)

Therefore, the corresponding VIX futures price implied by the model is the special case where s = 1.
REMARK 1. The VIX futures price at time t and under the given model can be expressed as:
p

Fr =B (exp(Vr)) = exp (A(k) +Y Bi(k)Viri-i+ i Ci(k)gtﬂi)
i=1 i=1
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If we omit the MA part, the C; terms will be dropped and the resulting expression coincides
with the one listed in Yin et al. (2021). If we further omit the long memory (i.e. p = 1), the VIX
futures price will be solely depends on the current VIX level. In this special case, pricing options
based on VIX or VIX futures are identical in theory. When p > 1, the difference between the two

approach is fundamental.



3.1 VIX-based VIX Option Pricing Formula

Note that the VIX call option price can be rewritten as:

G = e T IER [max (VIX; —K,0)]
= ¢ "TIEL [max (exp(Vr) — K,0)]

= ¢TI [/ exp(x)p(x)dx — K/ }
InK

where p(x) is the conditional probability density function of V. Taking a similar mathematical tech-
nique adopted by Heston and Nandi (2000, Proposition 3), the integration can be further expressed

in the following proposition.

PROPOSITION 2. Let f(s) = E2(exp(sVy)) = g(t,T —t,s), the VIX-based pricing formula for
VIX call options is:
G =e T [F()P(1) ~ KPy(1)]

where
11 f(i¢—|—1)K"¢]
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1 K
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i and Re[x| are \/—1 and the real part of x accordingly.
Proof. See appendix. O

As the f(s) = g(¢,T —t,s) is a function of lagged (log) volatility index V;_i,...,V;41—, and
innovations &_1,...,&y1—4 (see Proposition 1), we refer the pricing formula in Proposition 2 as the

VIX-based pricing formula.

3.2 Futures-based VIX option pricing formula

The formula provided in the previous section, to their best, still relies on VIX index levels. In this
section, we start with the implied dynamics of VIX futures prices and then build a VIX futures
based option pricing formula.

From Remark 1, the logarithm of model-implied VIX futures prices follows:

P q
logF ik = A(k)+ Y Bi(k)Vip1—i+ Y Ci(k) €41
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Define o; = By (i) +Ci (i), the return of holding a particular VIX futures F; r from time ¢ + j to time



t+ j+ 1 can be written as':
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By definition of W(x), the equation implies:
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which naturally satisfies the martingale condition for a tradable asset. The holding return then

follows:
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where k =T —t. Note that k —i > 0 and & ; is i.i.d. conditional on the information set on time ¢,

the last equation is equivalent to:
k
log (Frr) =log(Fr)+ Y [~¥(0i-1) + 0i—1 1]
i=1

Since o;_; are functions of parameters, the conditional moment generating function associated to
log (Fr.r/F, 1) solely depends on the moment generating function of &;. The latter is previously
defined as ¥(s). Therefore, the MGF of log (Fr r) is given by

h(t,T —t,s) = Ei@ (exp(slog (Frr)))

— exp (slog(th) 1Y ¥(soi) slp(o,-l)]) (1)

i=1

Using the fact that VIX7 = Fr r, the VIX call option price has the following representation:

G = e T IER[max (VIX; — K,0)]
= ¢ "TIE2 max (Fr.r — K,0)]

Using similar technique for Proposition 2, the VIX option price can be linked to VIX futures through

ISee appendix



the following formula.

PROPOSITION 3. Let f*(s) = E2 (exp(slog (Frr))) =h(t,T —t,s), the VIX futures based pricing
formula for VIX call options is:

Ci=e T £ (DR) - KP1)|

where
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i and Re[x| are \/—1 and the real part of x accordingly.
Proof. See appendix. 0

Because f*(s) = h(t,T —t,s) is only a function of the prices of VIX futures (see Equation 1),
we refer the pricing formula in Proposition 3 as the VIX futures based pricing formula. Almost for
each VIX options, CBOE provides a VIX futures that matured at the same date. This provides us
the ability to price VIX options using VIX futures through Proposition 3.

