
1 

 

Algos gone wild: Are order cancellations in financial markets 

excessive? ☆ 

 

 

Marta Khomyna* and Tālis J. Putniņš a,b 

 
a University of Technology Sydney, PO Box 123 Broadway, NSW 2007, Australia 

b Stockholm School of Economics in Riga, Strelnieku Street 4a, Riga, LV 1010, Latvia 

 

 

 

Abstract 

 

We investigate whether the explosive growth in order-to-trade ratios and order cancellation 

rates in financial markets is something to be concerned about.  We develop a simple theoretical 

model (which we test and calibrate with data) of a liquidity provider in a fragmented market, 

who monitors several sources of information and updates quotes to avoid being picked off 

(trading at stale prices).  We find that recent growth in order-to-trade ratios is driven by 

fragmentation of trading across multiple venues as well as decreasing monitoring costs, with 

the increase in monitoring leading to improved liquidity.  Our model explains why there is 

considerable cross-sectional heterogeneity in order-to-trade ratios, with higher ratios in more 

volatile stocks, higher price-to-tick stocks, lower volume stocks, and in ETFs compared to 

stocks.  Our findings suggest that message taxes can have adverse effects on market making in 

securities that already have disadvantageous conditions for liquidity providers.  Furthermore, 

message taxes create unlevel competition between trading venues due to higher order-to-trade 

ratios on venues with lower volume shares.  
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1. Introduction 

The rapid recent growth in order-to-trade ratios and order cancellation rates in financial 

markets has alarmed regulators and some market participants around the world.  For example, 

in US equities, the order-to-trade ratio (number of order enter/amend/cancel messages to the 

number of trades) has increased more than ten-fold since 2000 (Committee on Capital Markets 

Regulation, 2016) and recent news reports highlighted 96.8% of all orders being cancelled 

before they trade, with 90% being cancelled within one second (US SEC1).  A response to these 

concerns is message taxes, which have been proposed in some countries (such as the US) and 

implemented in others (e.g., Australia, Italy, Germany).  Despite the concerns and proposed 

regulation, there is a lot that we do not yet understand about the drivers of order-to-trade ratios, 

whether their growth warrants concern, and the impacts of regulatory proposals such as 

message taxes.  This paper aims to increase our understanding of these issues.  

High order-to-trade ratios have been in public spotlight as they are claimed to be a 

symptom of predatory or manipulative behaviour of high-frequency traders. It is important to 

recognize that while market manipulation strategies such as spoofing or quote stuffing can 

generate spikes in quoting activity, high order-to-trade ratios can also arise from a number of 

activities that do not necessarily imply illicit behaviour or are not harmful.  In fact, rising 

quoting traffic (as we will show in this paper) could be a result of legitimate market making 

activity that requires posting liquidity across multiple venues and adjusting the quotes rapidly 

in response to new information to minimize picking off risk. The combination of advances in 

technology that have lowered monitoring costs and allowed much more information to be 

processed by market makers and fragmentation of trading across multiple venues necessitates 

increasing amounts of quote revisions by market makers in order to stay competitive in liquidity 

provision.  It is thus perhaps not surprising that the majority of liquidity provision is currently 

undertaken by HFT firms.  

As a result of the alleged link between high order-to-trade ratios (OTTR) and illicit 

HFT behaviour, a number of regulators have imposed messaging taxes, effectively charging 

high-OTTR traders a fee for excessive message traffic. To the extent that such regulation curbs 

harmful HFT behaviour, the tax could improve liquidity and other measures of market quality. 

However, if the regulation negatively affects liquidity providers (the majority of which are 

actually HFT firms), market liquidity could decrease.  

To investigate these issues, we develop a simple theoretical model (which we test and 

calibrate with data) of a liquidity provider in a fragmented market, who monitors several 

                                                           
1 See https://www.sec.gov/marketstructure/research/highlight-2013-01 for instance. 
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sources of information and updates quotes to avoid being picked off (trading at stale prices).  

We find that recent growth in order-to-trade ratios is driven by fragmentation of trading across 

multiple venues as well as decreasing monitoring costs, with the increase in monitoring leading 

to improved liquidity.   

Our model explains why there is considerable cross-sectional variation in order-to-

trade ratios, with higher ratios in more volatile stocks, higher price-to-tick stocks, lower volume 

stocks, and in ETFs compared to stocks. In particular, we allow for endogenous choice of 

monitoring intensity by the cost-constrained market maker, who adds an additional signal to 

his monitoring set as long as the marginal benefit of monitoring that signal exceeds the marginal 

cost. The incentive to monitor arises from the picking-off risk (being hit by market orders while 

having stale quotes), and is positively related to the signal quality, and negatively related to the 

cost of monitoring. The cost of being picked off gives rise to the cost of liquidity provision and 

constitutes an adverse selection component of the spread.  

By extending the model to include multiple trading venues, we generate theoretical 

predictions about the impact of fragmentation on order-to-trade ratios. The model with multiple 

trading venues also predicts higher OTTRs for markets with lower shares of trading volume. 

As markets fragment, liquidity providers have to update quotes across markets, which leads to 

OTTRs scaling up almost linearly with the degree of fragmentation. We find empirical evidence 

for this prediction in the cross-section of US stocks over 2012-2016 sample period.   

Our findings suggest that message taxes can have adverse effects on market making in 

securities that already have disadvantageous conditions for liquidity providers.  Furthermore, 

message taxes create unlevel competition between trading venues due to higher order-to-trade 

ratios on venues with lower volume shares. Finally, securities with natural signals (e.g. ETFs) 

always have higher OTTRs compared to common stocks, so taxing market makers in those 

securities would have detrimental effects on liquidity provision.  

The remainder of this paper proceeds as follows. Section 2 reviews existing literature 

related to OTTRs, fragmentation and HFT activity. Section 3 develops a simple model of the 

drivers of OTTRs and outlines model propositions. Section 4 proposes empirical hypotheses 

based on the model predictions, tests those hypotheses through regression analysis, and 

discusses the empirical results. Section provides policy implications of our analysis.  

2. Literature review 

 Academics, stock exchanges and regulators often use order-to-trade ratios as a proxy 

for high-frequency trading. For example, U.S. Securities and Exchange Commission, U.S. 
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Congressional Research Services, U.K. Government Office of Science, and European 

Securities and Market Authorities are among the institutions relying on OTTR in their HFT 

policies. Moreover, Brogaard, Hendershott, and Riordan (2014) report that some stock 

exchanges (e.g. NASDAQ) use OTTRs to classify HFTs. Even more important, regulatory 

initiatives aimed at curbing HFT activity are usually tied to OTTR. Chung & Lee (2015) survey 

mentions message taxes implemented in Italy, France and Norway in 2012. Germany launched 

an HFT regulation in 2013, aiming to decrease OTTRs by HFT firms. Australian and Canadian 

regulators’ cost recovery programs are also based on charging messaging taxes since 2012.  

However, a number of recent academic studies (Rosu, Sojli & Tham, 2017; Ye & Yao, 

2015; Ye, 2017) have cast doubt on the merits of using OTTR as a proxy for HFT activity. Rosu 

et al. (2017) show that equilibrium OTTRs reflect a number of factors beyond HFT activity, 

including the asset’s risk bearing capacity, dealer’s inventory, cost of monitoring and 

monitoring precision. Ye & Yao (2015) provide empirical evidence that message-to-trade ratios 

are negatively related to HFT liquidity provision in a cross-section of stocks. Ye (2017) offers 

a theory model that explains this effect: due to their speed advantage, HFTs provide relatively 

higher fraction of liquidity in stocks with larger tick sizes, and once their queue priority is 

secured, they are less likely to cancel orders. In stocks with larger tick sizes, there are fewer 

HFTs, but all liquidity providers compete more on price than time priority, and hence cancel 

more orders.  

Hence, message-to-trade ratios are not necessarily a good proxy for HFT activity, as 

they reflect multiple factors related to market making activity, including monitoring precision, 

picking-off risk, and strategic price-time priority choices by liquidity providers. From 

regulatory perspective, understanding the determinants of OTTR has important policy 

implications, as HFT-targeted messaging fees might be misdirected and harmful to market 

making activity. Our study investigates the determinants of OTTR recognizing the relationship 

between OTTR, market maker’s monitoring intensity, and market fragmentation.  

Existing literature can help us understand the relationship between HFT, fragmentation, 

messaging tax and market quality, but there are no studies we are aware of that directly tackle 

the question of which factors drive OTTRs. A number of recent studies explore the following 

related issues: 

(1) the effect of HFT on liquidity and market quality; 

(2) the effect of messaging tax on liquidity and market quality; 
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2.1. The effect of HFT on liquidity and market quality 

HFT-related literature offers some rich insights into order submission and cancellation 

strategies of different types of traders. Van Kervel’s (2015) theory model differentiates between 

fast and slow traders, treating the former as a source of additional adverse selection costs in 

fragmented markets. In their model, adverse selection costs arise due to fast traders being able 

to observe the order flow before slow traders. Their paper does not explicitly consider 

fragmentation as a model parameter, but it shows empirically that trading across multiple 

venues leads to trades on one venue being followed by cancellations of limit orders on 

competing venues. We consider this finding in light of the link between fragmentation and 

OTTR, but propose a different reason for order cancellations: market making across trading 

venues rather than competition for order flow.  

