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Abstract

We propose a novel estimation procedure of bid-ask spreads from open, high, low,

and close prices. Our estimator is asymptotically unbiased and optimally combines

the full set of price data to minimize the estimation variance. When quote data

are not available, our estimator generally delivers the most accurate estimates of

effective bid-ask spreads numerically and empirically. The estimator is derived

under permissive assumptions that allow for stylized facts typically observed in

real market data, is easy to implement, and can be applied to liquid and illiquid

market segments, both in low and high frequency.
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THE BID-ASK SPREAD is one of the predominant measures of liquidity in finance,

with applications ranging from asset pricing (e.g., Amihud and Mendelson, 1986; Kora-

jczyka and Sadka, 2008) to corporate finance (e.g., Barclay and Smith Jr., 1988; Fang,

Tian, and Tice, 2014) and accounting research (e.g., Dechow, Sloan, and Sweeney,

1996; Blankespoor, deHaan, and Marinovic, 2020). However, a direct computation

of the effective bid-ask spread requires to match high-frequency trade and quote data

(Holden and Jacobsen, 2014), which are typically not available for international mar-

kets, asset classes other than stocks, and time periods prior to 1993 (Corwin and Schultz,

2012; Abdi and Ranaldo, 2017). The size of the quoted bid-ask spread, a popular proxy

for the effective spread, is even more fraught with measurement problems. The quoted

spread has been shown to overestimate the effective spreads finally paid by traders by

up to 100% (see, e.g., Huang and Stoll, 1994; Petersen and Fialkowski, 1994; Bessem-

binder and Kaufman, 1997; Bacidorea, Ross, and Sofianosa, 2003), due to dealers offer-

ing a better price than the quotes, also known as trading inside the spread (Lee, 1993).

Accordingly, most studies either limit the sample to the periods and markets of com-

mon data coverage or use liquidity proxies estimated from price data only (Hasbrouck,

2009).

Following the seminal work by Roll (1984), several approaches have been pro-

posed to estimate the effective bid-ask spread by relying solely on readily available

daily prices.1 Among them, the estimators by Corwin and Schultz (2012) and Abdi

and Ranaldo (2017) stand out, as they have been shown to generally deliver the most

accurate estimates of effective spreads, both numerically and empirically (Corwin and

Schultz, 2012; Holden and Jacobsen, 2014; Karnaukh, Ranaldo, and Söderlind, 2015;

Abdi and Ranaldo, 2017; Johann and Theissen, 2017).

In this paper, we propose an Efficient Discrete Generalized Estimator (EDGE) of the

1Hasbrouck (2009) proposes a Gibbs estimation of the Roll model that is based on daily closing prices.
Lesmond, Ogden, and Trzcinka (1999) introduce the LOT model that requires only the time series of
daily security returns to endogenously estimate the effective transaction costs for any firm, exchange,
or time period. Fong, Holden, and Trzcinka (2017) develop a new percent-cost proxy (FHT) which
simplifies the existing LOT measure. Goyenko, Holden, and Trzcinka (2009) develop a proxy of the
effective spread based on observable price clustering.
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bid-ask spread that builds on –and improves– estimators based on transaction prices, in

particular the influential contributions by Roll (1984), Corwin and Schultz (2012), and

Abdi and Ranaldo (2017). Our contribution to the literature is twofold.

First, we develop a generalized methodology that allows us to derive bid-ask spread

estimators from several combinations of Open, High, Low, and Close (OHLC) prices

when trading is discrete. As two special cases, our methodology produces the estima-

tors in Roll (1984) and Abdi and Ranaldo (2017) with a correction term for infrequent

trading. Although the previous literature has focused on continuous-time models (e.g.,

Geometric Brownian Motion), we show that this practice leads to a significant down-

ward bias when trading is infrequent (i.e., for illiquid assets).2 Instead, our generalized

estimators remain unbiased. This is an important property, as illiquid assets are ex-

pected to have the highest transaction costs. In particular, a systematic underestimation

of transaction costs, where they are expected to be the largest, may raise identification

concerns regarding previous empirical findings.

Second, we provide the optimal way to combine our estimators to minimize the es-

timation variance and obtain an efficient estimator (EDGE). By exploiting the full set

of OHLC prices, our efficient estimator is, on average, twice as accurate as the best

performing estimators available today.3 The increased accuracy allows us to produce

estimates closer to the (true but unobserved) effective spread. Moreover, this prop-

erty helps mitigating another upward bias that has been recently investigated by Jahan-

Parvar and Zikes (2019) and Tremacoldi-Rossi and Irwin (2019). Negative estimates

are usually re-set to zero to guarantee non-negativity of the transaction costs estimates

(Goyenko, Holden, and Trzcinka, 2009; Hasbrouck, 2009; Corwin and Schultz, 2012;

Karnaukh, Ranaldo, and Söderlind, 2015; Abdi and Ranaldo, 2017) and this practice

2For instance, the Corwin and Schultz (2012) liquidity measure has been translated to the corporate bond
market by Schestag, Schuster, and Uhrig-Homburg (2016). As most bonds are infrequently traded,
Nieto (2018) shows that this practice can produce an important bias, even when bonds with high activity
requirements are selected.

3Abdi and Ranaldo (2017) point out the importance of jointly considering a wider information set of price
data, rather than using close (Roll, 1984), or high-low (Corwin and Schultz, 2012) prices independently.
To the best of our knowledge, EDGE is the first estimator exploiting the full information set of OHLC
price data.
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leads, on average, to overstating the spread. By reducing the estimation variance, we

find that EDGE naturally produces a smaller fraction of negative estimates compared

to the alternative estimators. Our results show that the number of negative estimates is

reduced by 10% for smaller spreads and up to 50% for larger spreads.

Another advantage of EDGE is that it can be applied at any frequency and can ex-

ploit high-frequency price data whenever available. While the variance component of

an asset return is proportional to the return interval, the spread component is not (Cor-

win and Schultz, 2012). Hence, we can rely on high-frequency prices to reduce the asset

variance without altering the spread component and achieve a better signal-to-noise ra-

tio to improve the spread estimate. We show that EDGE can estimate intraday spreads

from minute data, while the other estimators struggle as trading becomes infrequent at

this time interval, and their downward bias dominates the spread estimate. This prop-

erty allows to study bid-ask spreads in high-frequency (e.g., Lee, Mucklow, and Ready,

1993) for markets that do not report bid and ask data (e.g., Bryant and Haigh, 2004).

Moreover, by relying solely on transaction prices, our estimator is not deceived by quote

stuffing, that is, the practice where a large number of orders to buy or sell are placed

and then canceled almost immediately in an attempt to manipulate the market through

fake bidding (Egginton, Van Ness, and Van Ness, 2016).

We compare EDGE with Roll (1984), Corwin and Schultz (2012), and Abdi and

Ranaldo (2017) in a comprehensive simulation study and with empirical data.

In our simulation experiments, we compare the correlation coefficient, Mean Abso-

lute Percentage Error (MAPE), and Root Mean Squared Error (RMSE), achieved by the

estimators using daily data and an estimation window ranging from one month to one

year. We also run the comparison for simulations performed in high-frequency, where

we use minute data and an estimation window ranging from 10 minutes to one day. We

find that EDGE produces the highest time-series and cross-sectional correlation coeffi-

cients, lowest MAPE, and RMSE, indicating it is always the best choice regardless of

the estimation window and the evaluation metric used by the researcher, both in low

and high frequency.
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Our empirical analysis compares EDGE with the benchmark estimators, with the

end-of-day quoted spread available in the CRSP U.S. stock database for 1925–1942

and 1993–2020, and with the effective spread computed via the TAQ database for the

period 1993–2020. We find that our simulation-based results carry over to the empirical

data. EDGE is more correlated and considerably closer to the effective spread than all

other estimators, both in time-series and cross-sectional studies. While EDGE remains

unbiased, the benchmark estimators underestimate the effective spread for small and

less liquid stocks. The difference is economically large: in the historical sample of

1925–1942, we find that EDGE is often about two times larger than the next best esti-

mator from transaction data. Our results also confirm earlier research (Huang and Stoll,

1994) showing that quoted spreads considerably overestimate the effective spread.

In recent sample periods and for highly liquid stocks characterized by a tiny bid-ask

spread (e.g., large caps), we confirm that all the estimators are upward biased when us-

ing daily data to estimate monthly spreads (Jahan-Parvar and Zikes, 2019; Tremacoldi-

Rossi and Irwin, 2019). When increasing the estimation window to one year, we find

that EDGE is unbiased for a spread size as small as 0.10% under ideal conditions and

for a spread size of 0.30% when overnight returns are included in simulations. If more

accurate spread estimates are needed, we illustrate how EDGE can produce unbiased

estimates of tiny spreads from intraday minute data.

EDGE admits a simple closed-form formula and is easy to calculate. To guarantee

reproducibility of our work, we make available easy-to-use software for the R statistical

environment (R Core Team, 2020) that implements all the estimators and all the results

in this paper.4

4The code is available upon request from the authors.
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1 Methodology

1.1 Setting

We rely on a set of assumptions that are comparable to earlier contributions in the

literature (e.g., Roll, 1984; Corwin and Schultz, 2012; Abdi and Ranaldo, 2017). More

specifically, we assume a spread of S%, which is constant over the estimation period.

The observed prices Pt for buys are higher than the actual prices P̃t by half the spread,

while observed prices for sells are lower than the actual value by half the spread. Buys

and sells are equally likely. Finally, actual returns are uncorrelated.5 We formalize our

assumptions in the following model:

Pt = P̃t(1 + S(Bt − 0.5)) , (1)

where Bt is a Bernoulli random variable with probability of success 0.5. In logarithmic

prices pt, Equation (1) becomes:

pt = p̃t + Zt , (2)

where we define Zt = S(Bt − 0.5) for notational convenience.6

1.2 Derivation of Discrete Generalized Estimators

We define ct as the log-price at the end of a trading time interval (e.g., closing of the

day). To compute the covariance between the log-return ct − ct−1 to its first lag, we

replace the observed log-prices ct with the actual (but unobserved) log-prices c̃t by

5The assumption of zero autocorrelation in returns is less restrictive than independence, which is popular
among older contributions. In particular, we do not rule out the possibility that the squared returns are
autocorrelated (i.e., time-varying volatility and volatility clustering).

6As S is typically much smaller than 1, we approximate ln(1 + Zt) ≈ Zt based on a first-order Taylor
expansion.
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Equation (2) and expand the covariance in the four terms:

Cov[ct − ct−1, ct−1 − ct−2] = Cov[c̃t − c̃t−1, c̃t−1 − c̃t−2]

+ Cov[c̃t − c̃t−1, Zt−1 − Zt−2]

+ Cov[Zt − Zt−1, c̃t−1 − c̃t−2]

+ Cov[Zt − Zt−1, Zt−1 − Zt−2]

= Cov[Zt − Zt−1, Zt−1 − Zt−2] ,

(3)

where the first three terms are zero because (a) the actual returns are not autocorrelated

by assumption and (b) the bid-ask bounces and the actual returns are independent from

each other. By expanding the last term we have:

Cov[Zt − Zt−1, Zt−1 − Zt−2] = Cov[Zt, Zt−1]

+ Cov[Zt,−Zt−2]

+ Cov[−Zt−1, Zt−1]

+ Cov[−Zt−1,−Zt−2] .

(4)

Since the random variables Z are independent for different trades, so far, the litera-

ture has assumed that the only non-vanishing term in Equation (4) is Cov[−Zt−1, Zt−1] =

−V[Z]. However, we point out that this is valid only under the assumption of continu-

ous trading. If trading is continuous, there is an infinite amount of trades taking place

between time t and time s, and the random variable Zt is independent from Zs for any

s 6= t. In practice, trades occur at discrete time and the same trade can originate differ-

ent prices on the market. For instance, one trade can originate two subsequent closing

prices if no trade has occurred in the second period. In these circumstances, the random

variables Z are not independent at different times, as they are actually originated by the

same trade. Assuming that the only non-vanishing term in Equation (4) is −V[Z] will

lead to a biased estimator of the bid-ask spread. We add to the literature by deriving

a generalized formula that allows one single trade to generate different prices, as it is
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often the case of periods with few trades or no trades at all (i.e. illiquid assets).

When there is no trade, the market reports the previous closing price, and therefore

Zt and Zt−1 are the same random variable originated from the same trade. In this case

Cov[Zt, Zt−1] = V[Z]. By the covariance decomposition formula, we have:

Cov[Zt, Zt−1] = V[Z]P[Zt = Zt−1] , (5)

where P[Zt = Zt−1] is the probability that the same trade generated both Zt and Zt−1.

