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Abstract

This study aims at forecasting intraday liquidity pools in the order book. We compute

an adjusted Amihud illiquidity ratio to detect pools of liquidity. Our methodology is built

around a fixed volume event chart and presents a threefold advantage. First, we solve the

non linearity issue of the widely used Amihud ratio. Second, we consider liquidity as a

trade size specific concept. Third, we turn liquidity into a volatility proxy, which allows

to transpose the extensive volatility forecasting literature into the liquidity framework.

We outline some predictable patterns that statistically outperform a random walk model.

We also find that trade-based and order book-based measures are both informative of

forthcoming liquidity. These results are robust across several time frames and suggest

potential execution improvement for market participants.
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1 Introduction

Liquidity is a key concept for market efficiency and financial system stability. The expansion of

high frequency trading, the 2010 flash crash and the implementation of new regulations, such

as Reg NMS in the United States and MiFID in Europe, made liquidity issues a hot topic,

drawing the attention of both practitioners and academics.

In the theory on market microstructure, an exhaustive definition of market liquidity typi-

cally refers to the four dimensions identified in Harris (2003), i.e. tightness, depth, resiliency

and immediacy. The literature brings out two broad categories of liquidity proxies, namely

trade-based and order book-based measures. As they show little correlation, a bunch of re-

search focuses on determining which type of measure is the best liquidity proxy. Goyenko

et al. (2009), among others, show that the choice of liquidity proxy may significantly impact

our results.

Given its multidimensional feature, liquidity cannot be captured by a single figure. Hence,

practitioners must strike a balance between the different liquidity dimensions to select the best

proxy according to their needs. As outlined by Irvine et al. (2000), investors can be patient

or impatient to trade. On the one hand, impatient investors, such as arbitrageurs, require an

immediate execution of their orders. On the other hand, patient investors, such as institutional

investors who rebalance or hedge their portfolio, look for occasional liquidity pools to execute

their orders inexpensively.

In this paper, we investigate liquidity from the viewpoint of patient investors. In their view,

a liquid market is a market where the uncertainty around the execution price is low. In this

framework, liquidity is set through volume price impact as measured by the Amihud ratio.1

This ex-post liquidity measure neglects the immediacy dimension but allows to capture both

potential uncommitted liquidity2 and market resiliency3 to assess the level of execution price

uncertainty.

Our methodology is based on a fixed volume event chart and has a threefold advantage.

First, Kempf and Korn (1997) outline a major pitfall in the widely used Amihud illiquidity

1The Amihud ratio is defined as follows: ILt = |Rt|
Vt

, where |Rt| is the absolute return and Vt is the trading
volume at time t.

2Uncommitted liquidity is hidden liquidity that is not displayed in the order book.
3Resiliency is the speed with which prices recover from a random, uninformative shock. Large (2007) and

Degryse et al. (2005) outline the particular importance of resiliency in the case of an electronic limit order book,
where the price-smoothing agency of a specialist or market maker is absent.
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ratio as it implies a linear relationship between volume and volatility, which is typically not

the case. Setting a fixed trading volume allows us to bypass the use of a ratio. Second, Irvine

et al. (2000) address the idea that a market may be at the same time liquid for small orders and

illiquid for large orders. Our event chart allows us to assess liquidity as a trade size specific

concept. Furthermore, the fixed trading volume of the event chart can be adjusted to the

order size considered by market participants. Third, we turn liquidity into a volatility proxy,

which allows us to transpose the extensive literature on volatility forecasting into the liquidity

framework.

Using time series models on a sample of Euronext stocks, we document some predictable

patterns in volume price impact that statistically outperform a random walk model in- and

out-of-sample. Consistent with Cont et al. (2011), we show that trade-based and order book-

based liquidity measures are informative of forthcoming price impact. We also find support for

Jain et al. (2011) who show that order book bid side is more informative than ask side. Among

the four tested models, the ARX(3)-GARCH(1,1) model stands out from the crowd while the

ARMAX model underperforms the other models. Robustness checks confirm the consistency

of our results across stocks and different time frames.

All our results suggest practitioners could benefit from time series models to build execution

price improvement strategies. On average, the end of the continuous trading day seems to be

the best time for institutionals to hedge or rebalance a portfolio. It is indeed characterized

by a slightly -but stock specific- negative seasonality, a higher predictability of volume price

impact and a higher trading volume.

The paper is structured as follows. Section 2 provides an overview of the existing literature

related to liquidity proxies and liquidity forecasting. Section 3 details the data used for our

empirical work. Section 4 presents the applied methodology. Section 5 reports the in-sample

and out-of-sample results as well as several robustness checks. Finally, Section 6 sums up the

findings and identifies possible extensions.

2 Literature Review

The plethora of liquidity proxies in the literature illustrates that liquidity remains an elusive

concept. Market liquidity is an unobserved process with multidimensional characteristics,

which makes it impossible to measure by a single figure. Practitioners and academics have to
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strike a balance between the different liquidity dimensions to select the best proxy for their

purpose.4

In this section, we only present the benchmark of ex-post (trade-based) and ex-ante (order

book-based) measures.

