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Abstract

Exchange rate returns exhibit distributions with fat tails, i.e. high probability of extreme
currency movements. We provide evidence that the apparent non-normality is driven by the
tail behavior of macroeconomic fundamentals. Economic and probabilistic arguments are
offered for this relationship. The empirical results show that the exchange rate returns
and economic fundamentals are asymptotically dependent: when the fundamentals such as
money supply, interest rate and price level increase dramatically, large declines in currency
prices occur around one third of the times. Their joint occurrence indicates that large swings
in currency prices are partly associated with heavy-tailed macroeconomic fundamentals.
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1 Introduction

Large swings in currency prices have been thoroughly investigated and led to the hypothesis
that exchange rate return distributions exhibit non-normal fat tails, see e.g., Westerfield (1977),
Boothe and Glassman (1987), Akgiray, Booth and Seifert (1988), Koedijk, Schafgans and de Vries
(1990), Koedijk, Stork and de Vries (1992), Koedijk and Kool (1994) and Susmel (2001).1 The
fat tail nature of the FX returns indicates that the frequent occurrence of extreme market move-
ments is excessive relative to the conventional normal distribution. As the potential catastrophic
consequences of these extreme events are relevant for risk management and financial stability, an
intriguing open question is: What causes these large swings in currency prices? In this paper,
by using Extreme Value Theory (EVT) we give theoretical arguments and empirical tests for the
hypothesis that the fat tails are caused by the economic fundamentals that drive the exchange
rate.
∗Corresponding author’s address: Tinbergen Institute, Erasmus University Rotterdam, P.O. Box 1738, Rotter-

dam 3000 DR, The Netherlands. E-mail address: cdevries@few.eur.nl. E-mail address of Phornchanok Cumper-
ayot: phornchanok.c@chula.ac.th. We like to thank Eric van Wincoop for perceptive comments and helpful
suggestions on an earlier draft.

1Moreover, it is well documented that at higher frequencies exchange rate returns exhibit volatility clustering,
see Diebold (1988). This adds to the fat tail nature of the returns.
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Standard exchange rate models, such as the monetary-approach based model, would sug-
gest that this fat tail feature either stems from the nature of the fundamentals’distributions,
or is caused by the error term. Using a reduced form of the monetary-approach model, Lux
and Sornette (2002) show that the fat tails of the exchange rate returns are driven by ratio-
nal expectations bubbles, proposed by Blanchard and Watson (1982). However, the numerical
prediction resulting from their exogenous bubbles is not consistent with the usual empirical find-
ings.2 Lux and Marchesi (1999) and Aoki (1999) use the market microstructure exchange rate
models to explain the fat-tailed exchange rate returns by generating endogenous bubbles through
the trading process. In this paper, we argue that the stylized fact of power-law tails of the ex-
change rate returns can be due to the heavy tail behavior of economic fundamentals from the
monetary-approach exchange rate models.
We first show that within a standard monetary macroeconomic model with Brainard type

multiplicative uncertainty, the implied distributions of macroeconomic variables like the inflation
rate and money stock can exhibit the heavy tail feature, even if the noise distribution itself has no
tails at all such as the uniform distribution. Then, by applying Feller’s (1971, VIII.8) convolution
theorem in the log-linear exchange rate model we discuss how the heavy tails are carried over
to the exchange rate returns. For empirical investigation, our data set consists of monthly
observations from 30 countries over the period of 1974-2007.3 We demonstrate that the fat tail
nature is not exclusively for the exchange rate returns, but also for economic fundamentals.
Moreover, the exchange rate returns and economic fundamentals are asymptotically dependent,
i.e. when the fundamentals take on extreme values the probability of their joint occurrence with
large swings in currency prices is positive even in limit.4

The failure of standard models which relate exchange rate to macroeconomic variables be-
comes well known since the seminal work of Meese and Rogoff (1983), as this type of models has
had little success compared to naive no change forecasts. However, Engel and West (2005) show
that an exchange rate manifests near-random walk behavior if the fundamentals are I(1) and if
the factor for discounting expected future fundamentals is close to unity. Therefore, according to
Engel, Mark and West (2007) the criterion of outperforming a random walk in forecasting is too
strong for the exchange rate models. Engel and West (2005) and Engel, Mark and West (2007)
also provide various evidence to support the hypothesis that the exchange rate models are not
as bad as we think. Moreover, in their scapegoat theory Bacchetta and Wincoop (2004) exploit
parameter instability to explain why the exchange rate models have found so little explanatory
power of macroeconomic variables.
Neely and Sarno (2002) discusses developments in exchange rate economics and show that

there are always signs indicating the link between macroeconomic variables and the exchange
rate even in the works that reject the exchange rate models.5 In addition, a number of works,
e.g. Mark and Sul (2001) and Groen (2005), show that the predictive power of the exchange rate
models can be increased by using panel studies and predicting exchange rates at long horizons.
Engel, Mark and West (2007) also explain that short-run movements in exchange rates are
primarily determined by changes in expectations of future fundamentals. The sample distribution
of ex post realizations of economic variables is commonly perceived as a good approximation of the
distribution used when making forecasts. Hence, we take these as suffi cient basis for investigating
the tail relationship between the exchange rate returns and the economic fundamentals from the

2The model used in Lux and Sornette (2002) suggests fatter tails than the usual findings as it predicts the tail
index below 1, while the empirical estimates for the exchange rate returns are between 2-4.

3See Appendix A for a list of countries and data sources.
4Asymptotic dependence is the strongest form of tail depepndence. For a bivariate normal distribution, two

variables are asymptotically dependent when their correlation coeffficient is equal to one.
5This includes the work by Meese and Rogoff (1983) which find some evidence of predictability at long horizons.
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monetary-approach exchange rate models.6

The rejection of the exchange rate models often comes from the fact that these models cannot
correctly predict the exchang rate movement consistently and persistently. However, the acad-
emic consensus that macroeconomic variables have little explanatory power for exchange rates
is in contradiction to market practices when analyzing the currency price movement (Bacchetta
and Wincoop, 2004). In this paper, by using EVT we express the relation between variables
in terms of tail index similarity and probabilities. Our measures thus cover cases in which the
monetary-approach exchange rate models may hold true, but evidence have been weaken by
complications such as parameter uncertainty (Bacchetta and Wincoop, 2004), volatile and in-
consistent expectations (Neely and Sarno, 2002) or even nonlinearity (Taylor and Peel, 2000). To
our knowledge, this is the first investigation of the linkage between the tails of the fundamentals’
distribution and the distribution of exchange rate returns.
To measure the tail fatness, we estimate tail indices α using the Hill estimator7 . To illustrate

the extreme linkage between the economic fundamentals and the exchange rate returns, we
calculate the conditional expectation measure proposed in Huang (1992) and used in Hartmann,
Straetmans and de Vries (2004, 2010) and de Vries (2005). Further, we analyze the robustness
of our results by using an alternative measure of asymptotic dependence in Poon, Rockinger
and Tawn (2004), and by testing whether the tail association is preserved under the log-linear
exchange rate models. The next section gives a brief account of what we need from extreme value
theory (EVT) and makes the argument for the transmission of fat tails from the fundamentals
to the exchange rate returns. We combine theoretical economic and probabilistic arguments for
the fat tail phenomenon. Section 3 and 4 discuss the estimation methods and empirical results,
respectively. Conclusions are presented in Section 5.

2 Theory

Within a standard monetary macroeconomic model, we first show that multiplicative supply-
side Brainard type noise with a bounded support induces fat tails on the distribution of the
macroeconomic aggregates, even in the setup the noise itself does not have fat tails. Subsequently,
we provide a short review of the probabilistic properties of fat-tailed distributed random variables
and their scaling properties.