The same holds for:

Cov[−Zt−1,−Zt−2] = V[Z]P[Zt−1 = Zt−2] , (6)

where P[Zt−1 = Zt−2] is the probability that the same trade generated both Zt−1 and

Zt−2. Moreover, we have:

Cov[Zt,−Zt−2] = −V[Z]P[Zt = Zt−1]P[Zt−1 = Zt−2] . (7)

Assuming only close prices are available, we estimate the probability that two sub-

sequent prices are generated by the same trade by counting the fraction of times, νc=c,

for which the closing prices over two subsequent time periods are equal:

P[Zt = Zt−1] = P[Zt−1 = Zt−2] =̂ νc=c . (8)

We can now compute the covariances in Equations (3)–(4) by substituting the terms

in Equations (5)–(8):

Cov[ct − ct−1, ct−1 − ct−2] = −V[Z](1− 2νc=c + ν2c=c) = −V[Z](1− νc=c)2 .
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We obtain our final formula by computing the variance of Z in Appendix A.1:

Cov[ct − ct−1, ct−1 − ct−2] = −S
2

4
(1− νc=c)2. (9)

Equation (9) can be easily solved for the spread S:

S2 = −4Cov[ct − ct−1, ct−1 − ct−2]
(1− νc=c)2

, (10)

which is an unbiased estimator of the bid-ask spread based on closing prices.

Exploiting additional information from open, high and low prices is expected to pro-

vide a more efficient estimator (see Abdi and Ranaldo, 2017). Following this reasoning,

we derive unbiased bid-ask spread estimators using open, high, low, and close prices,

as well as combinations of these prices. Here we take into account that one trade can

originate contemporaneously the open, high, low, and close prices if it is the only trade

in the period, and that one trade can originate both the high (low) and close (open) price

if the closing (opening) trade is selected as the highest (lowest) price. The calculations

are provided in Appendix A.2.

In Table 1, we summarize the various estimators. When νc=c = 0 (i.e., there is at

least one trade observed for each period), the C estimator is identical to the bid-ask

estimator of Roll (1984). Similarly, when νc=h,l = νh=l=c = 0 (i.e., the closing price

is never selected as the highest or lowest price), the CHL estimator is identical to the

bid-ask estimator of Abdi and Ranaldo (2017).7

The first innovation of the estimators displayed in Table 1 is that they account for

infrequent trading. While it is well known that the estimators by Roll (1984), Corwin

and Schultz (2012), and Abdi and Ranaldo (2017) lead to biased results when trading

is infrequent, our generalized estimators remain unbiased in these situations. There-

fore, they can be applied to a wide range of asset classes, in liquid and illiquid market

segments, at low or high frequency.
7This can be easily seen by computing Cov[rt, rt−1] = E[rtrt−1] for zero-mean log-returns.
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The second innovation of the estimators shown in Table 1 is that they extend over

the full set of information by jointly considering open, high, low, and close prices. The

remaining open question is which of these estimators, or a combination of estimators,

should be chosen to obtain the best possible (efficient) estimator.

[Insert Table 1 about here.]

1.3 The Efficient Discrete Generalized Estimator (EDGE)

In this section, we combine our generalized estimators to minimize the estimation vari-

ance and obtain our efficient estimator (EDGE). To this end, we follow three steps. First,

we show that each generalized estimator in Table 1 can be written as a moment condi-

tion so that the asymptotically efficient estimator is obtained by applying the General-

ized Methods of Moments (GMM) (Hansen, 1982) (Appendix A.3.1). Second, we in-

clude prior knowledge in the optimal GMM weighting matrix to improve the efficiency

in small samples (Appendix A.3.2). Third, we provide an estimator for k = 4p(1− p)

in Table 1, where p is the probability of the high price to be buyer initiated or, equiva-

lently, the probability of the low price to be seller initiated (Appendix A.3.3).

Following the calculations in Appendix A.3, we derive our Efficient Discrete Gen-

eralized Estimator (EDGE) of the bid-ask spread:

S2 =
w1E[X1] + w2E[X2]

w1w2(νo=h,l + νc=h,l)− 1/2
, (11)

where νo=h,l and νc=h,l are given in Table 1; X1, X2 are the following vectors based on

log-returns where we need to drop all the periods t with no trades such that ht = lt =

ct−1; and with the optimal weights provided below:

X1,t = (ηt − ot)(ot − ct−1) + (ot − ct−1)(ct−1 − ηt−1) ,

X2,t = (ηt − ot)(ot − ηt−1) + (ηt − ct−1)(ct−1 − ηt−1) ,
(12)
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w1 =
σ2
2

σ2
1 + σ2

2

, w2 =
σ2
1

σ2
1 + σ2

2

, (13)

σ2
1 = V[X1] , σ2

2 = V[X2] . (14)

For estimation, the usual sample counterparts replace the expectations and vari-

ances, respectively.8 We expect EDGE to provide superior performance compared to

the estimators by Roll (1984), Corwin and Schultz (2012), and Abdi and Ranaldo (2017)

as it is derived under more general conditions and it takes advantage of the whole in-

formation set by jointly considering the full set of opening, high, low, and closing price

data in an optimal way.

1.3.1 Dealing with Negative Estimates

The estimate Ŝ2 in Equation (11) may become negative in finite samples. This is an

issue as a negative squared spread is not mathematically nor economically meaningful.

To guarantee non-negativity of the transaction costs estimate, we follow the common

approach of truncating negative values (Goyenko, Holden, and Trzcinka, 2009; Has-

brouck, 2009; Karnaukh, Ranaldo, and Söderlind, 2015):

Ŝ =

√
max

{
0 , Ŝ2

}
. (15)

Jahan-Parvar and Zikes (2019) and Tremacoldi-Rossi and Irwin (2019) document

that the practice of resetting negative estimates to zero leads to overstating the spread

when estimating monthly spreads from daily data and where the true spread is 0.50%

and smaller. In Section 2.2.3, we show that EDGE naturally produces fewer negative

estimates with respect to all other estimators and the fraction of negative estimates can

be further reduced by increasing the estimation window. Another option to reduce the

estimation variance and avoid negative estimates is to use high-frequency price data as

8To further improve the robustness of the estimates, the sample mean can be replaced with a robust
estimator of the mean, such as the winsorized mean or the trimmed mean.
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illustrated in Section 3.5.

1.3.2 Confidence Intervals

In this section, we derive the distribution of EDGE in Equation (11) to allow for proper

hypothesis testing on the bid-ask spread. We start by noting that the estimator is writ-

ten as an expectation so that by the Central Limit Theorem it will be asymptotically

normally distributed.9 As the asymptotic variance has to be estimated from the data,

in small samples, the estimator is distributed according to a t-distribution with n − 1

degrees of freedom, where n is the sample size:

Ŝ2 − S2

σ/
√
n
∼ tn−1 . (16)

The sample standard deviation σ is given by:

σ =

√
w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2σ12

1/2− w1w2(νo=h,l + νc=h,l)
, (17)

where σ12 = Cov[X1, X2] and all the other terms are the same as in Equation (11).

As we have uncovered the distribution of S2, we can now derive the confidence

intervals of S. By exploiting the fact that the spread is positive, we know that the

probability of the estimate S to be less than a given level s is equal to the probability

of S2 to be less than the squared level s2. This equals the cumulative density function

Φn−1(s
2) of the t-distribution in Equation (16) computed in s2:

p = P[S < s] = P[S2 < s2] = Φn−1(s
2) . (18)

Equations (18) and (15) allow to obtain the quantiles associated with a probability

level p by computing the inverse of the cumulative density function Φ−1n−1(p):

s2p = max
{

0, Φ−1n−1(p)
}
, sp =

√
s2p . (19)

9By Slutsky’s theorem, we can treat as constants the weights w and the frequencies ν in Equation (11).
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Finally, we use Equation (19) to obtain the critical values for S at a confidence level

1− α: [√
max

{
0, Φ−1n−1(α/2)

}
,
√

max
{

0, Φ−1n−1(1− α/2)
}]

. (20)

1.3.3 Random Spread

When considering a random spread, the variance of Z becomes E[S2]/4 instead of

S2/4 as shown in Appendix A.1.1. By using E[S2]/4 instead of S2/4 in Appendix

A.2, it can be seen that all the equations in Table 1 hold more in general for random

spreads by substituting E[S2] to S2 in the left-hand side of the equations. In other

words, if the spread is random, then all our estimators are formally estimators for the

mean squared spread. Moreover, in case the spread does not vary widely around its

mean, we can approximate E[S2] ≈ E[S]2 so that all the formulas in Table 1, and

in particular Equation (11) become, at least approximately, estimators for the average

(random) spread.

1.4 Using EDGE in Practice

We expect EDGE to be successfully applied out-of-the-box without performing any ad

hoc adjustment or price manipulation. Our estimator should work well in practice as it

is derived under permissive assumptions that allow for infrequent trading, time-varying

volatility, fat tails, overnight jumps, and other effects observed in actual price data. The

following section demonstrates the benefits of EDGE in a controlled environment using

a comprehensive simulation experiment.

2 Simulation Study

In this section, we perform a Monte Carlo study to assess the accuracy and robustness

of the EDGE in Equation (11). We compare the results with the estimators recently

proposed by Corwin and Schultz (2012) and Abdi and Ranaldo (2017). Both papers

define at least two versions of their estimators that handle negative spread estimates
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in different ways. The first version sets negative estimates to zero and offers the most

natural benchmark for our estimator. We refer to these versions as the CS (Corwin

and Schultz, 2012) and AR (Abdi and Ranaldo, 2017) estimators, respectively.10 The

second version estimates spreads separately for each pair of consecutive periods, sets

them to zero when necessary, and calculates the final estimate as the average across all

the two-period estimates. We refer to these versions as the CS2 (Corwin and Schultz,

2012) and AR2 (Abdi and Ranaldo, 2017) estimators, respectively.11 The CS and CS2

estimators are adjusted for overnight returns as described in Corwin and Schultz (2012).

2.1 Setup

For ease of comparison, we use the simulation setup of Corwin and Schultz (2012) that

is also used in Abdi and Ranaldo (2017).

2.1.1 Low Frequency

We simulate 10,000 stock-months where each month consists of 21 days and where

each day consists of 390 minutes. For each minute of the day, the true value of the

stock price, Pm, is simulated as Pm = Pm−1e
σx, where σ is the standard deviation

per second and x is a random draw from a standard Gaussian distribution. The daily

standard deviation equals 3% and the standard deviation per minute equals 3% divided

by
√

390. In each simulation, stock prices are assumed to be observed each minute

with a given probability. The bid (ask) for each minute is defined as Pm multiplied

by one minus (plus) half the assumed bid-ask spread, and we assume a 50% chance

that a bid (ask) is observed. Daily high and low prices equal the highest and lowest

prices observed during the day. Open and Close prices equal the first and the last price

observed in the day. If no trade is observed at time t, then the previous Close at time

t− 1 is used as the Open, High, Low, and Close prices at time t.

10This is the Monthly version used in the original papers.
11This is the 2-Day version used in the original papers.
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2.1.2 High Frequency

Similar to the setup above, we run high-frequency simulations, in this case consisting of

252 8-hour stock-days, and where each day consists of 8× 60× 60 = 28,800 seconds.

The standard deviation per second equals 3% divided by
√

28,800. Stock prices are

assumed to be observed each second with a given probability, and with a 50% chance

that a bid (ask) is observed. The high and low prices per minute equal the highest and

lowest prices observed during the minute. Open and Close prices equal the first and the

last price observed in the minute. If no trade is observed at time t, then the previous

Close at time t− 1 is used as the Open, High, Low, and Close prices at time t.

2.2 Results

In Table 2, we report the results of the simulation study in the low-frequency setting

of Section 2.1.1. Panel A shows the comparison where prices are assumed to be ob-

served each minute, and overnight returns are not included. In these simulations, EDGE

demonstrates to be on average twice more precise than AR or CS and four times more

precise than the Roll estimator. For example, for a true spread of 0.50%, the EDGE esti-

mate is 0.44% with a standard deviation of 0.34%, while the AR (CS) estimate is 0.71%

(0.60%) with a standard deviation of 0.78% (0.50%). By estimating spreads as large as

1.21%, 1.44%, 1.45%, respectively, AR2, CS2, and Roll demonstrate to be not accurate

for small spreads as already observed in Tremacoldi-Rossi and Irwin (2019), and also

in the original papers. For larger spreads, the estimators become more similar but with

EDGE always achieving the most precise estimates. In Panel B, we introduce infrequent

trading and overnight jumps in the simulations. These results highlight the robustness

of EDGE compared to the other estimators. We find that EDGE outperforms the CS and

the Roll estimator with better accuracy and lower bias in all scenarios. EDGE performs

similar to the AR estimator for the smallest considered spread (0.50%), and is more

accurate and more precise in all other scenarios.

[Insert Table 2 about here.]
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In the Appendix (Table A.2), we replicate the experiment in Jahan-Parvar and Zikes

(2019) who compare the bias of the estimators for tiny spreads when one year of daily

data is used. We find that EDGE is the only estimator able to consistently estimate

spreads as small as 0.10% under near-ideal conditions, while CS, AR, and Roll produce

upward-biased estimates of 0.20%, 0.34%, and 0.66%, respectively. The results deteri-

orate when overnight returns are included in the simulations, but EDGE always amelio-

rates the upward bias and produces consistent estimates for spreads equal to 0.30% and

larger.

