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Abstract

Credit default swaps (CDS) have been used by market participants to speculate on the
default risk of the reference entity. As a risk-betting tool, the risk of CDS can be measured
by their second moments. This paper uses an extended GARCH model for the univari-
ate conditional variance and a slightly modified DCC model for the multivariate conditional
correlation of CDS returns. The empirical sample consists of the most actively traded single-
name CDS contracts for six large U.S. banks from 2002 to 2018. The main empirical finding is
that the risk of holding CDS contracts is time-varying, persistent, and exhibits both asymme-
try and fat-tail properties. But in contrast to stock returns, a positive shock to CDS returns
actually increases their conditional variance more than a negative shock does. Meanwhile,
the conditional volatility and correlation extracted from the GARCH-DCC model show that
even though the risk profiles of individual banks have improved since the crisis, their distress
correlations have remained just as high as during the peak of the crisis. This contrasts with
the decreased correlations of their stock returns in the past couple of years.
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1 Introduction

Credit default swaps (CDS) work like an insurance contract to protect their holders against
the default loss of the reference entity. However, CDS holders are not required to hold the
reference liability, which allows investors to speculate on the default risk of the reference
entity through either buying or selling CDS contracts. As a risk-betting tool, the risk of a
CDS contract can be measured by the variation of its value — that is, its second moments.
This paper models both the univariate conditional variance and the multivariate conditional
correlation of CDS contracts to measure this risk of betting on risk.

Literature measuring the risk of betting on values provides a rich set of tools to model the
conditional second moments. For the univariate process, Engle (1982) proposes the Autore-
gressive Conditional Heteroscedasticity (ARCH) model for U.K. inflation. Bollerslev (1986)
proposes the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model by
adding past conditional variance as the explanatory variable in the variance equation as a
parsimonious way to model the conditional variance of U.S. inflation. To allow for the po-
tential fat-tailed property, Bollerslev (1987) extends the GARCH model with conditionally
t-distributed errors for foreign exchange and stock index returns. To allow for asymmetry,
Nelson (1991) proposes an exponential GARCH (E-GARCH) model for daily stock index
returns, and finds that a negative return innovation increases future conditional variance
more than a positive one does, while Glosten et al. (1993) propose an asymmetric GARCH
(GJR) model for monthly stock index returns, and find that a positive return innovation
reduces future conditional variance while a negative innovation increases it. For the multi-
variate process, several multivariate GARCH models have been proposed. Among them, the
Dynamic Conditional Correlation (DCC) model, proposed by Engle (2002) for conditional

correlations between stock indices, between stock and bond markets, and between exchange



rates turns out to be the most popular, as it is parsimonious and avoids the dimensionality
problem that other multivariate models may encounter.

Using the GARCH-DCC model, Li and Cheruvelil (2018) show the improved accuracy
for the central counterparty clearing (CCP) margin of CDS contracts relative to that based
on the GARCH-CCC model. Given such a practical application, I implement a more general
conditional variance and correlation model so that the potential features have the opportu-
nity to manifest themselves in the empirical results. More specifically, an extended GARCH
model, i.e. the GJR model with conditionally t-distributed innovations, is chosen for the
univariate conditional variance, and a slightly modified DCC model with multivariate t-
distributed standardized residuals is chosen for the conditional correlation. The GJR model
is chosen instead of the E-GARCH model mainly for possible future forecast exercises, as
the transformation from expected log variance to expected variance is not straightforward,
especially when we allow for fat-tailed distributions instead of the Gaussian distribution.

The empirical data in this paper consist of the daily single-name CDS contracts for six
large U.S. banks from 2002 to 2018, the longest and most actively traded CDS contracts.
There are two main findings. The first finding is that the extended GARCH-DCC model
shows that the risk of holding CDS contracts is time-varying, persistent, and exhibits both
asymmetry and fat-tail properties. The economic implication is that the risk of betting on
risk changes over time, and high levels of risk tend to cluster together in several consecutive
periods. The extreme outcomes of betting on risk are more likely to occur than the Gaussian
distribution implies. A slight twist for CDS contracts is that, in contrast to stock returns,
a positive shock to CDS returns actually increases the conditional variance more than a
negative shock does. But the economic interpretation remains the same, because a positive

shock to a CDS contract tends to occur when the situation of the reference entity gets worse



— i.e., it is still the case that bad news tends to increase conditional variance more than good
news does. The second finding is that the conditional volatility time series extracted from
the extended GARCH model peaked during the crisis period and has come down recently,
while the conditional correlation time series extracted from the DCC model have stayed at
the plateau since the crisis. This finding implies that the risk profile of individual banks has
improved since the crisis, but their extreme-loss scenarios have remained as highly correlated

as during the crisis.

