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Abstract

We examine the disruptions to global commodity flows following the bankruptcy of a
commodity trading firm. The physical commodity network is operated by a handful
of large traders that are responsible for the timely delivery of raw materials and
inputs to industrial production. We propose a model that simulates the resilience
and response time of the network following a shock. Our results suggest that a
number of commodity traders carry significant systemic risk. The forced removal of a
trader from the network has considerable implications for the prices and availability
of physical commodities over a period of 6 to 12 months.
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1 Introduction

Commodity trading firms operate the global flow of natural resources. They are responsible

for the timely delivery of primary inputs to industrial production. In this paper, we examine

the question whether the failure of a commodity trading firm has systemic implications for

the real economy. Systemic risk is a key research topic in financial economics that is

typically associated with financial institutions. A large and mature literature has proposed

a number of empirical risk measures and theoretical models which explain the economic

transmission channels of systemic risk for financial firms.1 For commodity trading firms,

the systemic relevance is not obvious as these firms do not hold each other’s assets on

their balance sheet and do not create financial links during their operations. In contrast

to financial institutions, there is thus no systemic risk within the network of commodity

traders. Instead, we argue that the systemic relevance of commodity trading firms is

due to their vital function as providers of raw materials to manufacturing and industrial

production. Natural resource deposits are concentrated within a few countries and need to

be transported by ship to the regions in which they are consumed. Commodity traders are

specialist firms that manage the logistical operations of those heavy, bulky, and sometimes

toxic commodities. We show that the forced removal of a commodity trader from this

network of physical flows can lead to a disruption of the supply chain in the buyer regions

that is reflected in lower local supply and higher prices. The dynamics of this negative

supply shock persist until other traders gradually replace the missing trade routes left by

the failed company.

The theoretical foundation for our paper is provided in Acemoglu et al. (2012) who

study the intersectoral input-output linkages in the real economy. The key insight is the

fact that when one sector acts as a supplier to chains of downstream sectors, idiosyncratic

shocks to the supplier can generate cascading effects that propagate to the entire economy.2

1This literature is well summarized in the overview article in Engle (2018) and more recently in Jackson

and Pernoud (2021). Two prominent papers that contributed significantly to the literature and which are

worth mentioning here are Adrian and Brunnermeier (2016) and Acharya et al. (2017).
2The traditional argument is that in a large and diversified economy with n producers, aggregate output

volatility ∝ 1/
√
n. Acemoglu et al. (2012) show that under cascading effects, this might not be the case

due to first- and higher order interconnections. In particular, volatility might not vanish even if n→ ∞.

2



We illustrate this mechanism for the crude oil sector in Figure 1: a commodity trader has

a trading relationship with an importing region by supplying the economy of that region

with natural resources such as crude oil. Crude oil is currently the number one primary

energy source in the world (see, e.g., Ritchie et al., 2022) and is refined into different energy

products such as road fuels, liquefied petroleum gas, and heating oil that are used in various

sectors of the economy including transportation, cooking, and heating. Whether the trader

occupies a central position for the buyer economy depends on how the traded goods are

further processed. Inoue and Todo (2022) denote this the ”upstreamness” and compare the

importance of different imported products for Japan. They show that commodities such as

petroleum, coal, lumber, and plastics take a central position for the economy whereas for

instance transportation equipment are semi-final products that are assembled domestically.

Commodity supply shocks are therefore estimated to be of larger relevance than similar

shocks for other imported products. Acemoglu et al. (2012) show that in this type of

setting, a disruption of the trade link that is initially idiosyncratic in nature will have

systemic economy-wide effects. Hence, commodity traders are systemically relevant even

for large economies if they provide raw materials that are of crucial importance for the

economy’s central input producers.

Because of the systemic risk, we suggest to draw the attention to the possible conse-

quences of a default of one or more of these traders. As a first step in this direction, we

propose a model which allows us to simulate the dynamics of global commodity flows and

prices within an adjustment period following a trader’s default. We present a systemic risk

ranking of commodity traders based on the simulated impact of trader default on a global

as well as regional scale. Our model is based on the following economic mechanism: the

default of a commodity trader causes some regions to have short-run flows that are smaller

than their long-run counterparts. Local supply shortages increase commodity prices in

the affected regions which in turn generate an incentive for the remaining traders to sub-

sequently fill the gap left by the defaulted trader. Over time, equilibrium is restored as

supply shortages are reduced and prices and quantities converge to their long-run values.

In order to keep our model manageable, we introduce three simplifying assumptions:

First, we strictly distinguish between commodity seller and buyer regions with traders tak-
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Figure 1: Systemic Spillovers from Commodity Trader Default

This figure illustrates how commodity trading firms occupy a central position in the econ-

omy’s production network. Since oil is used as an input in a number of industries, the

failure of the commodity trader generates a supply shock that propagates through a signif-

icant part of the real economy.

ing the role of the intermediary. There are thus no seller regions which simultaneously act

as buyer regions and vice versa. Second, we assume a long-run equilibrium commodity flow

matrix which determines the quantities sold from each seller to each buyer. In particular,

the default of a commodity trading firm initiates a response from the remaining traders

who will compensate for the local supply disruption without re-optimizing the long-term

flows that are determined by this matrix. Finally, prices are the product of a global price

component, a regional supply shortage margin and an additional multiplier accounting for

the distance between buyer and seller region. There are hence no trader specific price

components which might result from specialized knowledge or scale economies.

This basic framework of price and quantity adjustments offers three main advantages.

First, our model requires the calibration of only two parameters. One parameter captures

the elasticity of prices to changes in supply, the other determines the speed of the ad-

justment to the long-run commodity flow matrix. For the calibration of both parameters,

we can resort to existing work on commodity price shocks (see Kilian, 2014). Second,
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the adjustment mechanism is sufficiently general to hold for different types of commodi-

ties. Differences across commodities are reflected in their price elasticities and adjustment

parameters. Third, in principle, we can easily incorporate trends in protectionism, deglob-

alisation, and other forms of effective reorganization in global trade patterns (Goldberg

and Reed, 2020; Foti et al., 2013). Within our model, such changes would be reflected by

defining an appropriate shift in the long-run flow matrix. For instance, the recent changes

in international flows of energy commodities such as oil and gas as a consequence of the

sanctions following the Russian invasion of Ukraine in 2022, can be modeled by shifting

outflows from one seller region to another.3

We substantiate our model with data on 155,435 individual physical transactions op-

erated by a total of 1,637 commodity trading firms. Based on annual data of seaborne oil

trade from 2007 to 2018, we construct the long-run world oil flow matrix between 15 world

trading zones. For model calibration, we utilize the flexible oil market VAR developed

and applied in Baumeister and Peersman (2013a,b). We show that 10 commodity traders

manage 43% of the global physical trade in crude oil and refined energy products, making

physical trading a highly concentrated business. Using our model to simulate the failure

of a commodity trading firm, we quantify the disruptions in trading flows and the result-

ing price impacts on exposed importing regions. The top 10 most systemically important

energy firms include Unipec, Shell, BP, and Vitol. Our estimates suggest that the failure

of one of these firms can lead to local supply disruptions of up to 16 million barrels per

quarter and a short-term doubling in local oil prices. Given the focus of policy makers

on energy security of households and the competitiveness of energy intensive industries,

these effects are economically large. In this regard, our findings also contribute to the rich

literature on oil supply shocks by providing a new perspective on the possible sources of

these shocks. Finally, we also provide a new perspective on systemic risk in general, which,

thus far, has been dominated by the analysis of financial institutions.

The remainder of this paper is organized as follows. Section 2 provides an overview

of the scant literature on the topic and discusses commodity trading firms. We propose a

3Our model could also be used to simulate production shocks in macroeconomic models for aggregate

output (e.g. Acemoglu et al., 2012; Gabaix, 2011). Shifts in the long-run matrix and the relationship

between commodity supply shocks and aggregate output, however, is beyond the scope of this paper.
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network model of physical commodity flows in section 3. The data on physical commodity

transaction is detailed in section 4. The empirical results of our simulations are examined

in section 5. Section 6 concludes.

2 Related Literature

Our paper is located at the intersection of the literature on physical trade and the work

on systemic risk. Bernard and Moxnes (2018) provide an overview of the literature on

physical trade which is centered around the network relationship between individual firms.

In the terminology of the trade literature, the model we propose in this paper is a dynamic

bipartite macro model: we explicitly model the time paths of prices and physical flows,

buyer and seller regions only trade with each other but not among themselves, and we

focus on aggregate regional flows rather than on individual firms. Although this strand of

research improves our understanding of why firms trade and how the nodes of exporting

and importing firms match, the network edges are taken for granted: the operation of

physical flows is assumed to work flawlessly. We aim to challenge this view by examining

the consequences of commodity trader default.

The trading of commodity futures and its impact on commodity markets has been

extensively analyzed in the academic economics literature over the past decade (see Kang

et al., 2023). However, almost no attention has been paid to the market players that are

eventually responsible for the physical commodity flows. In one of the few publications on

this topic, Baines and Hager (2021) provide two explanations for this phenomenon. On the

one hand, the majority of commodity trading firms are privately-owned. Detailed data on

the physical and financial trading activities is therefore rare. Examples for such companies

in private ownership are Vitol and Cargill, major players in the energy and agricultural

commodity market with an annual revenue of 225bn and 113.5bn US$ in 2019, respectively

(see Baines and Hager, 2021). Data availability is even more problematic in case of the

many small and largely unknown trading companies (see Eggert et al., 2017). On the

other hand, the analysis is complicated by the fact that there is often no clear-cut border

between traditional commodity trading, i.e. connecting commodity sellers and buyers, and

upstream activities such as mining or oil drilling. A prominent example is publicly held
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Glencore, after Vitol one of the biggest trading companies with an annual revenue of 256

bn US$ in 2022.4 Glencore is nowadays heavily involved in mining activities and can be

regarded as an industrial conglomerate rather than a pure trading company (Baines and

Hager, 2021; Gilbert, 2021). In this paper, we examine the most traded and most produced

commodity, i.e. crude oil, with major players being traditional trading companies as well as

multinational oil and gas companies such as Vitol and Shell, respectively. However, there

are also a number of other commodities for which trading is highly concentrated among a

few large companies. This includes the market for cocoa analyzed by Oomes et al. (2016).

Here, the four largest commodity traders, Olam, Cargill, Barry Callebaut, and Armajaro,

have a market share of roughly 50% .

