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Abstract

This paper draws a parallel from model combination to Markowitz’s modern
portfolio theory. Building upon the bias\variance trade-off framework, the
paper proposes a Model Portfolio Approach and a Global Minimum Variance
weighting scheme to mitigate the asset pricing model uncertainty problem.
With a well-conditioned pricing error covariance estimator, our method pro-
vides improved out-of-sample pricing performance over both the single model
selection method and other existing model combination weighting schemes.
Keywords: model portfolio; global minimum variance weighting; asset
pricing model uncertainty; out-of-sample pricing error

“It is a very beautiful line of reasoning. The only problem is that
perhaps it is not true. (After all, nature does not have to go along
with our reasoning.)”

-Richard P. Feynman

1. Introduction

Developing and testing asset pricing models has been a fascinating en-
deavour with a long history in finance literature. Since Markowitz’s modern
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portfolio theory (1952), many asset pricing models have been developed over
the last six decades. With rational expectations and the Efficient Market
Hypothesis, asset pricing models should theoretically provide us unbiased
prediction of future asset return. But empirical tests in this area are quite
challenging. Without knowing the ex ante beliefs in the marketplace, tra-
ditional tests of asset pricing models with ex post datasets requires a tight
link between ex-ante beliefs and what factually is in the ex-post dataset
(Bossaerts, 2004). But this link is too tight and the belief that realized re-
turns are an unbiased estimate of expected returns is misplaced (Elton, 1999).
The empirically poor performance of asset pricing models, especially large
out-of-sample mispricing errors (Simin, 2008), poses threat to the usefulness
of asset pricing models. The companion literature on asset pricing anomalies
are another challenge to asset pricing models. The finding of predictive abil-
ity of conditional asset pricing models is inspiring but it may tend out to be
spurious due to long haunting data snooping problem in finance (Foster et al.,
1997). We are now at a stage that we are still uncertain about whether the
poor performance comes from our empirical methodology or maybe models
themselves are false. The question then is how can we improve asset pricing
model out-of-sample performance when all models are possibly false.

In the literature, model selection methods have long been documented as
a way to mitigate asset pricing model uncertainty. However, the choice of one
asset pricing model to the exclusion of another is an inherently misguided
strategy (O’Doherty et al., 2010). The underlying assumption of both non-
Bayesian and Bayesian model selection is that the model space is complete
and so that the true model is in the model space, but the truth is that we
do not have such prior knowledge. Moreover, omitting useful information in
other abandoned models is detrimental to accurate asset pricing. Addition-
ally, sampling error is also a concern. The best performing model may tend
out to be the worst in another sample. Despite the winner’s curse problem1,
the unobservable economic structure change may also increase the risk of
excluding the seemingly worse model under one regime. Just like the six
monks who encountered an elephant for the first time–each monk grasping a
different part of the beast and coming to a wholly different conclusion as to
what an elephant is but no one giving a true picture of the elephant. Disci-
ples of different pricing models have captured different features of the same

1see Hansen (2009).
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financial asset price but none of them has a completely true description. A
collection of all opinions provides a closer illustration to the truth.

Here in this paper, in contrast to the paradigm of single model selection
methods, we propose a Model Portfolio Approach to diversify asset pricing
model out-of-sample mispricing uncertainty. Our approach is in the same
spirit as Modern Portfolio Theory for asset allocation (Markowitz, 1952).
The core inspiration of portfolio theory is that the idiosyncratic risk can be
diversified by optimally pooling a set of assets and the portfolio of assets
will provide higher risk-adjusted return than any individual assets. Just like
asset portfolio,which is derived under mean-variance framework by a trade-
off between return and risk, we derived our optimal model portfolio by a
trade-off between bias and variance. The bias\variance trade-off is the key
to the success of out-of-sample prediction2.

Our Model Portfolio Approach is directly related to the forecast combi-
nation literature. The forecast combination is firstly introduced into econo-
metric forecasting by Bates and Granger (1969), and then extended by
Granger and Ramanathan (1984), thus spawn a large literature. Some ex-
cellent reviews include Granger (1989), Clemen (1989), Diebold and Lopez
(1996), Clements et al. (2002),Timmermann (2006) and Stock and Watson
(2006). Recently, forecast combinations have received renewed attention in
the macroeconomic forecasting lterature with respect to forecasting inflation
and real output growth (e.g., Stock and Watson, 2003) Despite increasing
popularity of forecast combination in economy forecasting, applications re-
main relatively scarce in the finance forecasting literature. Only in the recent
several years, the forecasting combination has been seen in asset pricing stud-
ies Durham and Geweke (2011) provide an optimal model pooling method
for S&P 500 return density forecasting by maximizing predictive log score
and their result shows that the prediction probabilities of the optimal pool
exceed those of the conventional models by as much as 7.75 percent. Neely
et al. (2010) analyse the ability of both economic fundamentals and technical
moving-average rules to forecast the monthly U.S. equity premium using out-
of-sample tests and conclude that fundamental and technical approaches are
complementary. Both of these two studies find improved performance of com-
bined models in aggregate stock return forecasting. Additionally, O’Doherty
et al. (2010) provide a optimal model pool for cross-section stock portfolio

2see Geman et al. (1992)
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return prediction and find improved performance of combined asset pricing
model. In their work, they only focus on five well-known asset pricing models
(CAPM, Fama-French three-factor model, Carhart four-factor model, con-
sumption CAPM, and Chen, Roll, and Ross five-factor model). Our Model
Portfolio Approach contributes to this line of research by providing a new
way to understand the success of model combination and a unified framework
for optimal weights derivation.

In contrast to the consensus on the superiority of model combination,
there is no unanimous agreement on model combination weighting. A plethora
of weighting schemes have been developed in both non-Bayesian and Bayesian
econometrics. But it seems that the simple arithmetic average weighting
method (1/N rule) outperforms the existing complicated weights most of
time. Stock and Watson (2004) find that among all the competing weights,
the simple 1/N rule gives smallest mean squared forecasting error (MSFE).
The most recent work on superior simple average model combination by Issler
and Lima (2009) also find that a bias-corrected simple average combining
method dominate all other weights considered. This “1/N” puzzle has been
long haunted around forecast combination practice. The common explana-
tion of this puzzle is that the weights estimation error is too large to be offset
by diversification gains due to small effective sample size3. Here, in our study,
optimal weight is a by-product of objective function optimization along the
bias\variance efficient frontier. But as out-of-sample pricing error variance
and bias are unobservable, the optimization is along estimated frontier rather
than true frontier. Taking the frontier estimation error problem into consid-
eration, we propose a global minimum variance (GMV) weighting scheme,
which is the weights of global minimum variance portfolio. Our weighting
formula in its basic form can be unified with Granger-Bates-Ramanathan
optimal weighting scheme but proved to be more general in terms of relaxing
Granger-Bates-Ramanathan single model unbiasedness assumption. More-
over, by utilizing the recent development in large scale covariance matrix
estimation technique, GMV weighting can be used in small effective sam-
ple size problem when model space is huge. The traditional Granger-Bates-
Ramanathan OLS weighting has theoretical optimality, but due to estimation
error in small samples, it usually under-perform other weighting scheme em-

3Number of models “N” is relatively large compared with weights estimation sample
size.
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pirically. Additionally, under our approach, there is no puzzle. 1/N rule will
only be optimal when it is close to the true optimal. This result is consistent
with Smith and Wallis (2009).

