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Abstract

This paper introduces a Generalised Additive Model (GAM) to link high frequency intra-
day (5-minute) aggregate electricity demand in Australia to the time of the day and intra-day
temperature. We show a superior model fit when using Daylight Saving Time (DST), or clock
time, instead of the standard (solar) time. We also introduce the time weighted temperature
model that relates instantaneous electricity demand sensitivity to temperature as a function of
the daily activity cycle. The results on DST and time weighted temperature modelling are novel
in the literature and are important innovations in high frequency electricity demand forecasting.
The overall accuracy of the proposed GAM specification in predicting demand is comparable
to the accuracy of the commercial demand forecasting model used by the Australian Energy
Market Operator (AEMO). The parsimonious GAM model provides a solid foundation for the
development of more elaborate models for forecasting high frequency electricity demand.
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1 Introduction

Electricity consumption and demand largely depend on two variables - economic and climate con-

ditions. We explore both of these variables using 5 minute intra-day data. Weather conditions have

been widely explored in the past decade, and documented to play a crucial role when dealing with

forecasting electricity consumption and demand. A non-exhaustive list of recent literature dealing

with the impact of weather variables on electricity consumption includes Pardo et al. (2002), Man-

era and Marzullo (2005), Giannakopoulos and Psiloglou (2006), Bessec and Fouquau (2008), Beccali

et al. (2008), Lam et al. (2008), Miller et al. (2008), Wangpattarapong et al. (2008), Psiloglou et al.

(2009), Akil and Miyauchi (2010), Pilli-Sihvola et al. (2010), W lodarczyk and Zawada (2010) and

Bašta and Helman (2013). Among all variables that can be used to explain potential variations in

electricity consumption, the outside temperature is demonstrated to be the most important weather

variable, see e.g. Lam et al. (2009) and Moral-Carcedo and Pérez-Garćıa (2015). During cold winter

months, electricity demand increases due to electrical heating, whereas during hot summer months

air conditioners and coolers increase electricity consumption. Other variables, such as sunshine

hours, rainfall, wind speed, humidity, cloudiness etc. are documented to have a much lower impact

on demand, see e.g. Molnár (2011), Bašta and Helman (2013) and Moral-Carcedo and Pérez-Garćıa

(2015). Furthermore, focusing exclusively on the temperature allows us to avoid potential collinear-

ity problems when simultaneously employing several weather variables as explanatory variables in

the regression modelling1, see e.g. Lam et al. (2009) and Moral-Carcedo and Pérez-Garćıa (2015).

In order to study the impact of temperature on electricity demand, the introduced and documented

approaches primarily deal with heating degree days (HDD) and cooling degree days (CDD), refer

to Al-Zayer and Al-Ibrahim (1996), Sailor and Munoz (1997), Valor et al. (2001), Sailor (2001),

Pardo et al. (2002), Amato et al. (2005), Xiao et al. (2007). This has proven to be efficient since it

takes into account the non-linear relationship observed between electricity consumption and outside

temperature. The other strand in the literature models these non-linearities by splitting the data

into four different seasons, and modelling linear relationships within each season individually. This

approach has been utilised, in combination with wavelet analysis, in e.g. Bašta and Helman (2013).

The results documented in the literature are typically mixed, and depend on the region or country

under consideration, the frequency of the data, as well as whether the analysis is performed at an

aggregate level, or split by sector (residential vs. commercial). The results from existing literature

are detailed below.

1For example, temperature is expected to be correlated with sunshine hours and cloudiness.
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For the residential sector Blázquez et al. (2013), using annual data for electricity consumption in

Spain find low impact of HDD and CDD on electricity demand. Also, using annual data, Dergiades

and Tsoulfidis (2008) find similar result for the U.S. and Hondroyiannis (2004) for Greece, both

papers concluding that short-run demand elasticity to temperature is lower than long-run demand

elasticity to temperature. Zachariadis and Pashourtidou (2007) document an opposite result for

Greece, finding weather fluctuations to be the most significant cause of short-term variation in

electricity consumption. Rhodes et al. (2014) use a sample of 103 Texas (U.S.) homes, and demon-

strate that electricity demand fluctuates differently during the day, depending on the time of year,

weather, occupant behaviour (at home) and schedules. Similarly, Sandels et al. (2014) show for the

case of Sweden that electricity consumption is more sensitive to temperature during hot summer

months than during cold winter months.

For the commercial sector, Psiloglou et al. (2009) use hourly data for electricity consumption in

Greece (proxied by Athens) and U.K. (proxied by London) to find that in both regions the depen-

dence between the outside temperature and demand is non-linear, but for Greece, the relationship

is U-shaped with a minimum around 20 degrees celcius and two maxima; while for UK, there is

only one maximum. Lam et al. (2008) use Hong Kong data and separate the data into commercial

and residential. The authors show that commercial sector tends to have a longer cooling season

than the residential sector, and that electricity consumption in residential sector increases strongly

from May to October. Asadoorian et al. (2008), on the other hand, document that non-residential

electricity demand in mainland China is not responsive to the mean temperature. Zachariadis

and Pashourtidou (2007) find that in case of Greece electricity demand in commercial sector is

not much affected by changes in weather, which is the opposite to the result they find for the

residential sector. Similarly, Moral-Carcedo and Pérez-Garćıa (2015) study disaggregated data by

sector using daily data for Spain and show that firms’ aggregate electricity demand is rather insen-

sitive to temperature with slight variations across firms in different service sectors. Sailor (2001)

uses monthly per capita electricity consumption for the U.S. and documents significant impact of

weather conditions on per capita electricity consumption. Hong et al. (2013) and Zhou et al. (2014)

find similar results for the U.S. when using state-level energy demand per building.

At an aggregate level, Tung et al. (2013) use daily aggregate energy demand for Taiwan and show

that an increase in temperature leads to an increase in average electricity demand. Hekkenberg

et al. (2009) use data for the Netherlands and show that electricity demand peaks during cold winter

months and declines to its minimum during hot summer months, but predict the development of

an additional peak during the summer. Bessec and Fouquau (2008) use monthly demand data

3



on electricity consumption for 15 European countries. Using a panel threshold regression model,

the authors confirm the non-linearity of the link between electricity consumption and temperature,

which is more pronounced in warm rather than in cold countries. Mirasgedis et al. (2006) use high

frequency demand data sampled at an hourly frequency for Greece and show that especially in

the hot summer months electricity demand sees a significant increase. Moral-Carcedo and Vicéns-

Otero (2005) use daily data for Spain and show that an increase in consumption is attributed to an

extensive use of heating and cooling equipment during winter and summer, respectively. Similar

results are found in Pardo et al. (2002) for the daily demand in Spain.

This paper introduces a parsimonious Generalised Additive Model (GAM), refer to Wood (2006),

to link the intra-day (5-min) aggregate demand to the time of the day, temperature and time

of the year. High frequency data has given us interesting and novel insights (as detailed below)

into demand forecasting. In particular, our results allow us to characterise the high frequency

relationship between electricity consumption and temperature. To our knowledge, none of the

papers in the existing literature model demand and temperature data at such high (5-minute)

frequency.

We model demand using daylight saving time (DST), i.e. clock time, and standard (astronomical)

time and show that using the DST time provides a significant improvement to the model fit.

We explain how and why model fit improves even further when we introduce the time weighted

temperature model, which assigns different temperature signal weighting based on the DST time.

This relates the magnitude of the temperature demand signal with the daily activity cycle. The

motivation behind using the time weighted temperature model is the observation that electricity

demand attributed to temperature variation away from the maximum comfort temperature (20.0

degrees celcius2) is time sensitive. Our proposed methodology suggesting to weight temperature

demand signal depending on the DST time (daily activity cycle) is confirmed when using cross-

sectional regressions estimated at each (5-minute) time interval, resulting in cross-sectional daily

time dependent demand. We observe that the minimum morning sensitivity is at 4:00am, the

morning maximum is reached at 9:00am and the night decline begins at 18:30pm. The results

on DST and time weighted temperature modelling are novel in the literature and are important

innovations in high frequency electricity demand forecasting.

