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1. Introduction 

Numerous studies have established that the prices of financial markets display 

discontinuous sample paths or jumps; see, for example, Andersen et al. (2007), Jiang et al. (2011) 

and Lee (2012). These studies typically consider a special class of jump-diffusion models – the 

Poisson model – which does not distinguish between jumps with different amplitudes. Recent 

advances in the financial econometrics literature (for example, Aït-Sahalia, 2004; Rachev et al., 

2011), however, have documented two different types of jumps in financial asset prices. The first 

are small jumps, which are many infinite and rare asset price movements with non-trivial jump 

magnitude that cannot be captured by the continuous diffusive process. The second are 

infrequent and severe perturbations to asset prices or large jumps. Collectively, small and large 

jumps form the Lévy class of jumps and they are different from the Poisson jumps. We review 

the existing literature that distinguishes both classes of jumps shortly.  

The present study analyzes high-frequency Lévy jumps and cojumps (i.e., concomitant 

jumps) across international equity indices in the U.S. (S&P 500 index or SPX), Canada (TSX) 

and Mexico (MXX). These markets share common trading hours and this element is crucial in 

our cojump analyses. We find that the prices of the equity markets display many large and small 

(yet non-trivial) intraday Lévy jumps. By contrast, the Poisson-like jump test misses particularly 

many of the small infinite activity jumps. We also show that the high-frequency trading strategy 

that uses large negative jump as a signal dominates other strategies. We then explore whether 

scheduled Federal Open Market Committee (FOMC) monetary policy announcements are a 

driving force behind these uniquely behaved jumps. We demonstrate that they are, but that 

FOMC announcements trigger mostly large jumps and cojumps in near proximity of the news 

announcements. International portfolio managers interested in hedging global cojump risk 

should take note because the finding of this study suggests there little room for them to avoid the 
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FOMC announcement risk; instead, it systematically affects individual and concurrent price 

jumps, especially those with large amplitude, in international equity markets. 

In order to analyze the Lévy jump–news announcement relationship, it is paramount to 

methodologically detect and isolate small jumps from large jumps, and to also separate both 

types of jumps from the continuous diffusive process. The Lévy jump test of Lee and Hannig 

(2010) is ideally suited for this purpose. The non-parametric (i.e., model-free) nature of the Lee-

Hannig test ensures that its implementation is relatively straightforward and not as 

computationally over-intensive as in other methods commonly used to estimate Lévy jumps.1 

The Lee-Hannig test also allows us to pin down precisely when Lévy jumps occur at high 

frequency. These attributes are crucial because the multi-market data set that we consider is 

sampled at high frequency over an extended 20-year sample period. 

Our study complements and significantly extends the literature in two major respects along 

important dimensions. First, existing empirical studies have almost exclusively focused on 

linking macroeconomic announcements to jumps and cojumps without considering whether the 

announcements play different roles in triggering (co)jumps with different amplitudes. For 

example, Dungey et al. (2009) and Lahaye et al. (2011) scrutinize the impact of macroeconomic 

announcements on jumps and cojumps across different asset classes. Other relevant studies 

include Evans (2011), Jiang et al. (2011), Dungey and Hvozdyk (2012), Lee (2012), Boudt and 

Petitjean (2014), Dewachter et al. (2014) and Novotný et al. (2015). The jumps and cojumps 

assumed in these studies are invariably Poisson in nature, and Poisson jumps do not distinguish 

between small infinite activity jumps and rare jumps with substantially larger amplitudes.2  

                                                 
1 The Bayesian Markov Chain Monte-Carlo method employed by Li et al. (2008), Yu et al. (2011), and Yang and 

Kanniainen (2017) is a prime example. 

 
2 We refer interested readers to Tankov and Cont (2003) and Rachev et al. (2011) for technical details on the 

differences between Poisson and Lévy jumps. 
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Nonetheless, the large versus small (co)jump distinction is crucial for various reasons. In 

particular, Aït-Sahalia and Jacod (2012) argue that small infinite activity jumps are idiosyncratic 

because they tend to reflect stock-specific information, such as earnings announcements. On the 

other hand, market-wide news, such as macroeconomic announcements, is a catalyst for stock 

price movements with a significantly large magnitude. Li et al. (2008) show that Lévy jump 

models are essential and more powerful than the affine-jump (Poisson-like) diffusion models of 

Duffie et al. (2000) in modelling equity index returns. Lee and Hannig (2010) argue that 

distinguishing jumps with different amplitudes and analyzing their separate and systematic 

patterns are vital for investors with different risk aversions for diversification and risk 

management purposes. In line with Lee and Hannig (2010), Ornthanalai (2014) finds that rare 

jumps with considerably large magnitude are important in modelling derivatives and designing 

optimal portfolio allocation. Yet, investors should not overlook small jumps; else, they could 

significantly understate the jump risk in the economy. When taken together, the insights from 

these studies underscore the importance of classifying jumps and cojumps into large and small a 

priori to linking them to macroeconomic news and investment (particularly high-frequency 

trading strategies), and the present study makes the first concerted effort to empirically address 

this issue.  

Second, studies that have examined Lévy jumps have focused mainly on the equity market 

at the national (i.e., non-cross-border) level. For example, Li et al. (2008) and Lee and Hannig 

(2010) analyze Lévy jumps using U.S. equity market indices. We extend the literature by 

considering international equity market indices of SPX, TSX and MXX, and we also scrutinize 

Lévy cojumps, an important aspect that the aforementioned studies have overlooked. 

We summarize our novel findings as follows. First, we use the Lee-Hannig test and identify 

many large and infinitely small (but non-trivial) Lévy jumps in the equity market indices. By 

contrast, the Poisson-like jump test of Lee and Mykland (2008), which many regard as the 

“golden non-parametric test” commonly used to estimate intraday jumps, misses many of the 
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pronounced jumps, especially small infinite activity jumps.3 For example, it categorizes only 

one-fifth of the small Lévy jumps detected in the SPX as “jumps”.  

We also find that Lévy jumps occur more frequently in the MXX emerging market than in 

the SPX and TSX developed markets, a finding that is in line with prior studies that examine 

Poisson-like jumps in international equity markets (see, for example, Pukthuanthong and Roll 

(2015)). Interestingly, large cross-border cojumps occur more frequently than small cross-border 

cojumps, even though, individually, small jumps occur nearly two to three times more frequently 

than large jumps. Furthermore, we do not find significant evidence of discernible asymmetry in 

positive and negative Lévy jump frequency in the markets considered, and this finding holds for 

both large and small jumps. In sharp contrast, the Lee-Mykland jump test shows significantly 

more Poisson-type negative jumps than positive jumps (Lahaye et al., 2011).  

To put the economic benefits of separating jumps into large and small in perspective, we 

compare various high-frequency trading strategies. On average, we find that the high-frequency 

trading strategy that utilizes large negative Lévy jump as a signal dominates other strategies, 

including the one that relies on the signal provided by the Poisson-like jump. 

What drives Lévy jumps and cojumps? Our empirical result points primarily to FOMC 

announcements; they influence predominantly (co)jumps with large amplitudes. For example, 

we find that nearly one-tenth of the FOMC announcements trigger large cojumps across the 

trivariate markets in near proximity to the news releases, but none of them generates small 

cojumps. We also find that unexpected FOMC news exerts a statistically significant influence 

particularly on large Lévy (co)jumps. Finally, we relate large price jumps identified in the SPX 

market to uncertainty associated with monetary policy. Consistent with our hypothesis, we show 

that a heightening in monetary policy uncertainty is related to large price declines, whereas the 

                                                 
3 Recent studies that have employed the Lee-Mykland test to estimate intraday jumps and cojumps include Lahaye 

et al. (2011), Boudt and Petitjean (2014), Bradley et al. (2014) and Gilder et al. (2014). 
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resolution of uncertainty is related to large positive price jumps. Overall, our findings support 

Aït-Sahalia and Jacod’s (2012) contention that key macroeconomic news in the form of FOMC 

announcements primarily drives extreme stock price movements with large magnitudes (i.e., 

large jumps and cojumps).  

We organize the remainder of the paper as follows. Section 2 details the Lee-Hannig’s 

jump test. Section 3 describes the high-frequency stock index data. Section 4 presents the 

empirical results and Section 5 concludes. 