The benchmark of ex-post liquidity measures is the Amihud illiquidity ratio, presented in

Amihud (2002). This category of proxy is mainly used when market timing is neglected, such

as for brokers or hedgers who rather focus on improving execution price. The Amihud ratio

measures liquidity through the relationship between traded volume and absolute return or, in

other words, volume price impact:

Amihudt =
|Rt|
Vt

where |Rt| is the absolute return and Vt is the trading volume at time t.

The shortcomings of this measure, and more broadly of all ex-post measures, is that they

cannot be computed in the absence of trading volume. For illiquid stocks, this measure is thus

less relevant as it may be lagging because of the absence of trading volume. Furthermore, trade-

based measures do no consider liquidity as a trade size specific concept. Irvine et al. (2000)

show that a market may be at a point in time liquid for small orders but illiquid for large

orders. Eventually, Kempf and Korn (1997) point out the fact that the use of a ratio implies

that the relationship between trading volume and absolute return is linear which is typically

not the case. This non-linear relationship entails misleading interpretation and conclusions.

As the availability of high frequency data has increased, attention has shifted towards

the informational content of the order book. The benchmark of order book-based (ex-ante)

measures is the cost of round trip trade, hereafter CRT. It represents the cost of buying and

selling the same quantity of a stock immediately. In other words, it measures the liquidity cost

for investors that require immediate execution:

CRTq,t =
Bq,t − Sq,t
q ∗MQt

4For the sake of simplification, two possible biases of liquidity proxies are often neglected in the literature.
On the one hand, liquidity is asymmetric as confirmed by Kalay et al. (2004). Buy orders lead to significant
higher price impact than sell orders and the price impact is higher for both in market decline. This cannot be
account for through a unique ratio. On the other hand, Hall and Hautsch (2007) show that financial markets
are driven by both information and liquidity. Liquidity proxies do not filter price impact as either liquidity
driven or information driven.
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where CRTq,t is the cost of round trip for a trade size q at time t, Bq,t is the cost of buying q

shares, Sq,t is the income from selling q shares at time t and MQt is the midquote at time t.

The CRT trade captures the maximum implicit transaction cost if immediacy is required.

This implies that the measure only makes sense if a high proportion of liquidity is committed.

Furthermore, as often only the best quotes of the order book are available, perfect elasticity

of supply and demand assumption beyond the best quotes is often taken to compute the CRT

for large orders.

Both Trade-based and order book-based measures coexist in the liquidity forecasting liter-

ature.

In a quote-driven market environment,5 Dufour and Engle (2000) extend the Hasbrouck

(1991)’s vector autoregressive model for prices and trades to highlight some correlation between

trading frequency and price impact. They find that high trading activity is related to both

larger quote revisions and stronger positive autocorrelation of trades.

Later, Engle and Lange (2001) develop a new liquidity proxy, VNET, that captures the

depth of the underlying stock corresponding to the net buy and sell volume during a given

price movement. Using an event chart based on a given price movement, they also forecast the

time to complete a fixed price movement relying on an ACD model variant. This forecasted

time to achieve a given price movement could be used to set up market timing strategies.

In an order-driven market environment,6 Jain et al. (2011) document that the CRT explains

considerably more of the upcoming transaction frequency, trade price and volatility than other

measures.

Next, Tombeur and Wuyts (2011) highlight that order flow imbalance is a better predictor

of momentum than order book imbalance in the short run. However, order book imbalance

remains informative in the long run which is not the case for order flow imbalance.

Finally, Cont et al. (2011) outline order book-based and trade-based measures are both

informative of future price impact. They show that highly correlated market orders lead to

momentum while limit orders lead to range-bound market. They also find that order flow

5A quote driven market is a market that only displays bids and asks of designated market makers and
specialists for a specific security.

6An order-driven market is a market where all buyers and sellers display the prices at which they wish to
buy or sell a particular security, as well as the amounts of the security desired to be bought or sold.
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imbalance and momentum exhibit a linear relationship with a slope inversely proportional to

depth.

As our liquidity measure shares some stylized features with volatility, we also rely upon the

literature on volatility forecasting. Given that this literature is extensive, it is not reviewed

entirely here as it is beyond this paper. In a nutshell, there are two strands in this literature.

The first stream focuses on assessing models to find some consistent outperformance between

various GARCH-type models and autoregressive models. Poon and Granger (2003) and Lunde

and Hansen (2005) provide a quick and effective snapshot on this stream. The second stream

include researches that aim at defining less noisy volatility estimates. Andersen and Bollerslev

(1998) advocate that volatility models do provide accurate volatility forecasts. However, poor

performance of those models is due to noisy estimates of volatility. De Vilder and Visser

(2008) rank several volatility proxies and finds support for Andersen and Bollerslev (1998) on

the noisiness of squared returns to estimate volatility.

3 Data

3.1 Sample

The data pertain to 81 stocks that belong to three national major European NYSE Euronext

stock indexes: CAC40, AEX and BEL20. The sample period spans 61 trading days (from

February 1, 2006 to April 30, 2006). Building on trades and orders, the database has been

rebuilt using a replication of the Euronext algorithm. This allows us to use trade and order

book data to compute an extensive set of liquidity measures.