In Table A.1, we extend the comparison to the high-frequency setting described in

Section 2.1.2. Under near-ideal conditions, we find that all the estimators perform sim-

ilarly, but with EDGE always achieving the best accuracy. In the infrequent trading

setting, the performance gap between EDGE and the other estimators widens signifi-

cantly. EDGE is the only reliable estimator for the simulation experiment that mimics

intraday data.

The remainder of this section is dedicated to a deeper comparison across the esti-

mators from several perspectives.

2.2.1 Bias

In Figure 1, we study the bias of the estimators as a function of the average number

of trades per day. We simulate the low-frequency setting in Section 2.1.1 where the

probability of observing a trade ranges from 0.5% to 100% so that the corresponding

expected number of trades per day ranges from 2 to 390. We use a constant spread

of 1% and compare the results obtained with EDGE, AR, and CS estimators. CS is

significantly biased and converges slowly to the true spread as the expected number of

trades per day increases. AR converges faster, but it is still biased when the expected

number of daily trades is below 30. EDGE produces unbiased estimates regardless of

the numbers of trades per day, suggesting it works well in practice even in the case of

illiquid assets or in high frequency when only a few trades are observed per minute.

The results for CS2 and AR2 are not reported as they are significantly biased even for
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a very large number of trades per day, as shown in Table 2 and already documented

in the original papers. In the Appendix (Figure A.4), we extend the comparison to the

high-frequency setting described in Section 2.1.2, from which the same conclusions can

be drawn.

[Insert Figure 1 about here.]

2.2.2 Variance

In Figure 2, we study the standard deviation of the bid-ask spread estimators depending

on the magnitude of the spread. To this end, we run the simulations described in Sec-

tion 2.1.1, estimate the spread for each month, and compute the standard deviation of

the estimates. The procedure is repeated for several levels of the spread. These simula-

tions use 390 trades per day so that all the estimators are unbiased (see Figure 1) and the

minimum-variance estimator coincides with the best estimator in the usual root mean

squared error sense. We notice that CS is preferable to AR for small spreads, while

AR achieves better performance for larger spreads. In both cases, EDGE provides the

most precise estimates with a standard deviation lower than the other approaches across

low and large spreads. In the Appendix (Figure A.5), we extend the comparison to the

high-frequency setting described in Section 2.1.2, from which the same conclusions can

be drawn.

[Insert Figure 2 about here.]

2.2.3 Negative Estimates

A major drawback of bid-ask spread estimators is the large number of negative estimates

they produce for sample sizes typically encountered in financial studies. Although AR2

and CS2 try to mitigate this issue at the cost of introducing a large bias in the estima-

tion of small spreads, this problem does not seem to be effectively improved with any

adjustment proposed in the literature (Jahan-Parvar and Zikes, 2019; Tremacoldi-Rossi

and Irwin, 2019).
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In Figure 3, we study how the proportion of zero estimates varies in function of the

sample size. To this end, we run the simulations described in Section 2.1.1, estimate the

spread using an estimation window ranging from one month to one year, and compute

the corresponding percentage of zero estimates that we obtain. The simulations use a

constant spread of 1%, a 10% probability of observing a trade (for an average of 39

trades per day), and an overnight return normally distributed with mean zero and stan-

dard deviation equal to half of the daily volatility. We notice how the Roll estimator

produces a large number of zero estimates (about 40% of the times) even when using

one year of daily data to compute the spread. AR and CS exhibit a similar behaviour,

producing non-positive estimates between 20% and 30% of the times with a one-year

estimation window. Instead, EDGE significantly reduces the frequency of zero esti-

mates as the sample size increases, reaching a fraction lower than 5% for a one-year

estimation window.

[Insert Figure 3 about here.]

2.2.4 Confidence Intervals

In Figure 4, we assess the empirical performance of the confidence intervals provided

in Equation (20). To this end, we run simulations consisting of 390 trades per day

as described in Section 2.1.1, estimate the spread for each month, and compute the

fraction of times in which the true spread is outside of the confidence intervals (false

positive rate). We repeat this exercise for confidence levels (1 − α) ranging from zero

to 100% and for several spread levels. We notice how the empirical false positive rate

that we obtain is close to the exact theoretical value α for all the confidence levels and

the different spreads. The result suggests that the distribution in Equation (16) and the

corresponding confidence intervals in Equation (20) are reliable even in small samples

with as little as 21 observations (monthly estimates from daily data).

[Insert Figure 4 about here.]
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2.3 Stress Test

In this section, we report the simulation results in which we include different imper-

fections simultaneously, such as adding overnight jumps that proxy for non-trading

periods, allowing the probability to observe a trade to vary over time, and assuming a

time-varying random spread.

In Figure 5, we simulate 10,000 stock-months with 21 days in each month under

this setting. For each day, we use the previous year to estimate the spread. The esti-

mates are benchmarked with the average spread and the average number of trades in

the previous year. One clear result emerges. EDGE exhibits the smallest variance and

it is also able to disentangle the spread dynamics from the expected number of trades

per day. AR, AR2, CS, CS2 considerably underestimate the spread in periods when the

number of trades per day is low. The researcher should be careful when applying these

estimators in practice, as changes in trading volume are likely to be artificially reflected

on changes in estimated spreads. For example, spread estimates in the 1930s will not

be directly comparable with estimates following the introduction of electronic trading

that significantly increased the trading volume. The same problem would affect intra-

day spread estimates where the larger trading volume, usually observed around market

opening and close, is likely to be artificially reflected on the spread. EDGE allows for

a consistent comparison regardless of changes in the trading volume. Finally, we note

that AR2 and CS2 exhibit a lower variance but are more biased with respect to AR and

CS. The Roll estimator is affected by a large variance that makes practical estimation

hard in practice.

[Insert Figure 5 about here.]

In the Appendix (Table A.3), we report the correlation coefficient, Mean Absolute

Percentage Error (MAPE), and Root Mean Squared Error (RMSE), achieved by the es-

timators using a rolling window ranging from one year to one month. We also report the

same metrics for simulations performed in high frequency, where we use an estimation

window ranging from 10 minutes to one day. EDGE produces the highest correlation
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coefficient, lowest MAPE, and RMSE, suggesting it is always the best choice regardless

of the time interval and the evaluation metric used by the researcher, both in low and

high frequency.

3 Empirical Results

In this section, we investigate how close we can estimate actual trading costs in the

empirical data. To evaluate the performances of the estimators, we first need to define

the ground truth, that is, the true value of the spread that serves as the benchmark for

the evaluation. The simplest type of bid-ask spread is the quoted spread:

Q = 2
Ask −Bid
Ask +Bid

. (21)

Quoted spreads are a popular measure, but they often overstate the true spreads

finally paid by traders due to dealers offering a better price than the quotes, also known

as trading inside the spread (Lee, 1993).

Effective spreads account for this issue by using trade prices. However, they are

considerably more challenging to measure since one needs to match trades with quotes

and account for reporting delays. Often the required data is not available. Effective

spreads are defined as:

S = 2
|P −M |
M

, M =
Ask +Bid

2
, (22)

where P is the trade price and M is the midpoint computed from the bid and the ask

prices. Following the literature, we use the effective spread to evaluate the performance

of the various estimators that only requires commonly available OHLC price data.
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3.1 Data Preparation

To compute the bid-ask spread estimates (i.e., EDGE, AR, AR2, CS, CS2, Roll), we rely

on the CRSP US Stock Database to access daily OHLC price data in the periods 1925–

1962 and 1993–2020.12 To compute the benchmark effective spread, we rely on the

Trades and Quotes (TAQ) data available in 1993–2020. Effective spreads are obtained

via the Wharton Research Data Services (WRDS) using Monthly TAQ for 1993–2003

and Daily TAQ from 2004 onward. The effective spreads are computed in the WRDS

cloud according to the methodology described in Holden and Jacobsen (2014), which is

also used in Abdi and Ranaldo (2017).13 We match CRSP and TAQ data using CUSIP

identifiers.14 Our identification strategy allows us to match above 99.5% of the stocks

in CRSP.

To ensure that all the estimates are obtained from transaction prices only, we keep

the observations for which the open, high, low, and close prices are available.15 Fol-

lowing Corwin and Schultz (2012) and Abdi and Ranaldo (2017), we select all NYSE,

AMEX, and NASDAQ stocks with CRSP share codes of 10 or 11 (i.e., U.S. common

shares). No other data pre-processing is performed to maintain all the complexity of

empirical data and especially of the highly illiquid stocks with only a few observations

per month.

For each month, we estimate the spread with EDGE, AR, AR2, CS, CS2, and Roll

and drop the monthly estimate for all the estimators if it is missing for any of them. The

monthly benchmark is computed as the average of the effective spreads in Equation (22)

within the month. The minimal pre-processing allows us to cover a diverse and large

sample of more than 1.6 million spread estimates for each estimator.

12Open prices are missing in CRSP from July 1962 through June 1992.
13The effective spreads computed via the methodology in Holden and Jacobsen (2014) are available to

download from the WRDS Intraday Indicators.
14We reconstruct the time series of CUSIP for each KYPERMNO in CRSP. Then, we compute the time

series of CUSIP for each stock in TAQ using the Monthy TAQ Master files for 1993–2009 and the
Daily TAQ Master files in 2010–2020. Finally, we merge the datasets based on date and CUSIP.

15If transaction prices are not available, CRSP reports quotes derived from bid and ask prices. These
values are marked in CRSP by a dash in front of the price. We drop these non-transaction-based
observations.
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In Table 3, we provide summary statistics of our empirical analysis based on 1993–

2020 sample when CRSP and TAQ data are available. We report the mean, median,

and standard deviation for the estimates and the effective spread benchmark. We notice

how EDGE achieves the highest correlation (76.48%) with the benchmark, the smallest

fraction of zero estimates (24.79%) and the lowest MAPE and RMSE.16 The remainder

of this section is dedicated to a deeper comparison across the estimators in a cross-

sectional, time-series, and panel-data setting.

[Insert Table 3 about here.]

3.2 Cross-Sectional Correlation

Looking at cross-sectional correlations on a month-by-month basis allows us to evaluate

the ability of the estimators in capturing the cross-sectional distribution of spreads in

different time periods. Given the effective spread benchmark Si,t for stock i at time t

and the corresponding estimate Ŝi,t, we compute the cross-sectional correlation at time t

as ρt = Cori[Si,t, Ŝi,t]. The month-by-month cross-sectional correlations for the various

estimators are displayed in Figure 6. We see that the correlation between EDGE and

the effective spread benchmark is consistently higher than the correlations achieved by

AR, CS, or the Roll estimator throughout the whole period considered in the analysis.17

[Insert Figure 6 about here.]

3.3 Time-Series Correlation

Looking at time-series correlations on a stock-by-stock basis allows us to evaluate the

ability of the estimators in capturing the time-series distribution of spreads for differ-

ent kinds of stocks. To this end, we split all stocks in deciles based on their market

capitalization.18 Then, given the effective spread benchmark Si,t for stock i at time t
16We recall that AR2 and CS2 tend to avoid zero estimates by construction. The MAPE and RMSE are

computed on the log-spreads as described in Appendix A.5.
17AR2 and CS2 perform similar to AR and CS and can be found in Table 4, Panel B.
18The size deciles are sorted by increasing market capitalization of each stock as its last listing date on

CRSP, as defined in Corwin and Schultz (2012) and Abdi and Ranaldo (2017).
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and the corresponding estimate Ŝi,t, we compute the time series correlation for decile

d as ρd = Cori∈d,t[Si,t, Ŝi,t]. The time-series correlations for each decile obtained with

the various estimators are displayed in Figure 7. We see that the correlation between

EDGE and the effective spread benchmark is consistently higher than the correlations

achieved by AR, CS, or the Roll estimator for all kinds of stocks.19 The figure also

shows a drop in the correlation associated with the very large stocks in the last decile,

which are typically characterized by a tiny bid-ask spread. When more accurate esti-

mates are needed for very large stocks, a researcher may consider using intraday data

as illustrated in Section 3.5.

[Insert Figure 7 about here.]

3.4 Panel-Data Correlation

Next, we analyze the performances across four dimensions: market venues, time peri-

ods, market capitalization, and spread size. When analyzing market venues, the groups

correspond to NYSE, Amex, and NASDAQ. For the time periods, we use those defined

in Corwin and Schultz (2012) and Abdi and Ranaldo (2017). In addition, we extend

the sample and include the more recent sub-period 2016–2020. For market capitaliza-

tions, we split the stocks in quintiles using the same procedure described in Section 3.2.