2. Lee-Hannig Test for Lévy Jumps 

This section describes the non-parametric Lévy jump test of Lee and Hannig (2010). 

Erdemlioglu et al. (2013) show that ignoring intraday volatility periodicity leads to spurious 

jump identification in the Lee-Hannig test.4 To correct for this bias, we follow Lahaye et al. 

(2011), Erdemlioglu et al. (2013) and Gilder et al. (2014) and adopt the weighted standard 

deviation (WSD) estimator of Boudt et al. (2011) to de-periodize the equity returns prior to 

implementing the Lee-Hannig jump test. Appendix A discusses this de-periodicity adjustment 

procedure in detail. 

2.1. General framework 

Let [0, T] be the fixed time interval with T representing maturity. Assume that the stock 

price at time t, St, occurs at discrete times 0 = t0 < t1 < … < tn = T over the time interval [0, T] 

and the time increment Δt =  ti – ti–1 is equally spaced.  

In the absence of jumps, the log of the stock price follows a Brownian process: 

,dWdtlogd ttttS   (1) 

where µt is the drift term and Wt denotes the standard Brownian motion with σt spot volatility. 

In the presence of Lévy jumps, however, the log of the stock price is characterized as 

                                                 
4 Boudt and Petitjean (2014) argue that ignoring periodicity could result in an over-detection (under-detection) of 

intraday jumps in times when volatility is periodically high (low). 
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,dLdWdtlogd tttttS   (2) 

where Lt is an adapted Lévy jump process with the Lévy jump measure υ independent of Wt and 

all other variables are defined above. 

2.2. Detecting large jumps 

The intuition of the large jump test is straightforward: after controlling for local volatility, 

the log stock price return should be greater (in magnitude) than those drawn from a diffusion 

process when a jump occurs. The test statistic τ(ti) to determine whether a large Lévy jump occurs 

at time ti is given by 
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Eq. (5) suggests that the identification of a large jump at time ti if   where ~q  is 

the ~  quantile of the limiting distribution of maximum ξ. 

2.3. Detecting small jumps 

Lee and Hannig (2010) show that in the absence of Lévy jumps,  

)1,0(N D

t ,                        (6) 

where N(0, 1) denotes the standard normal distribution. Therefore, as Δt → 0, 

         )1,0(U)(  D

t ,             (7)                      

where Φ(.) is the cumulative distribution function of the standard normal distribution and U(0, 

1) denotes the uniform distribution.  

Eq. (7) implies that in the absence of jumps, the distribution of statistic τt converges to a 

standard normal distribution. In this case, the QQ-plot graph for τt is a straight line with a 45o 

gradient.5 However, if the QQ-test rejects the null hypothesis of no Lévy jumps, we then 

calculate the following test statistic: 

 ))(5.0())(5.0()1(1)(
~

11 rrrr TTTTKnrl    ,         (8)  

where r = 1, …, n – K and Tr  are the order statistics of τt.  

         The first item, 1, denotes the number of test statistics within the interval

 2/)(,2/)( 11 rrrr TTTT  
, and the second term,  ))(5.0())(5.0()1( 11 rrrr TTTTKn  

, 

approximates the expected number of test statistics observed in the same interval under the no-

jump model, which is closer to 1.6 As a result, if the smoothed value of )(
~

rl ,7 denoted as )(rl , is 

                                                 
5 One can use the method of Hernandez-Campos et al. (2004) to examine the significance of the QQ-test. 

 
6 Lee and Hannig (2010) show that the expected number of the test statistics within the interval in the null of no 

jumps is equal to 1/(1+n). 

 
7 We smooth )(

~
rl  so that the variance of )(

~
rl  remains bounded away from zero. Following Lee and Hannig (2010), 

we locally average the )(
~

rl  with the Nadaraya-Watson estimator and select the bandwidth based on the “direct plug 

in” method of Ruppert et al. (1995). 
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further away from unity, then this particular test statistic is more likely due to a jump. As a result, 

we can define the belief measure for a return at time t to identify the exact locations of Lévy 

jumps: 

)))((,0max()( irltb i  ,              (9) 

where b(ti) is a measure of the belief that a particular return is a jump event. When )1()( 


itb  

for a given significance level 


, we determine a jump at time ti. Finally, we define small jumps 

as those that are not detected by the large-jump rule but are identified by the belief measure. 

Following Lee and Hannig (2010), we set the significance levels (~ ) for both the large-jump test 

and the small-jump test at 5%. 

3. Data 

Our empirical analyses feature the SPX, TSX and MXX stock market indices. We focus 

on these markets because they share common trading hours between 9:30 Eastern Standard Time 

(EST) and 16:00 EST. This element is crucial to our subsequent cojump analysis. The sample 

period covers an extended 20-year sample period from January 2, 1996 to December 30, 2015.  

We source the high frequency tick data from the Thomson Reuters Tick History database. 

Following Bollerslev et al. (2009), we first convert the tick data into five-minute prices using the 

nearest tick, and then use them to obtain the five-minute continuously compounded log returns. 

The five-minute interval sampling is a popular choice in most prior related literature. It also 

strikes a satisfactory balance between the desire to obtain as finely sampled observations as 

possible (as required by the asymptotic theory underlying the Lee-Hannig test), on the one hand, 

and the confounding effects of microstructure frictions typically found in ultra-high frequency 

data (Hansen and Lund, 2006), on the other.  

We adopt the data-cleaning procedure of Andersen et al. (2010) and pre-filter the data prior 

to computing the five-minute returns; this includes removing extreme outliers and mis-recorded 

price observations. We also remove zero five-minute returns (which account for approximately 
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0.6% of the total SPX observations), days associated with public holidays in the respective 

countries and trading days which have stale prices for at least two consecutive hours.8 In total, 

we have 4,911 trading days for SPX, 4,930 for TSX and 4,880 for MXX, and each trading day 

has 78 five-minute return observations.  

4. Empirical Results 

4.1. Lévy jumps and cojumps 

We begin by assessing the adequacy of the Lee-Hannig test in detecting Lévy jumps in the 

multi-markets. Figure 1 visualizes the finding by plotting the large jumps (marked in blue) and 

small jumps (marked in green) identified by the Lee-Hannig test, along with the five-minute SPX 

intraday log returns series, which are expressed in percentages. To ease readability, Figure 1 

focuses on the first four years of the full sample (1996–1999). The figure provides strong 

evidence of Lévy jumps, with the Lee-Hannig test identifying many of the severe log SPX price 

movements as large jumps and abrupt log SPX price movements with moderate (but non-trivial) 

changes as small jumps. 

< Insert Figure 1 here >  

< Insert Table 1 here >  

Table 1 underscores the evidence of Lévy jumps in the equity indices by reporting some 

summary statistics along with some novel findings. The SPX, for example, has large and small 

jumps for 0.15% and 0.38% of the time, respectively,9 and small jumps contribute over two-

thirds 










%3.71

1426574

1426  of all the estimated Lévy jumps.  

                                                 
8 The findings of our final analysis are insensitive to the removal of zero return observations, but the inclusion of 

zero returns could result in spurious detection of small jumps. The result of this sensitivity check is available upon 

request. We have greatly benefited from personal discussion with Professor Hannig on the issue concerning zero 

returns. 

 
9 Our estimates are marginally lower than those estimated by Lee and Hannig (2010); they identify 0.32% (0.49%) 

of the SPX return observations as large (small) jumps. A possible explanation is that unlike Lee and Hannig (2010), 

we de-periodize the data prior to estimating the Lévy jumps and this thus alleviates the Type I error in detecting 

spurious jumps. Unreported analysis (which is available upon request) provides support for this contention. 
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By contrast, Panel D of Table 1 shows that the Lee-Mykland test misses many of the 

pronounced jumps.10 Using the SPX market for discussion, the Lee-Mykland test identifies only 

740 of all the return observations as jumps. This estimate is several times lower than the total 

number of large and small Lévy jumps (574+1426) estimated under the Lee-Hannig test. Not 

surprisingly, the Lee-Mykland test misses many of the small (but non-trivial) infinite activity 

jumps, with the probability of Lee-Mykland jumps coinciding with small Lévy jumps and 

divided by the number of small Lévy jumps being 19% (see Panel E). In other words, the Lee-

Mykland test only categorizes one-fifth of the small Lévy jumps as “jumps”. Intuitively, the Lee-

Mykland test assumes a Poisson counting process governing the jump dynamics; hence, it is 

unable to identify particularly many of the moderately large price movements (i.e., infinite small 

jumps). 11  

Pukthuanthong and Roll (2015) and others find that jump occurrences are considerably 

more pronounced in emerging markets than in developed markets,12 as one would reasonably 

expect, since emerging stock market returns are more leptokurtic than developed stock market 

returns (Bekaert et al., 1998). We reach a similar finding using the Lee-Hannig jump test: large 

MXX jumps make up %56
574740

740



 of the total number of large jumps detected in both SPX 

and MXX and this proportion is statistically different from 50% (t-statistic=4.6).13 Likewise, 

                                                 
10 We use the similar criteria that we employed in the Lee-Hannig test to estimate the Lee-Mykland model. These 

include purging the intraday period pattern of volatility using the de-periodicity procedure of Boudt et al. (2011) 

and setting the jump test significance level at 5%. 