Other HFT studies typically address the question of HFT impact on some aspect of 

market quality (liquidity, price discovery, institutional execution costs, liquidity co-movement 

etc.), and use either exogenous entry of HFTs (Brogaard & Gariott, 2015; Mlceniece, 

Malcenieks & Putnins, 2016 ), explicit HFT identifiers (Van Kervel & Menkveld, 2016; 

Goldstein, Kwan & Philip, 2017), or OTTR as a proxy for high-frequency trading (Malinova, 

Park, and Riordan, 2013; Hoffman, 2014; Conrad, Wahal, and Xiang, 2015; Brogaard, 

Hendershott and Riordan, 2016; Subrahmanyam & Zheng, 2016). HFT studies typically cite 

speed as a source of quote flickering that accompanies high OTTRs: Jovanovich & Menkveld 

(2015) show that fast and well-informed HFTs increase gains from trade if their quoting activity 

reduces the information asymmetry between other traders. Empirically, a number of studies 

document high OTTRs being related to HFTs undercutting each other as a result of market 

orders consuming liquidity from the order book (Hasbrouck, 2015), episodic bursts of HFT 

quoting activity not related to market orders (Eggington, Van Ness and Van Ness, 2016), higher 

variance ratios in quotes (Hasbrouck, 2015), higher noise to information ratios in order flow 

(Yueshen, 2015). 

O’Hara (2015) mentions market fragmentation and increasing trading speeds as two 

core features of modern financial markets. At the same time, no studies to date have explored 

the link between fragmentation and one of the key manifestations of speed – order-to-trade 

ratios. Our paper addresses the question of how market making in fragmented markets affects 

order-to-trade ratios, and whether the high message traffic should be a matter of concern to 

regulators.  
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2.2. The effect of messaging tax on liquidity and market quality 

 Literature addressing the effects of regulatory restrictions on excessive order 

submissions and cancellations generally finds negative or neutral effects of messaging taxes on 

liquidity and market quality. For example, Van Kervel (2015) provides evidence from the 

sample of ten FTSE 100 stocks that imposing a cancellation fee discourages competition among 

trading venues and harms liquidity.  

 A number of studies investigate the effects of messaging taxes introduced in European 

countries in 2012. Caivano et al. (2012), Friedrich and Payne (2015), and Capelle-Blancard 

(2014) study the effect of taxing traders with excessive OTTRs (above 100:1) on Borsa Italiana 

(Italy’s largest stock exchange). The former two studies find the tax to be detrimental to market 

quality (in the time span of four months), while the latter study found no effect (in the time span 

of three years). Similarly, Colliard and Hoffmann (2015) find no effect on market quality from 

the French messaging tax levied on HFTs OTTRs above 5 across all stocks.  Jorgensen et al. 

(2014) find that Norwegian messaging tax (imposed on traders with OTTR above 70) had no 

harmful effects on the stocks in the treatment group, as relative spreads decreased slightly, 

while depth and turnover did not change. In Germany, Haferkorn (2015) finds that the price 

dispersion across trading venues has increased after implementation of the German HFT Act, 

which charges HFTs based on their OTTRs. Canadian regulator (IIROC) imposed a messaging 

tax as part of its cost recovery program, and charges traders proportionally to their share of 

submitted messages. Malinova et al. (2013) show that these measures resulted in increasing 

quoted and effective spreads in the Canadian market. Similarly, Lepone and Sacco (2013) find 

that IIROC’s cost recovery program coincided deterioration in liquidity on Chi-X Canada.  

 While the studies mentioned above provide empirical evidence on negative to neutral 

effects of messaging taxes, they do not address two relevant concerns: firstly, they do not offer 

formal theoretical models for why taxing messaging is harmful to liquidity; secondly, they do 

not investigate the heterogeneity of these effects in the cross-section of stocks. Thus, we fill the 

gap in existing literature by investigating both of these issues.  
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3. A simple model of what drives the order-to-trade ratio 

3.1. Baseline model structure 

Consider a simple model in which a market maker posts quotes (bid and ask prices and 

quantities) for a given asset in a given market. The market maker could monitor one or more 

signals from a set of signals, {𝑠1, 𝑠2, … , 𝑠𝑁}.  Each signal is a time-series (e.g., a price in a 

related security, price of the same security in another market, an order book state, etc.) that 

changes at stochastic times given by Poisson processes with intensity 𝜆𝑖 for the 𝑖th signal.  The 

quality of signal 𝑖, 𝑞𝑖, is the probability that when there is a change in that signal (“information” 

arrival), the market maker will want to update his posted quoted price(s) or quantities (we term 

such events “relevant information” arrivals), resulting in a “cancel and enter” or “amend” 

message from the market maker.2  

There is a cost to monitoring a signal, with the cost per unit time being proportional to 

the intensity of information conveyed by the signal (changes in the signal), 𝜆𝑖𝑐. This cost can 

be interpreted as the additional processing capacity that is required to interpret information 

arrivals and determine whether to respond, without delaying reactions to other signals.   

Market orders arrive and trade against the market maker’s posted quotes at stochastic 

times given by a Poisson process with arrival rate 𝜆𝑚.  The market maker’s benefit from 

monitoring comes from avoiding having stale quotes picked off.  When a market order arrives 

after a relevant information arrival but the market maker has not updates their quotes in 

response to the information (this occurs when relevant information arrives for a signal that is 

not monitored by the market maker) then the market maker’s (stale) quotes are picked off and 

he incurs a picking-off cost, 𝑘.  The more signals the market maker monitors, the lower the 

probability (frequency) of his quotes being picked off, because the more of the relevant 

information he has through his monitoring.  For a given monitoring intensity, the picking-off 

cost per unit time increases with the asset’s fundamental volatility (frequency of useful 

information arrivals) because of more frequent relevant information that makes quotes stale 

unless monitored.   

The market maker chooses which signals (if any) to monitor by weighing up the costs 

of monitoring, 𝜆𝑖𝑐, against the benefits of monitoring, namely reducing picking off risk.  The 

benefits depend on the arrival intensity of market orders and the arrival intensity of relevant 

information. Hence, the choice of monitoring intensity is endogenous in the model. 

                                                           
2 To be more precise, two messages, if the market maker adjusts both the bid and the ask. 
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We define a signal’s usefulness, 𝑢𝑖, as the arrival intensity of relevant information from 

the signal (signal changes that cause the market maker to want to revise his quotes): 𝑢𝑖 = 𝜆𝑖𝑞𝑖. 

The expected benefit (per unit time) from monitoring a given signal 𝑖 is the saved losses from 

having avoided having quotes picked off. That benefit is the expected number of times the 

market maker’s quotes would be hit by a market order when he would have wanted to revise 

them had he seen the signal, multiplied by the cost of getting hit by a market order without 

having updated quotes, 𝑘. In one unit of time, the expected number of market order arrivals is 

𝜆𝑚 and the probability that a given market order is preceded by useful information from signal 

𝑖 is 
𝜆𝑖𝑞𝑖

𝜆𝑚+𝜆𝑖𝑞𝑖
. Therefore, the benefit per unit time of monitoring signal 𝑖 is 𝜆𝑚 (

𝜆𝑖𝑞𝑖

𝜆𝑚+𝜆𝑖𝑞𝑖
) 𝑘. 

As a result of monitoring signals, executing trades, and updating quotes, the market 

maker generates messaging activity (messaging includes order entry, cancelation, and 

amendment messages) at an expected rate of 𝑄 = 2 ∑ 𝜆𝑖𝑞𝑖𝑖∈{𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑𝑆𝑖𝑔𝑛𝑎𝑙𝑠} + 2𝜆𝑚 messages 

per unit time.  The first term, 2 ∑ 𝜆𝑖𝑞𝑖𝑖∈{𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑𝑆𝑖𝑔𝑛𝑎𝑙𝑠}  is due to quote updates in response 

to relevant information arrivals on monitored signals, and the second term, 2𝜆𝑚, is due to re-

posting liquidity after being hit by a market order (re-entering one quote and amending the 

other).3  

Recognising that the expected number of trades per unit time is just the market order arrival 

intensity, 𝜆𝑚, the order-to-trade ratio4 for the asset is given by 𝑂𝑇𝑇𝑅 =

2 ∑ 𝜆𝑖𝑞𝑖𝑖∈{𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑𝑆𝑖𝑔𝑛𝑎𝑙𝑠} +2𝜆𝑚

𝜆𝑚
. 

3.2. Equilibrium 

To solve for the endogenous choice of monitoring, we set the marginal benefit of 

monitoring 𝑖𝑡ℎ signal, 𝜆𝑚 (
𝜆𝑖𝑞𝑖

𝜆𝑚+𝜆𝑖𝑞𝑖
) 𝑘, equal to the marginal cost of monitoring, 𝜆𝑖𝑐. 