We arrange our database in event-based intervals. Hasbrouck (1996) outlines the advantage

of event-based charts over mainstream time-based charts for forecasting purposes as they tend

to be less noisy. In this paper, an interval event is defined as a given trading volume, which

allows us to consider liquidity as a trade size specific concept. To ensure consistency across

stocks, we set a fixed trading volume for each stock that corresponds to the average 15-minute

trading volume observed for the stock over the whole sample period.

Our final data consist in 154,633 intervals split across 81 stocks. For each stock, the

observations are split into two equal databases, the first half is for in-sample model fitting and

the second half is for out-of-sample model forecasting performance.
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Figure 1: Volume Seasonality

Distributional properties of trading volume. The chart represents the average trading volume across the 81 stocks. The
continuous trading day is discretized in 34 intervals of 15 minutes.

We apply some filters to the data in order to ensure the relevance of our results. We remove

the first interval of each continuous trading day to avoid referring to previous day order book

data. We also cancel the last observation of the continuous trading day because the event,

that is trading volume, on that interval may be uncompleted. We should mention as well that

the trigger for a new interval is the order that crosses the fixed volume threshold. The traded

volume per interval may thus slightly vary in order to avoid order splitting.

Figure 1 reports the distributional properties of the average trading volume across the 81

stocks over our sample period. As expected, the well-known U-shaped volume distribution is

observed and our observations are thus outweighed at both the beginning and the end of the

continuous trading day.

3.2 Liquidity Proxies

We aim at detecting liquidity pools in the market through volume price impact. For this

purpose, we use an adjusted Amihud illiquidity ratio, hereafter AAR:

AARi,t =
HLi,t
Vi,t

6



where HLi,t is the High-Low and Vi,t is the fixed traded volume for stock i during interval t.

Building on Alizadeh et al. (2002) who document the higher efficiency of High-Low com-

pared to absolute returns and squared returns as a volatility proxy, we replace absolute returns

by High-Low in the measure. In the framework of a volume event chart methodology, we set

a fixed traded volume such that the AAR proxy fines down to the HLi,t measure. This allows

us to consider liquidity as related to a given trade size.

Thanks to our rich database, we compute an extensive set of liquidity measures including

Kang and Yeo (2008)’s dispersion and Næs and Skjeltorp (2006)’s slope, among others. For

the sake of convenience, this section only reviews the explanatory variables that are used in

the final model.

The final model includes an exogenous trade-based measure that is the number of trades.

This is a state variable that is thus summed over the interval. In the framework of our event

chart, the number of trades for a fixed trading volume represents the average trading size and

is defined as follows:

#Tradesi,t =
N∑
n=1

Ni,t

where N is the number of trades for stock i during interval t.

The remaining measures are order book-based measures. They represent a snapshot of

the order book at a given point in time and are taken at the end of each interval. Those

measures are respectively the depth at the five best bid and ask quotes (Q5i,t), the relative

spread (RSi,t) and both bid and ask slopes (BidSlopei,t and AskSlopei,t) which capture order

book imbalance. They are defined as follows:

Q5i,t =

5∑
j=1

QB,j,i,t +QA,j,i,t

where QB,j,i,t is the committed bid quantities and QA,j,i,t is the committed ask quantities

display at the j best limit for stock i at the end of interval t.

RSi,t =
PA1,i,t − PB1,i,t

MQt
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where PA1,i,t is the best ask and PB1,i,t is the best bid for stock i at the end of interval t and

MQt is the midquote at the end of interval t.

AskSlopei,t =
PA5,i,t − PA1,i,t

PA1,i,t

where PA5,i,t is the limit price of the fifth best ask quote and PA1,i,t is the best ask for stock i

at the end of interval t.

BidSlopei,t =
PB5,i,t − PB1,i,t

PB1,i,t

where PB5,i,t is the limit price of the fifth best bid quote and PB1,i,t is the best bid for stock i

at the end of interval t.

4 Methodology

4.1 Quantitative analysis

As a preliminary step, we point out some characteristics of the adjusted Amihud ratio (AAR).

The main purpose is to detect any pattern in the AAR to support our model selection. As

our liquidity proxy and volatility proxies share some similar stylized features, we pay specific

attention to clustering (distribution skewness and kurtosis), heteroscedasticity and autocor-

relation. The stationarity of the measure is tested using the Phillips-Perron test. The AAR

displays strongly significative stationarity in our sample.
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Figure 2: Autocorrelation Function of the adjusted Amihud ratio

The autocorrelation function (ACF) of the AAR is displayed for 20 lags on the left-hand side chart. The right-hand side

chart plots the partial autocorrelation function (PACF) of the AAR up to 20 lags.

Figure 2 presents the AAR autocorrelogram, which outlines some autocorrelation in the

proxy that nevertheless converges rather quickly to zero. We apply the extended sample

autocorrelation function, presented in Tsay and Tiao (1984), to test the relevance of an ARMA

dynamics. A long memory ARMA (1,1) process fits two out of three stocks of our sample.