Our paper is also related to the literature on supply chain disruptions. Three notewor-

thy papers are Barrot and Sauvagnat (2016), Carvalho et al. (2020) and Inoue and Todo

(2022). These authors study the propagation of outside economic shocks through the sup-

ply network and the extent to which economic activity is eventually reduced. Barrot and

Sauvagnat (2016) examine the impact of natural disasters such as blizzards, earthquakes,

floods, and hurricanes in the United States while Carvalho et al. (2020) explore the great

East Japan earthquake in 2011. Inoue and Todo (2022) examine a very detailed data set of

4 million supply chain relationships for Japan and show the extent to which industries are

affected by the disruption. However, the source of the disruption is unspecified and related

to events such as the Covid-19 pandemic. In the empirical part below, we argue that the

default of a large commodity trader can generate shocks that are comparable in economic

size.

Finally, we note that our paper is closely connected to Foti et al. (2013) who examine

the integrity of the global trading network by developing a model for network dynamics

and simulating different types of shocks. Perhaps somewhat surprising, our paper is to a

lesser extend connected to the literature on commodity trading networks, e.g. Fair et al.

(2017), Wei et al. (2022) and Liu et al. (2020). These studies focus on metrics of empirical

networks and not, as we do here, on the possible sources of short shocks or long-run changes

to the trading network.

4see Statista.com
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3 Model

3.1 Trading Network

We consider an economy with K regions and N traders. The number of units of a com-

modity sold by a seller at region Rj to a buyer at Region Ri via trader Tn at time t is

denoted by Xijn,t. To keep the trading relationships tractable, we make the following

Assumption 1 For any region Rj and any time t there exists at least one i, n combination

such that either Xijn,t > 0 or Xjin,t > 0. If Xijn,t > 0 then Xjin,t = 0 for all i, n. If

Xjin,t > 0 then Xijn,t = 0 for all i, n. Furthermore, Xjjn,t = 0.

We thus abstract from regions without any trading. At each region, there are either sellers

or buyers but not both simultaneously. This assumption simplifies the analysis considerably

and is broadly consistent with our empirical analysis of the data on global trade flows in

energy commodities which we present in section 4. For instance, the regions Middle East,

North Africa, and West Africa are mainly exporters of oil and refined products whereas

Europe, China, and South Asia are large importing regions for oil products. In general,

certain countries or regions can be primarily regarded as sellers or buyers of a specific type

of commodity. Finally, we also abstract from any trading within regions.

We consider an aggregation by traders which can be further consolidated to obtain

inflows by region. We first aggregate over N traders: total commodity flows from Rj to Ri

at time t are

Xij,t =
N∑
n=1

Xijn,t. (1)

Note that, on the one hand, if there exists a j with Xij,t > 0 then Xji,t = 0 for all i. On

the other hand, for any i with Xji,t = 0, there exists at least one j with Xij,t > 0. From

Equation (1) we can aggregate a second time across all K regions to obtain consolidated

inflows:

Xi,t =
K∑
j=1

Xij,t. (2)

For any region Ri, we get either Xi,t > 0 or Xi,t = 0. We call a region Ri with positive

inflows, i.e. Xi,t > 0, a buyer region. Otherwise, the region is called seller region.
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In the event of a bankruptcy of a commodity trader, supply shortages increase com-

modity prices resulting in higher import costs. For our analysis, we thus need to consider

both, commodity flows and commodity prices. Let therefore Pij,t be the time t price for

one unit of the commodity which has to be payed at a buyer region Ri if imported from a

seller region Rj. We define this price as

Pij,t = GDijMi,t. (3)

Parameter G > 0 measures a representative global commodity price. This price would be

paid on a centralized exchange for a global oil benchmark such as the NYMEX WTI front-

month futures contract. Dij > 1 is a time invariant but region specific cost multiplier and

accounts for the transportation costs of shipping commodities from Rj to Ri. Mi,t ≥ 1 is

a region specific margin multiplier that reflects regional supply shortages.5 In equilibrium,

Mi,t = 1. Note that Pij,t is identical for all traders, i.e. we abstract from trader specific

pricing. We also do not further elaborate how Pij,t, the income of selling one unit of the

commodity, is allocated between traders and sellers.

The model setup can be interpreted as a directed network with nodes representing the

regions and edges representing the trading relationships. There are two perspectives on

this trading network: if the edges point from the seller to the buyer nodes, then we obtain

the network of physical commodity flows and the strength of the edges are given by Xij,t.

If the edges point from the buyer to the seller nodes, we obtain the network of financial

flows. In this case, the strength of the edges are given by

Cij,t = Pij,tXij,t. (4)

Export revenues for the seller constitute import costs for the buyer so that Cij,t has a dual

interpretation: Cij,t are (i) region Rj’s revenues from trading with Ri and (ii) Ri’s cost of

all imports from region Rj. This network interpretation is illustrated in Figure 2.

5In case of an oversupply, we would expect 0 < M < 1. However, we focus on trader bankruptcies

which always result in a supply shortage.
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Figure 2: Illustration of a Commodity Trading Network with Two Seller- and

Two Buyer Nodes

The edges in panel (A) represent physical flows X. The edges in panel (B) represent

financial payments C = PX.

3.2 Trading Dynamics

We distinguish between long-run equilibrium and short-run adjustment dynamics. Again,

to keep the model tractable, we make following simplifying

Assumption 2 For any two regions Ri and Rj there exists a long-run commodity flow

X ij ≥ 0. The actual flows may never exceed this long-run flow, i.e. Xij,t ≤ X ij for all t.

In the long-run, we thus assume a fixed trading relationship with fixed flows X. In addi-

tion, abstracting from short-run seller region capacities above X assures that there are no

changes in long-run flows. This will become more clear in section 3.2.2 where we define

the short-run adjustment process. Assumption 2 is also in line with real world capacity

constraints. Commodity supply is very inelastic in the short run and many producers have

little additional output capacity. For instance, the U.S. Energy Information Administration

estimates that the world surplus production capacity in the period 1973 to 2021 averaged

4.4 million barrels a day.6 The majority of this capacity is generated for strategic purposes

by OPEC member countries. The non-strategic surplus production capacity was only about

500,000 barrels a day. But even the total capacity of 4.4 million barrels a day are relatively

small and comparable to half of daily U.S. shale oil production in 2021.

6see U.S. Energy Information Administration.
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The structure of our model can then be outlined as follows: The long-run inflows to

buyer region Ri are X i =
∑K

j=1X ij. These inflows balance supply and demand at Ri.

Balanced supply and demand, in turn, implies a margin multiplier Mi,t = 1 and hence

long-run prices and financial flows

P ij = GDij, (5)

Cij = GDijX ij. (6)

In the short run, we allow prices and flows to deviate from their long-run counterparts.

Let therefore tb denote the time of a trader’s bankruptcy such that Xi,tb < X i for at least

one buyer region Ri. The adjustment dynamics that follow the bankruptcy are driven by

a fundamental economic mechanism: due to a supply shortage at some buyer region Ri,

margin multiplier Mi,t > 1 such that Pij,t > P ij. This price, in turn, sets an incentive for

the remaining traders to fill the void left by the bankrupt trader. As the supply shortage

is subsequently reduced, the import price approaches its long-run value and the margin

multiplier Mi,t returns to its equilibrium state in which further adjustments to flows are no

longer profitable for traders. The following three properties summarize this mechanism:

(i) If Xi,t < X i then Pij,t > P ij for all j,

(ii) If Pij,t > P ij for at least one j with Xij,t < X ij, then Xi,t+1 > Xi,t,

(iii) If Xi,t+1 > Xi,t then Pij,t+1 < Pij,t for all j.

Below, we further specify the long-run and shock time tb trading quantities X ij and Xij,tb

followed by a definition of the post-shock adjustment process for quantities and prices

according to the above outlined mechanism.

3.2.1 Long-run Quantities and Trader Bankruptcy

Let’s assume trader Tn1 declares bankruptcy at tb. We model this scenario by setting

commodity flow Xijn1,tb = 0 for all i, j combinations. In principle, a region with only

one supplier may then experience Xi,tb = 0. However, this special case would generate an

infinite margin in our model which we rule out by the following
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Assumption 3 If a trader declares bankruptcy in tb, then 0 < Xi,tb ≤ X i for all and

Xi,tb < X i for at least one buyer region Ri.

Empirically, our data shows that all regions have several suppliers. Assumption 3 is hence

not particularly restrictive. Because X i is fixed in the long run, the remaining traders

Tn2 . . . , TnN
have to subsequently fill the void left by the bankrupt trader within the post-

shock period. As a result of the adjustment process outlined in the next section, for each

buyer region Ri with Xi,tb < X i there is thus at least one trader Tn∗ ∈ {Tn2 . . . , TnN
} and

one seller region Rj with Xijn∗,t > Xijn∗,tb for all t > tb + 1.

3.2.2 Post-Shock Adjustment Process

The adjustments process is comprised of two interrelated components. The first component

concerns the margin multiplier at buyer region Ri as a function of supply shortages. For

some ϕ > 0, we define

Mi,t = (∆Xi,t)
−ϕ (7)

where ∆Xi,t = Xi,t/X i is the time t supply relative to long-run supply X i. In equilibrium,

relative supply ∆X = 1 and thus M = 1. If supply is below demand then ∆X < 1 which

implies M > 1. The lower the relative supply the higher the margin multiplier. Although

∆X = 0 is ruled out by Assumption 3, we note that M can be arbitrarily large. However,

another, possibly more realistic definition would unnecessarily complicate the model and

obscure the basic economic mechanisms. Furthermore, in our application to the commodity

trading data, we observe in most cases relative supply ∆X ≥ 0.8, i.e. the supply shortage

caused by a trader’s bankruptcy does not exceed 20%. We discuss this issue in more detail

in section 3.3.

Once converted to logs, the economic interpretation of Equation (7) is straightforward:

let mi,t and ∆xi,t be the log values of Mi,t and ∆Xi,t, respectively. Equation (7) is then

equivalent to

mi,t = −ϕ∆xi,t (8)

which shows that parameter ϕ is the price elasticity of supply: a supply reduction of 1%

increases prices by ϕ%.7

7Equation (5) together with Equation (3) yields Mi,t = Pij,t/P ij and thus mi,t = log(Pij,t)− log(P ij).
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The second component of the adjustment process concerns the magnitude by which the

supply shortage is reduced. If Xij,t < X ij then Pij,t > P ij, which sets an incentive for the

remaining traders to build up additional transportation capacities between Rj and Ri. We

model this mechanism by defining

∆Xij,t+1 = ∆Xij,t + κi,t(1−∆Xij,t) (9)

where, similar as above, ∆Xij,t = Xij,t/X ij is the seller region Rj specific relative supply

at buyer region Ri and 0 < κi,t < 1 is a time and buyer region specific capacity multiplier.