The overall accuracy of the our parsimonious GAM model is evaluated against the commercial

demand forecasting model used by the Australian Energy Market Operator (AEMO) for modelling

expected intra-day electricity demand in the New South Wales (NSW)/Sydney market. The forecast

2This threshold is chosen empirically to provide the optimal model fit.
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of this commercial model is used by electricity generators to price bids for expected intra-day

wholesale demand the next day. The specification of the AEMO forecasting model is commercial

property and is not public, however the AEMO intra-day demand forecasts are published online.

The standard deviation of the AEMO’s forecast error is 2.6%. Our parsimonious GAM model

leads to a comparable standard deviation of the forecast error corresponding to 4.3%. This result

is excellent given the limitation of temperature data to only one temperature figure for the entire

state of NSW. The parsimonious GAM model provides a solid foundation for the development of

more elaborate and accurate models for forecasting high frequency electricity demand.

The remainder of the paper is organised as follows. Section 2 describes data used in our analysis.

GAM model specification and its variations tested in the paper are introduced in Section 3. An

extensive empirical analysis demonstrating the quality of fit of the proposed models to the entire

data set is presented in Section 4. Estimation results for the seasonal demand models that fit data

by month are summarised in Section 5. Section 6 deals with the prediction results for the electricity

demand, and Section 7 concludes the paper.

2 Data Description

The data we use is an intra-day electricity demand in megawatts (Mw), available at 5 minute

intervals for the Australian state of New South Wales (NSW) and the Australian Capital Territory

(ACT) for the year 3-February-2014 to 2-February-2015. This is aggregate data (i.e. including

households, companies, industrial and public sectors) that has been downloaded from the Australian

Energy Market Operator (AEMO) website.3 The electricity demand observations are merged with

instantaneous temperature data over the same period and frequency. The temperature data was

obtained from the Australian Government Bureau of Meteorology.4

Preliminary analysis of this data shows that time dependent intra-day variation of electricity is

significantly different for weekends and public holidays compared to normal business days. This is

an intuitive result if we regard time during the day as a proxy for economic and personal activity.

We did not find significant variation in intra-day demand for different days of the week (Monday

to Friday) for business days. Therefore, because we are primarily interested in modelling the high

3Current and archived forecast reports are available from http://www.nemweb.com.au/REPORTS/CURRENT/ and

http://www.nemweb.com.au/REPORTS/ARCHIVE/, respectively. Python software has been used to automatically down-

load these forecasts.
4Available from http://www.bom.gov.au.
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frequency relationship between temperature and demand in this paper, we have restricted the data

to business days only. The restriction to business days gives 250 days of data and each day of

data has 288 five minute demand observations, from 00:00-00:05 until 23:55-24:00. Thus, a total of

72,000 five-minute demand and temperature data points will be used for the empirical analysis.

The 5-minute temperature data is recorded in the Sydney suburb of Homebush. The location of

this suburb is close to the population centre of the Greater Sydney urban area. Greater Sydney is

12,367.7 square kilometres and extends east to west from the Pacific ocean coast to the Blue Moun-

tains (100km) and north to south from Berowra to Picton (110km). Therefore, if we assume that

the Homebush temperature observations represent the instantaneous temperature in Greater Syd-

ney, then this temperature observation is valid for 61% of population of the NSW/ACT electricity

demand area. However, it should be noted that the assumption that we can represent temperature

related electricity demand in the NSW/ACT demand area with a single temperature is a deliberate

simplification. The goal of this paper is to introduce a rigorous parsimonious forecasting model that

can be used as the foundation for more elaborate forecasting models. An obvious improvement to

the accuracy of modelling electricity demand as a function of temperature would be to use multiple

temperature (and potentially humidity) measurements from different suburban and urban areas.

The NSW/ACT electricity demand area combines both the NSW and ACT populations for a total

population of 7.95 million (2015). Within the NSW/ACT electricity demand region there are

four large urban areas: Greater Sydney with population 4.84 million (2015 estimate; 2011 census

4.39 million), Greater Newcastle with population 550,000 (2015 forecast), Canberra/ACT with

population 385,000 (2015 estimate; 2011 census 356,000) and Wollongong with population 290,000

(2015 forecast). Wollongong and Newcastle are coastal port cities like Sydney, with Wollongong

100km south of Sydney and Newcastle 200km north of Sydney. The population of the NSW state

is 7.55 million (2015 estimate; 2011 census 7.21 million). Canberra/ACT is 300 km inland from

Sydney and has a continental climate with a much greater variation in temperature than Sydney

and the other NSW coastal cities (Newcastle and Wollongong).

To provide an idea of the relationship between demand and temperature data, we show in Figure 1

winter and summer patterns of demand (top panel) and temperature (bottom panel) over the five

business days of a typical week. In both, the summer (red line, 12-January-15 to 16-January-15)

and winter (blue line, 14-July-14 to 18-July-14) graphs we observe a cyclical pattern in evolution

of temperature and demand throughout the week. The winter demand graph experiences two

daily peaks, which correspond to an increasing usage of heating during the cold morning and

evening hours, while the demand during the day (when the outside temperatures are relatively
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high) drops to a lower level. The summer demand graph shows peak demand during the hot

afternoon hours caused by the use of coolers and air-conditioners. The winter and summer demand

patterns suggest a minimum demand ‘comfort’ temperature of 20◦C. This result is well known

in the literature and is based on Heating Degree Day (HDD) and Cooling Degree Day (CDD)

temperature dependent energy derivatives. The magnitude of the difference between the current

temperature and the ‘comfort’ temperature (abs[Temp− 20]) is strongly correlated with demand.

For example, Monday January 12, 2015 was a hot day and the corresponding demand graph shows

a pronounced spike mid-afternoon. The double morning and evening peaks of the winter pattern

are pronounced because temperatures are well below 20◦C, with a dip in demand in the afternoon

as the temperature rises. However, it is interesting to note that these peaks do not correspond to

the minimum temperature early in the morning, but correspond to lower temperatures when people

are active. This is clearly seen by examining the winter demand pattern in the early morning.

The minimum demand for Tuesday, July 15, 2014 at 4am is essentially the same as the minimum

demand for Thursday, July 17, 2014 at 4am, even though Tuesday 4am is considerably colder than

Thursday 4am. The reason for this is intuitive: there are low levels of activity at 4am and the effect

of the stronger temperature demand signal on Tuesday is attenuated by low personal and economic

activity. Therefore, the temperature demand signal is time dependent. The relationship between

temperature and demand shown in Figure 1 is our primary motivation for modelling intra-day

electricity demand as a function of temperature.

3 Model Specification

As stated in the introduction, the objective of our analysis is to develop a comprehensive high

frequency modelling framework to link electricity demand to the outside temperature. For these

purposes we introduce the Generalised Additive Model (GAM), see e.g. Hastie and Tibshirani

(1990), Wood (2006). Specifically, at each time point t, t = 1, ..., N with N being the total number

of observations, we link the demand to the temperature in the following way:

Model 1 Dt = β0 + s(Timet) + β1|Tempt − 20.0|+ β2Y eart + εt. (3.1)

The dependent variable Dt is the instantaneous electricity demand in Megawatt/hour (Mw/h). To

be precise; if the integrated demand in each 5 minute record were extended to 1 hour by multiplying

by 12, then the power consumed would be Dt.

It is intuitive and true (and will be shown below) that personal and economic activity is linked to
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Figure 1: Summer (red line 12-Jan-15 to 16-Jan-15) and Winter (blue line: 14-Jul-14 to 18-Jul-14)

demand (top panel) and temperature (bottom panel).
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Note. Top panel: Summer demand (red line) and winter demand (blue line); bottom panel: temperature in summer

(red line) and winter (blue line). The ‘comfort’ (black line) in the temperature graph is 20◦C. The graph shows that

the temperature demand signal is time dependent.

daylight saving time (DST), i.e. clock time rather than the actual (standard) time. The standard

time is astronomical time. Daylight saving time (+1 hour) in Sydney commences at 2am on the

first Sunday in October and the change from daylight saving (-1 hour) to standard time is 3am

on the first Sunday in April. In our sample period (from February 3, 2014 to February 2, 2015)

daylight saving ends on April 6, 2014 (clocks turned back from 3am to 2am) and starts on October

5, 2014 (clocks turned forward from 2 am to 3 am).

