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Abstract
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sical Black-Litterman approach, we show that historically generated excess return above the

market portfolio can be retained whilst constraining additional downside risk. Weighting

factors required for the mixed estimation can be directly derived from predictive regres-
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1 Introduction

The true optimality of the market portfolio is heavily discussed in numerous studies and,

alongside, multiple alternative passive equity index strategies have emerged. Amongst these

are equally-weighted, minimum-variance and fundamental indexation approaches. On theo-

retical grounds the market-capitalization weighted portfolio is optimal under the capital as-

set pricing model and market efficiency. However, multiple studies, as reported by C. Chen,

Chen, and Bassett (2007) have shown that inefficiencies do exist and can be exploited by

sensible adjustments to cap-weights. Alternative studies go even further and replace the

capitalization-weighting approach altogether. DeMiguel, Garlappi, and Uppal (2009) show

that a nave 1/N portfolio outperforms most other strategies on a risk-adjusted basis, in-

cluding the market portfolio. Arnott, Hsu, and Moore (2005) provide evidence on the risk-

adjusted return superiority of equity indices based on fundamental firm metrics (e.g. income,

revenue and sales) and Clarke, de Silva, and Steven Thorley (2006) – amongst others – have

shown that minimum-variance portfolios can add value over traditional market-capitalization

weighted benchmarks. Arguably, these findings have led to a relativization of the general

rule of cap-weighted indices being optimal per se.

Given the non-optimality of capitalization-weighted indices and the industry wide appli-

cation of the respective, managers have to identify ways how to capitalize on inefficiencies

not captured by the market. Quantitative predictors have been tested to entail forecasting

power and are widely applied, however, majority of factors do not deliver persistent forecast-

ing quality over time. Theoretically, this falls into place as additional information should be

absorbed and accounted for by the market portfolio rapidly. Nevertheless, some factors have

shown to have gained there edge over years whilst others could not cement their position

in literature and practice. Accepting the fact that some factors entail forecasting ability at

different levels of significance and given that forecastability various over different factors, aim

has to be to identify these periods and incorporate respective predictions into the portfolio

construction in order to enhance the optimal market portfolio.

This study offers a quantitative approach to exploiting market inefficiencies not captured

by the market and so can be related, but is not limited to, the field of enhanced indexation.

Herefore, we build upon the classical Black and Litterman (1992) (BL) approach by setting a

market-capitalization weighted portfolio as the passive prior. Subsequently, adjustments are

based on quantitative predictions derived from a factor model with an arbitrary predictor.

The posterior vector of expected returns is weighted according to certainty levels (Ω) and

scalar (τ), where Ω can be directly derived from the predictive regression in form of the

goodness-of-fit measure and, thereby, implicitly accounts for estimation errors in the opti-

mization procedure. This methodology can retain generated excess return over the long-run,

2



whilst restraining downside risk. Supporting results based on a robustly constructed simu-

lation framework also reveal that increasing the number of correlation breakdowns and/or

the variance of correlation between assets and predictor leads to a monotonously decreasing

convergence of average excess returns towards zero. An empirical setting initialized with a

global equity index portfolio enhanced via forecast from multiple universal predictors confirm

these findings.

2 Enhanced Optimal Portfolios

We consider an unconstrained investor holding the market portfolio, but is keen to enhance

the respective by considering quantitative equity return predictions. We propose an approach

on which additional quantitative estimates can be incorporated, thereby, offering upside

return potential whilst controlling for risk in form of lower partial moments. Fundamentals

of the model rely on the procedure of Bayesian portfolio construction. First the implied

returns from the underlying portfolio are backed out via a mean-reversion procedure. Next

our return estimates and certainty levels are generated based on an arbitrary quantitative

predictor. The revised return vector (posterior) is derived via the mixed estimation procedure

according to the weighting factors Ω and τ . In the following lower-case letters refer to scalars,

bold-face letters denote vectors and upper-case symbols stand for matrices.

2.1 Prior

The starting point of this model, as for the traditional BL model, is the market portfolio.

We make use of the reverse optimization procedure to back out implied equilibrium weights

from the market portfolio given by z = γΣw ((Black & Litterman, 1992)). We denote the

vector of implied optimal portfolio returns (z) as a function of investors risk aversion (γ),

covariance matrix (Σ) and the vector of portfolio weights (w).

We specify the covariance matrix based on a rolling window of monthly historical equity

returns. The risk aversion factor γ is set to one.1 The resulting distribution of the prior

is N ∼ (z, τΣ). Where the scalar τ is scaling factor towards the covariance matrix, which

reflects the uncertainty in our return estimates and serves as a weighting factor for the mixed

estimation procedure. The scaling factor τ enables the investor to specify the acceptable

degree of deviation of the posterior from the prior. A small value implies a posterior closely

tracking the prior and vice versa. Given the quasi optimality of the market portfolio defined

as the prior the uncertainty in the prior measured by τ is small. Consequently, a value

1We set risk aversion to 1 as – for this case – expected returns derived from the optimal portfolio are not
pre-scaled when entering the Bayesian framework and, therefore, the mixed distribution is solely influenced by
the BL specific weighting factors Ω and τ .
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specification of τ → 0 is commonly applied (He and Litterman (1999) and Idzorek (2002)).

2.2 Quantitative Predictions

Performance of optimized portfolios rely upon generating reasonably good estimates of future

asset returns and their covariance. Hereby we focus on the former aspect and attempt to

estimate monthly returns for each asset i of the investment set defined by the investors

existing portfolio. Methodological framework of generating quantitative predictions (r̂) relies

on a classical ordinary least squares approach of the form:2 rt+1 = α + βft + εt+1. This

model allows for any arbitrary factor (f) to be applied as a source of return forecasts.3 In

order to update the vector of prior return expectations according to quantitative predictions,

one requires a quantification of the accuracy of predictions. We propose a method to derive

confidences towards quantitative predictions directly from the linear regression and thereby

provide an intuitive relation between the certainty levels and expected returns.

