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Abstract

We find a positive relationship between the individual stocks’ asymmetric variance

premia, defined as the difference between the risk-neutral and physical expected

variance asymmetries, and the future stock returns. The high-minus-low hedge

portfolio earns the excess return of 72 basis points per month, the characteristic-

adjusted return of 66 basis points per month, and the industry-adjusted return of

79 basis points per month. They are all economically substantial and statistically

highly significant. We show that asymmetric variance premium is closely related to

skewness premium. Such a positive relationship can not be explained by risk-based

asset pricing models. We find that the predictive power of asymmetric variance pre-

mium is information-driven and reflects trading activity of informed traders who

place more transactions on options.
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1. Introduction

It is argued that semivariances or variance asymmetry (i.e., the difference between upside

and downside semivariances) provide a complement to or maybe a better measure than

variance in evaluating risk (Markowitz, 1959, 1991). A number of recent papers find that

market variance premium can predict stock market returns (Bollerslev, Tauchen, and

Zhou, 2009; Drechsler and Yaron, 2011; Bollerslev et al., 2014), and Han and Zhou (2011)

provide some evidence of the positive relationship between individual stocks’ variance

premia and future stock returns. However, it is not clear how premium to semivariances

or variance asymmetry is related to stock returns. In this paper, we implement a cross-

sectional analysis and examine the relationship between individual stocks’ asymmetric

variance premia, defined as the difference between the risk-neutral and physical variance

asymmetries, and future stock returns.

Equipped with individual stock option prices, we infer the risk-neutral variance asym-

metry from the out-of-money call and put options following similar methods proposed

by Bakshi and Madan (2000) and Bakshi, Kapadia, and Madan (2003), whereas the

physical variance asymmetry is estimated using realized variance (Andersen et al., 2001;

Barndorff-Nielsen and Shephard, 2004) and realized semivariances (Barndorff-Nielsen,

Kinnebrock, and Shepard, 2010). Using all common stocks listed on NYSE, AMEX, and

NASDAQ with valid options and high-frequency data, we find that individual asymmetric

variance premium is negative in general. Economically, if stock variance responds more

strongly to negative returns than to positive returns, the negative sign of asymmetric

variance premium suggests that the risk-neutral return distribution has greater variance

asymmetry than the physical distribution has.

To investigate predictive power of individual stocks’ asymmetric variance premia for

stock returns, we implement portfolio analysis in ways similar to Fama and French (1996).

At the end of each month from January 1996 to December 2013, we sort all stocks into

quintile portfolios based on asymmetric variance premium and construct a high-minus-

low hedge portfolio that longs the top quintile portfolio and shorts the bottom quintile
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portfolio. We hold these portfolios over the next month and compute their equal-weighted

excess returns, characteristic- and industry-adjusted returns. We find that all three types

of returns for portfolios 1 to 5 monotonically increase with respect to asymmetric vari-

ance premium. Furthermore, the hedge portfolio earns economically substantial and

statistically significant excess return, characteristic- and industry-adjusted returns. It

earns the excess return of 0.72% (t = 3.68) per month, and earns the characteristic-

and industry-adjusted returns of 0.66% (t = 4.95) and 0.79% (t = 5.29) per month, re-

spectively. Similar results are also observed in two independent double portfolio sorts, in

which individual stock variance and variance risk premium are taken as respective control

variables.

The risk-adjusted portfolio returns have similar patterns and deliver exactly the same

implications. In each of the four factor models, i.e., the Fama-French three-factor model

(Fama and French, 1993), the Carhart four-factor model (Carhart, 1997), the q-factor

model (Hou, Xue, and Zhang, 2015), and the mispricing factor model (Stambaugh and

Yuan, 2017), alphas from portfolios 1 to 5 monotonically increase with respect to asym-

metric variance premium, and the hedge portfolio’s alpha is economically substantial and

statistically highly significant. We also find that portfolios with low asymmetric variance

premia significantly underperform. The above results suggest that there exists a positive

relationship between individual stocks’ asymmetric variance premia and future stock re-

turns. However, we find that the positive relationship between individual stocks’ variance

risk premia and future stock returns is not as strong as Han and Zhou (2011) suggest.

In addition to portfolio analysis, we also conduct Fama-MacBeth cross-sectional re-

gressions, which allow us for controlling for a large number of variables. We consider

some standard variables used in literature such as beta (Sharpe, 1964; Lintner, 1965),

size (Banz, 1981; Lakonishok and Shapiro, 1986; Fama and French, 1992, 1993), book-to-

market ratio (Fama and French, 1992), and momentum (Jegadeesh and Titman, 1993).

We also control for a number of stock-related variables and option-related variables. In

spite of such extensive controls, the coefficient on asymmetric variance premium is always

positive and statistically significant. This result provides further evidence in support of
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our finding that the higher asymmetric variance premium is, the larger the future returns

should be.

We show that our variance asymmetry measures satisfy properties proposed by Groen-

eveld and Meeden (1984) that any reasonable skewness measure should have, suggesting

that asymmetric variance premium is closely related to skewness premium. To check this

point, using both option and high-frequency data, we construct standard skewness pre-

mium, which is defined as the difference between the risk-neutral and physical expected

skewness for each individual stock. We find that the cross-sectional correlation between

asymmetric variance premium and standard skewness premium remains high over time.

The time-series average is about 0.75. The portfolio analysis and Fama-MacBeth re-

gressions based on standard skewness premium reveals a positive relationship between

standard skewness premium and future stock returns. Furthermore, we find that the time

series of monthly returns of the hedge portfolios based on asymmetric variance premium

and on standard skewness premium fluctuate in parallel. Put together, we have a general

result that skewness premium positively predicts future stock returns.

Can such a positive relationship be explained by risk-based equilibrium asset-pricing

models? A large number of works argue that investors are of aversion to skewness risk

(Arditti, 1967, 1971; Kraus and Litzenberger, 1976; Simkowitz and Beedles, 1978; Scott

and Horvath, 1980; Conine and Tamarkin, 1981; Kane, 1982; Harvey and Siddique, 2000;

Mitton and Vorkink, 2007).1 Therefore, given that the risk-neutral measure has already

internalized such skewness-aversion, the more negative asymmetric variance premium

is, the higher investors’ skewness-aversion should be. This should predict a negative

relationship between asymmetric variance premium and future stock returns.

1Arditti (1967, 1971) shows both theoretically and empirically that investors require a higher risk
premium on an investment whose return distribution is negatively skewed. Kraus and Litzenberger (1976)
introduces a three-moment capital asset pricing model, which shows that expected return depends both
on systematic variance and systematic skewness. Simkowitz and Beedles (1978) and Conine and Tamarkin
(1981) argue that in the circumstances of non-perfect diversification, idiosyncratic skewness is relevant
to pricing securities. Scott and Horvath (1980) extend Arditti’s work and introduce both skewness
and other higher moments in asset pricing. Kane (1982) shows that investment in risky assets is also
affected by portfolio skewness and argues that skewness preference may cause investors not to completely
diversify. Harvey and Siddique (2000) introduce systematic skewness into the pricing of securities through
a stochastic discount factor and find that co-skewness is a priced factor. Mitton and Vorkink (2007)
propose a model in which heterogeneous skewness preference makes investors underdiversify and show
that idiosyncratic skewness affects asset prices.
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The inconsistency may reveal that the stock and options markets are not fully in-

tegrated. When some informed investors choose to trade in options before trading in

the underly stocks, the positive relationship may reflect the trading activity of informed

traders. Easley, O’Hara, and Srinivas (1998) propose a multimarket sequential trade

model, which incorporates both options and stocks. They argue that there exists a pool-

ing equilibrium, in which informed traders may choose to trade either in the stock market

or in the options market based on profits available. When the trader is informed of a

good news, he/she may buy calls or sell puts. Such a trade increases call prices relative

to put prices and makes the risk-neutral variance asymmetry large, resulting in a posi-

tive relationship between asymmetric variance premium and future stock returns. The

pooling equilibrium can be reached and informed traders choose to trade options when

the leverage and liquidity in options is high relative to stocks, and/or the overall fraction

of informed traders is high.

We therefore test whether return predictability by asymmetric variance premium is

stronger among stocks whose liquidity is low relative to liquidity of options written on

them, and is stronger among stocks with more concentration of informed traders. We

find that no matter which option liquidity measure and how to compute option liquidity,

there is more predictability when option liquidity is high relative to stock liquidity and less

predictability when option liquidity is low relative to stock liquidity. Furthermore, Using

the PIN variable proposed by Easley, Kiefer, and O’Hara (1997) and Easley, Hvidkjaer,

and O’Hara (2002) as a measure of the prevalence of informed traders and information

asymmetry, we find that the positive relation between skewness premium and future stock

returns is stronger among high PIN stocks.

We implement event studies to check where informed traders’ information advan-

tage comes from. We find that asymmetric variance premium immediately before both

anticipated and unanticipated events has dominant predictive power for event returns.

Kim and Verrecchia (1991) suggest that both informed and uninformed traders have

strong incentives to acquire private information before anticipated information events

such as earnings announcements. Skinner (1997) argues that informed traders’ informa-
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tion advantage may become large immediately before significant corporate disclosures.

Hence, this finding indicates that the predictive ability of asymmetric variance premium

is information-driven and may suggest that informed traders have access to private in-

formation and trade on such private information before information events. We further

find that asymmetric variance premium immediately after both anticipated and unantici-

pated events has predictive power for future post-event excess returns and such predictive

power is much stronger in the case of unanticipated information events. Consistent with

what Kim and Verrecchia (1994) suggest, this finding implies that informed traders have

superior ability to process public information and such superior ability is much stronger

when processing information that is less anticipated and/or more difficult to interpret.

The effect of informed trading could become more pronounced when there are greater

limits-to-arbitrage in the underlying stocks. We then test whether limits-to-arbitrage do

contribute to underperformance (overperformance) of portfolios with low (high) asymmet-

ric variance premium. We use institutional ownership, idiosyncratic volatility, and analyst

forecast dispersion to proxy limits-to-arbitrage. Based on each of these three proxies and

asymmetric variance premium, we implement dependent or conditional double portfolio

sorts. We find that the positive relation between asymmetric variance premium and fu-

ture stock returns is stronger among stocks with severe limits to arbitrage. Stocks that

significantly underperform are mostly those that are difficult to arbitrage and have small

skewness premium.

The rest of the paper is organized as follows. Section 2 introduces our measure of

asymmetric variance premium. Section 3 introduces the data and provides summary

statistics. Section 4 investigates asymmetric variance premium and return predictability

using portfolio analysis and Fama-MacBeth cross-sectional analysis. Section 5 implements

several robustness checks. Section 6 investigates the relation between asymmetric variance

premium and skewness premium. Section 7 provides some possible explanations of our

main findings. Section 8 concludes the paper.
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2. Asymmetric Variance Premium: Theory and Measures

In this section, we develop our measure of asymmetric variance premium (AVP). Under

a given probability space, (Ω,P,F), and the complete filtration, {Ft}t≥0, the individual

stock price, Si,t, is defined. The corresponding continuously compounded return is given

by Ri,t = log(
Si,t+Di,t

Si,t−1
), where Di,t is the dividend payment of stock i at time t. Fur-

thermore, assume that there exists at least one almost surely positive process, Kt, with

K0 = 1, such that the discounted gain process associated with any admissible trading

strategy is a martingale (Harrison and Kreps, 1979). The Kt process is the stochastic

discount factor or pricing kernel, which defines the risk-neutral probability measure, Q,

under which any contingent claims can be priced using the risk-neutral valuation. In what

follows, we first discuss how to measure the risk-neutral and physical measures of vari-

ance asymmetry in Subsections 2.1 and 2.2, respectively, and then define our asymmetric

variance premium in Subsection 2.3.

2.1. Option-Implied Variance and Semivariances

We follow the methods proposed by Bakshi and Madan (2000) and Bakshi, Kapadia, and

Madan (2003) to infer the risk-neutral variance from the cross-section of out-of-money

options in a model-free approach for each individual stock. Specifically, Bakshi and

Madan (2000) show that any payoff function with bounded expectation on a stock can

be spanned by a continuum of out-of-money call and put prices on that stock. Bakshi,

Kapadia, and Madan (2003) define the variance, cubic, and quartic contracts and show

how to compute the risk-neutral variance, skewness, and kurtosis using these contracts.

Consider the time-t price of a variance contract on stock i that pays off the squared

log return at time t+ 1:

IVi,t ≡ e−r
f
t τEQ

[
R2
i,t+1|Ft

]
, (1)

where rft is the risk-free rate of interest, τ is the time to maturity in years from time t

to time t + 1, and EQ defines the expectation under the risk-neutral measure. IVi,t is

then the forward-looking expected risk-neutral variance. Bakshi, Kapadia, and Madan
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(2003) show that IVi,t can be extracted from the out-of-money call and put option prices

as follows,

IVi,t =

∫ ∞
Si,t

2
(

1− log( Ki

Si,t
)
)

K2
i

C(t, τ ;Ki)dKi +

∫ Si,t

0

2
(

1 + log(
Si,t

Ki
)
)

K2
i

P (t, τ ;Ki)dKi, (2)

where C(t, τ ;Ki) and P (t, τ ;Ki) are the time-t prices of the out-of-money call and put

options, respectively, with the time-to-maturity of τ and the strike of Ki.

