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1 Introduction

Introduced by the Chicago Board Options Exchange (CBOE), the Volatility Index (VIX) is the

leading volatility indicator for the U.S. stock market. To meet investors demand on hedge volatility

risk directly, VIX futures and VIX options are introduced by CBOE in 2004 and 2006 accordingly.

Together with VIX ETFs such as VXX and VIXY, the volatility derivatives market has become a

new important component of the capital market (Luo et al., 2019). The average daily trading volume

of both instruments increases dramatically over the last decade and inspired a growing literature on

pricing issues.

Technically, there are two major strategies for pricing VIX derivatives. The first (indirect) ap-

proach starts with a model for the underlying S&P 500 index dynamics (returns and/or realized

volatility). The dynamics is then linked to VIX index through a pricing kernel. Zhang and Zhu

(2006) made the first attempt to price VIX futures based on the classical continuous-time Heston

model. Adding jumps and/or mean-reverting features are also investigated by Lin (2007), Sepp

(2008), Zhang et al. (2010), Zhu and Lian (2012), etc. Rely on varieties of GARCH models, Wang

et al. (2017), Yang and Wang (2018), Yang et al. (2019), Wang and Wang (2021), Cao et al. (2020),

Tong and Huang (2021) also use this indirect approach to price VIX derivatives. The second (direct)

approach starts with VIX index dynamics and skips the risk neutralization process as well. This ap-

proach includes Grünbichler and Longstaff (1996), Goard and Mazur (2013), Park (2016), Kaeck

and Alexander (2013), Mencı́a and Sentana (2013), Psychoyios et al. (2010), Cao et al. (2020) and

Jing et al. (2020) and others. For these models, the current level of VIX always serves as a state

variable in the VIX derivatives pricing formulas.

In this paper, we focus on the providing a simple and effective method to price VIX options.

To do this, we follow the second approach as we build our model directly on the logarithm of VIX

index using ARMA(p,q) process with jumps in innovations. The jump part is assumed to follow

the double exponential distribution (Kou, 2002) to model the possible asymmetry and the explicit

pricing formula using VIX index is then provided through the Fourier inverse transformation. As

documented in Yin et al. (2021) using the special case of the current model, the implied VIX futures

price is an exponential affine function of VIX index. Using similar technique, we provide a explicit

link between VIX options and futures that enable us to further use VIX futures as state variables for

pricing VIX options.

Instead of introducing additional parameters or volatility factors to boost the pricing perfor-

mance as previous researches did, switching state variables from VIX series to VIX futures panel

greatly increases the number of states and, therefore, the pricing accuracy without complicating the

model. We provided extensive empirical evidence based on CBOE VIX options from 2006 to 2020

that support the new framework’s significant performance gains over existing frameworks based on

SPX daily returns, realized variance, or VIX index itself. Among these models, the futures-based

model provides the best pricing performance, with a reduction in RMSE up to 50% (compared with

the VIX-based model).

Our paper contributes to the literature on pricing VIX options using discrete-time models from
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several aspects. Firstly, it provides a simple but rich framework for VIX option pricing with long-

memory and mean-reverting in log features. The framework includes special cases such as het-

erogeneous autoregressive (HAR) model (Yin et al., 2021) and the continuous time limit is linked

to log-OU process (Detemple and Osakwe, 2000). Secondly, we not only provide the conventional

VIX based pricing formula but also provide a VIX futures based pricing formula. The latter formula

is motivated by the fact that investor use tradable VIX futures to hedge VIX options rather than the

non-tradable VIX index. Our method is related to Lin (2013) which use forward VIX (calculated

from VIX futures and VIX term structure) to price VIX options with two notable differences: 1)

our model is much simpler as we do not need VIX term structure as input; 2) our model builds

on logarithm of VIX which which has received considerable empirical support in modeling VIX.

Thirdly, our research provide a way to quantitatively demonstrate the richer information embedded

in VIX futures. Results suggest VIX futures should be used as a default choice of state variables.

The rest of the paper is organized as follows. Section 2 introduces the model setup and derives

the pricing formula for VIX options; Section 3 describes the data and discusses the model estimation

results; Section 4 presents the empirical results; and Section 5 concludes.

2 The model

Our model starts with the logarithm of VIX (i.e., Vt = log(VIXt)) which is a common technique

to deal with nonnegative series (Nelson, 1991), restore normality, and reduce the adverse effect of

extreme values (Andersen et al., 2003). It is also a popular form to model VIX in continuous-time

models such as Detemple and Osakwe (2000), Mencı́a and Sentana (2013)and Park (2016). The

dynamics of Vt in risk-neutral measure Q is assumed to follow an ARMA(p,q) process with jumps:

Vt = µ +
p

∑
i=1

βiVt−i +
q

∑
j=1

αiεt− j + εt

where the innovation εt is the mixture of a standard normal distribution zt and a double exponential

jump Jt :

εt ≡ δ zt + Jt

The double exponential jump Jt is introduced by Kou (2002) to describe the asymmetry of positive

and negative jumps between period t−1 and t:

Jt =
Nt

∑
j=0

e j,t , e j,t ∼ Kou(pu, pd ,ηu,ηd), Nt ∼ Poisson(λ )

where λ is the common intensity of jumps. Each jump is a mixture of two exponential distributions

whose average jump size equals to 1/η1 and 1/η2 respectively. pu and pd represent the probability

of upward and downward jumps. Jt is widely used in pricing options such as in Kou and Wang

(2004), Yang (2018) and others. The Kou’s specification can be reduced to no jumps Jt = 0 and
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asymmetric jumps η1 = η2, both of them can be tested with real data.