 
11 A figure (which we omit to save space) analogous to Figure 1 which superimposes the identified Lee-Mykland 

jumps on the large and small Lévy jumps provides further supporting graphical evidence that the Lee-Mykland test 

misses many of the moderately large log price movements in SPX. 

 
12 These earlier studies employ coarser (i.e., daily) data frequency to detect jumps. 

 
13 The corresponding standard error to compute the statistical significant test is defined as 

2

2

1

2

11 N
N

N

N

N










where N1 

= number of large jumps in MXX and N2 = total number of large jumps in both SPX and TSX. 
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%52
1426155

1555



 of the total number of SPX and MXX small jumps belong to the MXX market 

and this ratio is also significantly different from 50% (t-statistic=2.4).  

The Lévy jump amplitudes are economically meaningful. To see this, Table 1 reports the 

sample mean and standard deviation of the jump size as measured using the absolute five-minute 

returns |ri,t| and expressed in basis points (bps). Consider the SPX market: the large-jump-size 

distribution has a mean of 64.9 bps versus 7.0 bps for periods with no jumps. These estimates 

translate to a large mean difference of 67.9 bps between large-jump and no-jump periods, and 

the two-sample unequal variance t-test for the difference in means yields a significant t-statistic 

=30. The absolute return mean difference between small-jump and no-jump periods is 4.7–7.0 

=34.7 bps with t-statistic =45. The large (small) jump size variation is 46.2 bps (29.0) versus 8.9 

bps for no-jump periods. When taken together, the estimates imply that the five-minute pseudo-

Sharpe ratios (calculated as E(|ri,t|)/stdev(|ri,t|)) on large- and small-jump periods are nearly two 

times higher than on no-jump periods. Similarly, the pseudo-Sharpe ratio for investing in the 

MXX on large-jump (small-jump) periods is 1.3 (1.7) times higher than on no-jump periods. 

Another noteworthy aspect of Table 1 concerns the asymmetry in Lévy jumps. Panel D 

shows that there are significantly more negative Poisson-type jumps than positive jumps (for 

example, 57.3% of the SPX jumps identified by the Lee-Mykland test are negative), a finding 

that is also echoed by Lahaye et al. (2011). The Lee-Hannig jump test, however, paints a slightly 

different story. For example, negative large jumps identified in SPX only marginally outnumber 

positive large jumps (50.9% of the large jumps are negative), but there are significantly more 

small negative jumps than small positive jumps (53.2% versus 46.8%). We also reach a similar 

conclusion for the TSX and MXX markets. As such, the evidence of asymmetry in Lévy jumps 

in the markets is less clear-cut.14  

                                                 
14 Kou et al. (2016) use an affine-diffusion model to show that negative jump sizes have become larger in the period 

following the 2007–2009 financial crisis relative to the pre-crisis period. Our Lévy jump results, however, are 

different: the jump amplitudes of negative small Lévy jumps have become less negative in the post-crisis period 
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A useful metric to gauge the economic benefits of separating jumps into large and small 

takes the perspective of a high-frequency trader who strategically times her investment in the 

equity markets under different strategies. In particular, we first assume the high-frequency trader 

to invest in the equity market between ti+1 and ti+36 (which represents a short three-hour 

investment window) as soon as she had identified a large Lévy jump at ti.
15 We label this as the 

“large Lévy jump signalling strategy”. We compare this strategy to three other strategies: the 

“small Lévy jump signalling strategy” which relies on small Lévy jumps detected at ti, the “LM 

jump signalling strategy” which utilizes Poisson jump signals detected at ti using the Lee-

Mykland test and the “naive strategy” in which we assume the non-savvy investor to put her 

money into the equity market even though there were no jumps detected at  ti.
16 

< Insert Figure 2 here > 

The solid lines in Figure 2 graph the mean pointwise cumulative intraday percentage 

returns of the aforementioned strategies in SPX, TSX and MXX over the three-hour window.17 

The result is striking. Using Panel C for discussion, the MXX displays a strong upward drift 

within an hour after being triggered by large Lévy jump signals. Put it differently, ignoring 

transaction cost, the high-frequency trader who uses the “large Lévy jump signalling strategy” 

would have realized a sizable 0.45% returns within an hour (see the blue line in Figure 2). This 

estimate is threefold to fourfold more than what she would have earned under the “small Lévy 

jump signalling strategy” (pink line) and the “LM jump signalling strategy” (green line). The 

                                                 
compared with the pre-crisis period, whereas negative large jump size in the post-crisis period reverts to that 

observed in the pre-crisis period. To save space, we report these findings in the online appendices.  

 
15 For simplicity, we assume the high-frequency trader identifies jumps between 9:30 EST (when the market opens) 

and 13:00 EST. This allows her to unwind her position prior to the market closing at 16:00 EST. To ensure that our 

trading strategies are robust to jumps commonly detected in the first half an hour following the market opening, we 

rerun the trading strategies assuming the trader to begin identifying jumps post 10:00 EST. The qualitative findings 

of this robustness test are similar to those reported here and hence are not reported to save space.  

 
16 We construct the “naive strategy” by bootstrapping (with sampling replacement) 10,000 indexes of ti that do not 

contain Lévy jumps. 

 
17 In practice, one would have to invest in the futures markets.  
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cumulative returns for the “naïve strategy”, as depicted by the dotted black line, are essentially 

zero.  

< Insert Figure 3 here > 

Figure 3 is similar to Figure 2 except that we condition the trading strategies on the jump 

signs, with the right (left) column of Figure 3 plotting the cumulative returns of the respective 

strategies as soon as they have been triggered by positive (negative) jump signals detected at ti. 

The figure shows that the cumulative returns earned post large negative Lévy jump signal 

considerably outweigh those earned post large positive Lévy jump signal (for example, the SPX 

cumulative returns earned within the three-hour window following large negative Lévy jump 

signals is 0.6% versus an inconsequential 0.2% cumulative returns for the large positive Lévy 

jump signalling strategy). Nonetheless, the signed “small Lévy jump” and “LM jump” signalling 

strategies yield no discernible difference in the realized cumulative returns. Overall, the superior 

performance of the large negative Lévy jump signalling strategy suggests investors to have 

overreacted to pronounced market-wide bad news.18  

< Insert Table 2 here > 

We then extend the above univariate jump findings to cojumps, with results reported in 

Table 2. In a spirit similar to Lahaye et al. (2011), we define large cojumps (small cojumps) as 

significant large jumps (small jumps) that occur concomitantly in the markets. We also report 

the findings pertaining to large-small cojumps, that is, a combination of large and small jumps 

that occur concurrently in the markets. As expected, bivariate cojumps occur more frequently 

                                                 
18 Our results that negative jumps lead to positive short-run returns is in contrast to the recent study of Jiang and 

Zhu (2017) who document that investors underreact to information shocks (using jumps as a proxy) at the firm level. 

