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Abstract

The 4/2 model, unifying the Heston and 3/2 models, exhibits important features of volatility and is somewhat tractable
enough to provide a certain level of pricing procedure. However, a closed-form formula for derivative price is still lack-
ing. We use a rescaling technique to obtain a closed-form formula for approximate derivative price. Our formula has
no integral term at all and it can be explicitly calculated by taking derivatives of the Black-Scholes price. Based on
the analytic formula, we show that our model is more tractable than the original 4/2 model and yet flexible enough to
capture important features of volatility.
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1. Introduction

The original 4/2 stochastic volatility model was proposed by Grasselli (2017) by combining the Heston model
(Heston, 1993) and 3/2 model of Heston and Platen (1997) to solve the problems faced by the two models in derivative
pricing. The Heston model can provide a semi-analytic solution for pricing many derivatives while reflecting main
characteristics of volatility but it can not admit extreme behaviors of stock prices requiring high volatility-of-volatility.
So, the Heston model has a practical difficulty of capturing the implied volatility surface for deep in and out-of the-
money option strikes. Refer to, for instance, Clark (2011) and Tian (2013) for details. However, the 3/2 model is able
to admit abnormal movements in the stock prices so that it can capture the steep volatility skews in equity markets.
The implied volatilities of VIX options are shown to be upward-sloping and consistent with market data according to a
study by Baldeaux and Badran (2013) on joint modeling of equity and VIX derivatives under the 3/2 model with jumps.
But it is found to give rise to computational difficulties since it is a non-affine model as discussed by Drimus (2012)
although it still can obtain a certain level of tractability in terms of characteristic functions when pricing derivatives.
The Heston model predicts flattening implied volatility skew while the 3/2 model predicts steepening skews when the
instantaneous volatility increases. So, the 4/2 stochastic volatility model is designed to unify the complementing two
different structures through the superposition of the Heston and 3/2 volatility terms.

Despite its success on capturing most characteristics of volatility, the 4/2 model does not allow a closed-form
expression for option price and thus its practical application is very limited. Instead of using a mixture of two different
volatility models like the 4/2 model, another way of overcoming the traditional single factor volatility models is to use
multi-factor stochastic volatility models. The double-mean-reverting model of Gatheral (2008) and the double Heston
model proposed by Christoffersen et al. (2009) are this type of multi-factor models. The double-mean-reverting model
is a model well established particularly for capturing the empirical dynamics of variance and the price of options on
both SPX and VIX indices consistently with the market. However, this model also doesn’t produce a closed-form
derivative price formula so that calibrating the model to actual market data might be too slow to be implemented
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in practice. The double Heston model has a merit of exploring the correlation between the volatility and the smile.
However, it also costs too much time for calibration because of a large number of the model parameters.

An incorporation of mean-reversion to the 4/2 model proposed by Escobar-Anel and Gong (2020) provides an
improved result that makes computations more efficient. However, a closed-form formula for derivative price is still
lacking. One possible way of circumventing this problem is rescaling the model in the way that has been done in
recent works by Kil and Kim (2022) and Yoon and Kim (2023). In this paper, we propose to use a rescaled form of the
mean-reverting 4/2 model. From this framework, we are able to derive a closed-form analytic formula for European
derivative price by using the asymptotic analysis of Fouque et al. (2011). The formula has no integral term and it
can be explicitly calculated by taking derivatives of the well-known Black-Scholes price (Black and Scholes 1997,
Merton 1997). Based on this result, we show that faster calibration of the 4/2 model is available and yet practical
implied volatility structure can be approximated.

This paper is organized as follows. In Section 2, we introduce a mean-reverting 4/2 volatility model given in terms
of a small positive parameter and obtain a closed-form pricing formula for European derivatives. In Section 3, we
do some numerical experiments about accuracy of our analytic formula, calibration to market data and sensitivity to
volatility parameters. We give some concluding remarks in Section 4. Appendix provides proofs of Propositions and
Corollary.