This paper explicitly mirrors model combination to asset portfolio the-
ory. We do not only provide a simple way to uncover the myth of model
combination, but also contribute to both model combination literature and
the asset pricing model uncertainty literature with an optimal asset pricing
model combination weighting scheme. Moreover, our paper can serve as a
bridge between portfolio study and model combination study. The theoret-
ical and empirical studies in these two areas will enhance the development
of each other. Some peer studies have already appeared in both economet-
ric journals and finance journals. DeMiguel et al. (2009) compares portfolio
strategies which differ in the treatment of estimation risk and find that none
of the strategies suggested in the literature is significantly better than simple
diversification, i.e., taking the equally weighted portfolio. This puzzle has
also long existed in forecast combination studies (Bunn, 1989; Clemen and
Winkler, 1986; Dunis et al., 2001). To address the long standing puzzle in
empirical studies, both forecast combination and asset portfolio studies pro-
pose a shrinkage weighting scheme. In forecast combination, Diebold and
Pauly (1990) propose to shrink towards equal-weights. Stock and Watson
(2004) also propose shrinkage towards the arithmetic average of forecasts,
while most recently in portfolio construction studies, Frahm and Memmel
(2010) documents the dominating feature of shrinking Markowitz weight to-
ward equal weight. In this paper, we draw an explicit parallel of these two
studies, and our unified framework will lead to more future research to further
explore the similarities between these two areas.

The following sections are as follows: Section 2 defines our problem: asset
pricing model uncertainty; section 3 solves our objective problem: derivation
of optimal model combining weights; Section 4 provides two simulation stud-
ies to verify the advantage of Model Portfolio Approach and GMV weighting
scheme; Section 5 concludes.

2. Asset Pricing Uncertainty

2.1. The Source of Mispricing Uncertainties
The pricing kernel of any asset pricing model can be expressed as:

Et−h[MtRi,t] = 1
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Where Mt is stochastic discount factor(SDF), and Ri,t is asset i’s return at
time t. The operator Et−h is the conditional expectation conditioning on
information up to time t− h. All asset pricing models can be unified under
this framework with a specific SDF, for example, we can get the Capital
asset pricing model (CAPM) by letting Mt = a + bRm (Rm is the return of
a benchmark portfolio; a andb are regression coefficients). But the true SDF
is unobservable, thus it is uncertain which asset pricing model is the true
model. There are some possibilities that none of the asset pricing models is
true. Empirical studies show that both conditional and unconditional asset
pricing models perform poorly, especially in the out-of-sample test (Simin,
2008). In these tests, researchers usually use realized return as a proxy for
expected return, which is an improper measure (Elton, 1999). Additionally,
due to econometric estimation technique, empirical approximation of an asset
pricing model can also distort the pricing ability. Without a good proxy for
investor’s ex ante expectation, we are far to conclude whether asset pricing
models are true or false. Confronted with asset pricing model uncertainty
and possible incomplete existing model space, the expected performance of
a selected model j may be biased toward true model with a model bias bji :

E{Ej
t−h[Ri,t]} = ETrue

t−h [Ri,t] + bji

Ej
t−h[Ri,t] = ETrue

t−h [Ri,t] + vji,t + bji (2.1)

Where vji,t is model error of a selected model j. Realized return comprises
two terms, true expectation and an unexpected shock ηi,t with a zero mean

Ri,t = ETrue
t−h [Ri,t] + ηi,t (2.2)

Empirical approximation of a selected asset pricing model j can be expressed
as

f ji,t(X) = Ej
t−h[Ri,t] + kji + εji,t (2.3)

Where kji is the bias term 4 and εji,t is an error term with zero mean. Empirical
pricing error is

e = Ri,t − f ji,t(X) (2.4)

4A unbiased fitting might be biased for out-of-sample generalization
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Plug in equation (2.1) and equation (2.3), we can have

e = ETrue
t−h [Ri,t] + ηi,t − (Ej

t−h[Ri,t] + kji + εji,t)
e = ETrue

t−h [Ri,t] + ηi,t − (ETrue
t−h [Ri,t] + vji,t + bji + kji + εji,t)

e = ηi,t − bji − vj,t − k
j
i − ε

j
i,t (2.5)

Expected mispricing uncertainty can be proxied by the following equation5:

EMU = E[e2] (2.6)

Substitute e with (2.5)

EMU = E[(ηi,t − vj,t − kj − bji − ε
j
i,t)2] (2.7)

Expanding the equation (2.7), we can see that expected pricing risk has three
components

EMU = V ar(ηi,t) + (V ar(vji,t) + E(bji )2) + (V ar(εji,t) + E(kji )2) (2.8)

The three sources of mispricing uncertainty are: volatility of real asset re-
turn (V ar(ηi,t)); model risk, or the between asset pricing model uncertainty
(V ar(vji,t+E(bji )2))), it is the sum of model variance and model bias; estima-
tion risk (V ar(εji,t+E(kji )2)) or parameter uncertainty . We show the relation
between these three sources in figure( 1). Obviously, the lower bound of ex-
pected pricing uncertainty of an asset pricing model is the volatility of real
asset return (V ar(ηi,t)), which is irreducible in empirical modelling process
but is diversifiable by forming asset portfolio. Our focus in this paper is last
two reducible modelling error part.