Our framework has several cases as well. For example, if we omit moving average part and

constrain autoregressive parameters as follows:

β1 = βd βi =
1
4

βw (i = 2, ...,5) βi =
1

17
βm (i = 6, ...,22)

The ARMA(p,q) will reduce to a HAR model described in Yin et al. (2021). Together with two

additional quarterly and yearly components:

βi =
1
41

βq (i = 23, ...,63) βi =
1

189
βy (i = 64, ...,252)

The ARMA(p,q) will reduce to a similar HARG-Y model introduced in Huang et al. (2019). We

also test the model with short memory settings where we only keep the first order lag of Vt and εt .

3 The pricing strategies

By definition, the theoretical value of VIX call option at time t with a maturity date at time T equals:

Ct = e−r(T−t)EQ
t [max(VIXT −K,0)]

In this section, we provide two pricing strategies using VIX index and VIX futures as state

variables accordingly. To begin with, the moment generating function (MGF) of Vt under the

ARMA(p,q) with jumps follows an exponential affine structure on lagged (log) volatility index

Vt−1, ...,Vt+1−p and innovations εt−1, ...,εt+1−q with parameters calculated through simple iteration.

We summarized this in the following proposition.

PROPOSITION 1. Under the proposed model, the moment generating function of Vt+m at time t

follows the exponential affine structure in Vt−1, ...,Vt+1−p as well as εt−1, ...,εt+1−q.

g(t,k,s) = EQ
t (exp(sVt+k)) = exp

(
A(k,s)+

p

∑
i=1

Bi(k,s)Vt+1−i +
q

∑
j=1

C j(k,s)εt+1− j

)

where k = T − t and A(k,s), Bi(k,s), C j(k,s) are defined by the following recursive formulas:

A(k+1,s) = A(k,s)+B1(k,s)µ +Ψ(B1(k,s)+C1(k,s))

Bi(k+1,s) =

Bi+1(k,s)+B1(k,s)βi 1≤ i < p

B1(k,s)βi i = p

Ci(k+1,s) =

Ci+1(k,s)+B1(k,s)αi 1≤ i < q

B1(k,s)αi i = q
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Where Ψ(s)≡ logEQ
t (exp(sεt+1)). Initial conditions are

A(0,s) = 0, Bi(0,s) =

s i = 1

0 1 < i < p
, C j(0,s) = 0 ( j = 1, ...,q)

Proof. See the Appendix.

The theoretical price of VIX futures at time t with a maturity T is equal to the risk-neutral

expectation of VIXT conditional on time t:

Ft,T = EQ
t (VIXT ) = EQ

t (exp(VT )) = g(t,T − t,1)

Therefore, the corresponding VIX futures price implied by the model is the special case where s= 1.

REMARK 1. The VIX futures price at time t and under the given model can be expressed as:

Ft,T = EQ
t (exp(VT )) = exp

(
A(k)+

p

∑
i=1

Bi(k)Vt+1−i +
q

∑
i=1

Ci(k)εt+1−i

)

A(0) = 0, C(0) = 0, Bi(0) =

1 i = 1

0 1 < i < p

A(k+1) = A(k)+B1(k)µ +Ψ(B1(k)+C1(k))

Bi(k+1) =

Bi+1(k)+B1(k)βi 1≤ i < p

B1(k)βi i = p

Ci(k+1) =

Ci+1(k)+B1(k)αi 1≤ i < q

B1(k)αi i = q

If we omit the MA part, the C j terms will be dropped and the resulting expression coincides

with the one listed in Yin et al. (2021). If we further omit the long memory (i.e. p = 1), the VIX

futures price will be solely depends on the current VIX level. In this special case, pricing options

based on VIX or VIX futures are identical in theory. When p > 1, the difference between the two

approach is fundamental.
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3.1 VIX-based VIX Option Pricing Formula

Note that the VIX call option price can be rewritten as:

Ct = e−r(T−t)EQ
t [max(VIXT −K,0)]

= e−r(T−t)EQ
t [max(exp(VT )−K,0)]

= e−r(T−t)
[∫

∞

lnK
exp(x)p(x)dx−K

∫
∞

lnK
p(x)dx

]
where p(x) is the conditional probability density function of VT . Taking a similar mathematical tech-

nique adopted by Heston and Nandi (2000, Proposition 3), the integration can be further expressed

in the following proposition.