Note that although we express f*(s) as a function of VIX futures prices, theoretically it just
quals to f(s) defined by g(r,T —t,s), as they are all MGF of log Fr.r (or V). However, this the-
oretical relationship may not always hold in reality. Therefore, deriving different forms of model-
implied MGF helps us compare the information content from VIX index and VIX futures price,

respectively.

4 Competing model

For discrete time framework, there are several models proposed for VIX option pricing. Cao et al.
(2020) provides a way using Heston-Nandi GARCH model and inverse Gaussian distribution. Tong
and Huang (2021) provides two models, the GARV and the Realized GARCH, using both S&P 500
index and realized volatility for option pricing. The former model is affine model while the latter
model is non-affine model. In our empirical part, we compare our model with all these models
mentioned above. As our model starts directly from the risk neutral measure, we introduce those

models in their risk neutral forms too.

4.1 The Affine GARCH Models
The Heston-Nandi GARCH model

The Heston-Nandi GARCH model (Heston and Nandi, 2000) is one of the most widely used discrete

time option pricing models. Its affine structure insures a semi-analytical solution for European call



options price and such structure is found in most GARCH type option pricing models that yield
close-from pricing formula.
The risk-neutral dynamics of the Heston-Nandi GARCH model follows:

Ryt = r—3h+Vhaz
2
1 = O +ph+m <Zt_Tl \/h7z>

where z; follows standard normal distribution. The analytical VIX option pricing formula for the
HNG model is provided in Cao et al. (2020). It is worth to mention that this model is a special case
of the following Generalized Affine Realized Volatility model when the weight on the volatility

component of return is one (i.e., & = 1).

The Generalized Affine Realized Volatility (GARV) model

Build on the Heston-Nandi GARCH model, Christoffersen et al. (2014) provided a generalized
affine model with realized volatility (RV) augmented part to price index options. The risk neutral
dynamics of GARV model follows:

Ry = r—lh,+1+\/h,7+1z,+1

hi = &b +(1=8)ny,

W = o+Brf+ 10z —uvh)?
o= KOl +8(e—8iVh)?
5= ke (e - 8/h)?—1- 8%

where (z,¢&) follows a standard bivariate normal distribution with the correlation of p. The key
feature of this model is the conditional variance for returns, 4,, has two components. The first hf ,
is driven by returns, and the second /;, is driven by the realized measure x;. The last equation is
called measurement equation that links realized volatility to the conditional volatility. Note that the
Heston-Nandi GARCH model (2000) is a special case of the GARV model when & is one.

The VIX option price for GARV model is provided in the Proposition 1 in Tong and Huang
(2021) where the price is a integration of the moment generation function of forward expected

o= [afernm 1t

where f;* (T, u) is the characteristic function of yr = bhf | +ch}., ;:

dl/l[

ST ) EP (¢°7) = exp (A, T) + Blu, Tkt +D(u, TV )

and u is a complex number denoted as u = ug + iuy, with ug > 0 and u; € R. R[] stands for the real

part of the complex number inside the square bracket. erf(x) is the error function defined as erf(x) :=



% Io e~*"ds. Coefficients a, b, ¢ are linked to model coefficients and A(u,s), B(u,s), D(u,s) can be
obtained through iterations using equations listed in the appendix of Tong and Huang (2021). This
formula is also applicable for the Heston-Nandi GARCH model with proper constraints.

4.2 The Realized GARCH model

Unlike the previous two models, the Realized GARCH model proposed in Hansen and Huang
(2016) is a non-affine model where the moment generation function of conditional forward variance
is hard to obtain. In this case, Huang et al. (2017) applied the Edgeworth expansion to approximate
the risk neutral distribution of cumulative returns for index option pricing. Expending option price
with analytical approximation function enable us to calibrate parameters by minimizing pricing er-
rors. The Monte-Carol simulation, while easier to apply, is not suitable for such calibration method
due to the sampling error.
The risk neutral dynamics of the Realized GARCH model follows:

Riyw = r— %htﬂ +Vhiie
loghiy1 = -+ Blogh +Tie,+ (e — 1)+ you,
log.xt == g+¢10ght+6let+52(e,2*1)+6u,