2. Mean-reverting 4/2 volatility

For the underlying asset price process S t, we first consider the following 4/2 stochastic volatility model:

dS t = rS tdt +
(
a
√

Vt +
b
√

Vt

)
S t dWt,

dVt =
1
ϵ

(θ − Vt)dt +
ξ
√
ϵ

√
Vt d

(
ρsvWt +

√
1 − ρ2

svW⊥t
)
,

(2.1)

where r (the risk-free interest rate), ϵ, θ and ξ are positive real numbers, ρsv ∈ [−1, 1] and a and b are real numbers.
Wt and W⊥t represent independent Brownian motions defined on a filtered probability space (Ω,F ,Ft,Q). The Feller
condition 2θ ≥ ξ2 is assumed to ensure that Vt is bounded below by zero.

If we take a , 0 and b = 0, then the model (2.1) becomes the Heston model. If take a = 0 and b , 0, then
it becomes the 3/2 model. In the model (2.1), ϵ governs the rate of mean-reversion. It is assumed to be a small
parameter satisfying 0 < ϵ ≪ 1 and so the process Vt is fast mean-reverting with an invariant distribution given by

ΦCIR(v) = (2/ξ2)
2θ
ξ2

Γ(2θ/ξ2) v
2θ
ξ2
−1e−

2v
ξ2 , where Γ is the gamma function. We note that if ϵ goes to zero, then the variance becomes

the constant mean level θ and we recover the Black-Scholes model with constant volatility a
√
θ + b/

√
θ.

Given the underlying price S t = s and the volatility level Vt = v at time t, the derivative price Pϵ(t, s, v) is given by

Pϵ(t, s, v) = EQ
[
e−r(T−t)h(S T )| S t = s,Vt = v

]
, (2.2)

where h is a payoff function. From the Feynman-Kac theorem (see, for example, the book of Oksendal (2013)), this
integral form can be transformed into a parabolic PDE problem

LϵPϵ(t, s, v) = 0, t < T, Lϵ := ∂t +L
ϵ
S ,V − r, Pϵ(T, s, v) = h(s), (2.3)
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where LϵS ,V is an infinitesimal generator of the joint diffusion process (S t,Vt). We decompose the operator Lϵ as

Lϵ =
1
ϵ
L0 +

1
√
ϵ
L1 +L2,

L0 :=
1
2
ξ2v∂vv + (θ − v)∂v, L1 := ρsvξ(av + b)D1∂v, L2 := ∂t +

1
2

(
a
√

v +
b
√

v

)2

D2 + r (D1 − I) .
(2.4)

Here, I is the identity operator and D1 and D2 are differential operators defined by D1 = s∂s and D2 = s2∂ss, respec-
tively. Since the PDE problem (2.3) is a singular perturbation problem, we are interested in an asymptotic solution Pϵ

of the form Pϵ(t, s, v) =
∑∞

i=0
√
ϵ i Pi(t, s, v).

Let σ̄4/2 denote the average of the volatility term a
√

Vt +
b
√

Vt
(the superposition of the 1/2 and the 3/2 terms) with

respect to the invariant distribution ΦCIR, i.e., σ̄4/2 = ⟨

(
a
√
· + b

√
·

)2
⟩

1
2 , andLBS(σ̄4/2) denote the Black-Scholes pricing

operator with constant volatility σ̄4/2, i.e.,

LBS(σ̄4/2) = ∂t +
1
2
σ̄2

4/2D2 + r (D1 − I) . (2.5)

Then, following the asymptotic analysis of Fouque et al.(2011), one can obtain the following PDEs for P0 and P1.