PROPOSITION 2. Let f (s) = EQ
t (exp(sVT )) = g(t,T − t,s), the VIX-based pricing formula for

VIX call options is:

Ct = e−r(T−t) [ f (1)P1(t)−KP2(t)]

where

P1(t) =
1
2
+

1
π

∫
∞

0
Re
[

f (iφ +1)K−iφ

iφ f (1)

]
dφ ,

P2(t) =
1
2
+

1
π

∫
∞

0
Re
[

f (iφ)K−iφ

iφ

]
dφ ,

i and Re[x] are
√
−1 and the real part of x accordingly.

Proof. See appendix.

As the f (s) = g(t,T − t,s) is a function of lagged (log) volatility index Vt−1, ...,Vt+1−p and

innovations εt−1, ...,εt+1−q (see Proposition 1), we refer the pricing formula in Proposition 2 as the

VIX-based pricing formula.

3.2 Futures-based VIX option pricing formula

The formula provided in the previous section, to their best, still relies on VIX index levels. In this

section, we start with the implied dynamics of VIX futures prices and then build a VIX futures

based option pricing formula.

From Remark 1, the logarithm of model-implied VIX futures prices follows:

logFt,t+k = A(k)+
p

∑
i=1

Bi(k)Vt+1−i +
q

∑
i=1

Ci(k)εt+1−i

Define σi = B1(i)+C1(i), the return of holding a particular VIX futures Ft,T from time t + j to time
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t + j+1 can be written as1:

log
(

Ft+ j+1,T

Ft+ j,T

)
=−Ψ(σT−t− j−1)+σT−t− j−1εt+ j+1

By definition of Ψ(x), the equation implies:

EQ
t+ j

(
Ft+ j+1,T

Ft+ j,T

)
= 1

which naturally satisfies the martingale condition for a tradable asset. The holding return then

follows:

log
(

FT,T

Ft,T

)
=

k−1

∑
j=0

log
(

Ft+ j+1,T

Ft+ j,T

)

=
k−1

∑
j=0

[
−Ψ(σk− j−1)+σk− j−1εt+ j+1

]
=

k−1

∑
i=0

[−Ψ(σi)+σiεt+k−i]

=
k

∑
i=1

[−Ψ(σi−1)+σi−1εt+k+1−i]

where k = T − t. Note that k− i ≥ 0 and εt+ j is i.i.d. conditional on the information set on time t,

the last equation is equivalent to:

log(FT,T ) = log(Ft,T )+
k

∑
i=1

[−Ψ(σi−1)+σi−1εt+i]

Since σi−1 are functions of parameters, the conditional moment generating function associated to

log(FT,T/Ft,T ) solely depends on the moment generating function of εt+i. The latter is previously

defined as Ψ(s). Therefore, the MGF of log(FT,T ) is given by

h(t,T − t,s) = EQ
t (exp(s log(FT,T )))

= exp

(
s log(Ft,T )+

T−t

∑
i=1

[Ψ(sσi−1)− sΨ(σi−1)]

)
(1)

Using the fact that VIXT = FT,T , the VIX call option price has the following representation:

Ct = e−r(T−t)EQ
t [max(VIXT −K,0)]

= e−r(T−t)EQ
t [max(FT,T −K,0)]

Using similar technique for Proposition 2, the VIX option price can be linked to VIX futures through

1See appendix
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the following formula.

PROPOSITION 3. Let f ∗(s)=EQ
t (exp(s log(FT,T )))= h(t,T−t,s), the VIX futures based pricing

formula for VIX call options is:

Ct = e−r(T−t)
[

f ∗(1)P̃1(t)−KP̃2(t)
]

where

P̃1(t) =
1
2
+

1
π

∫
∞

0
Re
[

f ∗(iφ +1)K−iφ

iφ f (1)

]
dφ ,

P̃2(t) =
1
2
+

1
π

∫
∞

0
Re
[

f ∗(iφ)K−iφ

iφ

]
dφ ,

i and Re[x] are
√
−1 and the real part of x accordingly.

Proof. See appendix.

Because f ∗(s) = h(t,T − t,s) is only a function of the prices of VIX futures (see Equation 1),

we refer the pricing formula in Proposition 3 as the VIX futures based pricing formula. Almost for

each VIX options, CBOE provides a VIX futures that matured at the same date. This provides us

the ability to price VIX options using VIX futures through Proposition 3.

Note that although we express f ∗(s) as a function of VIX futures prices, theoretically it just

quals to f (s) defined by g(t,T − t,s), as they are all MGF of logFT,T (or VT ). However, this the-

oretical relationship may not always hold in reality. Therefore, deriving different forms of model-

implied MGF helps us compare the information content from VIX index and VIX futures price,

respectively.

4 Competing model

For discrete time framework, there are several models proposed for VIX option pricing. Cao et al.

(2020) provides a way using Heston-Nandi GARCH model and inverse Gaussian distribution. Tong

and Huang (2021) provides two models, the GARV and the Realized GARCH, using both S&P 500

index and realized volatility for option pricing. The former model is affine model while the latter

model is non-affine model. In our empirical part, we compare our model with all these models

mentioned above. As our model starts directly from the risk neutral measure, we introduce those

models in their risk neutral forms too.

4.1 The Affine GARCH Models

The Heston-Nandi GARCH model

The Heston-Nandi GARCH model (Heston and Nandi, 2000) is one of the most widely used discrete

time option pricing models. Its affine structure insures a semi-analytical solution for European call
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options price and such structure is found in most GARCH type option pricing models that yield

close-from pricing formula.