Equation (9) states that the Rj specific part of the time t supply shortage, given by 1 −

∆Xij,t, is reduced by κi,t percent between t and t+1. Although one could propose a number

of other economically reasonable definitions for κi,t, we suggest to define for some ψ > 0:

κi,t =

(
Mψ

i,t − 1
)
∆Xi,t

1−∆Xi,t

(10)

which ensures that the long-run trading relationship between regions is restored after a

trader’s bankruptcy as shown by following

Proposition 1 Let 0 < ψϕ < 1. If Ri is a buyer port with Xi,tb < Xi, then for any time

t ≥ tb, the capacity multiplier satisfies 0 < κi,t < 1 and the time t + 1 relative supply is

∆Xi,t+1 = ∆X
(1−ϕψ)
i,t . In particular, ∆Xi,t → 1 and κi,t → ϕψ as (t − tb) → ∞. If region

Rj is a supplier for Ri with Xij,tb < X ij, then ∆Xij,t → 1 as (t− tb) → ∞.

The proof is provided in Appendix A.1. This definition of κi,t has the virtue of establishing

a useful and economically reasonable relationship between relative supply and margin.

The higher the supply shortage the higher the margin (see Equation 7) and the increase

in relative supply, i.e. the reduction of the supply shortage. A reduction of the supply

shortage, in turn, implies a decrease of the margin. The adjustment process thus depicts

the basic economic mechanism outlined at the beginning of this section.

We also note that, on the one hand, the relative supply increases between t and t+1 by

approximately ψmi,t percent.
8 On the other hand, we demonstrate in Appendix A.2 that

for any practical purpose, κ will be virtually constant and is well approximated by is limit

ϕψ. The supply shortage thus decreases between t and t+1 by approximately ϕψ percent.

8To see this, rewrite ∆Xi,t+1 = ∆Xi,tM
ψ
i,t. Taking logs yields ∆xi,t+1 −∆xi,t = ψmi,t.
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3.3 Calibration for Energy Commodities

Due to our model’s simplicity, we only have to determine two parameters: ϕ, which mea-

sures the price elasticity of a supply shock, and ψ, which governs the speed with which the

remaining traders can accommodate a local supply shortage. To obtain realistic values, we

resort to the econometric literature on the impact of oil supply shocks on macroeconomic

variables. The research on this topic is usually conducted using Vector Autoregressions

(VARs). In this paper, we follow Baumeister and Peersman (2013a,b) and consider a VAR

with time-varying parameters and stochastic volatility for quarterly measures of global oil

production, U.S. Crude Oil import prices, and world industrial production, respectively.9

We use this model to generate a large sample of oil supply shock induced impulse response

functions (IRFs) at different hypothetical states of the economy. Our choice for ϕ and ψ is

then based on estimators obtained from these IRFs.

To estimate ϕ, we use the cross-section of oil supply and oil price responses after a

simulated oil supply shock. Regarding ψ, we note that by Proposition 1:

∆xi,t = ∆xi,tb (1− κ̃)(t−tb) (11)

mi,t = mi,tb (1− κ̃)(t−tb) (12)

where κ̃ = ϕψ is, as noted above, the approximate decrease of the supply shortage in

percent. Decay rate κ̃ is thus obtained by utilizing the univariate time-series of oil supply

and oil prices responses for a reasonably large forecast horizon. Given estimators ϕ̂ and ˆ̃κ,

an estimator for model parameter ψ is then simply obtained via ψ̂ = ˆ̃κ/ϕ̂. Further details

regarding the VAR, the construction of IRFs and the estimation of ϕ and ψ from these

IRFs can be found in Appendix B.

According to our estimations, a reasonable value for the price elasticity ϕ would be

around 3, i.e. at some buyer region Ri, a decrease in the oil supply by 1% increases

oil prices by approximately 3% within the same quarter. The estimators for κ̃, in turn,

suggests that the decrease of the supply shortage ranges between 30% to 90% per quarter.10

Based on these results, we define the three scenarios shown in Table 1. These scenarios are

9Examples of other VAR-based approaches are, among others, Lütkepohl and Netšunajev (2014), Kilian

(2009), Kilian and Murphy (2014) and Blanchard and Riggi (2013).
10For details, see Table B1 and Table B2 in Appendix B.
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motivated by the notion that the failure of a large commodity trader will likely occur in —

and further contribute to — a volatile economic environment. The ability of the remaining

traders to close the trade gap of the bankrupt firm will depend on their financial liquidity

as well as their risk appetite for acquisition or expansion of their operations.

Parameter ϕ: Price Elasticity of Supply

1.5 3.0 4.5

Parameter ψ: Speed of Output Response

0.07 - - Pessimistic Scenario

0.20 - Base Scenario -

0.60 Optimistic Scenario - -

Table 1: Price Elasticity and Economic Environment

A combination of ϕ and ψ determines three possible scenarios for the size and length of an

adjustment process following a commodity supply shock.

In the first scenario, we set the optimistic values ϕ = 1.5 and ψ = 0.6, i.e. a moderate

impact of the supply shortage on prices and, because this parameterization corresponds

to κ̃ = 0.9, a fast adjustment to long-run supply and prices. In the second scenario, we

use ϕ = 3.0 and ψ = 0.2 which implies κ̃ = 0.6. This scenario serves as the base scenario

and implies that the majority of the deviations from equilibirum are adjusted within two

months. A recent real-world example that is in line with the baseline estimate of κ̃ = 0.6

are the oil export sanctions imposed on Russia after the Ukraine invasion in 2022 which

required time-intensive and costly rerouting of previously established trade links. Instead

of shipping oil from the Russian ports at Primorsk or Ust Luga to Hamburg and Rotterdam

within 2 weeks, oil exports are being rerouted to China which requires a round-trip voyage

of 4 months.11 Finally, in the third scenario we use the pessimistic values ϕ = 4.5 and

ψ = 0.07, i.e. a high impact of the supply shortage on prices and a slow adjustment

11A recent article in Forbes describes how this rerouting requires different types of vessels suitable for

long-distance transports. Instead of the smaller Aframax tankers that carry 600,000 barrels, very Large

Crude Carriers (VLCCs) that can carry 2 million barrels are needed. The shortage in vessels of this type

can further prolong the shipping time which is in line with our fairly low empirical estimates.

15

https://www.forbes.com/sites/christopherhelman/2022/04/11/rerouting-russian-oil-would-require-dozens-of-supertankers---that-dont-exist/?sh=4c827d935446


process. In this scenario, we implicitly set κ̃ = 0.315.

It should be noted that these relatively high values for ϕ correspond to a high sensitivity

of the margin multiplier with respect to the supply shortage 1−∆X. However, as we outline

in detail in section 4.2, in most cases a trader’s bankruptcy results in a shortage below 20%.

Hence, M < 1.4 in case of the optimistic-, M < 2.0 in case of the base- and M < 2.8 in

case of the pessimistic scenario (see Figure C2).12

As an illustration, Figure 3 shows the adjustment processes of oil supply and the oil

prices for all three scenarios. In this example, the supply drops by 1% at t = 1. This

supply shock triggers an increase of oil prices by about 1.5% in the optimistic scenario,

3.1% in the base scenario and 4.6% in the pessimistic scenario. In the optimistic scenario,

oil supply and oil price correspond to their long-run values at t = 4, i.e. three quarters

after the shock. In the pessimistic scenario, it takes 7 quarters for a full adjustment.

0 2 4 6 8 10 12

0.99

0.992

0.994

0.996

0.998

1

0 2 4 6 8 10 12

1

1.009

1.018

1.027

1.036

1.045

Figure 3: Dynamic Adjustment of Prices and Flows

This figure shows the adjustment process of oil supply X and oil price P for three scenarios:

optimistic- (blue line), base- (black line) and pessimistic (red line) scenario.

12We note that there are a few cases with a regional supply shortage above 20%. In these cases, the

shortage is capped. For more details, see section 4.2.
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4 Data

4.1 Empirical trading network

We apply our theoretical commodity network model to data on physical oil flows from

Refinitiv Eikon for Commodities. This database uses a variety of sources on the individual

ship level including vessel position data (AIS), port authority information, and proprietary

ship to ship data. Each vessel can be tracked around the globe using it’s unique Inter-

national Maritime Organization (IMO) number. For instance, on January 19, 2018, the

vessel ”CPO LARISA ARTEMIS” with IMO number 9305532 loaded 235,538 barrels of

crude oil in Slagen, Norway and shipped it to Rotterdam in the Netherlands. Later that

year, we observe the same vessel load 111,424 barrels of fuel oil in Algericas, Spain to ship

it to Conakry in Guinea. We track 155,435 individual flows for the years 2007 - 2018 across

time and space to generate a comprehensive map of physical commodity flows encompass-

ing 5183 ports located in 90 load and discharge zones. The variables and their description

are summarized in Table 2.

One of the main variables of interest is the commodity trader which chartered the vessel.

Most commodity traders do not own a fleet of vessels but charter ships as needed from

shipping companies. The concentration of traders within the market of global commodity

flows provides valuable information concerning the market share and therefore potential

systemic risk of individual traders. The contribution of individual large traders to the

physical network of oil flows is discussed in more detail below. The cargo size measures the

size of the shipment and determines the volume of aggregate flows between regions. The

commodity type is in most cases crude oil but occasionally contains refined products such

as gasoline or jet fuel. The freight rate is used to determine the shipping costs between

locations and is contained in Dij. Since shipping costs increase almost 1:1 with distance

travelled, we use the distance in Dij directly in the empirical part.

Based on the physical flows of crude oil and refined products, we construct an empirical

trading network that forms the basis of our simulation study conducted in section 5. A

common approach in the trading network research literature is to focus on so called back-

bone networks which are simplified versions of the original networks, retaining the basic
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Variable Name Description Values

Charterer
The commodity trading company that

charters the vessel for transportation
1,637 firms

IMO number Unique identifier for each vessel 5,454 vessels

Cargo Size Number of barrels carried by the ship
mean: 100,501 barrels

sd: 84,529 barrels

Port Load and discharge port
5,183 ports

missing values:53%

Zone
Load and discharge zone for instance

U.S. Gulf, Arabian Gulf, Mediterranean

90 zones

missing values:13%

Commodity Type
Crude Oil, Fuel Oil, Naphtha

Gas Oil, Gasoline, Jet Fuel
-

Freight Rate
Freight rate in % of

World Scale Index

mean: 113%

sd: 53%

Table 2: Description of Individual Ship Level Data

This table summarizes the variables that are available in the Refinitiv Eikon for Com-

modities data set. We observe 155,435 individual shipments of oil and refined oil products

between 2007 and 2018.

network structures. Such a backbone network typically encompasses only the largest and

most important trade flows, i.e. edges (see, e.g., Fair et al., 2017). For our study, we take

a slightly different approach. On the one hand, we have to reduce the complexity of the

empirical trading network such that it fits our theoretical model. On the other hand, due

to the aim of our study, we have to keep as much trade flows for which a particular trader is

responsible for as possible. As a compromise, we define a total of 15 major trading zones: 4

zones representing the Americas, 6 zones representing Europe, the Middle East and Africa

(EMEA) and 5 zones representing Asia-Pacific (APAC). For each trader and each zone, we

then calculate separately the average outflows and average inflows between 2007 - 2018.