Recall the cost per unit time of monitoring signal 𝑖 is 𝜆𝑖𝑐, giving a net benefit of 

𝜆𝑚 (
𝜆𝑖𝑞𝑖

𝜆𝑚+𝜆𝑖𝑞𝑖
) 𝑘 − 𝜆𝑖𝑐 from monitoring the signal. The market maker adds signals to his 

“monitored list” from greatest to least net benefit until the marginal expected net benefit of 

adding the next signal is less than or equal to zero.  The market maker therefore monitors all 

                                                           
3 Both terms ( ∑ 𝜆𝑖𝑞𝑖𝑖∈{𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑𝑆𝑖𝑔𝑛𝑎𝑙𝑠}  𝑎𝑛𝑑 𝜆𝑚 ) are multiplied by two reflecting the fact that after 

observing useful information or being hit by a market order, the market maker updates his view of the 

fundamental value and thus adjusts both bid and ask prices.   
4 We define the order-to-trade ratio as the total number of messages (order entry, cancellation, and 

amendment) divided by the total number of trades. In some industry settings, this ratio is referred to as 

the message-to-trade ratio.  
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signals for which 𝜆𝑚 (
𝜆𝑖𝑞𝑖

𝜆𝑚+𝜆𝑖𝑞𝑖
) 𝑘 − 𝜆𝑖𝑐 > 0 with the set of monitored signals denoted 

{𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑𝑆𝑖𝑔𝑛𝑎𝑙𝑠}. This condition determines monitoring intensity. Monitoring intensity 

is calculated as 𝑀 = ∑ 𝑚𝑖𝑖∈{𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑𝑆𝑖𝑔𝑛𝑎𝑙𝑠} , where 𝑚𝑖 = 1 ∀𝑖 ∈ {𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑𝑆𝑖𝑔𝑛𝑎𝑙𝑠}, and 

𝑚𝑖 = 0 ∀𝑖 ∉ {𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑𝑆𝑖𝑔𝑛𝑎𝑙𝑠}. 

3.3. Model with fragmented markets 

If the number of markets increases from 1 to 𝑁, the single market maker posts liquidity 

across multiple venues. The market order arrival rate, 𝜆𝑚, is assumed to be the same as in one-

market case: the trade volume fragments across multiple venues, but stays unchanged from the 

overall market perspective.  The overall quoting activity of the market maker consists of two 

components: (a) quote updates resulting from signal monitoring, 2𝑁 ∑ 𝜆𝑖𝑞𝑖𝑖∈{𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑𝑆𝑖𝑔𝑛𝑎𝑙𝑠}  

(market maker updates quotes on all N markets in response to monitored signals), and (b) 

reposting liquidity after getting a fill on market orders, 2𝜆𝑚. Note that market fragmentation 

does not affect the signal monitoring problem of the market maker, who chooses the set of 

signals to monitor in the same manner as in a single-market case. The resulting order-to-trade 

ratio for the market overall is therefore 𝑂𝑇𝑇𝑅 =
2𝑁 ∑ 𝜆𝑖𝑞𝑖𝑖∈{𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑𝑆𝑖𝑔𝑛𝑎𝑙𝑠} +2𝜆𝑚

𝜆𝑚
. 

Consider the order-to-trade ratio of individual markets 𝑘 = 1 … 𝑁. The market share of 

each individual market 𝑘 is 𝜌𝑘. We assume that market orders are divided across markets 

proportionally to their respective market shares. The market maker updates his quotes on 

market 𝑘 every time there is a signal update or after being hit by market order. Then, the order-

to-trade ratio for market 𝑘 is 𝑂𝑇𝑇𝑅𝑘 =
2 ∑ 𝜆𝑖𝑞𝑖+2𝜌𝑘𝜆𝑚𝑖∈{𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑𝑆𝑖𝑔𝑛𝑎𝑙𝑠}

𝜆𝑚∙𝜌𝑘
. 

3.4. Propositions 

We now derive theoretical propositions about the relations between order-to-trade 

ratios, monitoring intensity and fragmentation. First, we establish the link between the two key 

variables of interest: order to trade ratios and fragmentation (propositions 1a and 1b). Second, 

we show how order to trade ratios are related to fragmentation (proposition 2). Third, we relate 

order to trade ratios to all the model parameters that affect OTTR directly, via monitoring 

intensity or both. In the next section, we build on these propositions to develop the testable 

hypotheses.   

Proposition 1a. As markets fragment, market-wide order-to-trade ratio for a given 

security increases with the extent of fragmentation, if there is at least one non-zero 

quality signal in the monitoring set.  

Proof. See Appendix 1A.  
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The intuition for this result follows from the nature of market making across multiple 

venues. As markets fragment, a market maker has to post quotes across several exchanges, 

hence for a given level of trading activity, his quoting activity will increase, driving order-to-

trade ratios up. This occurs as long as the market maker has a reason to update quotes: arrival 

of useful information about the fundamental value of the asset (aka non-zero quality signal to 

act on) or new fills on market orders that require re-posting liquidity. Because we assume 

trading activity to be non-zero in every state of the world (𝜆𝑚 > 0 by the properties of Poisson 

process), the only condition for this proposition to hold is non-zero quality of the signals. In 

practical terms, if this condition is not satisfied, and market makers’ signals are too noisy to be 

useful (e.g. in market crash events), the market maker withdraws from the market, and the order 

to trade ratio becomes irrelevant.  

Proposition 1b. As markets fragment, order-to-trade ratio for a given security on a 

given market increases as the market share of that market decreases.  

Proof. See Appendix 1B. 

When trade volume fragments across multiple trading venues, it is natural to expect 

higher order-to-trade ratios for the venues with lower volumes, if we keep overall market-wide 

trading activity and quoting activity constant. This is another way of saying that other things 

equal, venues with lower share of trading volume will naturally have higher order-to-trade 

ratios.  

Proposition 2. Order-to-trade ratio for a given security increases with monitoring 

intensity. 

Proof. See Appendix 2. 

Monitoring intensity and order-to-trade ratios are closely related, because the market 

maker posts quotes as a result of his monitoring activity. If his cost-benefit analysis leads the 

market maker to monitor more and hence react to more signals, he will post more quote updates 

per unit of time. This means that order-to-trade ratio increases with more monitoring, hence 

parameters that affect monitoring intensity also affect order-to-trade ratios, and the effect is in 

the same direction. In further propositions, we will rely on this result to derive predictions about 

how the model parameters affect order-to-trade ratio. 

Proposition 3. Order-to-trade ratio for a given security increases with the quality of 

signals available for monitoring. 

Proof. See Appendix 3. 
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When a market maker gets access to better quality signals, his monitoring becomes 

more profitable and he has an incentive to monitor more. This effect follows from higher 

probability of observing a useful signal as the signal quality improves. With higher monitoring 

intensity, the market maker posts more quote updates and hence the order-to-trade ratio 

increases.  

Note that it is the signal quality, not the number of signals available for monitoring, 

that that drives this result. Because the potential number of signals that can be monitored is 

infinite, signal quality rather than quantity determines how many signals the market maker 

chooses to monitor. 

Proposition 4. Order-to-trade ratio for a given security increases with picking-off 

risk.  

Proof. See Appendix 4.  

When faced with higher frequency of being picked off, the market maker has an 

incentive to monitor more signals in order to minimize the costs of being hit by market orders 

without having updated quotes. Therefore, higher picking-off risk leads to higher monitoring 

intensity and higher order-to-trade ratios.  

Proposition 5. Order-to-trade ratio for a given security decreases with monitoring 

cost.  

Proof. See Appendix 5.  

When the market maker faces higher cost per signal monitored, his marginal costs 

increase, hence leading him to decrease the monitoring intensity and order-to-trade ratios. 

Market maker’s marginal costs are proportional to signal intensity, so the effect on monitoring 

intensity and OTTR is higher for more higher intensity signals. 

Proposition 6. Order-to-trade ratio for a given security decreases with the trading 

frequency, holding the monitoring intensity constant.  

Proof. See Appendix 6.  

The effect of trading frequency on OTTR is two-fold. On one hand, higher intensity of 

market order arrivals increases monitoring intensity, as the market maker has an incentive to 

monitor more in order to avoid picking-off costs. Therefore, he posts more quote updates based 

on signals monitored, which drives up order-to-trade ratio. On the other hand, higher market 

orders intensity decreases OTTR every trade is associated with fewer quote updates on average. 
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Hence, if we keep the number of signals in the monitoring set constant (aka constant monitoring 

intensity), only the second effect takes place: OTTR decreases with trading frequency.  

4. Empirical analysis 

We structure the empirical analysis part of this paper around two objectives: firstly, we 

propose the testable hypotheses based on the theoretical propositions outlined in the previous 

section; secondly, we use regression analysis to test the hypotheses and propose policy 

implications.  