For spread sizes, we split the stocks in quintiles based on the average effective spread

throughout the life of the stock. Then, given the effective spread benchmark Si,t for

stock i at time t and the corresponding estimate Ŝi,t, we compute the correlation for

group g as ρg = Cor(i,t)∈g[Si,t, Ŝi,t].

The results are summarized in Table 4 for market venues (Panel A), time periods

(Panel B), market capitalization (Panel C), and spread size (Panel D). One clear re-

sult emerges: EDGE outperforms all the alternative estimators in each market venue,

sub-period, market capitalization, and spread size by consistently achieving the highest

correlation with the TAQ effective spread benchmark.20

19AR2 and CS2 are similar to AR and CS and can be found in Table 4, Panel C.
20In Appendix A.5, we also provide the comparison on MAPE and RMSE and extend the estimation
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Our results also highlight an overall tendency of all the estimators to perform poorer

on more recent time periods, larger stocks, and smaller spread sizes (Jahan-Parvar and

Zikes, 2019; Tremacoldi-Rossi and Irwin, 2019). Since the spread for certain stocks

becomes smaller and smaller while the stock variance remains roughly the same, the

spread becomes notoriously difficult to estimate from a given number of observations

and the fraction of non-positive spread estimates increases.

[Insert Table 4 about here.]

3.5 Illustration of High Frequency Estimates

When the bid-ask spread is expected to be tiny (i.e., below 0.50%), a researcher may

consider increasing the estimation accuracy by using intraday price data to reduce the

estimation variance and improve the spread estimates. In this case, we stress that the

number of trades observed per time interval shrinks proportionally. As a result, it be-

comes increasingly important to apply an estimator that is unbiased when trading be-

comes more and more infrequent. Indeed, we show earlier in the simulation experiment

(Appendix Table A.1) that EDGE is expected to perform considerably better in such a

scenario than other approaches.

To illustrate with empirical data, we show in Figure 8a the monthly spread estimates

for GameStop Corp. (GME) in 2020, which is featured by a small effective spread of

around 0.16% throughout the year. We find that the monthly estimates obtained from

daily data vary wildly and tend to be significantly upward biased, while those obtained

from hourly and minute data improve the accuracy of the estimates. In particular, as

depicted in Figure 8b, the estimates obtained with minute data are sufficiently precise

and allow the estimation of unbiased spreads from intraday prices even when using a

daily estimation window.

[Insert Figure 8a and Figure 8b about here.]

window to one year. EDGE consistently achieves the highest correlation, lowest MAPE and RMSE for
each sample size and evaluation metric.
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4 Revisiting Historical Spread Estimates

To demonstrate the potential benefits of EDGE, we now turn to the analysis of historical

trading costs using CRSP data since 1925. For each month, we construct three portfolios

based on size according to the following procedure. First, we sort the stocks based on

their market capitalization at the end of each month. Then, we select small-cap, mid-

cap, and large-cap using the common 50th and 80th percentiles as breakpoints. Finally,

we track the average spread of the three portfolios in 1925–1962 (CRSP sample) and

1993–2020 (CRSP-TAQ merged sample).

The results are reported in Figure 9 where small, mid, and large caps are shown in

Panel A, B, and C, respectively. From the recent sample (CRSP-TAQ), we conclude that

EDGE closely follows the effective spread whenever the transaction costs are not tiny.

This is the case for small-cap stocks and all stocks before the year 2000. CS and AR

tend to underestimate the transaction costs, particularly for small-cap stocks, mirroring

the fact that these estimators are biased in the presence of low liquidity. Moreover, we

find that the quoted spread overestimates the effective spread and does not constitute a

reliable alternative.

In the arguably less liquid historical sample period 1925–1962, we find that the gap

between EDGE and the alternative estimators further widens. The unbiased EDGE is by

a factor of two larger than AR, and the difference is even more pronounced compared to

CS. From this observation, we conclude that previous research based on low-frequency

estimators has considerably underestimated transaction costs. Finally, we find that the

quoted spread is considerably larger than EDGE in 1925–1962. Given our benchmark

result from the recent sample, we conjecture that the quoted spread significantly over-

estimates the effective spread in the early sample. As TAQ data are not available prior

1993, EDGE may represent the only option to reliably estimate historical transaction

costs for the U.S. stock market.

[Insert Figure 9 about here.]

Following the proliferation of electronic trading between 2001–2005, we find that
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the spreads for mid and large caps have become too small to be reliably estimated

from a monthly sample of daily data, as already observed by Jahan-Parvar and Zikes

(2019) and Tremacoldi-Rossi and Irwin (2019). To improve the estimation accuracy

for larger stocks in more recent periods, a researcher may consider using intraday price

data whenever possible, as illustrated in Section 3.5.

5 Conclusion

We propose an Efficient Discrete Generalized Estimator (EDGE) of the bid-ask spread

derived from open, high, low, and close prices. Our approach adds to the literature

in two ways. First, EDGE is unbiased when trading is infrequent. Second, EDGE

minimizes the estimation variance.

These properties are essential for reliable identification in applied research. We

show that earlier proposed methods based on transaction prices are likely to underesti-

mate historical spreads substantially. This is particularly evident for small stocks, where

liquidity tends to be low, and transaction costs are expected to be high. In addition, the

improved accuracy of EDGE reduces the probability of finding negative estimates. As

negative estimates are commonly re-set to zero in empirical work, this property reduces

another source of bias for all types of stocks.

We illustrate the performance of our efficient estimator in a comprehensive simula-

tion experiment and with empirical data using the CRSP-TAQ merged database in the

period 1993–2020. Our results show that EDGE generally delivers the most accurate

estimates of effective bid-ask spreads numerically and empirically.

Our estimator is derived under permissive assumptions that allow for stylized facts

typically observed in real market data. As such, it can be applied to a wide range of asset

classes, in liquid and illiquid market segments, at low or high frequency. In particular,

we show that EDGE is the first approach, relying on transaction prices only, that can be

expected to work accurately when applied to high-frequency data and when the number

of trading observations is sparse.
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Table 1

Generalized Bid-Ask Spread Estimation Formulas

Prices Equations Prices

O S2 = −4Cov[ot − ot−1, ot−1 − ot−2]

(1− νo=o)
2 S2 = −4Cov[ct − ct−1, ct−1 − ct−2]

(1− νc=c)
2 C

OC S2 = −4Cov[ct − ot, ot − ct−1]

(1− νo=c)
S2 = −4Cov[ot − ct−1, ct−1 − ot−1]

(1− νo=c=c)(1− νo=c)
CO

OHL S2 = −4Cov[ηt − ot, ot − ηt−1]

(1− kνo=h,l)
S2 = −4Cov[ηt − ct−1, ct−1 − ηt−1]

(1− νh=l=c)(1− kνc=h,l)
CHL

OHLC S2 = −4Cov[ηt − ot, ot − ct−1]

(1− kνo=h,l)
S2 = −4Cov[ot − ct−1, ct−1 − ηt−1]

(1− νh=l=c)(1− kνc=h,l)
CHLO

Prices

o,h,l,c Open, High, Low, Close log-prices.

η Mid-prices computed as ηt = (lt + ht)/2.

Frequencies

νo=o Fraction of times in which consecutive Open prices match (ot = ot−1).

νc=c Fraction of times in which consecutive Close prices match (ct = ct−1).

νo=c Fraction of times in which the Open and the Close prices match (ot = ct).

νo=c=c Fraction of times in which both the Close and the Open prices are equal to the previous

Close (ot = ct = ct−1).

νh=l=c Fraction of times in which both the High and the Low prices are equal to the previous Close

(ht = lt = ct−1).

νo=h,l Computed as (νo=h + νo=l)/2, where νo=h and νo=l are the fraction of times in which the

Open price is equal to the High (ot = ht) or the Low (ot = lt) price respectively.

νc=h,l Computed as (νc=h + νc=l)/2, where νc=h and νc=l are the fraction of times in which the

Close price is equal to the High (ct = ht) or the Low (ct = lt) price respectively.

Parameters

k Computed as k = 4p(1−p) where p is the probability of the High price to be buyer initiated

or, equivalently, the probability of the Low price to be seller initiated.
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Table 2

Estimated Monthly Spreads in Low Frequency

Monthly spread estimates from EDGE as proposed in this paper and the ones obtained with the
estimators in Abdi and Ranaldo (2017) (AR and AR2), Corwin and Schultz (2012) (CS and
CS2), and Roll (1984) for a simulated price process as described in Section 2.1.1. For each as-
sumed spread level, Panel A reports the mean spread estimate, the standard deviation of spread
estimates, and the proportion of spread estimates that are nonpositive across the simulations.
Panel B reports results from simulations incorporating overnight returns and infrequent obser-
vation of prices. In these simulations, we assume a 1% chance of observing a trade at any given
minute and overnight returns are normally distributed with mean zero and standard deviation
1.5%.

EDGE AR AR2 CS CS2 Roll

Panel A: Simulated Spread Estimates under Near-Ideal Conditions

Spread 0.50% Mean 0.44% 0.71% 1.21% 0.60% 1.44% 1.45%
σ 0.34% 0.78% 0.36% 0.50% 0.34% 1.43%

%≤ 0 27.61% 46.44% 0.00% 19.25% 0.00% 39.50%
Spread 1.00% Mean 0.89% 0.95% 1.32% 1.03% 1.75% 1.60%

σ 0.44% 0.86% 0.38% 0.59% 0.38% 1.50%
%≤ 0 10.36% 35.35% 0.00% 5.62% 0.00% 36.61%

Spread 3.00% Mean 2.92% 2.91% 2.41% 2.93% 3.22% 2.90%
σ 0.42% 0.73% 0.51% 0.62% 0.50% 1.84%

%≤ 0 0.01% 0.80% 0.00% 0.00% 0.00% 17.54%
Spread 5.00% Mean 4.96% 4.97% 4.32% 4.90% 4.98% 4.78%

σ 0.41% 0.59% 0.61% 0.62% 0.58% 2.17%
%≤ 0 0.00% 0.00% 0.00% 0.00% 0.00% 6.75%

Spread 8.00% Mean 7.98% 7.99% 7.58% 7.86% 7.86% 7.71%
σ 0.39% 0.55% 0.58% 0.63% 0.63% 2.70%

%≤ 0 0.00% 0.00% 0.00% 0.00% 0.00% 2.31%

Panel B: Overnight Return and Only 1% Prices Observed (≈ 4 Trades per Day)

Spread 0.50% Mean 0.75% 0.71% 1.10% 0.02% 0.35% 1.61%
σ 0.83% 0.80% 0.36% 0.07% 0.15% 1.59%

%≤ 0 46.53% 47.84% 0.00% 86.53% 0.00% 39.27%
Spread 1.00% Mean 0.99% 0.86% 1.19% 0.03% 0.40% 1.74%

σ 0.91% 0.86% 0.38% 0.09% 0.17% 1.64%
%≤ 0 36.76% 41.50% 0.00% 82.33% 0.00% 36.95%

Spread 3.00% Mean 2.87% 2.22% 1.99% 0.28% 0.85% 2.91%
σ 0.96% 1.06% 0.54% 0.33% 0.30% 1.98%

%≤ 0 2.92% 9.52% 0.00% 38.81% 0.00% 20.43%
Spread 5.00% Mean 5.04% 4.01% 3.23% 0.99% 1.56% 4.67%

σ 0.84% 0.98% 0.73% 0.62% 0.50% 2.33%
%≤ 0 0.05% 0.64% 0.00% 6.94% 0.00% 9.10%

Spread 8.00% Mean 8.02% 6.58% 5.33% 2.46% 2.86% 7.50%
σ 0.88% 1.03% 1.03% 0.97% 0.86% 2.87%

%≤ 0 0.00% 0.01% 0.00% 0.33% 0.00% 3.37%
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Table 3

Summary Statistics

The table reports the number of spread estimates, the mean, median, and standard deviation for
the estimates and for the effective spread benchmark. The correlation with the effective spread
benchmark, the root mean squared error (RMSE), the mean absolute percentage error (MAPE)
are also reported, together with the proportion of spread estimates that are nonpositive. The
sample period is from 1993–2020 (CRSP-TAQ merged sample).

Estimator: N Mean Median Sd Cor MAPE RMSE % ≤ 0
Units: 1 % % % % % 1 %

EDGE 1,626,448 2.23 1.05 3.58 76.48 16.95 1.22 24.79
AR 1,626,448 1.75 0.96 2.58 66.87 20.07 1.39 31.65
AR2 1,626,448 1.70 1.18 1.71 64.57 22.12 1.46 –
CS 1,626,448 0.68 0.28 1.17 45.60 33.95 2.08 29.22
CS2 1,626,448 1.32 0.94 1.34 43.60 33.44 2.35 –
Roll 1,626,448 2.67 1.36 48.09 4.91 24.85 1.77 32.54

ES Benchmark 1,626,448 1.88 0.76 2.99 – – – –
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Table 4

Correlation with Monthly TAQ Effective Spreads

The table shows group specific correlations of spread estimates with the TAQ effective spread.
The table also reports the median effective spread per group and the fraction of spread estimates
that are non-positive. The highest correlation and the lowest fraction of non-positive estimates
per group are highlighted in bold. EDGE is the estimator proposed in this paper, AR and AR2
are the estimators proposed by Abdi and Ranaldo (2017), CS and CS2 are the estimators pro-
posed by Corwin and Schultz (2012), and the Roll (1984) estimator. All estimators are based on
daily observations using a monthly estimation window. The sample period is from 1993–2020
(CRSP-TAQ merged sample).