2.2. Model Selection Risk
Existing equilibrium pricing models are not explicit about what instru-

mental variables form the investors’ information set. Since the identity of
the instruments is unknown, a plethora of papers propose various variables
to explain movements in conditional expected returns. And there is little con-
sensus on what the important conditioning variables should be. To address
this kind of regression variable model uncertainty problem, researchers search

5The calculation is the same as mean squared forecasting error (MSFE).
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Figure 1: Sources of Asset Pricing Model Uncertainty

available information and select variables that best describe the data. They
report the results as evidence of security predictability. But the results might
be spurious due to data snooping (Foster et al., 1997). The data snooping
fears raise researchers’ awareness that common model selection methodol-
ogy may not be proper in studying asset pricing model’s predictive ability.
Empirical results begin to show that the best selected model tend to fit a
sample well but generalized poorly into another sample. The common model
horse race method relying on model selection criterion (such as AIC, BIC
and adjusted R2) leads to inconsistent in-sample and out-of-sample perfor-
mance, even though these criterion all have a penalty term to penalize the
model complexity for in-sample over fitting. Because these criterion are good
estimators of in-sample error, but not of expected out-of-sample prediction
error. If the relative performance keeps consistent in two different samples,
using in-sample error to select the best model does not matter much. But
unfortunately, as pointed out by Hansen (2009), good in-sample fit translates
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into poor out-of-sample fit one-to-one when multiple models are compared
in terms of their in-sample fit. Hence, model selection with these criterion is
improper if we are aiming at out-of-sample model performance.

Moreover, in practice, our objective of using an asset pricing model is to
identify the model which will generalise best, not in an asymptotic sense, but
during a particular finite out-of-sample period. In this case, out-of-sample
performance, as well as the in-sample performance, is subject to sampling
error. This will approximately double the risk that the selected model will
perform sub-optimally during a particular out-of-sample period. By selecting
a model, we are aiming at select a model which gives best performance, but
due to the sample data noise, the selected model will be positively biased
with respect to the true expectation of future performance. This can be
easily demonstrated by the following formula:

max (performance) + E[noise] 6 E[max (performance + noise)]

Therefore when model space is incomplete, the single best model selec-
tion method will lose useful information contained in other seemingly infe-
rior models, and will cause high model bias (E(bji )2)) and model uncertainty
(V ar(vji,t), leading to an overall high asset pricing uncertainty. Moreover,
economic structure break will make the problem even worse. The data gen-
erating process may vary across different economic states. An asset pricing
model that is proper in boom periods may be improper in bust periods. As
the break point is really difficult to predict, the ideal method of selecting a
single best model for each regime is thus ex ante impossible. Hence, relying
on one selected model has the risk of causing large loss at the regime shifting
period.

Asset pricing model uncertainty attracted renewed attention at the be-
ginning of this millennium. Pastor and Stambaugh (2000) discusses prior
mispricing uncertainty of asset pricing models and the influence on portfolio
choice. Avramov (2002) investigates the role of uncertainty about the return
forecasting model in choosing optimal portfolios. The approach proposed
in all these studies is Bayesian Model Averaging (BMA) method. Bayesian
model averaging contrasts markedly with the traditional approach of model
selection. BMA averages over all the models with the posterior model prob-
abilities. The BMA indeed proved some improvement over the past model
selection methods and have several admirable properties, such as superior
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out-of-sample performance and limited data snooping bias. But as BMA
conditions on that the model space is complete and thus the true model is
in the model set Durham and Geweke (2011), given large sample size, BMA
will put all weight on the true model. Therefore when our premise is that all
models might be false, BMA is not a good choice. And all these Bayesian
model selection studies are limited to the regress variable uncertainty. The
models considered in these studies are all linear regression. But actually, the
model uncertainty about asset pricing model is more broad rather than just
instrument variable uncertainty. There is no theory about whether the un-
derlying asset price process should be linear or nonlinear. We should take this
functional form uncertainty into consideration as well. But existing studies
rarely approach this asset pricing model functional form uncertainty.

2.3. Model Combination Approach
In contrast to the paradigm of selecting a single best model and treating

it as the only true model, model combination is a way to reduce the model
prediction error by averaging all models. Although model combination tech-
niques have been well developed in all strands of statistics6, and have been
implemented in economics and many other fields such as meteorology and
hydrology forecasting to model uncertainty problem, the application in fi-
nance is scarce. But actually, in finance, especially the asset pricing area,
model uncertainty problem is quite substantial as the number of existing as-
set pricing model is large. Hence, asset pricing area will be a promising place
to apply model combination techniques.

We verify the diversification gains of model combination with a simple two
model case, regardless of the source of uncertainty, either because of theo-
retical pricing model being false or because of poor empirical approximation.
The only thing of interest is the pricing error series. This diversification
has the same spirit as Markowitz (1952) mean-variance approach to portfolio
optimization.

Denote errors from two asset pricing models as e1 ∼ (0, σ2
1) and e2 ∼

(0, σ2
1), the correlation between two errors is ρ12, the combined model error

6Frequentist (Pioneer work by Bates and Granger (1969), Least square method etc.),
Bayesian (Min and Zellner, 1993), etc.) and recent information theoretic method (Hansen
(2008), Mallow’s Cp,etc.) and likelihood method by Durham and Geweke (2011). And
another Bayesian fashion frequentist shrinkage method (Diebold and Pauly (1990) etc.)
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is:
ec = ωe1 + (1− ω)e2

By construction, combined error term has zero mean. The variance of the
error is

σ2
c (ω) = ω2σ2

1 + (1− ω)2σ2
2 + 2ω(1− ω)σ12 (2.9)

Solving first order condition of minimizing error variance

ω∗1 = σ2
2 − σ12

σ2
1 + σ2

2 − 2σ12

ω∗2 = σ2
1 − σ12

σ2
1 + σ2

2 − 2σ12

Substituting ω∗ in equation (2.9)

σ2
c (ω∗) = σ2

1σ
2
2(1− rho2

12)
σ2

1 + σ2
2 − 2rho12σ1σ2

6 min(σ2
1, σ

2
2)

The diversification gains will only be zero when σ1 or σ2 is zero; or σ1 = σ2
and ρ12 = 1; or ρ12 = σ1/σ2.

This pooling method can be generalized to a multi model case. Similar
as asset portfolio selection, we construct an optimal portfolio of models in
order to reduce the expected mispricing uncertainty:

minE(e2
t+h) (2.10)

Where h denotes pricing horizon.
From equation (2.8), we can see the mispricing uncertainty comprises

two components: bias and variance components. Despite the source of bias
and variance, for out-of-sample pricing, we treat the model uncertainty and
estimation uncertainty equally. Then we can simplify the expected mispricing
uncertainty to:

EMU = E[et+h,t]2 + V ar(et+h,t) (2.11)
Now our objective is as following:

minE[et+h,t]2 + V ar(et+h,t) (2.12)

From equation (2.12), we can see that to reduce the total magnitude
of mispricing uncertainty, we have to minimize both the bias and the vari-
ance. But as in reality, the sample size cannot grow to infinity, we cannot
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eliminate at the same time both the variance and bias. Thus a dilemma of
bias/variance. We have to trade off between bias and variance. The out-of-
sample performance of pricing model relies on a comprise between the two.
Actually, we are always quite far away from building optimal models as there
is a wide gap between the theoretical notion of consistency, an asymptotic
property, and finite sample size in practice. In any finite sample, the price
to pay for low bias is high variance (Geman et al., 1992).