The two innovations, e; and u;, are independent standard normal distribution. Define u = Ei@ (log VIX7),
o’ = Vari@ (log VIX7) the VIX call option price can be written as an integral of the variable z;7 =
(logVIX7 — ) /o:

k
C = e "TIEQ (max (VIXy — K,0)) = e "7 / lexp(u — 027) — K] 3(z)dz (2)
where k = (—log (K) + 1) /o and g(z) is the true conditional density function of —z7.
Jarrow and Rudd (1982) proposed a second order approximation of g(z) using standard normal

distribution and higher order moments of z:
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where ¢ (z) is the density function of the standard normal distribution, k; is the i-th moment of z7,
and H,(z) is the n-th order Hermite polynomial. Tong and Huang (2021) provide the expansion

based pricing formula in their Proposition 2. The European VIX call price equals:

K K —3 2
Capprox =Ap— €3A3 + ( 24 )A4 + %AG (4)

where A, Az, Ag, Ag are defined with moments of normal distribution and x; are defined as the
standardized origin moments of log VIX;. Exact formula for E; (log VIX7)" is hard to compute and

Tong and Huang (2021) provided a approximation for those moments through Taylor expansion.
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5 Empirical Results

5.1 Data

Our dataset contains S&P 500 index from Yahoo Finance, realized volatility is obtained from the
Realized Library of Oxford-Man institute?, VIX index and VIX futures are downloaded from CBOE
website, and VIX option price data are obtained from the CBOE DataShop. The full sample spans
the periods from February 1, 2006 to October 27, 2020, with 3,711 trading days. For each options,
CBOE provides a corresponding VIX futures with the same maturity.

For liquidity consideration, following Song and Xiu (2016) and Luo et al. (2019), the option
data is trimmed using the following filter: 1) Options with time to maturity less than 7 or more than
126 days are dropped. 2) Mid-quote less than 0.1 or the relative spread® is greater than 0.3. In
addition, only call options are used as major trading volume of VIX options concentrates on calls.
A rolling window out-of-sample comparison with a window length of 10 years are also included.

The summary statistics are listed in Table 1. As shown in Table 1, compared with realized
volatility, the CBOE VIX has higher mean which is in line with literature on variance risk premium.
The standard deviation and kurtosis of VIX are also lower than realized variance indicating that
VIXis less volatile than corresponding realized volatility. For VIX options, we documented implied
volatility smirk and downward slop term structure.

[Insert Table 1 here]

5.2 Calibration

As we only focused on risk neutral dynamics, the parameters are calibrated by matching the model
price with corresponding market price by minimizing the sum square of pricing errors. Given a
set of parameters ®, we can calculate the corresponding option price using VIX based method
(C%?d (B|VIX,)) and future based method (C%TO" (®|F;, 1)). The pricing error is then defined as

i(©) =M — e @)

where “Mkt” and “Mod” denote market price and model price, respectively. Following Yin et al.
(2021) and others, we assume that the pricing errors are independent and normally distributed with

mean zero and variance 62 . The corresponding log-likelihood function is then specified as:

1

e.2
by = —3 Y Z {log (2mo?) + ’(52@) }

t=1i=1 e

where T is the number of trading days, and N, is the number of VIX option prices on the day t. 62
can be estimated with the sample variance of pricing errors according to the first-order conditions

2Realized volatility in this paper is calculated using the realized kernel method to mitigate the impact of market
micro-structure noise.
3Defined as (offer - bid)/mid-quote where mid-quote = (offer+bid)/2.
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in the likelihood estimation. The calibration method is also applied to our competing model with
information set C/?/(®|R;) and C?“(®|R;,RV;) for Heston-Nandi GARCH and GARV/Realized
GARCH respectively.

We summarize the calibration results for ARMA type models in Table 2. For ARMA type
models, we use three different settings including ARMA(1,1), HAR up to monthly lags (HAR-M)
and HAR up to yearly lags (HAR-Y). The last setup is motivated by Huang et al. (2019) which
suggested the importance of quarterly and yearly lags. For each setting, we discuss the difference
when jumps are included and the shift of pricing strategies.