Correlation (%) %≤ 0
Group Spread EDGE AR AR2 CS CS2 Roll EDGE AR CS Roll

Panel A: Analysis across different markets

NYSE 0.16% 57 43 47 42 42 1 40 44 42 40
AMEX 1.75% 68 62 62 42 44 11 26 32 41 33
NASDAQ 1.38% 76 66 62 42 38 8 17 26 22 29

Panel B: Analysis across time periods

1993–1996 2.49% 83 76 69 48 48 49 15 23 26 26
1997–2000 1.68% 78 69 67 48 47 34 22 30 35 32
2001–2002 1.25% 74 69 68 45 45 14 24 31 35 32
2003–2007 0.31% 64 55 59 34 36 8 26 34 29 35
2008–2011 0.25% 62 52 51 30 29 1 26 32 27 33
2012–2015 0.18% 55 47 49 30 28 5 31 37 25 36
2016–2020 0.18% 53 40 44 36 33 5 34 39 28 35

Panel C: Analysis across market capitalization

Quintile 1 3.14% 71 63 60 39 37 21 15 23 25 26
Quintile 2 2.09% 69 57 51 32 25 11 16 23 26 26
Quintile 3 1.08% 72 56 51 35 27 3 20 27 26 31
Quintile 4 0.30% 75 56 55 45 40 12 31 37 31 37
Quintile 5 0.09% 51 36 40 37 36 0 38 44 38 40

Panel D: Analysis across spread sizes

Quintile 1 0.08% 18 14 23 12 21 0 41 46 38 41
Quintile 2 0.26% 45 31 38 32 34 5 34 41 34 39
Quintile 3 0.75% 62 46 50 42 40 3 24 33 28 36
Quintile 4 1.81% 67 55 55 39 36 8 15 24 24 29
Quintile 5 4.38% 66 59 55 34 34 22 10 16 22 19
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Figure 1: Comparison of bid-ask spread estimates based on EDGE as proposed in this paper with the
estimators by Corwin and Schultz (2012) (CS) and Abdi and Ranaldo (2017) (AR), for a simulated price
process as described in Section 2.2.1. The probability of observing a trade ranges from 0.5% to 100% and
the corresponding expected number of trades per day is specified in the horizontal axis. The simulations
use a constant spread of 1%.
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Figure 2: Comparison of the standard deviation of bid-ask spread estimates based on EDGE as proposed
in this paper with the estimators by Corwin and Schultz (2012) (CS) and Abdi and Ranaldo (2017)
(AR), for several spread levels (horizontal axis) as described in Section 2.2.2. These simulations use 390
trades per day, so that all the estimators are unbiased (see Figure 1) and the minimum-variance estimator
coincides with the best estimator in the usual root mean squared error sense.
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Figure 3: Proportion of zero bid-ask spreads estimates based on EDGE as proposed in this paper, as
well as the estimators proposed by Corwin and Schultz (2012) (CS), Abdi and Ranaldo (2017) (AR),
and Roll (1984) for sample sizes ranging from one month to one year (horizontal axis) as described in
Section 2.2.3. The simulations use a constant spread of 1%, a 10% probability of observing a trade (for an
average of 39 trades per day), and an overnight return normally distributed with mean zero and standard
deviation equal to half of the daily volatility.
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Figure 4: False positive rates (vertical axis) against confidence levels (horizontal axis) from our model
in Equation (20) for several spread levels as described in Section 2.2.4. As with a 95% confidence level
we expect 5% false positives, the exact theoretical relationship is y = 1 − x (solid line in black). These
simulations use 390 trades per day.
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(a) EDGE (b) Roll

(c) AR (d) AR2

(e) CS (f) CS2

Figure 5: This figure shows the time-series estimates from EDGE as proposed in this paper and the ones
obtained with the estimators in Abdi and Ranaldo (2017) (AR and AR2), Corwin and Schultz (2012)
(CS and CS2), and Roll (1984) for a simulated price process. The simulation consists of 10,000 21-day
stock-months and each day consists of 390 minutes. For each minute of the day, the true value of the
stock price, Pm, is simulated as Pm = Pm−1e

σx, where σ is the standard deviation per minute and x
is a random draw from a standard Gaussian distribution. The daily standard deviation equals 3% and
the standard deviation per minute equals 3% divided by

√
390. The simulation include an overnight

return normally distributed with mean zero and standard deviation equal to half of the daily volatility.
The bid (ask) for each minute is defined as Pm multiplied by one minus (plus) half the assumed bid-ask
spread. The probability of observing a trade ranges from 0.5% to 99.5% and varies over time according
to p = 0.5 + 0.495× cos( 20πtn ) where t = 1, 2, ... represents the time index and n = 10000× 21× 390
is the total number of minutes in the simulation. The deterministic component of the spread varies over
time according to µ = 0.03× (1 + sin( 2πtn )). Then, for each minute the spread is randomly drawn from
a normal distribution with mean µ and standard deviation 0.01. Negative spreads are set to zero. For
each day, we use the previous year (21 × 12 days) to estimate the spread (black line). The estimates
are benchmarked with the average spread (solid line in grey) and the average (scaled) probability of
observing a trade (dotted line in grey) in the previous year.
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Figure 6: Month-by-month cross-sectional correlations with the TAQ benchmark in Equation (22) for
various spread estimators as described in Section 3.2.
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Figure 7: Time-series correlations for deciles sorted on size with the TAQ benchmark in Equation (22)
obtained using various spread estimators as described in Section 3.3.
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(a) Monthly estimates

(b) Daily estimates

Figure 8: Spread estimates for GameStop Corp. (GME) in 2020. Figure (a) reports the monthly estimates
(21-day rolling window) obtained using daily, hourly, or minute price data, together with the average
effective spread benchmark in the corresponding time window. Figure (b) reports the daily estimates
obtained from intraday minute data and the corresponding effective spread benchmark within the day.
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(a) Small Cap Stocks

(b) Mid Cap Stocks

(c) Large Cap Stocks

Figure 9: The graphs plot the time series of spread estimates of several methods as well as the effective
spread benchmark for (a) small caps (b) mid caps and (c) large caps as described in Section 4. Historical
quoted spreads from CRSP are also reported for the periods 1925–1942 and 1993–2020. CRSP quote
data are not available between 1942–1993.
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A Appendix

A.1 Moments of Zt
To compute the moments of Zt = S(Bt − 0.5) we compute its moment generating
function (MGF). The MGF of the Bernoulli random variable B with probability of
success p is:

MB(t) = (1− p) + pet .

Since Zt is a linear transformation of Bt, its MGF can be obtained from the MGF ofBt:

MZ(t) = (1− p)e−
S
2
t + pe

S
2
t .

The moments are computed by differentiation:

E[Zn
t ] =

dnMZ(t)

dtn

∣∣∣
t=0

= (1− p)
(
−S

2

)n
+p
(S

2

)n
=


(
S
2

)n
(2p− 1) n = 1, 3, 5, ...(

S
2

)n
n = 2, 4, 6, ...

And in particular, we have:

E[Zt] =
S

2
(2p− 1) , E[Z2

t ] =
S2

4
, V[Zt] = S2p(1− p) .

That for p = 0.5 become:

E[Zt] = 0 , E[Z2
t ] =

S2

4
, V[Zt] =

S2

4
.

A.1.1 Random Spread

When considering a random spread St, we compute:

V[Zt] = V[St(Bt − 0.5)]

= E[S2
t (Bt − 0.5)2]− E[St(Bt − 0.5)]2

= E[S2
t ]E[B2

t −Bt + 0.25]− E[St]E[Bt − 0.5]

=
E[S2

t ]

4
.
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A.2 The Generalized Estimators
We recall the law of total covariance or covariance decomposition formula, that is ex-
tensively used to derive the results in the following sections. IfX , Y , and Z are random
variables on the same probability space, and the covariance of X and Y is finite, then:

Cov[X, Y ] = E[Cov[X, Y | Z]] + Cov[E[X | Z],E[Y | Z]] .

In the particular case when E[X | Z] = 0 or E[Y | Z] = 0, we have:

Cov[X, Y ] = E[Cov[X, Y | Z]] . (A.1)

A.2.1 C prices

We need to compute the covariance:

Cov[ct − ct−1, ct−1 − ct−2] .

We replace the observed log-prices ct with the actual (but unobserved) log-prices c̃t by
Equation (2) and expand the covariance in the four terms:

Cov[ct − ct−1, ct−1 − ct−2] = Cov[c̃t − c̃t−1, c̃t−1 − c̃t−2]
+ Cov[c̃t − c̃t−1, Zt−1 − Zt−2]
+ Cov[Zt − Zt−1, c̃t−1 − c̃t−2]
+ Cov[Zt − Zt−1, Zt−1 − Zt−2]
= Cov[Zt − Zt−1, Zt−1 − Zt−2] ,

(A.2)

where the first three terms are zero since the actual returns are uncorrelated and inde-
pendent from the bid-ask bounces. By expanding the last term we have:

Cov[Zt − Zt−1, Zt−1 − Zt−2] = Cov[Zt, Zt−1]

+ Cov[Zt,−Zt−2]
+ Cov[−Zt−1, Zt−1]
+ Cov[−Zt−1,−Zt−2] .

(A.3)

Since the random variables Z are independent for different trades, we might assume
that the only non-vanishing term is Cov[−Zt−1, Zt−1] = −V[Z]. However, we should
pay extra care when no trade is observed for period t. In this case the market reports the
previous closing price so that Zt and Zt−1 are generated by the same trade. In this case
Cov[Zt, Zt−1] = V[Z]. By decomposing the covariance with Equation (A.1), we have:

Cov[Zt, Zt−1] = E[Cov[Zt, Zt−1|Zt = Zt−1]]

= V[Z]P[Zt = Zt−1] ,

where P[Zt = Zt−1] is the probability that the same trade generated both Zt and Zt−1.
The same holds for:

Cov[−Zt−1,−Zt−2] = E[Cov[Zt−1, Zt−2|Zt−1 = Zt−2]]

= V[Z]P[Zt−1 = Zt−2] ,
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where P[Zt−1 = Zt−2] is the probability that the same trade generated both Zt−1 and
Zt−2. Moreover, we have:

Cov[Zt,−Zt−2] = E[Cov[Zt,−Zt−2|Zt = Zt−2]]

= −V[Z]P[Zt = Zt−1]P[Zt−1 = Zt−2] .

We estimate the probability that two subsequent prices are generated by the same trade
by counting the fraction of times, νc=c, for which the closing prices over two subsequent
time periods are equal.

P[Zt = Zt−1] = P[Zt−1 = Zt−2] =̂ νc=c .

By considering Equation (A.2) and rewriting Equation (A.3), we have:

Cov[ct − ct−1, ct−1 − ct−2] = −V[Z](1− 2νc=c + ν2c=c) = −V[Z](1− νc=c)2 .

The final formula is obtained by computing the variance of Z in Appendix A.1.

Cov[ct − ct−1, ct−1 − ct−2] = −S
2

4
(1− νc=c)2 .

A.2.2 O prices

By replacing ct with ot and following the same steps illustrated in Section A.2.1, we
obtain:

Cov[ot − ot−1, ot−1 − ot−2] = −S
2

4
(1− νo=o)2 .

A.2.3 CO prices

We need to compute the covariance:

Cov[ot − ct−1, ct−1 − ot−1] .

We replace the observed log-prices with the actual (but unobserved) log-prices by Equa-
tion (2) and expand the covariance in the four terms:

Cov[ot − ct−1, ct−1 − ot−1] = Cov[õt − c̃t−1, c̃t−1 − õt−1]
+ Cov[õt − c̃t−1, Zc,t−1 − Zo,t−1]
+ Cov[Zo,t − Zc,t−1, c̃t−1 − õt−1]
+ Cov[Zo,t − Zc,t−1, Zc,t−1 − Zo,t−1]
= Cov[Zo,t − Zc,t−1, Zc,t−1 − Zo,t−1] .

(A.4)
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where the first three terms are zero since the actual returns are uncorrelated and inde-
pendent from the bid-ask bounces. By expanding the last term we have:

Cov[Zo,t − Zc,t−1, Zc,t−1 − Zo,t−1] = Cov[Zo,t, Zc,t−1]

+ Cov[Zo,t,−Zo,t−1]
+ Cov[−Zc,t−1, Zc,t−1]
+ Cov[−Zc,t−1,−Zo,t−1] .