Table 1: Descriptive Statistics of the adjusted Amihud ratio

Skewness 1.5781 Minimum 0

Excess Kurtosis 6.0783 Maximum 2.7231

Mean 0.2720 Normality test <0.0001

Standard Deviation 0.1692 ARCH test 1-10 <0.0001

Median 0.2430 AR test 1-2 <0.0001

The table presents key descriptive statistics of the AAR across the 81 stocks for an average 15-minute volume observed

for the stock over the whole sample period.
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As reported in Table 1, the AAR displays highly positive excess kurtosis. We carry out

ARCH disturbances test on the residuals that reveals a long-lasting and consistent ARCH

effect across stocks. This is a strong support for GARCH (1,1) model. The normality test

shows that our measure is not normally distributed. The positive skewness suggests that we

should consider extensions of the GARCH model that account for asymmetry as well.

Figure 3: Adjusted Amihud ratio Seasonality

The chart plots the average AAR across the 81 stocks for a given trading volume, that is set to the average 15-minute

volume observed for the stock over the whole sample period to ensure consistency across stocks. The continuous trading

day is discretized in 34 intervals of 15 minutes.

The AAR exhibits seasonality as plotted in Figure 3. At the beginning of the continuous

trading day, volume price impact is significantly higher. This is consistent with Cont et al.

(2011) who show that there is lower depth in the morning because of information asymmetry.

The very end of the continuous trading day displays a slightly lower price impact as well. We

should point out that, while trading volume is lower at midday, there is no observed effect on

price impact.
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4.2 Model presentation

We use the general-to-specific model selection process, presented in Hendry and Krolzig (2001),

to select the optimal set of explanatory variables. This procedure simplifies a general un-

restricted model (GUM) to a congruent model. The selection encompasses test for model

mis-specifications and diagnostic tests at each simplification step.

We consider three extensions of the model relying on the quantitative analysis of the ad-

justed Amihud ratio in Section 4.1, the models are presented in details hereafter:

� The ARX(3) model

HLi,t = βi,0 +
∑3

j=1 γi,jARi,t−j + βi,1RSi,t−1 + βi,2Q5i,t−1

+βi,3BidSlopei,t−1 + βi,4AskSlopei,t−1 + βi,5#Tradesi,t−1

+
∑5

j=1 αi,jSEi,t−j + αi,6SEi,34 + εi,t,

where HLi,t is the High-Low for stock i at interval t, SEi,t−j is a dummy for a 15-minute

time-based interval for stock i that captures the beginning and end of day seasonality

in the dependent variable7 and SEi,34 is the dummy for the last 15-minute time-based

interval for stock i. Other explanatory variables were defined previously in section 3.2.

� The ARMAX (1,1) model

HLi,t = βi,0 + γi,1ARi,t−j + δi,1εi,t−1 + βi,1RSi,t−1 + βi,2Q5i,t−1

+βi,3BidSlopei,t−1 + βi,4AskSlopei,t−1 + βi,5#Tradesi,t−1

+
∑5

j=1 αi,jSEi,t−j + αi,6SEi,34 + εi,t,

where HLi,t is the High-Low for stock i at interval t, SEi,t−j is a dummy for a 15-minute

time-based interval for stock i that captures the beginning and end of day seasonality

in the dependent variable and SEi,34 is the dummy for the last 15-minute time-based

interval for stock i. Other explanatory variables were defined previously in section 3.2.

7That is SEi,1 is the seasonality dummy for the first 15 minutes of the trading day, SEi,2 is the seasonality
dummy for the next 15 minutes of the trading day, etc.
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� The ARX (3)-GARCH (1,1) model

HLi,t = ARX(3)model,

εi,t = zi,t
√
hi,t,

zi,t = N(0, 1),

hi,t = ω0,i + λi,1ε
2
i,t−1 + θi,1hi,t−1,

where hi,t is the variance process for stock i at interval t.

� The ARX (3)-EGARCH (1,1) model

HLi,t = ARX(3)model,

εi,t = zi,t
√
hi,t,

zi,t = N(0, 1),

log(hi,t) = ω0,i + λi,1log(hi,t−1) + θi,1

(
|εi,t−1|√
hi,t−1

−
√

2
π

)
+ ζi,1

(
εi,t−1√
hi,t−1

)
,

where hi,t is the variance process for stock i at interval t.

The model calibration is made through maximum likelihood function using Levenberg-

Marquart optimization algorithm. The initial values are set to the parameter values of the

pooling regression over the whole sample period. Autoregressive models do not impose a strictly

positive value for the adjusted Amihud ratio. In few exceptional cases where the models return

negative value, we set the value of the dependent variable to zero.

As mentioned earlier, we divide the sample period into an estimation period (first half of

data) that is used for fitting the model in-sample and an evaluation period (second half of

data) used for out-of-sample forecasting. For the out-of-sample data, we perform a rolling

regression. Each model is estimated over an initial window that corresponds to the estimation

period and a 1-period ahead liquidity forecast is performed. The window is then rolled forward

one period to obtain the second forecast and so on and so forth for all the out-of-sample data.