Now we have a mapping from model combination to mean-variance port-
folio construction framework. Here instead of using mean return and return
risk, we trade off between bias and variance of pricing error. We introduce
a certain degree of bias to exchange for a reduction of variance of model,
and then a total reduction in the mispricing uncertainty. As for portfolio
selection, the model weighting vector can be solved as a by-product of the
minimization.

ω∗t+h,t = arg min
ωt+h,t∈Wt

E[L(et+h,t(ωt+h,t)) | f̂t+h,t]

Here L(et+h,t is simply (et+h,t)2/. Obviously, our optimal model combination
weighting also depends on the trade-off between bias and variance.

Elliott and Timmermann (2004)show that, subject to a set of weak tech-
nical assumptions on the loss and distribution functions, the combination
weights can be found as the solution to the following Taylor series expansion
around µet+h,t

= E[et+h,t | It], where It denote the available information at
time t

ω∗t+h,t = arg min
ωt+h,t∈Wt

L(µet+h,t
) + 1

2L
′′

µe
E[(et+h,t − µet+h,t

)2 | It]

+
∞∑
m=3

Lmµe

m∑
i=0

1
i!(m− i)!E[em−it+h,tµ

i
et+h,t

| It]

Where Lkµe
≡ ∂kL(et+h)

∂ω
|et+h

= µt+h. This expansion suggests that the collec-
tion of individual asset pricing model prediction f̂t+h is useful in as far as it
can predict any of the conditional moments of the prediction error distribu-
tion. Hence, if the objective is to use the asset pricing models for a better
out-of-sample pricing, no matter the model is complete or not, as long as it
contributes to the error moments, it is useful. We can empirically test the
incremental information content of asset pricing models to see if they have
marginal contribution to our model pool using model encompassing test by
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Chong and Hendry (1986) and Fair and Shiller (1989, 1990). We can then
construct the model set Fm×1:

Fm×1 =


f1
.
.
.
fm


Then our combined pricing model can be formed as

fc = ω′m×1 ∗ Fm×1

From our derivation, empirically combined asset pricing model provides
an improved out-of-sample pricing ability. Empirical success of combined
asset pricing model should shed some light on the development of new theo-
retical asset pricing model as combined model can be seen as a way to uncover
the missed pricing factor in a certain asset pricing model.

The key to out-of-sample pricing performance is the bias\variance trade-
off. Thus the direct way to construct our model portfolio is to directly find a
compromise between the two terms to achieve a total mispricing uncertainty
diversification.

3. Model Portfolio Approach

We draw a parallel from asset pricing model combination to asset portfolio
construction, replacing the trading-off between return and risk in Markowitz’s
mean-variance framework, here we trade off between variance and bias and
build our bias-variance framework. Therefore, we can derive our model port-
folio frontier as asset portfolio frontier derivation.

3.1. Analytical Frontier Derivation
Our objective is to choose model weights (ω) which will minimize the

variance (ω′Σω and Σ is covariance matrix of model pricing errors) of the
future expected pricing error with a given bias (S = ω′s, and s is bias vector
of single forecasting models). We derive our efficient model pool frontier as
Merton(1970) does for portfolio frontier derivation:

min
x

1
2ω
′Σω
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s.t.
S = ω′s

1 = ω′1

It is equvilant to

min
ω

1
2ω
′Σω + λ(S − ω′s) + γ(1− ω′1)

Where λ and γ are Lagrange multipliers. Solving this minimization prob-
lem, we have the following necessary and sufficient first order conditions:

Σω = λs+ γ1 (3.1a)
S = ω′s (3.1b)
1 = ω′1 (3.1c)

Thus we have
ω = λΣ−1b+ γΣ−11 (3.2)

To get an exact expression for the frontier combination x, we need first solve
for the Lagrange multipliers λ and γ. First, we define a number of scalars
that will reduce the notational burden

B = s′Σ−1s (3.3a)
A = s′Σ−11 (3.3b)
C = 1′Σ−11 (3.3c)
D = BC − A2 (3.3d)

Multiplying equation (3.2) by s′ to get

s′ω = λs′Σ−1s+ γs′Σ−11 (3.4)

Using equation(3.1b) and our defined scalars reduces to

S = λB + γA (3.5)

Multiply equation(3.2) by 1 to get

1′ω = λ1′Σ−1s+ γ1′Σ−11 (3.6)
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Use equation(3.1c) and our defined scalars this reduces to

1 = λA+ γC (3.7)

Combining equation(3.5) and (3.7) gives us 2 equations in 2 unknowns(
B A
A C

)(
λ
γ

)
=
(
S
1

)
(3.8)

we can solve for the constants, λ andγ, as follows(
λ
γ

)
=
(
B A
A C

)−1 (
S
1

)
(3.9)

and thus
λ = CS − A

D
(3.10)

and
γ = B − AS

D
(3.11)

Recall equation(3.2) that the composition of a frontier portfolio is given by

ωp = λΣ−1s+ γΣ−11. (3.12)

Plug in the values of λ and γ to obtain

ωp = CS − A
D

Σ−1s+ B − AS
D

Σ−11 (3.13)

Upon rearranging, we have

ωp = BΣ−11− AΣ−1s

D
+ [CΣ−1s− AΣ−1s

D
]S (3.14)

or
ωp = g + hS (3.15)

Where the vectors, g and h are defined as

g = BΣ−11− AΣ−1s

D
(3.16)

and
h = CΣ−1s− AΣ−11

D
(3.17)
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Equation(3.15) is a closed form expression for the necessary and sufficient
conditions for a model pool, xp, to be a frontier combination. The covariance
of the bias between two arbitrary frontier model pools, xp and xq is given by

cov(fp−R, fq−R) = cov(fp, fq) = ω′pΣωq = C

D
[Sp−

A

C
][Sq−

A

C
]+ 1

C
(3.18)

Thus the variance of a frontier combination is

σ2
p = C

D
[Sp −

A

C
]2 + 1

C
(3.19)

Upon rearranging
σ2
p

1/C −
C
D

[Sp − A
C

]2

D/C2 = 1 (3.20)

Which is the equation of a hyperbola in σ, S space with a center at (0, A
C

).
See in figure( 2).

Figure 2: Theoretical Bias-Variance Frontier
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Obviously, the two main inputs for our Model Portfolio Approach is the
out-of-sample model pricing biases (s) and pricing error covariances (Σ).
These two parameters are ex ante unobservable and thus have to estimated.