LBS(σ̄4/2)P0(t, s) = 0, LBS(σ̄4/2)P1(t, s) = FD1D2P0, F :=
1
2
ρsvξ

(
a⟨· ϕ

′

ab(·)⟩ + b⟨ϕ
′

ab(·)⟩
)

(2.6)

where ϕab(v) is a function defined by

L0ϕab =

(
a
√

v +
b
√

v

)2

− ⟨

(
a
√
· +

b
√
·

)2

⟩. (2.7)

Solving the PDEs (2.6), we obtain an approximated derivative price formula as follows.

Proposition 2.1. Under the risk-neutral dynamics (2.1) of the underlying asset price, the derivative price defined by

(2.2) is approximated by P̃ϵ(t, s) := P0(t, s) +
√
ϵP1(t, s) which is

P̃ϵ(t, s) = PBS(σ̄4/2) − (T − t)FϵD1D2PBS(σ̄4/2), Fϵ :=
1
2
√
ϵ ρsvξ

(
a⟨· ϕ

′

ab(·)⟩ + b⟨ϕ
′

ab(·)⟩
)
, (2.8)

where PBS(σ̄4/2)(t, s) is the solution of the first equation for P0(t, s) in (2.6) with the final condition P0(T, s) = h(s).

Proof. See Appendix.

All the original model parameters are not required to price European derivatives. In fact, from Proposition 2.1,
one can notice that the number of necessary parameters for the derivative price is reduced considerably from 6 to 2
as follows: a, b, ϵ, θ, ξ, ρ =⇒ σ̄4/2, Fϵ . The parameters σ̄4/2 and Fϵ are required to be estimated for pricing
the derivatives. In order to estimate these parameters, one can utilize calibration from near-the-money European call
option implied volatilities. So, we need an implied volatility formula to follow a procedure to fit the skew from the
European option prices.

We define the implied volatility Iϵ(t, s, v) of a call option as a solution of the equation PBS(t, s; Iϵ) = P̃ϵ(t, s),where
PBS(t, s;σ) stands for the Black-Scholes formula for call options with constant volatility σ, and we seek Iϵ in the form
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Iϵ(t, s) =
∑∞

i=0(
√
ϵ)i Ii(t, s) with I0 := σ̄4/2. Then we obtain

I1(t, s) = P1(t, s) (∂σPBS)−1 =
F
σ̄4/2

 d1(t, s)

σ̄4/2
√

T − t
− 1

 , (2.9)

where d1 is

d1(t, s) =
log(s/K) + (r + 1

2 σ̄
2
4/2)(T − t)

σ̄4/2
√

T − t
. (2.10)

For the second equality in (2.9), we have used the Vega-Gamma relationship, Vega = (T − t)σ̄4/2s2Gamma, and the
identity D1(Vega) = (1 − d1(t,s)

σ̄4/2
√

T−t
)Vega for call options. This leads to the following approximate implied volatility

surface formula.
Ĩϵ(t, s) := I0 +

√
ϵI1(t, s) = σ̄4/2 −

Fϵ

σ̄3
4/2

(
log(K/s)

T − t
− r +

1
2
σ̄2

4/2

)
. (2.11)

For European call options, therefore, we present the following corollary of Proposition 2.1 about how to calculate
the option price and how to estimate explicitly the relevant pricing parameters σ̄4/2 and Fϵ from the term structure of
implied volatility.

Corollary 2.1. For a European call option with payoff h(s) = (s − K)+, we have an expression

P̃ϵ(t, s) = N(d1)s − N(d2)Ke−r(T−t) − Fϵ se−d2
1/2

σ̄4/2
√

2π

(
√

T − t −
d1

σ̄4/2

)
, (2.12)

where N is the standard normal cumulative distribution function and d2 = d1 − σ̄4/2
√

T − t. If the implied volatility

Ĩϵ(t, s) for a European call option is expressed by the form

Ĩϵ(t, s) = α
(

log(K/s)
T − t

)
+ β (2.13)

for some constants α,0 and β satisfying αr + β > 0 or α < 0, then σ̄4/2 and Fϵ are explicitly given by

αr + β > 0 : σ̄4/2 =
−1 +

√
1 + 2α(αr + β)
α

, Fϵ =

(
1 −

√
1 + 2α(αr + β)

)3

α2 ,

α < 0 : σ̄4/2 =
−1 −

√
1 + 2α(αr + β)
α

, Fϵ =

(
1 +

√
1 + 2α(αr + β)

)3

α2 ,

(2.14)

in terms of α and β, respectively, under the condition that α(αr + β) ≥ − 1
2 holds.