Following the convention commonly used in spreadsheets; Timet is a number in the interval [0, 1)

where 0 is the time recorded for the electricity demand in the 5 minute period 00:00-00:05, 1/(12 ∗

24) = 0.0034722 is the time recorded in the period 00:05-00:10 and ((12 ∗ 24) − 1)/(12 ∗ 24) =

0.9965278 is the time recorded for the 5 minute period 23:55-00:00. There are two time fields for
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each demand record in the data; standard (astronomical) time and the DST. During the period

when DST is active, the DST field is advanced by 1 hour or 0.041667 = 1/24. For example,

for the 5 minute time period on the 3rd of February 2014 (DST is active) where the standard

time is recorded as 00:00-00:05 (Timet = 0.0), the DST time is recorded as 01:00-01:05 (Timet =

0.041667). The instantaneous electricity demand (Dt) recorded for this 5 minute period was 7135.67

megawatt/hour. Outside of the period where DST is active, the DST and standard time fields are

equivalent.

It is assumed that the temperature independent electricity demand s(Timet) is a daily periodic

cyclic empirical function of Timet over the sample period. We use GAM regression to determine

the periodic function s(·) of Timet. This periodic function is a cyclic cubic spline. A cyclic cubic

spline function is a piecewise cubic function continuous up to second derivatives at the knots. At the

endpoints of each daily cycle, the function values and derivatives up to the second order are equal,

which creates a smoothed periodic function.5 We notice that the function s(·) can be specified

with a smoothing parameter (number of spline knots), or the number of degrees of freedom (df ,

the number of spline knots - 2), which is assumed to be larger than one (with df = 1 corresponding

to a linear fit). The df parameter is chosen in such a way that it leads to the best goodness-of-fit

measured by the Akaike Information Criterion (AIC), and we observe that df = 10 (see below) is

optimal. The GAM in Equation (3.1) can be thought of as a Generalized Linear Model in which part

of the linear predictor is specified in terms of a sum of smooth functions of predictor variables (Wood

(2006)). This technique is particularly suited to modelling intra-day actual electricity demand as

a function of the time dependent electricity demand due to daily personal and economic activity.

The temperature dependent electricity demand in Equation (3.1), |Tempt − 20.0|, is the absolute

value of the difference of the recorded temperature and 20◦C. We refer to the constant temperature

of 20◦C as the ‘comfort’ or minimum demand temperature. The value of 20◦C is determined

empirically below and is entirely consistent with the literature on CDD & HDD.6.

The third term Y eart is the linear long term drift in average electricity demand. The independent

variable Y eart is the scaled time of the year with values in the interval [0, 1), where 0 corresponds

to the first data record of electricity demand for the 5 minute standard time period 3-February-2014

00:00-00:05 (DST 4-February-2014 00:55-01:00) and ((365 ∗ 288) − 1)/(365 ∗ 288) = 0.999990487

corresponds to the final electricity demand record for the standard time period 2-February-2015

5R function s(Time, bs = ”cc”) is used.
6Although some of the literature suggests that this temperature is slightly lower, corresponding to 18◦C (see

Alaton et al. (2002)).
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23:55-24:00 (DST 3-February-2015 00:55-01:00).7

The GAM regression models assume the residual term εt to be Gaussian with zero mean.8

3.1 The Weighted Temperature Demand Signal

Another model, referred to as Model 2, which is aimed to improve the fit of Model 1, is given by

the following equation:

Model 2: Dt = β0 + s(DSTt) + β1(w(DSTt) ∗ |Tempt − 20.0|) + β2Y eart + εt. (3.2)

The difference between Model 1 and Model 2 is the term w(DSTt) ∗ |(Tempt − 20.0)|, where the

function w(·) is a piecewise continuous sinusoidal function of DST and returns values between 0

and 1. As can be readily seen from the formulation above, this function weights the temperature

demand signal where 1 represents the ‘full’ temperature signal (|Tempt − 20.0|) and 0 completely

attenuates the temperature signal. It is intuitive and reasonable that the demand sensitivity to

the temperature signal |Temp − 20.0| depends on the human and economic activity. This daily

activity cycle can be readily determined by examining the sample daily electricity demand cycle

with the temperature demand component removed. In other words, w(DSTt) has approximately

the same shape as s(DSTt) and, therefore, like s(DST ), is driven by the daily activity cycle. The

activity weighting of the temperature demand signal is modelled empirically using cross sectional

regressions where the demand sensitivity to temperature is fitted (250 day data points) for each 5

minute period during the day. The cross sectional regressions performed in Section 4.3 clearly show

the sensitivity to the daily exogenous demand cycle. The empirical cross sectional results and the

approximating function w(·) will be discussed below (in particular, refer to Figure 4). We refer to

this model as the time weighted temperature model.

The third model uses non-periodic splines to model the non-linear relationship between temperature

and demand:

Model 3: Dt = β0 + s(DSTt) + h(Tempt) + β2Y eart + εt. (3.3)

In addition to the cyclic spline function of time s(DSTt) (that will be present in all models), we

incorporate a non-periodic (non-cyclic) spline function of temperature h(Tempt) instead of using

the function from Model 1 (second term on the right hand side of Equation (3.2)).

7The value of 288 corresponds to the number of observations per day: 12 ∗ 24 = 288.
8For the residual term, using the R GAM regression software, one can select any distribution from the exponential

family of distributions.
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The fourth model uses non-periodic splines to model the non-linear relationship (interaction) be-

tween time weighted temperature and demand:

Model 4: Dt = β0 + s(DSTt) + h
(
Tempt ∗ w(DSTt)

)
+ β2Y eart + εt. (3.4)

The fifth and most sophisticated model that will be used for the yearly data (i.e. when modelling

the entire sample) applies non-periodic splines to model the non-linear relationship of long-term

change in demand as a function of the Y ear using the fitted spline term k(Y eart):

Model 5: Dt = β0 + s(DSTt) + h
(
Tempt ∗ w(DSTt)

)
+ k(Y eart) + εt. (3.5)

3.2 Seasonal Demand Model

We notice that Models 1 to 5 use the entire data (one year) for the estimation, thus, they all

have the Y eart term included in the model. In our empirical section we will also use the seasonal

demand model, which caters for non-stationarity of the exogenous time dependent demand, thus,

fitting the following regressions for each calendar month:

Model 6: Dt = β0 + s(DSTt) + β1|w(DSTt) ∗ Tempt − 20.0|+ εt. (3.6)

The seasonal demand Model 6 in Equation (3.6) is a simple two-term version of Model 2 in which

the yearly regression term (β2Y eart) has been removed. This seasonal model will be fitted for each

calendar month and is expected to better capture demand fluctuations compared to the yearly

demand models (Models 1 to 5).

4 Empirical Analysis

In this section we perform empirical analysis using the demand and temperature data described in

Section 2 and models introduced in Section 3.

4.1 Time Dependent Demand is Indexed by DST or Standard Time

We fit Model 1 in Equation (3.1) using DST and standard (astronomical) time and tabulate the

results in Tables 1 and 2, respectively.