However, there are three distinctions between our study and theirs. First, we apply the Lee and Hannig jump testing 

method whereas Jiang and Zhu (2017) use the Jiang and Oomen (2008) method. Second, we focus on the high-

frequency trading returns whereas Jiang and Zhu’s (2017) trading strategy focuses on coarser (i.e., daily and 

monthly) frequencies. Third, we use the market-level jumps whereas they focus on firm-level jumps. It is probable 

that investors have underreacted to firm-level news and overreacted to market-level news. As evidence, Peng and 

Xiong (2006) surmise that investors tend to process more market-wide information than firm-specific information 

because of their limited attention and cognitive resources. 
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across the developed markets of SPX and TSX than between the developed and emerging 

markets. This finding continues to hold for all types of cojumps (i.e., large, small and large-small 

cojumps). Interestingly, large cojumps occur more frequently than do small cojumps, even 

though Table 1 has shown that small individual jumps occur nearly two to three times more 

frequently than large individual jumps. The trivariate cojump analysis reported in Table 2 

underscores this finding: trivariate large cojumps occur 58 times versus 20 times for trivariate 

small cojumps.  

The two rightmost panels of Table 2 report the probability of cojumps in the respective 

markets, conditional on large/small jumps detected in one of the markets. Consider the trivariate 

analysis: P(trivariate coj | large SPX jumps) = 10.5%, implying that 10.5% of the large jumps 

detected in the SPX coincide with (i.e., “spillover to”) large jumps in both TSX and MXX. In 

contrast, P(trivariate coj | small SPX jumps) = 1.5%, suggesting that merely 1.5% of small jumps 

identified in the SPX coincide with small jumps detected in the other two markets.  

4.2. FOMC news announcements 

Section 1 of this study reviews the voluminous amount of recent literature that has 

documented the significant price jump–macroeconomic news announcement relationship, but 

these studies do not distinguish between jumps with different jump amplitudes. Aït-Sahalia and 

Jacod (2012) conjecture that most systematically large price movements are driven primarily by 

important macroeconomic news, whereas stock-specific news announcements result in 

idiosyncratic and small infinite activity jumps.  

We empirically examine the above hypothesis by investigating the extent to which 

macroeconomic news announcements influence Lévy jumps. To do so, we focus exclusively on 

scheduled FOMC announcements. Two considerations dictate our choice. First, the FOMC news 

report release time is unique – it is typically scheduled between 14:00 EST and 14:15 EST, 19 a 

                                                 
19 Instead of using the FOMC official (scheduled) release time, we rely on the actual FOMC announcement time-

stamps corresponding to when the news announcements become first available. We first extract the 1996–2011 
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period when there are rarely other key activities or scheduled news taking place. As such, it is 

highly unlikely that the significant Lévy jump–FOMC news relationship, if any, is confounded 

by other events. Second, the FOMC announcement is one of the most closely watched global 

announcements, since it serves as a critical indication of U.S. monetary policy and has serious 

implications for the global economy (Bernanke and Kuttner, 2005). 

< Insert Figure 4 here > 

We begin by revisiting the Lee-Hannig versus Lee-Mykland debate in detecting intraday 

jumps on FOMC news announcement days. To do so, Figure 4 plots the five-minute SPX price 

levels and log returns on August 8, 2006, when a scheduled FOMC news is time-stamped at 

14:14 EST. The figure shows that the SPX had risen modestly by nearly 30 bps immediately 

upon the FOMC news release, but it plunged sharply by 62 bps several minutes thereafter. The 

Lee-Mykland jump test, as expected, identifies both sizeable price movements as jumps, but it 

makes no distinction with respect to their jump amplitudes. As such, investors and asset 

managers alike risk assuming the SPX price index to revert to its level prior to the FOMC news 

announcement, when in reality it did not. In contrast, the Lee-Hannig test correctly identifies the 

first price movement as a “small jump” and the latter as a “large jump” with a higher magnitude.  

< Insert Figure 5 here >  

Figure 5 plots the number of significant Lévy jumps estimated on FOMC announcement 

days. We restrict the visual analysis to 30 minutes prior to and 60 minutes after the time-stamped 

news arrival. The evidence is striking: FOMC announcements trigger predominantly large jumps 

in all the equity markets, with the effect particularly pronounced in the five-minute interval 

                                                 
FOMC time-stamps from the study by Lucca and Moench (2015). We then splice these time-stamps with the 2012–

2013 time-stamps from Bernile et al. (2016), and finally with the 2014–2015 time-stamps obtained from Bloomberg 

and from the earliest Dow Jones newswires story mentioning the news. In total, we have 157 scheduled FOMC 

news announcements over the 1996–2015 sample period. We lose the FOMC news announcement on January 31, 

1996, because the Lee-Hannig jump test requires a “training” estimation period over the first two months of the full 

sample period. We also omit the FOMC news released on July 1, 1998, and August 21, 2001; the former was also 

identified by Lucca and Moench (2015) as having missing intraday data, whereas the latter was excluded due to the 

data filtering rule defined in Section 3. 
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containing the actual time-stamped announcement (i.e., at τ =0) and in the two ensuing five-

minute intervals (i.e., at τ ={1, 2}). For example, Panel A shows that within the first 10 minutes 

post an FOMC news release, large jumps make up %57
3546

46



 of the combined large and small 

Lévy jumps in the SPX market.20 

Another revelation from Figure 5 is the absence of significant Lévy jumps prior to an 

FOMC news release. In a related study, Bernile et al. (2016) provide evidence of informed 

trading activities during news embargoes prior to scheduled FOMC news announcements, a 

finding which the authors interpret as consistent with information leakage. Our finding extends 

Bernile et al.’s (2016) and suggests that informed trading that occurs ahead of FOMC scheduled 

news is not large enough to trigger extreme price movements (i.e., Lévy jumps). 

< Insert Table 3 here > 

Table 3 reports some descriptive statistics, including the number of “large events” and its 

proportion over the number of FOMC announcements P(J | N), and the analogous proportions 

for “small events” and “strictly small events”. An event is deemed as “large” (“small”) if there 

is a large jump (small jump) in one of the three five-minute intervals (i.e., τ ={0, 1, 2}), and it is 

categorized as “strictly small” if τ ={0, 1, 2} contains strictly small jumps. One can interpret the 

P(J | N) probability as the proportion of FOMC news that “generates” jumps.21 Table 3 shows 

that a quarter of the FOMC announcements trigger large jumps in the SPX within the first 10 

minutes of a news release, but only 13.4% of them generate strictly small jumps in the same 

                                                 
20 In the online appendices, we plot the jump amplitudes (calculated as the mean of absolute stock returns) of large 

and small jumps on FOMC announcement days. The plots show that the mean amplitude of large jumps at τ ={0, 1, 

2} are typically 1.5 to two times the mean amplitude of small jumps.  

 
21 Beber and Brandt (2010) note that the probability estimates reported in Table 4 of the present study do not indicate 

a formal causality between jumps and FOMC news. Rather, one can only argue that jumps are likely attributed to 

the FOMC news because they occur in close proximity to each other. 
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intervals. Similarly, nearly 23% of the FOMC news triggers large jumps in TSX within the τ 

={0, 1, 2} intervals but less than 8% of them result in strictly small jumps.22 

Having established that FOMC news announcements are associated particularly with large 

Lévy jumps, we now investigate whether the large SPX price jumps are related to monetary 

policy uncertainty attributed to the news announcements. Following prior studies such as Beber 

and Brandt (2009), we use the Chicago Board Options Exchange market volatility index (VIX) 

as a measure of monetary policy uncertainty. We hypothesize that an elevation of uncertainty in 

monetary policy is associated with “bad” news and this results in a substantial price drop in the 

equity market (i.e., increases in the VIX are associated with large negative price jumps). 

Nonetheless, a large price increase in the SPX would suggest that the news announcement 

resolves uncertainty among the market participants (i.e., decreases in the VIX are associated with 

large positive price jumps).  

< Insert Figure 6 here > 

Figure 6 plots the five-minute cumulative log changes in the VIX around the FOMC 

announcement. Consistent with the findings in Beber and Brandt (2009), Boguth et al. (2017) 

and Fernandez-Perez et al. (2017), the VIX decreases by 2% on days following FOMC news 

announcements. The figure also reveals a striking contrasting pattern for FOMC news days 

associated with large price jumps in the SPX of opposite signs.23 On the one hand, the VIX 

                                                 
22 We have conducted three robustness tests to corroborate our finding that FOMC news announcements 

predominantly trigger Lévy jumps. First, we experimented with several other key macroeconomics news released 

at 10:00 EST (which is within the active trading hours of the respective equity markets). The second and third tests 

are placebo tests where we target non-FOMC announcement days and (i) analyze significant Lévy jumps detected 

over the 14:10–14:25 EST intervals and (ii) randomly select (with replacement) 10,000 five-minute intervals. The 

findings, which we report in the online appendices to conserve space, show that the “events” in the respective 

robustness tests are inconsequential in triggering Lévy jumps.  