Similar to the variance contract, we can define an upside semivariance contract that

pays off the squared positive log return, and a downside semivariance contract that pays

off the squared negative log return. Their time-t prices are given by

IV +
i,t ≡ e−r

f
t τEQ

[
R2
i,t+11Ri,t+1>0|Ft

]
, (3)

IV −i,t ≡ e−r
f
t τEQ

[
R2
i,t+11Ri,t+1≤0|Ft

]
. (4)

Following the same argument as that in Bakshi, Kapadia, and Madan (2003), we can

obtain

IV +
i,t =

∫ ∞
Si,t

2
(

1− log( Ki

Si,t
)
)

K2
i

C(t, τ ;Ki)dKi, (5)

IV −i,t =

∫ Si,t

0

2
(

1 + log(
Si,t

Ki
)
)

K2
i

P (t, τ ;Ki)dKi. (6)

From Equations (1) to (6), it is clear that IVi,t = IV +
i,t + IV −i,t holds.

Given the total risk-neutral variance, IVi,t, and its upside and downside semivariances,

IV +
i,t and IV −i,t , we define the risk-neutral variance asymmetry for stock i as the difference

between the upside and downside risk-neutral semivariances normalized by the total risk-

neutral variance:

V AQi,t =
IV +

i,t − IV −i,t
IVi,t

, (7)

where the normalization is taken because the risk-neutral variance may differ substantially

across individual stocks.
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2.2. Realized Variance and Semivariances

In addition to the risk-neutral measures of variance and its upside and downside compo-

nents, we construct the corresponding realized measures using the high-frequency data.

In accordance with Andersen et al. (2001, 2003) and Barndorff-Nielsen and Shephard

(2004), the realized variance of any stock i for any period t is simply defined as the

summation of the squared high-frequency log returns in this period,

RVi,t =
nt∑
j=1

R2
i,t,j, (8)

where nt denotes the number of the high-frequency returns recorded in this period. It

has been shown that realized variance converges to quadratic variation when nt goes to

infinity.

Barndorff-Nielsen, Kinnebrock, and Shepard (2010) show that realized variance can

be decomposed into upside and downside semivariances such that

RVi,t = RV +
i,t +RV −i,t , (9)

where RV +
i,t and RV −i,t are upside and downside realized variance, respectively, defined as

RV +
i,t =

nt∑
j=1

R2
i,t,j1Ri,t,j>0, RV −i,t =

nt∑
j=1

R2
i,t,j1Ri,t,j≤0. (10)

Similar to the risk-neutral measures that are forward-looking expected values, we also

construct the expected realized measures,

R̃V i,t ≡ EP
[
RVi,t+1|Ft

]
, (11)

and

R̃V
+

i,t ≡ EP
[
RV +

i,t+1|Ft
]
, R̃V

−
i,t ≡ EP

[
RV −i,t+1|Ft

]
. (12)

To solve the P-expectations in Equations (11) and (12), we consider the following two
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variance forecasting models:

• Random Walk Model: we assume that realized variance, RVi,t, and realized semi-

variances, RV +
i,t and RV −i,t , all follow random walks, indicating

R̃V i,t = RVi,t, R̃V
+

i,t = RV +
i,t , R̃V

−
i,t = RV −i,t . (13)

• ARX(1) Model: we assume that realized variance, RVi,t, follows the following dy-

namics,

RVi,t+1 = α + βRVi,t + γIVi,t + εi,t, (14)

indicating R̃V i,t = α̂+ β̂RVi,t + γ̂IVi,t. The same forecasting model is also assumed

for both RV +
i,t and RV −i,t .

Based on the expected realized measures, R̃V i,t, R̃V
+

i,t, and R̃V
−
i,t, we define the

physical variance asymmetry for stock i in the same fashion as Equation (7) as follows,

V APi,t =
R̃V

+

i,t − R̃V
−
i,t

R̃V i,t

. (15)

2.3. Variance Risk Premium and Asymmetric Variance Premium

Formally, variance risk premium (VRP) is defined as the difference between the risk-

neutral and physical expected quadratic variations (QV),

V RPi,t = EQ
[
QVi,t+1|Ft

]
− EP

[
QVi,t+1|Ft

]
. (16)

The Q-expectation in Equation (16) can be well captured by IVi,t, and the P-expectation

in Equation (16) can be approximated by R̃V i,t. This suggests that variance risk premium

at each time t for stock i can be computed as

V RPi,t = IVi,t − R̃V i,t. (17)

Following the same argument, we define asymmetric variance premium at each time
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t for stock i as the difference between the risk-neutral and physical variance asymmetry,

AV Pi,t = V AQi,t − V APi,t

=
IV +

i,t − IV −i,t
IVi,t

−
R̃V

+

i,t − R̃V
−
i,t

R̃V i,t

, (18)

which is our key variable in the cross-sectional analysis.

3. Data and Summary Statistics

3.1. Data

The sample we use in this paper combines different data sources and covers the period

ranging from January 4, 1996 to December 31, 2013. Individual stock options data are

obtained from OptionMetrics. We download the volatility surface file, which contains

the interpolated implied volatility on standardized options with respect to deltas (∆)

and maturities for each security on each day. A stock needs to have option data for

more than 2 years in order to be included in our dataset. Based on these data, we

compute daily option-implied variance and semivariances using out-of-money call options

(0 < ∆ < 0.50) and out-of-money put options (−0.50 < ∆ < 0) with time-to-maturity

of 30 days. The monthly option-implied variance and semivariances are those of the last

trading day in each month. Option volume file and yield curve file are also downloaded

to access information on option trading volume and open interest and to interpolate the

30-day risk-free interest rates, respectively.

For constructing the realized measures, we rely on intraday high-frequency data ob-

tained from the Trade and Quote (TAQ) database. TAQ provides historical tick-by-tick

price data for all individual stocks listed on NYSE, AMEX, and NASDAQ. We rely on the

consolidated trade file to construct the five-minute and fifteen-minute log returns starting

from 9:30am to 4.00pm in each day and then compute both the daily and monthly annu-

alized realized variance and semivariances. A stock is excluded when its high-frequency

data available in a month are less than 15 days.
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We download daily and monthly stock returns, shares outstanding, and daily and

monthly trading volumes for each individual stock from the Center for Research in Se-

curity Prices (CRSP). To avoid survivorship bias, we adjust the individual stock returns

for delisting. The firm-specific accounting data such as book equity are downloaded from

Compustat. All common stocks trading on the NYSE, AMEX, and NASDAQ with valid

options and high-frequency data are included in the sample. In total, there are 4,388

stocks in our sample.

3.2. Summary Statistics

Panel A of Table 1 presents summary statistics of variance risk premium and asymmetric

variance premium. We report the number of firms included in our sample and medians

and (10, 90)% quantiles of VRPs and AVPs across individual stocks for each year. There

are only 910 firms in our sample in 1996. However, this number increases and there are

2,331 firms in our sample in 2013. We see that different from stock index VRP, which is

always positive (Carr and Wu, 2009), individual stock’s VRP can be positive or negative,

as the 10% quantile of individual VRPs is negative and the 90% quantile of individual

VRPs is positive in each year. The VRP median is negative before 2012. It then become

positive afterwards except the year of 2008. We also notice that the individual stock’s

AVP can be positive or negative as the 10% quantile of individual AVPs is always negative

and the 90% quantile of individual AVPs is always positive in each year. However, we find

that the AVP median is negative over years. If stock variance responds more strongly

to negative returns than to positive returns, the negative sign of AVP indicates that

the risk-neutral return distribution has greater variance asymmetry than the physical

distribution does.

Panel B of Table 1 presents summary statistics across AVP-based quintile portfolios.

We see that there is virtually no relation between AVP and beta, size, or momentum, as

when AVP increases in the portfolio, there is no clear increasing or decreasing tendency

in these variables. There is some evidence of correlation between AVP and B/M, idiosyn-

cratic volatility (IVol), or illiquidity. However, we find strong relation between AVP and
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reversal (Rev), maximum/minimum daily returns in the previous month (Max/Min), or

put-call volume ratio (PCR), as when AVP increases, reversal declines, Max/Min de-

creases, and PCR increases.

4. Asymmetric Variance Premium and Return Predictability

In this section, we implement monthly cross-sectional analysis and examine the relation-

ship between individual stocks’ asymmetric variance premia and future returns. Through-

out the section, to compute the expected realized measures, we assume random walks for

realized variance and semivariances. In the next section, we will conduct a robustness

check by assuming the ARX(1) model for the three realized measures. We first imple-

ment portfolio sorts in Subsection 4.1, and then perform Fama-MacBeth cross-sectional

regressions in Subsection 4.2.

4.1. Portfolio Analysis

4.1.1. Single-Sorted Portfolios

In this part, we implement two independent single portfolio sorts based on variance risk

premium (VRP) and asymmetric variance premium (AVP), respectively. Similar to Fama

and French (1996), we sort all firms on the basis of their respective VRPs and AVPs into

quintiles at the end of each month from January 1996 to December 2013. We then hold

these quintile portfolios over the next month and computer their equal-weighted monthly

returns. A hedge portfolio that longs the high VRP/AVP portfolio and shorts the low

VRP/AVP portfolio is also formed.

Panel A of Table 2 presents average monthly returns in excess of one-month Treasury

bill rate for the quintile and hedge portfolios based on VRP. We see that the average

monthly excess returns for portfolios 1 to 5 monotonically increase with respect to VRP.

They are 0.25%, 0.55%, 0.69%, 0.83%, and 0.85%, respectively. Furthermore, the monthly

average excess return of the high-minus-low hedge portfolio is about 0.60%, which is sta-

tistically significant (t = 2.46). These results indicate that there may exist a positive
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cross-sectional relation between variance risk premium and future stock returns. Similar

relation has been found by Han and Zhou (2011). To make sure that this relationship is

robust for firm characteristics and industry effects. We also compute the characteristic-

and industry-adjusted portfolio returns. The characteristic-adjusted returns are com-

puted following Daniel et al. (1997) as the difference between individual stock returns

and 125 size/book-to-market/momentum benchmark portfolio returns, and the industry-

adjusted returns are calculated as the difference between individual stock returns and the

returns in the same industry according to Fama-French 17 industry classifications. We

see that both characteristic- and industry-adjusted returns for portfolios 1 to 5 monoton-

ically increase with respect to VRP. The hedge portfolio earns the characteristic-adjusted

return of 0.34% (t = 2.12) per month, and earns the industry-adjusted return of 0.49%

(t = 2.96) per month. Putting together, the results seem to be consistent to fundamen-

tal theoretical prediction that rational investors would like to pay a premium to hedge

against variance risk.

We now move to Panel B of Table 2 that presents average monthly excess returns,

characteristic- and industry-adjusted returns for quintile portfolios and the hedge port-

folio based on AVP. First, all three types of returns for portfolios 1 to 5 monotoni-

cally increase with respect to AVP. For example, the average monthly excess returns

monotonically increase from 0.26% for portfolio 1 to 0.98% for portfolio 5, the average

monthly characteristic-adjusted returns monotonically increase from -0.42% for portfolio

1 to 0.24% for portfolio 5, and the average monthly industy-adjusted returns monotoni-

cally increase from -0.72% for portfolio 1 to 0.07% for portfolio 5. Second, more impor-

tantly, we find that the high-minus-low hedge portfolio earns economically substantial

and highly statistically significant returns. Its average monthly excess return is 0.72%

(t = 3.68), and its characteristic- and industry-adjusted returns are 0.66% (t = 4.95)

and 0.79% (t = 5.29) per month, respectively. These results suggest that there exists a

positive cross-sectional relation between individual stocks’ asymmetric variance premia

and future stock returns.
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4.1.2. Double-Sorted Portfolios

The results from the standard single portfolio sort reveals a strong positive relationship

between asymmetric variance premium and future stock returns. We further implement

two independent double-sort portfolio analysis to make sure that this positive relationship

is robust for controlling for variance, measured by realized variance, and variance risk

premium, respectively. At the end of each month, we first sort all stocks into quintile

portfolios based independently on AVP and on either variance or VRP. We then form 25

portfolios based on the intersection of the two types of portfolios. We hold these portfolios

over the next month and report their average monthly equal-weighted excess returns. The

high-minus-low hedge portfolio returns based on asymmetric variance premium and on

either variance or variance risk premium are also reported.