The risk-neutral dynamics of the Heston-Nandi GARCH model follows:

Rt+1 = r− 1
2 ht+1 +

√
ht+1zt+1

h∗t+1 = ω
∗+βht + τ2

(
zt − τ1

√
ht

)2

where zt follows standard normal distribution. The analytical VIX option pricing formula for the

HNG model is provided in Cao et al. (2020). It is worth to mention that this model is a special case

of the following Generalized Affine Realized Volatility model when the weight on the volatility

component of return is one (i.e., ξ = 1).

The Generalized Affine Realized Volatility (GARV) model

Build on the Heston-Nandi GARCH model, Christoffersen et al. (2014) provided a generalized

affine model with realized volatility (RV) augmented part to price index options. The risk neutral

dynamics of GARV model follows:

Rt+1 = r− 1
2 ht+1 +

√
ht+1zt+1

ht+1 = ξ hR
t+1 +(1−ξ )hx

t+1

hR
t+1 = ω +βhR

t + τ2(zt − τ1
√

ht)
2

hx
t+1 = κ +φhx

t +δ2(εt −δ1
√

ht)
2

xt = hx
t +η

(
(εt −δ1

√
ht)

2−1−δ
2
1 ht

)
where (zt ,εt) follows a standard bivariate normal distribution with the correlation of ρ . The key

feature of this model is the conditional variance for returns, ht , has two components. The first hR
t ,

is driven by returns, and the second hx
t , is driven by the realized measure xt . The last equation is

called measurement equation that links realized volatility to the conditional volatility. Note that the

Heston-Nandi GARCH model (2000) is a special case of the GARV model when ξ is one.

The VIX option price for GARV model is provided in the Proposition 1 in Tong and Huang

(2021) where the price is a integration of the moment generation function of forward expected

variance.

Ct =
e−r(T−t)

2
√

π

∫
∞

0
ℜ

[
eua f ∗t (T,u)×

1− erf(K
√

u)
(
√

u)3

]
duI

where f ∗t (T,u) is the characteristic function of yT = bhR
T+1 + chx

T+1:

f ∗t (T,u)E
Q
t (euyT ) = exp

(
A(u,T )+B(u,T )hR

t+1 +D(u,T )hx
t+1
)

and u is a complex number denoted as u = uR + iuI , with uR > 0 and uI ∈R. ℜ[·] stands for the real

part of the complex number inside the square bracket. erf(x) is the error function defined as erf(x) :=
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2√
π

∫ x
0 e−s2

ds. Coefficients a, b, c are linked to model coefficients and A(u,s), B(u,s), D(u,s) can be

obtained through iterations using equations listed in the appendix of Tong and Huang (2021). This

formula is also applicable for the Heston-Nandi GARCH model with proper constraints.

4.2 The Realized GARCH model

Unlike the previous two models, the Realized GARCH model proposed in Hansen and Huang

(2016) is a non-affine model where the moment generation function of conditional forward variance

is hard to obtain. In this case, Huang et al. (2017) applied the Edgeworth expansion to approximate

the risk neutral distribution of cumulative returns for index option pricing. Expending option price

with analytical approximation function enable us to calibrate parameters by minimizing pricing er-

rors. The Monte-Carol simulation, while easier to apply, is not suitable for such calibration method

due to the sampling error.

The risk neutral dynamics of the Realized GARCH model follows:

Rt+1 = r− 1
2 ht+1 +

√
ht+1et+1

loght+1 = ω +β loght + τ1et + τ2(e2
t −1)+ γσut

logxt = ξ +φ loght +δ1et +δ2(e2
t −1)+σut

The two innovations, et and ut , are independent standard normal distribution. Define µ =EQ
t (logVIXT ),

σ2 = VarQt (logVIXT ) the VIX call option price can be written as an integral of the variable zT =

(logVIXT −µ)/σ :

Ct = e−r(T−t)EQ
t (max(VIXT −K,0)) = e−r(T−t)

∫ k

−∞

[exp(µ−σz)−K] g̃(z)dz (2)

where k = (− log(K)+µ)/σ and g̃(z) is the true conditional density function of −zT .

Jarrow and Rudd (1982) proposed a second order approximation of g̃(z) using standard normal

distribution and higher order moments of z:

g̃(z)≈
[

1− κ3

6
H3(z)+

(κ4−3)
24

H4(z)+
κ2

3
72

H6(z)
]

φ(z), (3)

where φ(z) is the density function of the standard normal distribution, κi is the i-th moment of zT ,

and Hn(z) is the n-th order Hermite polynomial. Tong and Huang (2021) provide the expansion

based pricing formula in their Proposition 2. The European VIX call price equals:

Capprox = A0−
κ3

6
A3 +

(κ4−3)
24

A4 +
κ2

3
72

A6 (4)

where A0, A3, A4, A6 are defined with moments of normal distribution and κi are defined as the

standardized origin moments of logVIXt . Exact formula for Et (logVIXT )
i is hard to compute and

Tong and Huang (2021) provided a approximation for those moments through Taylor expansion.
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5 Empirical Results

5.1 Data

Our dataset contains S&P 500 index from Yahoo Finance, realized volatility is obtained from the

Realized Library of Oxford-Man institute2, VIX index and VIX futures are downloaded from CBOE

website, and VIX option price data are obtained from the CBOE DataShop. The full sample spans

the periods from February 1, 2006 to October 27, 2020, with 3,711 trading days. For each options,

CBOE provides a corresponding VIX futures with the same maturity.