4.1. Hypothesess 

Empirically, order-to-trade ratios are directly observable in the order book data and 

vary both over time and in a cross-section of stocks. At the same time, the degree of 

fragmentation in a given stock can be proxied by the number of markets a stock trades on, as 

well as by Herfindahl-Hirschman index. based on volume or number of trades (as in Degryse, 

de Jong and van Kervel, 2015 and Malceniece, Malcenieks & Putnins, 2016). It is therefore 

straightforward to test the relationship between OTTR and fragmentation empirically. Going 

forward, we refer to observations for a given stock on a given day as stock-day observations, 

and observations for a given market on a given day as market-day observations.  To extract the 

relationship between quoting activity and fragmentation that is not contaminated by other cross-

sectional dependencies, we have to control for trade volume, stock and market characteristics. 

Hypotheses 1a and 1b follow directly from propositions 1a and 1b: 

Hypothesis 1a. Order-to-trade ratios are higher for stock-days with higher degrees 

of fragmentation.  

Hypothesis 1b. Order-to-trade ratios are higher for markets5 with lower market 

shares.  

The empirical counterpart of signal quality could be seen as the degree of co-movement 

between related securities. For example, to the extent that prices of two securities co-move, one 

security could be used as a signal for another security’s value. One example could be the 

relationship between ETFs and their underlying stocks: because ETFs derive their value from 

the underlying components, their signal quality is always higher than signal quality for stocks 

(which do not have such precise signals to be monitored). Hence, based on proposition 3, we 

would expect higher order-to-trade ratios for ETFs than for their underlying components. 

                                                           
5 In regression analysis, we use market-day units of observation, because market shares, as well as 
stock and market characteristics vary over time, as well as across markets.  
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Hypothesis 2a. ETFs have higher order-to-trade ratios compared to the common 

stocks.  

From the market maker’s perspective, a broad market index is the most obvious signal 

for security’s value. Hence, to the extent that the market index constitutes a better signal (as is 

the case for more correlated securities), the market maker will update his quotes more often in 

response to changes in the index.  

Hypothesis 2b. Securities with higher correlation with the broad market index have 

higher order-to-trade ratios.  

The market maker has an incentive to update his quotes more often if he risks losing 

more per each picking-off event from market orders, and with higher frequency. More frequent 

value updates and wider value fluctuations are the case for stocks with higher fundamental 

volatility, and also during days with higher market volatility; hence, based on proposition 5, we 

would expect order-to-trade ratios to be higher in such cases. 

Hypothesis 3a. Order-to-trade ratios are higher for stock-days with higher market 

volatility. 

Hypothesis 3b. Order-to-trade ratios are higher for stock-days with higher stock 

volatility. 

The tick size constrains the degree of granularity at which market makers can update 

their quotes based on the new information. In practice, the same signal might yield different 

usefulness for two stocks with different price ranges (and otherwise similar characteristics). For 

example, for low-priced stocks that have artificially constrained relative spread due to the 

minimum tick size, the market maker would be less likely to update quotes, as the value effect 

on the stock price could lie within the spread. On the opposite side of the spectrum, for high-

priced stocks with narrow relative spread, the same signal could induce the market maker to 

update quotes, as the difference in valuation would be more likely to lie outside the spread. 

Because market makers face the risk of being picked off every time they do not update their 

quotes in response to useful information about the stock value, based on proposition 4, we 

would expect higher OTTR in stocks with smaller tick-to-price ratios.  

Hypothesis 3c. Order-to-trade ratios are higher for stocks with higher tick-to-price 

ratios. 

Monitoring costs faced by the market maker affect his choice of optimum monitoring. 

The market maker will choose to monitor more (and post more quote updates as a result) if his 
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marginal costs of monitoring are lower. Hence, to the extent that HFTs face lower the costs of 

monitoring, proposition 5 suggests that order-to-trade ratios will be lower for stock-days and 

exchange-days that attract more HFT activity. O’Hara (2015) and Rosu et al. (2017) suggest 

that high market cap stocks attract more HFT activity, hence we would expect lower monitoring 

costs and higher OTTRs in those stocks. 

Hypothesis 4a. Order-to-trade ratios are higher for stocks with higher market 

capitalization. 

Similarly, O’Hara (2015) argues that taker-maker markets attract relatively fewer 

HFTs, hence we would expect higher monitoring costs and lower OTTRs for the average stock 

traded on those markets. 

Hypothesis 4b. Order-to-trade ratios are lower on markets with taker-maker fee 

structure. 

Trading volume is one of the key stock characteristics that affects both monitoring 

intensity and OTTR. Interestingly, monitoring intensity increases with the frequency of market 

orders to the extent that the market maker chooses to add new signals to the monitoring set. 

However, OTTR decreases with trading frequency as more market orders are executed. 

Empirically, it is important to control for the extent that trading frequency (proxied by daily 

trading volumes) affects OTTR to disentangle the effect of other factors. In line with 

proposition 7, we expect higher OTTR for stocks with lower trading volumes. 

Hypothesis 5. Order-to-trade ratios are inversely related to the trading volumes, 

controlling for fragmentation, stock and market characteristics.  

4.2. Regression analysis 

 Our regression specifications follow from the hypotheses specified in the previous 

subsection. We estimate separate regression models for stock-date level observations and for 

exchange-date level observations. To account for within-cluster correlations (i.e. correlations 

within exchange-date groups and stock-date groups), we use double-clustered standard errors. 

Regression models (1) and (2) are estimated for stock-date and exchange date regressions 

accordingly.  

log(1 + 𝑂𝑇𝑇𝑅𝑖𝑡) = 𝜶 + 𝜷𝟏𝐹𝑟𝑎𝑔𝑖𝑡 + 𝜷𝟐log(𝑉𝑜𝑙𝑢𝑚𝑒𝑖𝑡) + 𝜷𝟑log(𝑀𝑎𝑟𝑘𝑒𝑡𝐶𝑎𝑝𝑖𝑡) +

𝜷𝟒 𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑡 + 𝜷𝟓 𝑆𝑡𝑜𝑐𝑘𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖𝑡 + 𝜷𝟔 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑆&𝑃𝑖𝑡 +

𝜷𝟕𝑇𝑖𝑐𝑘𝑇𝑜𝑃𝑟𝑖𝑐𝑒𝑖𝑡 + 𝜷𝟖 𝐷𝑖𝑡
𝐸𝑇𝐹 + 𝜀𝑖𝑡                                                                                   

(1) 



15 

 

log(1 + 𝑂𝑇𝑇𝑅𝑗𝑡) = 𝜶 + 𝜷𝟏𝐹𝑟𝑎𝑔𝑗𝑡 + 𝜷𝟐log(𝑉𝑜𝑙𝑢𝑚𝑒𝑗𝑡) + 𝜷𝟑 𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑡 +

𝜷𝟒 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑆&𝑃𝑗𝑡 + 𝜷𝟓 𝑇𝑖𝑐𝑘𝑇𝑜𝑃𝑟𝑖𝑐𝑒𝑗𝑡 + 𝜷𝟔 𝐷𝑗𝑡
𝑡𝑎𝑘𝑒𝑟 + 𝜷𝟕 𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒𝑗𝑡 + 𝜀𝑗𝑡   

(2) 

To prevent our results from being driven by a few extreme observations, we winsorize 

the 𝑂𝑇𝑇𝑅𝑖𝑡 variable and obtain a logarithmic transformation of it to be used in regression 

analysis. Further, we also obtain logarithmic transformations of market cap, volume and the 

VIX index. See table 1 for detailed variable definitions.  

< Table 1 here > 

4.3. Data and descriptive statistics 

 We use SEC MIDAS (Market Information Data Analytics System) database and CRSP 

Daily Stocks as two primary data sources. The MIDAS data covers the universe of US stocks 

and ETFs traded across 12 major lit markets (Arca, Bats-Y, Bats-Z, Boston, CHX, Edge-A, 

Edge-X, NSX, PHLX, Amex, NYSE), and contains the variables necessary to compute order 

to trade ratios and fragmentation measures6. We obtain daily data on stock characteristics from 

CRSP to complement the MIDAS data, and use Thomson Reuters Tick History to obtain the 

daily values of VIX index. 

Our sample period spans from January 1st 2012 (the starting date of MIDAS dataset) 

till December 31st 2016 (the latest date for CRSP dataset). The combined dataset contains daily 

frequency observations, with stock- and exchange-level granularity. We aggregate the data to 

stock-day level for the first part of our analysis (exploring how OTTR varies over time in the 

cross-section of securities), and to exchange-day level for the second part of analysis (exploring 

how OTTR varies over time across markets). 

The descriptive statistics for the stock-date dataset is presented in Table 2. The dataset 

contains just under 6 million daily observations for 7114 securities, 75% of them stocks, and 

the rest – ETFs.  At stock-date frequency, stocks and ETFs are part of the same dataset, and we 

have a dummy variable for ETFs that lets us control for ETF-specific characteristics beyond 

those suggested to drive OTTRs based on the theory model. We also create dummy variables 

                                                           
6 Note that we compute order to trade ratios following the SEC methodology: dividing the order volume 

by lit volume. By SEC definition, order volume is sum of order volume (in number of shares) for all add 

order messages; lit volume is sum of trade volume for trades that are not against hidden orders.  
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for stock-days affected by the SEC Tick Size Pilot program, and apply the wider tick sizes 

accordingly.7 

< Table 2 here > 

The descriptive statistics for exchange-date dataset is presented in table 3. We split this 

dataset into two to run the regression analysis for stocks and ETFs separately. This is because 

in exchange-date analysis we weight security-level variables by dollar volume (e.g. 

fragmentation measures, correlations with S&P500 and tick to price measures are all dollar 

volume weighted to obtain their exchange-date equivalents).  Hence, to the extent that ETFs 

and stocks have inherently different characteristics as security classes, we cannot combine them 

at exchange-date granularity.  