Panel A of Table 3 present portfolio returns from independent double-sort based on

variance and AVP. We observe that holding variance constant, AVP continues to be pos-

itively related to future stock returns: for all levels of variance, the average monthly

excess returns for portfolios 1 to 5 have increasing patterns with respect to AVP, and

the high-minus-low hedge portfolios remain to earn statistically significant positive re-

turns. For example, for stocks with low variance, the AVP-based hedge portfolio earns

a monthly excess return of 0.24% (t = 2.32), whereas for stocks with high variance, it

earns a monthly excess return of 0.98% (t = 3.35). We also observe some evidence of the

negative relationship between variance and future stock returns as for all levels of AVP,

the variance-based high-minus-low hedge portfolios earn negative returns. However, such

a relationship only holds in stocks with low and middle levels of AVP.

Panel B of Table 3 presents portfolio returns from independent double-sort based on

VRP and AVP. Similar results have been observed. Holding VRP constant, the average

monthly excess returns for portfolios 1 to 5 monotonically increase with respect to AVP,

and the returns of the AVP-based hedge portfolios are positive and vary from 0.43%

to 0.88%, all of which are statistically significant. However, we find that the positive

relationship between variance risk premium and future stock returns is not as strong as

Table 2 suggests. It occurs largely among stocks with middle levels of AVP.
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4.1.3. Risk-Adjusted Portfolio Returns

We further examine whether excess returns of AVP-based portfolios can be explained by

commonly used risk factors. For this purpose, We consider the Fama-French three-factor

model (Fama and French, 1993),

Ri − rf = αi + βi,MKTMKT + βi,SMBSMB + βi,HMLHML+ ei, (19)

and the Carhart four-factor model (Carhart, 1997),

Ri − rf = αi + βi,MKTMKT + βi,SMBSMB + βi,HMLHML+ βi,MOMMOM + ei, (20)

where Ri − rf denotes portfolio returns in excess of one-month T-bill rates, and MKT ,

SMB, HML, and MOM are the usually used factors of market, size, value, and mo-

mentum, respectively.

We also consider the two recently developed factor models. One is the the q-factor

model (Hou, Xue, and Zhang, 2015),

Ri − rf = αi + βi,MKTMKT + βi,SMBSMB + βi,I/AI/A+ βi,ROEROE + ei, (21)

where I/A is the investment factor, which is constructed as the difference between the

return on a portfolio of low investment stocks and the return on a portfolio of high invest-

ment stocks, and ROE is the profitability factor constructed as the difference between

the return on a portfolio of high profitability stocks and the return on a portfolio of low

profitability stocks.

The other is the mispricing-factor model (Stambaugh and Yuan, 2017),

Ri−rf = αi+βi,MKTMKT+βi,SMBSMB+βi,MGMTMGMT+βi,PERFPERF+ei, (22)

where MGMT and PERF are referred to as the mispricing factors, which aggregate

information across 11 well-known anomalies by averaging rankings within two clusters
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exhibiting the greatest co-movement in long-short returns. The first cluster of anomalies

represent quantities that firms’ managements can affect directly, and the factor arising

from it is MGMT. The second cluster is related more to performance and is less directly

controlled by management, and the factor constructed from this cluster is PERF. There

is evidence that both the q- and mispricing-factor models outperform the Fama-French

three-factor model, the Carhart four-factor model, and the Fama-French five-factor model

(Fama and French, 2015) in explaining most of anomalies (Hou, Xue, and Zhang, 2017a,

2017b; Stambaugh and Yuan, 2017).

Panels A, B, C, and D of Table 4 present alphas and factor loadings from regressing

portfolio excess returns on the Fama-French three-factor model, on the Carhart four-

factor model, on the q-factor model, and on the mispricing-factor model, respectively.

The alpha estimates deliver the same implication as shown above. In each of the four

factor models, the monthly alpha for portfolios 1 to 5 increases with respect to AVP,

and the high-minus-low hedge portfolio’s alpha is positive, economically substantial, and

highly statistically significant. Specifically, the hedge portfolio’s alpha is 0.69% (t = 4.45)

per month in the Fama-French three-factor model, is 0.68% (t = 4.12) per month in the

Carhart four-factor model, is 0.44% (t = 2.48) per month in the q-factor model, and is

0.56% (t = 3.18) per month in the mispricing-factor model. These findings indicate that

even after controlling for commonly used risk factors, the positive cross-sectional relation

between asymmetric variance premium and future stock returns remain be of existence.

Furthermore, all the four factor models indicate that low AVP portfolios (portfolios 1

and 2) economically and statistically significantly underperform.

In explaining dynamics of the hedge portfolio’s returns, the market and size factors

are not statistically significant in all of the four factor models. However, the hedge

portfolio loads positively and significantly on the value factor in the Fama-French three-

factor model and in the Carhart four-factor model; it loads positively and statistically

signifiant on both the investment and profitability factors in the q-factor model; and in

the mispricing-factor model, it loads positively and statistically significant only on one of

the mispricing factors. These results indicate that returns on the hedge portfolio do not
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covary with the market, size, and momentum factors, but the investment and profitability

factors and a management-related factor can help explain to some extent variations of its

returns.

4.2. Fama-MacBeth Cross-Sectional Analysis

In this section, we test the relationship between asymmetric variance premium and stock

returns by employing monthly Fama-MacBeth cross-sectional regressions (Fama and Mac-

Beth, 1973). Different from portfolio sorts, this analysis allows for extensive controls of

variables that have been found to have predictive power for stock returns. An important

variable is variance risk premium, which has been found to positively predict future stock

returns. Furthermore, we consider some standard variables frequently used in literature

such as beta (Sharpe, 1964; Lintner, 1965), size (Banz, 1981; Lakonishok and Shapiro,

1986; Fama and French, 1992, 1993), book-to-market ratio (Fama and French, 1992), and

momentum (Jegadeesh and Titman, 1993). We also control for those stock-related vari-

ables: the short-term reversal (Jegadeesh, 1990; Lehmann, 1990), idiosyncratic volatility

(Ang, Hodrick, Xing, and Zhang, 2006), illiquidity (Amihud, 2002), and expected idiosyn-

cratic skewness (Boyer, Mitton, and Vorkink, 2010). Finally, the following option-related

variables are also taken into account: implied volatility level, implied-volatility spread

(Bali and Hovakimian, 2009; Cremers and Weinbaum, 2010), and implied volatility skew

(Xing, Zhang, and Zhao, 2010).

For each month in our sample, we regress monthly excess returns of individual stocks

on the lagged asymmetric variance premium values and a series of control variables. Table

5 presents the regression results, which confirm our main finding: the higher asymmetric

variance premium is, the larger future excess returns investors expect, as the coefficient

on asymmetric variance premium in each regression we consider is positive and statisti-

cally significant. Model 1 considers a simple regression in which we exclude all control

variables and take asymmetric variance premium as the only predictor. The coefficient

on asymmetric variance premium is 0.95 and highly statistically significant (t = 3.50).

The adjusted R2 is about 7% and highly statistically significant (t = 22.6). We then
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introduce variance risk premium as the only control variable in Model 2. The coefficient

on asymmetric variance premium is positive and statistically significant, 1.06 (t = 3.72).

We find that the slope estimate on VRP is positive and statistically significant, 0.44

(t = 2.24). The adjusted R2 is about 8% (t = 19.6).

We now introduce the above-mentioned standard control variables, namely beta, size,

book-to-market, and momentum, and the stock-related control variables one-by-one in

Models 3-6, in addition to VRP. In Model 3, the standard variables, VRP, and the

short-term reversal (Rev) are controlled. The slope estimate on asymmetric variance

premium remains positive and highly statistically significant, 0.49 (t = 3.19). Consis-

tent with Jegadeesh (1990) and Lehmann (1990), the coefficient on reversal is negative

and statistically significant, -0.02 (t = −2.58). Coefficients on other variables are hardly

significant. The adjusted R2 increases to 12% (t = 21.0). In Model 4, we use the same

control variables as in Model 3 except that the short-term reversal is replaced by idiosyn-

cratic volatility (IVol), which is found to have a strong negative cross-sectional relation

between idiosyncratic volatility and future stock returns (Ang et al., 2006). We find that

the coefficient on asymmetric variance premium is 0.93 and remains highly statistically

significant (t = 4.01). Consistent with Ang et al. (2006), the coefficient on idiosyncratic

volatility is negative and statistically significant. The adjusted R2 resulted from Model

4 is about 12% (t = 20.6). We introduce stock illiquidity (Amihud, 2002) in Model 5.

The coefficient on asymmetric variance premium is 1.05 (t = 4.24) and the coefficient

on illiquidity is not significant. The adjusted R2 is 11% (t = 21.4). Boyer, Mitton, and

Vorkink (2010) show that expected idiosyncratic skewness (EISkew), computed based

on firm-specific characteristics, has a strong negative relation with future stock returns.

Therefore, in Model 6, we control this variable as well. The coefficient on asymmet-

ric variance premium is positive and highly significant, 0.99 (t = 4.15). The coefficient

on EISkew is negative but marginally statistically significant. The adjusted R2 is 12%

(t = 21.0). In Models 3-6, though it is positive, the coefficient on VRP is statistically

insignificant, except Model 5.

In Models 7-9, except VRP and the standard control variables, we add some option-
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related variables one-by-one: implied volatility level (IVLevel), implied volatility spread

(IVSpread), and implied volatility skew (IVSkew). IVLevel is computed as the average of

implied volatilities of the at-the-money call and at-the-money put. IVSpread is defined

as the difference between implied volatilities of the at-the-money call and the implied

volatility of the at-the-money put. Both Bali and Hovokimian (2009) and Cremers and

Weinbaum (2010) find a strong positive relation between IVSpread and future stock

returns. IVSkew is defined as the difference between the implied volatility of out-of-

money put and the implied volatility of at-the-money call. IVSkew measures negative

risk-neutral skewness. Xing, Zhang, and Zhao (2010) find that IVSkew negatively predicts

future stock returns. We find that the coefficients on asymmetric variance premium

are positive and highly statistically significant in these three models, and among these

three option-related variables, only IVSpread is positive and statistically significant. In

the last regression, Model 10, we include all control variables together. We still find

positive and highly statistically significant coefficient on asymmetric variance premium,

0.38 (t = 3.12). The coefficient on VRP is insignificant. The adjusted R2 is about 13%

(t = 20.6).

5. Robustness Checks

In this section, we implement two robustness checks to test whether our main results found

in Section 4 (i) are robust to realized measures constructed using different high-frequency

stock returns in Subsection 5.1, and (ii) are robust to realized measures expected using the

variance forecasting model of Equation (14) in Subsection 5.2. We only present portfolio

returns and alphas. The Fama-MacBeth regressions deliver exactly the same implications

and are not reported here.

5.1. 15-Minute High-Frequency Stock Returns

In Section 4, we construct realized measures using the 5-minute intraday high-frequency

returns in each month. In this Subsection, we use the 15-minute high-frequency returns to

construct realized variance and semivariances that are assumed to follow random walks.
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Then following the same idea as in Section 2, we construct our asymmetric variance

premium measure.

As before, at the end of each month, all stocks are sorted into quintile portfolios based

on AVP and a high-minus-low hedge portfolio is formed. We then hold these portfolios

over the next month and compute their excess returns, characteristic- and industry-

adjusted returns, and alphas from the four factor models introduced in Section 4. Panel

A of Table 6 presents portfolio returns and alphas. We see that all three types of portfolio

returns and four alphas monotonically increase with respect to AVP. For example, the

average monthly excess returns for portfolios 1 to 5 are 0.33%, 0.44%, 0.69%, 0.88%,

and 0.89%, respectively, and the Carhart alpha increases from -0.39% for portfolio 1 to

0.11% for portfolio 5. Furthermore, the hedge portfolio earns economically substantial

and statistically significant returns and alphas per month. Its average monthly excess

return is about 0.55% (t = 2.95); its characteristic- and industry-adjusted returns are

0.54% (t = 3.89) and 0.67% (t = 4.69), respectively; alphas from the four factor models

are 0.50% (t = 3.22), 0.51% (t = 3.16), 0.41% (t = 2.51), and 0.49% (t = 2.80) per

month, respectively. The above results indicate that we still detect positive relationship

between asymmetric variance premium and future stock returns when using 15-minute

high-frequency returns.

5.2. Forecasted Variance and Semivariances

In the previous section, we assume that realized variance and semivariances follow random

walks. As a result, the expected realized measures are the same as the current ones. This

assumption may be too strong. In this Subsection, we adopt Equation (14) as our variance

forecasting model. At each month starting from January 1997, for each individual stock,

we first run the forecasting regression of Equation (14) for each of the three realized

measures using all available data of that measure up to the current time, then compute

the one-month-ahead expected realized variance and semivariances using the estimated

parameters in Equation (14), and finally construct asymmetric variance premium using

these expected realized measures in Equation (18).
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Panel B of Table 6 presents portfolio returns and alphas based on such asymmetric

variance premium. We find that all returns and alphas increase almost monotonically with

respect to AVP. More importantly, the monthly returns and alphas earned by the high-

minus-low hedge portfolio are positive and highly statistically significant. Specifically,

the hedge portfolio’s average monthly excess return is about 0.44% (t = 3.99); its average

monthly characteristic- and industry-adjusted returns are 0.41% (t = 3.85) and 0.46%

(t = 4.56), respectively; and its monthly alphas from the four factor models are 0.46%

(t = 4.01), 0.46% (t = 3.93), 0.41% (t = 3.40), and 0.39% (t = 3.18), respectively. These

results suggest that the positive relationship between asymmetric variance premium and

future stock returns still holds when using expected realized measures.