We use two mainstream loss functions to measure the discrepancies of the model compared

to the realized value: the mean squared error (MSE) and the mean absolute error (MAE). As a

remainder, the MSE loss function gives some extra penalty to models that display large errors

as the observed discrepancy is squared. The MSE is defined as:
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MSEi,t =
1

N

N∑
j=1

(
ĤLi,j,t −HLi,j,t

)2

where ĤLi,t is the estimated High-Low for stock i at interval t and HLi,t is the realized

High-Low for stock i at interval t. The MAE is defined as:

MAEi,t =
1

N

N∑
j=1

| ĤLi,j,t −HLi,j,t |

where ĤLi,t is the estimated High-Low for stock i at interval t and HLi,t is the realized

High-Low for stock i at interval t.

We test the statistical outperformance of our models against a random walk model through

the superior predictability ability test (SPA) presented in Hansen (2005). Hansen’s SPA test

is less prone to data mining issues than the Diebold-Mariano test. The SPA test addresses the

null hypothesis that any alternative forecasting models are better than a benchmark model,

here a random walk model.
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5 Results

5.1 In-sample analysis

We report the fit summary statistics of each model in Table 2. For the mean modeling, the

ARX model obviously outperforms the ARMAX model with a better information criteria8

and R2 statistics. The modeling of the variance, through both a GARCH and an EGARCH

process, significantly improves the information criteria. The standard deviations across stocks

of the fit summary are lower for the GARCH-type models, which suggests a higher consistency

across stocks than the other models.

Table 2: Fit Summary Statistics

Log likelihood AIC R-square

mean std mean std mean std

ARX 584.5609 224.7625 -995.40 446.73 0.257648 0.057231

ARMAX 580.2106 225.2216 -810.97 439.86 0.246212 0.057267

ARX-GARCH 604.0356 218.7943 -1103.65 435.25 0.254267 0.053659

ARX-EGARCH 591.5351 219.4758 -1108.50 436.59 0.252971 0.053093

The table reports the mean and standard deviation of key fit statistics across the 81 stocks for the four forecasting models.

AIC is the acronym for Akaike information criteria.

As the ARX model better captures the mean process than the ARMAX model, we only

report the ARX model parameter estimates in Table 3. The other models parameter estimates

are provided in Table 9, 10 and 11 (in Appendix).

8The AIC is defined as follows: AIC = −2ln (ML)+2k, where k is the number of parameters in the statistical
model and ML is the maximum likelihood function
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Table 3: Parameter Estimates of the ARX model

Variable Estimate StdErr tValue **

AR1 0.191043 0.0348 -5.48 99%

AR2 0.090239 0.0334 -2.71 68%

AR3 0.069899 0.0329 -2.13 57%

Ask slope 0.111076 0.0565 2.03 48%

Bid slope -0.133657 0.0558 -2.48 56%

N 0.000414 0.0002 1.73 41%

Q5 -0.000003 0.0000 -5.46 96%

RS 0.304829 0.0929 3.73 80%

SA 1 0.093568 0.0372 2.63 68%

SA 2 0.070035 0.0295 2.40 58%

SA 3 0.062984 0.0282 2.29 58%

SA 4 0.035948 0.0283 1.28 30%

SA 5 0.027848 0.0274 1.02 19%

SA 34 -0.04276 0.0357 -1.25 20%

This table reports the parameter estimates of the ARX(3) model. Exogenous variables are those presented in Section 3.2.

SA 1 parameter is the dummy for seasonality of the first 15 minutes of the trading day; SA 2 the next 15 minutes of the

trading day; SA 3 the third 15 minutes of the trading day, etc. SA 34 parameter is the last 15 minutes of the trading day

seasonality. The column ** reports the percentage of stocks for which the parameter is significant at a 95% confidence

interval.

The set of explanatory variables consists in both trade-based and order book-based mea-

sures. This finding is consistent with Cont et al. (2011) who show that both measures are

informative of future volume price impact. Table 3 points out some parameters that are sig-

nificant across almost all the stocks: the first autoregressive lag, depth and, to a lesser extent,

relative spread. The bid slope displays a somewhat higher coefficient and is more often signif-

icant than the ask slope. This particular result brings support for Jain et al. (2011) who find

that the bid side of the order book carries more information than the ask side. The average

trading size is also informative of future liquidity for almost half of the 81 stocks (41%). The

first hour of the continuous trading day displays a positive seasonality that is pronounced es-

pecially at the very beginning of the day. The end of day seasonality seems to be more stock
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specific with only one out of five stocks that exhibits a significant seasonality during the last

15 minutes of the trading hours.

The GARCH parameters are reported in Table 10 available in Appendix. They all exhibit

strong consistency across stocks. The EGARCH model parameters, in Table 11 available in the

Appendix, are also significant across almost all the stocks, except for the asymmetry parameter

”Θ”. Only one out of four stocks displays a significantly positive asymmetry in the dependent

variable.