For liquidity consideration, following Song and Xiu (2016) and Luo et al. (2019), the option

data is trimmed using the following filter: 1) Options with time to maturity less than 7 or more than

126 days are dropped. 2) Mid-quote less than 0.1 or the relative spread3 is greater than 0.3. In

addition, only call options are used as major trading volume of VIX options concentrates on calls.

A rolling window out-of-sample comparison with a window length of 10 years are also included.

The summary statistics are listed in Table 1. As shown in Table 1, compared with realized

volatility, the CBOE VIX has higher mean which is in line with literature on variance risk premium.

The standard deviation and kurtosis of VIX are also lower than realized variance indicating that

VIX is less volatile than corresponding realized volatility. For VIX options, we documented implied

volatility smirk and downward slop term structure.

[Insert Table 1 here]

5.2 Calibration

As we only focused on risk neutral dynamics, the parameters are calibrated by matching the model

price with corresponding market price by minimizing the sum square of pricing errors. Given a

set of parameters Θ, we can calculate the corresponding option price using VIX based method

(CMod
t,T (Θ|V IXt)) and future based method (CMod

t,T (Θ|Ft,T )). The pricing error is then defined as

ei(Θ) =CMkt
i −CMod

i (Θ)

where “Mkt” and “Mod” denote market price and model price, respectively. Following Yin et al.

(2021) and others, we assume that the pricing errors are independent and normally distributed with

mean zero and variance σ2
e . The corresponding log-likelihood function is then specified as:

`o =−
1
2

T

∑
t=1

Nt

∑
i=1

{
log
(
2πσ

2
e
)
+

e2
i (Θ)

σ2
e

}

where T is the number of trading days, and Nt is the number of VIX option prices on the day t. σ2
e

can be estimated with the sample variance of pricing errors according to the first-order conditions

2Realized volatility in this paper is calculated using the realized kernel method to mitigate the impact of market
micro-structure noise.

3Defined as (offer - bid)/mid-quote where mid-quote = (offer+bid)/2.
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in the likelihood estimation. The calibration method is also applied to our competing model with

information set CMod
t,T (Θ|Rt) and CMod

t,T (Θ|Rt ,RVt) for Heston-Nandi GARCH and GARV/Realized

GARCH respectively.

We summarize the calibration results for ARMA type models in Table 2. For ARMA type

models, we use three different settings including ARMA(1,1), HAR up to monthly lags (HAR-M)

and HAR up to yearly lags (HAR-Y). The last setup is motivated by Huang et al. (2019) which

suggested the importance of quarterly and yearly lags. For each setting, we discuss the difference

when jumps are included and the shift of pricing strategies.

[Insert Table 2 here]

First, for all settings, the persistence parameters πQ are highly close to one indicating high

persistence for logVIX series. For lag parameters, in line with Yin et al. (2021), daily lags receive

the largest weights while weekly parameters are the either smaller or close-to-zero compared with

other lag parameters. For random shocks, judging by the difference in log-likelihoods, the jump

components are statistically significant . Asymmetric jump features are also documented as the

upward jumps dominated (pup > 0.8) most jump cases. The average jump size for upward jumps

is also much larger than downward jumps. For futures based pricing strategy, the calibrated jumps

intensity is much higher, the proportion of upward jumps are higher, the difference in jump size

between upward and downward is lower. The variance of continuous component δ zt is naturally

higher when jumps are eliminated.

[Insert Table 3 here]

Parameters for competing GARCH models are listed in Table 3. Results are all in line with

previous literature with strong leverage effect and high persistence.

5.3 Pricing performance

Following Tong and Huang (2021) and Jing et al. (2020), the pricing performance is evaluated

through the root mean square error:

RMSE =

√
1
N

N

∑
i=1

(CMkt
i −CMod

i )2

where Mkt and Mod indicates market price and model price receptively. We also provide sub-sample

RMSE with respect to different moneyness level (defined by log(F/K)) and time to maturity. In line

with previous section, ARMA(1,1), HAR with two different lag specifications, and three different

SPX-based models are discussed.

5.3.1 In-sample

In sample results are listed in Table 4. For full sample RMSE, the best set of models is futures-based

models and than the VIX-based models. The SPX-based models ranks the last.

[Insert Table 4 here]
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Interestingly, adding jumps can significantly improve model fit for future-based models while

the improvements are marginal for VIX-based models. On the other side, the long memory features

make little difference for futures-based models while the reduction is important for VIX-based

models. Both results for VIX-based models are in line with Yin et al. (2021) while the futures-based

results shows strikingly difference in which settings are favorable. We provide a figure reports the

reduction of RMSE due to difference settings in Figure 1.