[Insert Table 2 here]

First, for all settings, the persistence parameters 7 are highly close to one indicating high
persistence for logVIX series. For lag parameters, in line with Yin et al. (2021), daily lags receive
the largest weights while weekly parameters are the either smaller or close-to-zero compared with
other lag parameters. For random shocks, judging by the difference in log-likelihoods, the jump
components are statistically significant . Asymmetric jump features are also documented as the
upward jumps dominated (pyp > 0.8) most jump cases. The average jump size for upward jumps
is also much larger than downward jumps. For futures based pricing strategy, the calibrated jumps
intensity is much higher, the proportion of upward jumps are higher, the difference in jump size
between upward and downward is lower. The variance of continuous component 8z, is naturally
higher when jumps are eliminated.

[Insert Table 3 here]
Parameters for competing GARCH models are listed in Table 3. Results are all in line with

previous literature with strong leverage effect and high persistence.

5.3 Pricing performance

Following Tong and Huang (2021) and Jing et al. (2020), the pricing performance is evaluated
through the root mean square error:

1 N
RMSE = \/ v Y (cMkr — cMod)2
i=1

where Mkt and Mod indicates market price and model price receptively. We also provide sub-sample
RMSE with respect to different moneyness level (defined by log(F /K)) and time to maturity. In line
with previous section, ARMA(1,1), HAR with two different lag specifications, and three different

SPX-based models are discussed.

5.3.1 In-sample

In sample results are listed in Table 4. For full sample RMSE, the best set of models is futures-based
models and than the VIX-based models. The SPX-based models ranks the last.
[Insert Table 4 here]
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Interestingly, adding jumps can significantly improve model fit for future-based models while
the improvements are marginal for VIX-based models. On the other side, the long memory features
make little difference for futures-based models while the reduction is important for VIX-based
models. Both results for VIX-based models are in line with Yin et al. (2021) while the futures-based
results shows strikingly difference in which settings are favorable. We provide a figure reports the
reduction of RMSE due to difference settings in Figure 1.

[Insert Figure 1 here]

In Figure 1, we report two layers of RMSE reduction. The first layer focus on information set
used and the corresponding base case (Ret Based) is defined as the RMSE of the worse performed
Heston-Nandi GARCH model. The second layer focus on model specifications such as log-linear
alternations or jump augmentations. For the second layer, the base cases are the corresponding first
layer RMSE. For example, the Ret RV based model in this paper is the GARV model while its log-
linear specification is defined as Realized GARCH model. As multiple specifications are discussed
in this paper, we average the RMSE of ARMA(1,1), HAR(M) and HAR(Y) when possible.

In line with Tong and Huang (2021), adding RV into the GARCH framework can reduce RMSE
significantly. In our case, the linear GARV model reduces RMSE by 25.72% and a further 14.14%
reduction can be achieved when we switch to log-linear RG model. Direct strategy reduces RMSE
much greater than indirect strategies with realized variance especially when futures are used. Even
the vanilla ARMA version with futures information can reduce RMSE by 67.9% and a further 7.15%
reduction is reported with jumps. With proper information, our simple framework can reduce over
75% of in-sample RMSE over the benchmark Heston-Nandi GARCH model and nearly 60% of
in-sample RMSE over log-linear RG model. The decomposed results confirms those finding in full
RMSE. A interesting finding here is that the RMSE patterns over moneyness and maturity are rather
flat for future-based models while upward sloped patterns are reported for other models.

To sum up, our in-sample findings suggest that futures that share identical time to maturity of
options contains much richer information than VIX index itself, let alone the SP500 index and its

realized volatility.