 
23 We obtain the signs of large SPX price jumps as follows: First, we use the Lee-Hannig test to detect large Lévy 

jumps on FOMC announcement days. Table 3 shows that there were 40 “large events”, that is, there were 40 FOMC 

news days when one of the three five-minute intervals in τ = {0, 1, 2} contains at least a large price jump in the SPX 

market. For each of these 40 news days, we aggregate the log SPX returns on intervals which are identified as 

containing large jumps. We use the sign of the aggregated log stock returns as a reference for positive or negative 

large price jumps. In total, there were 19 large positive jumps and 21 large negative jumps. 
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increases by nearly 1% over the first half hour post news release and such an increase in 

uncertainty is associated with a large price drop in the SPX. On the other hand, the VIX exhibits 

a pronounced 8% drop over the first two hours following the FOMC news release and this 

decrease in uncertainty relates to large positive SPX price jumps.  

< Insert Figure 7 here > 

Does FOMC news also trigger cojumps? Figure 7 illustrates our findings by visualizing 

large cojumps and non-large cojumps over the [–30, +60] minute intervals on FOMC 

announcement days. We define large cojumps as significant large jumps that occur concurrently 

in the markets considered and non-large cojumps when the intervals contain a combination of 

large and small or strictly small concurrent jumps. Figure 7 reveals that FOMC announcements 

generate mainly large cojumps, especially within the first five minutes post news release. For 

instance, both SPX and TSX have 22 large cojumps versus 11 non-large cojumps at τ = {0, 1}. 

For the trivariate analysis, there were 12 cases when the three markets concurrently exhibited 

large jumps at τ ={0, 1}, with nine of them coinciding instantaneously with the FOMC release 

at τ =0. In contrast, all the markets have merely four non-large cojumps at τ =0 and a cumulative 

of seven non-large cojumps at τ ={0, 1}.  

< Insert Table 4 here > 

Table 4 provides further supporting evidence by showing pronounced large cojumps, 

particularly in the bivariate case involving SPX and TSX. Of the 156 FOMC announcements 

that occur over the common sample between SPX and TSX, 15.4% generate large jumps in both 

markets at τ ={0, 1}, but none of the news triggers strictly small cojumps over the same interval. 

The trivariate panel shows that 7.5% of the FOMC news announcements coincide with large 

cojumps at τ ={0, 1}. but none of the news influences strictly small cojumps. 

 Our findings therefore suggest that the scheduled FOMC announcements trigger large 

cojumps across international markets. This confirms and extends the arguments of Bollerslev et 
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al. (2008) and Gilder et al. (2014) that scheduled macroeconomic announcements drive common 

jumps across the market portfolio's underlying components. 

4.3. FOMC news surprises 

This sub-section explores whether the Lévy cojumps that we have established earlier are 

related to the unexpected information content in the FOMC news.24 Following prior related 

studies, we define the FOMC news surprise component  u

ti  using the now standard 

decomposition algorithm of Kuttner (2001): 

 0

1,

0

, 


 tmtm

u

t ff
dD

D
i ,             (10) 

where 0

,tmf  is the Federal funds rate implied in the current month Federal funds futures contract, 

d refers to the day of the month of the current FOMC meeting, D is the number of days in the 

month and 
dD

D


 is a scaling factor to account for the timing of the FOMC announcement within 

a given month. We source the u

ti  surprise data from Kenneth Kuttner’s personal website 

(http://econ.williams.edu/people/knk1). Note that most of the non-zero u

ti  news surprises were 

observed prior to July 2008; after this period, the Federal funds rate has been constantly at 

approximately 15–25 bps and the FOMC did not report a point target until December 2015.  

We estimate the following ordered probit model: 

,ttt SY               (11) 

where Yt =2 if the markets have at least a large cojump over the τ ={0, 1} interval on scheduled 

FOMC announcement day t, 1 if the markets have at least a non-large cojump (and no large 

cojump) in the interval and 0 if the markets have no concurrent jumps estimated over the interval. 

Our cojump analysis focuses on the narrower τ ={0, 1} interval, since Figure 7 shows that most 

                                                 
24 We reach a similar finding for univariate Lévy jumps. For brevity purposes, we report the findings in the online 

appendices.  
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of the concurrent jumps tend to occur in the five-minute interval containing the FOMC news 

release and in the ensuing five-minute interval.  

Three remarks are in order before we present the empirical findings. First, the ordered 

probit model Eq. (11) is in a similar spirit to the probit model commonly adopted by prior studies 

on examining the relationship between intraday jump occurrences (as measured by dichotomous 

0/1 dummy variable) and macroeconomic news surprises; see, for example, Lahaye et al. (2011). 

The present study extends the literature by considering the trichotomy case of no jump, strictly 

small jump and large jump. Second, we standardize the u

ti  FOMC news surprise by its time-

series standard deviation to obtain the St independent variable; this facilitates the interpretation 

of the empirical analysis presented below. Third, consistent with Jiang et al. (2011) and Lahaye 

et al. (2011), we emphasize the importance of considering the magnitude (instead of the sign) of 

FOMC standardized news surprises in relation to Lévy jumps. This explains our modelling 

choice of | St | rather than St in Eq. (11). 

< Insert Table 5 here > 

Table 5 reports the findings. The trivariate panel shows that the estimated β coefficient is 

positive and statistically significant at 1%. This suggests that surprising FOMC standardized 

news significantly increases the probability of observing Lévy cojumps in all the markets. The 

“marginal effect” rows show that a unit increase in the absolute standardized FOMC news 

surprises increases the probability of observing concurrent large jumps in all the markets by 

almost 4.4%. This estimate is two times higher than the impact that the same unit increase in the 

news surprise has had in inducing non-large cojumps. Overall, the results in Table 5 reaffirm our 

hypothesis that unexpectedly large FOMC news tends to catch market participants by surprise, 

and this translates to an increase in the probability of observing particularly large Lévy cojumps 

in the equity markets.  
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5. Conclusions 

          Using 20 years of intraday data, we detect many large and infinitely small Lévy jumps in 

the SPX, TSX and MXX equity markets. By contrast, the conventional Poisson jump-diffusion 

model misses many of the pronounced jumps, especially small jumps. We also find that 

concurrent large jumps across the international equity markets tend to occur more frequently 

than concurrent small jumps. We further identify that the FOMC news announcements 

predominantly drive large jumps and cojumps. We also find that FOMC news surprises are 

associated with an increase in the probability of observing particularly large Lévy jumps and 

cojumps in the equity markets. Finally, we find that a heightening in monetary policy uncertainty 

is associated with large price declines, whereas the resolution of uncertainty is related to large 

positive price jumps. 

          Identifying when and to what extent the international markets (co)jump is vital for 

investors and portfolio managers seeking to hedge discontinuous sample paths and diversify 

across border. One implication from our study is that investors and portfolio managers should 

pay particular attention to scheduled FOMC news announcements since they drive 

predominantly large (co)jumps. We also explore various trading strategies that relies on signals 

provided by Lévy and Poisson jumps. High-frequency traders should take note, because our 

results show the strategy that uses large negative Lévy jump as a signal yields the highest realized 

returns, on average.  
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Appendix A: De-periodicity filtering of intraday volatility 

We follow Lahaye et al. (2011) and Gilder et al. (2014) and adopt the weighted standard 

deviation (WSD) estimator of Boudt et al. (2011) to de-periodize the intraday volatility of log 

stock returns. We specify the standardized intraday log stock return as 
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with 
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  as defined in Eq. (3). We then construct the shortest half-scale estimator as 
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where M = 78 refers to the number of intraday intervals within one day. Finally, we define the 

WSD estimator (
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with n, j denoting the total number of observations within the interval j, and I(z)=1 if z ≤ 

6.635 and 0 otherwise.  
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Table 1: Summary statistics of significant jumps (full sample period) 
Panel A reports the sample mean and standard deviation of absolute intraday returns (expressed in basis points) on 

intervals containing no Lévy jumps. Panel B reports the number of large Lévy jumps identified by the Lee-Hannig 

test, sample mean and standard deviation of the amplitude of large Lévy jumps, and the corresponding statistics for 

positive and negative large Lévy jumps. The final two rows of the panel report the percentages of jumps that are 

negative 
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 where N1 = # of –ve jumps and 

N2 = # of jumps. Panels C and D report the analogous statistics for small Lévy jumps and jumps detected by the 

Lee-Mykland test. Panel E reports some conditional probability estimates: (i) Pr(LM jump | Large & small Lévy 

jumps) is the probability of jumps detected by the Lee-Mykland test and coinciding with large and small Lévy jumps 

divided by the number of large and small Lévy jumps; (ii) Pr(LM jump | Large Lévy jumps) is the probability of 

jumps detected by the Lee-Mykland test and coinciding with large Lévy jumps divided by the number of large Lévy 

jumps; and (iii) Pr(LM jump | Small Lévy jumps) is the probability of jumps detected by the Lee-Mykland test and 

coinciding with small Lévy jumps divided by the number of small Lévy jumps. Although the full sample period 

covers the period from January 2, 1996 to December 30, 2015, the starting date for the estimates reported in this 

table is March 1, 1996, since the Lee-Hannig test requires a “training” estimation period from January 2, 1996 to 

February 28, 1996. 