The direct way of estimating these unknowns is to randomly divide the
total sample into three parts as it is shown in figure( 3): a training set,
a validation set, and a test set. The training set is used to fit the single
models; the validation set is used to estimate single model pricing errors
(both S and Σ ) and model weights ; the test set is used for assessment of
the generalization error of the models (Hastie et al., 2009).

Figure 3: Three Parts of Total Sample

3.2. Global Minimum Variance Weighting Scheme
Admittedly, the three-sample division method is ideal, but if the data is

insufficient, we may have to omit the validation step and then approximated
analytically (AIC, BIC, MDL, SRM) or by efficient sample re-use (cross-
validation and the bootstrap). But none of these substitutes are unbiased,
only a separate test set will provide an unbiased estimate of test error. It
seems a delimma here. But actually, we still can divide the total sample
into three parts when sample size is relatively small by adjusting the param-
eter (s and Σ) estimation methods accordingly, as the large scale estimation
techniques have already been well developed in recent years. The concern of
small estimation sample size can thus be mitigated. Here in our approach,
we use the three-period methods to obtain our model inputs.

The optimal model portfolio can be solved along the frontier (see figure(
2)). However, in practice, our true efficient frontier will be distorted because
the bias and variance have to be estimated rather than known. Thus the
estimated frontier actually deviates from the true frontier as exactly what
happens with the efficient portfolio frontier. As to our our bias-variance
method, both bias and variance have to be estimated. The optimization is
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actually along the estimated frontier rather than along the true frontier. The
gains from model uncertainty diversification will be reduced by the estimation
error. Hence, not every ex ante optimal model pool will be ex post optimal.
The actual performance is reflected on the actual frontier with test sample
return and estimated weights. We demonstrate this point with a simple
simulation.

Assume pricing error of different asset pricing model multivariate nor-
mally distribute, et+h,t ∼ MVN(µ,Σ). We simulate the true efficient fron-
tier with true parameters µ and Σ (See the solid line in figure( 4)). We
then estimate the parameters µ̂ and Σ̂ and then draw the estimated efficient
frontier (See the asterisk line in figure( 4)). And then we draw the actual
frontier, which is generated with estimated weights ω̂ and the true param-
eters( µ and Σ). The actual frontier is the realization of estimated model
portfolio ex post performance. It is the final real performance we can get.
The actual frontier is the dotted line in figure( 4). We report two typical
plots from our 10,000 experiments here.

From these figures, we can see that as actual frontier is to the right of the
true frontier, the estimated optimal model portfolio is ex post suboptimal.
Because at the similar level of bias, we can always find a smaller variance
combination. The chosen model pool is thus not ex post bias-variance effi-
cient.

Among all the model portfolios, global minimum variance portfolio has
the most convergent performance on all three frontiers. As global minimum
variance combination can be estimated more accurately than other frontier
combinations. The ex post optimality of global minimum variance portfolio
has also been found in asset portfolio studies (Chan et al., 1999; Jagannathan
and Ma, 2003; Kempf and Memmel, 2003). And the reason for the dominat-
ing performance of global minimum variance asset portfolio over tangency
asset portfolio is documented in Merton (1980): Estimation of mean return
is more volatile than estimation of risk(variance). For our model portfolio,
the same argument also holds.

From Merton (1980), the variance of estimation on mean return and
volatility are given by:

V ar{µ̂} = σ2

q

V ar{σ̂} = 1
2
σ2

qn
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Figure 4: Simulated Frontiers
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Where µ̂ is the estimated expected return vector and σ̂ is the estimated
standard deviation.q ≥ 1 is year length of the data, n ≥ 1 is the observation
interval each year. The number of total observation is q ∗ n.The larger the
q, the longer the sample period, the more precise of the two estimates. For
q → ∞, both values go to zero, the estimation error disappear. For a finite
number of years (q < ∞), the variance can be estimated more accurately.
The relative precision is given by

V ar{µ̂}
V ar{σ̂}

= 2n (3.21)

For asset return prediction, one typically use daily, weekly or monthly data,there-
fore,the precision ration are within a range 24 5 V ar{µ̂}

V ar{σ̂} 5 500. Thus for asset
portfolio, volatility can be more accurately estimated than mean return.

For model portfolio, out-of-sample asset pricing bias estimation is more
volatile than pricing error variance:

E{et+h,t} = E{Rt+h − f̂t+h,t} = E{Rt+h} − f̂t+h,t
V ar{et+h,t} = V ar{Rt+h − f̂t+h,t} = V ar{Rt+h}

Note: f̂t+h,t is a known quantity at the forecasting time.

And

V ar{ ˆE[et+h,t]} = V ar{E[Rt+h]} = V ar{µ̂t+h} = σ2

q

V ar{ ˆV ar(et+h,t)} = V ar{V ar(f̂t+h,t)} = V ar{σ̂}

Substituting in equation (3.21),we can get

V ar{ ˆE[et+h,t]}
V ar{ ˆV ar(et+h,t)}

= 2n

Hence, just as in the optimal asset portfolio case, we can show that the
relative precision of estimation of bias and variance is in also in the range 24 5
V ar ˆE[et+h,t]

V ar{ ˆV ar(et+h,t)}
5 500. As the variance of prediction error can be estimated

with smaller risk, global minimum variance combination with no dependence
on the estimation of bias can be more accurately estimated and more stable.
This can be simply seen from the following demonstration:
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Global minimum variance model portfolio is solved by

min ω′Σω
ω

, s.t. ω′1 = 1. (3.22)

Optimal weight only depends on the estimation of variance-covariance matrix
Σ, it is independent of the information on bias. Other frontier combination
weights is to solve:

min
ω

ω′Σω + λ(S − ω′s) s.t. ω′1 = 1.

Optimal weight depends on the estimation of both variance-covariance matrix
Σ and bias.

Here we propose a global minimum variance (GMV) weighting scheme.
As with the asset portfolio case, the GMV weights is actually a by-product
of the equation (3.22) minimization problem. The weight is given by

ω = Σ−11
1′Σ−11

GMV model portfolio is on the center of the parabola (Figure 1, point O(1/C,
A/C)). A/C is the optimal bias adjustment. As can be seen from the weights
calculation formula, estimation of inverse covariance matrix of prediction
errors between different pricing schemes is critical to the success of the Model
Portfolio Approach, or optimal weighting scheme.