In exchange-date analysis, we distinguish between the markets with different fee 

structures by introducing a dummy variable for taker-maker markets (Edge-A, Bats-Y and 

Boston stock exchange)8. Among stocks, 17% of exchange-date observations belong to the 

taker-maker group, and among ETFs – 20%.  

< Table 3 here > 

We also use two variables with only time variation (no cross-sectional variation), which 

are proxies for market volatility. The descriptive statistics for those is presented in table 4.  The 

first proxy for market volatility is computed from daily high-low range of SPY ETF daily 

prices, while the second proxy is a log-level measure of daily closing VIX index.  

< Table 4 here > 

4.4. Regression results 

 Regression results at security-date level test the empirical predictions of our theory 

model. To preview the results, we find evidence that order-to-trade ratios increase with 

fragmentation (in line with Hypothesis 1a), and are also higher for stocks with lower volumes 

(in line with Hypothesis 5), larger market cap (in line with Hypothesis 4a), higher correlations 

                                                           
7 The Tick Size Pilot program affects 1400 small capitalization stocks by widening their tick sizes from 

$0.01 to $0.05. The rollout of the program started on October 3rd, 2016, and occurred in several phases 

for three groups of securities affected. We use the official data from FINRA (The Financial Industry 

Regulatory Authority) web-site to identify the affected securities and effective rollout dates.  

 
8 “Maker-taker” market refers to the market that compensates “liquidity makers” (i.e. those posting limit 

orders) and charges “liquidity takers” (i.e. those posting market orders). “Taker-maker” market refers to 

the trading venue that does the opposite (i.e. charges for limit orders and compensates for market orders). 

In our sample, 9 trading venues apply maker-taker fee structure: Amex, Arca, Bats-Z, CHX, Edge-X, 

NSX, NYSE, NASDAQ, PHLX; 3 trading venues – taker maker fee structure: Edge-A, Bats-Y, and 

Boston stock exchange.  
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with the market index (in line with Hypothesis 2b), and smaller tick-to-price ratios (in line with 

Hypothesis 3c). Order-to-trade ratios for ETFs are higher than those for stocks, controlling for 

other security characteristics (in line with Hypothesis 2a). Stock and market volatility are also 

positively associated with order-to-trade ratios of a given stock on a given day (in line with 

Hypotheses 3a and 3b). Empirical results for stock-date and exchange-date regressions are 

reported in Tables 5 and 6 respectively. 

< Table 5 here > 

 The empirical result that OTTRs increase with the degree of fragmentation confirms 

the prediction from our theory model (see Proposition 1). This result is expected, as higher 

fragmentation means posting liquidity across multiple venues. This in turn leads to order 

revisions increasing proportionally to the number of venues, because market makers revise 

quotes across multiple exchanges in response to monitored signals. The positive relation 

between fragmentation and OTTR indeed holds on average in the stock-day panel, as suggested 

by regression results in Table 5: the coefficient on fragmentation is positive and significant for 

all three fragmentation proxies. To better understand the shape of this relationship, we also 

regress OTTRs on dummy variables of different degrees of fragmentation, controlling for other 

stock characteristics. Figure 1 shows that OTTRs increase almost linearly as fragmentation 

increases, in line with the model predictions. This is a novel finding, as no studies to date have 

investigated the relationship between fragmentation and OTTR. 

< Fig. 1 here > 

The quality of signals available for monitoring also affects order-to-trade ratios. While 

multiple studies have explored the link between HFT quoting and monitoring activity (e.g. Liu, 

2009; Conrad et al., 2015; Lyle et al., 2016; Blocher et al., 2016), the reasons for monitoring in 

our model are related to market making and avoiding picking-off risk rather than speed 

competition among HFTs. Empirically, we find evidence for this effect by examining OTTRs 

in ETFs: the latter have high quality signals available for monitoring, unlike stocks. This leads 

to more intense monitoring activity by market makers, keeping all other security characteristics 

constant. We find evidence of this theoretical prediction, as the coefficient on ETF dummy is 

positive and significant. Another measure of monitoring – correlation with S&P 500 index – is 

also positively associated with OTTRs, and highly significant. Indeed, to the extent that market 

makers can derive highly useful information from the available benchmarks, they will have an 

incentive to update the quotes more frequently in order to avoid the picking-off risk.  
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The risk of being picked off by the informed traders drives market maker’s monitoring 

decisions and hence OTTRs. The picking-off risk is related to how often the quotes in a given 

stock need to be updated to keep up with the changes in fundamental value. The frequency and 

magnitude of such changes in fundamental value is higher for stocks with more volatile process, 

and also – under more volatile market conditions. Empirically, we find that to be the case, as 

coefficients on both market and stock volatility are positive and significant.  

Another proxy for picking-off risk is tick-to-price ratio. In stocks with higher tick-to-

price ratios, it would take a larger change in fundamental value to induce a market maker to 

update quotes, implying lower pick-off risk. To illustrate this, consider two stocks. Stock A is 

priced at $50, and stock B – at $5. Say, a tick size is $0.01, and stock A quotes are $49.99-$50, 

while stock B quotes are $4.99-$5. If a piece of news comes out, implying 2 bps improvement 

in the stock price, the market maker will update the quotes in A (shifting the midquote from 

$49.995 to $50.005, as the new bid-ask becomes $50-$50.01). However, a market maker in 

stock B will not update quotes, as the value change lies within the bid-ask spread (2 bps 

improvement translates into $0.0001 value, which is smaller than full tick size). In this simple 

example, market maker in security A faces higher risk of being picked off than in security B. 

This is the case because if he allows for stale quotes (aka does not react to the signal) in security 

A, the chance of losing out to informed traders is high, but in security B stale quotes are not as 

likely to be picked off, as it takes an event with higher value implications to move the price.  

Empirically, we find evidence supporting the prediction of higher picking-off risk 

(lower tick-to-price ratio) being associated with higher OTTRs. This is in line with evidence in 

Ye & Yao (2015), although the theoretical argument proposed by Ye (2017) points towards the 

speed vs price competition by HFTs as a theoretical mechanism for this effect. Our model 

suggests a different mechanism – picking-off risk – although the two need not be mutually 

exclusive. In fact, our model might help explain why, as suggested by Ye (2017) HFTs compete 

more on price rather than time priority in low tick-to-price stocks: it is because their speed 

advantage allows them to more effectively avoid being picked off by reacting rapidly to 

information arrivals through adjusting their quotes. This, in turn, leads to higher order-to-trade 

ratios.  

Monitoring cost is one of the key drivers of the endogenous monitoring intensity in our 

model. Hence, to the extent that lower monitoring cost increases the net marginal benefit of 

monitoring, the market maker will monitor more and hence increase his OTTR. Since market 

maker’s costs are not directly observable, we use two proxies that previous studies have shown 

to be highly correlated with the HFT activity: stock’s market cap and trading venue’s maker-

taker fee structure. Because HFT’s investment in technology enables them to achieve low 
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marginal costs of monitoring, relative to other market participants, the prevalence of HFTs 

should come together with low monitoring costs.  

As shown in O’Hara (2015), and Rosu et al. (2017), large-cap stocks attract more HFT 

activity, which in turn suggests lower cost of monitoring. Empirically, we find log market cap 

is strongly positively related to OTTR (see Table 5).  

O’Hara (2015) also argues that the prevalence of HFTs is lower on taker-maker 

markets, as it is more attractive for them to collect market making rebates on maker-taker 

markets. Therefore, the cost of monitoring is lower for stocks traded on maker-taker markets. 

Then, taker markets should have relatively fewer HFTs (hence higher monitoring costs and 

lower OTTRs). Indeed, we find that the coefficient on our taker dummy is negative and 

significant in exchange-date regressions (see Table 6).   

Order-to-trade ratios are also negatively related to the trading frequency, which we 

proxy by the number of shares trades in a day. Controlling for this effect is also important in 

order to view the results from the standpoint of quoting activity and avoid them being driven 

by the mechanical division by trading volume. 

Exchange-day analysis (results reported in Table 6) allows us to explore the effects of 

fee structures and market shares on OTTRs. As discussed earlier, taker-maker trading venues 

generally have lower OTTRs, in line with higher monitoring costs associated with less prevalent 

HFT activity. Characteristics of the average stock traded on a particular venue (weighted by 

dollar volume) are included as controls, and generally point in the same direction as in stock-

day regression discussed above. Market volatility variables are also included and are positively 

related to OTTRs.  