Hereto, we apply the goodness-of-fit measures to specify accuracy of predictions and plug

them into a certainty matrix Ω, entailing a specific level of certainty for each asset. We

utilize the adjusted R2 as a measure unrelated to the number of independent variables in

the equation and point out that it comes along with a virtually standardized 0-1 scale.4

This enables us to unambiguously determine the quality of estimates and as such offers an

intuitive solution for specifying elements of the Ω.

Ωt =



1−R2
1,t 0 · · · 0

0 1−R2
2,t · · · 0

...
...

. . .
...

0 0 · · · 1−R2
i,t



Fabozzi, Focardi, and Kolm (2006) provide a brief theoretical introduction on incorporating

factor models in a Bayesian setting but specify elements of Ω according to the variance of

residuals. However, their methodology does not provide an intuitive scale as achieved by

R2 and applicability has not been empirically tested. Furthermore, Connor (1997) applies a

2Although we make use of the regular OLS approach, instead of classical standard errors we use adjusted
measures as proposed by Newey and West (1987) to overcome heteroscedasticity of error terms during time series
regressions.

3The only constrained regarding the predictor in the linear- or multiple regression is that the Gauss-Markov
assumption have to be fulfilled.

4The model can be extended to a multi-factor form in order to increase predictive power. Therefore, we make
use of the adjusted R2 measure as correction for the degrees of freedom is especially necessary when performing this
approach with multifactor forecasting. With regards to the standardized scale one has to differentiate between the
standard- and adjusted R2 measure, later accounting for the number of explanatory terms. Where the standard
form always stays between 0-1 guaranteeing the standardized scale, the other can go out of bounds, but offers
more accuracy on the explanatory power of the regression. Ultimately, this leads to a slight reconsideration of
the range of feasible τ values.
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shrinkage approach to the predictive regression in a Bayesian portfolio setting by recalibrating

the regression coefficient according to R2. Thereby, estimated coefficients are shrunk towards

zero, which is intuitive given the application to the market portfolio and respective market

efficiency. However, both approaches deviate from the one at hand in their implementation

and intuition, respectively. We calculate the additive inverse of R2 and add it to 1 in order

to make the values appropriate to the nature of certainty.

Elements of Ω take large values for unreliable predictions, while small values correspond

to less noisy forecasts. As a consequence elements indicating noisy predictions exhibit low

effect on the EOP and vice versa. We generate a certainty value for every asset of the

investment set and calibrate Ω for every out-of-sample period.

2.3 Posterior

Taking the prior return distribution N ∼ (z, τΣ) we can subjoin the expected returns derived

from predictions given by N ∼ (r̂,Ω). Applying a rearranged version of Black and Litterman

(1992) according to Da Silva, Lee, and Pornrojnangkool (2009, p.3) and adjusting the re-

spective to meet the properties of this study, we derive the posterior return vector as follows:5

z∗ = z + Σ

[
Ω

τ
+ Σ

]−1

· (r̂− z)

The revised return vector is constructed as a weighted average of prior and quantitative

predictions according to the weighting factors τ and Ω.

In a final step the updated vector of expected returns is fed into the initial portfolio

optimizer to generate the portfolio weights of the EOP. This is achieved by rearranging the

formula for deriving the prior in order to back out the revised portfolio weights: w∗ =

(γΣ)
−1

z∗. We chose to apply the initial optimizer in order to derive a clear picture of the

contribution generated by the quantitative predictions and certainty levels. Thereon, we

analyze whether EOP’s are capable of generating sustainable excess return over the market

portfolio. Furthermore, we evaluate whether this excess return comes at the cost of additional

downside risk. Due to unequal distribution characteristics we measure risk by second order

raw and central lower partial moments (LPM) based on Nantell and Price (1982). We are

particularly interested in the differences between the portfolios:

∆LPM{h,g}(r) =

∫ h

−∞
(r − h)2fEOP (r) dr −

∫ g

−∞
(r − g)2fMC(r) dr

5In contrast to the standard form of the BL model, we drop identity matrix P which assigns the views to the
respective assets. Given that we only have absolute return estimates on all assets at all times, we can drop this
matrix. In the periods where the predictor yields weak predictions on certain assets, the according element of Ω
will get close to 1 (i.e. no influence on the optimal portfolio), hence eliminating the need for the identification
matrix.
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We denote h and g to represent the respective target return, while j denotes the order of

LPM and MC the market capitalization-weighted portfolio.

3 Simulation Results and Discussion

Before evaluating the model in an empirical setting, we test for its robustness and parameter

sensitivity by means of a Monte-Carlo simulation. This allows us to evaluate the models

adequateness on theoretical grounds under common statistical assumptions such as normally

i.i.d. distributed variables. Furthermore, it allows a model evaluation under extreme con-

ditions, referring to both positive and negative events. Especially, an in-depth sensitivity

analysis yields valuable insights on the models characteristics and potential parameters of

caution. Consequently, the setup of this simulation study is as arbitrary as possible – in terms

of generating asset returns and the predicting factor – in order to identify and evaluate the

deterministic factors of the model.

3.1 Setup and Sampling Properties

We calculate EOPs based on two equally-weighted assets, with returns rA andrB . Factor

f is to deliver ’forecasts’ for both series rA and rB based on two univariate OLS models.

Independent variable f is a random series with arbitrary first and second order moments.

Series rA and rB , as well as rA and f are simulated based on bivariate normal distributions.