The variance-covariance matrix Σ can be estimated as its sample coun-
terpart. But for a large scale problem, as the sample become relative small,
sample covariance matrix is estimated with large error. We adopt a robust
covariance estimation method from Schafer et al. (2005). This method can
be summarized as

Σ∗ = λT + (1− λ)U (3.23)
Where T and U represent the target covariance matrix and maximum likeli-
hood covariance estimator. The shrinkage intensity λ∗ is given by

λ∗ =
∑p
i=1 ˆvar(ui)− ˆcov(ti, ui)− ˆBias(ui)(ti − ui)∑p

i=1(ti − ui)2 (3.24)

By producing a well-conditioned covariance estimate, we can automatically
obtain an equally well-conditioned estimate of the inverse covariance (Schafer
et al., 2005).The estimated covariance matrix is a weighted average of the
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unbiased covariance estimator and a target. The shrinkage intensity (the
weights) can be solved analytically by Lediot and Wolf’s (2003) theorem.
This weighting method is distribution free and is not computationally inten-
sive as MCMC, bootstrap or cross validation.

3.3. Comparsion With Other Weighting Schemes
3.3.1. Unification With Optimal Weighting

In the earlier pioneering forecast combination work, Bates and Granger
(1969) discuss the optimality of combined forecast and provide a discussion
of the ideal properties of a optimal combining weighting method. Bates and
Granger (1969) summarize the optimal combining weights estimation into
three OLS regressions:

(i) y = ω′F + ε

(ii) y = ωTF + ε s.t. ω′1 = 1
(iii) y = ω0 + ω′F + ε (3.25)

Where y is the forecast target. F is forecast vector which has the component
prediction from single model. By regressing the realized target on the fore-
casts, one can obtain the coefficient estimates for ω, which are model weights
for individual models. Then the combined prediction can be formed as:

(i) fc = ω′F

(ii) fc = ωTF s.t. ω′1 = 1
(iii) fc = ω0 + ω′F

Attention in these works are restricted to combination of two model forecasts.
When extended to combination of N models by the Dickinson (1975), the
model weight vector is given by:

ω = Σ−11
1′Σ−11

(3.26)

Where Σ is covariance matrix of forecasting errors. This formula in this
basic form is identical to our GMV weighting scheme. But under our Model
Portfolio Approach, we do not require individual model unbiasedness. As
can be seen from our derivation, individual models can be biased, we do not
require the model to be constrained to the horizontal axis in figure( 2). This
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restricted optimal model portfolio is located at point P in figure( 2), which
has larger variance than GMV combination (Point O). Thus, if a single model
are biased, our method provide a better combination.

Another good property of our GMV weighting scheme is that GMV
weighting explicit points out the key to the success of optimal weighting
scheme. As can be seen from the weighting formula, inverse covariance ma-
trix estimation is the critical inputs for GMV weight estimation. Thus we can
concentrate our effort on improved estimation of covariance matrix. With
a well estimate covariance matrix, our GMV weights can be accomodated
to large model space, or small effective sample size problem, of which OLS
regression weighting method is incapable.

3.3.2. A Discussion of Other Weighting Schemes
The aim of out-of-sample prediction modeling is to find a model which

gives smallest test error. Model selection and model combination are two
ways to achieve the same goal but with a different paradigm. With the same
performance metric, model selection method selects the single best model
while model combination pools all the models, but all aim at optimizing the
performance metric. Therefore it is not surprising that most development in
model combination is along the line of optimising different model selection
criterion.

The recent Hansen’s Mallows Model Averaging (2008), a weighting scheme
based on minimization of Mallows criterion, is actually a direct optimization
of model selection criterion Cp. The reason for using Mallows’ Cp statistic is
that Cp is an asymptotically unbiased estimate of both the in-sample mean-
squared error (MSE) and the out-of-sample one-step-ahead mean-squared
forecast error (MSFE). Geweke and Amisano’s weighting method (2011) is
through a maximization of predictive log score. With a binomial log likeli-
hood, this optimization is equal to a AIC information criterion optimization
which is commonly used in model selection.

Obviously, the recent development in this area is actually to find a model
selection criterion which can be used as a good estimator for test error. So
far the tested criterion are all from model selection. But actually, as dis-
cussed in Hastie et al. (2009), Cp, AIC and BIC are not unbiased estimators
for expected out-of-sample prediction error. These are all based upon the
in-sample fit of the model, penalised according to the degrees of freedom.
They are not a direct estimate of out-of-sample test error. Admittedly, the
estimation of test error for a particular training set is not easy in general.
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These model combination studies so far narrow their focus only to one
kind of model selection methods. But actually, there is another “family”
of model selection approaches which relies in some sense on out-of-sample
testing. The simplest form of this approach is simple “validation” in which
the model is selected which performs best on a particular out-of-sample set.
This method is commonly used in the “early stopping” approach to divide the
whole sample into sub-samples, and then use the validation sample prediction
error as a direct estimation for test sample error. A more computationally
intensive form of this approach is “k-fold cross validation”, in which the data
set is divided into k sub-samples and the performance on each sub-sample
is estimated with respect to the model optimised on all other sub-samples.
The extreme of this approach is full “leave one out” cross-validation (Wahba
and Wold, 1975). A related but distinct approach is the use of “bootstrap”
re-sampling (Efron and Tibshirani, 1993) of the data to obtain unbiased
estimates of prediction error. Motivated by these direct prediction error
estimation method, our GMV weighting can be seen as a direct optimization
of out-of-sample prediction error and thus should have smallest realized out-
of-sample prediction error.

Among the many sophisticated weighting schemes, simple arithmetic av-
erage weighting scheme, picking a set of models and then giving them all
equal weight, has the most robust out-of-sample performance. The most
consensus on the explanation for this puzzle is that diversification gain from
weights estimation is not large enough to offset the estimation loss, but with
a enlarged sample size, weights estimation will be worthwhile. With this
notion, the Bayesian style frequentist shrinkage weighting scheme have been
developed. This method is like a combination of combining weights, a weight
average weight between estimated weight and a target reference weight. The
reference weight is usually independent of sample data. “1/N” are most often
used as a shrinkage target. Actually, shrinkage weight has the same effect
as impose a shrinkage structure on covariance matrix estimator (Frahm and
Memmel, 2010).

By grafting Schafer and Strimmer’ s shrinkage covariance estimator to
our GMV weighting scheme, GMV can be applied to both large sample size
problem and small sample size problem. And as GMV weights is solved
from our Model Portfolio Approach, it is directly minimize out-of-sample test
error. Therefore it should have improved performance over other weighting
schemes.
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3.3.3. The Choice of Weighting Schemes
GMV weighting has advantageous merits in most aspects but it is not

flawless. To better implement it, the underlying assumption is important.
The first fact is that GMV is optimal on the premise that it is highly

possible that all model considered are false. Because if the true model is in
the model space, it should have a weight equal to 1 while other models should
get a zero weighting. But due to estimation error, the model weight on true
model can just be close to 1. In this case, Bayesian model averaging might
be a better choice as it assume a complete model space which comprises true
model.