[Insert Figure 1 here]

In Figure 1, we report two layers of RMSE reduction. The first layer focus on information set

used and the corresponding base case (Ret Based) is defined as the RMSE of the worse performed

Heston-Nandi GARCH model. The second layer focus on model specifications such as log-linear

alternations or jump augmentations. For the second layer, the base cases are the corresponding first

layer RMSE. For example, the Ret RV based model in this paper is the GARV model while its log-

linear specification is defined as Realized GARCH model. As multiple specifications are discussed

in this paper, we average the RMSE of ARMA(1,1), HAR(M) and HAR(Y) when possible.

In line with Tong and Huang (2021), adding RV into the GARCH framework can reduce RMSE

significantly. In our case, the linear GARV model reduces RMSE by 25.72% and a further 14.14%

reduction can be achieved when we switch to log-linear RG model. Direct strategy reduces RMSE

much greater than indirect strategies with realized variance especially when futures are used. Even

the vanilla ARMA version with futures information can reduce RMSE by 67.9% and a further 7.15%

reduction is reported with jumps. With proper information, our simple framework can reduce over

75% of in-sample RMSE over the benchmark Heston-Nandi GARCH model and nearly 60% of

in-sample RMSE over log-linear RG model. The decomposed results confirms those finding in full

RMSE. A interesting finding here is that the RMSE patterns over moneyness and maturity are rather

flat for future-based models while upward sloped patterns are reported for other models.

To sum up, our in-sample findings suggest that futures that share identical time to maturity of

options contains much richer information than VIX index itself, let alone the SP500 index and its

realized volatility.

5.3.2 Out-of-sample

A common concern for the in-sample winner is that whether we push the model too hard and overfit

the data. Judging by the model structure, our framework is stronger in resisting overfit as our models

are simpler than SPX-based models. We improvement pricing utilizing option specific information

embedded in the corresponding futures rather than flooding the model with tons of parameters.

Nevertheless, we provide out-of-sample pricing evaluation with two different setting in this subsec-

tion. A “estimate-and-forget” method estimates parameters ones with the first ten years data (2006

to 2015) and then use them to price options for the rest years (2016-2020). A “rolling-window”

method updates parameters every month since 2016 using a ten year estimation window. Results

are summarized in Table 5 and Table 6 respectively. Similar to in-sample results, we summarize

RMSEs for different models, different information sets and decompose options into moneyness as

13



well as time-to-maturity groups.

[Insert Table 5 here]

[Insert Table 6 here]

[Insert Figure 2 here]

We also calculate two layers of RMSE reductions and plot them in Figure 2. As two out-

of-sample settings are used, we report “estimate-and-forget” results in parenthesis and “rolling-

window” results in brackets. Although the exact numbers differs, the out-of-sample RMSE reduc-

tions are not only similar to each other but also close to in-sample RMSE reductions. These suggest

low possibility of in-sample overfit. We still conclude that switching from SPX information to

VIX/VIX futures can significantly improve model performance. Utilizing information from option

specific futures, one can reduce RMSE further 32% in addition to the log-linear RG model (the best

performed SPX-based model in this paper).

6 Conclusion

In this paper, we use a simple ARMA framework with jumps to model log-VIX dynamics and pro-

vide explicit links between VIX index, VIX futures and VIX options. By doing this, two explicit

VIX option pricing formulas are derived to explored the pricing implication due to the fact that each

VIX option has a corresponding VIX futures with same time-to-maturity. We provided extensive

empirical evidence based on CBOE VIX options from 2006 to 2020 that support the new frame-

work’s significant performance gains over existing frameworks based on SPX daily returns, realized

variance, or VIX index itself. Among these models, the futures-based model provides the best pric-

ing performance, with a reduction in RMSE up to 50% compared with the VIX-based model and a

reduction up to nearly 60% compared with the SPX-based model including realized volatility.
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A Appendix of Proofs

Our model for Vt = log(VIXt) follows an ARMA(p,q) process with jumps:

Vt = µ +
p

∑
i=1

βiVt−i +
q

∑
j=1

αiεt− j + εt
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and define

εt ≡ δ zt + Jt

Ψ(s) ≡ logEt(exp(sεt+1))

In our following empirical analysis, we use the asymmetric jump structure

zt ∼ N(0,1), Jt =
Nt

∑
j=0

e j,t , e j,t ∼ Kou(p,q,ηu,ηd), Nt ∼ Poisson(λ )

B Proof of PROPOSITION 1

Let k = T − t, and assume that

EQ
t (exp(sVt+k)) = exp

(
A(k,s)+

p

∑
i=1

Bi(k,s)Vt+1−i +
q

∑
j=1

Ci(k,s)εt+1− j

)

For k = 0, we have

A(0,s) = 0, Bi(0,s) =

s i = 1

0 1 < i < p
, C(0,s) = 0

For k = k+1, we have

EQ
t (exp(sVt+k+1)) = EQ

t

(
exp

(
A(k,s)+

p

∑
i=1

Bi(k,s)Vt+2−i +
q

∑
i=1

Ci(k,s)εt+2−i

))