From both tables we observe that all terms are highly statistically significant. In particular, the

regression shows a long-term decline in electrical load demand (the Year term in the regression),
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Table 1: Model 1 with daylight saving time

Estimate Std.error t-value F test (p-value) R2
adj

Intercept 7795.2*** 4.08 1908.55 0.837

s(DSTime) 35513 (0.000)

|Temp− 20| 108.146*** 0.5134 211.29

Y ear -319.01*** 6.00 -53.15

Note. Estimation results for regression in Eq. (3.1) (Model 1) where T ime variable is given by the standard time;

***, ** and * indicate significance at 0.001, 0.01 and 0.05 significance level, respectively.

Table 2: Model 1 with standard time

Estimate Std.error t-value F test (p-value) R2
adj

Intercept 7804.9*** 4.39 1776.69 0.811

s(T ime) 29693 (0.000)

|Temp− 20| 106.05*** 0.51 209.36

Y ear -318.8*** 6.46 -49.37

Note. Estimation results for regression in Eq. (3.1) (Model 1) where T ime variable is given by the DST; ***, ** and

* indicate significance at 0.001, 0.01 and 0.05 significance level, respectively.

with daily demand falling 319 megawatt/hour over a one year period (-3.5%). This decline in

electricity demand is in line with the media release from the Australian Energy Market Operator

(AEMO) (2014).9 10 The temperature regression term (|Temp− 20|) shows the expected positive

relationship between the absolute value of the difference of the recorded temperature and 20◦C.

Note that this minimum demand temperature is slightly higher than the 18◦C used as the reference

minimum demand temperature in energy derivatives11. We notice that using DST as the indepen-

dent variable for the time indexed daily periodic demand consumption function gives a small but

highly significant improvement of fit compared to using standard time, which is reflected in the

higher R2
adj and larger value of the F statistic. This result is intuitive as the daily personal and

economic demand cycle depends on clock (DST) time rather than standard time.

Figure 2 shows daily time dependent electricity demand using DST (black line) and standard time

(red line) as indexing variables. This is the cyclic time dependent component of demand fitted with

splines, s(Timet) using Equation (3.1) (Model 1). The Temp variable is set to 20◦C (no signal) and

9“The 2014 NEFR [National Electricity Forecasting Report] shows reduced residential and commercial consumption

in most NEM regions due to strong growth in rooftop photovoltaic (PV) system installations and ongoing energy

efficiency savings in response to high electricity prices over recent years.”
10“In 2013-14, rooftop PV results in a 2.9% reduction in consumption from the grid.”
11For a description of the over-the-counter (OTC) weather derivatives traded on the Chicago Board of Trade

(CBOT) refer to Alaton et al. (2002)
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Figure 2: Daily time dependent electricity demand
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Note. Daily time dependent electricity demand using DST (black) and standard time (red) as indexing variables.

This is the cyclic time dependent component of demand fitted with splines, s(T imet), using Equation (3.1) (Model

1). The Temp variable is set to 20◦C (no signal) and Y ear is set to 0.5. The data covers all business days (250 days)

from February 3, 2014 to February 2, 2015.

Y ear is set to 0.5. The data is all business days (250 days) from 3-Feb-2014 to 2-Feb-2015. The

two graphs are very similar in form. However, as expected, the standard time graph (red) leads the

DST time graph (black) by about about half an hour showing the effect of Daylight Savings Time,

which is in place from February 3, 2014 to April 6, 2014, and from October 5, 2014 to February 2,

2015. Note that if the two regressions where restricted to just the DST period then we would see

two identical graphs exactly one hour apart.

4.2 The Minimum Demand ‘Comfort’ Temperature

We fit Model 1 in Equation (3.1) using different (from 20◦C used above) minimum demand tempera-

tures Tempmin in the temperature dependent term of the demand regression, β1|Tempt−Tempmin|
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where Tempmin = {17, 18, 19, 20, 21, 22, 23}. The objective is to analyse which minimum demand

temperature results in a better fit. The regression results (DST is used as the time index) for the

temperature dependent demand term β1|Tempt − Tempmin| are reported in Table 3.

Table 3: Model 1 with different minimum demand temperatures

β1 Estimate Std.error t-value R2
adj

β1|Temp− 17| 95.2*** 0.58 163.9 0.795

β1|Temp− 18| 108.4*** 0.54 202.4 0.820

β1|Temp− 19| 112.0*** 0.49 226.2 0.835

β1|Temp− 20| 108.1*** 0.47 229.3 0.837

β1|Temp− 21| 99.3*** 0.46 215.5 0.829

β1|Temp− 22| 89.4*** 0.46 194.9 0.816

β1|Temp− 23| 79.4*** 0.46 172.7 0.801

Note. Estimation results for regression in Eq. (3.1) (Model 1) with different minimum demand; ***, ** and * indicate

significance at 0.001, 0.01 and 0.05 significance level, respectively.

The results show that 20◦C is the marginally optimal constant for the minimum demand temper-

ature since the regression temperature dependent coefficient β1|Tempt − 20| has a slightly higher

t-stat and the regression has a slightly higher R2
adj . However, the difference between 20◦C and 19◦C

or 21◦C is very small, which implies that temperature dependent demand is a non-linear function

of the difference between the minimum demand temperature and the measured temperature, with

small differences producing little or no change in temperature dependent demand. This possibility

will be examined in Section 4.5 where we fit Model 3 (Equation (3.3)) that captures the relationship

between the temperature and demand via a non-linear function modelled by non-periodic splines.

4.3 Cross Sectional Regressions

One advantage of using high frequency temperature and demand data is that it gives us a large

amount of data: We have 250 days, and 288 5-minute observations on each day, which results

in a total of 72,000 data points. This allows us to perform cross sectional regressions using 250

observations at each individual 5 minute data point, thus, leading to a total of 288 regressions.

Unlike models 1 through 5 specified above which are designed to generalize the characteristics of

the data to allow us to predict demand on out-of-sample data, the cross sectional regressions will

over-fit the data. Thus, cross sectional regressions are not considered to be a model but instead,

are used as a tool to examine data. In fact, the cross sectional regressions provide valuable insights

about the characteristics of the data to help us develop the more sophisticated models below.
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Specifically, we fit the following linear model 288 times to each 5 minute period during the day:

Cross Section: D = α0 + α1|Temp− 20.0|+ α2Y ear + ε. (4.1)

The cross sectional regressions gives us a 288 point vector of time indexed coefficients. Here,

α0
t , t ∈ [1, . . . , 288] is the empirical exogenous daily demand cycle. The empirical time indexed

demand sensitivity to temperature is given by coefficients α1
t , t ∈ [1, . . . , 288]. The temperature

demand weighting function w(.) used in Models 2, 4, 5 and 6 is based on the empirical time

indexed demand sensitivity to temperature. Finally, a 288 point vector of year coefficients from

the cross sectional regressions α2
t , t ∈ [1, . . . , 288] shows that the yearly decline in demand has been

concentrated during the daylight hours (demand replacement with solar power), and in particular,

the greatest demand falls have been in peak periods. This indicates that peak demand pricing is

causing time insensitive electricity consumers to shift demand to non-peak periods. Figures 3, 4

and 5 summarise coefficient estimates α0
t , α

1
t and α2

t , respectively; they are discussed in details

below.

Figure 3 shows the 288 time indexed coefficients α0
t , t ∈ [1, . . . , 288] from the cross sectional regres-

sion in Equation 4.1. Each of the 288 fitted coefficients α0
t was highly significant with a median

t-statistic of 130 and a median standard error of 59. For comparison, the fitted time dependent

exogenous component from Model 1, s(DST ), is displayed (black line). The comparison shows that

Model 1 does a good job of generalizing the time dependent demand cycle with the exception of

the daily low demand at 4am, which is underestimated by Model 1 by about 500Mw/h. This is

due to the fact that Model 1 does not use a time weighted temperature demand signal w(.) and

overestimates the demand effect of cold temperatures at 4am.

Figure 4 shows the cross sectional empirical time demand sensitivity to temperature α1
t , t ∈ [1, . . . , 288]

(red line) obtained using cross sectional regressions in Equation 4.1. The y-axis is additional de-

mand in Mw/h generated by each degree variation from the ‘comfort’ temperature (|Temp−20.0|).