Deterministic parameters of the model are the number of correlation breakdowns and vari-

ance of shocks (σu) affecting correlation of coefficient between rA and f . The simulation

set-up is laid out formally in Appendix A. . We consider correlation breakdowns, leading to

a shift in moments as for the representation of genuine stock market crashes. Notation for

variables is given in subscripts – possibly in braces when multiple series involved –, while

parentheses in superscripts state breakdowns as total number of unique periods.

First we define correlation of assets A and B to follow a random walk process with mean

0.75 and upper and lower boundaries of 0.5 and 1, respectively. Furthermore, correlation of

asset A and predictor f is also characterized by a stochastic process with an arbitrary mean

and standard deviation that changes k−1 times after each breakdown and due to the nature

of correlation is bounded between -1 and 1. Random shocks of both models follow normal

distributions: η ∼ N (0, 0.01) and υ ∼ N (0, συ).

ρ{rA,rB},t = ρ{rA,rB},t−1 + ηt s.t. ρ{rA,rB},1 = 0.75 and 0.5 ≤ ρ{rA,rB} ≤ 1

ρ
(k)
{rA,f},t = ρ

(k)
{rA,f},t−1 + υt s.t. ρ

(k)
{rA,f},1 ∼ U(−1, 1) and |ρ(k)

{rA,f}| ≤ 1
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Now we are able to simulate observations rA and rB with covariance conditional on ρ{rA,rB}.

We set one asset to be riskier than the other with the following parameters: µrA , µrB = 0

and σA = 0.35, σB = 0.15.

〈rA, rB〉 ∼ N (κ,Σt) , with κ =

µrA
µrB

 and Σt =

 σ2
rA σ{rA,rB},t

σ{rA,rB},t σ2
rB



Finally, we generate individual moments for subperiods of predictor f in order to simulate

correlation breakdowns. Means are based on a normal distribution around 0, while standard

deviation – being strictly positive – follow a uniform distribution between 0 and 1. As such

we not only have a variance-covariance matrix (Θ) that is time-varying, but also first and

second moments are unique for k periods.

µ
(k)
f ∼ N (0, 1) and σ

(k)
f ∼ U(0, 1)

〈
rA, f

(k)
〉
∼ N

(
ξ(k),Θ

(k)
t

)
, with ξ(k) =

µrA
µ

(k)
f

 and Θ
(k)
t =

 σ2
rA σ

(k)
{rA,f},t

σ
(k)
{rA,f},t σ

(k)
f
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Hereafter, arbitrary asset returns and a random predictor draw on varying forecasting ac-

curacy. Factor f is to deliver ’forecasts’ for both series rA and rB based on two univariate

OLS models. Deterministic parameters of the model are the number of correlation break-

downs and variance of shocks (συ) affecting correlation of coefficient between rA and f . A

sensitivity analysis of the two parameters is conducted with regards to the impact on excess

return of EOP relative to the initial investors portfolio. Given this set-up, for any possible

combination we run 100 simulations of 1’200 months of random asset returns each.

3.2 EOP Characteristics

Taking a random sample from the set of simulations Figure 1 indicates a representative

case illustrating the models characteristics. From correlation levels we can assert the quality

(goodness-of-fit) of our predictor with respect to the two assets. Given a high level of absolute

correlation our predictor will have high predictive power and consequently our certainty levels

assigned to the derived predictions will be high leading to a stronger tilt in portfolio weights

and vice versa. This relation is clearest for the high correlation level in period two. EOP

starts generating outperformance – after a calibration period identical to the estimation

window – reflecting the increase in predictive quality and rising certainty levels derived from

adjusted R2.

7



0 200 400 600 800 1000 1200
0

2

4
Cumulative returns

200 400 600 800 1000 1200
0

0.02

0.04

Portfolio outperfomance

200 400 600 800 1000 1200
0

0.5

1

Cumulative portfolio outperfomance

0 200 400 600 800 1000 1200
−1

0

1
Correlation between predictor and asset A

Figure 1: This figure is a composition of: (1) cumulative returns of an equally-weighted portfolio, (2)
monthly outperformance of the EOP, (3) cumulative out-performance and (4) correlation and respective
breakdowns between the dependently simulated asset A and predictor f . In this setting we enforce k = 3
correlation breakdowns, therefore, generating three periods of different correlation means equal to -0.4, +0.9
and 0. We set the variance of correlation to 0.05 for all levels to ensure simulated correlation is close to the
set mean for each period.

Cumulative return plot reveals a constant widening of the gap until the second correlation

breakdown 800 periods into the sample window. At this point the correlation drops to around

0 and consequently our predictor is jimmied for the remaining months. At this point, the

significant contribution of our model comes into place and clarifies what makes this portfolio

an EOP. By definition, the EOP cannot be restricted to exhibit temporarily modest negative

returns subsequent to the correlation breakdown, during recalibration.

Given the significant correlation breakdown from almost 1 to 0, the model adapts fast by

means of a drop in certainty levels assigned to the predictions thereby tilting the EOP towards

its prior. Hence, the model is able to preserve the outperformance previously generated

even during phases where the quantitative predictor is weak. This is clearly reflected by

the constant gap over remaining 400 months where weights of the EOP are approximately

identical to the optimal portfolio.

3.3 Sensitivity Analysis

Sensitivity of EOPs regarding the previously mentioned two deterministic parameters – hold-

ing everything else constant – is presented in Figure 2. We check for robustness of our as-

sertion that an portfolio optimized by means of this method will generate on average excess

return without the burden of additional downside risk – in form of raw lower partial moments

– relative to the optimal market portfolio. We prove that these features prevail even when
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accounting for correlation breakdowns up to a yearly frequency along with rapidly repeating

shifts in correlation between predictor and assets. On average positive excess return under

both parameter variations can be reported.
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Figure 2: The surface plot shows 10’000 simulation of 100 per parameter combination. Each portfolio
simulation is made up of 1’200 months of random asset returns. We depict values for variance of correlation
(συ) on the right-horizontal axis, number of correlation breakdown (k − 1) on the left-horizontal axis and
excess return of EOP over the initial (prior) portfolio on the vertical axis. Two graphs to the right are
extended sensitivity plots towards the two deterministic parameters.