= exp

(
A(k,s)+

p

∑
i=2

Bi(k,s)Vt+2−i +
q

∑
i=2

Ci(k,s)εt+2−i

)
×EQ

t (exp(B1(k,s)Vt+1 +C1(k,s)εt+1))

= exp

(
A(k,s)+

p−1

∑
i=1

Bi+1(k,s)Vt+1−i +
q−1

∑
i=1

Ci+1(k,s)εt+1−i

)

×exp

(
B1(k,s)µ +

p

∑
i=1

B1(k,s)βiVt+1−i +
q

∑
i=1

B1(k,s)αiεt+1−i +Ψ(B1(k,s)+C1(k,s))

)

= exp

(
A(k+1,s)+

p

∑
i=1

Bi(k+1,s)Vt+1−i +
q

∑
i=1

Ci(k+1,s)εt+1−i

)
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with

A(k+1,s) = A(k,s)+B1(k,s)µ +Ψ(B1(k,s)+C1(k,s))

Bi(k+1,s) =

Bi+1(k,s)+B1(k,s)βi 1≤ i < p

B1(k,s)βi i = p

Ci(k+1,s) =

Ci+1(k,s)+B1(k,s)αi 1≤ i < q

B1(k,s)αi i = q

Therefore, we have the model implied VIX futures, given by

Ft,T = EQ
t (exp(Vt+k)) = exp

(
A(k,1)+

p

∑
i=1

Bi(k,1)Vt+1−i +
q

∑
i=1

Ci(k,1)εt+1−i

)

C Futures-based VIX option pricing formula

C.1 Model-implied VIX futures

In the previous, we have derived the formula of EQ
t (exp(sVt+k)), so we have

Ft,T = EQ
t (exp(Vt+k)) = exp

(
A(k)+

p

∑
i=1

Bi(k)Vt+1−i +
q

∑
i=1

Ci(k)εt+1−i

)

A(0) = 0, C(0) = 0, Bi(0) =

1 i = 1

0 1 < i < p

A(k+1) = A(k)+B1(k)µ +Ψ(B1(k)+C1(k))

Bi(k+1) =

Bi+1(k)+B1(k)βi 1≤ i < p

B1(k)βi i = p

Ci(k+1) =

Ci+1(k)+B1(k)αi 1≤ i < q

B1(k)αi i = q

C.2 The Dynamic of VIX Futures Prices

So, the (log) model implied VIX futures price is given by

logFt,t+k = A(k)+
p

∑
i=1

Bi(k)Vt+1−i +
q

∑
i=1

Ci(k)εt+1−i
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Let k = T − t, σi = B1(i)+C1(i), we have

log
(

Ft+ j+1,T

Ft+ j,T

)
= A(k− j−1)−A(k− j)+

p

∑
i=1

Bi(k− j−1)Vt+ j+2−i−
p

∑
i=1

Bi(k− j)Vt+ j+1−i

+
q

∑
i=1

Ci(k− j−1)εt+ j+2−i−
q

∑
i=1

Ci(k− j)εt+ j+1−i

= −B1(k− j−1)µ−Ψ(ψ(k− j−1))+
p−1

∑
i=1

Bi+1(k− j−1)Vt+ j+1−i

+B1(k− j−1)(µ +
p

∑
i=1

βiVt+ j+1−i +
q

∑
i=1

αiεt+ j+1−i + εt+ j+1)−
p

∑
i=1

Bi(k− j)Vt+ j+1−i

+
q−1

∑
i=1

Ci+1(k− j−1)εt+ j+1−i +C1(k− j−1)εt+ j+1−
q

∑
i=1

Ci(k− j)εt+ j+1−i

= −Ψ(B1(k− j−1)+C1(k− j−1))+(B1(k− j−1)+C1(k− j−1))εt+ j+1

= −Ψ(σk− j−1)+σk− j−1εt+ j+1

Note that it satisfies following martingale condition for a tradable future asset:

EQ
t+ j

(
Ft+ j+1,T

Ft+ j,T

)
= 1

Then we have

RFut
t,T ≡ log

(
FT,T

Ft,T

)
=

k−1

∑
j=0

log
(

Ft+ j+1,T

Ft+ j,T

)

=
k−1

∑
j=0

[
−Ψ(σk− j−1)+σk− j−1εt+ j+1

]
=

k−1

∑
i=0

[−Ψ(σi)+σiεt+k−i]

=
k

∑
i=1

[−Ψ(σi−1)+σi−1εt+k+1−i]
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Table 1: Summary Statistics

A: SPX returns, Realized Volatility, and CBOE VIX (2006-2020)

Mean(%) Std(%) Skewness Kurtosis Obs.
Returns (annualized) 7.703 17.846 -0.554 16.495 3,711
Realized Volatility (annualized) 12.495 10.502 3.493 21.281 3,711
CBOE VIX 19.479 9.649 2.442 11.050 3,711

B: VIX Option Price Data (Wednesday: 2006-2020)

Average Price ($) Implied Volatility Obs.
All VIX call options 1.607 1.001 50,945