Each of the 288 fitted coefficients α1
t was highly significant with a median t-statistic of 15.1 and

a median standard error of 8.0. For comparison, the piecewise sinusoidal temperature weighting

function w(·) used in Model 2 (black line) is also displayed (w(.) ∈ [0, 1] and is scaled up by

max[α1
t ] = 235.8 to facilitate comparison). We are careful not to over-fit the data and deliberately

choose a piecewise function to approximate the cross-sectional time demand sensitivity rather than

a smoothed version of α1
t , t ∈ [1, . . . , 288]. We observe that electricity demand due to temperature

variation away from the maximum comfort temperature (20 C) is time sensitive. This result, to

our knowledge, does not appear in the literature and is a major result in this paper. The pattern
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Figure 3: Exogenous time dependent demand: α0
t , t ∈ [1, . . . , 288]
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Note. This graph displays the 288 time indexed coefficients α0
t , t ∈ [1, . . . , 288] (red line) from the cross sectional

regression in Equation (4.1); black line represents the comparison to Model 1. All coefficients α0
t are highly significant.

Model 1 performs well in generalizing the time dependent demand cycle with the exception of the daily low demand

at 4am.

of the cross-sectional empirical time demand sensitivity to temperature is intuitive and relates to

the daily activity cycle. The minimum morning sensitivity is at 4:00am, the morning maximum

is reached at 9:00am and the night decline begins at 18:30pm. Thus, an unweighted regression

(Model 1) will underestimate the effect of cold temperatures on electricity consumption. We refer

also to Figure 6 (discussed below) for different temperature sensitivities using weighted (Model 2)

and unweighted (Model 1) regressions.

The Australian Energy Market Operator commented on the decline in electricity demand in 2014

with the following press release. Australian Energy Market Operator (AEMO) (2014): “[Head-

line] NEM ELECTRICITY DEMAND CONTINUES DOWNWARD TREND. The 2014 NEFR

[National Electricity Forecasting Report] shows reduced residential and commercial consumption

16



Figure 4: Time weighted temperature model: α1
t , t ∈ [1, . . . , 288]
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Note. This graph displays the 288 time indexed coefficients α1
t , t ∈ [1, . . . , 288] (red line) from the cross sectional

regression in Equation (4.1). The y-axis is additional demand in Mw/h generated by each degree variation from the

‘comfort’ temperature (|Temp − 20.0|). All fitted coefficients α1
t are highly significant. For comparison, the time

weighted temperature sensitivity curve w(·) (black line, scaled by 235.8) is also presented. Electricity consumption is

less sensitive to temperature variation away from the ‘comfort’ temperature late at night and early in the morning.

in most NEM regions due to strong growth in rooftop photovoltaic (PV) system installations and

ongoing energy efficiency savings in response to high electricity prices over recent years.”

If the decline in demand was mainly due to “rooftop photovoltaic (PV) system installations” then

we would expect to see the decrease in demand as a sinusoid across the daylight hours with a peak

decrease in demand around noon (maximum solar radiation). However, Figure 5 summarising the

results for the cross sectional change in yearly demand given by α2
t , shows that the yearly decline

in demand has been concentrated during periods of peak demand. This supports the alternative

explanation for the decline proposed by AEMO; “energy efficiency savings in response to high

electricity prices over recent years”. In particular, peak demand pricing is causing time insensitive
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electricity consumers to shift demand to non-peak periods.

The fact that the decline in demand is concentrated in the peak demand periods and not spread

more uniformly across the day means that the daily pattern of exogenous time dependent demand

(s(DST ) in Figure 3) is evolving throughout the year with the morning and afternoon peak demands

becoming less pronounced. This has very important implications for regression in Models 1 through

5. An implicit assumption of these models is that exogenous time dependent demand s(DST ) is

stationary across the year. We now know this is not the case. Thus, the evolution of exogenous

time dependent demand s(DST ) may be better captured by Seasonal Demand Models developed

in Section 5.

Figure 5: Cross sectional change in yearly demand: α2
t , t ∈ [1, . . . , 288]
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Note. This graph displays the 288 time indexed coefficients α2
t , t ∈ [1, . . . , 288] (red line) from the cross sectional

regression in Equation (4.1). The 288 fitted coefficients α2
t have a median standard error of 87.7. The coefficients

marked with a blue cross on the graph are not significant at the 99% confidence level. The y-axis is (inverted) decline

in demand in Mw/h for the year. The graph shows that the yearly decline in demand has been concentrated in the

morning and afternoon peak periods. This indicates that peak demand pricing is causing time insensitive electricity

consumers to shift demand to non-peak periods.
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4.4 Model 2 Using Time Weighted Temperature

In this section we report the results from fitting Model 2 (Equation (3.2)), where temperature

is time weighted using a constant piecewise continuous smooth function of DST, w(DSTt). The

results are reported in Table 4. We observe that Model 2 produces a superior fit compared to

Model 1 (Tables 1 and 2), which is evident from the higher value for R2
adj and more significant

temperature term (higher value for the t-stat for |(w(DSTime) ∗ Temp)− 20|).

Table 4: Model 2 using time weighted temperature

Estimate Std.error t-value F test (p-value) R2
adj

Intercept 7772.4*** 3.7 2100.91 0.862

s(DSTime) 28250 (0.000)

w(DSTime) ∗ |Temp− 20| 216.5*** 0.7884 274.57

Year -360.55*** 5.52 -65.28

Note. Estimation results for regression in Eq. (3.2) (Model 2); ***, ** and * indicate significance at 0.001, 0.01 and

0.05 significance level, respectively.

4.5 The Nonlinear Temperature Dependent Demand

To examine the first possibility suggested in Section 4.2 that the relationship between temperature

difference and demand is non-linear, we fit Model 3 (Equation (3.3)) where the relationship between

the temperature and demand is a non-linear function modelled by non-periodic splines. The results

of this regression are reported in Table 5. We observe from the table that the term h(Temp) is

highly significant. However, R2
adj from Model 3 is marginally lower compared to Model 2, which is

due to the fact that we do not time weight the temperature signal in Model 3 using w(.). Figure 6

shows using the black line the shape of the non-linear relationship between temperature difference

and demand. It is clear from this graph that the relationship is ‘U’ shaped at the minimum

demand ‘comfort’ temperature and this explains the marginally optimal 20◦C minimum demand

temperature, as discussed in Section 4.2.

4.6 Time Weighted Temperature Model

In this subsection we present the results for the time weighted temperature model (Model 4) given

in Equation (3.4). Table 6 reports estimation results. The results from the t-tests indicate that both

variables, temperature and year are highly statistically significant, and the value of the F-statistic
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Table 5: Model 3 using nonlinear temperature.

Estimate Std.error t-value F test (p-value) R2
adj

Intercept 8323.4*** 3.4 2435.38 0.841

s(DSTime) 30722 (0.000)

h(Temp) 7987 (0.000)

Year -338.4*** 6.0 -56.17

Note. Estimation results for regression in Eq. (3.3) (Model 3); ***, ** and * indicate significance at 0.001, 0.01 and

0.05 significance level, respectively.

Figure 6: Nonlinear temperature dependent electricity demand using non-periodic splines.
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Note. Non-linear temperature dependent electricity demand using non-periodic splines. Black line shows the resulted

fitted demand when using Model 3 (Equation (3.3)) with the unweighted temperature spline function h(Tempt). Red

line shows the resulted fitted demand when using Model 4 (Equation (3.4)) with the time weighted spline temperature

function h(Tempt ∗ w(DSTt)).

for the weighted term h
(
Temp ∗w(DST )

)
is larger compared to the F-statistic for the unweighted

term h(Temp) from Model 3 (Table 5). We also observe the largest (across all considered Models

1 through 4) value for the R2
adj corresponding to 0.869, which again points towards a superior fit
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for the weighted temperature model.

Table 6: Model 4 using time weighted nonlinear temperature.

Estimate Std.error t-value F test (p-value) R2
adj

Intercept 8328.6*** 3.1 2687.42 0.869

s(DSTime) 22115 (0.000)

h
(
Temp ∗ w(DST )

)
11754 (0.000)

Year -349.0*** 5.5 -63.92

Note. Estimation results for regression in Eq. (3.4) (Model 4); ***, ** and * indicate significance at 0.001, 0.01 and

0.05 significance level, respectively.