6. Asymmetric Variance Premium and Skewness Premium

6.1. Relation to Skewness Premium

For a random variable, X, define its variance as σ2 ≡ V ar(X), its upside semivariance

as σ2
u ≡ V ar(X|X > m), and its downside semivariance as σ2

d ≡ V ar(X|X ≤ m), for

some threshold m. It can be shown that γ =
σ2
u−σ2

d

σ2 is a proper measure of skewness

in the sense that γ satisfies properties proposed by Groeneveld and Meeden (1984) that

any reasonable skewness measure should have (see a proof by Feunou, Jahan-Parvar, and

Tedongap (2016)). This suggests that our measure of asymmetric variance premium in

Equation (18) should be closely related to skewness premium.

Formally, standard skewness premium (SSP) is defined as the difference between the

risk-neutral and physical expectations of skewness, i.e.,

SSPi,t = EQ
[
Skewi,t+1|Ft

]
− EP

[
Skewi,t+1|Ft

]
, (23)

where Skewi,t denotes skewness of an individual return distribution. If we can solve

the risk-neutral and physical expectations in Equation (23), the relationship between

standard skewness premium and asymmetric variance premium can be checked.

Define a cubic contract whose payoff at time t + 1 is R3
i,t+1. Then its time-t price is
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given by IWt ≡ e−r
f
t τEQ

[
R3
i,t+1|Ft

]
. Bakshi, Kapadia, and Madan (2003) show that IWt

can be recovered from prices of out-of-money call and put options,

IWi,t =

∫ ∞
Si,t

6 log( Ki

Si,t
)− 3(log( Ki

Si,t
))2

K2
i

C(t, τ ;Ki)dKi

−
∫ Si,t

0

6 log( Ki

Si,t
) + 3(log( Ki

Si,t
))2

K2
i

P (t, τ ;Ki)dKi. (24)

Using IWi,t in Equation (24) together with IVi,t in Equation (2), the risk-neutral expec-

tation of skewness can be obtained as follows,

EQ
[
Skewi,t+1|Ft

]
=
er

f
t τIWi,t − 3µi,te

rft τIVi,t + 2µ3
i,t[

er
f
t τIVi,t − µ2

i,t

]3/2 , (25)

where µi,t is the expected mean return of an individual stock (see Bakshi, Kapadia, and

Madan (2003) for the exact formula of µi,t), and out-of-money options have maturity of

30 days.

We can approximate the physical expectation of skewness using the realized skewness,

which, following Neuberger (2012) and Amaya et al. (2015), is computed for each month,

t, as follows,

RSi,t =
1

21

21∑
j=1

RDSi,t,j, (26)

where RDSi,t,j is the jth-day realized skewness computed using 5-minute intraday stock

returns, RDSi,t,j =
√
nj

∑nj
k=1R

3
j,k

RV
3/2
j

, in which nj is the number of 5-minute high-frequency

returns, Rj,k, available in the jth day, and RVj is the jth-day realized variance.

Figure 1 plots the cross-sectional correlation between standard skewness premium,

computed using the above approach, and asymmetric variance premium, constructed in

Sections 2 and 4. We see that these two measures are highly correlated. The time-series

average is large and highly statistically significant, 0.75 (t = 263).
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6.2. Standard Skewness Premium and Return Predictability

In this part, we redo what we have done in Section 4 by substituting asymmetric variance

premium with standard skewness premium and check whether similar positive relation-

ship between standard skewness premium and future stock returns can be found. We

first implement portfolio sorts and then conduct the Fama-MacBeth cross-sectional re-

gressions.

6.2.1. Portfolio Analysis

As before, at the end of each month from January 1996 to December 2013, we first sort

all firms on the basis of their SSP’s into quintile portfolios and then hold these quintile

portfolios over the next month and computer their equal-weighted monthly returns. A

hedge portfolio that longs the high SSP portfolio and shorts the low SSP portfolio is also

formed.

Panel A of Table 7 presents average monthly portfolio returns and alphas from the four

factor models. First, all three types of portfolio returns and four alphas monotonically

increase with respect to SSP. For example, the average monthly characteristic-adjusted

returns for portfolios 1 to 5 are -0.35%, -0.20%, -0.12%, 0.02%, and 0.24%, respectively,

and the Carhart alpha increases monotonically from -0.30% for portfolio 1 to 0.27%

for portfolio 5. Second, the hedge portfolio earns positive and statistically significant

returns and alphas. For example, its monthly excess return is about 0.57% (t = 3.35),

and its monthly characteristic- and industry-adjusted returns are 0.58% (t = 4.63) and

0.74% (t = 5.16), respectively; alphas from the Fama-French three-factor model, the

Carhart four-factor model, the q-factor model, and the mispricing factor model are 0.48%

(t = 3.04), 0.57% (t = 3.42), 0.47% (t = 2.49), and 0.69% (t = 3.99) per month,

respectively.

Panels B and C of Table 7 presents portfolio returns from two independent double-

sorts based on SSP and either variance or VRP. We find very similar results to those in

Table 3. For each level of variance, the average monthly excess returns for portfolios 1 to

5 increase almost monotonically with respect to SSP, and the hedge portfolio remains to
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earn statistically significant positive excess return, which ranges from 0.36% (t = 2.88)

per month for the low level of variance to 0.94% (t = 4.13) per month for the middle level

of variance. Some evidence of the negative relationship between variance and future stock

returns is observed. For each level of variance risk premium, the average monthly excess

returns for portfolios 1 to 5 also increase almost monotonically with respect to SSP, and

the hedge portfolio’s return is positive and varies from 0.47% to 0.82%, all of which are

statistically significant. We also find that the positive relationship between variance risk

premium and future stock returns observed in Panel A of Table 2 occurs largely among

firms with middle and high levels of SSP.

Figure 2 plots the time series of monthly returns of the hedge portfolios based on

asymmetric variance premium (solid line) and on standard skewness premium (dashed

line). We see that the dynamics of both time series of returns are quite similar. The AVP-

based hedge portfolio has a mean return of 0.72% and a standard deviation of 2.72%,

whereas the SSP-based hedge portfolio’s mean return is 0.57% and its standard deviation

is 2.53%. When we take a look at excess returns of the market factor for the same period,

its mean return is smaller (0.56%) and its standard deviation is larger (4.69%).

All in all, given that both asymmetric variance premium and standard skewness pre-

mium capture skewness premium of an individual stock. The results we have found by

now suggest a positive relationship between skewness premium and future stock returns:

the higher skewness premium is, the higher future stock returns investors expect.

6.2.2. Fama-MacBeth Regressions

We further implement the Fama-MacBeth cross-sectional regressions to detect the rela-

tionship between standard skewness premium and future stock returns. We employ the

same control variables and the same regression models as those used in Subsection 4.2.

Table 8 presents the regression results. We find very similar results to those in Table 5.

No matter which model is used, the coefficient on standard skewness premium is always

positive and highly statistically significant. For example, in Model 1 where SSP is the

only predictor, the coefficient on SSP is 0.37 (t = 3.70); when we put all control variables
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together in Model 10, the coefficient on SSP becomes smaller, but still positive and highly

statistically significant, 0.27 (t = 4.26) and the coefficient on VRP is insignificant. The

adjusted R2’s range from 7% in Model 1 to 13% in Model 10.

7. Possible Explanations

We have found that asymmetric variance premium, a measure of skewness premium,

positively predicts future stock returns. Can such a relationship be explained by risk-

based equilibrium asset-pricing models? A large number of works argue that investors are

of aversion to skewness risk (Arditti, 1967, 1971; Kraus and Litzenberger, 1976; Simkowitz

and Beedles, 1978; Scott and Horvath, 1980; Conine and Tamarkin, 1981; Kane, 1982;

Harvey and Siddique, 2000; Mitton and Vorkink, 2007). Therefore, given that the risk-

neutral measure has already internalized such skewness-aversion, asymmetric variance

premium defined in Equation (18) should be negative in general, and the more negative

asymmetric variance premium is, the higher expected stock returns should be, suggesting

a negative relationship between asymmetric variance premium and future stock returns.

The inconsistency between our empirical finding and risk-based theories may reveal

that the stock and options markets are not fully integrated and options are not redundant.

Where informed traders choose to profit from their information advantage has important

effect on stock price movements. When some informed investors choose to trade in options

before trading in the underlying stocks, the positive relationship we have found may reflect

the trading activity of informed traders. Furthermore, rational investors/arbitrageurs

may be limited in various ways in trading the underlying stocks, and could be not as

aggressive in forcing stock prices to fundamentals as the standard financial models suggest

(Shleifer and Vishny, 1997).

7.1. Asymmetric Information and Informed Trading

Easley, O’Hara, and Srinivas (1998) propose a multimarket sequential trade model, which

incorporates both options and stocks and distinguishes two types of traders: uninformed

traders who trade in both stock and option markets for liquidity reasons, and informed

26



 Electronic copy available at: https://ssrn.com/abstract=3221975 

traders who have information advantage and can choose to trade either in stock market

or in options market or in both markets based on profits available. The model has

two equilibria: a separating equilibrium in which no informed traders use options, and

a pooling equilibrium in which some informed traders choose to trade in the options

market.

In the pooling equilibrium, when a trader is informed of a good news, he/she could

choose to buy calls or sell puts. Such a trade increases call prices relative to put prices

and makes the risk-neutral skewness large, resulting in a positive relationship between

asymmetric variance premium and future stock returns. Easley, O’Hara, and Srinivas

(1998) show that the pooling equilibrium can be reached and informed traders choose to

trade options when the leverage and liquidity in options is high relative to stocks, and/or

the overall fraction of informed traders is high.

We first test whether the predictive power of asymmetric variance premium is greater

in stocks whose liquidity is low relative to liquidity of options written on them. To mea-

sure stock liquidity, we use Amihud illiquidity ratio (Amihud, 2002), and to measure

option liquidity, we use option volume and option open interest. Then similar to Cremers

and Weinbaum (2010), we construct two dummy variables that capture the relative liq-

uidity of stock and option. The first one is high option liquidity and low stock liquidity

dummy (HOLSD), and the other is low option liquidity and high stock liquidity dummy

(LOHSD). HOLSD is equal to one for stocks that belong to the top 33% of option liquid-

ity and the bottom 33% of stock liquidity; similarly, LOHSD is equal to one for stocks

that belong to the bottom 33% of option liquidity and the top 33% of stock liquidity.

We run monthly Fama-MacBeth cross-sectional regressions of stock returns on the

lagged AVP and products of AVP and the two dummy variables. We also introduce

VRP, beta, size, B/M, and momentum as control variables in each regression. Table

9 presents the results from the cross-sectional regressions. To compute option volume

and option open interest, we either use the total trading volume and open interest in

each month or use the trading volume and open interest in the last trading day of each

month. We see that no matter which option liquidity measure and how to compute option
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liquidity, the coefficient on AVP is always positive and highly statistically significant.

More importantly, we find that the coefficient on the product of AVP and HOLSD is

always positive and highly statistically significant, whereas the coefficient on the product

of AVP and LOHSD is always negative and statistically significant except one case. For

example, when we use monthly option volume as the measure of option liquidity, the

coefficient on AVP is 1.19 (t = 4.75), the coefficient on AVP×HOLSD is 1.33 (t = 3.68),

and the coefficient on AVP×LOHSD is -0.71 (t = −2.03). These results indicate that

there is more predictability when option liquidity is high relative to stock liquidity and

less predictability when option liquidity is low relative to stock liquidity. We further

see that the F -tests reject null hypothesis of equal coefficients on two dummy-related

variables.

Next, we test whether the return predictability by asymmetric variance premium is

stronger in stocks that have more serious information asymmetry. The concentration of

informed traders is a key variable in the model of Easley, O’Hara, and Srinivas (1998).

We use the PIN variable proposed by Easley, Kiefer, and O’Hara (1997) and Easley,

Hvidkjaer, and O’Hara (2002) as a measure of the prevalence of informed traders and

information asymmetry. We then implement a dependent double portfolio sort based on

PIN and AVP. At the end of each month, we first sort all stocks into tercile portfolios

based on PIN, and then we sort stocks in each of these tercile portfolios into quintile

portfolios and form a high-minus-low hedge portfolio on the basis of AVP. We hold these

portfolios over the next month and compute their equal-weighted portfolio returns and

alphas of the aforementioned four factor models.