(A.5)

Since the random variables Z are independent for different trades, we might assume that
the only non-vanishing term is Cov[−Zc,t−1, Zc,t−1] = −V[Z]. However, we should
pay extra care when no trade is observed for period t and when only a single trade is
observed for period t−1. In this first case, the market reports the previous closing price
so that Zo,t and Zc,t−1 are generated by the same trade. In the second case, Zc,t−1 and
Zo,t−1 are generated by the same trade. In both cases, the covariance reduces to V[Z].
By decomposing the covariance with Equation (A.1), we have:

Cov[Zo,t, Zc,t−1] = E[Cov[Zo,t, Zc,t−1|Zo,t = Zc,t−1]]

= V[Z]P[Zo,t = Zc,t−1] ,

where P[Zo,t = Zc,t−1] is the probability that the opening price and the previous close
are generated by the same trade. The same holds for:

Cov[−Zc,t−1,−Zo,t−1] = E[Cov[Zc,t−1, Zo,t−1|Zc,t−1 = Zo,t−1]]

= V[Z]P[Zc,t−1 = Zo,t−1] ,

where P[Zc,t−1 = Zo,t−1] is the probability that the open and close price in the same
period are generated by the same trade. Moreover, we have:

Cov[Zo,t,−Zo,t−1] = E[Cov[Zo,t,−Zo,t−1|Zo,t = Zo,t−1]]

= −V[Z]P[Zo,t = Zc,t−1]P[Zc,t−1 = Zo,t−1] .
(A.6)

We estimate the probability that the opening price and the previous close are generated
by the same trade by counting the fraction of times νo=c=c in which both the closing
and the opening prices are equal to the previous close. Moreover, we estimate the
probability that the open and close price in the same period are generated by the same
trade by counting the fraction of times νo=c in which the opening and closing prices are
equal.

P[Zo,t = Zc,t−1] =̂ νo=c=c , P[Zc,t−1 = Zo,t−1] =̂ νo=c .

By considering Equation (A.4) and rewriting Equation (A.5), we have:

Cov[ot − ct−1, ct−1 − ot−1] = −V[Z](1− νo=c=c − νo=c + νo=c=cνo=c)

= −V[Z](1− νo=c=c)(1− νo=c) .

The final formula is obtained by computing the variance of Z in Appendix A.1.

Cov[ot − ct−1, ct−1 − ot−1] = −S
2

4
(1− νo=c=c)(1− νo=c) .
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A.2.4 OC prices

We need to compute the covariance:

Cov[ct − ot, ot − ct−1] .

We replace the observed log-prices with the actual (but unobserved) log-prices by Equa-
tion (2) and expand the covariance in the four terms:

Cov[ct − ot, ot − ct−1] = Cov[c̃t − õt, õt − c̃t−1]
+ Cov[c̃t − õt, Zo,t − Zc,t−1]
+ Cov[Zc,t − Zo,t, õt − c̃t−1]
+ Cov[Zc,t − Zo,t, Zo,t − Zc,t−1]
= Cov[Zc,t − Zo,t, Zo,t − Zc,t−1] ,

(A.7)

where the first three terms are zero since the actual returns are uncorrelated and inde-
pendent from the bid-ask bounces. By expanding the last term we have:

Cov[Zc,t − Zo,t, Zo,t − Zc,t−1] = Cov[Zc,t, Zo,t]

+ Cov[−Zo,t, Zo,t]
+ Cov[Zc,t − Zo,t,−Zc,t−1] .

(A.8)

Since the random variables Z are independent for different trades, we might assume
that the only non-vanishing term is Cov[−Zo,t, Zo,t] = −V[Z]. However, we should
pay extra care when at most one trade is observed for period t. In this case, Zc,t and Zo,t
are generated by the same trade and their covariance reduces to V[Z]. By decomposing
the covariance with Equation (A.1), we have:

Cov[Zc,t, Zo,t] = E[Cov[Zc,t, Zo,t|Zc,t = Zo,t]]

= V[Z]P[Zc,t = Zo,t] ,

where P[Zc,t = Zo,t] is the probability that the open and close price in the same pe-
riod are generated by the same trade. The last term left to compute is Cov[Zc,t −
Zo,t,−Zc,t−1]. This is identically zero because (a) if at least one trade is observed for
period t, then the left hand side is independent from the right hand side and (b) is no
trade is observed for period t then Zc,t − Zo,t = 0.
We estimate the probability that the open and close price in the same period are gen-
erated by the same trade by counting the fraction of times in which the close and open
prices are equal.

P[Zc,t = Zo,t] =̂ νo=c .

By considering Equation (A.8) and rewriting Equation (A.7), we have:

Cov[ct − ot, ot − ct−1] = −V[Z](1− νo=c)

The final formula is obtained by computing the variance of Z in Appendix A.1.

Cov[ct − ot, ot − ct−1] = −S
2

4
(1− νo=c) .
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A.2.5 CHL prices

Let us define:
ηt =

ht + lt
2

, Zη =
Zh,t + Zl,t

2
.

We need to compute the covariance:

Cov[ηt − ct−1, ct−1 − ηt−1] .

We replace the observed log-prices with the actual (but unobserved) log-prices by Equa-
tion (2) and expand the covariance in the four terms:

Cov[ηt − ct−1, ct−1 − ηt−1] = Cov[η̃t − c̃t−1, c̃t−1 − η̃t−1]
+ Cov[η̃t − c̃t−1, Zc,t−1 − Zη,t−1]
+ Cov[Zη,t − Zc,t−1, c̃t−1 − η̃t−1]
+ Cov[Zη,t − Zc,t−1, Zc,t−1 − Zη,t−1]
= Cov[Zη,t − Zc,t−1, Zc,t−1 − Zη,t−1] ,

(A.9)

where the first three terms are zero since the actual returns are uncorrelated and inde-
pendent from the bid-ask bounces. By expanding the last term we have:

Cov[Zη,t − Zc,t−1, Zc,t−1 − Zη,t−1] = Cov[Zη,t, Zc,t−1]

+ Cov[Zη,t,−Zη,t−1]
+ Cov[−Zc,t−1, Zc,t−1]
+ Cov[−Zc,t−1,−Zη,t−1] .

(A.10)

Since the random variables Z are independent for different trades, we might assume that
the only non-vanishing term is Cov[−Zc,t−1, Zc,t−1] = −V[Z]. However, we should pay
extra care when no trade is observed for period t and when the closing price is selected
as the high or low price for period t − 1. In this first case, the market reports the
previous closing price so that Zη,t and Zc,t−1 are generated by the same trade and their
covariance reduces to V[Z]. In the second case Zc,t−1 = Zh,t−1 and/or Zc,t−1 = Zl,t−1,
so that Cov[Zc,t−1, Zη,t−1] 6= 0. By decomposing the covariance with Equation (A.1),
we have:

Cov[Zη,t, Zc,t−1] = E[Cov[Zη,t, Zc,t−1|Zη,t = Zc,t−1]]

= V[Z]P[Zη,t = Zc,t−1] ,

where P[Zη,t = Zc,t−1] is the probability that the high, low, and previous close prices
are generated by the same trade. Moreover, we have:

Cov[−Zc,t−1,−Zη,t−1] = 0.5(Cov[Zc,t−1, Zh,t−1 + Zl,t−1])

= 0.5(Cov[Zc,t−1, Zh,t−1] + Cov[Zc,t−1, Zl,t−1])

= 0.5E[Cov[Zc,t−1, Zh,t−1 | Zc,t−1 = Zh,t−1]]

+ 0.5E[Cov[Zc,t−1, Zl,t−1 | Zc,t−1 = Zl,t−1]]

= 0.5V[Zp]
(
P[Zc,t−1 = Zh,t−1] + P[Zc,t−1 = Zl,t−1]

)
,

(A.11)
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where P[Zc,t−1 = Zh,t−1] and P[Zc,t−1 = Zl,t−1] are the probabilities that the closing
price is selected as the high or low price respectively, and where the variance of Zp
depends on the probability p of the high price to be buyer initiated or, equivalently, of
the low price to be seller initiated. The last term left to compute is:

Cov[Zη,t,−Zη,t−1] = E[Cov[Zη,t,−Zη,t−1|Zη,t = Zc,t−1]]

= −Cov[Zc,t−1, Zη,t−1]P[Zη,t = Zc,t−1] ,
(A.12)

where Cov[Zc,t−1, Zη,t−1] is given in Equation (A.11)
We estimate the probability that the high, low, and previous close prices are generated
by the same trade by counting the fraction of times νh=l=c in which both the high and
the low prices at time t are equal to the closing price at time t− 1.

P[Zη,t = Zc,t−1] =̂ νh=l=c .

Moreover, we estimate the probability that the closing price is selected as the high or
low price by counting the fraction of times in which the closing price matches the high
(νc=h) or low (νc=l) price:

P[Zc,t−1 = Zh,t−1] =̂ νc=h , P[Zc,t−1 = Zl,t−1] =̂ νc=l .

By considering Equation (A.9) and rewriting Equation (A.10), we have:

Cov[ηt − ct−1, ct−1 − ηt−1] = −V[Z]

+ V[Z]νh=l=c

+ 0.5V[Zp](νc=h + νc=l)

− 0.5V[Zp](νc=h + νc=l)νh=l=c

= −V[Z](1− νh=l=c)(1− k(νc=h + νc=l)/2) .

where k = V[Zp]/V[Z] = 4p(1 − p) is the ratio between the variance of Zp with a
generic probability p and the variance of Z with p = 1

2
. The final formula is obtained

by computing the variance of Z in Appendix A.1:

Cov[ηt − ct−1, ct−1 − ηt−1] = −S
2

4
(1− νh=l=c)(1− k(νc=h + νc=l)/2) .

A.2.6 OHL prices

Let us define:
ηt =

ht + lt
2

, Zη =
Zh,t + Zl,t

2
.

We need to compute the covariance:

Cov[ηt − ot, ot − ηt−1] .
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We replace the observed log-prices with the actual (but unobserved) log-prices by Equa-
tion (2) and expand the covariance in the four terms:

Cov[ηt − ot, ot − ηt−1] = Cov[η̃t − õt, õt − η̃t−1]
+ Cov[η̃t − õt, Zo,t − Zη,t−1]
+ Cov[Zη,t − Zo,t, õt − η̃t−1]
+ Cov[Zη,t − Zo,t, Zo,t − Zη,t−1]
= Cov[Zη,t − Zo,t, Zo,t − Zη,t−1] ,

(A.13)

where the first three terms are zero since the actual returns are uncorrelated and inde-
pendent from the bid-ask bounces. By expanding the last term we have:

Cov[Zη,t − Zo,t, Zo,t − Zη,t−1] = Cov[Zη,t, Zo,t]

+ Cov[−Zo,t, Zo,t]
+ Cov[Zη,t − Zo,t,−Zη,t−1] .

(A.14)

Since the random variables Z are independent for different trades, we might assume
that the only non-vanishing term is Cov[−Zo,t, Zo,t] = −V[Z]. However, we should
pay extra care when the open price is selected as the high or low price for period t. By
decomposing the covariance with Equation (A.1), we have:

Cov[Zη,t, Zo,t] = 0.5(Cov[Zo,t, Zh,t + Zl,t])

= 0.5(Cov[Zo,t, Zh,t] + Cov[Zo,t, Zl,t])

= 0.5E[Cov[Zo,t, Zh,t | Zo,t = Zh,t]]

+ 0.5E[Cov[Zo,t, Zl,t | Zo,t = Zl,t]]

=
1

2
V[Zp]

(
P[Zo,t = Zh,t] + P[Zo,t = Zl,t]

)
.

where P[Zo,t = Zh,t] and P[Zo,t = Zl,t] are the probabilities that the open price is
selected as the high or low price respectively, and where the variance of Zp depends on
the probability p of the high price to be buyer initiated or, equivalently, of the low price
to be seller initiated. The last term left to compute is Cov[Zη,t − Zo,t,−Zη,t−1]. This
is identically zero because (a) if at least one trade is observed for period t, then the left
hand side is independent from the right hand side and (b) is no trade is observed for
period t then Zη,t − Zo,t = 0.
We estimate the probability that the open price is selected as the high or low price by
counting the fraction of times in which the open price matches the high (νo=h) or low
(νo=l) price:

P[Zo,t = Zh,t] =̂ νo=h , P[Zo,t = Zl,t] =̂ νo=l .

By considering Equation (A.14) and rewriting Equation (A.13), we have:

Cov[ηt − ot, ot − ηt−1] = −V[Z](1− k(νo=h + νo=l)/2) ,

where k = V[Zp]/V[Z] = 4p(1 − p) is the ratio between the variance of Zp with a
generic probability p and the variance of Z with p = 1

2
. The final formula is obtained
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by computing the variance of Z in Appendix A.1:

Cov[ηt − ot, ot − ηt−1] = −S
2

4
(1− k(νo=h + νo=l)/2) .