The red line in Figure 6 corresponds to the non-linear temperature dependent demand func-

tion which results from fitting Equation (3.4) (Model 4) that uses a spline function h(Tempt ∗

w(DSTt)). Similarly to the curve resulting from Model 3 which uses unweighted temperature func-

tion h(Tempt), this function is a rounded ‘U’ shaped function, with an optimal minimum demand

‘comfort’ temperature corresponding to slightly below 20◦C. We notice that for both, weighted

and unweighted functions, fitted demand takes nearly identical values for larger temperatures,

and the curves deviate from each other for small temperatures. We observe that in the case of a

time weighted temperature, the demand increases with decreasing temperatures at a faster rate

compared to when using an unweighted function.

Finally, we assume that changes in demand as a function of the Y ear variable are non-linear. This

is achieved, as suggested above, by fitting a non-periodic spline function. We fit Model 5 (Equation

(3.5)), which uses the spline term k(Y eart). The results are reported in Table 7. We observe that

the addition of the non-linear term k(Y eart) produces a R2
adj = 0.898, which is significantly higher

than the one obtained for Model 4 (R2
adj = 0.869). Figure 7 shows the fitted functional form of the

term k(Y eart) (black line). This was fitted with DST set to noon (DST = 0.5) and temperature

set to the optimal ‘comfort’ temperature (no temp signal; Temp = 20◦C). The red line is a linear

approximation of k(Y eart) and shows a decline in demand of −373.4 Mw/h across the year. This

is consistent with the linear fitted decline in Model 4. The independent variable Y eart is scaled

[0, 1), where 0 corresponds to the first data record of electricity demand for the 5 minute standard

time period February 3, 2014 00:00-00:05 (DST February 4, 2014 00:55-01:00) and 0.999990487

corresponds to the final electricity demand record for the standard time period February 2, 2015

23:55-24:00 (DST February 3, 2015 00:55-01:00).
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Table 7: Model 5 using nonlinear yearly variation in demand.

Estimate Std.error t-value F test (p-value) R2
adj

Intercept 8156.8*** 1.36 6000 0.898

s(DSTime) 34731 (0.000)

h
(
Temp ∗ w(DST )

)
8971 (0.000)

k(Y ear) 4190 (0.000)

Note. Estimation results for regression in Eq. (3.5) (Model 5); ***, ** and * indicate significance at 0.001, 0.01 and

0.05 significance level, respectively.

Figure 7: Fitted spline function of yearly changes in demand.
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Note. The fitted functional form of the k(Y eart) term (black line) in Model 5 (Equation (3.5)), fitted using DST set

to noon (DST = 0.5) and temperature set to the optimal ‘comfort’ temperature (no temp signal; Temp = 20◦C).

The red line is a linear approximation of k(Y eart).

5 Seasonal Demand Models

The yearly electricity demand models in the previous section are essentially a three-term models

where each of the three terms on the right hand side of the regression equation (Models 1 through
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5) could be described as follows. The first term, s(DSTt), is a fitted cyclic/periodic spline function

that models demand as a function of a DST (activity). The second term h
(
·) models demand

innovation due to temperature. We notice that the function h(·) in Models 1 and 2 can be thought

of as a linear function (terms β1|Tempt−20.0| and β1(w(DSTt)∗ |Tempt−20.0|) on the right hand

side of Equations (3.1) and (3.2)). The function w(DSTt) can be thought of as a constant in Model

3 (Equation (3.3)) since there is no weighing of the temperature demand signal. Finally, the third

term k(Y eart) models long term demand seasonality and drift, and can be thought of as a linear

function (β2Y eart) in Models 1, 2, 3 and 4.

The key assumption of the (yearly) Models 1 through 5 is that the daily (DST)/activity demand

cycle is homogeneous and does not change across weekdays or seasons. This assumption of daily

demand cycle homogeneity is the reason we excluded weekends and holidays from the analysis.

When the cross sectional regression was examined in Section 4.3 it was shown that the term

s(DSTt) is not stationary across the year. The solution to the non-stationarity of s(DSTt) is to

fit regressions over shorter periods, thus, we fit the regression in Model 6 (Equation (3.6)) for each

calendar month. This model is referred to as a seasonal demand model.

The daily smoothed (periodic splines) electricity demand curves, s(DSTt), for different months of

the year that result from fitting Model 6 are shown in Figure 8. It is important to notice that even

if the DST (activity) demand cycle is homogeneous across months, the s(DSTt) term will change

each month (see Figure 8) because of the change of the daily temperature cycle between months.

It is not the purpose of our paper to disentangle that part of the daily s(DSTt) term that is due to

intrinsic DST (activity time) and that part that is due to the daily temperature cycle. However,

performing the regression each month has two implications:

• Any seasonal change in the daily intrinsic DST (activity time) related demand will be captured

in the s(DSTt) term, resulting in a better fit to the data.

• The seasonal daily temperature variation will also be captured in the s(DSTt) term. This

effect is obvious when we examine the empirical s(DSTt) functions in Figure 8. The winter

s(DSTt) functions (in June, July August) show twin peaks of demand in the morning and

evening when the temperature is significantly colder than the ‘comfort’ temperature (20◦C).

The daytime demand is lower as the temperature rises towards the ‘comfort’ temperature.

Conversely, in summer (December, January, February) the peak demand reaches its maximum

in the afternoon when temperatures are above the ‘comfort’ temperature.
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Figure 8: Electricity demand curves for different months
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Note. Daily smoothed (periodic splines) electricity demand curves for different months of the year (indexed by DST).

Estimation results for Model 6 are summarised in Table 8. We observe that all variables are highly

statistically significant, with R2
adj ranging between 0.803 to 0.963. It is worth noticing that the

smallest R2
adj of 0.803 is observed for the month of December. If however, we exclude the last

three days of the year (29, 30, 31 December), the R2
adj increases to 0.906. In the following we

provide the explanation for this observation, referring to Figure 9 that shows actual demand (black

line) and predicted demand (red line) for December in the top panel, and associated temperatures

in the bottom panel. The period between Christmas and New Year (December 29, 30, 31) is

a ‘defacto’ holiday period with many businesses closed (even though they are officially business

days). Although this period is not formally a holiday, it is characterized with very low electricity

demand (see the low minimum demand marked on the graph). An implicit assumption in the

regression is that the DST (activity) based demand cycle is homogenous across days and that

demand innovations are driven by temperature. However, by including the ‘defacto’ holiday period,

the underlying demand in the data is not homogeneous and the regression fitted using this low
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demand data is ‘biased’ downwards causing temperature driven electricity peaks earlier in the

month (December 2: Max 34◦C; December 3: Max 33◦C) to be underestimated. Conversely,

the regression overestimates temperature driven electricity peaks during the low demand ‘defacto’

holiday period (December 29: Max 30◦C; Decembers 30: Max 34◦C).

Figure 9: Actual (black) and predicted (red) demand for December 2014
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Note. Top panel: actual (black line) and predicted (red line) demand for December 2014; bottom panel: the associated

temperatures.