Another fact is that, just as with the asset portfolio case, model portfo-
lio diversification efficiency gain depends on the correlation between model
errors. The gain is an increasing function of between model correlation ρ.
Thus “1/N” weighting will dominate if models are weakly correlated.

For asset pricing model uncertainty, our choice of the weighting scheme
depends on the asset pricing models at hand. As most of asset pricing models
are derived under same utility maximization, they may be well correlated
and with large financial data set, GMV weighting can be a better weighting
scheme for the asset pricing model portfolio. Empirical test of this argument
will be conducted in future work.

4. Monte Carlo Experiment

In this section, we design two Monte Carlo simulation experiments to
demonstrate our analytical results in previous sections: The improvement
of model portfolio over single models and the optimality of GMV weighting
scheme.

We make no assumption about the underlying asset pricing model , the
only input of our method is out-of-sample pricing errors. Thus for simulation
studies here, we only need to generate error series. These error series can be
seen as from any asset pricing models, such as CAPM, APT, Fama-French
three factor models and consumption based asset pricing models, or more
broadly, forecasts from fundamental analysis and technical analysis. Also
it can be forecasts from survey of investors or analysts, as long as we can
estimate the forecasting error and the related moments.

25



4.1. Comparsion between Single Model and Model Portfolio
This first simulation is a simple demonstration of the advantage of com-

bined models. Firstly, we draw true return and single model forecasts from
a joint normal distribution:

(
Rt+h

R̂t+h,t

)
∼ MVN

( µRt+h

µR̂t+h,t

)
,

 σ2
Rt+h

σ′RR̂t+h,t

σ′RR̂t+h,t
ΣR̂R̂t+h,t

 (4.1)

Where R̂t+h,t is a n×1 vector denotes N forecasts from individual asset pric-
ing models. True return generated from normal distribution N(µRt+h

.σ2
Rt+h

).
ΣR̂R̂t+h,t

is covariance matrix of pricing error series from individual pricing
models. σ′RR̂t+h,t

is covariance matrix of single forecasts and the true return.
We fix a sample size T = 100, and split the sample into two parts: the first 60
draws are used for in sample training, and the last 40 observations are used
for out-of-sample test. We fix the number of model N = 4. Thus this sim-
ulation is done with large effective sample size. Here, for simulation study,
we can assume in-sample model fitting has already been done, because our
approach has no requirement of the in-sample estimation methods. Thus we
only need two periods for simulation, one for test error and model weights
estimation, and the other one for out-of-sample test. However, in empirical
application, we need three sub-samples, so one more estimation sub-sample
to be specified.

With different specification of variance-covariance structure, we have four
experiments: For the first one, single pricing models have same variance
and same correlation coefficients with true return, ρ = 0.25; in the second
one, we assume 4 single pricing models have same variance but different
correlation coefficients with true return, ρ are assigned to 0.75, 0.55, 0.35, 0.15
respectively. The last two simulation assume single pricing models have
different variance and then give same specification for the correlation between
true return and single pricing model as the first two simulations.

We generate combined forecast using our GMV weighting scheme. The
error covariance are estimated with the first 60 observations and forecast
weights are estimated by minimizing mean square forecasting error (MSFE).
We do all the simulations 10,000 times, and then compare the performance
of combined pricing model with the single pricing models both in-sample and
out-of-sample. We use relative mean squared forecasting error(RMSFE) to
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evaluate the performance of combined model. It is calculated as:

RMEFE = MSFEi
MSFEc

i = 1, 2, 3, 4.

Where MSFEi is MSFE of single pricing model i and MSFEc is combined
pricing model MSFE. We compute the average RMSFE from our 10,000
simulations. Table( .1) shows result of in-sample test, and table( .2) reports
result of out-of-sample test.

[Insert table .1 here]
[Insert table .2 here]
From the simulation results, we can see that across all scenarios, model

portfolio out-perform all single models. Model Portfolio Approach is a better
way to mitigate asset pricing model uncertainty.

4.2. Comparsion between Different Weighting Schemes
4.2.1. Experiment Design

Following our model set-up, real asset return can be decomposed into
expected return and unexpected return. In our study here, we assume that
true conditional expectation of return is Et−1(yt) = α0 + α1yt−1, then we
generate our data with a Gaussian autoregressive AR(1) process:

Rt = α0 + α1Rt−1 + ξt (4.2)
ξt ∼ N(0, 1), α0 = 0, and α1 = 0.5 (4.3)

Where ξt is an unpredictable component, thus the minimum pricing error of
a model is unity in the specification here. The total deviation of an asset
pricing model from the true expectation comprise a bias and an idiosyn-
cratic pricing error, while the deviation from realized actual return include
an extra unavoidable error due to the variance of return itself. Empirical
approximation of an asset pricing model is:

fi,t = α̂0 + α̂1Rt−1 + ηi,t

t = 1, ..., T T is sample length
i = 1, .., N N is the number of asset pricing models or forecasts

Where α̂0 and α̂1 are estimates of α0 and α1. ηi,t is drawn from a multivariate
normal distribution η ∼ (B,Σ). B is mean bias vector of individual pricing
model, with elements Bi = βBi−1 + ui, and ui ∼ i.i.d. U(a, b), 0 < β < 1.
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Follow Issler and Lima (2009), we specify a spatial dependence in bias by
letting β = 0.5. And the aggregate average bias is a+b

2(1−β) . We consider a
zero average bias by letting a = −0.5, b = 0.5. Σ is the variance covariance
matrix of pricing errors. We use this model to generate our single pricing
model forecasts.

We generate an overall sample of size T , We then divide T to 3 consecutive
periods, where time is indexed t = 1, 2, ...T1, ..., T2, ...T . The first sub-period
E is the initial estimation sample, or training sample as it is usually called,
where the models are fitted and α and β are estimated. The number of
observations in it is E = T1, comprising (t = 1, 2, ...T1).The second one is
validation sample, where the prediction error of each model and the relevant
bias-adjust term and combining weights are estimated. It has V = T2 − T1
observations. The last period is test sample with Te = T − T2 observations,
where the performance of different models are evaluated. In our experiment
here, we fix estimation sample size T = 200, validation sample size V = 50
and test sample size Te = 50. We then adjust the total number of models.
We use N as the number of models. We give a value of 3 and 40 to N .
The value of N/V determines the effective sample size for model weights
estimation. N = 3 with V = 50 can be used as a large sample, and N = 40
with V = 50 is a relatively small sample size7.