The surface plot is positive for all variations of either parameter and across all simulations,

as indicated by the vertical axis. Right-horizontal axis represents a variation in the variance

of correlation between predictor and assets and, therefore, reflects the predictive power of the

indicator. Along an increase in variance of correlation, a decline in excess return is observable.

This is reasonable as an increase in variation of correlation lowers the predictive quality of

the factor. Furthermore, sensitivity towards correlation breakdowns is also according to

our expectations. As for the variance of correlation, an increase in breakdowns leads to a

reduction in excess return.

Overall, we show that the model is sensitive to the number of correlation breakdowns

and variance of correlation between predictor and assets. However, excess returns are strictly

positive on average for all tested combinations with a clear convergence towards 0. In terms

of return this means an investor cannot be worse off over the long-run allocating according

to the EOP. This is confirmed when accounting for lower partial moments, where simulation

results prove that both first and second order raw LPMs as well as second order central LPMs

are at the maximum equal to the optimal market portfolio. These findings are confirmed

in the following empirical setting given the additional difficulty of non-normal equity return

distributions.
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4 Empirical Evidence

In a second step, we test the described approach on historical equity return observations to

provide empirical evidence. Given the models positive characteristics on theoretical grounds,

it is of particular interest to observe whether the model is also capable to perform empirically

well given the statistically less favorable premises. In order to generate return estimates we

make use of common factors of macroeconomic condition. The forecastability of equity

returns by means of macroeconomic variables is well documented (N. Chen, Roll, and Ross

(1986)). Given the strong interlinkage of economies make such factors a prime choice for the

application to an international equity index portfolio. In this context we make use of various

leading economic indicators and industrial production indices; these partially coincide with

those tested by Sheppard (2008) and N. Chen et al. (1986). Additionally, we make use

of a global shipping index which has been tested and shown significant forecasting power

by Bakshi, Panayotov, and Skoulakis (2011). For the purpose of this paper we are less

interested in the forecasting quality of these predictors, but rather in the models behavior

when considering alternative inputs.

4.1 Data

We apply 22 FTSE country indices for an observation period from July 1988 to July 2012

as dependent variables in the predictive regression. Table 1 presents the summary statis-

tics. All data is gathered from DataStream. For the purpose of generating equity return

predictions based on indices, we make use of logarithmic growth rates. In this context we

derive predictions from 8 different indices, namely: Baltic Dry Index6 (BDI), Composite

Leading Indicator (CLI) for Turkey and Taiwan, Leading Economic Indicators Index - U.S.

Conference Board (LEI - USA) and Industrial Production Indices for manufacturing only

and whole economy with respect to U.S., France and Bangladesh. We stick to Bakshi et al.

(2011) who test for 1 and 3-month log changes as their BDI growth rates and find 3-month

rates to yield superior results. For simplicity and without a loss in validity – remember it is

not the focus of this paper to test whether these factors do indeed yield good predictions –

we make use of 3-month growth rates for all predictors.

ri,[t→t+1] = αi + βi g[t−3→t] + εi,t+1

6BDI prices are based on weighted averages of twenty global routes and not, as the name might suggest, only
on routes around the Baltic states. BDI originated from the Baltic Freight Index (BFI), which was set up in May
1985 to provide a generally accepted base index for freight derivatives. In November 1999 the BFI was replaced
by the BDI, which is a constitute representing the average price for the different vessel sizes.
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With respect to the estimation window we initialize regressions with a 36-month rolling

estimation window. The choice of an appropriate window size and application of a rolling

window versus recursive approach is of on-going discussion and cannot be disregarded in the

context of this study. For the purpose of this model we suggest a rolling window approach

with a short window size in order to generate dynamic adjustments of confidence levels

towards our predictions derived from the respective R2 measure. The benefits of a quick and

dynamic adjustment in confidence levels is at the hearth of this model, which is in-line with

Rossi and Inoue (2011) reporting higher predictive quality alongside a decrease in window

size for economic models.

obs mean std. dev. skew kurt max min

Predictors
BDI 287 -1.97 118.89 -2.37 13.90 102.16 -228.25
CLI - Turkey 287 4.43 7.95 -0.26 4.40 10.19 -9.11
CLI - Taiwan 287 4.30 3.58 -0.05 1.78 3.78 -3.11
IP - USA 287 1.94 2.29 -1.62 7.95 2.12 -4.21
IPM - Bangladesh 287 2.25 2.59 -1.14 4.54 2.63 -3.59
IPM - France 287 0.23 4.44 -0.34 1.28 3.45 -5.19
IPM - USA 287 1.53 5.58 -0.58 3.12 4.50 -8.71
LEI - USA 287 1.59 2.57 -1.23 2.54 1.71 -3.09