Partitioned by Moneyness, m := log(F/K)

m<-0.4 0.472 1.205 19,512
-0.4 ≤m<-0.2 1.059 1.022 10,372
-0.2≤m<-0.1 1.594 0.925 4,851
-0.1≤m<0 2.107 0.852 4,544

0≤m<0.1 2.759 0.790 4,030
0.1≤m 4.352 0.696 7636

Partitioned by Days to Maturity
DTM<20 1.017 1.277 7,414

20≤DTM<40 1.353 1.120 10,323
40≤DTM<60 1.624 0.994 6,059
60≤DTM<80 1.741 0.932 7,967
80≤DTM<100 1.905 0.861 7,316
100≤DTM 2.055 0.791 7,978

Note: Summary statistics for close-to-close S&P 500 index returns, realized kernels (in square root), CBOE
VIX and VIX option prices from February 1, 2006 to October 27, 2020. The reported statistics for S&P 500,
realized kernels, and VIX index include the sample mean (Mean), standard deviation (Std), skewness (Skew),
kurtosis (Kurt), number of observations (Obs). We report the average price, average implied volatility, and
the number of option prices for different partitions of our (Wednesday) VIX option prices. “Moneyness”
is defined by the m = logF/K, where F the is VIX futures price and K is the strike price. DTM denotes
the number of days to maturity. Data sources: S&P 500 returns from Yahoo Finance; VIX and VIX futures
from CBOE’s website; Realized kernels from Realized Library of Oxford-Man institute; Option prices from
CBOE Data Shop.
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Table 3: Estimation Results for SPX-based Models

HNG GARV RG

β 0.2765 0.9880 0.9974
(0.0410) (0.0090) (0.0054)

τ1 765.87 116.10 -0.0197
(20.10) (19.77) (0.002)

τ2 1.23E-06 8.73E-07 0.0055
(7.51E-08) (6.85E-08) (0.001)

γ 0.0857 0.1847
(0.0131) (0.0102)

ξ 0.0189 -0.5643
(0.0043) (0.0675)

φ 3.74E-08 1.0340
(1.67E-03) (0.023)

δ1 888.60 -0.0687
(25.70) (0.001)

δ2 1.27E-06 0.1748
(3.90E-08) (0.036)

σ/ρ 0.9986 0.8950
(0.0330) (0.0216)

logEQ(ht) -8.1587 -8.3020 -8.2378
(0.1100) (0.0810) (0.0698)

πQ 0.9957 0.9998 0.9974
` -86002 -74238 -65030

Note: Estimation results for SPX-based models in the full sample period (February 1, 1990 to October 27,
2020) . Parameter estimates are reported with robust standard errors (in parentheses), πQ refer to the volatility
persistence under risk-neutral measures. The value of the log-likelihood function is reported at the bottom of
the table.
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Figure 1: In-sample RMSE reduction across different settings

Ret Based

Ret RV  Based

VIX Based

Futures Based

Jump augmented

RMSE Reduction compared with HNG Further Reduction

Switch log-linear

Jump augmented

25.72%

48.12%

67.92%

14.14%

1.10%

7.19%

Note: RMSE reduction is calculated against Heston-Nandi GARCH model (Ret Based) for the first layer
(RMSE reduction compared with HNG) and the “Further reduction” is calculated with “additional” RMSE
reduction (in terms of % reduction against Heston-Nandi GARCH model). For example, the Ret RV based
model GARV reduces RMSE by 25.72% and a further 14.14% reduction can be achieved when we switch
to log-linear RG model. If one directly compare RG with Heston-Nandi GARCH, the RMSE reduction
is 39.81% (=25.72%+14.14%). The RMSE for VIX/Future based model and the corresponding jump aug-
mented model is the simple average across ARMA(1,1), HAR(M) and HAR(Y) in each sub-categories.
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Figure 2: Out-of-sample RMSE reduction across different settings

Ret Based

Ret RV  Based

VIX Based

Futures Based

Jump augmented

RMSE Reduction compared with HNG Further Reduction

Switch log-linear

Jump augmented

(27.69%) 
[33.82%]

(11.49%) 
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(48.99%) 
[53.16%]

(1.11%) 
[0.73%]

(65.75%) 
[69.52%]

(5.81%) 
[7.03%]

Note: RMSE reduction is calculated against Heston-Nandi GARCH model (Ret Based) for the first layer
(RMSE reduction compared with HNG) and the “Further reduction” is calculated with “additional” RMSE
reduction (in terms of % reduction against Heston-Nandi GARCH model). As two out-of-sample settings
are used, we report “estimate-and-forget” results in parenthesis and “rolling-window” results in brackets. For
example, under “estimate-and-forget” method, the Ret RV based model GARV reduces RMSE by 27.69%
and a further 11.49% reduction can be achieved when we switch to log-linear RG model. If one directly com-
pare RG with Heston-Nandi GARCH, the RMSE reduction is 39.18% (=27.69%+11.49%). Using “rolling-
window”, the corresponding numbers are 33.82%, 10.44% and 44.25%. The RMSE for VIX/Future based
model and the corresponding jump augmented model is the simple average across ARMA(1,1), HAR(M) and
HAR(Y) in each sub-categories.
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