 

 SPX TSX MXX 

# of obs 379860 381264 377442 

Panel A: No Lévy jumps    

E( |ri,t | | no jumps ) 7.0 5.2 5.7 

Std( |ri,t | | no jumps ) 8.9 8.4 7.4 

    

Panel B: Large Lévy jumps    

# of jumps (% of # of obs) 574 (0.15%)  730 (0.19%) 740 (0.20%) 

E( |ri,t | | jumps ) 64.9 54.1 69.5 

Std( |ri,t | | jumps ) 46.2 84.9 69.6 

# of +ve jumps (% of # of obs) 282 (0.07%) 341 (0.09%) 376 (0.10%) 

E( ri,t | +ve jumps) 67.2 55.2 67.9 

Std( ri,t | +ve jumps) 45.2 97.8 67.6 

# of –ve jumps (% of # of obs) 292 (0.08%) 389 (0.10%) 364 (0.10%) 

E( ri,t | –ve jumps) -62.6 -53.1 -71.1 

Std( ri,t | –ve jumps) 47.2 71.9 71.6 

Pr(–ve jumps) 50.9% 53.3% 49.2% 

Std error 2.09% 1.85% 1.84% 

    

Panel C: Small Lévy jumps    

# of jumps (% of # of obs) 1426 (0.38%) 1723 (0.45%) 1555 (0.41%) 

E( |ri,t | | jumps ) 41.7 32.6 39.5 

Std( |ri,t | | jumps ) 29.0 35.4 32.1 

# of +ve jumps (% of # of obs) 667 (0.18%) 736 (0.19%) 742 (0.20%) 

E( ri,t | +ve jumps) 43.5 31.9 39.1 

Std( ri,t | +ve jumps) 30.7 25.3 30.3 

# of –ve jumps (% of # of obs) 759 (0.20%) 987 (0.26%) 813 (0.22%) 

E( ri,t | –ve jumps) -40.0 -33.2 -39.8 

Std( ri,t | –ve jumps) 27.4 41.4 33.7 

Pr(–ve jumps) 53.2% 57.3% 52.3% 

Std error 1.32% 1.19% 1.27% 

    

Panel D: Lee-Mykland jumps    

# of jumps (% of # of obs) 740 (0.19%) 1053 (0.28%) 802 (0.21%) 

E( |ri,t | | jumps ) 43.6 35.9 60.2 

Std( |ri,t | | jumps ) 37.9 70.3 67.2 

# of +ve jumps (% of # of obs) 316 (0.08%) 413 (0.11%) 383 (0.10%) 

E( ri,t | +ve jumps) 45.9 37.0 57.1 

Std( ri,t | +ve jumps) 38.5 84.7 63.2 

# of –ve jumps (% of # of obs) 424 (0.11%) 640 (0.17%) 419 (0.11%) 

E( ri,t | –ve jumps) -42.0 -35.1 -62.9 

Std( ri,t  | –ve jumps) 37.4 59.2 70.7 
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Pr(–ve jumps) 57.3% 60.8% 52.2% 

Std error 1.82% 1.50% 1.76% 

    

Panel E: Conditional probability    

Pr(LM jump | Large & small Lévy jumps) 77% 76% 83% 

Pr(LM jump | Large Lévy jumps) 51% 55% 54% 

Pr(LM jump | Small Lévy jumps) 19% 24% 17% 

    

 

 

 

 

 

 

Table 2: Summary statistics of significant cojumps 
The top panel reports the following statistics for concurrent large jumps identified in the markets: the 

number of observations (# obs) over the common sample between two or more markets, number of 

cojumps (# coj), probability of cojumps P(coj) (in %) over the common sample and the probability of 

cojumps conditional on large jumps identified in one of the markets P(coj | large) (in %). For example, 

the probability of large cojumps identified in both SPX and TSX, conditional on significant large jumps 

detected in the SPX (P(large coj | large jumps in SPX)) is calculated as 215/567 = 37.9%, where the 

denominator refers to the number of large SPX jumps detected over the common sample between SPX 

and TSX. The middle panel reports analogous statistics for a combination of large and small concurrent 

jumps detected in the markets, whereas the bottom panel reports similar statistics for concurrent small 

jumps identified in the markets. The full sample covers the period from March 1, 1996 to December 30, 

2015. 

 
 # obs # coj P(coj) P(coj | large) P(coj | small) 

    SPX TSX MXX SPX TSX MXX 

Large cojumps          

SPX–TSX 371358 215 0.06 37.9 30.0 - - - - 

SPX–MXX 365820 84 0.02 15.0 - 11.5 - - - 

TSX–MXX 366834 91 0.02 - 12.9 12.6 - - - 

SPX–TSX–MXX 357630 58 0.02 10.5 8.4 8.1 - - - 

          

Large-small cojumps          

SPX–TSX 371358 270 0.07 47.5 37.7 - 19.4 15.9 - 

SPX–MXX 365820 102 0.03 18.2 - 14.0 7.4 - 6.6 

TSX–MXX 366834 112 0.03 - 15.9 15.4 - 6.8 7.4 

SPX–TSX–MXX 357630 94 0.03 17.0 13.6 13.1 7.0 5.7 6.3 

          

Small cojumps          

SPX–TSX 371358 230 0.06 - - - 16.6 13.5 - 

SPX–MXX 365820 69 0.02 - - - 5.0 - 4.5 

TSX–MXX 366834 69 0.02 - - - - 4.2 4.6 

SPX–TSX–MXX 357630 20 0.01 - - - 1.5 1.2 1.3 
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Table 3: Jump–FOMC news analysis  
The table reports the following statistics: (i) the number of FOMC announcements (which is lower than 

the total of 157 FOMC announcements reported over the entire sample period since some days are omitted 

due to the data filtering criteria discussed in Section 3), (ii) number of large events and its corresponding 

proportion P(J | N), (iii) number of small events and its corresponding P(J | N), (iv) number of strictly 

small events and its corresponding P(J | N), (v) the mean size of large jumps and (vi) the mean size of 

small jumps. “Large event” is counted if it contains large jumps in one of the three corresponding five-

minute intervals surrounding the FOMC news release (i.e., at τ = {0, 1, 2}), whereas “small event” 

(“strictly small event”) is counted if it contains at least a small jump (strictly small jumps) over the 

intervals. The sample period covers from March 1, 1996 to December 30, 2015. 

 

 SPX TSX MXX 

    

# of anct 157 156 147 

# of large events (%) 40 (25.5%) 36 (23.1%) 19 (12.9%) 

# of small events (%) 32 (20.4%) 23 (14.7%) 24 (16.3) 

# of strictly small events (%) 21 (13.4%) 12 (7.7%) 19 (12.9) 

Mean size of large jumps (in bps) 65.96 43.60 62.79 

Mean size of small jumps (in bps) 36.08 25.63 32.76 

    

 

 

 

 

 

 

 

 

Table 4: Cojump–FOMC news analysis 
The table reports the following statistics: (i) the number of FOMC announcements that occur over the 

common sample between the markets, (ii) number of large-cojump events and its corresponding 

proportion P(J | N), (iii) number of non-large-cojump events and its corresponding P(J | N), (iv) number 

of strictly small-cojump events and its corresponding P(J | N), (v) the mean size of large cojumps and (vi) 

the mean size of non-large cojumps. “Large-cojump event” is counted if it contains concurrent large 

jumps in the markets in one of the three corresponding five-minute intervals surrounding the FOMC news 

release (i.e., at τ = {0, 1, 2}). “Non-large-cojump event” is counted if it contains a combination of large 

and small jumps, or small cojumps, in one of intervals. “Strictly small–cojump event” is counted if it 

contains strictly small jumps concurrently in the markets. The sample period covers from March 1, 1996 

to December 30, 2015. 