Proof. See Appendix.

In practice, one can estimate the parameters σ̄4/2 and Fϵ required to price the derivatives by using the algebraic
relation (2.14) once the slope and intercept coefficients α and β of an affine function of the log-moneyness-to-maturity
ratio are estimated through fitting the implied volatilities from observed S&P 500 European call option prices. In
particular, it is noteworthy that we don’t need to calculate directly the long-run historical volatility σ̄4/2 for the pricing
purpose. It can be estimated by the algebraic formula (2.14) from the calibrated values of the slope and intercept
coefficients of the implied volatilities. This way of estimation is valid as long as the derivative contract is not very
close to expiration or very far away from the money. Note that the inequality β > rα must be satisfied since the
long-run mean volatility σ̄4/2 has to be positive.
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Next, we proceed to obtain the second order correction term P2(t, s, v) of the asymptotic expansion Pϵ(t, s, v) =∑∞
i=0
√
ϵ i Pi(t, s, v). The second order term can play an important role in capturing the convexity of the implied volatil-

ity observed in option market data since the implied volatility depends quadratically on log-moneyness as discussed
below.

Proposition 2.2. If ϕab(v) is the solution of (2.7) and satisfies ⟨ϕab(·)⟩ = 0 and ψab(v) is the solution of

L0ψab = avϕ
′

ab(v) + bϕ
′

ab(v) −
(
a⟨·ϕ

′

ab(·)⟩ + b⟨ϕ
′

ab(·)⟩
)
, (2.15)

then P2(t, s, v) is given by P2(t, s, v) = − 1
2ϕab(v)D2P0 + c(t, s), where c(t, s) is the solution of

LBS(σ̄4/2)c(t, s) =
(
B1 (D1)2D2 + B2 (D2)2 − F2(T − t) (D1)2 (D2)2

)
P0, t < T, c(T, s) = 0, (2.16)

where B1 and B2 are, respectively, given by

B1 = −
1
2

(ρξ)2
(
a⟨·ψ

′

ab(·)⟩ + b⟨ψ
′

ab(·)⟩
)
, B2 =

1
4
⟨ϕab(·)

(a√· + b
√
·

)2

− ⟨

(
a
√
· +

b
√
·

)2

⟩

⟩. (2.17)

Proof. See Appendix.

Once we have a solution for P2, the second order term I2 of the implied volatility is given by

I2(t, s, v) =
(
P2(t, s, v) −

1
2
∂2PBS

∂σ2 I2
1 (t, s)

) (
∂PBS

∂σ

)−1

. (2.18)

Since I1(t, s) is linear in the log-moneyness log(K/s), this second order term is quadratic in the log-moneyness and
thus it is able to account for the convex smile effect usually observed in shorter time-to-maturity options.

3. Numerical experiments: accuracy, calibration and sensitivity analysis

In this section, we present some results on four types of numerical experiments. First of all, we conduct Monte-
Carlo simulations of the fast mean-reverting 4/2 stochastic volatility model (2.1) to generate values of European-style
call options. Then, we compare these option values with those generated by our approximate analytic formula given
in Proposition 2.1. For this purpose, the values of the model parameters are chosen according to r = 0.03, a =