Table 10 presents the portfolio returns and alphas. For brevity, we only report returns

and alphas for those portfolios that combine the bottom and top tercile portfolios and odd

quintile portfolios. The hedge portfolio’s returns and alphas are economically substantial

and highly statistically significant in high PIN stocks, whereas they become small and less

significant in low PIN stocks. Specifically, among high PIN stocks, the monthly excess

return, characteristic- and industry-adjusted returns of the hedge portfolio are 1.07%

(t = 4.07), 1.04% (t = 4.56), and 1.14% (t = 5.33), respectively, and its monthly alphas
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from the four factor models are 1.04% (t = 4.08), 1.12% (t = 4.35), 0.89% (t = 2.98),

and 1.07% (t = 3.78), respectively. In contrast, among low PIN stocks, both returns

and alphas become small and alphas from the q-factor model and the mispricing factor

are statistically insignificant. Underperformance of those stocks with low AVP and high

PIN is much stronger than those stocks with low AVP and low PIN. Such results are

consistent with those predicted by the sequential trade model of Easley, O’Hara, and

Srinivas (1998).

7.2. Where Does Informed Traders’ Information Advantage Come From?

We have shown that the positive relationship between asymmetric variance premium and

future stock returns stems from information advantage possessed by informed traders who

largely trade on options. Theoretical information-based models suggest that informed

traders’ information advantage may arise either from their pre-event acquisition of pri-

vate information (Glosten and Milgrom, 1985; Kim and Verrecchia, 1991; Skinner, 1997),

or from their superior ability to process the public disclosures (Kim and Verrecchia, 1994;

Skinner, 1997), or from both. According to these models, when informed traders possess

private information prior to corporate events, asymmetric variance premium immediately

before these events should have strong predictive power for event returns; however, when

informed traders have better information processing ability, asymmetric variance pre-

mium immediately after these events should have strong predictive power for post-event

returns.

Therefore, in this part, we investigate how the predictive power of asymmetric variance

premium change before and after important corporate information events, including both

anticipated and unanticipated events. Similar to Jin, Livnat, and Zhang (2012), at any

event day t, we define the event return as the excess return over days from t − 1 to

t+1, the base asymmetric variance premium as the average of daily asymmetric variance

premiums over days from t − 50 to t − 11, the pre-event asymmetric variance premium

as the average of daily asymmetric variance premiums over days from t − 10 to t − 2,

the post-event asymmetric variance premium as the average of daily asymmetric variance

29



 Electronic copy available at: https://ssrn.com/abstract=3221975 

premiums over days from t + 1 to t + 5, and the post-event return as the excess return

over days from t+ 6 to t+ 90.

We first investigate the predictive power of asymmetric variance premium immediately

before and after anticipated corporate events. We take earnings announcements to proxy

anticipated corporate events. Earnings announcement data are obtained from Compustat

for the period from the first quarter of 1996 to the fourth quarter of 2013. Panel A of

Table 11 presents our main results from the quarterly Fama-MacBeth cross-sectional

regressions. In Models 1-3, the dependent variable is the event returns, whereas in Model

4, the dependent variable is the post-event returns. When we use the base AVP as

the only predictor in Model 1, its coefficient is about 0.012 and is highly significant

(t = 3.24), suggesting that over the base window, informed traders are able to anticipate

the subsequent returns around earnings announcements. We then use the pre-event AVP

as the only predictor in Model 2, and find that its coefficient, 0.023 (t = 6.48), is much

larger than that on base AVP in Model 1 and is highly statistically significant. When we

include both base AVP and pre-event AVP in the regression in Model 3, the coefficient on

base AVP becomes much smaller and statistically insignificant, 0.002 (t = 0.51), whereas

the coefficient on pre-event AVP remains the same and highly statistically significant,

0.023 (t = 6.48). These results suggest that asymmetric variance premium immediately

before corporate earnings announcement has dominant predictive power for event returns.

In Model 4, we investigate whether the post-event AVP has any predictive power for the

post-event returns. Except the post-event AVP, we also include base AVP, pre-event

AVP, and the event returns in the regression for controlling for information available

before and around information events. We find that the post-event AVP has a coefficient

of 0.040 and highly statistically significant (t = 3.32); however, the other three variables

are also statistically significant and have larger coefficients.

We then move to check the predictive power of asymmetric variance premium im-

mediately before and after unanticipated corporate events. The unanticipated corporate

events are proxied by extreme excess returns. At each day, similar to Jin, Livnat, and

Zhang (2012), we calculate the three-day excess return, and if it is larger than 10% or
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smaller than -10%, we keep it in the extreme excess returns sample. We then implement

monthly Fama-MacBeth cross-sectional regressions. Panel B of Table 11 presents the

main regression results. Again as in Panel A, the dependent variable is the event return

in Models 1-3 and it is the post-event return in Model 4. We find that both base AVP

and pre-event AVP are positive and statistically highly significant when they are the sole

predictors in Models 1 and 2, respectively. However, when they are both included in the

regression in Model 3, the coefficient on base AVP becomes much smaller and statisti-

cally insignificant, whereas the coefficient on pre-event AVP is nearly the same as that in

Model (2) and highly statistically significant. The regression result in Model 4 shows that

the coefficient on the post-event AVP is positive and highly statistically significant, 0.033

(t = 5.38), whereas the coefficients on base AVP, pre-event AVP, and the event returns

are all statistically insignificant, suggesting that only the post-event AVP has predictive

power for the post-event excess returns in the case of unanticipated events.

To sum up, we find that asymmetric variance premium immediately before both an-

ticipated and unanticipated events has dominant predictive power for event returns. Kim

and Verrecchia (1991) suggest that both informed and uninformed traders have strong

incentives to acquire private information before anticipated information events such as

earnings announcements. Skinner (1997) argues that informed traders’ information ad-

vantage may become large immediately before significant corporate disclosures. Hence,

this finding indicates that the predictive ability of asymmetric variance premium is likely

information-driven and may suggest that informed traders have access to private infor-

mation and trade on such private information before information events. We further find

that asymmetric variance premium immediately after both anticipated and unanticipated

events has predictive power for future post-event excess returns and such predictive power

is much stronger in the case of unanticipated information events. Consistent with what

Kim and Verrecchia (1994) suggest, this finding implies that informed traders have supe-

rior ability to process public information and such superior ability is much stronger when

processing information that is less anticipated and/or more difficult to interpret.
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7.3. Limits to Arbitrage

The effect of informed trading should become more pronounced when there are greater

limits-to-arbitrage in the underlying stocks, as informed investors would place more trans-

actions on options. Hence, we test whether limits-to-arbitrage do also contribute to

underperformance (overperformance) of portfolios with low (high) asymmetric variance

premium. We use the following three proxies for limits-to-arbitrage. The first one is the

institutional ownership (IO), which is measured as the percentage of shares outstanding

held by institutions, obtained from the Thomson Financial Institutional Holdings (13F)

database. Nagel (2005) and Campbell, Hilscher, and Szilagyi (2008) show that stocks

with low institutional ownership may face serious short-sale constraints. Chen, Hong,

and Stein (2002) and Asquith, Pathak, and Ritter (2005) argue that institutional owner-

ship of a stock acts as a proxy for lendable supply. Amihud and Li (2006) show that firms

with a higher degree of institutional ownership should be more fairly priced as institu-

tional investors are generally better informed than retail investors. We therefore expect

that the correction of mispricing should be more rapid in stocks with higher institutional

ownership.

The second proxy is the idiosyncratic volatility of individual stocks (IVol). Shleifer

and Vishny (1997) and Pontiff (2006) predict that high idiosyncratic volatility deters

arbitrage activity. Ali, Hwang, and Trombley (2003), Mendenhall (2004), and Cao and

Han (2016) employ idiosyncratic volatility to empirically characterize arbitrage risk. We

measure idiosyncratic volatility using the standard deviation of the residuals resulted

from regressing individual stock returns on the Cahart four-factor model.

The third is the analyst forecast dispersion (AFD). In line with Diether, Malloy, and

Scherbina (2002), we compute analyst forecast dispersion by normalizing the standard

deviation of I/B/E/S one-year earning per share forecasts by the average forecast level.

High analyst forecast dispersion implies great information asymmetry, which makes ar-

bitrage particularly risky and costly.

Based on each of these three proxies and asymmetric variance premium, we implement

dependent double portfolio sorts. At the end of each month in our sample, we first sort
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all stocks into tercile portfolios based on each of the above proxies of limits-to-arbitrage,

and then we sort stocks in each of these tercile portfolios into quintile portfolios and

form a high-minus-low hedge portfolio on the basis of AVP. We hold these portfolios over

the next month and compute their equal-weighted portfolio returns and alphas of the

aforementioned four factor models.

Table 12 presents the average monthly excess returns, characteristic- and industry-

adjusted returns, and alphas from the four factor models for those portfolios and the hedge

portfolios. Panel A reports those results based on institutional ownership and asymmet-

ric variance premium. First, the hedge portfolio’s returns and alphas are economically

substantial and statistically significant in stocks with the low level of institutional own-

ership, but they become small in stocks with the high level of institutional ownership.

Specifically, among low IO stocks, the monthly excess return, characteristic- and industry-

adjusted returns of the hedge portfolio are 0.86% (t = 3.27), 0.81% (t = 4.35), and 0.90%

(t = 4.70), respectively, and its monthly alphas from the four factor models are 0.84%

(t = 4.51), 0.83% (t = 4.15), 0.58% (t = 2.64), and 0.66% (t = 3.43), respectively. In

contrast, among high IO stocks, both returns and alphas are small: the three returns are

0.48% (t = 2.39), 0.48% (t = 3.22), and 0.58% (t = 3.29) per month, respectively, and

the four alphas are 0.44% (t = 2.45), 0.46% (t = 2.56), 0.30% (t = 1.46), and 0.48%

(t = 2.54) per month, respectively. Second, the performance (alphas) of individual port-

folios indicates that stocks that economically and statistically significantly underperform

are mostly those that have the low level of institutional ownership and the low and middle

levels of asymmetric variance premium.

When we use idiosyncratic volatility to proxy limits to arbitrage in Panel B, we

find very similar results. The hedge portfolio’s returns and alphas are all economically

substantial and statistically significant in high IVol stocks, whereas these returns and

alphas become small in low IVol stocks. Furthermore, those stocks that have the high

level of idiosyncratic volatility and the low and middle levels of asymmetric variance

premium significantly underperform. Whenever analyst forecast dispersion is used in

Panel C, we still find that the hedge portfolio in high AFD stocks outperforms that in
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low AFD stocks. We find that stocks with the low level of asymmetric variance premium

underperform in both low and high AFD stocks, but in the latter the underperformance

is much stronger.

Put together, we have evidence that the positive relation between asymmetric variance

premium and future stock returns is stronger among stocks with severe limits to arbitrage.

Stocks that significantly underperform are mostly those that are difficult to arbitrage and

have small asymmetric variance premium.

8. Conclusion

Semivariances or variance asymmetry provide a complement to or better measure than

variance in evaluating risk (Markowitz, 1959, 1991). A number of recent papers find

that market variance risk premium, defined as the difference between the risk-neutral

and physical expected return variances, can predict stock market returns (Bollerslev,

Tauchen, and Zhou, 2009; Drechsler and Yaron, 2011; Bollerslev et al., 2014). In this

paper, we implement a cross-sectional analysis and examine the relationship between

individual stocks’ asymmetric variance premia and future stock returns. We define asym-

metric variance premium as the difference between the risk-neutral and physical variance

asymmetry, which are extracted from the out-of-money call and put options and from

realized variance and semivariances, respectively. We find that individual asymmetric

variance premium is negative in general, suggesting that the risk-neutral return distribu-

tion has greater variance asymmetry than the physical distribution does.

We find that there exists a positive relationship between the individual stocks’ asym-

metric variance premia and the future stock returns. The high-minus-low hedge portfolio

earns the excess return of 72 basis points per month, the characteristic-adjusted return of

66 basis points per month, and the industry-adjusted return of 79 basis points per month.

They are all economically substantial and statistically highly significant. Moreover, the

hedge portfolio’s alphas from the factor models are also economically substantial and

statistically highly significant.

This positive relationship can not be explained by the standard risk-based asset pric-
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ing models. We show that asymmetric variance premium is closely related to skewness

premium. We find evidence that the predictive power of asymmetric variance premium is

information-driven and the positive relationship reflects the trading activity of informed

traders trading in the options market. We further show that the positive relationship

becomes stronger among stocks that are hard to arbitrage.
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Table 1: Summary Statistics

Panel A reports the number of firms (N.Firm) in our sample and medians and (10, 90)% quantiles of

VRPs and AVPs across individual stocks for each year. VRPs and AVPs are computed using Equations

(17) and (18), in which the risk-neutral measures are recovered from prices of out-of-money call and put

options with maturity of 30 days, and the realized measures are constructed using the 5-minute intraday

high-frequency stock returns. Option data and high-frequency data are obtained from OptionMetrics

and TAQ, respectively. All common stocks trading on the NYSE, AMEX, and NASDAQ with valid

option and high-frequency data are included in the sample. Panel B reports the average values of some

selected firm-specific variables, including beta, log market equity (LnME), book-to-market ratio (B/M),

momentum (MOM), short-term reversal (Rev), idiosyncratic volatility (IVOL), Amihud illiquidity (Illiq),

the maximium (Max) and minimum (Min) daily returns of the previous month, and the put-call volume

ratio (PCR) for the AVP-based quintile portfolios.