Aggregated flows are then obtained by summing over all traders as outlined in section 3.1.

18



For simplicity, we assume that each zone is comprised of one dedicated seller region

and one dedicated buyer region, to which inflows and outflows can be assigned to. As an

illustration, consider the two zones zl and zk. Let the dedicated seller regions of zl and zk

be denoted by Rl1 and Rk1 , respectively. The corresponding buyer regions are Rl2 and Rk2 .

Let aggregated flows from zone zl to zk be 8 million barrels (MMbbl) and the aggregates

flows from zk to zl be 2 Mmbbl. We then set Xk2l1 , measuring the flows from the seller

region Rl1 to buyer region Rk2 to Xk2l1 = 8. In constrast, the flows from seller region Rk1

to buyer region Rl2 are Xl2k1 = 2. In line with our model, we abstract from trades within

zones, i.e. Xk1k2 = Xl1l2 = 0.

The result of these steps is shown in Table 3. Note that trading zones with a positive net-

flow are those typically regarded as oil importers, e.g. Europe, China and India, whereas

trading zones with a negative net-flow are oil exporters such as the South America and the

Middle East. Off course, in total, buyer region inflows match seller region outflows such

that net-flows are zero. Further details regarding the sources and destinations of these

flows are displayed in Figure C1.

4.2 Trader contribution

We next turn to the traders’ contributions to the inflows and outflows shown in Table 3.

The Gini coefficient measuring the dispersion of these trading volumes among the 1,637

traders is 0.96 which supports our claim that the commodity trading market is dominated

by a relatively small number of very large traders. Even if we only consider the 100 largest

traders, accounting for approximately 93% of all flows, we still get a Gini coefficient of

0.63. However, in order to make the simulation study in section 5 manageable, we further

restrict the analysis to the 10 largest traders shown in Table 4. These companies account

for a combined 43% of all flows.

A detailed overview of all outflows and inflows per company and region is provided in

Table D2 and D3, respectively. We note that in only 2 out of 150 cases a trader’s relative

contribution exceeds 20%. UNIPEC is responsible for approximately 33 Mmbbl (47%)

of China’s and PETROBRAS for approximately 8 Mmbbl (45%) of South America’s total

seaborne inflows in a typical quarter over the sample period. One reason for these very large
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Trading zone Buyer region flow Seller region flow Net-flow

A
m
er
ic
as

Canada 8.41 -2.29 6.12

Mexico 4.47 -20.85 -16.38

South America 17.95 -32.93 -14.98

USA 91.81 -56.04 35.77

E
M
E
A

East Africa 10.37 -1.13 9.25

North Africa 3.81 -29.74 -25.93

West Africa 12.97 -155.1 -142.13

Europe 202.85 -56.23 146.61

Russia 0.17 -82.9 -82.73

Middle East 14.15 -106.53 -92.37

A
P
A
C

China 71.95 -4.64 67.31

India 51.93 -36.13 15.8

Japan 17.75 -2.97 14.78

Oceania 17.93 -11.24 6.69

South Asia 101.35 -29.15 72.2

Σ 627.87 -627.87 0.00

Table 3: Aggregate Oil Flows

This table shows the empirical Network of physical oil flows in million barrels (MMbbl)

between zones within (i) the Americas, (ii) Europe, the Middle East and Africa (EMEA)

and (iii) Asia-Pacific (APAC). All flows are based on annual averages for a sample period

ranging from 2007 to 2018.

contributions is that some traders specialize on catering to a particular region of the world.

For instance, Brazil’s largest oil trading firm, the state-owned Petróleo Brasileiro S.A. or

”PETROBRAS” manages predominantly oil flows to Brazil. A default of PETROBRAS

is therefore estimated to cause large flow reductions in Brazil, but to have little quantity

effects in other parts of the world.

Given our estimates for the price elasticity ϕ, a default of UNIPEC or PETROBRAS
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Trader Absolute Cusum Relative Cusum

UNIPEC 42.35 42.35 6.75% 6.75%

SHELL 40.72 83.07 6.49% 13.23%

BP 36.33 119.40 5.79% 19.02%

VITOL 35.10 154.50 5.59% 24.61%

CNR 22.86 177.35 3.64% 28.25%

PETROBRAS 20.87 198.23 3.32% 31.57%

CSSSA 19.81 218.04 3.15% 34.73%

REPSOL 19.58 237.62 3.12% 37.85%

CLEARLAKE 16.87 254.48 2.69% 40.53%

ST SHIPPING 16.47 270.95 2.62% 43.15%

Table 4: The 10 Largest Commodity Traders by Flow Contribution

This Table shows the absolute (in Mmbbl) and relative contribution of the 10 largest

traders to aggregated average buyer region inflows. Columns 3 and 5 show the respective

cumulative sums (Cusum).

would translate in very large regional price jumps. However, a shock of this size would be

likely to trigger regional land adjustment processes in which oil is transported on road and

rail in an emergency response. In this paper, we concentrate on economically large but

still realistic flow reductions and introduce a supply reduction cap of 20% of the long-run

values. When setting a cap on the size of the inflow reductions at some buyer region, we

adjust the flow of all seller regions according to their relative contribution. The results of

this procedure are provided in Tables D4 and D5 with adjusted out- and inflows indicated

by bold numbers. Further details regarding these calculations are provided Appendix A.3
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5 Simulation of Trader Bankruptcy

The bankruptcy of a trader results in the removal of that firm from the network of long-run

commodity flows. We introduce a shock in period tb that leads to a disruption of all flows

operated by the bankrupt trader. The impact of this shock on commodity prices in buyer

region Ri at time t ≥ tb is measured by the relative price increase

πi,t =
Pi,t

P i

− 1 (13)

where local commodity prices in the i -th region Pi,t are weighted averages of the export

prices over all trading partners:

Pi,t =
K∑
j=1

αij,tPij,t. (14)

The weight αij,t should reflect the size of the trading relationship between Ri and Rj at time

t and is hence defined as αij,t = Xij,t/Xi,t. Over time, the affected regions accommodate the

shock so that Pi,t → P i =
∑K

j=1 αijP ij and πi,t → 0 as (t − tb) → ∞ where αij = X ij/X i

is the long-run trading weight.

Note that the measure πi,t does not depend on global commodity price levels G: Because

Pij,t = GDijMi,t and P ij = GDij, Equation (13) can be rewritten as

πi,t =Mi,twi,t − 1 (15)

where wi,t =
∑K

j=1 aij,tDij/
∑K

j=1 aijDij. Equation (15) highlights two transmission chan-

nels from the failure of a commodity trader on local commodity prices. First, prices respond

to the size of the local supply shock as measured by the margin multiplierMi,t, and second,

prices depend on the specific network structure of trade links as measured by wi,t. However,

the main source of the price response is due to the margin multiplier Mi,t which explains

96% to 99% of the variation of πi,t.
13

In the next section 5.1, we provide a ranking of the top 10 traders with respect to their

systemic risk based on the absolute import reduction and price response measures π. In

section 5.2, we further analyse the dynamics π for the three scenarios provided in Table 1,

13An alternative specification with equal distances Dij = D for all i, j generates very similar results. In

the following, however, we retain the more realistic distance matrix based on actual kilometer distances.
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whereas total payment flows from the seller and the buyer region’s perspective are explored

in in section 5.3.

5.1 Trader Ranking

The price and quantity dynamics that unfold over a period of 5 quarters after the shock in

the base scenario are shown in Figure 4. Panel A shows the reductions in flows. We consider

again PETROBRAS, the large Brazilian oil trader that focuses primarily on supplying

South America with energy. A simulated default is estimated to reduce flows to South

America by 4 million barrels, which corresponds to a relative supply gap of 20%. The

corresponding price response shown in Panel B is economically large and estimated to

be 95% in the first quarter and 31% in the second quarter. As competing oil traders

reorganize to fill the supply gap of PETROBRAS, physical trade flows and prices return

to pre-shock levels starting from the third quarter. To put the size of a 4 million barrel

shock into economic perspective, we refer to simulation results from Inoue and Todo (2022)

who quantify the size of import disruption on the real economy in Japan. The majority

of empirical evidence on supply chain disruptions within a country is collected for Japan

because the data on the industry structure of Japanese firms offers a particularly detailed

set of industry linkages that allow for such an analysis. Inoue and Todo (2022) estimate

that a $1 import disruption from Middle Eastern countries to Japan results in a $3.12

reduction in economic production. If we assume that imports from the Middle East consist

mainly of oil and that oil prices are $80 per barrel, a 4 million import reduction is worth

$320m which would reduce economic production by $1bn in the first quarter of the shock or

0.62% of Brazilian GDP. The joint failure of more than one large commodity trader could

amplify this effect.

From Panel B we conclude that the forced removal of a commodity trader from the

long-run network of firms will have considerable local price effects that can extend over two

quarters if the region receives the majority of imports through the defaulted trader. More

generally, simulated commodity prices are more elastic than quantities, an observation that

is confirmed by empirical studies, notably Baumeister and Peersman (2013a).

The price and quantity responses following the default of a commodity trading firm
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allows us to rank traders in decreasing order of systemic risk. Table 5 is inspired by

the systemic risk ranking of financial institutions that is reported and updated by the

V-Lab of New York University.14 Our ranking reflects the impact that the default of a

commodity trader exercises on both supply shortages as well as prices. The position in the

overall ranking is determined by the average over both indicators. For instance, the supply

shortage resulting from a default of Shell is estimated as the average weighted import

reduction across all regions that receive imports from Shell over a period of 5 quarters. In

particular, the default of Shell is estimated to reduce imports in the target regions United

States, South Asia, and Europe on average by 10.77 million barrels per quarter. While

Shell is ranked 1st in terms of supply impact, it is not estimated to have the largest price

impact with prices in the three target regions estimated to be 6.5% above their long-run

values that occur in the absence of any shock. The top 10 systemically important US

financial firms include names like Citigroup, JP Morgan, and Bank of America, our list

features Shell, BP, and Vitol as systemically important commodity firms.