5.3.2 Out-of-sample

A common concern for the in-sample winner is that whether we push the model too hard and overfit
the data. Judging by the model structure, our framework is stronger in resisting overfit as our models
are simpler than SPX-based models. We improvement pricing utilizing option specific information
embedded in the corresponding futures rather than flooding the model with tons of parameters.
Nevertheless, we provide out-of-sample pricing evaluation with two different setting in this subsec-
tion. A “estimate-and-forget” method estimates parameters ones with the first ten years data (2006
to 2015) and then use them to price options for the rest years (2016-2020). A “rolling-window”
method updates parameters every month since 2016 using a ten year estimation window. Results
are summarized in Table 5 and Table 6 respectively. Similar to in-sample results, we summarize

RMSE:s for different models, different information sets and decompose options into moneyness as
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well as time-to-maturity groups.
[Insert Table 5 here]
[Insert Table 6 here]
[Insert Figure 2 here]

We also calculate two layers of RMSE reductions and plot them in Figure 2. As two out-
of-sample settings are used, we report “estimate-and-forget” results in parenthesis and “rolling-
window” results in brackets. Although the exact numbers differs, the out-of-sample RMSE reduc-
tions are not only similar to each other but also close to in-sample RMSE reductions. These suggest
low possibility of in-sample overfit. We still conclude that switching from SPX information to
VIX/VIX futures can significantly improve model performance. Utilizing information from option
specific futures, one can reduce RMSE further 32% in addition to the log-linear RG model (the best
performed SPX-based model in this paper).

6 Conclusion

In this paper, we use a simple ARMA framework with jumps to model log-VIX dynamics and pro-
vide explicit links between VIX index, VIX futures and VIX options. By doing this, two explicit
VIX option pricing formulas are derived to explored the pricing implication due to the fact that each
VIX option has a corresponding VIX futures with same time-to-maturity. We provided extensive
empirical evidence based on CBOE VIX options from 2006 to 2020 that support the new frame-
work’s significant performance gains over existing frameworks based on SPX daily returns, realized
variance, or VIX index itself. Among these models, the futures-based model provides the best pric-
ing performance, with a reduction in RMSE up to 50% compared with the VIX-based model and a

reduction up to nearly 60% compared with the SPX-based model including realized volatility.
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A Appendix of Proofs

Our model for V, = log(VIX,) follows an ARMA(p,q) process with jumps:

P q
Vi = u+Y BVii+) ag j+e
: ]

i=1 j
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and define

o
11l

5Z[ =+ Jl
¥(s)

log s (exp(s& 1))

In our following empirical analysis, we use the asymmetric jump structure

7z ~N(0,1),

Zejla €jt NKou(p7Q7nuand)7 N, NPOl'SSOI’l(A)

B Proof of PROPOSITION 1

Let k =T —t, and assume that

)4 q
E (exp (sVi 1)) = exp (A(k,s> + Y Bilk,s)Vi1 i+ Y Cilk, s>s,+1_j>
i=1

For k = 0, we have

j=1

o
A(0,5) =0, B;(0,s) = , C(0,5)=0

For k =k+1, we have

Ei@ (exp (sVigis1)) =

P q
IE(,@ <exp <A(k,s) + ZBj(k,S)‘/t+2—i + ZCi(k,s)8t+2i> )

i=1 i=1

p q
eXp (A(ka S) + ZBi(k’s)Vt+27i + Zci(k7s)8t+2i)
i=2 i=2

<E (exp (B (k,5)Vis1 +Ci (k,5)€11))

p—1 q—1
exp (A(k, )+ Y Bipi(k,s)Vipi—i+ Y Ci+1(k7s)gt+li)
i=1 i=1

p q
X exXp (Bl (k,s)‘LL + ZB] (k,S)ﬁinJrlfi + ZBI (k,s)ai8t+17i +T(Bl (k, S) +C1 (k, S)))
i=1 i=1

p
exp( (k+1,s +ZB, (k+1,5)Vig1— ,+ZC (k+1,5)&41- ,)
i=1 i=1
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with

Ak+1,5) = Alk,s)+ By (k)L +F(Bi(k,s) +Cy (k,s))
Biy1(k,s)+Bi(k,s)Bi 1<i<p

Bi(k+1as) =
Bl(kas)ﬁi i=p
Cit1(k,s)+Bi(k,s)a; 1<i<
C,'(k—l—l,s) _ z+1( ) 1( )z q
B](k,S)O!,’ i=gq

Therefore, we have the model implied VIX futures, given by

p

q
F}yT = Ei@ (exp (Vt-‘rk)) = eXp <A(k7 1) + ZBi(k7 1)Vt+17i + ch(kv 1)8t+1i>
i=1 i=1