< Table 6 here > 

Contrary to our theoretical prediction (Proposition 1b), market share is not significantly 

related to OTTRs (see Table 6) in the regression results. Further exploratory analysis (see 

Figure 2) reveals that when a stock trades on only a few markets (low fragmentation, e.g. bucket 

19 on the graph), those tend to be low-OTTR markets (e.g. NASDAQ, Edge-X, Arca).  

< Fig. 2 here > 

Indeed, larger exchanges (by overall market share) tend to trade more of the least 

fragmented stocks, However, as a stock starts trading cross multiple venues, more high-OTTR 

markets are added to the list. Taker-maker maker markets seem to be the last on this pecking 

order: their market share is highest in the most fragmented stocks. Smallest market share 

markets do not necessarily follow the same dynamics, but they tend to have the highest OTTRs.  
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5. Conclusions and policy implications 

Our results help explain the drivers of order-to-trade ratios across markets and in a 

cross-section of stocks. Beyond that, we also provide the theoretical and empirical arguments 

for how OTTR-related regulatory measures might affect market quality. Specifically, our 

theory model addresses the question of messaging tax effects on market making activity across 

different assets.  

Firstly, our model suggests that high order-to-trade ratios are related to market making 

in fragmented markets. Hence, it should not be surprising to find increasing OTTRs as 

technology enables ever-faster incorporation of information through quote revisions, while 

allowing to instantaneously revise quotes across trading venues. Importantly, as markets 

fragment, market makers will inevitably scale up their quoting activity, even in the absence of 

other factors (e.g. higher speed or lower cost of monitoring). This prediction is supported by 

empirical evidence from the US markets. 

Secondly, we show that heterogeneity in order-to-trade ratios is related to a number of 

stock and market characteristics that affect market makers’ monitoring intensity: trading 

frequency, market volatility and correlation, market cap and tick-to-price ratios. To the extent 

that regulatory measures (e.g. messaging taxes) are targeted at stocks with high OTTRs, they 

will decrease market making activity in stocks with naturally high OTTRs. For example, stocks 

with low trading frequencies and high volatilities (arguably already less attractive to market 

makers) would be disadvantaged more if a messaging tax were to be introduced.  

Thirdly, the model demonstrates that derivative securities with natural signals (e.g. 

ETFs) will have higher order-to-trade ratios, controlling for other factors. Because in some 

markets, regulators tax market makers based on messaging traffic, it might disproportionally 

harm liquidity provision in asset classes with naturally high order-to-trade ratios (e.g. ETFs). 

Similarly, to the extent that designated market makers are mandated in certain asset classes, 

and at the same time taxed based on messages, higher cost of liquidity provision will arise as a 

result of such requirements.  
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Appendix 1A 

Proposition 1a. As markets fragment, market-wide order-to-trade ratio for a given 

security increases with the extent of fragmentation, if there is at least one non-zero 

quality signal in the monitoring set.  

Proof.  

Recall the expression for order-to-trade ratio from the overall market perspective: 

𝑂𝑇𝑇𝑅 =
2𝑁 ∑ 𝜆𝑖𝑞𝑖𝑖∈{𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑𝑆𝑖𝑔𝑛𝑎𝑙𝑠} +2𝜆𝑚

𝜆𝑚
.  Taking the first derivative with respect to the number 

of markets: 

𝑑𝑂𝑇𝑇𝑅

𝑑𝑁
=

2 ∑ 𝜆𝑖𝑞𝑖𝑖∈{𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑𝑆𝑖𝑔𝑛𝑎𝑙𝑠}

𝜆𝑚
> 0. Below, we show that this expression is strictly positive. 

One can show that 
2 ∑ 𝜆𝑖𝑞𝑖𝑖∈{𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑𝑆𝑖𝑔𝑛𝑎𝑙𝑠}

𝜆𝑚
= 𝑂𝑇𝑇𝑅 − 2 > 0, if 𝑂𝑇𝑇𝑅 > 2.  

Intuitively, 𝑂𝑇𝑇𝑅 ≥ 2 as it takes at least two messages to generate a trade: posting both 

a bid and an ask quote. If no additional information is obtained from the signals (i.e. signal 

quality is 0),  𝑂𝑇𝑇𝑅 = 2, which is the case only if 𝑞𝑖 = 0 ∀𝑖 ∈ {𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑𝑆𝑖𝑔𝑛𝑎𝑙𝑠}. As 𝑞𝑖 ≥

0 by construction (signal quality cannot be negative), 𝑂𝑇𝑇𝑅 > 2 for all cases except for 𝑞𝑖 =

0. 

Appendix 1B. 

Proposition 1b. As markets fragment, order-to-trade ratio for a given security on a 

given market increases as the market share of that market decreases.  

Proof. 

Recall the expression for order-to-trade ratio from the individual market perspective: 

𝑂𝑇𝑇𝑅𝑘 =
2 ∑ 𝜆𝑖𝑞𝑖+2𝜌𝑘𝜆𝑚𝑖∈{𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑𝑆𝑖𝑔𝑛𝑎𝑙𝑠}

𝜆𝑚∙𝜌𝑘
. Taking the first derivative with respect to the market 

share: 

𝑑𝑂𝑇𝑇𝑅𝑘

𝑑𝜌𝑘
=

2

𝜌𝑘
−

2 ∑ 𝜆𝑖𝑞𝑖 + 2𝜌𝑘𝜆𝑚𝑖∈{𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑𝑆𝑖𝑔𝑛𝑎𝑙𝑠}

𝜆𝑚 ∙ 𝜌𝑘
2 < 0 ∀𝜌𝑘 ∈ (0,1),  𝜆𝑖, 𝑞𝑖 , 𝜆𝑚   

Appendix 2. 

Proposition 2. Order-to-trade ratio for a given security increases with monitoring 

intensity. 
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Proof.  

Recall that order-to-trade ratio is calculated as 𝑂𝑇𝑇𝑅 =
2 ∑ 𝜆𝑖𝑞𝑖𝑖∈{𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑𝑆𝑖𝑔𝑛𝑎𝑙𝑠} +2𝜆𝑚

𝜆𝑚
, 

while monitoring intensity is the number of monitored signals in {𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑𝑆𝑖𝑔𝑛𝑎𝑙𝑠} set. 

Therefore, as more signals are monitored, the market maker posts proportionally more quote 

updates in response to those signals, which in turn increases the order-to-trade ratio. 

Appendix 3. 

Proposition 3. Order-to-trade ratio for a given security increases with the quality of 

signals available for monitoring. 

Proof.  

As shown in proposition 2, OTTR increases with monitoring intensity. Let us show that 

monitoring intensity increases with the quality of monitored signals.  

Recall that monitoring intensity is a count of all monitored signals:  𝑀 =

∑ 𝑚𝑖𝑖∈{𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑𝑆𝑖𝑔𝑛𝑎𝑙𝑠} , where  𝑚𝑖 = 1 ∀𝑖 ∈ {𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑𝑆𝑖𝑔𝑛𝑎𝑙𝑠}, and 𝑚𝑖 = 0 ∀𝑖 ∉

{𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑𝑆𝑖𝑔𝑛𝑎𝑙𝑠}. A market maker monitors all signals for which the marginal benefit of 

monitoring exceeds the marginal cost (𝜆𝑚 (
𝜆𝑖𝑞𝑖

𝜆𝑚+𝜆𝑖𝑞𝑖
) 𝑘 > 𝜆𝑖𝑐). Because improved signal quality 

increases the marginal benefit of monitoring without affecting the marginal costs, the market 

maker will monitor more when he receives better quality signals.  

Because monitoring intensity increases with signal quality, and higher monitoring 

intensity leads to higher OTTR, we’ve shown that OTTR increases with the quality of 

monitored signals.  

Appendix 4. 

Proposition 4. Order-to-trade ratio for a given security increases with picking-off 

risk.  

Proof.  

Recall that the cost of being picked off is 𝑘 per each event of getting hit by 

market order without having updated quotes. Taking the derivative of net marginal 

benefit function with respect to picking off risk 𝑘: 
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𝑑[(
𝜆𝑖𝑞𝑖

𝜆𝑚+𝜆𝑖𝑞𝑖
)𝑘𝑚−𝜆𝑖𝑐]

𝑑𝑘
=

𝜆𝑖𝑞𝑖

𝜆𝑚+𝜆𝑖𝑞𝑖
> 0 – this expression is strictly positive for all non-zero quality 

signals, hence monitoring intensity (and OTTR – based on proposition 2) increases with picking 

off risk.  

Appendix 5. 

Proposition 5. Monitoring intensity for a given security decreases with monitoring 

cost. 

Proof.  

Higher monitoring cost per signal increases the marginal cost to market maker, as for 

every signal monitored he has to pay a higher cost, which increases with that signal’s intensity. 

Other things equal, higher marginal cost of monitoring will induce the market maker to monitor 

fewer signals.  

Taking the first derivative of marginal net benefit with respect to 𝑐:  

𝑑[𝜆𝑚(
𝜆𝑖𝑞𝑖

𝜆𝑚+𝜆𝑖𝑞𝑖
)𝑘−𝜆𝑖𝑐]

𝑑𝑐
= −𝜆𝑖 < 0  - this expression is strictly negative, as 𝜆𝑖 > 0 by the properties 

of Poisson process (signal intensity – the number of signal updates per unit of time -  can only 

be a positive number). Hence, the market maker will be less likely to monitor signal 𝑖 when the 

cost of monitoring cost is lower. 