Country Indices
Australia 287 4.68 28.11 -1.29 8.63 21.39 -46.99
Austria 287 4.73 20.95 -1.74 12.05 14.69 -42.13
Belgium 287 6.35 19.76 -1.05 7.34 19.14 -31.59
Canada 287 9.63 20.24 -0.88 5.93 15.87 -29.91
Denmark 287 5.49 21.00 -0.69 4.32 13.99 -26.19
France 287 5.72 23.90 -0.85 5.06 20.53 -28.39
Germany 287 7.73 27.03 -0.24 4.93 28.08 -34.17
Hong Kong 287 1.71 24.23 -0.92 5.46 17.40 -30.31
Ireland 287 0.59 25.58 -0.30 3.48 19.28 -26.62
Italy 287 -2.08 21.78 0.06 3.66 22.51 -20.69
Japan 287 3.18 24.60 -0.64 4.65 19.04 -29.51
Mexiko 287 8.13 17.65 -0.49 3.74 14.18 -17.25
Netherlands 287 4.15 17.33 -0.36 4.15 13.85 -21.28
New Zealand 287 16.93 32.69 -1.06 6.57 27.85 -43.25
Norway 287 5.00 21.00 -1.20 6.75 14.25 -32.16
Singapore 287 0.09 22.33 -0.37 4.00 24.40 -22.59
South Africa 287 5.26 21.26 -0.77 5.28 15.79 -30.31
Spain 287 7.29 27.47 -1.15 6.97 16.89 -39.65
Sweden 287 5.57 28.48 -0.46 6.09 33.37 -34.85
Switzerland 287 9.51 28.18 -0.70 4.54 21.01 -34.25
UK 287 8.74 26.54 -0.69 4.53 20.66 -32.02
USA 287 6.87 15.14 -0.76 4.56 10.56 -18.86

Table 1: Descriptive statistics presented here are based upon monthly excess returns denoted in US dollars
($) provided by FTSE. The sample contains returns between July 1988 to July 2012. Columns are denoted as
follows: Number of observation (obs), annualized percentage mean (mean), annualized percentage standard
deviation (std dev), skewness of time series (skew), kurtosis of time series (kurt), highest monthly percentage
change (max), lowest monthly percentage change (min). we derive predictions from 8 different indices,
namely: Baltic Dry Index (BDI), Composite Leading Indicator (CLI) for Turkey and Taiwan, Leading
Economic Indicators Index - U.S. Conference Board (LEI - USA) and Industrial Production Indices for
manufacturing only and whole economy with respect to U.S., France and Bangladesh.
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4.2 Empirical EOP Realization

Empirical results of EOPs based on a global portfolio composed of 22 equity indices, enhanced

by means of 8 alternative predictors yield consistent results alongside findings observable

from the simulation. Tables 2 and 3 report figures for EOP portfolios in excess of the

underlying capitalization-weighted market portfolio. We report excess figures for the ease of

interpretation, as we expect positive signs for all columns except for standard deviation and

lower partial moments. Furthermore, we report performance measures for each EOP across

various levels of τ .

Note that particular interest is on analysing whether EOPs can generate excess return

whilst constraining downside deviation in an empirical setting across all tested predictors

and for varying levels of scalar τ . We show that EOPs can indeed generate excess return

over the market portfolio whilst not experiencing additional downside risk. This results in

a preferable risk-return relation of EOPs relative to the market portfolio, as reflected by

positive excess Sharpe ratios.

To assess the impact of τ we show results for value specification between 0.01 and 0.5

for all predictors and can report consistent impact across all tested factors. As τ determines

the acceptable deviation of EOP from its underlying and, therefore, influence of this factor

is important to understand in order to specify it as optimal as possible. An increase in the

scalar reflects an investor’s uncertainty in the market portfolio, which results in a stronger

tilt of the posterior distribution towards the quantitative return forecasts. Considering ad-

ditional information in form of quantitative predictions shows to be advantageous, although,

at different levels of significance.

An interesting pattern is observable. Whilst return increases throughout an increase in

τ , standard deviation shows a U-shaped structure where EOPs can even decrease absolute

portfolio risk up to a certain τ specification. The dependency of EOPs on the weighting factor

τ is well known, however, our observations gives rise to the possibility that an ‘optimal’ value

for τ exists at which the portfolios risk adjusted return is maximized. With respect to raw

and central LPMs we observe a decrease of downside deviation for EOPs relative to the

market portfolio. Therefore, EOPs not only generate excess return whilst keeping downside

risk constant, but in fact reduce downside risk. This implies, that posterior return estimates

underlying our EOPs do entail fewer estimation errors and the respective can be effectively

incorporated into the portfolio construction.

The convexity of absolute EOP risk alongside an increase in τ is consistent across all

predictors and – taking the BDI based EOP as an example – can be confirmed by Figure

3. This pattern can be explained by two aspects. First of all, the accuracy of predictions

can be increased by incorporating additional information into return estimates and, thereby,
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tau 0.01 0.05 0.1 0.2 0.3 0.4 0.5

Baltic Dry Index
mean 0.06 0.30 0.61 1.20 1.79 2.37 2.94
std. dev. -0.05 -0.21 -0.38 -0.55 -0.53 -0.34 0.02
raw LPM (1) -0.06 -0.30 -0.60 -0.87 -1.05 -1.23 -1.40
raw LPM (2) -0.01 -0.06 -0.11 -0.19 -0.24 -0.27 -0.28
central LPM (2) -0.01 -0.06 -0.10 -0.15 -0.19 -0.20 -0.19
min 0.37 1.84 3.67 6.27 6.12 5.96 5.81
max 0.02 0.11 0.21 0.42 0.62 5.95 11.32
Sharpe ratio 0.02 0.08 0.16 0.31 0.44 0.55 0.64
alpha 0.75 3.74 7.46 14.80 22.03 29.16 36.18
significance 1.64 1.64 1.65 1.66 1.66 1.67 1.68
tracking error 0.18 0.89 1.77 3.50 5.19 6.84 8.44