C Futures-based VIX option pricing formula

C.1 Model-implied VIX futures

In the previous, we have derived the formula of EZ (exp (sV,14)), so we have

p q
Fr =E2 (exp (Viix)) = exp <A(k) + Y Bi(k)Vii-i+ Zci(k)8z+li>
=1 i=1

1 i=1

0 I<i<p

A(k+1) = A(k)+B(k)u+¥(B;(k)+Ci(k))
Biyi(k)+Bi(k)Bi 1<i<p

Bik+1) =
B, (k)Bi i=p
Cini(k)+Bikho, 1<i<
SN (RN g
B](k)OC,' i:q

C.2 The Dynamic of VIX Futures Prices

So, the (log) model implied VIX futures price is given by
p

q
10gF ik = A(k)+ Y Bi(k)Vig1-i+ Y Ci(k)&iy1-
i=1 i=1
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Let k=T —t, 0; = By (i) + Ci (i), we have

Fryj . N e : & .
log(w> = A(k—j—1)=A(k=j)+ Y Bilk—j—=1)Viyjra-i— Y Bilk—j)Vipjp1-i

Fyjr i=1 i=1
q q
+Y Citk—j—1D)erjpoi— Y Cilk— j)&js1-i
i=1 i=1
p—1
= “Bilk—j—p—P(wk—j—1))+ Y Biri(k—j—1)Viyjs1-i
i=1
P q P

+Bi(k—j—1)(1+ Zﬁinﬂ‘Hﬂ‘—F Z Qi€ yjr1—it+&1jr1) — ZB,'(k— Vet jri—i
i=1 i=1 i=1

g—1 q
+ Z Ciyitk—j—1)&4jr1-i+Cilk—j—1)&1jy1 — Zci(k—j)€z+j+1—i
i=1 i=1

= “YBi1k—j-1)+Cilk—j—1)+Bi(k—j—1)+Ci(k—j—1))&+1

= —W(0k—j-1)+ Ok—j-1&+j+1

Note that it satisfies following martingale condition for a tradable future asset:

Fo:

Q t+j+1,T
Et+j <> =1
Foijr
Then we have

F k—1 Fo.:
Rs‘}tzlog<FT’T> = Zlog( Iﬂﬂ’T)

1T

= Y [-¥(0) +Cieri-i]

Il
=

I
™~

—_

[—W(0i—1) + Ci—1 &kt 1-i]
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Table 1: Summary Statistics

A: SPX returns, Realized Volatility, and CBOE VIX (2006-2020)

Mean(%) Std(%) Skewness Kurtosis Obs.
Returns (annualized) 7.703 17.846 -0.554 16.495 3,711
Realized Volatility (annualized) 12.495 10.502 3.493 21.281 3,711
CBOE VIX 19.479 9.649 2.442 11.050 3,711

B: VIX Option Price Data (Wednesday: 2006-2020)

Average Price ($) Implied Volatility Obs.
All VIX call options 1.607 1.001 50,945
Partitioned by Moneyness, m :=log(F /K)
m<-0.4 0472 1.205 19,512
-0.4 <m<-0.2 1.059 1.022 10,372
-0.2<m<-0.1 1.594 0.925 4,851
-0.1<m<0 2.107 0.852 4,544
0<m<0.1 2.759 0.790 4,030
0.1<m 4.352 0.696 7636
Partitioned by Days to Maturity
DTM<20 1.017 1.277 7,414
20<DTM<40 1.353 1.120 10,323
40<DTM<60 1.624 0.994 6,059
60<DTM<80 1.741 0.932 7,967
80<DTM< 100 1.905 0.861 7,316
100<DTM 2.055 0.791 7,978