2.1 Tail Events and Macroeconomic Fundamentals

One may wonder why macroeconomic fundamentals have distributions with heavy tails. An
early statistically oriented explanation for inflation rates was given by Engle (1982). Engle’s
ARCH model has random variables follow a martingale process with autoregressive behavior in
the second moment causing clusters of high and low volatility. Then even if the innovations are
thin-tailed normally distributed, the unconditional distribution ends up having fat tails like the
Pareto distribution, see de Haan, Resnick, Rootzen and de Vries (1989). Cumperayot (2002),
however, shows that macroeconomic variables significantly exhibit fat tails even after filtering
out the ARMA-GARCH components. Thus, a fundamental based explanation for the apparent
non-normality is needed.
Here we develop an economic based explanation of how the distribution of a macroeconomic

variable like the money stock or rate of inflation can exhibit the fat tail feature. The idea is not

6To provide empirical evidence, in this paper we focus on the tail that represents extreme depreciations of the
domestic currency relative to the foreign curreny which is relevant for risk management and financial stability.

7The Hill (1975) estimator is the most effi cient estimator in mean squared error sense for the heavy-tailed
distributed variables.
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to present a fully fledged theory, as this would be outside the scope of the paper, but to present
a coherent argument for two of the macroeconomic variables involved. The next subsection then
shows that the heavy tail feature is carried over to the exchange rate.
To this end consider the following stylized monetary macroeconomic model, as presented in,

e.g., Walsh (2003, p.440). The aggregate supply curve reads

Yt = At(Πt − Et−1[Πt]) + εt, (1)

where Yt is the logarithmic level of output, Πt is an inflation rate and Et−1[Πt] is the time t− 1
expected inflation for time t, and εt is a noise term. In the short run, deviations from the long-
run output level are possible due to expectational errors. The elasticity of output with respect
to inflation expectations’errors is At. Thus (1) is in a crude way the Lucas type supply curve.
Aggregate demand depends on real interest rates, i.e. the nominal interest rate minus expected
inflation It − Et[Πt+1]:

Yt = −b(It − Et[Πt+1]) + ηt. (2)

The reduced-form money market equation is based on the quantity equation

Mt = Pt−1 + Πt + Yt − gIt + νt, (3)

where Mt and Pt−1 stand for the logarithms of the quantity of money and price level, respec-
tively. The three disturbances (εt, ηt, νt) are assumed to have mean zero i.i.d. noise with thin
(exponential decline) or bounded tails (in case of bounded support).
Frequently model estimates and new data lead to parameter revisions, see Sack (2000). We

capture the model uncertainty via the Brainard (1967) effect and assume that the coeffi cient for
the short-run Phillips effect At is an i.i.d. random variable. Suppose At has a beta distribution

P{A ≤ x} = xα, α > 2. (4)

The support of this distribution is [0, 1]. Note that this distribution is clearly not fat tailed. The
fact that zero is in the support reflects the possibility that the short-run supply curve may be
vertical, i.e. coincides with the long-run curve.
Suppose the goal of monetary policy is to stabilize the level of inflation around a target

π∗. This reflects, e.g., the European Central Bank’s single price stability objective, since the
ECB does not have real income stabilization or employment as its prime objectives. Specifically,
assume that the objective resembling the ECB’s main task reads

min
It

Et−1[(Πt − π∗)2]. (5)

Based on information available at time t−1, the central bank determines the policy interest rate
It in order to minimize its expected loss function of price instability. The policy interest rate is
then set to ensure that the expected value of inflation equals the target level, i.e. Et[Πt+1] =
Et−1[Πt] = π∗. Substituting out Yt from the first two equations (1) and (2) gives

Πt =
(b+At)π

∗ − bIt + ηt − εt
At

.

Since by assumption α > 2 in (4), the E[1/At] is bounded (see (6) below). Thus we can take
expectations conditional on time t− 1 information

Et−1[Πt] = b(π∗ − It)Et−1[1/At] + π∗,
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and equate Et−1[Πt] = π∗. Hence, given its objective function (5), it is optimal for the central
bank to set

It = π∗.

This implies for the money equation (3) that

Mt = Pt−1 + Πt + Yt − gπ∗ + νt.

Use the first two equations (1) and (2) to substitute out Yt and Πt, to get

Mt = Pt−1 + (1− g)π∗ + (1 +
1

At
)ηt −

εt
At

+ νt.

Solving for the two other endogenous variables we find

Πt = π∗ +
ηt − εt
At

and
Yt = ηt.

Now Πt and Mt are heavy-tailed distributed since (ηt − εt)/At is heavy-tailed distributed.
This follows from the fact that the random Phillips effect coeffi cient appears in the denominator.
Given the beta distribution assumption (4) regarding At, the distribution of the inverse is

P{ 1

A
≤ x} = 1− P{A ≤ 1

x
} = 1− 1

xα
, (6)

with support xε[1,∞). Thus the inverse of A has a heavy-tailed Pareto distribution (conditional
on the distribution of ηt and εt) and has moments k only up to α. This can be easily seen from

E[(1/A)
k
] =

∫ ∞
1

xk−α−1dx =
1

k − αx
k−α|∞1 .

The power decline of the Pareto density makes that not all moments exist. This is the defining
characteristic of heavy-tailed distributions.
As a result, the unconditional distributions of Πt and Mt are also heavy-tailed. To see this,

let Q = η− ε and consider the distribution of Q/A. Suppose the distribution of Q does not have
heavy tails, in the sense that all moments are bounded; in particular EQ[Qα] < ∞. Using the
conditioning argument of Breiman and (6) then shows that

P{Q
A

> x} = EQ[P{ q
A
> x|Q = q}]

= EQ[P{ 1

A
>
x

q
|Q = q}]

= EQ[

(
Q

x

)α
]

= EQ[Qα]x−α. (7)

Therefore, due to the random Phillips curve coeffi cient, the unconditional distributions of Πt and
Mt are also heavy-tailed.8 Next, we show how the heavy tail feature can be carried over to the
exchange rate distribution.

8The same argument is applied to the money growth rate ∆Mt which contains (ηt − εt)/At and (ηt−1 −
εt−1)/At−1.
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2.2 Regular Variation and Tail Additivity

The monetary-approach exchange rate model is linear in the macroeconomic fundamental vari-
ables (see Neely and Sarno, 2002, and Sarno and Taylor, 2002). Suppose that the distributions
of the macroeconomic variables exhibit heavy tails. We first show that if the macroeconomic
variables are i.i.d., then the exchange rate also has a distribution with heavy tails. Subsequently,
we argue that this result still follows if the macroeconomic variables are dependent. From an
economic point of view the independence case is, in a way, the hardest case to treat. Since if,
say, the macroeconomic fundamentals are driven by a common component that is heavy-tailed
distributed, then it is almost immediate that this property is transferred to the distribution of
the exchange rate.9

We adopt the following general notion of heavy tails. A distribution function F (x) is said to
exhibit heavy tails if its tails vary regularly at infinity. The upper tail varies regularly at infinity
with tail index α if 10

lim
t→∞

1− F (tx)

1− F (t)
= x−α, x > 0 and α > 0. (8)

Regular variation implies that the distribution changes at a power rate. This contrasts with,
e.g., the normal distribution that has tail probabilities that decline at an exponential rate. The
number of bounded moments of F (.) is finite and equals the integer value of α, i.e. the α-
moment.11 One checks that the Student-t distribution satisfies (8) by using L’Hôpital’s rule, for
the Pareto distribution this is trivial.
Random variables with regularly varying distributions satisfy an important additivity prop-

erty. Suppose a distribution has heavy tails, so that

P{X > x} = 1− F (x) ∼ Ax−α, as x→∞. (9)

According to Feller’s Convolution Theorem (1971, VIII.8), if X1 and X2 are i.i.d. with c.d.f.
F (x) which has regularly varying tails as in (9), then

P{X1 +X2 > s} ∼ 2As−α, as s→∞. (10)

If X and Y are i.i.d. and if X has a tail index of α and Y has a lighter tail (e.g. has a hyperbolic
tail with a higher power than α or even has an exponential type tail), then analogous to the
proof of (7) one shows that

P{X + Y > s} ∼ As−α. (11)

In this case the convolution is dominated by the heavier tail.
Some intuition for the Feller theorem is as follows. Let X be i.i.d. Pareto distributed with

scale A = 1. Then for large s

1− P{X1 ≤ s,X2 ≤ s} = 1−
(
1− s−α

)2 ≈ 2s−α

since the second term s−2α is of smaller order. Thus only the (univariate) probability mass
along the axes counts. The mass above the line X1 + X2 = s is also determined by how much
probability mass is aligned along the axes above this line, i.e. 2s−α. The probability mass above
the line away from the axes is of smaller order.