Panel A: Summary Statistics of VRP and AVP over Years

VRP AVP

Year N.Firm Q10 Q50 Q90 Q10 Q50 Q90

1996 910 -1.316 -0.119 0.001 -0.429 -0.170 0.121

1997 1257 -0.958 -0.081 0.025 -0.387 -0.158 0.106

1998 1621 -0.847 -0.079 0.049 -0.398 -0.170 0.112

1999 1789 -0.723 -0.052 0.088 -0.404 -0.200 0.038

2000 1865 -0.950 -0.075 0.113 -0.411 -0.201 0.028

2001 1816 -0.573 -0.009 0.128 -0.420 -0.201 0.039

2002 1869 -0.441 -0.012 0.114 -0.453 -0.219 0.047

2003 1851 -0.188 0.014 0.107 -0.515 -0.225 0.070

2004 1993 -0.169 0.008 0.086 -0.503 -0.189 0.167

2005 2043 -0.108 0.010 0.106 -0.520 -0.199 0.138

2006 2174 -0.127 0.007 0.096 -0.513 -0.181 0.161

2007 2223 -0.147 0.007 0.099 -0.468 -0.170 0.143

2008 2183 -0.585 -0.052 0.103 -0.499 -0.222 0.087

2009 2053 -0.200 0.020 0.162 -0.544 -0.247 0.050

2010 2163 -0.145 0.023 0.141 -0.584 -0.235 0.115

2011 2221 -0.297 0.006 0.170 -0.493 -0.185 0.183

2012 2248 -0.087 0.026 0.225 -0.550 -0.195 0.200

2013 2331 -0.096 0.011 0.157 -0.521 -0.167 0.226

Panel B: Summary Statistics across AVP Portfolios

AVP Beta LnME B/M MOM Rev IVol Illiq Max Min PCR

1 1.03 14.25 0.41 8.76 8.50 2.17 2.10 6.51 -3.74 0.48

2 1.07 14.32 0.41 10.35 3.93 1.80 2.16 4.97 -3.86 0.50

3 1.06 14.34 0.41 10.61 1.21 1.69 2.23 4.42 -3.92 0.51

4 1.03 14.37 0.42 10.67 -1.44 1.65 2.28 4.03 -4.06 0.53

5 0.96 14.32 0.45 9.19 -5.18 1.85 2.28 3.76 -4.96 0.58
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Table 2: Asymmetric Variance Premium and Single-Sorted Portfolios

This table presents average monthly portfolio returns (in %) based either on VRP (Panel A) or on

AVP (Panel B). We sort all firms on the basis of their VRPs or AVPs into quintiles at the end of

each month from January 1996 to December 2013. We then hold these quintile portfolios over the next

month and computer their equal-weighted monthly returns. A hedge portfolio that longs the high VRP

(AVP) portfolio and shorts the low VRP (AVP) portfolio is also formed. Excess returns, characteristic-

adjusted returns, and industry-adjusted returns are reported. Excess return is the difference between

portfolio returns and the one-month Treasury bill rate. Characteristic-adjusted returns are computed by

adjusting returns using 125 (5× 5× 5) size/book-to-market/momentum portfolios (Daniel et al., 1997),

and industry-adjusted returns are computed by adjusting returns using 17 industry portfolios (Fama and

French, 1997). The Newey-West t-statistics with six lags are reported in brackets.

Panel A: Variance Premium

1 2 3 4 5 5–1

Excess Ret 0.25 (0.50) 0.55 (1.27) 0.69 (1.92) 0.83 (2.22) 0.85 (2.00) 0.60 (2.46)

Char-Adj Ret -0.31 (-2.55) -0.07 (-0.67) -0.04 (-0.36) -0.01 (-0.09) 0.03 (-0.36) 0.34 (2.12)

Ind-Adj Ret -0.64 (-2.89) -0.33 (-1.52) -0.26 (-1.09) -0.18 (-0.76) -0.15 (-0.66) 0.49 (2.96)

Panel B: Asymmetric Variance Premium

1 2 3 4 5 5–1

Excess Ret 0.26 (0.62) 0.44 (1.04) 0.65 (1.57) 0.87 (2.15) 0.98 (2.42) 0.72 (3.68)

Char-Adj Ret -0.42 (-4.03) -0.24 (-2.90) -0.06 (-0.67) 0.10 (0.92) 0.24 (2.07) 0.66 (4.95)

Ind-Adj Ret -0.72 (-3.04) -0.55 (-2.53) -0.30 (-1.42) -0.04 (-0.19) 0.07 (0.30) 0.79 (5.29)
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Table 3: Asymmetric Variance Premium and Double-Sorted Portfolios

This table presents average monthly returns (in %) of the two independent double-sort portfolios. At

the end of each month, we first sort all stocks into quintile portfolios based independently on AVP and

on either variance (Panel A) or VRP (Panel B). We then form 25 portfolios based on the intersection

of the two types of portfolios. We hold these portfolios over the next month and report their average

monthly equal-weighted excess returns. The high-minus-low hedge portfolio returns based on asymmetric

variance premium and on either variance or variance risk premium are also reported. The Newey-West

t-statistics with six lags are reported in brackets.

Panel A: Asymmetric Variance Premium

Variance 1 2 3 4 5 5–1

1 0.68 (2.47) 0.74 (2.51) 0.89 (3.02) 0.92 (2.97) 0.92 (3.26) 0.24 (2.32)

2 0.68 (2.00) 0.63 (1.77) 0.82 (2.31) 1.07 (2.86) 0.99 (2.45) 0.31 (2.18)

3 0.41 (0.94) 0.67 (1.58) 0.87 (1.96) 1.19 (2.94) 1.25 (3.09) 0.84 (3.52)

4 0.17 (0.33) 0.33 (0.60) 0.68 (1.35) 0.71 (1.44) 1.08 (2.14) 0.91 (3.65)

5 -0.31 (-0.56) -0.11 (-0.18) -0.14 (-0.24) 0.33 (0.61) 0.67 (1.29) 0.98 (3.35)

5–1 -1.00 (-2.08) -0.84 (-1.66) -1.03 (-2.14) -0.60 (-1.43) -0.24 (-0.64) ——

Variance Panel B: Asymmetric Variance Premium

Premium 1 2 3 4 5 5–1

1 -0.12 (-0.23) 0.07 (0.12) 0.11 (0.22) 0.53 (1.08) 0.76 (1.65) 0.88 (2.67)

2 0.23 (0.51) 0.32 (0.71) 0.58 (1.33) 0.62 (1.56) 0.99 (2.41) 0.76 (3.27)

3 0.19 (0.50) 0.46 (1.21) 0.76 (2.21) 0.94 (2.61) 1.00 (2.71) 0.81 (4.21)

4 0.57 (1.47) 0.69 (1.86) 0.81 (2.15) 0.94 (2.48) 1.01 (2.63) 0.43 (2.04)

5 0.40 (0.93) 0.66 (1.46) 0.88 (1.97) 1.25 (2.90) 1.24 (2.87) 0.84 (3.28)

5–1 0.52 (1.73) 0.59 (2.01) 0.76 (2.64) 0.73 (2.53) 0.48 (1.73) ——
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Table 4: Asymmetric Variance Premium and Risk-Adjusted Portfolio Returns

This table presents the alphas and factor loadings from regressing portfolio excess returns on the Fama-

French three factors (Fama and French, 1993), on the Carhart four factors (Carhart, 1997), on the

q factors (Hou, Xue, and Zhang, 2015), and on the mispricing factors (Stambaugh and Yuan, 2017),

respectively. The portfolios are equally weighted and are rebalanced each month. The Neway-West

t-statistics are reported in brackets. Data cover the period from January 1996 to December 2013.

Panel A: The Fama-French Three-Factor Model

1 2 3 4 5 5–1

Alpha -0.47 (-4.04) -0.31 (-2.92) -0.11 (-0.88) 0.10 (0.77) 0.22 (1.37) 0.69 (4.45)

MKT 1.04 (37.5) 1.10 (36.7) 1.09 (31.0) 1.06 (21.9) 1.04 (20.7) -0.01 (-0.12)

SMB 0.39 (7.75) 0.36 (5.59) 0.33 (3.82) 0.29 (2.45) 0.21 (1.67) -0.17 (-1.64)

HML 0.11 (2.10) 0.15 (2.59) 0.23 (3.72) 0.35 (4.75) 0.45 (5.24) 0.33 (5.00)

Panel B: The Carhart Four-Factor Model

1 2 3 4 5 5–1

Alpha -0.40 (-3.38) -0.27 (-2.60) -0.08 (-0.65) 0.15 (1.09) 0.28 (1.77) 0.68 (4.12)

MKT 1.00 (28.0) 1.07 (31.5) 1.07 (30.9) 1.03 (24.3) 1.00 (22.7) -0.00 (-0.04)

SMB 0.41 (10.0) 0.37 (6.70) 0.34 (4.23) 0.30 (2.75) 0.23 (1.96) -0.18 (-1.62)

HML 0.08 (1.71) 0.13 (2.34) 0.22 3.46) 0.33 (4.67) 0.41 (5.33) 0.33 (5.40)

MOM -0.10 (-2.42) -0.06 (-1.88) -0.04 (-1.18) -0.07 (-1.67) -0.09 (-1.80) 0.01 (0.20)

Panel C: The q-Factor Model

1 2 3 4 5 5–1

Alpha -0.42 (-3.25) -0.30 (-2.83) -0.16 (-1.33) -0.03 (-0.18) 0.02 (0.09) 0.44 (2.48)

MKT 1.01 (35.5) 1.09 (31.4) 1.10 (25.0) 1.10 (18.5) 1.11 (16.5) 0.10 (1.39)

SMB 0.34 (6.35) 0.34 (4.89) 0.34 (3.59) 0.31 (2.41) 0.25 (1.75) -0.09 (-0.83)

I/A 0.07 (0.92) 0.06 (0.87) 0.15 (2.11) 0.28 (3.77) 0.41 (4.72) 0.34 (4.59)

ROE -0.11 (-2.07) -0.03 (-0.62) 0.05 (0.79) 0.14 (1.80) 0.21 (2.13) 0.32 (3.46)

Panel D: The Mispricing-Factor Model

1 2 3 4 5 5–1

Alpha -0.39 (-3.39) -0.25 (-2.44) -0.10 (-0.88) 0.09 (0.64) 0.17 (0.99) 0.56 (3.18)

MKT 0.99 (26.1) 1.05 (34.1) 1.06 (35.8) 1.03 (29.5) 1.02 (24.1) 0.02 (0.40)

SMB 0.41 (9.17) 0.40 (6.28) 0.38 (3.85) 0.37 (2.49) 0.31 (1.76) -0.11 (-0.68)

MGMT -0.05 (-0.83) -0.05 (-0.79) 0.04 (0.52) 0.15 (1.77) 0.26 (3.07) 0.31 (4.86)

PERF -0.09 (-2.51) -0.06 (-2.05) -0.04 (-1.21) -0.06 (-1.54) -0.07 (-1.48) 0.01 (0.37)
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Table 5: Asymmetric Variance Premium and Fama-MacBeth Regressions

This table presents monthly Fama-MacBeth (1973) regressions of individual stock returns on AVP.

We consider some standard variables used in literature such as beta, size, book-to-market ratio, and

momentum. We also control for some stock-related variables such as variance, the short-term reversal,

the maximum daily returns in the previous month, the minimum daily returns in the previous month,

idiosyncratic volatility, and illiquidity. The following option-related variables are also taken into account:

implied volatility skew, implied variance, implied-volatility spread, and put-call volume ratio. The sample

period is from January 1996 to December 2013. The Newey-West t-statistics are in parenthesis.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Intercept 0.78 0.90 -0.05 0.50 -0.43 1.74 1.06 -0.21 -0.31 2.57

(2.04) (2.46) (-0.04) (0.50) (-0.38) (1.18) (0.92) (-0.19) (-0.27) (1.67)

AVP 0.95 1.06 0.49 0.93 1.05 0.99 0.93 0.97 1.04 0.38

(3.50) (3.72) (3.19) (4.01) (4.24) (4.15) (4.32) (3.86) (4.19) (3.12)

VRP 0.44 0.19 0.02 0.32 0.17 0.22 0.34 0.32 0.03

(2.24) (1.29) (0.12) (1.97) (1.10) (1.56) (2.16) (2.04) (0.17)

Beta -0.14 -0.13 -0.14 -0.13 -0.10 -0.14 -0.14 -0.09

(-1.69) (-1.67) (-1.62) (-1.62) (-1.56) (-1.70) (-1.70) (-1.30)

LnME 0.07 0.05 0.10 -0.00 0.03 0.08 0.08 -0.07

(1.03) (0.81) (1.63) (-0.04) (0.41) (1.23) (1.32) (-0.87)

B/M -0.17 -0.21 -0.15 -0.19 -0.21 -0.17 -0.17 -0.21

(-0.89) (-1.15) (-0.80) (-1.02) (-1.26) (-0.89) (-0.89) (-1.33)

MOM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00

(0.07) (0.38) (0.19) (0.43) (0.40) (0.27) (0.31) (-0.32)

Rev -0.02 -0.02

(-2.58) (-3.57)

IVol -0.15 -0.06

(-2.16) (-0.66)

Amihud -0.04 -0.06

(-1.45) (-2.92)

EISkew -3.84 1.83

(-1.82) (0.54)

IVLevel -1.23 -1.38

(-1.80) (-1.76)

IVSpread 3.06 2.92

(3.40) (3.61)

IVSkew 0.13 0.82

(0.48) (1.93)

Adj R2 0.07 0.08 0.12 0.12 0.11 0.12 0.12 0.11 0.11 0.13

(22.6) (19.6) (21.0) (20.6) (21.4) (21.0) (19.7) (21.4) (21.2) (20.6)
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Table 6: Robustness Checks

This table presents portfolio returns and alphas (in %) from the four factor models for the three robustness

checks. Portfolios are constructed using the same approach as in Section 2. In Panel A, we use the 15-

minute high-frequency returns to construct realized measures, with which asymmetric variance premium

is computed, and in Panel B, we use expected realized measures from the variance forecasting model of

Equation (14) to construct asymmetric variance premium. The sample period is from January 1996 to

December 2013. The Newey-West t-statistics are in parenthesis.