Inspired by asset portfolio studies, we suspect that estimation error is not
the only reason for ”1/N” puzzle, underlying pricing errors correlation should
be another factor to consider. To test our intuition here, we simulate both
highly and weakly correlated error cases under both small effective and large
effective sample size. For the high correlation, we restrict the correlation
coefficients to be in a range of [0.9, 1], while for the weakly correlated error,
we restrict the correlation coefficients to be within [0, 0.25].

We do all these four simulations 50,000 times, and then we generate
combined model under “1/N”,“GMV”, “OLS” and “Shrinkage” weighting
schemes. For all these weighting methods, we consider both bias-corrected
and no-bias-adjustment combined pricing models.

4.2.2. Simulation Results
We evaluate performance of different weighting schemes by average asset

pricing risk or expected mispricing uncertainty, which is calculated as MSFE,

7There is no unanimous specification for small and large sample size
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and also variance of model weights which is proxied by average variance of
model weights. Results are reported in table .3.

[Insert table .3 here]
From table .3, we can see that, as what we predict, the small sample

effective size is not the only reason for “1/N” puzzle, correlation between
errors also account for the relative under performance of theoretical opti-
mal weights. In our small effective sample size scenario, when errors are
highly correlated, 1/N is not the best combination, instead, GMV weighting
scheme has the best performance. As OLS is inferior for large scale estima-
tion problem, here for large model number, all three OLS perform the worst.
Obviously, 1/N is optimal when it is close to the true optimal. Only in this
case, diversification gains cannot offset the loss of optimal weights estima-
tion error, and thus 1/N offer a better weighting choice. For large sample
size, as optimal weights can be relatively more accurately estimated, optimal
weights from OLS should perform best. We can see in table .3, all three
OLS weighting give smaller asset pricing risk. GMV weighting has similar
performance as OLS, but has a much lower weights variance. GMV weighting
is more stable than OLS. The reason for the improved performance of GMV
weighting, is because by using more robust covariance estimator, GMV has
similar large effective sample size properties as OLS and better features for
small effective sample size problem.

Across all the weighting schemes, the bias-corrected weighting is inferior
to the relevant weighting without bias adjustment. The reason is as what
we proved in the previous section. The bias is more difficult to predict than
the variance of error and thus more volatile. And usually, the in-sample
unbiasedness does not lead to unbiasedness in out-of-sample period.

5. Conclusion

While appreciating the beauty of asset pricing model theory, we still lack
the confidence of concluding whether asset pricing models are true or false
empirically. But fortunately, for practical implementation of asset pricing
models, as our aim is to find a model which will generate well into a finite
independent sample, we do not require zero single model error. Actually we
can improve our modelling performance even when all models are false but
contain useful incremental information.

The explicit mapping of model portfolio approach to asset portfolio the-
ory paves a finance oriented approach to asset pricing model uncertainty
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problem. By pooling asset pricing models, the model portfolio diversifies the
single pricing model uncertainty and thus reduces the overall mispricing un-
certainty. A by product of model portfolio optimization is a model weighting
scheme. As our effort is on ex post model pool performance, we advocate
a GMV weighting scheme which is a compromise between estimation error
and diversification benefit. The simulation results show that in large sam-
ple, GMV weighting has the identically good performance as optimal Bates-
Granger-Ramanathan OLS weights but more stable, and it also has improved
performance in small samples. A natural factor from our approach to blame
for “1/N” puzzle is the correlation between errors and corresponding covari-
ance matrix estimation. If covariance matrix can be accurately estimated,
there is no puzzle. 1/N rule will only dominate when it is actually optimal.

What finance gives us is not only models but also ways of thinking and
viewing many other problems. Our work is the first to draw an explicit
parallel from model combination to portfolio theory. This work paves the
way for future research to fully appreciate wisedom of these two areas. A
natural extension of our study is to apply the finance hedging idea into model
portfolio approach. Additionally, model portfolio is not just a statistical trick,
it implies that model uncertainty might be a mispricing factor in existing
asset pricing models and thus allow statistic arbitrage opportunities.
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Appendix

Table .1: In-Sample Performance Evaluation

Asset Pricing Model Variance of Error Bias RSMSE
Different variance and different correlation

Model 1 0.3065 -0.0282 13986.1323
Model 2 0.3994 -0.0151 25410.6878
Model 3 0.4806 -0.01413 27436.7238
Model 4 0.5788 -0.0250 42897.0610
GMV Weights 0.0518 8.74E-18 1.0000

Different variance and same correlation
Model 1 0.5481 0.0091 16.8721
Model 2 0.5320 0.0031 14.2641
Model 3 0.5471 0.0307 14.2846
Model 4 0.5522 0.0120 14.9493
GMV Weights 0.3004 5.1105e-18 1.0000

Same variance and different correlation
Model 1 0.3182 -0.0036 26578.6374
Model 2 0.4078 0.0228 36036.7888
Model 3 0.4985 0.0036 45745.5714
Model 4 0.5914 0.0350 53988.2495
GMV Weights 0.1153 0.0000 1.0000

Same variance and same correlation
Model 1 0.6353 -0.0075 133.0049
Model 2 0.6483 0.0010 155.2658
Model 3 0.3306 -0.0141 21.2260
Model 4 0.3686 -0.0120 37.7622
GMV Weights 0.2877 0.0000 1.0000
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Table .2: Out-of-Sample Performance Evaluation

Asset Pricing Model Variance of Error Bias RSMSE
Different variance and different correlation

Model 1 0.3021 -0.0564 11.8351
Model 2 0.3975 -0.0364 9.5486
Model 3 0.4765 -0.0275 12.6878
Model 4 0.5661 -0.0523 11.7616
GMV Weights 0.0569 0.0550 1.0000

Different variance and same correlation
Model 1 0.5505 0.0212 3.5465
Model 2 0.5357 0.0090 2.7700
Model 3 0.5434 0.0637 2.7733
Model 4 0.5582 0.0295 2.6118
GMV Weights 0.3396 0.0843 1.0000

Same variance and different correlation
Model 1 0.3175 -0.0107 1.5967
Model 2 0.4032 0.0467 2.0771
Model 3 0.4933 0.0089 2.7988
Model 4 0.5801 0.0721 2.9204
GMV Weights 0.1279 -0.2802 1.0000

Same variance and same correlation
Model 1 0.6345 -0.0241 3.5945
Model 2 0.6517 -0.0084 3.9561
Model 3 0.3287 -0.0349 1.3858
Model 4 0.3668 -0.0334 2.5248
GMV Weights 0.3203 0.0447 1.0000
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