9For theoretical details on extremal analysis, the reader is referred to, e.g., Longin (1996) and Embrechts,
Kluppelberg and Mikosch (1999).
10For the lower tail, lim

t→∞
F (−tx)/F (−t) = x−α, x > 0 and α > 0.

11For instance, the Pareto distribution satisfies the Power law and has a number of bounded moments equal to
an integer of α. The Student-t distribution has moments equal to its degree of freedom. The thin-tailed normal
distribution has all moments bounded.
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The convolution result (10) and (11) are very powerful. To give an illustrative example, let’s
consider the quasi-reduced-form specification of the exchange rate models in the logarithmic form

e = ϕ0 + ϕ1m+ ϕ2y + ϕ3i+ ϕ4p
e + u, (12)

where e, m, y, i and pe denote changes in the exchange rate, money supply, real income, interest
rate and expected price level, respectively, and u is an error term. The exchange rate is quoted as
a price of foreign currency in terms of domestic currency, while other variables are the domestic
variables relative to the corresponding foreign variables. Monetary neutrality holds if ϕ1 = 1;
ϕ2 < 0 in theory, while the sign of ϕ3 depends on the version of the model, see Frankel (1979).

In the context of the monetary model (12), the convolution theorem predicts that if the
distributions of the changes in the fundamental variables exhibit heavy tails, the exchange rate
return distribution should have a heavy tail as well. In particular, (11) constrains the tail shapes
of the fundamentals and the exchange rate in the following way

αe = min(αm, αy, αi, αpe , αu), (13)

where αx represents a tail index of a random variable x and where the variables adhere to (12).
In particular assume for example that the macroeconomic variables m, y, i and pe in (12) all have
Pareto type tails with identical tail index α as in (9) and unit scale, so that A = 1. Moreover
assume that the noise u follows a distribution with bounded support. Then

P{e > t} = P{ϕ0 + ϕ1m+ ϕ2y + ϕ3i+ ϕ4p
e + u > t} (14)

∼ (ϕα1 + ϕα2 + ϕα3 + ϕα4 ) t−α.

We find that the tail shape of the exchange rate returns e is governed by the tail shape of the
fundamentals’changes.
The convolution result (10) assumes that the macroeconomic variables from (12) are inde-

pendent random variables, which is often not the case due to endogeneity. Consider therefore the
multivariate extension of (8). Suppose that the vector x of fundamental variables is multivariate
regularly varying in the sense that

lim
t→∞

1− F (tx)

1− F (t1)
= W (x), x > 0,

where W (.) is a function such that W (λx) = λ−αW (x), α > 0, λ > 0 and 1 is the unit vector.
Suppose the marginal distributions are as in (9) so that the scales are of the same order, and all
the marginal distributions have the same tail index α. Then for any non-zero weight vector w,
P{wTx > s} ∼ Cs−α, as s→∞. Here the scale constant C depends on the type of dependence
and can no longer be determined as in (14), i.e. it requires specific knowledge of the copula.
Nevertheless, the weighted sum of macroeconomic variables that determines the distribution of
the exchange rate still has a Pareto like upper tail with the tail index α. Moreover, it is still
the case that if the marginal distributions have different tail indices, the fundamental with the
heaviest tail should have a tail index equal to the tail index of the exchange rate returns.
In addition, we like to note that the atemporal convolution result still holds when the economic

variables are stationary time series. This is so since the convolution is a ‘cross-section’ like
aggregation at a specific point in time. As the exchange rate and macroeconomic variables
display bouts of quiescence and turbulence, changes in the economic variables are often captured
by ARMA-GARCH type of models. From the convolution result (10), one can show that when
time series are not i.i.d. but serially dependent, the occurrence of extremes may affect the
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distribution of order statistics, but not the tail index α. That is the exchange rate return
distribution still has hyperbolic tails.
The convolution theorem can nevertheless also be used to study the aggregation of time series

over time. Suppose for example that m follows the following MA(1) process

mt = εt + γεt−1, and γ > 0,

and where the innovations ε are i.i.d. with distribution function as in (9). Then, by Feller’s
Convolution Theorem

P{m > x} ∼ A (1 + γα)x−α, as x→∞.
Furthermore, P{mt + mt−1 > x} ∼ A [1 + (1 + γ)α + γα]x−α, as x → ∞. Note that the
convolution results show that the scales of the random variables change due to the moving
average process, but not the tail index α.
More complicated time series models can also be handled. For instance, Engle’s (1982)

original contribution modeled the inflation rate by the ARCH process. De Haan et al. (1989)
showed that the tail of the stationary distribution of the ARCH process is regularly varying.
Basrak et al. (2002) discuss the convolution of GARCH processes.

2.3 Asymptotic Dependence

If the tail fatness of the exchange rate returns is a consequence of heavy-tailed macroeconomic
variables. Extreme exchange rate movements should be associated with extreme changes in
macroeconomic variables. To investigate the linkage between extreme movements of the two
variables we test whether the variables are asymptotically dependent. Asymptotic dependence
is the strongest form of four types of the dependence structure, which are independence, perfect
dependence, asymptotic independence and asymptotic dependence (see Poon, Rockinger and
Tawn, 2004). If we have two variables Y and X and their extreme value statistics are defined
when Y and X are beyond the EVT thresholds θY and θX , respectively. The variables are
asymptotically dependent if the conditional probability P {Y > θY | X > θX} remains positive
in limit, i.e. when both variables move deeper into the tails and approach infinity.12

To examine the connection in the tails of economic fundamentals and exchange rate returns,
we exploit the conditional expectation measure E {κ | κ > 1} proposed in Huang (1992) and used
in Hartmann, Straetmans and de Vries (2004, 2010) and de Vries (2005), i.e.

E {κ | κ > 1} =
P {X > θX}+ P {Y > θY }
1− P {X ≤ θX , Y ≤ θY }

, (15)

where κ denotes the number of variables in the tail area. This measure simply states the expected
number of variables being in the tail area, given that one variable is in the tail. The idea behind
this measure is that if two variables are not independent, having some information about one
variable, say X, implies that one has also information about the other variable, Y (see Hartmann
et al., 2010).
Rather than defining the thresholds θY and θX , in this paper we evaluate E {κ | κ > 1} as Y

and X approach infinity. Hartmann et al. (2010) show that in the limit 1 ≤ E {κ | κ > 1} ≤ 2.
The expected number is equal to 1 when two variables are asymptotically independent and equal
to 2 when the variables are perfectly asymptotically dependent. For asymptotically dependent
variables, 1 < E {κ | κ > 1} < 2. To develop some intuition for this measure let Y be an exchange
rate return and X be an economic fundamental which determines Y , namely Y = δX + ξ when

12Without loss of generality, one can also consider minima, as results for one of the two can be immediately
transferred.
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0 < δ ≤ 1. By applying the tail additivity theorem, we analyze two cases: how the coeffi cient
δ and the conditional expectation measure E {κ | κ > 1} are related. For the case in which
thin-tailed economic fundamentals result in the exponential tails of the exchange rate returns,
Proposition 1 in Hartmann et al. (2010) applies (see page 245). If the variables Y and X follow
a bivariate normal distribution with positive correlation, they are asymptotically independent
with E {κ | κ > 1} = 1 in limit.

Case 1 Suppose that X and ξ are i.i.d. random variables with regularly varying tails, i.e. as
x −→∞

P {X > x} = P {ξ > x} = x−α.

Then limx−→∞E {κ | κ > 1} = δ−α+2
δ−α+1

. The conditional expectation measure E {κ | κ > 1} is
positively related to the coeffi cient δ. If δ = 1, the conditionally expected number equals 1.5 in
the limit.

Proof. By definition

lim
x−→∞

E {κ | κ > 1} = lim
x−→∞

P {X > x}+ P {Y > x}
1− P {X ≤ x, Y ≤ x} = lim

x−→∞

P {X > x}+ P {δX + ξ > x}
1− P {X ≤ x, δX + ξ ≤ x} .