Panel A: Using 15-Min High-Frequency Returns

1 2 3 4 5 5–1

Excess Ret 0.33 (0.80) 0.44 (1.06) 0.69 (1.68) 0.88 (2.14) 0.89 (2.15) 0.55 (2.95)

Char-Adj Ret -0.37 (-3.29) -0.25 (-2.80) -0.03 (-0.34) 0.11 (1.03) 0.17 (1.48) 0.54 (3.89)

Ind-Adj Ret -0.66 (-2.79) -0.57 (-2.51) -0.27 (-1.28) -0.03 (-0.14) 0.01 (0.05) 0.67 (4.69)

FF3F Alpha -0.39 (-3.34) -0.30 (-2.53) -0.06 (-0.58) 0.11 (0.82) 0.11 (0.70) 0.50 (3.22)

Carhart Alpha -0.33 (-2.95) -0.26 (-2.16) -0.03 (-0.26) 0.14 (1.04) 0.18 (1.16) 0.51 (3.16)

q-Alpha -0.37 (-2.65) -0.34 (-2.39) -0.09 (-0.75) -0.06 (-0.40) 0.04 (-0.21) 0.41 (2.51)

M -Alpha -0.37 (-3.06) -0.28 (-2.45) -0.05 (-0.46) 0.10 (0.72) 0.11 (0.70) 0.49 (2.80)

Panel B: Using Forecasted Variance and Semivariances

1 2 3 4 5 5–1

Excess Ret 0.42 (0.98) 0.59 (1.36) 0.57 (1.31) 0.64 (1.51) 0.90 (2.12) 0.44 (3.99)

Char-Adj Ret -0.23 (-2.17) -0.10 (-1.28) -0.13 (-1.60) -0.02 (-0.17) 0.19 (1.86) 0.41 (3.85)

Ind-Adj Ret -0.48 (-2.07) -0.34 (-1.55) -0.37 (-1.67) -0.31 (-1.30) -0.03 (-0.14) 0.46 (4.56)

FF3F Alpha -0.27 (-2.29) -0.10 (-0.89) -0.12 (-0.96) -0.07 (-0.47) 0.20 (1.52) 0.46 (4.01)

Carhart Alpha -0.20 (-1.89) -0.05 (-0.44) -0.08 (-0.61) -0.01 (-0.06) 0.26 (2.08) 0.46 (3.93)

q-Alpha -0.26 (-1.92) -0.12 (-1.07) -0.21 (-1.68) -0.18 (-1.26) 0.15 (1.08) 0.41 (3.40)

M -Alpha -0.18 (-1.52) -0.07 (-0.60) -0.12 (-0.95) -0.10 (-0.69) 0.23 (1.73) 0.39 (3.18)
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Table 7: Standard Skewness Premium and Portfolio Returns

Panel A presents average monthly portfolio returns and alphas (in %) from the four factor models based

on standard skewness premium. We sort all firms on the basis of their SSPs into quintiles at the end

of each month from January 1996 to December 2013. We then hold these quintile portfolios over the

next month and computer their equal-weighted monthly returns. A hedge portfolio that longs the high

SSP portfolio and shorts the low SSP portfolio is also formed. Excess returns, characteristic-adjusted

returns, and industry-adjusted returns are reported. Panels B and C present average monthly returns

(in %) of the two independent double-sort portfolios. At the end of each month, we first sort all stocks

into quintile portfolios based independently on SSP and on either variance or VRP. We then form 25

portfolios based on the intersection of the two types of portfolios. We hold these portfolios over the

next month and report their average monthly equal-weighted excess returns. The high-minus-low hedge

portfolio returns based on asymmetric variance premium and on either variance or variance risk premium

are also reported. The Newey-West t-statistics with six lags are reported in brackets.

Panel A: Standard Skewness Premium

1 2 3 4 5 5–1

Excess Ret 0.39 (1.06) 0.50 (1.22) 0.62 (1.45) 0.70 (1.65) 0.96 (2.22) 0.57 (3.35)

Char-Adj Ret -0.35 (-3.20) -0.20 (-2.06) -0.12 (-1.53) 0.02 (0.17) 0.24 (2.16) 0.58 (4.63)

Ind-Adj Ret -0.64 (-2.69) -0.48 (-2.15) -0.36 (-1.73) -0.18 (-0.83) 0.09 (0.44) 0.74 (5.16)

FF3F Alpha -0.31 (-2.86) -0.24 (-2.20) -0.15 (-1.40) -0.08 (-0.55) 0.17 (1.06) 0.48 (3.04)

Carhart Alpha -0.30 (-2.67) -0.22 (-1.94) -0.11 (-1.05) -0.01 (-0.04) 0.27 (1.75) 0.57 (3.42)

q-Alpha -0.37 (-3.17) -0.30 (-2.73) -0.20 (-1.79) -0.15 (-0.92) 0.10 (0.51) 0.47 (2.49)

M -Alpha -0.40 (-3.57) -0.25 (-2.12) -0.11 (-1.03) -0.04 (-0.31) 0.29 (1.81) 0.69 (3.99)

Panel B: Standard Skewness Premium

Variance 1 2 3 4 5 5–1

1 0.68 (2.37) 0.81 (2.76) 0.94 (3.08) 0.87 (2.74) 1.04 (3.56) 0.36 (2.88)

2 0.69 (2.11) 0.73 (2.00) 0.88 (2.37) 1.01 (2.76) 1.07 (2.67) 0.37 (2.07)

3 0.38 (0.91) 0.79 (1.81) 0.92 (2.15) 0.91 (2.21) 1.32 (3.18) 0.94 (4.13)

4 0.30 (0.61) 0.34 (0.64) 0.43 (0.78) 0.60 (1.28) 1.04 (2.10) 0.75 (2.83)

5 -0.31 (-0.50) -0.08 (-0.15) -0.09 (-0.15) 0.15 (0.27) 0.44 (0.83) 0.75 (2.65)

5-1 -0.99 (-1.78) -0.90(-1.90) -1.03 (-2.19) -0.72 (-1.84) -0.59 (-1.36) ——

Variance Panel C: Standard Skewness Premium

Premium 1 2 3 4 5 5–1

1 0.02 (0.05) 0.11 (0.21) 0.03 (0.05) 0.38 (0.82) 0.60 (1.22) 0.58 (2.11)

2 0.42 (1.00) 0.28 (0.64) 0.49 (1.13) 0.63 (1.49) 0.93 (2.22) 0.51 (2.57)

3 0.34 (1.03) 0.57 (1.68) 0.82 (2.17) 0.63 (1.70) 1.16 (3.00) 0.82 (4.46)

4 0.55 (1.63) 0.81 (2.19) 0.92 (2.43) 0.87 (2.12) 1.02 (2.59) 0.47 (2.37)

5 0.51 (1.29) 0.74 (1.63) 0.82 (1.76) 0.96 (2.14) 1.23 (2.80) 0.72 (3.02)

5-1 0.48 (1.45) 0.63 (1.87) 0.79 (2.60) 0.58 (2.07) 0.62 (2.15) ——
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Table 8: Standard Skewness Premium and Fama-MacBeth Regressions

This table presents monthly Fama-MacBeth (1973) regressions of individual stock returns on SSP. We

consider some standard variables used in literature such as beta, size, book-to-market ratio, and mo-

mentum. We also control for some stock-related variables such as variance, the short-term reversal, the

maximum daily returns in the previous month, the minimum daily returns in the previous month, id-

iosyncratic volatility, and illiquidity. The following option-related variables are also taken into account:

implied volatility skew, implied variance, implied-volatility spread, and put-call volume ratio. The sample

period is from January 1996 to December 2013. The Newey-West t-statistics are in parenthesis.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Intercept 0.72 0.82 -0.35 0.14 -0.95 1.46 0.97 -0.66 -0.81 2.56

(1.80) (2.16) (-0.30) (0.13) (-0.84) (0.99) (0.83) (-0.58) (-0.71) (1.68)

SSP 0.37 0.39 0.30 0.45 0.47 0.45 0.47 0.44 0.47 0.27

(3.70) (4.01) (4.09) (5.11) (5.36) (5.13) (5.26) (4.91) (5.37) (4.26)

VRP 0.42 0.20 -0.01 0.27 0.10 0.18 0.29 0.27 0.07

(2.55) (1.61) (-0.03) (2.00) (0.72) (1.45) (2.16) (2.03) (0.50)

Beta -0.14 -0.14 -0.16 -0.15 -0.11 -0.15 -0.16 -0.09

(-1.78) (-1.90) (-1.86) (-1.84) (-1.74) (-1.92) (-1.93) (-1.36)

LnME 0.09 0.07 0.13 0.02 0.04 0.11 0.11 -0.05

(1.31) (1.19) (2.09) (0.22) (0.62) (1.61) (1.75) (-0.68)

B/M -0.17 -0.22 -0.15 -0.20 -0.24 -0.17 -0.17 -0.23

(-0.90) (-1.18) (-0.78) (-1.08) (-1.38) (-0.87) (-0.87) (-1.44)

MOM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00

(0.06) (0.38) (0.19) (0.17) (0.41) (0.25) (0.31) (-0.44)

Rev -0.02 -0.02

(-2.55) (-3.57)

IVol -0.16 -0.02

(-2.34) (-0.23)

Amihud -0.03 -0.06

(-1.28) (-2.81)

EISkew -4.33 0.91

(-2.11) (0.27)

IVLevel -1.50 -1.65

(-2.16) (-2.08)

IVSpread 3.31 2.93

(3.50) (3.51)

IVSkew 0.20 0.99

(0.68) (2.30)

Adj R2 0.07 0.08 0.12 0.12 0.11 0.11 0.12 0.11 0.11 0.13

(23.2) (20.5) (21.2) (20.9) (21.8) (21.4) (19.8) (21.8) (21.7) (20.5)
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Table 9: Liquidity and Predictive Power of AVP

The table presents the Fama-MacBeth cross-sectional regressions of stock returns on the lagged AVP

and the relative liquidity of stocks and options. To measure stock liquidity, we use Amihud illiquidity

ratio (Amihud, 2002), and to measure option liquidity, we use option volume and option open interest.

To compute option volume and option open interest, we either use the total trading volume and open

interest in each month under (1) or use the trading volume and open interest in the last trading day

of each month under (2). Two dummy variables are constructed: the first one is high option liquidity

and low stock liquidity dummy (HOLSD), and the other is low option liquidity and high stock liquidity

dummy (LOHSD). HOLSD is equal to one for stocks that belong to the top 33% of option liquidity

and the bottom 33% of stock liquidity; similarly, LOHSD is equal to one for stocks that belong to the

bottom 33% of option liquidity and the top 33% of stock liquidity. The regressions are also controlled

for these variables: VRP, beta, size, B/M, and Momentum. F -test is for testing equal coefficients on two

dummy-related variables. The sample period is from January 1996 to December 2013. The Newey-West

t-statistics with six lags are reported in parenthesis.