Composite Leading Indicator - Turkey
mean 0.08 0.39 0.77 1.52 2.25 2.96 3.66
std. dev. -0.07 -0.30 -0.50 -0.60 -0.32 0.30 1.18
raw LPM (1) -0.08 -0.42 -0.77 -1.11 -1.41 -1.46 -1.42
raw LPM (2) -0.02 -0.09 -0.16 -0.25 -0.28 -0.28 -0.27
central LPM (2) -0.02 -0.08 -0.14 -0.20 -0.22 -0.19 -0.16
min 0.68 3.41 6.62 6.65 6.69 6.72 6.75
max 0.15 0.75 1.48 2.92 6.28 13.55 20.58
Sharpe ratio 0.02 0.10 0.20 0.38 0.52 0.62 0.69
alpha 0.96 4.78 9.51 18.79 27.85 36.72 45.39
significance 1.48 1.48 1.48 1.48 1.49 1.49 1.49
tracking error 0.26 1.27 2.52 4.98 7.37 9.69 11.96

Composite Leading Indicator - Taiwan
mean 0.20 1.00 1.98 3.90 5.76 7.57 9.34
std. dev. -0.09 -0.38 -0.58 -0.46 0.31 1.59 3.22
raw LPM (1) -0.14 -0.70 -1.39 -2.36 -2.83 -3.21 -3.44
raw LPM (2) -0.04 -0.17 -0.29 -0.43 -0.48 -0.50 -0.50
central LPM (2) -0.03 -0.14 -0.24 -0.32 -0.31 -0.28 -0.22
min 1.06 5.26 6.66 6.73 6.80 6.87 6.94
max 0.37 1.82 3.60 8.24 13.06 17.68 22.11
Sharpe ratio 0.05 0.25 0.49 0.91 1.23 1.44 1.56
alpha 2.44 12.11 24.04 47.39 70.10 92.18 113.69
significance 2.80 2.80 2.80 2.80 2.80 2.81 2.81
tracking error 0.34 1.70 3.37 6.64 9.82 12.91 15.92

Leading Economic Indicators Index - U.S. Conference Board
mean 0.07 0.37 0.73 1.45 2.16 2.85 3.52
std. dev. -0.09 -0.40 -0.74 -1.20 -1.38 -1.28 -0.94
raw LPM (1) -0.09 -0.43 -0.85 -1.50 -1.98 -2.24 -2.35
raw LPM (2) -0.02 -0.11 -0.20 -0.33 -0.39 -0.41 -0.41
central LPM (2) -0.02 -0.10 -0.18 -0.29 -0.34 -0.34 -0.32
min 0.66 3.30 6.53 6.47 6.40 6.34 6.28
max -0.19 -0.73 -0.96 -0.47 0.36 1.17 3.85
Sharpe ratio 0.02 0.11 0.21 0.42 0.60 0.76 0.88
alpha 0.92 4.60 9.15 18.12 26.91 35.53 43.99
significance 1.80 1.80 1.80 1.80 1.81 1.81 1.81
tracking error 0.21 1.06 2.10 4.15 6.16 8.12 10.03

Table 2: Table presents excess values of EOP performance relative to the underlying capitalization-weighted
prior. All values are differences of annualized percentages, except minimum and maximum monthly returns,
annualized alpha values and alpha significance levels (p-values). Results are based on the out-of-sample
portfolio performance between November 1991 and July 2012.
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tau 0.01 0.05 0.1 0.2 0.3 0.4 0.5

Industrial Production (Manufacturing) - France
mean 0.01 0.03 0.06 0.12 0.18 0.25 0.31
std. dev. -0.02 -0.11 -0.22 -0.39 -0.51 -0.60 -0.65
raw LPM (1) -0.021 -0.107 -0.210 -0.394 -0.566 -0.682 -0.793
raw LPM (2) -0.004 -0.019 -0.036 -0.066 -0.088 -0.104 -0.112
central LPM (2) -0.004 -0.019 -0.036 -0.064 -0.086 -0.100 -0.107
min 0.07 0.33 0.66 1.31 1.95 2.58 3.20
max -0.11 -0.54 -1.08 -1.66 -1.39 -1.13 -0.87
Sharpe ratio 0.00 0.01 0.03 0.05 0.07 0.09 0.11
alpha 0.09 0.44 0.89 1.79 2.71 3.64 4.59
significance 0.43 0.43 0.44 0.45 0.45 0.46 0.47
tracking error 0.08 0.40 0.80 1.59 2.36 3.12 3.86

US Total Industrial Production Index
mean 0.08 0.41 0.82 1.63 2.43 3.23 4.01
std. dev. -0.16 -0.70 -1.17 -1.39 -0.68 0.79 2.80
raw LPM (1) -0.12 -0.60 -1.20 -1.93 -1.94 -1.70 -1.47
raw LPM (2) -0.04 -0.18 -0.29 -0.34 -0.33 -0.31 -0.26
central LPM (2) -0.04 -0.17 -0.27 -0.30 -0.26 -0.21 -0.14
min 1.51 6.44 6.30 6.01 5.73 5.44 5.16
max -0.38 -0.51 -0.54 -0.58 12.17 26.43 40.47
Sharpe ratio 0.03 0.13 0.26 0.48 0.60 0.64 0.62
alpha 1.06 5.29 10.54 20.96 31.25 41.42 51.46
significance 1.14 1.15 1.15 1.15 1.16 1.16 1.17
tracking error 0.38 1.92 3.81 7.54 11.19 14.77 18.27

Industrial Production (Manufacturing) - U.S.
mean 0.00 0.00 0.01 0.02 0.04 0.06 0.09
std. dev. -0.02 -0.10 -0.19 -0.31 -0.36 -0.35 -0.29
raw LPM (1) -0.02 -0.11 -0.23 -0.45 -0.65 -0.79 -0.92
raw LPM (2) 0.00 -0.01 -0.02 -0.03 -0.03 -0.01 0.01
central LPM (2) 0.00 -0.01 -0.02 -0.03 -0.03 -0.02 0.01
min -0.13 -0.65 -1.29 -2.56 -3.82 -5.06 -6.29
max -0.04 -0.22 -0.44 -0.87 -1.12 -0.94 -0.76
Sharpe ratio 0.00 0.01 0.01 0.02 0.03 0.03 0.04
alpha 0.02 0.10 0.22 0.49 0.80 1.15 1.55
significance 0.08 0.08 0.09 0.10 0.11 0.11 0.12
tracking error 0.10 0.50 1.00 1.98 2.94 3.89 4.81