14See NYU Stern V-Lab
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Figure 4: Simulated Quantity and Price Effects from Trader Default

This figure shows simulated outcomes following the default of a large commodity trading

firm. Panel A highlights the regional focus of oil trading firms and the reductions in oil

flows following the failure of a trader. Panel B shows the price increases that are associated

with the supply disruption. The price elasticity calibrated from our data is larger than the

demand elasticity.
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Import Reduction Price Impact π Ranking

(in MMbbl) (in %)

10.77 6.50 SHELL

8.96 7.45 VITOL

10.10 6.32 BP

5.47 9.15 REPSOL

7.29 7.06 UNIPEC

5.92 4.04 CSSSA

5.15 4.32 CNR

4.53 3.48 CLEARLAKE

4.96 2.75 PETROBAS

4.37 3.12 ST SHIPPING

Table 5: Commodity Trader Ranking

This table ranks the commodity trading firms in our sample according to systemic risk in

the base scenario. The ranking is determined by accounting for the size in import reductions

(in million barrels per quarter) and for price effects (in percent relative to equilibrium).

The price averages are weighted based on flow size, i.e. buyer regions that receive higher

flows also have a higher price weight. The position of a trader in this table is determined

by the average over both indicators.

5.2 Scenario Analysis

The empirical results discussed so far depend on estimates under a base scenario of price

and quantity adjustment parameters. The parameter ϕ governs the price elasticity of a

supply disruption and was estimated to be 3 on average while ψ reflects the size of trader’s

response to the resulting supply gap and was estimated to be 0.2. However, the ability

of the remaining traders to respond to the supply shortages left by a defaulted trader

depends on the risk appetite and the funds available to take over parts of the business of

the defaulted competitor. For instance, the fleet of vessels that are no longer managed by
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the defaulted trader requires a team of ship operators and other supporting staff in order

to commence trading in the pre-shock form. Figure 5 shows three scenarios that illustrate

this point. In the optimistic scenario, the price response due to a trader’s default, measured

by the parameter ϕ, is lower than in our base scenario while the adjustment parameter ψ

is higher (ϕ = 1.5 and ψ = 0.6). In this optimistic scenario, the price impact is muted and

supply shortages are quickly adjusted by the remaining traders. However, the circumstances

in which a commodity trader goes bankrupt are likely to occur in a financially stressful

environment for commodity traders in general. After all, commodity traders often trade

the same commodities. It is therefore quite likely that the circumstances that led to the

default of a trader in the first place, reduce the funds available as well as the risk appetite

of the remaining traders, which complicates the takeover of the defaulted team and can

prolong the adjustment process. This case is illustrated in the pessimistic scenario in which

the price response from the same shock is larger (ϕ = 4.5) while the ability of traders to

respond to the supply gap is subdued (ψ = 0.07).

Panel A shows absolute price and quantity responses. Average oil imports are estimated

to be lower by 25 million barrel in the quarter following the shock with local prices up by 5$

- 10$. Panel B shows price and quantity responses in relative terms and highlights that the

price effect is dominating the quantity effect. This reflects the generally low price elasticity

of oil demand in the economy (Cooper, 2003) as well as the functioning of the remaining

network of commodity imports.
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Figure 5: This figure shows post-shock import flow and price dynamics for three different

scenarios. In the pessimistic scenario the supply shortage has a large price effect (ϕ =

4.5) and the speed with which commodity traders are able to close the supply gap is low

(ψ = 0.07). These parameters are subsequently relaxed for the following scenarios with the

optimistic scenario assuming small price jumps (ϕ = 1.5) and flexible remaining traders

who can quickly respond to the default (ψ = 0.6). The solid and dashed lines are generated

from weighted averages across all regions. The upper and lower bands correspond to the

75% and 25% quantile of the price and flow distribution.
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5.3 Payment Flows

So far, we have highlighted the dependency of importing regions on a functioning supply

chain of natural resources. However, commodity deposits are not randomly distributed in

the earth’s crust but are instead concentrated in a few regions of the world. These regions

strongly depend on the revenues of commodity exports to balance their budgets and finance

their government expenditures. In this section, we therefore briefly turn to the payment

flows that mirror the commodity flows.

Recall that financial flow Cij,t as defined in Equation (4) can be interpreted as either

seller region Rj’s revenue or the buyer region Ri’s import costs. Here, we consider both

perspectives and begin with the seller region. Total payment flows collected at such a

region Rj are obtained by aggregating over all buyers Ri. Let therefore C·j,t =
∑j

i=1Cij,t

be the short-run income and C ·j =
∑j

i=1Cij be its long-run counterpart. The relative time

t deviation from long-run income is thus

χ·j,t =
C·j,t

C ·j
− 1. (16)

Oil export revenues for one region mean import costs for another region. Buyer region Ri’s

short- and long-run import costs Ci·,t and Ci· are obtained by aggregating over all sellers Rj.

The relative time t deviation from long-run import costs is consequently χi·,t = Ci·,t/Ci·−1.

The failure of a large commodity trader constitutes a transitory shock that increases

prices and boosts export revenues for exporting regions while at the same time generating

higher costs and lower real incomes for households in importing regions. Figure 6 illus-

trates the estimated percentage changes in export revenues χ·j,t and import costs χi·,t after

the bankruptcy of BP or Shell. To conserve space, we concentrate on these two large

commodity trading firms but other traders have similar effects. The left panel highlights

that oil exporting regions can increase their export revenues by 20% and more relative to

an equilibrium situation in which no shock occurred. On the other hand, the right panel

shows higher import costs for importing regions with specific regions such as East Africa

and Australia being exposed to 50% higher import costs when BP, an important trader

for this regions, would suddenly become unable to deliver crude oil. Figure 6 highlights

large commodity traders have the potential to have significant adverse effects on the trade

balance and income of most regions in the world.
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(D) Import Costs after Shell Shock

Figure 6: Export Revenues and Import Costs after Trader Bankruptcy

Panel A and C on the left show the estimated percentage increase in oil exports χ·j,t following the bankruptcy of BP or Shell.

Oil exporting regions will generally benefit from higher oil prices and can increase their export revenues by more than 20%

relative to their long-run values. Higher export revenues for exporting regions mean higher import costs χi·,t for importing

regions as shown on the right side of the figure in Panel B and D. East Africa and Australia appear to be particularly vulnerable

to a scenario in which BP would no longer be able to deliver crude oil with import costs increasing to more than 50% during

the first quarter of the shock.
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6 Conclusion

Commodity trading firms are responsible for the timely delivery of energy commodities,

building materials, and other natural resources that are used in the production of economic

activity. A survey conducted in 2022 reports that more than half of European firms had

encountered disruptions to deliveries due to shipping delays (Javorcik et al., 2022). In

February 2023, Trafigura booked a $600m loss after discovering that cargoes of nickel were

in fact worthless stones. Germany and Italy agreed to guarantee loans to the Singapore

based Trafigura to reduce risks for its creditors and ensure a smooth supply of raw materials

(Economist, 2023). In this paper, we argued that the failure of a commodity trader can

cause supply disruptions that propagate to other sectors of the economy. In other words,

commodity trading firms are systemically important. So far, commodity trading firms have

shown remarkable resilience and bankruptcy is not observed in the data. We therefore turn

to simulation results to address our research question. We propose a trading network model

of physical commodity flows that simulates the response of the remaining traders after the

bankruptcy event. Based on empirically calibrated adjustment coefficients, we estimate

that the failure of one of our top ten systemically important traders has significant effects

on local prices and supply. According to our estimations, regions that share trade links

with the affected energy trader can experience local supply disruptions with prices doubling

in the following quarter and supply cuts of up to 20%. The time dynamics following the

trader bankruptcy depend on the speed of adjustment with which the remaining network

of traders can accommodate the trade gap. In our pessimistic scenario that is based on

the assumption that the remaining network lacks the capacity to take over major parts of

the failed company, prices and supply take more than one year to return to the pre-shock

equilibrium. Our results indicate that commodity trading firms are systemically relevant

but that the economic mechanism is different for commodity traders than for financial

institutions.

Private ownership allows commodity trading firms to operate in environments that

include opaque ownership structures, unstable governments, and war zones. But it also

generates an environment in which commodity traders have become systemically important

without the notice of investors and regulators. Given that energy security is one of the top
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priorities of policy makers in Europe, our paper highlights an important mechanism that

has so far been underappreciated. The literature on global supply chains offers two main

recommendations for improving the robustness and resilience of global trade links: First,

diversification of global supply chains has been shown to reduce the volatility of economic

activity (D’Aguanno et al., 2021; Baldwin and Freeman, 2022). Second, Stockpiling and

inventory management increases costs for individual firms but provides a much needed

buffer during suply shocks (Kamalahmadi and Parast, 2016; Martins Sa et al., 2019). In

line of these findings, we argue that a reshuffling of commodity supply chains can also

help to mitigate the effects from disruptions due to commodity trader defaults. Affected

regions can adapt by increasing physical storage of inputs and by diversifying their base of

suppliers and commodity trading firms.
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Appendix A Proofs and Additional Remarks

A.1 Proof of Proposition 1

We begin with the inequality for the capacity multiplier 0 < κ < 1 which can be shown by

induction. For an arbitrary t, assume that ∆Xi,t < 1. In this case, Mψ
i,t > 1 which yields

0 <
(
Mψ

i,t − 1
)
∆Xi,t (A.1)

Furthermore, because 0 < ϕψ < 1, we get Mψ
i,t∆Xi,t = ∆X

(1−ϕψ)
i,t < 1 and thus(

Mψ
i,t − 1

)
∆Xi,t = ∆X

(1−ϕψ)
i,t −∆Xi,t < 1−∆Xi,t (A.2)

Together, Inequalities (A.1) and (A.2) imply 0 < κi,t < 1. Now, because ∆Xi,t < 1, there

is at least one seller j∗ with ∆Xij∗,t < 1. Because 0 < κi,t < 1, Equation (9) implies

∆Xij∗,t+1 < 1 and thus ∆Xi,t+1 < 1. In particular, we have ∆Xi,tb < 1 at shock time tb by

definition. Hence, ∆Xi,t < 1 and thus 0 < κi,t < 1 holds for all t ≥ tb.