Note: Summary statistics for close-to-close S&P 500 index returns, realized kernels (in square root), CBOE
VIX and VIX option prices from February 1, 2006 to October 27, 2020. The reported statistics for S&P 500,
realized kernels, and VIX index include the sample mean (Mean), standard deviation (Std), skewness (Skew),
kurtosis (Kurt), number of observations (Obs). We report the average price, average implied volatility, and
the number of option prices for different partitions of our (Wednesday) VIX option prices. “Moneyness”
is defined by the m = log F /K, where F the is VIX futures price and K is the strike price. DTM denotes
the number of days to maturity. Data sources: S&P 500 returns from Yahoo Finance; VIX and VIX futures
from CBOE’s website; Realized kernels from Realized Library of Oxford-Man institute; Option prices from
CBOE Data Shop.
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Table 3: Estimation Results for SPX-based Models

HNG GARV RG

B 0.2765 0.9880 0.9974
(0.0410) (0.0090) (0.0054)

T 765.87 116.10 -0.0197
(20.10) (19.77) (0.002)

T 1.23E-06 8.73E-07 0.0055
(7.51E-08) (6.85E-08) (0.001)

y 0.0857 0.1847
(0.0131) (0.0102)

E 0.0189 -0.5643
(0.0043) (0.0675)

) 3.74E-08 1.0340
(1.67E-03) (0.023)

5 888.60 -0.0687
(25.70) (0.001)

& 1.27E-06 0.1748
(3.90E-08) (0.036)

c/p 0.9986 0.8950
(0.0330) (0.0216)

logE2(h,) -8.1587 -8.3020 -8.2378
(0.1100) (0.0810) (0.0698)

nQ 0.9957 0.9998 0.9974
14 -86002 74238 -65030

Note: Estimation results for SPX-based models in the full sample period (February 1, 1990 to October 27,
2020) . Parameter estimates are reported with robust standard errors (in parentheses), ©© refer to the volatility
persistence under risk-neutral measures. The value of the log-likelihood function is reported at the bottom of
the table.
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Figure 1: In-sample RMSE reduction across different settings

RMSE Reduction compared with HNG Further Reduction

Ret RV Based === Switch log-linear

25.72% 14.14%

Ret Based [——> VIX Based ——>| Jump augmented

48.12% 1.10%

Futures Based > Jump augmented

67.92% 7.19%

Note: RMSE reduction is calculated against Heston-Nandi GARCH model (Ret Based) for the first layer
(RMSE reduction compared with HNG) and the “Further reduction” is calculated with “additional” RMSE
reduction (in terms of % reduction against Heston-Nandi GARCH model). For example, the Ret RV based
model GARV reduces RMSE by 25.72% and a further 14.14% reduction can be achieved when we switch
to log-linear RG model. If one directly compare RG with Heston-Nandi GARCH, the RMSE reduction
is 39.81% (=25.72%+14.14%). The RMSE for VIX/Future based model and the corresponding jump aug-
mented model is the simple average across ARMA(1,1), HAR(M) and HAR(Y) in each sub-categories.
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Figure 2: Out-of-sample RMSE reduction across different settings

Ret Based

RMSE Reduction compared with HNG

Further Reduction

Ret RV Based

—

Switch log-linear

(27.69%)
[33.82%]

(11.49%)
[10.44%)]

E—— VIX Based

Jump augmented

(48.99%)
[53.16%]

(1.11%)
[0.73%]

Futures Based

—>

Jump augmented

(65.75%)
[69.52%]

(5.81%)
[7.03%]

Note: RMSE reduction is calculated against Heston-Nandi GARCH model (Ret Based) for the first layer
(RMSE reduction compared with HNG) and the “Further reduction” is calculated with “additional” RMSE
reduction (in terms of % reduction against Heston-Nandi GARCH model). As two out-of-sample settings
are used, we report “estimate-and-forget” results in parenthesis and “rolling-window” results in brackets. For
example, under “estimate-and-forget” method, the Ret RV based model GARV reduces RMSE by 27.69%
and a further 11.49% reduction can be achieved when we switch to log-linear RG model. If one directly com-
pare RG with Heston-Nandi GARCH, the RMSE reduction is 39.18% (=27.69%+11.49%). Using “rolling-
window”, the corresponding numbers are 33.82%, 10.44% and 44.25%. The RMSE for VIX/Future based
model and the corresponding jump augmented model is the simple average across ARMA(1,1), HAR(M) and
HAR(Y) in each sub-categories.
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