For the numerator, using Feller’s convolution theorem we get

P {X > x}+ P {δX + ξ > x} = x−α + (δ−α + 1)x−α = (δ−α + 2)x−α.

For the denominator, by assuming excessive volatile exchange rate we get

1− P {X ≤ x, δX + ξ ≤ x} = (δ−α + 1)x−α.

Thus, limx−→∞E {κ | κ > 1} = δ−α+2
δ−α+1

.

Case 2 Suppose that X and ξ are i.i.d. random variables. X has a tail index of α as in the
previous case but ξ has a lighter tail. Then limx−→∞E {κ | κ > 1} = δ−α+1

δ−α
. The conditional

expectation measure E {κ | κ > 1} is positively related to the coeffi cient δ. If δ = 1, the con-
ditionally expected number equals 2 in the limit. Note that the heavier tail dominates and the
variables become complete asymptotically dependent when the correlation is equal to 1.

Proof. By the same definition, using Feller’s convolution theorem for the numerator we get

P {X > x}+ P {δX + ξ > x} = x−α + δ−αx−α = (δ−α + 1)x−α.

For the denominator, by assuming excessive volatile exchange rate we get

1− P {X ≤ x, δX + ξ ≤ x} = δ−αx−α.

Thus, limx−→∞E {κ | κ > 1} = δ−α+1
δ−α

.
These two cases demonstrate the hypothetical asymptotic dependence between exchange rate

returns and economic fundamentals when the variables are linearly associated as suggested in
the monetary models of exchange rates. However, since the concept of asymptotic dependence
simply expresses the relation between variables in terms of limiting conditional probability or
the related probability measure, the probability measures allow broader but more precise inves-
tigation beyond a simple log-linear model. These include cases in which the monetary-approach
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exchange rate models may hold true, but the models have been complicated by the factors such
as parameter uncertainty (Bacchetta and Wincoop, 2004), volatile and inconsistent expectations
(Neely and Sarno, 2002) or even nonlinearity (Taylor and Peel, 2000). Based on EVT, we di-
rectly measure the probability of the joint occurrence of variables at a particular quantile, or
vice versa.13

3 Estimation

In this section, we explain the semi-parametric tail estimation and the extreme linkage measure
used to examine whether large swings in currency prices are associated with the extreme behavior
of macroeconomic fundamentals.

3.1 Tail Estimators

To estimate the tail index α from (8), the semi-parametric estimators like the log-moment based
Hill (1975) estimator and the Dekkers-Einmahl-de Haan (1989) (DEdH) estimator are natural
candidates. Starting from the presumption that the distributions have fat tails, the Hill estimator
is the more effi cient estimator in mean squared error sense. Define the ascending order statistics
from the sample of size n, as X(1) 6 X(2) 6 ... 6 X(n). The Hill (1975) estimator reads

γ̂(m) =
1

m

m

Σ
i=1

[logX(n+1−i)/X(n−m)], (16)

where γ denotes the inverse tail index 1/α and X(n−m) is a suitable threshold. Thus, there are

m observations above the threshold. For m(n) → ∞, while m(n)/n → 0, 1̂/α is asymptotically
normally distributed with zero mean and variance 1/α2.
The use of extreme value theory for economics and finance resides in the estimation of extreme

probability-quantile (p̂q, q) combinations, where p̂q = 1− F (q) and q is at the border or outside
the sample. For example, the banking industry uses this to provide stress test estimates. De
Haan, Jansen, Koedijk and de Vries (1994) developed the following probability estimator:

p̂q =
m

n
(
X(n−m)

q
)α̂. (17)

For the reverse problem of estimating the quantile at a certain low probability level, one simply
inverts (17). One can show that the statistical properties of p̂q are driven by the statistical
properties of the tail index estimator, since this statistic appears in (17) as a power. Thus p̂q is
also asymptotically normally distributed. Our results from the tail index estimation can then be
useful for risk management and stress testing at macroeconomic level.
An essential step in the computation of any tail index estimator is the selection of the number

of upper order statistics m, in other words the selection of the threshold, X(n−m) in (16). The
statistical properties of the Hill estimator crucially depend on the selection of the threshold. Too
few observations enlarge the variance of the estimator, while too many observations reduce the
variance at the expense of biasedness (by including observations from the central range, the first
order approximation (9) becomes marred by second order terms). There are several automated

13Although we assess the extreme linkage in the limit, the measure provides a good approximation of tail
relation at high but finite extreme levels, see, e.g., Balkema and De Haan (1974) and Hartmann et al. (2010).
Our study is thus relevant for FX risk management and economic stability in general.
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procedures available to deal with this trade-off problem, but these bootstrap based procedures
only work in large samples such as are available in the high frequency domain.14

Our study relies on rather coarse macroeconomic data, ranging between 200 to 407 monthly
observations from the period 1974-2007, and we are mainly interested in tail index values. As
suggested by Loretan and Phillips (1994) and Embrechts et al. (1997), in this paper an appropri-
ate threshold is thus selected from a plateau on which the Hill estimate appears relatively stable.
By plotting the series of γ̂(m) against different values of m, the appropriate m is chosen from the
one whose value of γ̂(m) first stabilizes. We, then, verify the eye-balling result by reporting the
estimates for two typical tail sizes (5 and 2.5 percent of the overall sample size), as suggested by
Lux and Sornette (2002). We also use the plots of the Dekkers-Einmahl-de Haan (1989) (DEdH)
estimates to confirm the fat tail property of the data.15

3.2 Measure of Extreme Linkage

To study the dependence structure, the influence of the marginal distributions of Y and X, i.e.
FY and FX , is conventionally eliminated by transforming the raw data to a common marginal
distribution.16 To extract the dependence between exchange rate returns and economic funda-
mentals, we follow Hartmann, Straetmans and de Vries (2005) by transforming the variables Y
and X to unit Pareto marginals Ỹ and X̃:

Z̃ =
1

1− FZ (Z)
,

where FZ (Z) is the marginal cumulative distribution function for Z. The variables Ỹ and X̃
have the same distribution function, and they possess the same dependence structure as Y and
X. Thus, the transformation allows us to focus on differences in distributions that are purely
due to dependence of extremes.
After the transformation, we can rewrite the conditional expectation measure (15) as

E {κ | κ > 1} =
P
{
X̃ > s

}
+ P

{
Ỹ > s

}
1− P

{
X̃ ≤ s, Ỹ ≤ s

} =
P
{
X̃ > s

}
+ P

{
Ỹ > s

}
P
{

max
[
X̃, Ỹ

]
> s
} , (18)

where all the probabilities in the expectation measure now have the same Pareto tail. Hartmann
et al. (2010) then substitute the probability estimator (17) for an extreme probability-quantile
(p̂s, s) in equation (18). By using a common tail cutoff point, i.e. X(n−m) in (17), the estimator
of extreme linkage becomes a simple count measure:

Ê {κ | κ > 1} =
mX̃ +mỸ

mmax
, (19)

where mX̃ (mỸ ) is the number of order statistics above the tail cutoff point for the X̃ (Ỹ )

series and mmax is the corresponding number for the max
[
X̃, Ỹ

]
sequence. Note that since the

marginal distributions are unknown, Hartmann et. al (2005) replace them with their empirical
counterparts:
14 It can be shown that the Hill estimator’s rate of convergence is best under the mean squared error criterion,

see Hall and Welsh (1984).
15To save space, the results are available upon request. For other tail estimation methods, see, e.g., Beirlant,

Goegebeur, Segers and Teugels (2004).
16Hartmann, Straetmans and de Vries (2005) transform the data to unit Pareto marginals, while Poon et

al. (2004) apply unit Frechet marginals. Beirlant et al. (2004) discuss other choices of marginal distribution
transformation and also state that the precise choice of transformation is not so important.
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Z̃ =
n+ 1

n+ 1−RZ
,

where RZ = rank
(
Z(l), l = 1, ..., n

)
.17

Using simulated data, Hartmann et al. (2010) show the behavior of the linkage estimator
Ê in (19) for different tail cutoff points ranging from high to low. The difference between
asymptotically independent and dependent data is that in the former case the plot first lingers
in the neighborhood of 1 (due to asymptotic independence) before rising towards 2, while in case
of asymptotic dependence not far from the origin there emerges a stable plateau at a level above
1. To measure the extreme linkage, the conditionally expected value Ê is computed using a tail
cutoff point where the plot of Ê is stable. Similar to the Hill estimation, we verify the eye-balling
result by reporting the estimates using the tail cutoff points at the largest 2.5, 5 and 10 percent
of sample thresholds. Moreover, for robustness check we estimate Ê using the raw data and
the unit Frechet transformed data.18 Also we show the consistence between our extreme linkage
measure and the asymptotic dependence tests proposed by Poon, Rockinger and Tawn (2004).19

To deal with the small number of observations resulting from low frequency macroeconomic
variables, we pool the data across countries. Observations used to estimate and test the extreme
linkage between exchange rate returns and economic fundamentals, then, range from 9611 to
10996. The panel analysis of the tail event is partly justified by the similarity of tail indices
across countries as demonstrated latter in Figure 1. Moreover, following from the exchange rate
model in equation (12) we examine the contemporaneous relation between the exchange rate
returns and economic fundamentals in the tails.