In a second step, we compare the performance of the forecasting models against a random

walk model for both loss function in Table 4. All the models outperform the random walk

with a 99% confidence level. Nevertheless, the choice of a loss function affects the ranking of

the forecasting models. The performance of the GARCH-type models are very close to the

ARX model using the MAE loss function. The performance of the ARX and ARMAX model

improves when using the MSE loss function.

Table 4: Average Loss Function

MAE MEAN STD SPA MSE MEAN STD SPA

RW 0.128715 0.132757 RW 0.034192 0.100329

ARX 0.101001 0.094717 *** ARX 0.019172 0.055678 ***

ARMAX 0.101365 0.095058 *** ARMAX 0.019310 0.056293 ***

ARX-GARCH 0.100910 0.095689 *** ARX-GARCH 0.019339 0.057158 ***

ARX-EGARCH 0.101034 0.095785 *** ARX-EGARCH 0.019382 0.057832 ***

The table exhibits the mean loss function value and the standard deviation across the 81 stocks for the four forecasting

models and the random walk model (benchmark). The column SPA reports the statistical outperformance of each

forecasting model compared to the random walk model (RW). *** means the model outperforms the benchmark with a

99% confidence level.

The competition summary plotted in Figure 4 confirms that the performance of the GARCH-

type models is strongly affected by the choice of the loss function. Based on the mean average

error, the GARCH-type models seem to outperform the ARX model while their performances

strongly deteriorate when the mean squared error is considered at the benefit of the ARX

model. This result is in line with our expectations for two reasons. On the one hand, the loss
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functions measure discrepancy in the mean process. Hence, we do not expect a strong improve-

ment from the GARCH-type models. On the other hand, the MAE loss function is robust to

the presence of outliers, which is not the case of the MSE loss function. The deterioration of

the GARCH models performance when using the MSE suggests the presence of outliers in the

data.

The ARMAX model underperforms the ARX model for the mean modeling across both

loss functions but it still strongly outperforms the random walk model.

Figure 4: Summary of the forecast competition

Summary of the forecast competition between the four forecasting models for the 81 stocks. The figure plots the frequency

of best (gray) and worst (black) in-sample loss for both loss functions.

5.2 Out-of-sample analysis

The out-of-sample rolling regression results, reported in Table 5, are consistent with the in-

sample findings. The random walk model strongly underperforms all the forecasting models

at a 99% confidence level. Overall, the ranking of the models is unchanged. The ARX model
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outperforms the ARMAX model. The GARCH-type models are still affected by the choice of

the loss function but their out-of-sample performances are better on average than in-sample.

Table 5: Average Loss Function

MAE MEAN STD SPA MSE MEAN STD SPA

RW 0.123411 0.127283 RW 0.031431 0.099755

ARX 0.097024 0.088965 *** ARX 0.017328 0.043806 ***

ARMAX 0.097467 0.089252 *** ARMAX 0.017466 0.044152 ***

ARX-GARCH 0.096694 0.089595 *** ARX-GARCH 0.017377 0.045133 ***

ARX-EGARCH 0.096773 0.089571 *** ARX-EGARCH 0.017388 0.045338 ***

The table exhibits the mean loss function value and the standard deviation across the 81 stocks for the four forecasting

models and the random walk model (benchmark). The column SPA reports the statistical outperformance of the four

forecasting models compared to the random walk model (RW), *** means the model outperforms the benchmark with a

99% confidence level.

The same conclusions are drawn from Figure 5. The ARX model dominates the ARMAX

model for the mean modeling across both loss functions. The forecast competition also confirms

the better out-of-sample behavior of the GARCH-type models.
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Figure 5: Summary of the forecast competition

Summary of the forecast competition between the four forecasting models for the 81 stocks. The figure plots the frequency

of best (gray) and worst (black) out-of-sample loss for both loss functions.

To gauge the uncertainty surrounding our mean forecast, we plot the evolution of the

GARCH variance process throughout the trading day in Figure 6. The average confidence

interval around our liquidity forecast exhibits a downward trend. This suggests that the

uncertainty around our forecast decreases along with the trading day. The variance process of

the EGARCH model in Figure 7, available in Appendix, displays the same pattern.
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Figure 6: Evolution of the confidence interval throughout the trading day for the GARCH

model

The figure plots the average confidence interval of the forecasted mean across the 81 stocks throughout the trading day.

The variance is modeled by a GARCH process. The continuous trading day is discretized in 34 intervals of 15 minutes.

Finally, we run SPA test between the four forecasting models to determine whether there

is some statistical outperformance that exists among the forecasting models. The results are

summarized in Table 6.

Table 6: Statistical underperformance frequency of the forecasting models

ARX ARMAX ARX-EGARCH ARX-GARCH

MAE 33.32% 35.80% 19.75% 8.64%
MSE 8.64% 18.52% 17.28% 7.41%

The table presents the underperformance frequency at a 99% confidence level for each forecasting model across the 81
stocks and for both loss functions.