Option Volume Option Open Interest

(1) (2) (1) (2)

Intercept -0.68 -0.67 -0.71 -0.69

(-0.58) (-0.57) (-0.61) (-0.59)

AVP 1.19 1.22 1.20 1.20

(4.75) (4.70) (4.60) (4.63)

VRP 0.22 0.23 0.23 0.23

(1.52) (1.54) (1.54) (1.53)

AVP×HOLSD 1.33 0.79 1.26 1.03

(3.68) (2.24) (3.87) (2.80)

AVP×LOHSD -0.71 -0.57 -0.60 -0.49

(-2.03) (-1.91) (-2.13) (-1.59)

Control Variables Yes Yes Yes Yes

Adj R2 0.10 0.10 0.10 0.10

(20.3) (20.2) (20.3) (20.2)

F -test (p-value) 0.00 0.00 0.00 0.00

48



 Electronic copy available at: https://ssrn.com/abstract=3221975 

Table 10: Information Asymmetry and Predictive Power of AVP

This table presents monthly double-sort portfolio returns and alphas (in %) from the four factor models

based on PIN and AVP. At the end of each month, we first sort all stocks into tercile portfolios based

on PIN, and then we sort stocks in each of these tercile portfolios into quintile portfolios and form a

high-minus-low hedge portfolio on the basis of AVP. We hold these portfolios over the next month and

compute their equal-weighted portfolio returns and alphas of the four factor models. We only report

returns and alphas for those portfolios that combine the bottom and top tercile portfolios and odd quintile

portfolios. Excess return is the difference between portfolio returns and the one-month Treasury bill

rate. Characteristic-adjusted returns are computed by adjusting returns using 125 (5× 5× 5) size/book-

to-market/momentum portfolios (Daniel et al., 1997), and industry-adjusted returns are computed by

adjusting returns using the Fama-French 17 industry portfolios (Fama and French, 1997). The three-

factor (Fama and French, 1993), four-factor (Carhart, 1997), q-factor (Hou, Xue, and Zhang, 2015), and

M -factor (Stambaugh and Yuan, 2016) alphas are also reported. The sample period is from January

1996 to December 2013. The Newey-West t-statistics are in parenthesis.

Excess and Adjusted Returns Alphas from Factor Models

Excess Char-Adj Ind-Adj FF3F Carhart q- M -

PIN AVP Ret Ret Ret Alpha Alpha Alpha Alpha

Low 1 0.28 -0.28 -0.66 -0.40 -0.31 -0.20 -0.17

(0.56) (-2.11) (-2.36) (-2.75) (-2.34) (-1.33) (-1.03)

3 0.62 0.03 -0.38 -0.07 -0.03 -0.04 0.08

(1.47) (0.30) (-1.55) (-0.53) (-0.18) (-0.30) (0.55)

5 0.81 0.17 -0.05 0.09 0.15 -0.04 0.06

(2.10) (1.58) (-0.22) (0.70) (1.08) (-0.22) (0.38)

5-1 0.54 0.45 0.60 0.49 0.46 0.16 0.22

(1.95) (2.47) (2.75) (2.90) (2.62) (0.82) (1.06)

High 1 0.25 -0.55 -0.81 -0.58 -0.56 -0.63 -0.64

(0.58) (-3.04) (-2.84) (-4.08) (-3.79) (-3.99) (-3.53)

3 0.69 -0.19 -0.31 -0.16 -0.13 -0.24 -0.20

(1.54) (-1.32) (-1.25) (-0.92) (-0.74) (-1.39) (-1.30)

5 1.31 0.49 0.33 0.46 0.56 0.26 0.43

(3.03) (2.06) (1.10) (1.80) (2.39) (0.87) (1.80)

5-1 1.07 1.04 1.14 1.04 1.12 0.89 1.07

(4.07) (4.56) (5.33) (4.08) (4.35) (2.98) (3.78)
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Table 11: Predictive Power of AVP and Corporate Events

This table presents Fama-MacBeth (1973) cross-sectional regressions of individual event returns (Models

1-3) and post-event returns (Model 4) on event-related AVP measures. At any event day t, the event

return (ERet) is defined as the excess return over days from t − 1 to t + 1 and the post-even return

(PostERet) is defined as the excess return over days from t + 6 to t + 90. The explanatory variables

include: the base asymmetric variance premium (AVP-Base), defined as the average of daily asymmetric

variance premiums over days from t− 50 to t− 11, the pre-event asymmetric variance premium (AVP-

PreE), defined as the average of daily asymmetric variance premiums over days from t− 10 to t− 2, and

the post-event asymmetric variance premium (AVP-PostE), defined as the average of daily asymmetric

variance premiums over days from t + 1 to t + 5. Earnings announcement data are obtained from

Compustat for the period from the first quarter of 1996 to the fourth quarter of 2013. As for extreme

events, we calculate the three-day excess return at each day and if it is larger than 10% or smaller than

-10%, we keep it in the extreme events sample. The Newey-West t−statistics are reported in parenthesis.

Panel A: Earnings Announcement Panel B: Extreme Events

(1) (2) (3) (4) (1) (2) (3) (4)

Intercept 0.004 0.006 0.006 0.031 0.032 0.037 0.039 0.010

(4.32) (5.86) (5.86) (2.23) (14.9) (19.3) (17.50) (1.56)

AVP-Base 0.012 0.002 0.181 0.041 0.006 0.036

(3.24) (0.51) (4.26) (6.91) (1.01) (1.15)

AVP-PreE 0.023 0.023 0.044 0.070 0.069 0.019

(6.48) (6.48) (2.38) (17.3) (16.8) (1.69)

AVP-PostE 0.040 0.033

(3.32) (5.38)

ERet 0.138 0.008

(5.19) (0.57)

Adj R2 0.001 0.003 0.004 0.017 0.005 0.009 0.013 0.019
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Table 12: Limits-to-Arbitrage and Predictive Power of AVP

This table presents monthly double-sort portfolio returns and alphas (in %) from the four factor models

based on proxies of limits-to-arbitrage and AVP. We use the institutional ownership (IO), idiosyncratic

volatility (IVol), and analyst forecast dispersion (AFD) to proxy limits-to-arbitrage. At the end of each

month in our sample, we first sort all stocks into tercile portfolios based on each of the above proxies of

limits-to- arbitrage, and then we sort stocks in each of these tercile portfolios into quintile portfolios and

form a high-minus-low hedge portfolio. We hold these portfolios over the next month and compute their

equal-weighted portfolio returns and alphas of the aforementioned four factor models. We only report

returns and alphas for those portfolios that combine the bottom and top tercile portfolios and odd quintile

portfolios. Excess return is the difference between portfolio returns and the one-month Treasury bill

rate. Characteristic-adjusted returns are computed by adjusting returns using 125 (5× 5× 5) size/book-

to-market/momentum portfolios (Daniel et al., 1997), and industry-adjusted returns are computed by

adjusting returns using the Fama-French 17 industry portfolios (Fama and French, 1997). The three-

factor (Fama and French, 1993), four-factor (Carhart, 1997), q-factor (Hou, Xue, and Zhang, 2015), and

M -factor (Stambaugh and Yuan, 2016) alphas are also reported. The sample period is from January

1996 to December 2013. The Newey-West t-statistics are in parenthesis.

Panel A: Predictive Power of AVP and Institutional Ownership

Excess and Adjusted Returns Alphas from Factor Models

Excess Char-Adj Ind-Adj FF3F Carhart q- M -

IO AVP Ret Ret Ret Alpha Alpha Alpha Alpha

Low 1 -0.02 -0.67 -0.95 -0.74 -0.67 -0.63 -0.58

(-0.05) (-5.04) (-4.06) (-5.20) (-4.85) (-4.40) (-4.10)

3 0.37 -0.31 -0.55 -0.37 -0.35 -0.34 -0.33

(0.91) (-2.95) (-2.73) (-2.92) (-2.75) (-2.63) (-2.66)

5 0.84 0.14 -0.05 0.10 0.16 -0.06 0.08

(2.23) (1.01) (-0.24) (0.75) (1.07) (-0.32) (0.51)

5-1 0.86 0.81 0.90 0.84 0.83 0.58 0.66

(3.27) (4.35) (4.70) (4.51) (4.15) (2.64) (3.43)

High 1 0.58 -0.21 -0.46 -0.20 -0.16 -0.31 -0.31

(1.37) (-1.59) (-1.78) (-1.61) (-1.45) (-2.42) (-2.78)

3 0.90 0.07 -0.16 0.10 0.13 -0.09 0.01

(2.16) (0.53) (-0.70) (0.56) (0.70) (-0.44) (0.07)

5 1.06 0.26 0.12 0.24 0.29 -0.01 0.17

(2.40) (1.65) (0.39) (1.26) (1.59) (-0.03) (0.86)

5-1 0.48 0.48 0.58 0.44 0.46 0.30 0.48

(2.39) (3.22) (3.29) (2.45) (2.56) (1.46) (2.54)
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Panel B: Predictive Power of AVP and Idiosyncratic Volatility

Excess and Adjusted Returns Alphas from Factor Models

Excess Char-Adj Ind-Adj FF3F Carhart q- M -

IVol AVP Ret Ret Ret Alpha Alpha Alpha Alpha

Low 1 0.67 -0.09 -0.36 0.04 0.05 -0.18 -0.12

(2.28) (-0.61) (-1.35) (0.32) (0.40) (-1.15) (-0.75)

3 0.91 0.10 -0.04 0.26 0.25 -0.03 0.04

(2.89) (0.69) (-0.15) (1.90) (1.75) (-0.18) (0.26)

5 1.03 0.25 0.08 0.38 0.41 0.07 0.20

(3.10) (1.41) (0.29) (2.90) (3.17) (0.37) (1.29)

5-1 0.37 0.34 0.44 0.34 0.36 0.25 0.32

(2.63) (2.77) (3.28) (2.64) (2.49) (1.76) (2.18)

High 1 0.04 -0.51 -0.94 -0.72 -0.62 -0.47 -0.51

(0.09) (-3.20) (-3.50) (-3.94) (-3.72) (-2.08) (-2.49)

3 0.07 -0.55 -0.84 -0.77 -0.70 -0.53 -0.50

(0.12) (-3.75) (-3.52) (-4.32) (-4.34) (-2.69) (-2.80)

5 0.72 0.13 -0.15 -0.13 -0.00 -0.10 0.08

(1.49) (0.80) (-0.66) (-0.59) (-0.01) (-0.37) (0.38)

5-1 0.68 0.64 0.79 0.59 0.62 0.37 0.59

(2.65) (3.14) (3.44) (2.75) (2.64) (1.46) (2.38)

Panel C: Predictive Power of AVP and Analyst Forecast Dispersion

Excess and Adjusted Returns Alphas from Factor Models

Excess Char-Adj Ind-Adj FF3F Carhart q- M -

AFD AVP Ret Ret Ret Alpha Alpha Alpha Alpha

Low 1 0.42 -0.28 -0.59 -0.31 -0.24 -0.27 -0.28

(1.06) (-2.67) (-2.43) (-2.80) (-2.35) (-2.15) (-2.42)

3 0.60 -0.09 -0.36 -0.15 -0.12 -0.24 -0.20

(1.52) (-0.94) (-1.72) (-1.14) (-0.96) (-1.74) (-1.57)

5 0.99 0.28 0.08 0.24 0.29 0.00 0.14

(2.62) (2.07) (0.30) (1.41) (1.77) (0.00) (0.80)

5-1 0.57 0.56 0.67 0.55 0.53 0.27 0.41

(2.70) (4.59) (4.25) (3.73) (3.47) (1.59) (2.53)

High 1 0.09 -0.65 -0.88 -0.64 -0.58 -0.61 -0.49

(0.21) (-3.79) (-3.45) (-3.69) (-3.57) (-2.99) (-2.68)

3 0.70 -0.10 -0.21 -0.11 -0.08 -0.10 0.03

(1.56) (-0.70) (-1.05) (-0.68) (-0.51) (-0.54) (0.16)

5 0.88 0.15 0.02 0.06 0.14 -0.08 0.13

(1.93) (0.90) (0.09) (0.32) (0.69) (-0.30) (0.61)

5-1 0.79 0.80 0.90 0.70 0.72 0.53 0.63

(2.87) (3.35) (3.87) (2.83) (2.69) (1.76) (2.19)
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Figure 1: Cross-Sectional Correlations between AVP and SSP

The figure plots the cross-sectional correlation between asymmetric variance premium (AVP) and stan-

dard skewness premium (SSP). AVP is computed using Equation (18) and SSP is computed using Equa-

tion (23). In both equations, the risk-neutral measures are recovered from prices of out-of-money call

and put options with maturity of 30 days, and the realized measures are constructed using the 5-minute

intraday high-frequency individual stock returns and are assumed to follow random walks. The sample

period is from January 1996 to December 2013.
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Figure 2: Monthly Excess Returns of the Hedge Portfolios based on AVP and SSP

The figure plots the time series of monthly returns of the hedge portfolios based on asymmetric variance

premium (AVP, solid line) and on standard skewness premium (SSP, dashed line). At the end of each

month, we sort all firms on the basis of their AVPs (SSPs) into quintiles. A hedge portfolio that longs

the high AVP (SSP) portfolio and shorts the low AVP (SSP) portfolio is then formed. We hold these

portfolios over the next month and computer their equal-weighted monthly returns. AVP is computed

using Equation (18) and SSP is computed using Equation (23). In both equations, the risk-neutral

measures are recovered from prices of out-of-money call and put options with maturity of 30 days, and

the realized measures are constructed using the 5-minute intraday high-frequency individual stock returns

and are assumed to follow random walks. The sample period is from January 1996 to December 2013.
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