4 Empirical Results

This section is devoted to the empirical investigation of the extreme behavior of exchange rate
returns and macroeconomic variables and their extreme linkages. The first subsection presents
the estimated tail indices of the exchange rate returns and changes in the fundamentals. The
second subsection investigates the extreme linkages between these variables. The last subsection
illustrates the robustness of our empirical results.

4.1 Tails of Economic Variables

From the Hill estimates of the inverse tail index γ̂ = 1/α̂ for different tail thresholds, i.e. different
X(n−m) in (17), we select the number of observations m in the tail at a threshold where there
first exists a plateau on which the Hill estimate appears relatively stable. Figure 1 illustrates the
estimated tail index α̂ on the y−axis for exchange rate returns and economic variables from 30
countries.20 The left panel shows for each country the estimated tail index (denoted by a bar)
and its 95\% confidence interval (a straight line). By using different shades of grey, the right
panel compares for each country the estimated tail indices using the 5\% tail observations, the
2.5\% tail observations and m observations from an eye-balling approach, respectively.

17For more details, see Hartmann et. al (2010).
18For unit Frechet marginal distributions, the variables Y and X are transformed to Ỹ and X̃ where Ỹ =
−1/ logFY (Y ) and X̃ = −1/ logFX(X). To save space, the results are available upon request.
19 In Appendix B, we briefly describe the asymptotic dependence tests in Poon, Rockinger and Tawn (2004).

For other measures of extreme dependence, readers are referred to Beirlant et al. (2004).
20The variables are monthly absolute changes in the exchange rate, money supply, real income, interest rate and

price level relative to the corresponding foreign levels. Due to the small number of observations in each country
we assume symmetric distributions. Our estimates are thus dominated by the heaviest tail.
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On the left panel, most of the point estimates of the tail index are below 4 which imply that
the fourth and higher moments do not exist. The upper bounds of the 95\% confidence interval
are moreover in single digit for majority of the cases. For financial variables like exchange rate
and interest rate, the tail indices are between 1 and 4. For the monetary variables, e.g. money
supply and inflation, the tail indices linger between 2 and 4, while the real variable like output
tends to have less fat tails among all.21 Additionally, the right panel shows that our findings are
robust for different tail thresholds, as we observe clusters of tail indices for each country while
using different tail thresholds.22

Further, Table 1 provides descriptive statistics for the estimated tail indices of absolute
changes in the exchange rate (e), money supply (m), real income (y), interest rate (i) and price
level (p), using the two tail sizes, i.e. 5 and 2.5 percent of the overall sample size. The results
appear to be similar. From the averages, only the mean and variance exist for the exchange rate
returns. The fourth and higher moments are infinite for money growth and inflation, while for
the interest rate it is still debatable whether variance is bounded. Evidence indicates that not
only are the exchange rate returns heavy-tailed distributed, but the fundamental variables also
exhibit heavy tails.
Nevertheless, even if the distribution of fundamentals exhibits fat tails just like the distribu-

tion of exchange rate returns, how do we know that the latter feature is induced by the former?
Next we examine whether large swings in exchange rates are associated with the heavy-tailed
macroeconomic fundamentals.

Table1: Tail index estimates of FX returns and fundamentals
5 percent tail
e m y i p

Mean 2.2964 3.5027 5.2466 1.9793 3.5142
Median 2.0768 3.0117 4.1980 2.0448 3.1635
Max 6.0547 10.4102 14.1220 3.8133 7.2348
Min 0.4357 1.1189 1.4823 0.4551 1.6057
Std. Dev. 1.2708 1.7957 2.9821 0.8557 1.4840

2.5 percent tail
e m y i p

Mean 2.6087 3.9615 6.74574 2.3682 3.8851
Median 2.2442 3.9258 5.1587 2.1779 3.4690
Max 7.4797 11.4010 21.1251 5.6337 7.6681
Min 0.5488 0.9026 1.4639 0.4694 1.6168
Std. Dev. 1.5379 2.1621 4.4774 1.2471 1.6614

4.2 Extreme Linkages

Feller’s (1971, VIII.8) convolution theorem helps introduce the invariance principle regarding the
tail index under convolution. From the convolution theorem, if the exchange rate is an additive
function of macroeconomic fundamentals, the tails of the exchange rate return distribution should
be governed by the heaviest tails of the fundamentals’rates of change. The theorem provides a
simple but elegant way to examine the validity of the log-linear monetary models in the tail area.
Therefore, as preliminary evidence Figure 2 shows the plots between tail indices of the exchange

21The plots of the DEdH (1989) estimator suggest the same. The plots are available upon request.
22To save space, we do not display the plots of tail indices and their 95\% confidence intervals using 5\% and

2.5\% of total observations. To conclude, the point estimates are rather similar, while the 95\% band tends to
be larger when smaller number of observations in the tail used in computing the Hill estimates.
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rate returns and the minimum tail indices of the fundamentals from four different exchange rate
models nested in equation (12).
By constraining some coeffi cients in equation (12), for each country we compare the tail

index of the exchange rate returns αe with the minimum tail index from 1) the traditional
fundamental model, i.e. min(αm, αy), 2) the flexible-price monetary model with interest rate,
i.e. min(αm, αy, αi), 3) the flexible-price monetary model with inflation, i.e. min(αm, αy, αpe),
and 4) the sluggish-price monetary model, i.e. min(αm, αy, αi, αpe).23 From an equality imposed
in (13), we should ideally observe a 45 degree line (the solid line). However, from the point
estimates using the 5 percent tail observations the plots lie along the 45 degree line.24 The
correlation coeffi cients between tail indices on the left and right sides of (12) are 0.4227∗∗, 0.0459,
0.3867∗∗ and 0.0471, respectively.2526

Feller’s (1971, VIII.8) convolution theorem provides a guideline for the relationship in the
tails between the exchange rate returns and economic fundamentals, especially in the first and
third models when the interest rate is excluded. The tail index α determines the tail shape of fat-
tailed distributions: a smaller α implies a slower rate at which the probability density function
approaches infinity. The higher probability mass in the tail area implies the fatter tail and more
extreme behavior of the random variable. Besides, the integer value of α is the highest bounded
moment of the distribution. However, to determine whether the similarity of the tail behaviors
is not just a coincidence is more diffi cult to establish. Even if there is a similarity between tail
indices of the exchange rate returns and economic fundamentals, it would constitute no suffi cient
proof of the existing relation.
Next, we estimate the extreme linkage between the exchange rate returns and economic

fundamentals using the conditional expectation measure. After the unit Pareto transformation,
we compute Ê as graphically shown in Figure 3. While all the plots travel from 1 to 2, in Figure
3 we illustrate the behavior of the linkage estimator for the 20\% largest sample thresholds. For
the series of real income (e, y,−), the plot indicates a case of asymptotic independence, as it
does not leave the neighborhood of 1 at first, and latter on slowly rises towards 2 in the end.
For the negative relation between exchange rate returns and interest rate changes (e, i,−), the
linkage estimates first lingers around 1 before rising towards 2 which is also a case of asymptotic
independence. For the rest, we observe a dramatic rise at first, then a stable plateau after the
first hundred to two hundred top observations (roughly 1-2 percent of the sample size).
To measure the extreme linkage between exchange rate returns and economic fundamentals,

Table 2 presents the estimates of the linkage measure using the 2.5\%, 5\% and 10\% of top
observations. In Table 2, we see that the estimates do not vary much even using different tail
cutoff points. As in Figure 3, we find that the positive exchange rate returns are asymptotically
independent with negative changes in the real income and the interest rate. However, for the
fundamentals such as increases in money supply, interest rate and price level the estimates of
extreme linkage are around 1.3, 1.2 and 1.38, respectively. It implies that the exchange rate
returns and these economic fundamentals are expected to be jointly in the tails approximately
30\%, 20\% and 38\% of the times, respectively.27

23Note that for the expected price level pe the current price level (p) is used as a proxy.
24To save space, we do not report the plots that use 2.5 and 10 percent tail observations from which the plots

look rather similar, while the plots using an eye-balling approach provide even stronger evidence.
25Note that throughout the paper an asterisk indicates significance at the 10\% level while two and three

asterisks show significance at the 5\% and 1\% levels, respectively.
26 If we take out Brazil, the correlation coeffi cients jump to 0.5095∗∗∗, 0.2493, 0.4084∗∗ and 0.2632, respectively.