 

 SPX-TSX SPX-MXX TSX-MXX SPX-TXX-MXX 

     

# of anct 156 147 146 146 

# of large-cojump events (%) 24 (15.4%) 13 (8.8%) 11 (7.5%) 11 (7.5%) 

# of non-large-cojump events (%) 16 (10.3%) 8 (5.4%) 12 (8.2%) 9 (6.2%) 

# of strictly small–cojump events (%) 0 (0.0%) 1 (0.7%) 3 (2.1%) 0 (0.0%) 

Mean size of large cojumps (in bps) 42.41 56.00 38.51 36.52 

Mean size of non-large cojumps (in bps) 17.38 23.03 14.03 9.81 
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Table 5: Ordered probit estimation results for cojumps 

The table reports the coefficient estimate and corresponding z-statistic (in parentheses) of Eq. (11). The 

dependent variable is defined as follows: Yt = 2 if there is at least a large cojump detected at τ = {0, 1}, 

and  Yt = 1  if there is at least a non-large cojump (and strictly no large cojumps) detected τ = {0, 1} and 

0 if no jumps are detected over the intervals. The specification is estimated using the Huber-White 

sandwich estimation of variance. The Estrella-R2 is a nonlinear transformation of the likelihood ratio test 

and serves to measure how well the estimated model fits against a model that only includes the intercept 

variable. The sample period exclusively covers scheduled FOMC news announcement days from March 

1, 1996 to December 30, 2015. *** denotes statistical significance at the 1% level. 

 
 SPX-TSX SPX-MXX TSX-MXX SPX-TSX-MXX 

𝛽 0.32 0.35 0.38 0.35 

 (2.59)*** (2.82)*** (2.97)*** (2.81)*** 

     

Marg. effect dP[Y=1]/dS 0.023 0.015 0.027 0.022 

Marg. Effect dP[Y=2]/dS 0.064 0.051 0.046 0.044 

     

R2 (%) 5.27 5.39 6.55 5.52 

# of obs 156 147 146 146 
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Figure 1: Detecting Lévy jumps in SPX 
This figure plots the five-minute SPX log returns (expressed in percentages and in grey) and large jumps 

(marked in blue) and small jumps (marked in green) identified through the Lee-Hannig test. The time-

series covers from 1996 to 1999. 

 

 
 

  



32 

 

Figure 2: Cumulative returns unconditional on jump signs 

The solid lines in this figure plot the mean pointwise cumulative returns (expressed in percentages) of 

four different strategies over a three-hour window: the “large Lévy jump signalling strategy” (blue line), 

the “small Lévy jump signalling strategy” (green line), the “LM jump signalling strategy” (pink line) and 

the “naïve strategy” (black dotted line). The gray shaded areas are pointwise 95% confidence bands 

around the respective average cumulative returns. To facilitate comparison, we normalize all the 

cumulative returns to 0% at the start of the respective trading strategies. 

 

 
Panel A: SPX 

 
Panel B: TSX 

 
Panel C: MXX 
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Figure 3: Cumulative returns conditional on jump signs 

The solid lines in this figure plot the mean pointwise cumulative returns (expressed in percentages) of 

three different strategies over a three-hour window: the “large Lévy jump signalling strategy” (blue line), 

the “small Lévy jump signalling strategy” (green line) and the “LM jump signalling strategy” (pink line). 

The gray shaded areas are pointwise 95% confidence bands around the respective average cumulative 

returns. The strategies in the left and right columns use positive and negative jumps as signals, 

respectively. To facilitate comparison, we normalize all the cumulative returns to 0% at the start of the 

respective strategies. 
 

 
Panel A.1: +ve SPX jumps  

 

 
Panel B.1: +ve TSX jumps 

 

 
Panel C.1: +ve MXX jumps 

 
Panel A.2: –ve SPX jumps 

  

 
Panel B.2: –ve TSX jumps 

 

 
Panel C.2: –ve MXX jumps 
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Figure 4: Lévy jumps versus Poisson jumps 
This figure plots the five-minute SPX price levels (Panel A) and price returns (Panel B) on August 8, 

2006. To ease readability, we restrict the plots to between 12:00 EST and 16:00 EST. The dotted line 

in the respective panels indicates the actual FOMC news release which was time-stamped at 14:14 EST. 

The purple dots (●) correspond to jumps identified by the Lee-Mykland test. The blue boxes (□) 

correspond to large Lévy jumps identified by the Lee-Hannig test, whereas the green boxes (□) 

correspond to small Lévy jumps. 

 

 
Panel A: SPX price levels 

 

 
Panel B: SPX log price returns (in basis points) 
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Figure 5: Lévy jumps on FOMC announcement days 
This figure plots the number of significant large jumps (in blue) and small jumps (in green) detected on 

FOMC announcement days. The event time τ =0 refers to the five-minute interval containing the FOMC 

actual time-stamped announcement, whereas τ =1 is the ensuing five-minute interval. The sample 

estimation period covers from March 1, 1996 to December 30, 2015. 

 
Panel A: SPX 

 
Panel B: TSX 

 
Panel C: MXX 
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Figure 6: Large Lévy jumps and market uncertainty on FOMC announcement days 
The dotted line plots the log cumulative change (expressed in percentages) in the VIX on all FOMC 

announcement days. The dark line (dashed line) plots the log cumulative change in the VIX on FOMC 

news days when there are large positive (negative) SPX price jumps identified by the Lee-Hannig test 

in one of the three corresponding five-minute intervals surrounding the FOMC news release (i.e., at τ = 

{0, 1, 2}). To ease readability, the log cumulative changes are normalized to 0 at τ = –6. The sample 

estimation period covers from March 1, 1996 to December 30, 2015. 
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Figure 7: Lévy cojumps on FOMC announcement days 
This figure plots the number of significant large cojumps (in blue) and non-large cojumps (in green) 

detected on FOMC announcement days. The event time τ =0 refers to the five-minute interval 

containing the FOMC actual time-stamped announcement, whereas τ =1 is the ensuing five-minute 

interval. The sample estimation period covers from March 1, 1996 to December 30, 2015. 

 
Panel A: SPX–TSX 

 
Panel B: SPX–MXX 
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Lévy (co)jumps across international equity markets 

and FOMC news announcements 
 

 

Online Appendices 
 

 

Online Appendix I 

 

In this appendix, we characterize the Lévy jump dynamics in different market conditions. 

Kou et al. (2016) use an affine-diffusion model that augments both stochastic volatility and 

double-exponential jumps25 to show that the negative daily jump rate in the S&P 500 index has 

decreased significantly after the 2007–2009 financial crisis period, but negative jump sizes 

have become larger in the post-crisis period relative to the pre-crisis period. Following Kou et 

al. (2016), we partition the full sample period into pre-crisis period (May 1996 –July 2007), 

crisis period (August 2007–June 2009) and post-crisis period (July 2009–December 2015) and 

re-estimate the Lévy jump analysis.  

Exhibit I reports the results for the SPX market; the results for TSX and MXX are 

qualitatively similar and hence are not reported to save space. As what one would reasonably 

expect, during the 2007–2009 crisis period, the intensity of large Lévy jumps has increased 

relative to other periods. Large negative jumps also outnumber large positive jumps during the 

crisis period (52.7% of the large jumps are negative). Contradicting the finding of Kou et al. 

(2016), however, is the result pertaining to the negative jump sizes: the negative large-jump-

size pattern in the post-crisis period reverts to that observed in the pre-crisis period (E(ri,t| –ve 

large jumps) = –63.2 in the post-crisis period versus E(ri,t| –ve large jumps) = –61.5 in the pre-

crisis period), but the jump amplitude of the small negative jumps has become considerably 

                                                 
25 Kou et al.’s (2016) model only admits a finite number of large and monotonic jumps in returns. 
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less negative after the crisis (E(ri,t| –ve small jumps) = –33.1 in the post-crisis period versus 

E(ri,t| –ve small jumps) = –42.7 in the pre-crisis period).  