A.2.7 CHLO prices

By replacing ηt with ot and following the same steps illustrated in Section A.2.5, we
obtain:

Cov[ot − ct−1, ct−1 − ηt−1] = −S
2

4
(1− νh=l=c)(1− k(νc=h + νc=l)/2) .

A.2.8 OHLC prices

By replacing ηt−1 with ct−1 and following the same steps illustrated in Section A.2.6,
we obtain:

Cov[ηt − ot, ot − ct−1] = −S
2

4
(1− k(νo=h + νo=l)/2) .
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A.3 The Efficient Generalized Estimator
This section provides the optimal way to combine our generalized estimators in Table 1
to minimize the estimation variance and obtain an efficient estimator.

A.3.1 Moment Conditions and GMM

We notice that all the estimators share the common structure:

S2 = −
4Cov[r1,t, r2,t]

ν
= −4

E[r1,tr2,t]− E[r1,t]E[r2,t]

ν
≈ −

4E[r1,tr2,t]

ν
, (A.15)

where r1,t and r2,t are some log-returns and ν represents the adjustment for infrequent
trades. The approximation is justified by the fact that the average return at daily or
higher frequency should be small compared to the spread.21 From Equation (A.15), we
can rewrite each estimator as a moment condition:

E
[
S2 +

4r1,tr2,t
ν

]
= 0 .

Let us introduce, for each estimator i, the random vector Xi,t = −4r
(i)
1,tr

(i)
2,t/ν

(i) and the
corresponding sample mean X̄i ≡ 1

T

∑T
1 Xi,t. In this notation, the moment conditions

become:
E
[
S2 −Xi,t

]
= 0 for i = 1, 2, . . .

By applying GMM, the efficient estimator is given by:

Ŝ2 = arg min
S
2

∑
ij

(S2 − X̄ᵀ
i )Ωij(S

2 − X̄j) , (A.16)

where the weighting matrix is the inverse of the variance-covariance matrix Ω = V[S2+
Xt]
−1, which simplifies to Ω = V[Xt]

−1 as the variance is translation invariant. There-
fore, we have a particular case of GMM where the optimal weighting matrix does not
depend on the minimizing variable, and the problem reduces to the minimization of a
quadratic form. By differentiating Equation (A.16), setting the derivative equal to zero,
and solving for S2, we obtain:

Ŝ2 =

∑
i X̄i

∑
j Ωij∑

ij Ωij

=
∑
i

wiX̄i with


Ω = V[Xt]

−1

wi =

∑
j Ωij∑
ij Ωij

. (A.17)

A.3.2 Prior Knowledge

In principle, we could apply GMM using all the estimators in Table 1, that is, eight mo-
ment conditions that would lead to an 8× 8 covariance matrix. Although the approach
is asymptotically efficient, it is expected to perform poorly on small samples due to the

21If it was not the case, a spread of 1% would correspond to a daily average return of approximately the
same magnitude, that means an average yearly return higher than 200%. This is not the case for most
assets.
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Figure A.1: Comparison of the standard deviation of bid-ask spread estimates based on EDGE and
the OHLC estimators, for several spread levels (horizontal axis), as described in Section 2.2.2. All the
estimators are unbiased, and the minimum-variance estimator coincides with the best estimator in the
usual root mean squared error sense.

noise in the estimation of the large covariance matrix. For this reason, we introduce
prior knowledge on the form of the covariance matrix and reduce the number of entries
that need to be estimated.
First, we notice that the covariances in the left column of Table 1 are due to the bid-ask
spread incorporated in the open (ot) prices. The covariances in the right column are due
instead to the close (ct−1) prices. These estimators are expected to be weakly correlated.
Moreover, after dropping all the periods t with no trades such that ht = lt = ct−1, the
estimators are affected by the same variance. Therefore, taking the pairwise average
provides an estimator that is superior to both of them. We refer to these estimators as
the O-C, OC-CO, OHL-CHL, OHLC-CHLO estimators.
Then, we notice that O-C is dominated by OC-CO and OC-CO is dominated by OHLC-
CHLO, while OHL-CHL exhibits a different behaviour, as represented in Figure A.1.
The minimum variance estimator is OHLC-CHLO for small spreads and OHL-CHL for
large spreads.22

22We highlight that the estimators above sequentially reduce the time interval needed to compute the
covariance, thus reducing the sampling error due to the asset’s volatility and improving the accuracy
of the spread estimates. As such, we expect our OHLC-CHLO estimator to deliver the most precise
estimates of the bid-ask spread. However, when the spread is big compared to the asset’s volatility,
the OHL-HLC estimator becomes preferable in practice. As high prices are usually buyer initiated and
low prices are usually seller initiated (Corwin and Schultz, 2012), the mid-prices are affected by the
spread to a lower extent with respect to the open or close prices. This leads the OHL-CHL estimator
to outperform the OHLC-CHLO estimator in such cases when the sampling error due to the bid-ask
bounces is greater than the sampling error due to the asset’s volatility (e.g., in high frequency or highly
illiquid markets).
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Figure A.2: Correlation matrix between OHLC bid-ask spread estimators, for a simulated price process
as described in Section 2.1.1. The simulation uses 390 trades per day with 100% probability of observing
a trade and a constant spread of 1%. The size of the circles is proportional to the correlation between the
estimators.

The two estimators are summarized below:

OHL-CHL : S2 = −2
Cov[ηt − ot, ot − ηt−1] + Cov[ηt − ct−1, ct−1 − ηt−1]

1− kνo,c=h,l
,

OHLC-CHLO : S2 = −2
Cov[ηt − ot, ot − ct−1] + Cov[ot − ct−1, ct−1 − ηt−1]

1− kνo,c=h,l
,

where we set the adjustment for infrequent trades equal to the average adjustment
νo,c=h,l = (νo=h,l + νc=h,l)/2. We consider both the estimators as moment conditions
so that the GMM covariance matrix reduces to a 2× 2 matrix with 3 entries to be esti-
mated: σ2

1 (variance of OHLC-CHLO), σ2
2 (variance of OHL-CHL), and σ12 (covariance

between the two estimators). As OHLC-CHL and OHL-CHL are based on different log-
returns with minimal overlap, we expect the two estimators not to be strongly correlated
(see Figure A.2). This leads us to set σ12 = 0 so that we are left with a diagonal variance
matrix with entries σ2

1 and σ2
2 . Therefore, according to Equation (A.17), the efficient

estimator is given by:

S2 = −2
w1E[X1] + w2E[X2]

1− kνo,c=h,l
, (A.18)

with X1, X2 defined in Equation (12) and the weights provided in Equation (13). In
the next section, we provide an estimator for k that leads to the final formula in Equa-
tion (11).
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Figure A.3: Comparison between the two estimators for k = 4p(1−p) as described in Section A.3.3, for
a simulated price process as described in Section 2.1.1. The probability of observing a trade ranges from
0.5% to 100% and the corresponding expected number of trades per day is specified in the horizontal
axis. The simulations use a constant spread of 1%. The estimator k = 4w1w2 is smoother (solid line)
than the benchmark estimator (dotted line).

A.3.3 Estimation of k

We now need to estimate k = 4p(1 − p) where p is the probability of the high price to
be buyer initiated or, equivalently, the probability of the low price to be seller initiated.
To this end, we observe that if the probability p of the high price to be buyer initiated
is high (low), then the spread must be big (small) compared to the asset’s volatility.23

In this case, the minimum-variance estimator is OHL-CHL (OHLC-CHLO) as shown
in Figure A.1 and the efficient estimator will increase (decrease) the weight w2. This
leads us to identify pwith w2, where w2 is the weight of the OHL-CHL estimator. Thus,
we estimate k = 4p(1 − p) = 4w2(1 − w2) = 4w1w2 where w1 is the weight of the
OHLC-CHLO estimator.
In Figure A.3, we benchmark this estimator against a naive estimation obtained using
Equation (A.18), which depends on k, and the OC-CO estimator, which does not depend
on k. This leads to a system of two equations in two unknowns (S2 and k) that can be
easily solved for k. We find the estimator based on w1 and w2 to be much smoother and
more precise than the benchmark estimator.
Finally, we notice that a precise estimate of k is only needed when the number of trades
per period is low. Otherwise the adjustment ν will be close to zero such that the de-
nominator in Equation (A.18) will be close to 1 regardless of the value of k. In other
words, we don’t expect k to drive the spread estimates, but rather to represent a fine
adjustment. By setting k = 4w1w2 in Equation (A.18), we obtain Equation (11).

23If the spread is large compared to the asset’s volatility, a buyer initiated trade (executed at the ask price)
is more likely to be selected as the highest price.
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A.4 Further Simulation Results

Table A.1

Estimated Hourly Spreads in High Frequency

Hourly spread estimates from EDGE as proposed in this paper and the ones obtained with the
estimators in Abdi and Ranaldo (2017) (AR and AR2), Corwin and Schultz (2012) (CS and
CS2), and Roll (1984) for a simulated price process as described in Section 2.1.2. For each
assumed spread level, Panel A reports the mean spread estimate, the standard deviation of spread
estimates, and the proportion of spread estimates that are non-positive across the simulations.
Panel B reports results from simulations incorporating infrequent observation of prices. In these
simulations, we assume a 2/60 chance of observing a trade at any given second, for an average
of 2 trades per minute.

EDGE AR AR2 CS CS2 Roll

Panel A: Simulated Spread Estimates under Near-Ideal Conditions

Spread 0.10% Mean 0.10% 0.10% 0.08% 0.08% 0.10% 0.10%
σ 0.01% 0.02% 0.01% 0.02% 0.01% 0.06%

%≤ 0 0.00% 0.76% 0.00% 0.00% 0.00% 17.02%
Spread 0.25% Mean 0.25% 0.25% 0.22% 0.23% 0.23% 0.25%

σ 0.01% 0.02% 0.02% 0.02% 0.02% 0.06%
%≤ 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.28%

Spread 0.50% Mean 0.50% 0.50% 0.49% 0.47% 0.47% 0.49%
σ 0.01% 0.01% 0.01% 0.02% 0.02% 0.08%

%≤ 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.01%
Spread 1.00% Mean 1.00% 1.00% 0.99% 0.97% 0.97% 0.99%

σ 0.01% 0.01% 0.01% 0.02% 0.02% 0.15%
%≤ 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Panel B: Only 2/60 Prices Observed (≈ 2 Trades per Minute)

Spread 0.10% Mean 0.09% 0.05% 0.04% 0.00% 0.01% 0.08%
σ 0.04% 0.03% 0.01% 0.00% 0.00% 0.06%

%≤ 0 5.30% 12.98% 0.00% 67.92% 0.00% 20.79%
Spread 0.25% Mean 0.25% 0.14% 0.08% 0.01% 0.02% 0.21%

σ 0.03% 0.03% 0.02% 0.01% 0.01% 0.06%
%≤ 0 0.00% 0.07% 0.00% 7.80% 0.00% 1.24%

Spread 0.50% Mean 0.49% 0.29% 0.17% 0.05% 0.06% 0.43%
σ 0.05% 0.04% 0.04% 0.02% 0.02% 0.09%

%≤ 0 0.00% 0.00% 0.00% 0.36% 0.00% 0.04%
Spread 1.00% Mean 0.99% 0.58% 0.33% 0.13% 0.14% 0.85%

σ 0.08% 0.08% 0.07% 0.05% 0.05% 0.16%
%≤ 0 0.00% 0.00% 0.00% 0.07% 0.00% 0.00%
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Table A.2

Estimated Yearly Spreads in Low Frequency

Yearly spread estimates from EDGE as proposed in this paper and the ones obtained with the
estimators in Abdi and Ranaldo (2017) (AR and AR2), Corwin and Schultz (2012) (CS and
CS2), and Roll (1984) for a simulated price process as described in Section 2.1.1. For each
assumed spread level, Panel A reports the mean spread estimate, the standard deviation of spread
estimates, and the proportion of spread estimates that are nonpositive across the simulations.
Panel B reports results from simulations incorporating overnight returns. In these simulations,
overnight returns are normally distributed with mean zero and standard deviation 1.5%.