The returns on Brazilian real tend to have thin tails, indicated by both Hill and DEdH estimates, which are
contradictory to their currency crisis experiences.
27The estimation results are very similar to the case of unit Frechet transformation. The estimates using

transformed data tend to behave slightly different from the ones using the raw data. Results are available upon
request.
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Table 2: The conditional expectation measure

2.5% 5% 10%
(e,m,+) 1.3499 1.3164 1.2688
(e, y,−) 1.0126 1.0207 1.0411
(e, i,+) 1.2281 1.1977 1.1703
(e, i,−) 1.0717 1.0875 1.0970
(e, p,+) 1.3898 1.3985 1.3618

The empirical results show that the exchange rate returns and economic fundamentals are
asymptotically dependent. When changes in fundamentals, such as money supply, interest rate
and price level, are extremely large, the probability of an extreme domestic currency depreciation
is positive even in limit, i.e. when both variables move very deep into the tail area. Noteworthily,
asymptotic dependence is the strongest form of tail dependence.28 Their joint occurrences in the
tails between exchange rate returns and economic fundamentals thus indicates that large swings
in currency prices are associated with the heavy tail behavior of macroeconomic fundamentals.
The fat tail feature of exchange rate returns are caused by these macroeconomic fundamentals.

4.3 Robustness Analysis

In this subsection, we analyze the robustness of our findings in two directions: 1) use other
measures of asymptotic dependence, and 2) test the relation between tails of the exchange rate
returns and the composite fundamentals constructed from the exchange rate models in equation
(12).

4.3.1 Other Measures of Asymptotic Dependence

We reexamine our findings by using the asymptotic dependence tests proposed by Poon, Rockinger
and Tawn (2004). To identify the type of extremal dependence structure, Poon et al. (2004)
examine the limiting conditional probability by using a pair of distribution-free dependence
structure measures (χ, χ), that can be non-parametrically estimated and statistically tested.
The parameter χ measures the limiting probability that extreme values of the variables Ỹ and X̃
occur simultaneously. If χ = 0, Ỹ and X̃ are asymptotically independent, i.e. the extreme values
of the variables in limit occur independently. If χ > 0, Ỹ and X̃ are asymptotically dependent,
while if χ = 1, the variables are perfectly dependent.
For variables that are asymptotically independent, Poon et. al. (2004) measure their extreme

dependence by using the second measure of extremal dependence χ, which measures the rate at

which P
{
Ỹ > s | X̃ > s

}
approaches 0,

χ = lim
s→∞

2 logP
{
X̃ > s

}
logP

{
Ỹ > s, X̃ > s

} − 1.29

Note that −1 ≤ χ ≤ 1. If Ỹ and X̃ are asymptotically dependent, P
{
Ỹ > s, X̃ > s

}
=

P
{
X̃ > s

}
and χ = 1. If Ỹ and X̃ are independent, P

{
Ỹ > s, X̃ > s

}
=
[
P
{
X̃ > s

}]2
and

28Further, this type of tail dependence between exchange rate returns and economic variables is not very
common. By using a pooled sample of 46 countries in the period 1974-2008, Cumperayot and Kouwenberg (2012)
show that out of 18 current and lagged economic variables only two variables (the real interest rate and the real
interest rate differential) that are asymptotically dependent with the exchange rate returns.
29See also Ledford and Tawn (1996) and Coles, Heffernan and Tawn (1999).
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thus, χ = 0. Positive and negative values of correspond to positive and negative extreme associ-
ation, respectively.
Thus, we test for asymptotic dependence by computing χ. If the estimated is significantly

less than 1, the variables are said to be asymptotically independent with χ = 0. However, if the
null hypothesis that χ = 1 cannot be rejected, we can then estimate χ, i.e. the limit probability
that the extreme values of the variables Ỹ and X̃, and thus the raw variables Y and X, occur
simultaneously. That is the extreme values of the variables are asymptotically associated. Table
3 shows the estimated χ, standard deviation and z − stat for the null hypothesis that χ = 1.
Since the estimation of (χ, χ) involves the computation of the Hill estimator30 , the selection of
the threshold is very crucial. In Table 3, we report the results using 2.5\%, \5% and \10% tail
observations together with using an eye-balling approach.

Table 3: The estimated χ

2.5% 5% 10% Eye-balling
(e,m,+) 0.8397∗ 1.1712 1.1040 1.0961
std. 0.1115 0.0931 0.0638 0.0968
z − stat -1.4374 1.8396 1.6307 0.9928
(e, y,−) -0.0618∗∗∗ -0.1175∗∗∗ -0.0706∗∗∗ -0.0606∗∗∗

std. 0.0588 0.0391 0.0291 0.0622
z − stat -18.0732 -28.5982 -36.7903 -17.0474
(e, i,+) 1.1181 1.1388 0.7477∗∗∗ 1.1070
std. 0.1294 0.0924 0.0534 0.1357
z − stat 0.9124 1.5028 -4.7274 0.7885
(e, i,−) 0.6460∗∗∗ 0.4937∗∗∗ 0.2857∗∗∗ 0.5922∗∗∗

std. 0.1005 0.0645 0.0393 0.1026
z − stat -3.5208 -7.8482 -18.1894 -3.9756
(e, p,+) 0.7594∗∗ 0.9731 1.2213 0.8865
std. 0.1061 0.0841 0.0670 0.0983
z − stat -2.2680 -0.3197 3.3048 -1.1541

From Table 3, regardless of the tail cutoff points we can reject the null hypothesis of χ = 1
at the 1\% significant level for (e, y,−) and (e, i,−), while for the fundamentals like money
supply, interest rate (positive) and price level we cannot reject the null hypothesis for most cases.
Therefore, our conclusion remains that the positive exchange rate returns are asymptotically
dependent with increases in money supply, interest rate and price level, whereas evidence shows
the asymptotic independence between positive exchange rate returns, and negative changes in
the real income and the interest rate. For the cases which the null hypothesis of χ = 1 cannot be
rejected, we then estimate χ under the assumption that χ = 1. Table 4 illustrates the estimated
χ.

30See the estimation method in Appendix B.
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Table 4: The estimated χ

2.5% 5% 10% Eye-balling
(e,m,+) 0.4130∗∗∗ 0.4027∗∗∗ 0.4331∗∗∗

std. 0.0173 0.0116 0.0196
z − stat 23.9299 34.7696 22.1390
(e, i,+) 0.2995∗∗∗ 0.2803∗∗∗ 0.3025∗∗∗

std. 0.0181 0.0118 0.0193
z − stat 16.5793 23.7532 15.7017
(e, p,+) 0.5446∗∗∗ 0.4556∗∗∗ 0.5556
std. 0.0226 0.0130 0.0284
z − stat 24.0616 34.9610 19.5126

The estimated χ, which is the limiting probability that extreme values of the exchange rate
returns and economic fundamentals occur simultaneously, is significantly different from zero for
all cases. However, this measure predicts higher probabilities of extreme coexistence than the
conditional expectation measure. Based on the estimated χ, the large positive exchange rate
returns, and extremely increases in money supply, interest rate and price level are expected to
jointly occur roughly 40\%, 30\% and 50\% of the times, respectively.