The ARX-GARCH model stands out from the crowd. It statistically underperforms other

forecasting models less than 10% of the cases for both loss functions. The other forecasting

models display less consistent results. The statistical performance of the ARX and the ARMAX
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model strongly depends on the loss function. Nevertheless, the ARMAX model remains the

worst model. At last, the ARX-EGARCH model performance is quite consistent across loss

functions but it underperforms other models for about 20% of the stocks. As a conclusion, the

ARX(3)-GARCH(1,1) model seems to better capture the adjusted Amihud ratio dynamics.

All our results highlight some predictable patterns in the adjusted Amihud ratio against a

random walk model. In the absence of more sophisticated strategies of execution price improve-

ment, the end of the continuous trading day seems to be the best time for institutional to hedge

or rebalance a portfolio. Indeed, it is characterized by a slightly -but stock specific- negative

seasonality, a higher adjusted Amihud ratio predictability and a higher trading volume.

5.3 Robustness checks on other time frames

To test the robustness of our results, we consider different time frames that correspond to

different trading sizes, specifically the 10-minute average trading volume and the 30-minute

average trading volume that are reported in Table 7 and 8.

In both time frames, the results support our initial findings. The random walk model

underperforms at a 99% confidence level all the forecasting models. The ranking of the model

remains unchanged. As mentioned earlier, the loss function choice impacts the performance of

the models. Nevertheless, the mean modeling is better captured by the ARX process than the

ARMAX process across both loss functions.

The average loss function reduction is in the same scope as in our initial results. Both

time frames display very similar results, which suggests our findings are robust across several

trading sizes.
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Table 7: Average Loss Function on 10-minute volume time frame

MAE MEAN STD SPA MSE MEAN STD SPA

RW 0.104520 0.110008 RW 0.023026 0.073184

ARX 0.083176 0.077016 *** ARX 0.012850 0.033804 ***

ARMAX 0.083506 0.077407 *** ARMAX 0.012965 0.034174 ***

ARX-GARCH 0.082817 0.077714 *** ARX-GARCH 0.012899 0.034913 ***

ARX-EGARCH 0.082897 0.077722 *** ARX-EGARCH 0.012913 0.035030 ***

The table exhibits the mean loss function value for a 10-minute volume time frame event chart and the standard deviation

across the 81 stocks for the four forecasting models and the random walk model (benchmark). The column SPA reports

the statistical outperformance of the four forecasting models compared to the random walk model (RW), *** means the

model outperforms the benchmark with a 99% confidence level.

Table 8: Average Loss Function on 30-minute volume time frame

MAE MEAN STD SPA MSE MEAN STD SPA

RW 0.169705 0.168880 RW 0.057319 0.148279

ARX 0.129158 0.116900 *** ARX 0.030347 0.077660 ***

ARMAX 0.129453 0.117385 *** ARMAX 0.030537 0.078827 ***

ARX-GARCH 0.128805 0.117587 *** ARX-GARCH 0.030417 0.080388 ***

ARX-EGARCH 0.128856 0.117891 *** ARX-EGARCH 0.030502 0.081049 ***

The table exhibits the mean loss function value for a 30-minute volume time frame event chart and the standard deviation

across the 81 stocks for the four forecasting models and the random walk model (benchmark). The column SPA reports

the statistical outperformance of the four forecasting models compared to the random walk model (RW), *** means the

model outperforms the benchmark with a 99% confidence level.
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6 Conclusion

In this paper, we investigate the predictability of intraday liquidity pools. We detect liquidity

pools through an adjusted Amihud ratio. In this framework, a liquid market is a market where

the uncertainty around the execution price is low.

Our forecasting methodology relies on an event chart as advocated by Hasbrouck (1996).

This approach has two main advantages. First, Kempf and Korn (1997) outline a major pitfall

in the widely used Amihud illiquidity ratio. This ratio implies a linear relationship between

the variables, that is volume and volatility, which is typically not the case. Setting a fixed

trading volume allows us to bypass the use of a ratio. Second, Irvine et al. (2000) address

the idea that a market may be at the same time liquid for small orders and illiquid for large

orders. Our event chart allows us to assess liquidity as a trade size specific concept. Indeed,

the fixed trading volume of the event chart can be adjusted to the order size considered by

market participants.

We select the optimal forecasting model through the general-to-specific process presented

in Hendry and Krolzig (2001). We use the Hansen (2005)’s SPA test on two mainstream loss

functions to document the performance of our forecasting models against a benchmark, both

in- and out-of-sample.

Our results outline some predictable patterns in the adjusted Amihud ratio that statistically

outperform a random walk model. The ARX(3)-GARCH(1,1) model stands out from the

crowd among the four tested forecasting models. Trade-based and order book-based liquidity

measures are informative of forthcoming price impact as confirmed by Cont et al. (2011). We

also find support for Jain et al. (2011), who show that order book bid side is more informative

than ask side.

We carry out robustness checks of our results on other time frames. The results are similar

to our initial findings, which suggest our models are robust across several order sizes.

All our results suggest that practitioners could take advantage of such models to minimize

the uncertainty around execution price. On average, the closing of the continuous trading

day seems to be the best time for institutionals to hedge or rebalance a portfolio. Indeed,

it is characterized by a slightly -but stock specific- negative seasonality, a higher adjusted

Amihud ratio predictability and a higher trading volume. The economic significance and the
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implementation of execution price improvement strategies are beyond the scope of this analysis

and left for further research.