EDGE AR AR2 CS CS2 Roll

Panel A: Near-Ideal Conditions

Spread 0.10% Mean 0.12% 0.34% 1.18% 0.20% 1.23% 0.66%
σ 0.11% 0.40% 0.10% 0.15% 0.09% 0.75%

%≤ 0 39.87% 50.23% 0.00% 13.53% 0.00% 48.17%
Spread 0.20% Mean 0.19% 0.37% 1.19% 0.27% 1.27% 0.69%

σ 0.13% 0.42% 0.10% 0.17% 0.09% 0.75%
%≤ 0 23.35% 47.69% 0.00% 6.54% 0.00% 46.61%

Spread 0.30% Mean 0.26% 0.39% 1.19% 0.35% 1.32% 0.68%
σ 0.15% 0.42% 0.10% 0.17% 0.09% 0.74%

%≤ 0 13.86% 45.74% 0.00% 2.64% 0.00% 46.46%
Spread 0.40% Mean 0.38% 0.44% 1.21% 0.44% 1.38% 0.72%

σ 0.14% 0.43% 0.10% 0.18% 0.09% 0.76%
%≤ 0 4.21% 40.22% 0.00% 0.83% 0.00% 44.63%

Spread 0.50% Mean 0.48% 0.50% 1.22% 0.53% 1.44% 0.78%
σ 0.13% 0.45% 0.10% 0.18% 0.10% 0.78%

%≤ 0 1.68% 35.56% 0.00% 0.18% 0.00% 40.97%

Panel B: Overnight Returns

Spread 0.10% Mean 0.28% 0.40% 1.34% 0.06% 1.18% 0.72%
σ 0.33% 0.46% 0.11% 0.10% 0.09% 0.83%

%≤ 0 50.52% 50.08% 0.00% 54.02% 0.00% 48.83%
Spread 0.20% Mean 0.30% 0.40% 1.35% 0.09% 1.22% 0.71%

σ 0.33% 0.46% 0.11% 0.12% 0.09% 0.81%
%≤ 0 47.17% 49.52% 0.00% 41.27% 0.00% 48.44%

Spread 0.30% Mean 0.33% 0.42% 1.35% 0.13% 1.26% 0.73%
σ 0.35% 0.47% 0.12% 0.14% 0.09% 0.81%

%≤ 0 43.69% 47.98% 0.00% 30.68% 0.00% 47.51%
Spread 0.40% Mean 0.37% 0.46% 1.37% 0.19% 1.31% 0.78%

σ 0.36% 0.47% 0.11% 0.16% 0.09% 0.83%
%≤ 0 39.02% 42.72% 0.00% 18.42% 0.00% 44.98%

Spread 0.50% Mean 0.47% 0.53% 1.38% 0.25% 1.36% 0.82%
σ 0.37% 0.50% 0.11% 0.17% 0.10% 0.85%

%≤ 0 29.49% 38.36% 0.00% 9.88% 0.00% 43.43%
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Table A.3

Stress Test
Panel A reports the correlation coefficient (Cor.), Mean Absolute Percentage Error (MAPE),
and Root Mean Squared Error (RMSE), achieved by the estimators in the simulations described
in Figure 5, using a rolling window ranging from one year to one month. Panel B reports
the same metrics for simulations performed in high frequency, where we use an estimation
window ranging from 10 minutes to one day. These simulations consist of 252 8-hour stock-
day, and each day consists of 8 × 60 × 60 = 28800 seconds. For each second, the true value
of the stock price, Pm, is simulated as Pm = Pm−1e

σx, where σ is the standard deviation per
second and x is a random draw from a unit normal distribution. The daily standard deviation
equals 3%, and the standard deviation per second equals 3% divided by

√
28800. The bid

(ask) for each second is defined as Pm multiplied by one minus (plus) half the assumed bid-
ask spread. The probability of observing a trade ranges from 5% to 95% and varies over time
according to p = 0.5 + 0.45 × cos(20πtn ) where t = 1, 2, ... represents the time index and
n = 1000 × 8 × 60 × 60 is the total number of seconds in the simulation. The deterministic
component of the spread varies over time according to µ = 0.003 × (1 + sin(2πtn )), for an
average spread of 0.3%. Then, for each second, the spread is randomly drawn from a normal
distribution with mean µ and standard deviation 0.001. Negative spreads are set to zero. For
each minute, we use a rolling window of the previous 10 minutes, 1 hour, or 1 day (8 × 60
minutes) to estimate the spread. The estimates are benchmarked with the average spread in the
corresponding window.

EDGE AR AR2 CS CS2 Roll

Panel A: Low Frequency

1 Month Cor. 96.61% 91.28% 90.55% 83.46% 82.43% 62.67%
MAPE 31.98% 53.05% 50.04% 57.55% 80.77% 105.66%
RMSE 0.54% 0.85% 0.92% 1.29% 1.35% 2.00%

6 Months Cor. 99.37% 97.05% 95.24% 86.03% 84.78% 89.39%
MAPE 21.59% 32.85% 46.62% 51.32% 79.61% 61.71%
RMSE 0.30% 0.50% 0.78% 1.17% 1.26% 0.96%

12 Months Cor. 99.67% 97.84% 95.78% 86.33% 85.06% 93.62%
MAPE 20.18% 27.83% 46.40% 50.80% 79.52% 50.99%
RMSE 0.27% 0.43% 0.76% 1.15% 1.25% 0.74%

Panel B: High Frequency

10 Mins Cor. 93.16% 90.14% 88.13% 80.61% 79.90% 65.36%
MAPE 29.96% 38.00% 29.96% 41.73% 43.05% 74.91%
RMSE 0.08% 0.09% 0.10% 0.13% 0.13% 0.19%

1 Hour Cor. 95.59% 89.36% 85.69% 78.12% 76.88% 89.56%
MAPE 23.59% 26.38% 25.57% 38.58% 42.87% 42.00%
RMSE 0.06% 0.09% 0.12% 0.15% 0.14% 0.09%

1 Day Cor. 99.49% 89.93% 85.26% 77.66% 76.31% 95.21%
MAPE 21.30% 23.18% 24.81% 38.36% 43.02% 26.08%
RMSE 0.03% 0.09% 0.12% 0.15% 0.15% 0.06%
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Figure A.4: Comparison of high-frequency spread estimates based on EDGE as proposed in this paper
with the estimators by Corwin and Schultz (2012) (CS) and Abdi and Ranaldo (2017) (AR), for a simu-
lated price process as described in Section 2.1.2. The probability of observing a trade ranges from 0.5%
to 100% and the corresponding expected number of trades per minute is specified in the horizontal axis.
The simulations use a constant spread of 0.10%.

Figure A.5: Comparison of the standard deviation of high-frequency spread estimates based on EDGE
as proposed in this paper with the estimators by Corwin and Schultz (2012) (CS) and Abdi and Ranaldo
(2017) (AR), for several spread levels (horizontal axis) as described in Section 2.2.2. These simulations
use 60 trades per minute.
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A.5 Further Empirical Results
The distribution of the TAQ effective spreads is highly skewed as displayed in Fig-
ure A.6a. Accordingly, the Mean Absolute Percentage Error (MAPE) can overweight
small spreads and the Root Mean Square Error (RMSE) can be severely affected by
a few data points on the right tail of the distribution. For this reason, we evaluate
the MAPE and RMSE on the logarithmic spreads, which are more symmetrically dis-
tributed, as shown in Figure A.6b. As the argument of the logarithm must be strictly
positive, we use only the positive estimates produced by the estimators. Table A.4
shows the MAPE and RMSE computed on the logarithm of the positive estimates. A
comparison on the fraction of non-positive estimates is given in Table 4.

MAPE =
1

N

N∑
i=1

∣∣∣∣∣ log(Si)− log(Ŝi)

log(Si)

∣∣∣∣∣, RMSE =

√√√√ 1

N

N∑
i=1

(
log(Si)− log(Ŝi)

)2
.

(a) TAQ Effective Spreads (b) Logarithm of TAQ Effective Spreads

Figure A.6: The histograms show the empirical distribution of monthly TAQ effective spreads. Figure (a)
reports the distribution of the spreads. Figure (b) reports the distribution of the logarithm of the spreads.
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Table A.4

MAPE and RMSE with TAQ Effective Spreads

The table shows group specific Mean Absolute Percentage Errors (MAPE) and Root Mean
Squared Errors (RMSE) of spread estimates with the TAQ effective spread as described in Sec-
tion A.5. The lowest MAPE and the lowest RMSE per group are highlighted in bold. EDGE
is the estimator proposed in this paper, AR and AR2 are the estimators proposed by Abdi and
Ranaldo (2017), CS and CS2 are the estimators proposed by Corwin and Schultz (2012), and the
Roll (1984) estimator. All estimators are based on daily observations using a monthly estimation
window. The sample period is from 1993–2020 (CRSP-TAQ merged sample).

MAPE (%) RMSE
EDGE AR AR2 CS CS2 Roll EDGE AR AR2 CS CS2 Roll

Panel A: Analysis across different markets

NYSE 21 25 23 21 24 32 1.8 2.0 1.9 1.6 1.9 2.5
AMEX 14 17 21 50 44 18 0.8 0.8 1.0 2.7 2.9 1.0
NASDAQ 16 19 22 37 37 23 1.0 1.2 1.3 2.2 2.5 1.5

Panel B: Analysis across time periods

1993–1996 9 13 18 50 43 14 0.5 0.6 0.8 2.9 3.1 0.7
1997–2000 12 15 17 42 32 18 0.6 0.8 0.9 2.3 2.4 1.0
2001–2002 15 18 20 37 35 23 0.9 1.1 1.1 2.1 2.4 1.4
2003–2007 20 22 22 25 28 27 1.4 1.6 1.6 1.6 2.0 2.0
2008–2011 28 32 32 33 40 38 1.7 1.9 1.9 1.7 2.1 2.4
2012–2015 21 24 24 22 28 30 1.6 1.8 1.8 1.5 2.0 2.3
2016–2020 22 25 25 21 27 33 1.7 2.0 1.9 1.5 2.0 2.5

Panel C: Analysis across market capitalization

Quintile 1 17 20 25 55 52 22 0.7 0.8 1.0 2.7 3.1 1.0
Quintile 2 13 17 21 46 45 18 0.8 0.9 1.1 2.6 3.0 1.0
Quintile 3 14 16 18 31 28 20 0.9 1.0 1.1 1.9 2.0 1.3
Quintile 4 18 21 21 21 22 28 1.4 1.6 1.5 1.5 1.7 2.0
Quintile 5 24 28 26 20 26 35 2.0 2.2 2.1 1.6 2.1 2.7

Panel D: Analysis across spread sizes

Quintile 1 26 30 29 19 28 38 2.1 2.4 2.3 1.6 2.2 2.9
Quintile 2 20 24 22 18 21 31 1.5 1.8 1.6 1.4 1.6 2.2
Quintile 3 15 18 17 22 20 24 1.1 1.2 1.2 1.4 1.5 1.6
Quintile 4 12 14 16 34 29 17 0.7 0.8 0.9 2.0 2.0 1.0
Quintile 5 15 19 29 70 71 19 0.5 0.7 1.0 3.2 3.8 0.7
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Table A.5

Correlation with Yearly TAQ Effective Spreads

The table shows group specific correlations of spread estimates with the TAQ effective spread.
The table also reports the median effective spread per group and the fraction of spread estimates
that are non-positive. The highest correlation and the lowest fraction of non-positive estimates
per group are highlighted in bold. EDGE is the estimator proposed in this paper, AR and AR2
are the estimators proposed by Abdi and Ranaldo (2017), CS and CS2 are the estimators pro-
posed by Corwin and Schultz (2012), and the Roll (1984) estimator. All estimators are based
on daily observations using a yearly estimation window. The sample period is from 1993–2020
(CRSP-TAQ merged sample).

Correlation (%) %≤ 0
Group Spread EDGE AR AR2 CS CS2 Roll EDGE AR CS Roll

Panel A: Analysis across different markets

NYSE 0.17% 55 46 49 44 41 9 35 41 36 44
AMEX 1.90% 78 67 66 48 51 4 20 25 41 34
NASDAQ 1.47% 85 77 69 46 42 25 10 17 10 26

Panel B: Analysis across time periods

1993–1996 2.68% 88 81 71 48 47 43 11 17 22 25
1997–2000 1.82% 83 78 70 48 47 52 16 25 30 33
2001–2002 1.42% 85 82 77 58 58 54 17 24 29 33
2003–2007 0.35% 77 67 69 45 49 6 19 25 18 35
2008–2011 0.29% 77 64 63 40 38 6 16 21 13 27
2012–2015 0.20% 71 64 62 42 36 10 23 31 9 38
2016–2020 0.20% 65 53 54 49 40 16 28 31 13 34

Panel C: Analysis across market capitalization

Quintile 1 3.54% 80 73 65 42 40 25 9 15 16 24
Quintile 2 2.22% 79 67 53 35 23 7 10 16 17 25
Quintile 3 1.16% 82 63 54 37 26 11 14 20 17 30
Quintile 4 0.32% 83 67 61 53 42 17 24 31 21 37
Quintile 5 0.09% 42 33 34 34 28 1 30 39 27 41

Panel D: Analysis across spread sizes

Quintile 1 0.09% 22 15 27 16 23 0 34 41 27 43
Quintile 2 0.27% 51 34 44 40 37 1 28 35 25 41
Quintile 3 0.82% 67 49 51 48 39 3 18 26 20 37
Quintile 4 1.94% 75 62 57 41 34 10 9 16 15 27
Quintile 5 4.71% 75 68 58 37 36 24 4 7 13 13
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