Appendix 6. 

Proposition 6. Order-to-trade ratio for a given security decreases with the trading 

frequency, holding the monitoring intensity constant. 

Proof. 

To establish the effect of trading frequency on OTTR, we first show the effect on 

monitoring intensity. Taking the first derivative of marginal net benefit with respect to trading 

frequency: 

𝑑[𝜆𝑚(
𝜆𝑖𝑞𝑖

𝜆𝑚+𝜆𝑖𝑞𝑖
)𝑘−𝜆𝑖𝑐]

𝑑𝜆𝑚
=

𝑘𝜆𝑖
2𝑞𝑖

2

(𝜆𝑚+𝜆𝑖𝑞𝑖)2 > 0 – this expression is strictly positive for all values of 

parameters except for 𝑞𝑖 = 0. Thus, monitoring intensity increases with trading frequency as 

long as the signal quality is non-zero. Intuitively, as the expected number of market order 
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arrivals 𝜆𝑚 (or trading frequency) increases, the picking-off intensity increases, thus 

incentivizing the market maker to monitor more.  

However, trading intensity also enters OTTR directly by affecting the quoting activity 

(quote updates after fills on market orders) and number of trades executed. Recall the 

expression for order-to-trade ratio: 𝑂𝑇𝑇𝑅 =
2 ∑ 𝜆𝑖𝑞𝑖𝑖∈{𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑𝑆𝑖𝑔𝑛𝑎𝑙𝑠} +2𝜆𝑚

𝜆𝑚
. Taking the first 

derivative with respect to trading frequency (𝜆𝑚): 
𝑑𝑂𝑇𝑇𝑅

𝑑𝜆𝑚
=

−2 ∑ 𝜆𝑖𝑞𝑖𝑖∈{𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑𝑆𝑖𝑔𝑛𝑎𝑙𝑠}

𝜆𝑚
2 < 0 for all 

parameter values except for 𝑞𝑖 = 0. This suggests that OTTR decreases as the trading frequency 

increases. 

Thus, order-to-trade ratio decreases with trading frequency, if we keep the monitoring intensity 

constant.  
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Table 1 

Variables used in regression analysis 

 

 

Propositions and Hypotheses Variable definitions 

Proposition 1a. As markets fragment, 

market-wide order-to-trade ratio for a 

given security increases with the extent of 

fragmentation, if there is at least one non-

zero quality signal in the monitoring set.  

 

Hypothesis 1a. Order-to-trade ratios are 

higher for stock-days with higher degrees 

of fragmentation.  

 

𝑂𝑇𝑇𝑅𝑖𝑡 = 𝑂𝑟𝑑𝑒𝑟𝑉𝑜𝑙𝑖𝑡/𝑇𝑟𝑎𝑑𝑒𝑉𝑜𝑙𝑖𝑡  – ratio of order volume 

(number of shares) to trade volume (number of shares) in stock 

𝑖 on day 𝑡. 

𝐹𝑟𝑎𝑔𝑖𝑡 – measure of fragmentation, for which the following 

three proxies are defined: 

𝐹𝑟𝑎𝑔1𝑖𝑡 = 𝑁𝑖𝑡  – number of trading venues that have executed 

trades in stock 𝑖 on day 𝑡; 

𝐹𝑟𝑎𝑔2𝑖𝑡 = 1 − ∑ (
𝑇𝑟𝑎𝑑𝑒𝑉𝑜𝑙𝑖𝑗𝑡

∑ 𝑇𝑟𝑎𝑑𝑒𝑉𝑜𝑙𝑖𝑗𝑡𝑗
)2

𝑗 -Herfindahl-Hirschman 

index of fragmentation, based on trading volume (number of 

shares) in stock 𝑖, on market 𝑗, on day 𝑡; 

𝐹𝑟𝑎𝑔3𝑖𝑡 = 1 − ∑ (
𝑁𝑇𝑟𝑎𝑑𝑒𝑠𝑖𝑗𝑡

∑ 𝑁𝑇𝑟𝑎𝑑𝑒𝑠𝑖𝑗𝑡𝑗
)2

𝑗 -Herfindahl-Hirschman index 

of fragmentation, based on the number of trades in stock 𝑖, on 

market 𝑗, on day 𝑡. 

𝐹𝑟𝑎𝑔𝑗𝑡 – dollar volume weighted average fragmentation 

measure 𝐹𝑟𝑎𝑔1𝑖𝑡  for the average stock trading on market 𝑗 on 

day 𝑡.  

Proposition 1b. As markets fragment, 

order-to-trade ratio for a given security on 

a given market increases as the market 

share of that market decreases.  

 

Hypothesis 1b. Order-to-trade ratios are 

higher for markets with lower market 

shares. 

𝑀𝑘𝑡𝑆ℎ𝑎𝑟𝑒𝑗𝑡 = 𝐷𝑜𝑙𝑉𝑜𝑙𝑗𝑡/ ∑ 𝐷𝑜𝑙𝑉𝑜𝑙𝑗𝑡𝑗  – dollar volume-based 

market share of market 𝑗 on day 𝑡. 

  

Proposition 3. Order-to-trade ratio for a 

given security increases with the quality of 

signals available for monitoring. 

 

Hypothesis 2a. ETFs have higher order-to-

trade ratios compared to the common 

stocks. 

Hypothesis 2b. Securities with higher 

correlation with the broad market index 

have higher order-to-trade ratios.  

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑆&𝑃𝑖𝑡 – average 22-day correlation between daily 

returns on security 𝑖 and daily returns on S&P500 index.  

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑆&𝑃𝑗𝑡  – dollar volume weighted average 22-day 

correlation between daily returns on securities traded on market 

𝑗 and daily returns on S&P500 index.  
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Proposition 4. Order-to-trade ratio for a 

given security increases with picking-off 

risk.  

 

Hypothesis 3a. Order to trade ratios are 

higher for stock-days with higher market 

volatility.  

 

Hypothesis 3b. Order to trade ratios are 

higher for stock-days with higher stock 

volatility. 

 

Hypothesis 3c. Order to trade ratios are 

higher for stock-days with higher tick-to-

price ratios. 

𝑆𝑡𝑜𝑐𝑘𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖𝑡 =
2(𝐻𝑖𝑔ℎ𝑖𝑡−𝐿𝑜𝑤𝑖𝑡)

𝐻𝑖𝑔ℎ𝑖𝑡+𝐿𝑜𝑤𝑖𝑡
- - measure of stock 𝑖’s 

volatility on day 𝑡 is based on daily high and low prices of the 

respective stock. 

𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑡  – measure of market volatility on day 𝑡 is 

proxied by the following measures: 

𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦1𝑡 =
2(𝐻𝑖𝑔ℎ𝑆&𝑃𝑡−𝐿𝑜𝑤𝑆&𝑃𝑡)

𝐻𝑖𝑔ℎ𝑆&𝑃𝑡+𝐿𝑜𝑤𝑆&𝑃𝑡
- measure of 

S&P500 index volatility on day 𝑡 based on the daily high and 

low prices of the S&P500 index ETF. 

𝑀𝑎𝑟𝑘𝑒𝑡𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦2𝑡 = log (𝑉𝐼𝑋)- natural logarithm of the 

VIX index level. 

𝑇𝑖𝑐𝑘𝑇𝑜𝑃𝑟𝑖𝑐𝑒𝑖𝑡 =
𝑇𝑖𝑐𝑘𝑆𝑖𝑧𝑒𝑖𝑡

𝑃𝑟𝑖𝑐𝑒𝑖𝑡
 – tick to price ratio of stock 𝑖 on day 

𝑡 (dollar tick size divided by dollar closing price). 

𝑇𝑖𝑐𝑘𝑇𝑜𝑃𝑟𝑖𝑐𝑒𝑗𝑡 – dollar volume weighted average tick to price 

ratio for market 𝑗 on day 𝑡. 

  

Proposition 5. Order-to-trade ratio for a 

given security decreases with monitoring 

cost.  

Hypothesis 4a. Order to trade ratios are 

higher for stocks with higher market 

capitalization. 

Hypothesis 4b. Order to trade ratios are 

lower on markets with taker-maker fee 

structures. 

log(𝑀𝑎𝑟𝑘𝑒𝑡𝐶𝑎𝑝𝑖𝑡) – log of market capitalization for stock 𝑖 on 

day 𝑡. 

𝐷𝑗𝑡
𝑡𝑎𝑘𝑒𝑟  – dummy variable that takes the value of 1 if market 𝑗 is 

a taker-maker market and 0 otherwise.  

 

  

Proposition 6. Order-to-trade ratio for a 

given security decreases with the trading 

frequency, holding the monitoring intensity 

constant.  