4.3.2 Composite Fundamentals

We have so far investigated the bilateral associations between exchange rate returns and indi-
vidual economic fundamentals in equation (12). Evidence indicates that there are tail relations
between exchange rate returns and economic fundamentals such as money supply, interest rate
and price level. Based on four exchange rate models in equation (12), we now construct the series
of composite fundamentals. Then, we test asymptotic dependence between the exchange rate
returns and 1) the composite fundamentals and 2) the error terms. If the log-linear monetary
model of exchange rates holds and Feller’s (1971, VIII.8) convolution theorem for heavy-tailed
random variables applies, the fat tail feature and thus the tail association should be preserved
under addition. We should then observe the asymptotic dependence between the exchange rate
returns and the composite fundamentals. Moreover, we would like to compare between the com-
posite fundamentals and the error terms: which one is more associated with the exchange rate
returns?
Table 5 reports the conditionally expected value Ê between the exchange rate returns and

the composite fundamentals on the left columns and between the exchange rate returns and
the error terms on the right columns.31 On the first column, TF, FPI, FPP and SP indicate
the composite fundamentals and the error terms constructed from the traditional fundamental
model, the flexible-price monetary model with interest rate, the flexible-price monetary model
with inflation, and the sluggish-price monetary model, respectively. As before, we report the
estimates of the linkage measure using the 2.5\%, 5\% and 10\% of top observations. The
estimated coeffi cients of these four exchange rate models are shown in Appendix C.

31All series have been transformed to unit Pareto marginals.



Large Swings in Currencies Driven by Fundamentals 18

Table 5: The conditional expectation measure
Composite fundamentals Error terms
2.5% 5% 10% 2.5% 5% 10%

TF 1.3333 1.2709 1.2254 1.5849 1.5324 1.4809
FPI 1.3351 1.2596 1.2128 1.5455 1.5167 1.4688
FPP 1.3564 1.3302 1.2908 1.3144 1.3116 1.3127
SP 1.3444 1.3122 1.2703 1.2923 1.3004 1.3133

As in previous cases, the estimates are rather stable regardless of the tail thresholds used in
computation. For the composite fundamentals, the estimates range between 1.2 to 1.35 which
coincide with the estimates between the exchange rate returns and individual economic fun-
damentals. The estimates slightly increase from TF and FPI to FPP and SP, when price is
incorporated into the model. For TF and FPI, the estimates of extreme linkage between the
exchange rate returns and the error terms are higher than those from the composite fundamen-
tal. However, for FPP and SP the extreme linkages between the exchange rate returns and the
composite fundamentals are as high as those estimates from the error terms. The behavior of
these extreme linkage measures are graphically depicted in Figure 4. None of the plots lingers
around one, as would be the case of asymptotic independence.
To this point, we conclude that the exchange rate returns and economic fundamentals are

asymptotically dependent. The probability that the extreme values of the variables occur si-
multaneously is non-zero even in limit. The composite fundamentals, constructed from the
exchange rate models in equation (12), provide similar estimates as the estimates from individ-
ual fundamentals in the models. Evidence helps strengthen our theoretical argument: given the
log-linear exchange rate model heavy-tailed economic fundamentals are a reason for the fat tail
feature of exchange rate returns, as according to the convolution theorem the heavy tail feature
is preserved under addition. The asymptotic association between the exchange rate returns and
economic fundamentals is not higher than the exchange rate returns’association with the error
terms. However, the measures of extreme linkage become similar when the inflation is taken into
account (see the case of FPP and SP).

5 Conclusion

Exchange rate returns exhibit distributions with fat tails. The fat tail nature of the FX returns
indicates that the frequent occurrence of extreme market movements is excessive relative to the
conventional normal distribution. A number of works try to examine causes of the tail fatness of
exchange rate returns, a topic that is highly relevant for risk management and financial stability.
However, little attention has been put to the fact that the fat tail nature is not exclusively for the
exchange rate returns, but also for macroeconomic fundamentals. Further, if the macroeconomic
fundamentals are heavy-tailed distributed, then it is likely that this property can be transferred
to the distribution of the exchange rate returns. In other words, the fat tails of the FX returns
are driven by the economic fundamentals.
In this paper, by introducing the random Phillips curve coeffi cient into a standard monetary

macroeconomic model (Walsh, 2003) we show that the unconditional distributions of macro-
economic variables such as inflation and money supply are heavy-tailed. To illustrate the tail
relationship between exchange rates and economic fundamentals we exploit the log-linearity of
the monetary model of exchange rates. Quite a bit is known about the sum of random variables
that exhibit heavy tails. Feller’s (1971, VIII.8) convolution theorem for heavy-tailed random
variables holds that the fat tail feature is preserved under addition. Thus if the fundamentals’
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distributions exhibit fat tails and the log-linear monetary model applies, the fat tail feature is
transferred to the log exchange rate.
For empirical investigation, we use a panel data set consisting of monthly observations from

30 countries over the period of 1974-2007. First, based on the Hill estimator we demonstrate that
both exchange rate returns and economic fundamentals from the monetary-approach exchange
rate models are heavy tailed. From the point estimates, the fourth and higher moments do not
exist in most cases, except for the real income. Second, we show the similarity of tail indices
between left and right sides of the exchange rate models, as constrained by the convolution
theorem. Then, to investigate the tail dependence between these variables we apply the condi-
tional expectation measure proposed in Huang (1992) and an alternative measure of asymptotic
dependence in Poon, Rockinger and Tawn (2004).
From the pooled data, we find that the exchange rate returns and contemporaneous economic

fundamentals are asymptotically dependent, i.e. when the fundamentals take on extremely large
values the probability of their joint occurrence with large swings in currency prices is positive
even in limit. The positive exchange rate returns are asymptotically dependent with increases
in money supply, interest rate and price level, whereas evidence shows the asymptotic indepen-
dence between positive exchange rate returns, and negative changes in the real income and the
interest rate. The composite fundamentals, constructed from the log-linear exchange rate mod-
els, provide similar estimates of extreme linkage as the estimates from individual fundamentals.
Evidence helps strengthen our theoretical argument that the heavy tail feature, and thus the tail
relationship, are preserved under addition.
Asymptotic dependence is the strongest form of tail dependence. The joint occurrences in

the tails between exchange rate returns and economic fundamentals therefore indicates that
large swings in currency prices are associated with the heavy tail behavior of macroeconomic
fundamentals. The fat tail feature of exchange rate returns are caused by these macroeconomic
fundamentals. Nevertheless, we also find that factors outside the monetary exchange rate models,
namely the error terms, also cause the tail fatness of the exchange rate returns. The measures
of extreme linkage between the exchange rate returns and economic fundamentals is not higher
than the exchange rate returns’association with the error terms. However, they are equivalent
in the models where inflation is taken into account.

References

[1] Akgiray, V., G.G. Booth, and B. Seifert, 1988, Distribution properties of Latin American
black market exchange rates, Journal of International Money and Finance 7, 37-48.

[2] Bacchetta, P., and E. Wincoop, 2004, A scapegoat model of exchange-rate fluctuations,
American Economic Review 94, 114-118.

[3] Basrak, B., R.A. Davis, and T. Mikosch, 2002, Regular variation of GARCH processes,
Stochastic Processes and their Applications 99, 95-115.

[4] Blanchard, O.J., and M.W. Watson, 1982, Bubbles, rational expectations and speculative
markets, In P. Wachtel (ed.), Crisis in Economic and Financial Structure: Bubbles, Bursts,
and Shocks, Lexington: Lexington Books.

[5] Bollerslev, T., 1987, A conditional heteroskedastic time series model for speculative prices
and rate and return, Review of Economics and Statistics 69, 542-547.

[6] Boothe, P., and D. Glassman, 1987, The statistical distribution of exchange rates: empirical
evidence and economic implications, Journal of International Economics 23, 297-320.



Large Swings in Currencies Driven by Fundamentals 20

[7] Brainard, W., 1967, Uncertainty and the effectiveness of policy, American Economic Review
57, 411-425.