Industrial Production (Manufacturing) - Bangladesh
mean 0.05 0.22 0.45 0.89 1.33 1.77 2.20
std. dev. -0.10 -0.48 -0.87 -1.38 -1.52 -1.30 -0.76
raw LPM (1) -0.08 -0.41 -0.82 -1.49 -1.99 -1.89 -1.69
raw LPM (2) -0.03 -0.12 -0.21 -0.32 -0.34 -0.32 -0.28
central LPM (2) -0.02 -0.11 -0.20 -0.30 -0.31 -0.27 -0.22
min 0.82 4.09 6.46 6.34 6.21 6.09 5.97
max -0.31 -0.47 -0.45 -0.41 -0.37 -0.16 7.53
Sharpe ratio 0.02 0.08 0.15 0.30 0.42 0.50 0.55
alpha 0.59 2.93 5.84 11.61 17.33 22.99 28.59
significance 1.01 1.02 1.02 1.03 1.03 1.04 1.04
tracking error 0.24 1.20 2.39 4.73 7.02 9.25 11.45

Table 3: Table presents excess values of EOP performance relative to the underlying capitalization-weighted
prior. All values are differences of annualized percentages, except minimum and maximum monthly returns,
annualized alpha values and alpha significance levels (p-values). Results are based on the out-of-sample
portfolio performance between November 1991 and July 2012.
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reduce estimation errors entailed in solely market implied return estimates. Furthermore,

we consider an unconstrained investor which can results in EOPs including short-selling.

The degree of short-selling depends of course on the allowable divergence from the market

portfolio, represented by scalar τ . Therefore, part of this pattern can be explained by the fact

that a certain degree of short-selling can reduce portfolio risk and improve efficiency (Grinold

and Kahn (2000), Xu (2007)). In practice various strategies exist – e.g. 130/30, market

neutral and long/short – which make use of the preferable portfolio properties achievable by

relaxing the short-selling constraint in order to reduce portfolio risk and/or increase return.
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Figure 3: This figure provides a graphical presentation of EOP sensitivity towards a change in weighting
factor τ with respect to excess return, excess risk and tracking error (TE). Parameter τ is varied between
0.001 and 1.0 with 200 iterations. This is an illustrative case for EOPs enhanced via BDi derived predictions.
Results are representative for the cases of alternatively tested predictors.

Furthermore, we find an almost linear relationship between scalar τ and tracking error

with a correlation coefficient of 0.99 and a ratio of approximately 1:16. This implies that

investors and/or portfolio managers can make use of τ explicitly to set a tracking error

tolerance. Again these finding are consistent across all tested predictors, although, different

ratios regarding τ and TE are observable. This feature is especially interesting for the

field of enhanced indexing, as an acceptable degree of TE can be specified through scalar τ

and, consequently, EOPs yield a certain level of excess return and risk corresponding to the

predefined level of TE.

We could show that the market portfolio is not optimal per se and that the consideration

of quantitative predictions based on various factors can improve return forecasting accuracy

in a portfolio context. Furthermore, we showed that the introduced model in this paper can

make use of improved return estimates by enhancing the market portfolio with respect to an

increase in return and a constraint towards downside deviation.
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The Case for BDI

As a representative sample of the 8 tested predictors, we take a closer look at BDI derived

EOPs. Given its extreme jerkiness and unfavorable statistical properties makes the analysis

of this predictor particularly insightful. Figure 4 presents portfolio return characteristics on a

monthly and cumulated basis. EOP can generate excess return over its market-capitalization

weighted prior, driven by the level of certainty in the predictions. Interestingly, the BDI

entails low cross-sectional predictive power over large periods of the sample and overall

excess return is generated over just a few months. A first conclusion can be drawn on the

BDIs added value in a portfolio context. BDI does not generate consistent and reliable cross-

sectional equity forecasts over time and given its jerkiness entails detrimental characteristics

for application in a portfolio setting. However, since the predictive quality of BDI or any

other factor is not at the center of this study, we are still able to show that the models

beneficial properties even hold when confronted with unfavorable predictions.
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Figure 4: This figure provides a graphical presentation of the results in form of a composite of three sepa-
rate plots: (1) cumulated portfolio performance, (2) Performance difference between optimal and enhanced
portfolio and (3) cumulative performance difference.

Concentrating on plot 3 and 4 of Figure 4 the direct link between cumulated excess

return of EOP and cross-sectional adjusted R2 towards return predictions is observable.

BDIs forecasting quality picks up over time, showing an extreme rise to 30% at the end

of 2008 and a decline in forecasting power in the aftermath. These jumps and respective

impact on the EOP is of particular interest. As expected EOP can generate outperformance

where certainty levels are high and even more importantly the model can retain previously

generated return – as previously confirmed on theoretical and simulated grounds – even
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where certainty levels drops. This adjustment speed is highly dependent on the in-sample

window and comes at the costs of including fewer observations. Therefore, the model is

in-line with the well-known specification problem of estimation window length as reported,

as part of an extensive study, by Goyal and Welch (2008).

The pattern observable in the in-depth analysis for the EOP based on BDI derived return

forecast is consistent across all tested factors. Of course the level of excess return deviates

between predictors, however, all EOPs are capable of generating excess return where pre-

dictive power measured by adjusted R2 increases and is capable of retaining historically

generated excess return at a high level even where forecasting power drops sharply. Further-

more, excess return generated by EOPs over the market portfolio could be generated without

experiencing additional downside risk. These findings suggest that the market portfolio is

not risk-return optimal at all times and portfolios constructed according to the introduced

methodology provide a basis upon which these inefficiency can be exploited.