6 Predicting Electricity Demand

In the previous sections we specified the input parameter temperature Tempt as the actual temper-

ature, i.e., we assumed that the actual temperature is known. We refer to the resulting model as

the ‘Oracle’, or the benchmark model as it contains all the information about the temperature vari-

able. This assumption is however unrealistic for any predictive model of electricity consumption,

as clearly the actual temperatures are unknown at the time of prediction.
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Table 8: Model 6: Monthly seasonal regressions

Month Coefficent Estimate Std.error t-value F test (p-value) R2
adj

February 2014 Intercept 7961.7*** 7.3 1095.7 0.928

s(DSTt) 3174 (0.000)

w(DSTt) ∗ |Tempt − 20| 197.3*** 3.5 56.9

March 2014 Intercept 8018.1*** 5.5 1446.0 0.963

s(DSTt) 8855 (0.000)

w(DSTt) ∗ |Tempt − 20| 46.2*** 2.7 17.0

April 2014 Intercept 7775.9*** 6.7 1167.2 0.919

s(DSTt) 5872 (0.000)

w(DSTt) ∗ |Tempt − 20| 27.5*** 3.2 8.5

May 2014 Intercept 7792.0*** 6.9 1134.5 0.952

s(DSTt) 12085 (0.000)

w(DSTt) ∗ |Tempt − 20| 109.0*** 2.6 41.6

June 2014 Intercept 8031.1*** 12.6 637.3 0.939

s(DSTt) 6574 (0.000)

w(DSTt) ∗ |Tempt − 20| 129.3*** 3.5 37.3

July 2014 Intercept 8223.1*** 11.7 700.7 0.941

s(DSTt) 6683 (0.000)

w(DSTt) ∗ |Tempt − 20| 147.9*** 2.5 58.3

August 2014 Intercept 7956.1*** 13.1 607.5 0.932

s(DSTt) 3964 (0.000)

w(DSTt) ∗ |Tempt − 20| 184.2*** 2.9 62.9

September 2014 Intercept 7496.7*** 8.2 914.7 0.870

s(DSTt) 3179 (0.000)

w(DSTt) ∗ |Tempt − 20| 139.6*** 2.6 53.4

October 2014 Intercept 7363.4*** 4.8 1529.4 0.934

s(DSTt) 6765 (0.000)

w(DSTt) ∗ |Tempt − 20| 126.9*** 1.7 76.4

November 2014 Intercept 7509.0*** 6.3 1192.6 0.900

s(DSTt) 2848 (0.000)

w(DSTt) ∗ |Tempt − 20| 233.0*** 2.4 95.2

December 2014 Intercept 7615.2*** 10.8 703.7 0.803

s(DSTt) 1108 (0.000)

w(DSTt) ∗ |Tempt − 20| 139.3*** 4.1 34.1

December 2014 Intercept 7585.7*** 8.0 948.0 0.906

December 29,30,31 s(DSTt) 1839 (0.000)

excluded w(DSTt) ∗ |Tempt − 20| 231.0*** 3.3 70.3

January 2015 Intercept 7498.6*** 8.3 898.1 0.930

s(DSTt) 1862 (0.000)

w(DSTt) ∗ |Tempt − 20| 279.8*** 2.9 97.9

Note. Estimation results for monthly seasonal regression model in Eq. (3.6) (Model 6); ***, ** and * indicate

significance at 0.001, 0.01 and 0.05 significance level, respectively.26



At the other extreme we can use calculated temperatures based on long-term seasonal temperature

variations and a physics based model of intra-day temperatures. This is a ‘zero knowledge’ model

and we refer to this model as the ‘Zero’ model. The model of intra-day temperatures of the

‘zero’ model is based on the physics of daytime solar radiation (sinusoidual) and night-time cooling

(exponential decline) using a model developed by Göttsche et al. (2001). Full details on the intra-

day physics based model of intra-day temperature are detailed in Appendix A. However, the ‘zero’

model is also unrealistic since any forecaster of next day electricity demand will have access to

meteorological temperature forecasts.

The most realistic electricity forecasting model uses next day forecast maximum and minimum

temperatures and then applies the Göttsche et al. (2001) physics model to interpolate intra-day

temperatures for the next day. We refer to this model as the ‘Forecast’ model. Specifically, we use

the publicly available 16:20 DST (‘the 6 o’clock news forecast’) Australian Bureau of Meteorology

forecast of next day maximum and minimum temperatures at the Sydney suburb of Paramatta.12

We note that a commercial electricity demand forecaster would use more accurate and frequent

subscription (non-public and expensive) forecasts available to Aviation and other commercial users.

The empirical results obtained from forecasting electricity demand using the ‘Oracle’ model (com-

plete temperature information), the ‘Zero’ model (no temperature information) and the ‘Forecast’

model (one day ahead forecast for the maximum and minimum temperatures) are presented in

Table 9. We analyse the data using the seasonal Model 6 (Equation (3.6), refer also to Section

5), which is fitted independently to monthly data.13 The model does not have a long term Y eart

component. For comparison we also analyse the best performing model for yearly data, Model 5

(Equation (3.5), refer also to Section 4).

The Australian Energy Market Operator (AEMO) also publishes next day electricity forecasts and

these are tabulated below for comparison with the models we have developed above.14 The AEMO

forecasts used are published at 12:00pm DST the previous day for 48 half hour periods beginning

12Paramatta is the closest suburb (approx 10 kilometres) to Homebush where Australian Bureau of Meteorology

forecasts are available. The median difference between the forecast minimum at Paramatta and the actual minimum

at Homebush was −0.2◦C (std dev. 1.4◦C) and the difference between the forecast maximum at Paramatta and the

actual maximum at Homebush was −0.1◦C (std dev. 1.4◦C).
13Days December 29, 30 and 31 have been removed from the December 2014 data, refer to the discussion in Section

5.
14These forecasts can be found on the AEMO web server at the URLs: http://www.nemweb.com.

au/REPORTS/CURRENT/Short_Term_PASA_Reports/ and http://www.nemweb.com.au/REPORTS/ARCHIVE/Short_Term_

PASA_Reports/ for current and archived reports, respectively.

27

http://www.nemweb.com.au/REPORTS/CURRENT/Short_Term_PASA_Reports/
http://www.nemweb.com.au/REPORTS/CURRENT/Short_Term_PASA_Reports/
http://www.nemweb.com.au/REPORTS/ARCHIVE/Short_Term_PASA_Reports/
http://www.nemweb.com.au/REPORTS/ARCHIVE/Short_Term_PASA_Reports/


at 04:00am the following day. The date of the AEMO demand forecasts was all business days

from July 1, 2014 to June 30, 2015.15 Thus, our forecasts and comparisons to AEMOS’s forecasts

are based on the sample from July 1, 2014 to February 2, 2015. The AEMO forecast data can

be regarded as the best publicly available commercial electricity demand forecasts. However, the

AEMO forecasting model and methodology is not in the public domain. Demand forecasts are used

by generators and distributors to price the delivery of power into the National Electricity Market

(NEM) and it is likely that there are additional non-public prediction models, particularly for price

sensitive demand peaks, developed by generators and distributors to assist with pricing electricity

supply in the NEM.

Table 9: Electricity demand prediction statistics, n = 71136

Model 6 (Seasonal)

Median Error Std Dev. Error

‘Oracle’ -0.06% 3.52%

‘Forecast’ 0.09% 4.20%

‘Zero’ -0.37% 4.73%

Model 5 (Yearly)

Median Error Std Dev. Error

‘Oracle’ -0.12% 4.03%

‘Forecast’ 0.15% 4.31%

‘Zero’ -0.35% 4.67%

AEMO Prediction

Median Error Std Dev. Error

‘Forecast’ 0.06% 2.64%

Note. Electricity demand prediction statistics for the ‘Oracle’ model (complete temperature information), the ‘Zero’

model (no temperature information) and the ‘Forecast’ model (one day ahead forecast for the maximum and minimum

temperatures). The results are contrasted against AEMO’s forecasting model.

As expected, using ‘Oracle’ temperature data results in the best prediction statistics, leading to

the smallest median forecasting error and the smallest standard deviation of the forecasting error.

The ‘Forecast’ (realistic) temperature data leads to the intermediate performance, and the ‘Zero’

(no knowledge) temperature data has the least predictive power (refer to Table 9). We note that

the yearly Model 5 (Equation (3.5)) has good predictive power and is very similar in performance

to Model 6 (Equation (3.6)). We also note that the standard deviation of the ‘Forecast’ prediction

error (4.31%) is approximately 1.65% higher than the comparable AEMO’s standard deviation of

the forecast error (2.64%). Given the limitation of one representative temperature for the entire

15Unfortunately, we were unable to obtain AEMO forecasting data to exactly match our February 3, 2014 to

February 2, 2015 data period.
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NSW demand area of our seasonal and yearly models, this is an excellent result. We discuss the

direction of further forecast model development in Conclusion (Section 7).