Next, we consider the dynamics of relative supply. Multiplying both sides of Equation

(9) by long-run seller j supply X ij and summing over all sellers j yields

Xi,t+1 = Xi,t + κi,t
(
X i −Xi,t

)
(A.3)

Similarly, by multiplying numerator and denominator of the right side of Equation (10) by

total long-run supply X i we obtain

κi,t =

(
Mψ

i,t − 1
)
Xi,t

X i −Xi,t

. (A.4)

Inserting Equation (A.4) in (A.3) yields total supply dynamics Xi,t+1 = Xi,tM
ψ
i,t which is

equivalent to relative supply dynamics ∆Xi,t+1 = ∆Xi,tM
ψ
i,t and thus ∆Xi,t+1 = ∆X

(1−ϕψ)
i,t .

Regarding the limits of ∆X and κ, we first note that we can rewrite the time t ≥ tb

buyer region i relative supply ∆Xi,t as a function of the shock at tb, i.e.

∆Xi,t = ∆X
(1−ϕψ)(t−tb)

i,tb
. (A.5)

Because 0 < ϕψ < 1, we have (1 − ϕψ)(t−tb) → 0 and thus ∆Xi,t → 1 as (t − tb) → ∞.

In case of a specific seller region j with Xij,tb < X ij, we note that Equation (9) implies
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∆Xij,t < 1 for all t ≥ tb, i.e. there is no seller with short- or long-run oversupply. Hence,

full supply ∆Xi,t → 1 is possible only if for each seller ∆Xij,t → 1. Finally, regarding the

capacity multiplier, we first rewrite Equation (10) by replacing Mψ
i,t∆Xi,t with ∆X

(1−ϕψ)
i,t :

κi,t =
∆X

(1−ϕψ)
i,t −∆Xi,t

1−∆Xi,t

. (A.6)

Both, numerator and denominator of Equation (A.6) approach zero as ∆Xi,t → 1 so we

can apply l’Hospital’s rule which yields κi,t → ϕψ as ∆Xi,t → 1.

A.2 Properties of the capacity multiplier κ

The left panel of Figure A1 plots κt and its approximation κ̃ = ϕψ for a relative supply

shortage below or equal to 20%. As can be seen, κ is well approximated by κ̃ in all three

scenarios. The right panel shows the relative deviation of κ from κ̃ = ϕψ. In all three

scenarios, this relative deviation is below 8.2%.

A.3 Capped in- and outflows

We demonstrate the procedure of capping in- and outflows in case of PETROBRAS. As

shown in Table D3, about 8.032 Mmbbl inflows to South America are assigned to this

trader. Total inflows to South America are 17.95 Mmbbl, so PETROBRAS is responsible

for about

8.032/17.95 ≈ 45%.

In order to cap the reduction of inflows to South America caused by the bankruptcy of

PETROBAS, we reduce its contribution by 4.44 Mmbbl, such that

(8.032− 4.44)/17.95 ≈ 20%.

The new capped inflows of 8.032− 4.44 = 3.59 Mmbbl to South America that are assigned

to PETROBRAS are shown in Table D5.

The reduction of inflows has to be mirrored in the associated outflows. For example,

5.46 Mmbbl of all outflows assigned to PETROBRAS originate from West Africa (see
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(A) Absolute values (B) Relative deviation

Figure A1: Panel (A) shows the capacity multiplier κ as a function of the supply shortage

1−∆X. The blue line shows κ in case of ϕ = 1.5 and ψ = 0.6 (optimistic scenario). The

black line shows κ in case of ϕ = 3.0 and ψ = 0.2 (base scenario). The red line shows κ in

case of ϕ = 4.5 and ψ = 0.07 (pessimistic scenario). The dotted lines are respective limits

of κ given by ϕψ. Panel (B) shows the corresponding relative deviation ϕψ/κ− 1.

Table D2) from which about 4.28 Mmbbl are shipped to South America. West Africa is

thus responsible for

4.28/8.032 ≈ 53%

of all uncapped South American inflows via PETROBRAS. In order to maintain this pro-

portion in case of the capped inflows, we reduce West African outflows by 4.44 ·53% = 2.37

Mmbbl such that again

(4.28− 2.37)/3.59 ≈ 53%

of all West African outflows are shipped to South America. Consequently, total West

African outflows of 5.46 Mmbbl assigned to PETROBRAS have to be reduced by 2.37

Mmbbl yielding the capped outflows of 5.46− 2.37 = 3.08 Mmbbl shown in D4.
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Appendix B Model-Parameter Estimation

B.1 VAR-Model and IRFs

Baumeister and Peersman (2013a,b) define a VAR(4)-model with time-varying parameters

and stochastic volatility for the data vector yt = (δxt, δpt, δqt)
′, containing log differences

of quarterly measures for global oil production, U.S. Crude Oil import prices and world

industrial production, respectively. The structural form of this VAR is

B−1
0,t yt = c∗t +

4∑
i=1

B∗
i,tyt−i + εt (B.1)

where εt ∼ N(0, I3). Matrix B−1
0,t represents the time t instantaneous relationships between

the elements of yt. The corresponding reduced form model is

yt = ct +
4∑
i=1

Bi,tyt−i + ut (B.2)

where ct = B0,tc
∗
t , Bi,t = B0,tB

∗
i,t and ut = B0,tεt. By assumption, ut ∼ N

(
0, A−1

t Ht(A
−1
t )′

)
,

where At is a 3× 3 a lower triangular matrix with ones on the main diagonal and non-zero

off-diagonal elements and Ht is a 3 × 3 diagonal matrix. Regarding the time dependency,

let at = (a21,t, a31,t, a32,t)
′ be the vector containing the elements below the main diagonal

of At, ht = (h1,t, h2,t, h3,t)
′ be the vector containing the main diagonal elements of Ht and

θt = Vec(ct, B1,t, . . . , B4,t).
15 The vectors θt and at are modeled as independent driftless

random walks whereas log(ht) is modeled as independent geometric random walk.

Due to its flexible structure, fitting this model to the data is somewhat more involved.

Baumeister and Peersman (2013a,b) suggest to use Bayesian methods and a Markov Chain

Monte Carlo Algorithm. A discussion of these methods as well as the approach to re-

construct B0,t is beyond the scope of this paper. For an excellent overview, we refer to

Baumeister and Peersman (2012). Once model parameters are estimated, however, gener-

ating IRFs for the forecasting period t + 1 to t + h based on the relevant observations up

to time t, i.e. yt−3, ..., yt, is straightforward and involves the following four steps:

15The Vec operator stacks the columns of a m× n matrix into an mn× 1 vector. Here, θt is 39× 1.
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Step 1: Generate R parameter sets Ψr,t = (θr,t+1, ..., θr,t+h, ar,t+1, ..., ar,t+h, hr,t+1, ..., hr,t+h),

each representing a different state of the economy from t + 1 to t + h. These parameter

sets are obtained by random draws from the respective estimated parameter distributions.

Step 2: For each Ψr,t, generate N different benchmark and shock forecast series based on

yt−3, ..., yt via Equation (B.2), i.e.

ŷ
(B)
r,n,t+1, ..., ŷ

(B)
r,n,t+h (n’th benchmark forecast series for the r’th state),

ŷ
(S)
r,n,t+1, ..., ŷ

(S)
r,n,t+h (n’th shock forecast series for the r’th state).

A difference between benchmark and shock forecasts is obtained via the reduced form

innovations in Equation (B.2). In case of the benchmark series, innovations are u
(B)
t+1, ..., u

(B)
t+h

whereas in case of the shock series innovations are u
(S)
t+1, ..., u

(S)
t+h. These innovations are

generated as follows: At time t + 1, randomly draw ϵ1, ϵ2 and ϵ3 from a standard normal

distribution, calculate

u
(B)
t+1 = B0,t+1(ϵ1, ϵ2, ϵ3)

′, (B.3)

u
(S)
t+1 = B0,t+1(ϵ1 − 1, ϵ2, ϵ3)

′. (B.4)

and check following sign restrictions:

(i) u
(S)
1,t+1 − u

(B)
1,t+1 < 0 (time t+ 1 oil supply growth is lower in the shock series)

(ii) u
(S)
2,t+1 − u

(B)
2,t+1 > 0 (time t+ 1 oil price growth is higher in the shock series)

(iii) u
(S)
3,t+1−u

(B)
3,t+1 < 0 (time t+1 world production growth is lower in the shock series)

If these sign restrictions are not fulfilled, generate new u
(B)
1,t+1 and u

(C)
1,t+1 and again check

(i)− (iii). For all s > 1, simulate u
(B)
t+s and set u

(B)
t+s = u

(S)
t+s.

Step 3: For each state r, calculate the approximate conditional expectation of the time

t+ 1, ..., t+ h benchmark and shock forecasts by averaging over all N values:

y
(B)
r,t+s = N−1

N∑
n=1

y
(B)
r,n,t+s, (B.5)

y
(S)
r,t+s = N−1

N∑
n=1

y
(S)
r,n,t+s. (B.6)
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Step 4: Finally, for each state r calculate IRFr,t = (IRr,t+1, ..., IRr,t+h) where

IRr,t+s = y
(S)
r,t+s − y

(B)
r,t+s. (B.7)

We follow Baumeister and Peersman (2013a) and set R = 500, N = 100 and h = 26, i.e.

at each t, we simulate 500 possible states of the economy, each with a oil supply shock in

t+ 1 and impulse responses up to 25 quarters after the shock.16 As an illustration, Figure

B1 plots these 500 IRFs obtained for 2010-Q1. Note that tb = t+ 1 such that t− tb = 0 is

the time of the shock and t− tb > 0 is the post-shock period.

Figure B1: Simulated IRFs for 2010-Q1 (blue lines). tb is the time of the supply shock,

i.e. 2010-Q2. The red line is the average over all 500 IRFs.

16To estimate IRFs, we use the data set and the Matlab code provided by Baumeister and Peersman

(2013a). Both is available at the Journal of Applied Econometrics data archive. Please note that we

slightly adjusted the Matlab code to exclude any elasticity restrictions. For more details regarding these

restrictions see Baumeister and Peersman (2013b). We also only consider the period 1972-Q1 to 2010-Q4.