[8] Dekkers, A.L.M., J.H.J. Einmahl, and L. de Haan, 1989, A moment estimator for the index
of an extreme-value distribution, Annals of Statistics 17, 1833-1855.

[9] Diebold, F.X., 1988, Empirical Modeling of Exchange Rate Dynamics, Berlin: Springer.

[10] Engle, R.F., 1982, Autoregressive conditional heteroscedasticity with estimates of the vari-
ance of the United Kingdom inflations, Econometrica 50, 987-1007.

[11] Engel, C., N.C. Mark, and K.D. West, 2007, Exchange rate models are not as bad as you
think.

[12] Engel, C., and K.D. West, 2005, Exchange Rates and Fundamentals, Journal of Political
Economy 113, 485-517.

[13] Feller, W., 1971, An Introduction to Probability Theory and its Applications, New York:
Wiley.

[14] Flood, R., and A. Rose, 1995, Fixing exchange rates: a virtual quest for fundamentals,
Journal of Monetary Economics 36, 3-37.

[15] Frankel, J.A., 1979, On the Mark: a theory of floating exchange rates based on real interest
differentials, American Economic Review 69, 610-622.

[16] Groen, J.J.J., 2005, Exchange rate predictability and monetary fundamentals in a small
multi-country panel, Journal of Money, Credit and Banking 37, 495-516.

[17] Haan, L. de, D.W. Jansen, K.G. Koedijk, and C.G. de Vries, 1994, Safety first portfolio
selection, extreme value theory and long run asset risks, In J. Galambos (ed.), Proceedings
from a Conference on Extreme Value Theory and Applications, Kluwer Press, 471-487.

[18] Haan, L. de, S.I. Resnick, H. Rootzen, and C.G. de Vries, 1989, Extremal behavior of
solutions to a stochastic difference equation with applications to ARCH-processes, Stochastic
Processes and their Applications 32, 213-224.

[19] Hall, P., and A. H. Welsh, 1984, Best attainable rates of convergence for estimates of para-
meters of regular variation, Annals of Statistics 12, 1079-1084.

[20] Hill, B., 1975, A simple general approach to inference about the tail of a distribution, Annals
of Mathematical Statistics 3, 1163-1174.

[21] Huisman, R., K.G. Koedijk, C.J.M. Kool, and F. Palm, 2001, Tail-index estimates in small
samples, Journal of Business and Economic Statistics 19, 208-216.

[22] Koedijk, K.G., and C. Kool, 1994, Tail estimates and the EMS target zone, Review of
International Economics 2, 153-165.

[23] Koedijk K.G., M.M.A. Schafgans, and C.G. de Vries, 1990, The tail index of exchange rate
returns, Journal of International Economics 29, 93-108.

[24] Koedijk K.G., P.A. Stork, and C.G. de Vries, 1992, Differences between foreign exchange
rate regimes: the view from the tails, Journal of International Money and Finance 11,
462-473.



Large Swings in Currencies Driven by Fundamentals 21

[25] Lux, T., and M. Marchesi, 1999, Scaling and criticality in a stochastic multi-agent model of
a financial market, Nature 397, 498-500.

[26] Lux, T., and D. Sornette, 2002, On rational bubbles and fat tails, Journal of Money, Credit,
and Banking 34, 589-610.

[27] Mark, N.C., and D. Sul, 2001, Nominal exchange rates and monetary fundamentals: evidence
from a small post-Bretton Woods panel, Journal of International Economics, 29-52.

[28] Meese, R.A., and K. Rogoff, 1983, Empirical exchange rate models of the seventies: do they
fit out of sample?, Journal of International Economics 14, 3-24.

[29] Neely, C., and L. Sarno, 2002, How well do monetary fundamentals forecast exchange rates?,
Federal Reserve Bank of St. Louis.

[30] Sack, B., 2000, Does the FED act gradually? a VAR analysis, Journal of Monetary Eco-
nomics 46, 229-256.

[31] Susmel, R., 2001, Extreme observations and diversification in Latin American emerging
equity markets, Journal of International Money and Finance 20, 971-986.

[32] Walsh, C.E., 2003, Monetary Theory and Policy, Cambridge: MIT Press.

[33] Westerfield, J.M., 1977, Empirical properties of foreign exchange rates under fixed and
floating rate regimes, Journal of International Economics 10, 181-200.

6 Appendix A: Data Source

The data are monthly observations on the exchange rate, money supply (M2), production index,
interest rate and consumer price index. For most countries, variables are relative to the US and
the data ranges from February 1974 to December 2007. For the European countries, variables
are relative to Germany and the data ends in December 1998. The data source is the IMF
International Financial Statistics (IFS). For most countries, the US dollar exchange rates from
IFS are coded AE. The monetary aggregate is a sum of IFS codes 34A and B. Industrial or
manufacturing production index, code 66 or 66Y, is used as a proxy for real income. For the
interest rate, we use the money market rate or deposit rate (code 60B or 60L). The consumer
price index (code 64) is used for the price level.
A list of 30 countries used in our study: Argentina, Austria, Bolivia, Brazil, Canada, Chile,

Columbia, Denmark, Ecuador, Finland, France, India, Indonesia, Israel, Japan, Jordan, Ko-
rea, Malaysia, Mexico, Netherlands, Norway, Pakistan, Peru, Philippines, Spain, South Africa,
Sweden, UK, Venezuela and Zimbabwe.

7 Appendix B: Estimation of Extremal Dependence

To estimate the pair of bivariate extremal dependence measures χ and χ, recall that after ap-
plying the unit Pareto transformation to the original pair of variables Y and X, the transformed
variables Ỹ and X̃ have the same distribution function and possess the same dependence structure
as the original pair. Under the condition of regular variation, the joint cumulative distribution
function of the transformed variables Ỹ and X̃ can be written as

P
{
X̃ > s, Ỹ > s

}
∼ L(s)s−1/ξ; s→∞,
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where ξ ∈ (0, 1] and L(s) is a slowly varying function.
Following from Poon et al. (2004), the parameter ξ can be estimated as a tail index of the

univariate variable Z, with Z = min(X̃,̃ Y ). Given the estimate ξ̂ and the tail threshold Z(n−m),
with Z(n−m) is the m-th largest observation from a sample of size n, the estimator for χ is

χ̂ = 2ξ̂ − 1,

with V ar
(
χ̂
)

=

(
χ̂+ 1

)2
m

.

Using the fact that the Hill estimator follows a normal distribution asymptotically, we then test
the null hypothesis χ = 1. In case that the null hypothesis cannot be rejected, i.e. the variables
are asymptotically dependent, we then proceed to estimate χ.
The maximum likelihood estimator of χ and its variance are

χ̂ =
m

n
Z(n−m),

with V ar (χ̂) =

[
Z(n−m)

]2
m(n−m)

n3
.

Appendix C: Dynamic OLS Regression

To construct the composite fundamental series, instead of using given parameters like in Flood
and Rose (1995, 1999), from equation (12) we apply the Stock and Watson (1993) dynamic OLS
estimation by adding the one period leads and lags of the first differences of the regressors in
the exchange rate model. For the traditional fundamentals (TF) ϕ3 = ϕ4 = 0, for the flexible-
price monetary model with interest rate (FPI) ϕ4 = 0, for the flexible-price monetary model
with inflation (FPP) ϕ3 = 0 and no coeffi cient equals zero in the sluggish-price model (SP).
According to equation (12), the dynamic OLS equation for the traditional fundamentals (TF)
can be written as

et = a0 + a1mt + a2yt + a5∆mt+1 + a6∆yt+1 + a9∆mt−1 + a10∆yt−1.

In Table A1, the columns m, y, i, r and p contain the estimated coeffi cients of the variables.
Types of the estimated models are described in the second column.

Table A1: Parameters of the monetary-based exchange rate models
m y i pe

Austria TF 0.5105∗∗∗ -0.0110∗

FPI 0.5229∗∗∗ -0.0120∗ -0.0018∗∗∗

FPP -0.0168 -4.10E-05 1.0581∗∗∗

SP -0.0277∗∗ -0.0008 0.0007∗ 1.0764∗∗∗