This paper may be extended in various directions. First, we can consider market timing is-

sues within the same methodological framework. Second, we can transpose volatility literature

extensions into the liquidity framework such as realized kernels and intraday jumps.
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7 Appendix

Table 9: Parameter Estimates of ARMAX model

Variable Estimate StdErr tValue **

AR1 0.364015 0.0545 7.23 99%

MA1 0.177301 0.0561 3.31 57%

Ask slope 0.109189 0.0466 2.48 49%

Bid slope -0.12801 0.0445 -3.12 64%

N 0.000441 0.0001 2.03 47%

Q5 -0.000002 0.0000 -4.93 96%

RS 0.309721 0.0812 4.71 80%

SA 1 0.073911 0.0226 3.52 72%

SA 2 0.047836 0.0209 2.41 56%

SA 3 0.040007 0.0211 2.05 41%

SA 4 0.015703 0.0234 0.71 19%

SA 5 0.014723 0.0239 0.63 16%

SA 34 -0.018551 0.0413 -0.37 2%

This table reports the parameter estimates of the ARMAX model. Exogenous variables are those presented in Section

3.2. SA 1 parameter is the dummy for seasonality of the first 15 minutes of the trading day; SA 2 the next 15 minutes

of the trading day; SA 3 the third 15 minutes of the trading day, etc. SA 34 parameter is the last 15 minutes of the

trading day seasonality. The column ** reports the percentage of stocks for which the parameter is significant at a 95%

confidence interval.
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Table 10: Parameter Estimates of ARX-GARCH model

Variable Estimate StdErr tValue **

AR1 0.195058 0.0396 4.95 100%

AR2 0.096319 0.0370 2.63 68%

AR3 0.072862 0.0358 2.06 52%

Ask slope 0.109938 0.0516 2.35 53%

Bid slope -0.130508 0.0495 -3.01 58%

N 0.000410 0.0002 1.85 46%

Q5 -0.000003 0.0000 -5.34 96%

RS 0.309035 0.0865 4.40 80%

SA 1 0.104549 0.0274 4.08 78%

SA 2 0.072160 0.0241 3.17 68%

SA 3 0.063488 0.0246 2.78 68%

SA 4 0.035369 0.0269 1.47 38%

SA 5 0.025258 0.0267 1.02 21%

SA 34 -0.033337 0.0367 -0.81 28%

ARCH0 0.004970 0.0022 4.21 82%

ARCH1 0.115539 0.0270 4.11 90%

GARCH1 0.626170 0.0771 20.40 92%

This table reports the parameter estimates of the ARX(3)-GARCH(1,1) model. Exogenous variables are those presented

in Section 3.2. SA 1 parameter is the dummy for seasonality of the first 15 minutes of the trading day; SA 2 the next 15

minutes of the trading day; SA 3 the third 15 minutes of the trading day, etc. SA 34 parameter is the last 15 minutes of

the trading day seasonality. The column ** reports the percentage of stocks for which the parameter is significant at a

95% confidence interval.
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Table 11: Parameter Estimates of ARX-EGARCH model

Variable Estimate StdErr tValue **

AR1 -0.200212 0.0398 -5.07 98%

AR2 -0.098229 0.0365 -2.74 67%

AR3 -0.074189 0.0349 -2.14 53%

Ask slope 0.100753 0.0512 2.18 49%

Bid slope -0.123747 0.0493 -2.87 58%

N 0.000399 0.0002 1.86 42%

Q5 -0.000003 0.0000 -5.15 95%

RS 0.305397 0.0866 4.36 81%

SA 1 0.095921 0.0278 3.70 73%

SA 2 0.069866 0.0243 3.06 65%

SA 3 0.059834 0.0244 2.65 63%

SA 4 0.033833 0.0263 1.43 37%

SA 5 0.023732 0.0259 0.97 22%

SA 34 -0.042692 0.0356 -1.22 33%

EARCH0 -1.041414 0.4146 -3.53 88%

EARCH1 0.168538 0.0419 4.01 75%

EGARCH1 0.749040 0.0989 30.89 93%

THETA 0.946708 1.1687 0.76 27%

This table reports the parameter estimates of the ARX(3)-EGARCH(1,1) model. Exogenous variables are those presented

in Section 3.2. SA 1 parameter is the dummy for seasonality of the first 15 minutes of the trading day; SA 2 the next 15

minutes of the trading day; SA 3 the third 15 minutes of the trading day, etc. SA 34 parameter is the last 15 minutes of

the trading day seasonality. The column ** reports the percentage of stocks for which the parameter is significant at a

95% confidence interval.
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Figure 7: Evolution of the confidence interval throughout the trading day for the EGARCH

model

The figure plots the average confidence interval of the forecasted mean across the 81 stocks throughout the trading day.

The variance is modeled by an EGARCH process. The continuous trading day is discretized in 34 intervals of 15 minutes.
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