 

 

Exhibit I: Summary statistics of significant SPX jumps in different sub-periods 
This table reports the Lévy jump statistics for three sub-periods: March 1996 to July 2007 (pre-crisis 

period), August 2007 to June 2009 (crisis period) and August 2009 to December 2015 (post-crisis 

period). Table 1 of the main text provides the description of this table.   

 

 Pre-crisis Crisis Post-crisis 

# of obs 218830 37762 128138 

Panel A: No Lévy jumps    

E( |ri,t | | no jumps ) 7.0 7.4 6.9 

Std( |ri,t | | no jumps ) 8.9 9.9 8.6 

    

Panel B: Large Lévy jumps    

# of jumps (% of # of obs) 352 (0.16%) 75 (0.20%) 147 (0.11%) 

E( |ri,t | | jumps ) 64.2 66.9 65.6 

Std( |ri,t | | jumps ) 46.1 58.6 39.4 

# of +ve jumps (% of # of obs) 171 (0.08%) 34 (0.09%) 77 (0.06%) 

E( ri,t | +ve jumps) 67.0 67.4 67.8 

Std( ri,t | +ve jumps) 49.6 31.3 40.2 

# of –ve jumps (% of # of obs) 181 (0.08%) 41 (0.11%) 70 (0.05%) 

E( ri,t | –ve jumps) -61.5 -66.5 -63.2 

Std( ri,t | –ve jumps) 42.4 74.4 38.5 

Pr(–ve jumps) 51.4% 54.7% 47.6% 

Std error 2.66% 5.75% 4.12% 

    

Panel C: Small Lévy jumps    

# of jumps (% of # of obs) 866 (0.40%) 158 (0.42%) 402 (0.31%) 

E( |ri,t | | jumps ) 43.0 46.2 37.0 

Std( |ri,t | | jumps ) 29.4 30.4 27.1 

# of +ve jumps (% of # of obs) 389 (0.18%) 80 (0.21%) 198 (0.15%) 

E( ri,t | +ve jumps) 43.3 50.2 41.1 

Std( ri,t | +ve jumps) 26.4 35.8 35.6 

# of –ve jumps (% of # of obs) 477 (0.22%) 78 (0.21%) 204 (0.16%) 

E( ri,t | –ve jumps) -42.7 -42.1 -33.1 

Std( ri,t | –ve jumps) 31.7 23.1 13.5 

Pr(–ve jumps) 55.1% 49.4% 50.7% 

Std error 1.69% 3.98% 2.49% 
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Online Appendix II 

In this appendix, we plot the mean of absolute stock returns for large jumps (in blue) and 

small jumps (in green) on FOMC announcement days for the SPX market; the results for the 

TSX and MXX are omitted to conserve space. To ensure the mean estimates are statistically 

meaningful, we only calculate the mean absolute jump returns at interval τ if there are more 

than five significant large/small jumps detected over that interval. Exhibit II shows that the 

mean amplitudes of large jumps at τ ={0, 1, 2} are typically 1.5 to two times the mean 

amplitude of small jumps. This highlights the impact of FOMC news releases in triggering 

large jumps, especially within the first 10 minutes post news arrival. 

 

Exhibit II: Magnitude of Lévy jumps on FOMC announcement days 
The SPX index returns are expressed in basis points (bps). The sample estimation period covers from 

March 1, 1996 to December 30, 2015. 
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Online Appendix III 

 

To further corroborate the empirical finding reported in the main text that the main driver 

underlying Lévy jumps is FOMC announcements, Panel A of Exhibit III reports statistics 

analogous to those in Table 4 for the aggregate of four other key macroeconomic news 

announcements: the monthly consumer confidence index, Conference Board leading indicator, 

new home sales index and the Institute of Supply Management (ISM) index. We choose these 

variables because of their importance (for example, Yao and Tian (2015) use the Lee-Mykland 

jump test and show that SPX jumps are associated with ISM news announcements) and their 

news report release time is within the active trading hours of the respective equity markets. 

Panel A shows that these four macro variables hardly trigger Lévy jumps in all the markets 

considered, with only two out of 866 news announcements (0.2%) coinciding with large SPX 

jumps detected within the first 10 minutes post news release.  

We also experimented with two further analyses to corroborate the finding. Panel B 

analyzes significant Lévy jumps detected over the 14:10–14:25 EST interval on non-FOMC-

announcement days. Panel C reports the results where we randomly select (with replacement) 

10,000 five-minute intervals on non-FOMC-announcement days. By construction, the tests in 

both panels serve as placebo tests and we hypothesize them to be inconsequential in triggering 

Lévy jumps. The results support our hypothesis: for the SPX market, the probability for a large 

(small) jump is only 0.3% (0.9%) (compare, for example, the probability for a large (small) 

jump in the SPX index, which is 25.5% (13.4%) in Table 4).  
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Exhibit III: Robustness tests 
Panel A reports the following statistics – number of announcements, number of “large events” and 

“”strictly small events” and their corresponding P(J | N)s, and mean jump size of large and small jumps 

– for key macroeconomic announcements that are typically released at 10:00 EST. Panel B reports 

similar statistics assuming an “event”' occurs at 14:15 EST on non-FOMC-announcement days, and 

Panel C reports analogous statistics by randomly drawn “10,000 events” at any time on non-FOMC-

announcement days. The sample period covers from March 1, 1996 to December 30, 2015. 

 
 SPX TSX MXX 

Panel A    

# of anct 866 830 819 

# of large events (%) 2 (0.2%) 3 (0.4%) 5 (0.6%) 

# of strictly small events (%) 18 (2.1%) 15 (1.8%) 17 (2.1%) 

Mean size of large jumps(in bps) 81.24 69.86 81.90 

Mean size of small jumps(in bps) 58.79 36.04 52.39 

    

Panel B    

# of anct 4713 4732 4692 

# of large events (%) 12 (0.3%) 15 (0.3%) 17 (0.4%) 

# of strictly small events (%) 36 (0.8%) 55 (1.2%) 46 (1.0%) 

Mean size of large jumps(in bps) 57.41 41.10 40.59 

Mean size of small jumps(in bps) 36.88 27.24 34.60 

    

Panel C    

# of anct 10000 10000 10000 

# of large events (%) 28 (0.3%) 46 (0.5%) 40 (0.4%) 

# of strictly small events (%) 93 (0.9%) 119 (1.2%) 84 (0.8%) 

Mean size of large jumps(in bps) 52.27 44.55 88.78 

Mean size of small jumps(in bps) 39.79 29.38 38.78 

    

 

 

 

Online Appendix IV 

 

We estimate the following ordered probit model for each individual equity market: 

,ttt SY               (D.1) 

where Yt =2 if there is at least one large jump estimated over the τ ={0, 1, 2} interval on 

scheduled FOMC announcement day t, 1 if there is at least one strictly small jump (and no 

large jump) identified over the interval and 0 if there is no jump identified over the interval.  

Exhibit IV reports the results. The absolute FOMC standardized news surprise variable 

enters with a positive sign and is statistically significant. This reaffirms our hypothesis that 

unexpectedly large FOMC news tends to catch market participants by surprise, and this 
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translates to an increase in the probability of observing Lévy jumps in the stock indices. The 

“marginal effect” estimates reported in the table imply that while the release of a unit absolute 

FOMC standardized news surprise increases the probability of observing a strictly small jump 

in the SPX by 1.4%, the same unit news release increases the probability of observing a large, 

fivefold SPX jump of 7.0%.  

 
Exhibit IV: Ordered probit estimation results for univariate jumps 

The table reports the statistics analogous to those reported in Table 5 of the main text for univariate 

jumps detected in the respective SPX, TSX and MXX markets. * and *** denote statistical significance 

at the 10% and 1% levels, respectively. 

 SPX TSX MXX 

𝛽 0.22 0.42 0.42 

 (1.79)* (3.56)*** (3.52)*** 

    

Marg. effect dP[Y=1]/dS 0.014 0.022 0.052 

Marg. Effect dP[Y=2]/dS 0.070 0.123 0.080 

    

R2 (%) 2.68 9.48 9.99 

# of obs 157 156 147 
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