The original data set ranges from 1947-Q1 to 2010-Q4.
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B.2 IRF based model parameter estimation

Our strategy is to use the simulated impulse responses to first estimate parameter ϕ which

measures the sensitivity of the margin with respect to supply shortages. Then, we use the

impulse responses to estimate the decay rate κ̃ in Equations (11) and (12). With values

for ϕ and κ̃ we then obtain ψ via

ψ =
κ̃

ϕ
(B.8)

B.2.1 Model parameter ϕ

The first and second entries of the time t impulse responses for t+ s at state r, IRr,t+s, are

IR1,r,t+s = δx
(S)
r,t+s − δx

(B)
r,t+s, (B.9)

IR2,r,t+s = δp
(S)
r,t+s − δp

(B)
r,t+s, (B.10)

By construction, δx
(S)
r,t+s and δx

(B)
r,t+s are the expected oil supply growth rates with and with-

out a negative oil supply shock in t+ 1, respectively (see Equations (B.4) and (B.3)). We

can thus interpret IR1,r,t+s as the expected time t+ s shortage in supply growth relative to

the benchmark as caused by the supply shock. This supply shortage is mirrored in an ex-

pected excess price growth IR2,r,t+s. We use this relationship between IR1,r,t+s and IR2,r,t+s

as a proxy for the relationship between supply shortage and price deviation as defined in

Equation (8), i.e. ∆mt = −ϕ∆xt. This relationship is obtained via the econometric model

IR2,r,t+s = α + βIR1,r,t+s + et. (B.11)

The estimation results are provided in Table B1. The estimators provided in the second

column are based on time t =1990-Q1, ...,2010-Q4 impulse responses, each with a forecast

horizon of s = 1, ..., 8 for r = 1, ..., 500 different states of the economy, i.e. 320.000 simulated

IR1 × IR2 combinations. Although both estimators, α̂ and β̂, are statistically significant,

we can safely neglect α̂ due to its economic insignificance. Regarding our model Equation

(8), the econometric model thus yields the relationship mt ≈ −3∆xt, i.e. a supply shortage

of 1 percent triggers a price increase of approximately 3 percent. This relationship is also

illustrated in Figure B2.
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Sample Period

1990 - 2010 1990 - 1999 2000 - 2010

Parameter

α̂ 0.589 0.474 0.696

β̂ -3.061 -3.720 -2.252

Table B1: OLS estimators of parameters α and β in Equation B.11. All p-values < 0.01.

To examine possible changes in the relationship between prices and supply within the

1990-2010 period, columns 3 and 4 of Table B1 provide estimates based on the time win-

dows t =1990-Q1, ...,1999-Q4 and t =2000-Q1, ...,2010-Q4. Both samples thus encompass

160.000 simulated IR1 × IR2 combinations. As can be seen, the constant α̂ is still eco-

nomically insignificant. More interesting is the sensitivity of the oil price with respect to

oil supply, which appears to be weaker for the 2000s compared to the 1990s. We account

for this variation in the sensitivity by setting ϕ = 3 in the base scenario, ϕ = 1.5 in the

optimistic scenario and ϕ = 4.5 in the pessimistic scenario.

Figure B2: Impulse responses (blue dots) and estimated linear relationship (red line).

The x-axis shows IR1, interpreted as a supply shortage ∆xt, while the y-axis shows IR2,

interpreted as margin mt. The graph shows a total of 320.000 simulated data points.
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B.2.2 Decay rate κ̃

The adjustment processes are defined in Equations (11) and (12) as ∆xt = ∆xtb (1− κ̃)(t−tb)

andmt = mtb (1− κ̃)(t−tb) where tb is the time of the shock. We therefore rely on the impulse

response functions IR1 and IR2 to serve as approximations to our decay processes. Because

the simulated shock is t+ 1, we define the following econometric model for i = 1, 2:

IRi,r,t+s = c0(1− κ̃)s−1 + et (B.12)

where s = 1, ..., 8. Figure B1 indicates that impulse response functions may temporarily

overshoot or undershoot. For this reason, we also define this model for capped IRs

ĨR1,r,t+s = min (IR1,r,t+s, 0), (B.13)

ĨR2,r,t+s = max (IR1,r,t+s, 0). (B.14)

The estimators of κ̃ based on the 1990 - 2000 sample period are shown in the second and

third columns of Table B2. Due to over- and undershooting, non-capped IRs imply a faster

adjustment than non-capped IRs. Nevertheless, all parameters suggest a reasonable full

adjustment within 2 to 6 quarters (see Figure B2).

Sample Period

1990 - 2000 1990 - 1999 2000 - 2010

Uncapped Capped Uncapped Capped Uncapped Capped

Dependent variable: IR1 and ĨR1

ĉ0 -0.554 -0.498 -0.609 -0.548 -0.498 -0.448

ˆ̃κ 0.854 0.368 0.838 0.369 0.870 0.367

Dependent variable: IR2 and ĨR2

ĉ0 5.689 5.619 5.932 5.863 5.446 5.386

ˆ̃κ 0.741 0.536 0.752 0.575 0.730 0.498

Table B2: NLS estimators of parameters c0 and κ̃. All p-values < 0.01.
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(A) Oil supply adjustment

(B) Oil price adjustment

Figure B3: Impulse responses (blue dots) and estimated non-linear relationship (red

dotted line.) The x-axis shows the time distance to the supply shock in t + 1. The y-axis

shows impulse responses of oil supply in panel A and oil prices in panel B. The estimated

relationship is based on Equation (B.12) with parameters provided in column 2 and column

3 of Table B2.
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Again, we also examine possible changes within the 1990-2000 period. Columns 4-7 of

Table B2 provide estimators based on time t =1990-Q1, ...,1999-Q4 and time t =2000-

Q1, ...,2010-Q4 impulse responses, respectively. Apparently, the dynamics are identical for

these subperiods.

In summary, we decide to set κ̃ = 0.6 in the base scenario, κ̃ = 0.3 in the optimistic

scenario and κ̃ = 0.9 in the pessimistic scenario. These values for κ̃ cover the full range of

the estimators provided in Table B2.

B.2.3 Model parameter ψ

The values we have set for the base scenario are ϕ = 3 and κ̃ = 0.6. The parameter ψ,

which measures the speed of the supply adjustment over time is estimated from Equation

(B.8) as ψ = 0.2. The ϕ×ψ combinations for all scenarios are summarized in the following

Table B3.

Scenario

Base Optimistic Pessimistic

Parameter

ϕ 3.000 1.500 4.500

κ̃ 0.600 0.900 0.300

ψ 0.200 0.600 0.070

Table B3: Values for ϕ, κ̃ and ψ in the base-, the optimistic- and the pessimistic scenario.
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Appendix C Additional Figures and Tables

Figure C1: Empirical Network of Physical Oil Flows (2007 - 2018).

This figure shows average annual flows of crude oil and refined products in million barrels.

the color coding visualizes the direction of the flows. For instance, the United states is

importing significant amounts of crude oil products from West Africa, the Middle East,

Europe, and Mexico, but exports to Europe and South Asia.
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Figure C2: The x-axis of this Figure shows the relative supply shortage 1 − ∆X while

the y-axis shows the corresponding margin multiplier Mt = (∆X)−ϕ. The blue line shows

Mt in case of ϕ = 1.5 (optimistic scenario). The black line shows Mt in case of ϕ = 3.0

(base scenario). The red line shows Mt in case of ϕ = 4.5 (pessimistic scenario). Left of

the vertical line, the supply shortage is below 20%.

Figure C3: This figure shows the distribution of the empirical network among volumes

in MMbbl across of the top 100 traders.
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Canada Mexico
South

America USA
East
Africa

North
Africa

West
Africa Europe Russia

Middle
East China India Japan Oceania

South
Asia

∑
Americas

Canada - 0.02 0.114 2.20 0.01 1.28 2.13 1.14 0.10 0.94 0.02 0.41 0.00 0.05 0.01 8.41

Mexico 0.00 - 0.075 2.67 0.01 0.00 0.02 0.75 0.00 0.18 0.10 0.32 0.02 0.16 0.18 4.47

South America 0.11 0.18 - 4.72 0.04 1.15 5.97 1.70 0.29 0.93 0.03 1.95 0.06 0.35 0.47 17.95

USA 1.33 9.01 9.87 - 0.15 5.40 32.33 11.87 2.43 13.43 0.21 3.12 0.03 1.67 0.97 91.81

EMEA

East Africa 0.00 0.00 0.06 0.03 - 0.04 5.27 0.44 0.02 1.48 0.01 2.64 0.00 0.10 0.29 10.37

North Africa 0.00 0.00 0.00 0.03 0.00 - 0.03 0.85 0.09 2.59 0.00 0.19 0.00 0.00 0.02 3.81

West Africa 0.00 0.01 0.13 0.52 0.03 0.18 - 5.46 0.10 0.50 0.06 4.67 0.00 0.00 1.32 12.97

Europe 0.69 6.81 6.38 26.65 0.29 12.91 40.49 - 60.83 31.27 0.68 8.61 0.43 0.74 6.07 202.85

Russia 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.04 - 0.09 0.00 0.00 0.00 0.00 0.00 0.17

Middle East 0.06 0.13 0.11 2.00 0.06 0.59 0.51 3.13 2.58 - 0.04 3.39 0.09 0.50 0.98 14.15

APAC

China 0.01 0.25 5.86 2.04 0.04 2.06 31.64 2.36 7.79 10.23 - 0.52 0.23 0.99 7.94 71.95

India 0.05 1.33 1.89 0.41 0.18 2.41 18.50 3.43 0.65 18.68 0.08 - 0.01 2.42 1.91 51.93

Japan 0.00 0.89 0.13 0.86 0.01 0.87 0.54 2.17 3.08 2.68 0.15 3.41 - 0.44 2.52 17.75

Oceania 0.02 0.33 2.08 0.15 0.06 0.26 3.68 1.12 0.77 1.45 0.35 0.58 0.60 - 6.49 17.93

South Asia 0.02 1.91 6.22 13.77 0.26 2.59 13.97 21.78 4.18 22.07 2.92 6.34 1.51 3.81 - 101.35∑
2.29 20.85 32.93 56.04 1.13 29.74 155.10 56.24 82.90 106.53 4.64 36.13 2.97 11.24 29.15 627.86

Table D1: Aggregate Physical Oil Flows (2007 - 2018)

This Table shows aggregated annual oil flows from exporting regions labeled in the columns to destination regions labeled in

the rows. For instance, the United States imported on average 9.01 million barrel of oil and refined oil products from Mexico

on an annual basis. This table is constructed by aggregating across 155,435 individual vessel transactions from 2007 - 2018.
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UNIPEC SHELL BP VITOL CNR PETROBRAS CSSSA REPSOL CLEARLAKE ST SHIPPING