0.09099, b = 0.00111, ϵ = 0.001, θ = 0.04, ξ = 0.123, ρsv = −0.7 and results are plotted in Figure 1(a). As we can
see from Figure 1(a), for short time-to-maturity options, call option values from Monte-Carlo simulations match well
with those generated by our approximate analytic formula. For longer time-to-maturity options, the option values from
Monte-Carlo simulation are slighter higher than those from the approximate formula. However, in terms of moneyness
ln(K/s), as we can see from Figure 1(b), the two types of options values are very close in all cases.
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Fig. 1. Monte-Carlo versus approximate analytic values, with initial asset price S 0 = 100 and strike price K = 100

Secondly, we use the market data to test our formula in Proposition 2.1. We collect the S&P 500 options data on
May 3, 2008. The maturity dates of these options are up to May 3, 2010. According to their maturity times, we split
the data into two samples: in-sample (maturity times are from 30 to 270 days) and out-sample (maturity times are 360
and 720 days). The in-sample data are used to estimate the values of α and β in Corollary 2.1 via linear regression of
implied volatility. Then, the values of σ̄4/2 and Fϵ are calculated by using equation (2.14). The out-sample data are
used for comparison. More precisely, we use market implied volatility to calculate the market option values, which
are compared with the option values calculated by the formula in Proposition 2.1. The results are shown in Figure 2.
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Fig. 2. S&P 500 market values versus approximate analytic values

In the third type of numerical experiments, we use Monte-Carlo simulations to compare the 4/2 stochastic volatil-
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ity model with the Heston model and the 3/2 stochastic volatility model, with different combinations of values of
parameters a and b. The results are presented in Figures 3. In Figure 3(a), the value of parameter a is fixed at 0.3,
0.6 and 1 respectively, and we let the value of parameter b varies between 0 and 0.05. In Figure 3(b), the value of
parameter b is fixed at 0.00123, 0.01423 and 0.05423 respectively, and we let the value of parameter a varies between
0 and 1.
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Fig. 3. (a) 4/2 model versus Heston model, (b) 4/2 model versus 3/2 model.

Lastly, we compare the market implied volatility data with the approximate implied volatility formula given by
(2.11) together with (2.18). As shown in Figure 4, The first order implied volatility approximation approaches the
market implied volatility in terms of slope. The first order implied volatility approximation is shown to be almost
linear but the second order implied volatility approximation starts capturing the convexity of the market implied
volatility and it is closer to the market data than the first order approximation in all time-to-maturities. Inclusion of
higher order terms would make the implied volatility move much closer to the market implied volatility.

4. Conclusion

In this paper, we have obtained a closed-form formula for European derivative prices under a rescaled versions
of the 4/2 stochastic volatility model. The pricing formulas can be calculated easily starting from the corresponding
Black-Scholes derivative prices. The formula is based on fast mean-reverting 4/2 volatility. The corresponding implied
volatility formula is a useful tool to approximate the market implied volatility. The market data can be approached
by the theoretical formula step by step by adding asymptotic terms. We have shown that the first and second order
approximations can capture the slope and the convexity of the market implied volatility, respectively. A possible future
work is an extension of the fast mean-reverting 4/2 volatility to two-scale (fast and slow) double-mean-reverting 4/2
volatility.

Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

7



(a) (b)

(c) (d)

Fig. 4. S&P500 implied volatilities on 1st April, 2019 for days to maturity 88 through 172.
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5. Appendix

In this appendix, we formally prove Propositions and Corollary by using simple operator algebra.
Proof of Proposition 2.1: The solution of the first PDE in (2.6) with the final condition P0(T, s) = h(x) is exactly

the Black-Scholes derivative price with volatility σ̄4/2. For the correction term P1(t, s), using the fact that the operators
∂t, I,D1 andD2 commute, we find

⟨L2⟩ (−(T − t)FD1D2P0) =
(
∂t +

1
2
σ̄2

4/2D2 + r (D1 − I)
)

((t − T )FD1D2P0)

= FD1D2P0 + (t − T )FD1D2∂tP0 + (t − T )FD1D2

(
1
2
σ̄2

4/2D2 + r (D1 − I)
)

P0

= FD1D2P0 + (t − T )FD1D2������:0
LBS(σ̄4/2)P0 = FD1D2P0.