5 Conclusion

We show that the market portfolio is not optimal as proposed by modern portfolio theory

and that it can be enhanced in terms of capturing and retaining excess return without the

burden of additional downside risk. This is achieved by employing a Bayesian framework

and allowing a prior to be enhanced by means of quantitative predictions. We show that

the accuracy of predictions can be directly derived from a linear regression in form of ad-

justed R2, which established an implicit dependency between quantitative forecasts and their

weight on the mixed estimation. Consequently, the model self-adjusts rapidly to changing

market conditions by tilting weights towards the underlying portfolio to protect investors

from experiencing additional downside deviation relative to their prior.

The model has been tested in a simulated environment under favorable statistical prop-

erties – such as normally i.i.d. distributed returns and stationary of predictions – as well

as in an empirical setting entailing less favorable statistical properties. Both analysis yield

consistent results and provide evidence in favor of two model characteristics: (1) the model is

capable of identifying forecasting quality of the quantitative predictor and adjusts itself ac-

cordingly, and (2) EOPs based on this new approach are capable of generating excess return

and retaining the respective over the long-run whilst not experiencing additional downside

risk measured by raw and central LPMs.
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A Appendix

A.1 Specification of certainty Matrix Ω

By choosing a classical ordinary least squares (OLS) estimator it is easy to show the rela-

tionship between high certainty levels and reliable estimations. For simplicity we use assume

regression equations with the same number of independent variables k across indices and

also consider time series with the equal lengths.

Ωt =


1−R2

1,t 0 · · · 0

0 1−R2
2,t · · · 0

...
...

. . .
...

0 0 · · · 1−R2
i,t

 (1)

=


1/(t−k)

∑t
j=1 ε

2
1,j

1/(t−1)
∑t

j=1(r1,j−r̄1)2
0 · · · 0

0 1−R2
2,t · · · 0

...
...

. . .
...

0 0 · · · 1−R2
i,t

 (2)

=


t−1
t−k [

∑t
j=1(r1,j − r̄1)2]−1

∑t
j=1 ε

2
1,j 0 · · · 0

0 1−R2
2,t · · · 0

...
...

. . .
...

0 0 · · · 1−R2
i,t

 (3)

Once we substitute the formula for adjusted R2 into the equation we can back out a matrix

that represents diagonal elements of the covariance matrix of the returns, thus its variances.

=
1

t− k


σ2

1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 0 · · · σ2
i


−1

∑t
j=1 ε

2
1,j 0 · · · 0

0
∑t
j=1 ε

2
2,j · · · 0

...
...

. . .
...

0 0 · · ·
∑t
j=1 ε

2
i,j

 (4)

=
1

t− k
diag(Σ)−1


∑t
j=1 ε

2
1,j 0 · · · 0

0
∑t
j=1 ε

2
2,j · · · 0

...
...

. . .
...

0 0 · · ·
∑t
j=1 ε

2
i,j

 (5)

Last term of (5) is a matrix with the very elements we minimize during the OLS procedure

when predicting equity returns. As the variance and the scalar are predetermined by the

sample it is easy to see that our linear predictor singularly maximizes certainty by minimizing

Ω.
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A.2 Restructuring the Black-Litterman equation

To isolate τ and Ω in the initial Black-Litterman equation we restructure the formula, closely

following Mankert (2006):

z∗ =
[
(τΣ)

−1
+ P ′Ω−1P

]−1 [
(τΣ)

−1
z + P ′Ω−1r̂

]
(6)

First we multiple (6) with τΣ and its inverse as an identity matrix:

=
[
(τΣ)

−1
+ P ′Ω−1P

]−1

(τΣ)−1(τΣ)
[
(τΣ)

−1
r̂ + P ′Ω−1z

]
(7)

=
[
I + τΣP ′Ω−1P

]−1[
r̂ + τΣP ′Ω−1z

]
(8)

Now we extend the second term by τΣP ′Ω−1P r̂ and its additive inverse:

=
[
I + τΣP ′Ω−1P

]−1[
r̂ + τΣP ′Ω−1z + τΣP ′Ω−1P r̂− τΣP ′Ω−1P r̂

]
(9)

=
[
I + τΣP ′Ω−1P

]−1[(
I + τΣP ′Ω−1P

)
r̂ + τΣP ′Ω−1 (z− P r̂)

]
(10)

Once again we multiple with an identity matrix, this time by Ω + P ′τΣP and its inverse:

=
[
I + τΣP ′Ω−1P

]−1

· · · (11)[(
I + τΣP ′Ω−1P

)
r̂ + τΣP ′Ω−1(Ω + P ′τΣP )(Ω + P ′τΣP )−1 (z− P r̂)

]
(12)

=
[
I + τΣP ′Ω−1P

]−1

· · · (13)[(
I + τΣP ′Ω−1P

)
r̂ +

(
I + τΣP ′Ω−1P

)
τΣP (Ω + P ′τΣP )−1 (z− P r̂)

]
(14)

After some simple algebra we obtain a modified form of the equation with unified τ and Ω

variables:

=z + τΣP (Ω + P ′τΣP )−1 (z− P r̂) (15)

z∗ =z + ΣP
[Ω

τ
+ P ′τΣP

]−1

(z− P r̂) (16)

Given that we hold absolute views on all assets at all times we can further simplify by

dropping out P , which is the identity matrix assigning views to the respective asset where

one does not hold a prediction on each asset or states relative views:

z∗ =z + Σ
[Ω

τ
+ τΣ

]−1

(z− r̂) (17)
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