7 Conclusion

This paper introduces a parsimonious Generalised Additive Model (GAM) to relate electricity

demand in Australia to the time of the day, temperature and time of the year. We notice that

using Daylight Savings Time (DST) as the independent variable for the time indexed daily periodic

demand consumption function provides a small but highly significant improvement of fit compared

to using standard (astronomical) time. We establish a minimum demand ‘comfort’ temperature of

20◦C. However, the difference between 20◦C and 19◦C or 21◦C is very small and this implies that

temperature dependent demand is a non-linear function of the difference between the minimum

demand temperature, with small variations away from the comfort temperature producing very

small changes in demand. This ”U” shaped temperature sensitivity curve is shown in Figure 6.

The major novel result of this paper is that the temperature demand signal is time weighted.

This relates the magnitude of the temperature demand signal to the daily activity cycle based

on DST. This result is intuitive: A cold morning at 04:00am generates a much lower increase in

demand compared to a cold morning with the same temperature at 09:00am due to the difference

in personal and economic activity between the two times. Regression models using time weighted

temperature demand outperform models that were not time weighted (see Section 4). The result is

also empirically modelled using cross-sectional regressions of the change in demand as a function of

the temperature for all 5 minute periods across the day. This empirical time weighted temperature

demand signal relationship is shown in Figure 4.

The overall accuracy of our parsimonious GAM model is evaluated against the commercial demand

forecasting model used by the Australian Energy Market Operator (AEMO). The specification

of the AEMO forecasting model is commercial property and is not public. However, the AEMO

intra-day demand forecasts are published online. The standard deviation of the AEMO forecast

error is 2.6%. The comparable result for our parsimonious GAM model is a standard deviation

of the forecasting error corresponding to 4.3% (see Section 6). This result is excellent given the

single temperature limitation of our model (discussed below and in Section 2). The parsimonious

GAM model is a solid foundation for the development of more elaborate and accurate models for

forecasting high frequency electricity demand.
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Further development of the parsimonious GAM model to increase forecasting accuracy will depend

on improved temperature and climate data. Temperature variations of 10◦C or more between

coastal and inland suburbs of Sydney are common. Demand weighted temperature data from

different suburbs would increase model accuracy. In addition, there are several substantial cities

several hundred kilometres from Sydney. A more accurate model would also include demand

weighted temperatures from these cities. Finally, a commercial electricity demand forecaster would

use more accurate and frequent subscription (non-public and expensive) temperature forecasts

available to Aviation and other commercial users.
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A Physics-Based Intra-Day Temperature Model

This model of expected intra-day temperatures uses a physics-based expected diurnal temperature
variation.16 Intra-day daytime temperatures are dependent on incoming solar radiation (sinusoid-
ual) and nighttime cooling is dependent on heat radiation (exponential decline).

A.1 Solar Time

Solar time is based on the apparent angular motion of the sun across the sky with solar noon being
the time when the sun crosses the meridian of the observer. The time of the solar noon Tsolar is
calculated by adjusting the longitude on which the local standard time (Tstd) is based using the
standard meridian for the local time zone (Lst) and the actual (location) longitude Lloc plus the
time adjustment factor Te(D). Thus, Tsolar is determined by the so called equation of time, which
adjusts for eccentricities of the Earths orbit throughout the year:

Tsolar = Tstd + 4
(
Lst − Lloc) + Te(D). (A.1)

For Sydney, the local standard time Tstd corresponds to GMT + 10 hours; the standard meridian
for the local time zone Lst = 150 degrees and the longitude of Sydney’s location Lloc = 151.2094
degrees. Te(D) representing the approximate equation of time adjustment (in minutes) is given by
(see Duffie and Beckman (2013)):

Te(D) = 229.2
(
0.000075

+ 0.001868 cos(B)− 0.032077 sin(B)

− 0.014615 cos(2B)− 0.04089 sin(2B)
)
.

(A.2)

Here, D represents the day of the year such that D = 1 for the January 1 and D = 365 for the
December 31; and B (degrees) is given by

B = (D − 1)
360

365
, 1 ≤ D ≤ 365. (A.3)

The adjustment for solar time in terms of standard time Tstd (in minutes) given in Equation (A.1)
can then be calculated as

Tsolar = Tstd + 4
(
150− 151.2094) + Te(D). (A.4)

16Diurnal temperature variation is a meteorological term related to the difference between the daily maximum and
minimum temperature.
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Thus, Sydney time adjusted for the actual longitude is GMT + (10 hours, 4 Minutes, 50 seconds),
if not taking the equation of time into consideration. If we also adjust for the equation of time on
the 15th October 2014; Te(D) = 14.41 minutes. So that the solar noon on the 15th October is at
11am, 40 minutes and 45 seconds standard time.

The length of the solar day is obviously dependent on the day of the year, D. This is calculated
using the result in Duffie and Beckman (2013) and assuming a 365 day year:

ω(D) =
2

15
arccos(− tan(α) tan(β(D)), (A.5)

where α is the latitude of Sydney corresponding to α = 33.8650 (degrees South).

The day of year change in inclination of the sun at the equator β(D) is given by an approximation
in Duffie and Beckman (2013) (adjusted for the Southern hemisphere):

β(D) = −23.45 sin

(
360

365
(284 +D)

)
. (A.6)

A.2 Modelling Diurnal (Intra-day) Temperature Variation

Modelling intra-day temperature variation across the chosen sample period is relatively complex
due to the seasonal variation in daylight hours and inclination of the sun. We choose to use
a slightly simplified form of the theoretical model of diurnal temperature derived by Göttsche
et al. (2001), which is based on the physics of daytime solar radiation (sinusoidual) and night-time
cooling (exponential decline). The intra-day (diurnal) temperature Tday(t) between the time of the
minimum daily temperature tmin (before sunrise) and the time of sunset tsunset is given by:

Tday(t) = Tmin +
(
Tmax − Tmin

)
sin

(
π

2

( t− tmin

tmax − tmin

))
, tmin ≤ t ≤ tsunset. (A.7)

This is a sinusoid, which is theoretically modelled by Göttsche et al. (2001) using the physics of
daytime solar radiation absorption by the surface of the Earth. We also define

Tsunset = Tday(tsunset). (A.8)

The intra-day (diurnal) temperature Tnight(t) between the time of sunset (cessation of solar ra-
diation) tsunset and the time of the minimum temperature tmin(nextday) on the next day is given
by

Tnight(t) = Tsunset exp

(
log(Tmin(nextday)/Tsunset)

t− tsunset
tmin(nextday) − tsunset

)
, (A.9)

tsunset < t < tmin(nextday).

This is an exponential, which is also theoretically modelled by Göttsche et al. (2001) using the
physics of the night daytime solar radiation from the surface of the Earth into space.17

Figure 10 shows the modelled time of the daily temperature maximum (tmax) and minimum (tmin)
in Sydney throughout the year. The expected time of the minimum daily temperature (blue line
in Figure 10) occurs before sunrise and begins rising earlier before dawn in winter. The expected
time of the maximum temperature (red line in Figure 10) occurs after the solar noon and is later
after the solar noon in winter.

17The equations above are slightly simplified from the Göttsche et al. (2001)’s equations and do not have equal
first derivatives at sunset (tsunset) and the minimum temperature time (tmin).
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Figure 10: Sydney sunset (tsunset), solar noon and sunrise in standard time
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Note. Sydney sunset (tsunset), solar noon and sunrise in standard time, shown together with the expected time (red
line) of the daily maximum temperature (tmax) fitted using a smoothed period spline model and the fitted expected
time (blue line) of the daily minimum (tmin) temperature.
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Figure 11: Actual maximum and minimum temperatures and its approximations

Sydney Smoothed Max and Min Temps
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Note. The grey lines show actual maximum and minimum temperatures between January 1, 2014 to December 31,
2014. The red and blue lines are the same data smoothed periodic splines, which are approximations to the expected
annual daily maximum and minimum temperatures.
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