So, −(T − t)FD1D2P0 solves the second equation for P1(t, s) in (2.6) and satisfies the final condition P1(T, s, z) = 0.
Proof of Corollary 2.1: If we calculate (2.8) directly using the Black-Scholes price PBS(σ̄4/2) for the payoff

h(s) = (s − K)+, then the formula (2.12) follows immediately. By identifying the two equations (2.11) and (2.13), we
obtain two algebraic equations as follows:

α = −
Fϵ

σ̄3
4/2

, β = σ̄4/2 +
Fϵ

σ̄3
4/2

(
r −

1
2
σ̄2

4/2

)
.

Solving these equations for σ̄4/2 and Fϵ yields (2.14). Note that the condition αr+β>0 or α<0 is required. Otherwise,
the volatility σ̄4/2 would become negative.
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Proof of Proposition 2.2: Plugging Pϵ(t, s, v) =
∑∞

i=0
√
ϵ i Pi(t, s, v) into LϵPϵ(t, s, v) = 0, we obtain the PDE

systemsL0Pk+L1Pk−1+L2Pk−2 = 0, k = 0, 1, 2, ...,where P−1 = 0 and P−2 = 0 are defined. For the derivation of the
second order term P2, from L0P2 +L2P0 = 0 we observe that L0P2 = −L2P0 = − (L2 − ⟨L2⟩) P0 = −

1
2L0(ϕabD2P0)

holds. Then P2 is given in the form P2(t, s, v) = − 1
2ϕab(v)D2P0 + c(t, s) for some function c(t, s) independent of v. It

remains to find a PDE problem that c(t, s) satisfies. We expect that the desired result comes from the PDE of k = 4,
i.e., L0P4 + L1P3 + L2P2 = 0. From the Fredholm alternative, we have ⟨L1P3 + L2P2⟩ = 0. From now, we consider
the two terms L2P2 and L1P3, respectively. For the first term, we have

⟨L2P2⟩ = ⟨L2(−
1
2
ϕabD2P0 + c)⟩ = −

1
2
⟨ϕabD2L2P0⟩ + ⟨L2⟩c

= −
1
2
D2⟨ϕab(L2 − ⟨L2⟩)P0⟩ + ⟨L2⟩c = −B2D

2
2P0 + ⟨L2⟩c

(5.1)

For the second term, using L0P3 +L1P2 +L2P1 = 0 and the Fredholm alternative, we first have

L0P3 = −(L1P2 − ⟨L1P2⟩) − (L2 − ⟨L2⟩)P1

=
1
2
ρsvξ(av + b)ϕ

′

abD1D2P0 −
1
2
ρsvξ⟨(a · +b)ϕ

′

ab(·)⟩D1D2P0 −
1
2

(L0ϕab)D2P1

=
1
2
ρsvξL0(ψabD1D2P0) −

1
2
L0(ϕabD2P1)

which leads to P3(t, s, v) = 1
2ρsvξψabD1D2P0−

1
2ϕabD2P1+c1(t, s) for some function c1(t, s) independent of v. Hence,

⟨L1P3⟩ becomes
⟨L1P3⟩ = −B1D

2
1D2P0 − FD1D2P1, (5.2)

Finally, by inserting (5.1) and (5.2) into ⟨L1P3 + L2P2⟩ = 0, we obtain ⟨L2⟩c =
(
B1D

2
1D2 + B2D

2
2

)
P0 + FD1D2P1.

So, from P1 = −(T − t)FD1D2P0, the function c satisfies the PDE in (2.16). The singular perturbation problem creates
a terminal layer near expiration. The appropriate terminal condition for the second order term P2 is ⟨P1(T, s, ·)⟩ = 0
as discussed by Fouque et al.(2016). Using the assumption ⟨ϕ(·)⟩ = 0, we obtain the terminal condition c(T, s) = 0.
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