Americas

Canada 0.000 0.089 0.246 0.027 0.253 0.000 0.000 0.022 0.000 0.020

Mexico 0.440 2.387 0.175 0.110 0.446 0.021 0.018 5.676 0.017 0.032

South America 1.858 3.686 0.904 0.816 1.118 10.638 0.052 1.798 0.435 0.194

USA 1.846 4.191 3.333 4.372 4.806 0.461 2.285 1.220 1.813 2.581

EMEA

East Africa 0.013 0.032 0.029 0.059 0.044 0.011 0.032 0.000 0.000 0.020

North Africa 1.783 1.453 2.235 0.513 0.304 0.793 1.225 1.776 0.197 0.579

West Africa 21.526 9.161 11.127 6.261 3.423 5.457 8.069 3.184 0.593 2.095

Europe 1.436 3.106 3.958 3.701 3.038 0.668 1.203 0.751 3.204 1.083

Russia 4.355 7.101 2.392 10.087 1.553 0.008 2.460 0.806 6.978 5.315

Middle East 6.499 4.403 4.961 3.777 2.305 0.628 2.753 3.742 1.389 2.022

APAC

China 0.612 0.267 0.126 0.227 0.251 0.034 0.048 0.022 0.084 0.076

India 0.349 2.278 3.295 2.011 2.112 1.398 0.893 0.022 1.479 1.517

Japan 0.013 0.292 0.146 0.143 0.396 0.034 0.000 0.007 0.010 0.087

Oceania 0.200 0.469 0.627 0.220 0.341 0.131 0.646 0.391 0.081 0.133

South Asia 1.420 1.803 2.779 2.773 2.466 0.594 0.122 0.162 0.585 0.714∑
42.350 40.719 36.333 35.096 22.856 20.875 19.808 19.579 16.865 16.468

Table D2: Commodity Trader Default and Absolute Oil Exports (Uncapped)

This table shows the reduction in physical oil flows following the bankruptcy of a large commodity trader. It takes the

perspective of an oil exporting region. Flow reductions are measured in million barrels for the quarter in which the shock

occurs. For instance, the failure of the Chinese oil trader Unipec in the first column of the table is estimated to cause oil

exports from West Africa to fall by 21 million barrel in the quarter of the shock.
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UNIPEC SHELL BP VITOL CNR PETROBRAS CSSSA REPSOL CLEARLAKE ST SHIPPING

Americas

Canada 0.000 0.426 0.522 0.351 0.155 0.006 0.012 0.011 0.054 0.050

Mexico 0.040 0.078 0.089 0.078 0.418 0.006 0.006 0.003 0.008 0.040

South America 0.082 0.812 0.649 0.571 0.873 8.032 0.065 1.054 0.147 0.280

USA 0.589 8.937 6.722 3.912 3.041 3.722 1.815 0.793 2.862 1.372

EMEA

East Africa 0.007 1.065 1.605 0.338 0.215 0.006 0.373 0.046 0.056 0.191

North Africa 0.000 0.057 0.078 0.142 0.061 0.000 0.010 0.018 0.097 0.083

West Africa 0.072 0.200 0.974 1.129 1.372 0.012 0.202 0.009 0.379 0.590

Europe 3.636 15.429 10.784 15.708 6.899 1.864 13.080 16.379 7.666 8.467

Russia 0.000 0.000 0.032 0.009 0.019 0.000 0.002 0.000 0.000 0.004

Middle East 0.072 1.133 0.765 0.741 1.105 0.051 0.438 0.357 1.030 0.391

APAC

China 33.887 1.541 0.658 1.406 1.198 2.712 0.234 0.087 0.456 0.757

India 0.025 0.427 5.396 0.174 0.207 0.666 0.137 0.019 0.166 0.244

Japan 0.338 1.142 0.677 0.996 1.095 0.347 0.476 0.321 0.598 0.480

Oceania 0.026 1.595 2.621 2.274 0.627 0.472 0.035 0.025 0.206 0.195

South Asia 3.575 7.876 4.761 7.266 5.571 2.979 2.922 0.458 3.140 3.324∑
42.350 40.719 36.333 35.096 22.856 20.875 19.808 19.579 16.865 16.468

Table D3: Commodity Trader Default and Absolute Oil Imports (Uncapped)

This table shows the reduction in physical oil flows following the bankruptcy of a large commodity trader. It takes the

perspective of an oil importing region. Flow reductions are measured in million barrels for the quarter in which the shock

occurs. For instance, the failure of the Chinese oil trader Unipec in the first column of the table is estimated to cause import

reductions in China of more than 33 million barrel in the quarter of the shock.
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UNIPEC SHELL BP VITOL CNR PETROBRAS CSSSA REPSOL CLEARLAKE ST SHIPPING

Americas

Canada 0.000 0.089 0.246 0.027 0.253 0.000 0.000 0.022 0.000 0.020

Mexico 0.311 2.387 0.175 0.110 0.446 0.019 0.018 5.676 0.017 0.032

South America 1.298 3.686 0.904 0.816 1.118 10.638 0.052 1.798 0.435 0.194

USA 1.306 4.191 3.333 4.372 4.806 0.233 2.285 1.220 1.813 2.581

EMEA

East Africa 0.009 0.032 0.029 0.059 0.044 0.005 0.032 0.000 0.000 0.020

North Africa 0.977 1.453 2.235 0.513 0.304 0.397 1.225 1.776 0.197 0.579

West Africa 9.556 9.161 11.127 6.261 3.423 3.088 8.069 3.184 0.593 2.095

Europe 0.895 3.106 3.958 3.701 3.038 0.441 1.203 0.751 3.204 1.083

Russia 2.992 7.101 2.392 10.087 1.552 0.008 2.460 0.806 6.978 5.315

Middle East 3.772 4.403 4.961 3.777 2.305 0.313 2.753 3.742 1.389 2.022

APAC

China 0.612 0.267 0.126 0.227 0.251 0.028 0.048 0.022 0.084 0.076

India 0.347 2.278 3.295 2.011 2.112 0.714 0.893 0.022 1.479 1.517

Japan 0.010 0.292 0.146 0.143 0.396 0.029 0.000 0.007 0.010 0.087

Oceania 0.092 0.469 0.627 0.220 0.341 0.099 0.646 0.391 0.081 0.133

South Asia 0.678 1.803 2.779 2.773 2.466 0.421 0.122 0.162 0.585 0.714∑
22.853 40.719 36.333 35.096 22.856 16.433 19.808 19.579 16.865 16.468

Table D4: Commodity Trader Default and Absolute Oil Exports (Capped)

This Table shows the reduction in oil flows from the perspective of an exporting region. Flow reductions are measured in

million barrels for the quarter in which the shock occurs. Bold numbers indicate adjusted contributions, such that supply

reductions caused by a trader’s default do not exceed 20%. For instance, the failure of Petrobras in the 6th column temporarily

reduces oil exports from South America by more than 10 million barrels.
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UNIPEC SHELL BP VITOL CNR PETROBRAS CSSSA REPSOL CLEARLAKE ST SHIPPING

Americas

Canada 0.000 0.426 0.522 0.351 0.155 0.006 0.012 0.011 0.054 0.050

Mexico 0.040 0.078 0.089 0.078 0.418 0.006 0.006 0.003 0.008 0.040

South America 0.082 0.812 0.649 0.571 0.873 3.590 0.065 1.054 0.147 0.280

USA 0.589 8.937 6.722 3.912 3.041 3.722 1.815 0.793 2.862 1.372

EMEA

East Africa 0.007 1.065 1.605 0.338 0.215 0.006 0.373 0.046 0.056 0.191

North Africa 0.000 0.057 0.077 0.142 0.061 0.000 0.010 0.018 0.097 0.083

West Africa 0.072 0.200 0.974 1.129 1.372 0.012 0.202 0.009 0.379 0.590

Europe 3.636 15.429 10.784 15.708 6.899 1.864 13.080 16.379 7.666 8.467

Russia 0.000 0.000 0.033 0.009 0.019 0.000 0.002 0.000 0.000 0.004

Middle East 0.072 1.133 0.765 0.741 1.105 0.051 0.438 0.357 1.030 0.391

APAC

China 14.390 1.541 0.658 1.406 1.198 2.712 0.234 0.087 0.456 0.757

India 0.025 0.427 5.396 0.174 0.207 0.666 0.137 0.019 0.166 0.243

Japan 0.338 1.142 0.677 0.996 1.095 0.347 0.476 0.321 0.598 0.480

Oceania 0.026 1.595 2.621 2.274 0.627 0.472 0.035 0.025 0.206 0.195

South Asia 3.575 7.876 4.761 7.266 5.571 2.979 2.922 0.458 3.140 3.324∑
22.853 40.719 36.333 35.096 22.856 16.433 19.808 19.579 16.865 16.468

Table D5: Commodity Trader Default and Absolute Oil Imports (Capped)

This table shows the reduction in physical oil flows following the bankruptcy of a large commodity trader. It takes the

perspective of an oil importing region. Flow reductions are measured in million barrels for the quarter in which the shock

occurs. Bold numbers indicate adjusted contributions, such that supply reductions caused by a trader’s default do not exceed

20%. For instance, the failure of the Chinese oil trader Unipec in the first column of the table is estimated to cause import

reductions in China of more than 14.39 million barrel in the quarter of the shock and is therefore capped at 14.39.
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Mexico
South

America USA
East
Africa

North
Africa

West
Africa Europe Russia

Middle
East China India Japan Oceania

South
Asia

Americas

Canada 0.760 0.738 0.753 1.204 0.743 0.962 0.730 0.807 1.101 1.407 1.139 1.358 1.344 1.327

Mexico 0.620 0.538 1.254 0.865 0.975 0.936 1.044 1.228 1.275 1.266 1.225 1.212 1.402

South America 0.621 1.204 0.994 0.882 0.823 1.192 1.170 1.229 0.990 1.131 1.156 1.500

USA 1.248 0.857 0.918 0.776 1.001 1.093 1.276 1.258 1.226 1.213 1.394

EMEA

East Africa 0.915 0.862 1.130 0.868 0.623 1.091 0.702 1.011 1.031 0.806

North Africa 0.837 0.576 0.668 0.802 1.232 0.826 1.250 1.302 0.900

West Africa 0.845 0.839 0.742 1.284 1.012 1.353 1.219 1.179

Europe 0.660 0.997 1.178 1.020 1.348 1.398 1.185

Russia 0.824 1.464 0.934 0.834 1.124 0.803

Middle East 0.946 0.691 0.988 0.721 0.770

APAC

China 0.895 0.563 0.831 0.677

India 0.836 0.914 0.654

Japan 0.828 0.707

Oceania 0.833

Table D6: This table shows the matrix of region specific distance measures Dij. First, kilometer distance data for tanker

routes was obtained from the Worldscale database and complemented with data from Searoutes.com. Second, the kilometer

distance was standardized between 0.5 and 1.5 with values of 1 indicating average distances (around 15,000 km). For instance,

the distance between the ports of Itaqui in Brazil and Onsan in South Korea is 24,507 km by ship. This distance translates

to an effective 50% markup over prices. The shortest distance in our data is between the ports of Altamira in Mexico and

Houston in the United States (928 km).
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