Hypothesis 5. Order-to-trade ratios are 

inversely related to the trading volumes.  

log(𝑉𝑜𝑙𝑢𝑚𝑒𝑖𝑡) – natural logarithm of trading volume (in 

number of shares) for stock 𝑖 on day 𝑡. 

log(𝑉𝑜𝑙𝑢𝑚𝑒𝑗𝑡) – natural logarithm of trading volume (in 

number of shares) for market 𝑗 on day 𝑡. 
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Table 2 

Descriptive statistics for stock-date panel 

 

This table provides descriptive statistics for the stock-date panel used in regression analysis. The sample 

period is January 1, 2012 – December 31, 2016. The data is at daily frequency. Variable definitions are 

provided in Table 1.  

 
 OTTR_log Frag1 Frag2 Frag3 

N 5922424 5922424 5922424 5922424 

Mean 4.7620 7.0520 0.6364 0.6685 

StDev 2.1092 2.6629 0.2156 0.2008 

Skewness 1.5459 -0.9053 -1.7378 -2.0589 

Kurtosis 1.9782 -0.3237 2.2817 3.9745 

 

 LogVolume LogMarketCap StockVolatility CorrelationS&P TickToPrice 

N 5922424 5899597 5922424 5920996 5922424 

Mean 3.8328 13.0263 0.0310 0.4055 0.0010 

StDev 2.6460 2.1820 0.0344 0.3583 0.0016 

Skewness -0.4097 0.0706 5.4994 -0.8629 4.2484 

Kurtosis -0.1462 -0.2021 80.1652 1.0098 65.0061 

 

N obs stocks 4467256 75% 

N obs ETFs 1455168 25% 
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Table 3 

Descriptive statistics for exchange-date panel 

 

This table provides descriptive statistics for the exchange-date panel used in regression analysis. The 

sample period is January 1, 2012 – December 31, 2016. The data is at daily frequency. Variable 

definitions are provided in Table 1.  

 

  
Stocks at exchange-date level 

ETFs at exchange-date 

level 

  OTTR_log Frag1 Frag2 Frag3 OTTR_log Frag1 

N 14638 14638 14638 14638 12816 12816 

Mean 2.1330 9.5457 0.7859 0.7981 4.6623 9.2069 

StDev 1.0948 0.5379 0.0150 0.0163 1.2661 0.5119 

Skewness 1.8164 0.1409 -1.5814 -0.3875 0.2495 -0.1493 

Kurtosis 3.9781 1.0505 27.4876 0.7401 1.9738 -0.2986 

 

       

  
Stocks at exchange-date level ETFs at exchange-date level 

  

Log 

Volume 

Corr  

S&P 

Tick To 

Price 

Mkt 

Share 

Log 

Volume 

Corr 

S&P 

Tick To 

Price 

Mkt 

Share 

N 14638 14638 14638 14638 12816 12816 12816 12816 

Mean 10.94123 0.51649 0.00034 0.08587 9.8497 0.6969 0.0002 0.0980 

StDev 2.24970 0.11467 0.00020 0.08898 2.2037 0.2034 0.0001 0.0985 

Skewness -1.45989 -0.22743 7.08678 1.03274 -1.9149 -3.5200 11.1384 0.9723 

Kurtosis 1.56480 0.41792 91.28564 0.20660 4.0875 14.7798 332.4552 -0.3569 

 

  Stocks ETFs 

N obs maker-taker  12128 83% 10306 80% 

N obs  

taker-maker 
2510 17% 2510 20% 
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Table 4 

Descriptive statistics for market volatility measures 

 

This table provides descriptive statistics for the time series of market volatility used in regression 

analysis. The sample period is January 1, 2012 – December 31, 2016. The data is at daily frequency. 

Variable definitions are provided in Table 1.  

 

 
 MarketVolatility LogVIX 

N 1257 1257 

Mean 0.0094 2.7350 

StDev 0.0055 0.2001 

Skewness 3.1699 0.9007 

Kurtosis 25.2791 0.7458 
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Table 5 

Regression results for stock-date panel 

 

This table reports regression results for six different models, where OTTR is the dependent variable. For 

definitions of independent variables (column 1), see Table 1. Coefficient estimates are from OLS 

regressions with double-clustered standard errors. T-statistics are reported in parentheses. Coefficients 

significant at 1% level are reported with ***, at 5% level – with **, and at 10% level – with *.  

 

 

 

 

 

 

 

 

 OTTR (1) OTTR (2) OTTR (3) OTTR (4) OTTR (5) OTTR (6) 

        

Frag1 0.0964***      

  (17.81)      

        

Frag2  0.6073***  0.5991*** 0.5866*** 0.6051*** 

   (15.5564)  (15.5989) (14.9934) (15.5160) 

        

Frag3   0.4898***    

    (11.2794)    

        

LogVolume -0.4894*** -0.4512*** -0.4453*** -0.4615*** -0.4598*** -0.4531*** 

  (-75.7877) (-80.7781) (-76.4078) (-76.3907) (-74.9163) (-81.2612) 

        

LogMarketCap 0.1798*** 0.1879*** 0.1922*** 0.2036*** 0.2023*** 0.1919*** 

  (23.5104) (24.7659) (25.3483) (24.3647) (24.0917) (25.1527) 

        

MarketVolatility 18.2883*** 17.7522*** 17.7424*** 16.7594***   

  (9.0046) (8.7907) (8.7566) (55.5077)   

        

LogVix      0.6237*** 

       (28.6612) 

        

StockVolatility    1.5119*** 1.9385***  

     (10.3987) (12.5767)  

        

CorrelationS&P 0.6653*** 0.6886*** 0.6916*** 0.6923*** 0.7160*** 0.6728*** 

  (14.6215) (15.2296) (15.1979) (15.2517) (15.7299) (14.8598) 

        

TickToPrice -54.9522*** -61.2770*** -63.7547*** -63.7769*** -65.2938*** -61.4609*** 

  (-12.9599) (-14.2885) (-14.8188) (-15.3563) (-15.3307) (-14.2947) 

        

ETF dummy 3.1145*** 3.0441*** 3.0318*** 3.0787*** 3.0863*** 3.0485*** 

  (71.5076) (72.0443) (71.5893) (74.3589) (72.9716) (72.0122) 
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Table 6 

Regression results for exchange-date panel 

 

This table reports regression results for five different models, where OTTR is the dependent variable. 

For definitions of independent variables (column 1), see Table 1. Coefficient estimates are from OLS 

regressions with double-clustered standard errors. T-statistics are reported in parentheses. Coefficients 

significant at 1% level are reported with ***, at 5% level – with **, and at 10% level – with *.  

  OTTR (1) OTTR (2) OTTR (3) OTTR (4) OTTR (5) 

       

Frag1 0.0884     

  (0.6354)     

       

Frag2  8.8817  8.5843 9.3489 

   (1.0883)  (1.3939) (1.5130) 

       

Frag3   7.9219   

    (1.0883)   

       

LogVolume -0.3184*** -0.3452*** -0.3424*** -0.3464*** -0.3483*** 

  (-4.8073) (-4.9011) (-4.9011) (-9.7225) (-9.4303) 

       

MarketVolatility 12.7512*** 14.7730*** 15.7476***   

  (-5.4183) (5.0504) (5.0504)   

       

LogVix     0.7076*** 

      (4.8443) 

       

CorrelationS&P 0.6529*** 0.5489*** 0.5470*** 0.8318***  

  (2.1689) (2.0467) (2.0467) (-2.6578)  

       

TickToPrice -886.1485*** -909.31345*** -968.9094*** -869.4143*** -1007.3673*** 

  (-4.1313) (-4.4203) (-4.4203) (-5.6321) (-6.3549) 

       

Taker-maker 

dummy 
-0.7459*** -0.7464*** -0.7477*** -0.7410*** -0.7389*** 

  (-2.3532) (-2.3399) (-2.3399) (-3.6559) (-3.6362) 

       

MktShare -0.8495 -0.0825 0.1113   

  (-0.3593) (-0.0424) (-0.0424)   
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Figure 1 

Regression coefficients on fragmentation dummies 

 

This figure plots regression coefficients on fragmentation dummies from the following regression:  

log(1 + 𝑂𝑇𝑇𝑅𝑖𝑡) = 𝛼 + ∑ 𝛽1𝑘𝐷𝑖𝑡𝑘
𝑓𝑟𝑎𝑔1

𝐾

𝑘=1

+ ∑ 𝛽2𝑛 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖𝑡𝑛

𝑁

𝑛=1

+ 𝜀𝑖𝑡    

Frag1 is the measure of fragmentation that counts the number of markets for a given stock on a given 

day. Frag2 is HHI index fragmentation measure based on the share volume. We use 11 dummies for 

frag1 measure (as there are 12 markets overall), and 9 dummies for frag2 measure (as there are 10 deciles 

overall). The omitted dummy corresponds to the lowest degree of fragmentation. 
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Figure 2 

Market shares across different degrees of fragmentation 

 

The figure reports market shares of 12 US trading venues across 20 “buckets” of stocks sorted by frag2 

measure (share volume-based HHI fragmentation index), where 0 corresponds to the “bucket” with the 

lowest fragmentation, and 19 – to the bucket with the highest fragmentation. 
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