2 Data

As a derivative directly tied to the risk of the reference entity, CDS differs from stocks in at
least two aspects. First, for the same firm, there is only one stock, while there are multiple
CDS contracts traded at the same time. As all of these contracts’ values are driven by the
risk of the same firm and differ in other dimensions, the sample CDS data in this paper
always come from the contract that is most actively traded. For U.S. reference entities,
this means the five-year maturity, senior unsecured (SNRFOR) tier, ex-restructuring (XR)
document clause, and U.S. dollar denomination. Second, as the transaction prices for CDS
contracts are still proprietary information, I use the publicly available daily CDS quote data
provided by Markit.

The sample reference entities consist of six large U.S. banks: Bank of America (BAC),
Citigroup (C), Goldman Sachs (GS), J.P. Morgan Chase (JPM), Morgan Stanley (MS), and
Wells Fargo (WFC). These banks are chosen for three reasons. First, they are the reference
entities of the first traded corporate CDS contracts since the launch of CDS trading in

the early 2000s. Second, their CDS contracts are almost always among the top 10 most



traded CDS contracts based on annual average of daily quote counts. Third, these six banks
are also among the earliest U.S. financial institutions designated as Globally Systemically
Important Financial Institutions (G-SIFIs) by the Financial Stability Board. Thus, these
banks form a natural sample for the study of the conditional variance-covariance of the CDS
market, because they provide the best possible empirical sample for statistical analysis and
convenient economic interpretations as homogeneous and important financial entities.
Figures 1 and 2 plot the daily log CDS spreads and their first differences of these sample
banks from 2002 to 2018. The log CDS spreads in Figure 1 exhibit the unit-root property,
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Figure 1: Daily log CDS spreads

as proved in Huang (2016). Their first difference in Figure 2 is calculated as

re = (pr — pr—1) x 100%,

where p; is the log CDS spread. The first difference of log CDS spread can be treated

approximately as the geometric return of the CDS contract if the CDS spread can be thought
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Figure 2: Daily CDS returns
of as the price of the CDS contract.! For convenience, I will call 7, the CDS return in the
rest of this paper.

Figure 2 shows that CDS returns for all the sample banks appear to be fast mean-reverting
and exhibit volatility clustering. Moreover, CDS volatility response to shocks appears to be
asymmetric, and extreme return movements seem to be more frequent than expected from
the Gaussian distribution. Given the volatility clustering, asymmetry, and leptokurtic (fat-
tail) properties, an extended GARCH model that allows for these features looks promising

to capture the time-varying second moment of univariate CDS returns.

IBefore the “Big Bang” implementation in 2009, CDS contracts were quoted by par spread. After the Big
Bang, CDS contracts on investment-grade reference entities have been quoted most often by conventional
spreads with a 100 basis point fixed coupon, and the high-yield ones by upfront points with a 500 basis
point fixed coupon, according to Markit (2009). So the measurement of CDS contract value has varied over
time, even for the same reference entity. In practice, dealers (big banks) continue to provide par spread
data after the Big Bang, in addition to conventional spreads and upfront points. For time-series consistency
and to ensure the longest possible sample, par spreads are used throughout this paper. Accordingly, r; is
interpreted as a proxy for CDS return.



3 Conditional Variance for Univariate CDS Returns

The time-series dynamics of the CDS returns observed in Figure 2 call for an extended
GARCH model that allows for asymmetric and leptokurtic properties. Specifically, to allow
for a potential asymmetric volatility response to positive and negative shocks, an additional
term of the past squared raw innovation when the innovation is negative is added as proposed
by Glosten et al. (1993). Notice that this setup follows the current common practice and
differs slightly from the original setup in Glosten et al. (1993), where the additional term is
defined when the innovation is positive. Meanwhile, to allow for the potential leptokurtic
property of the standardized innovation, a t distribution, instead of a Gaussian distribution,
as proposed by Bollerslev (1987), is used here. The resulting specification for the CDS

returns of bank ¢ takes the following form:

Tie = i+ Vi Tig—1+ €t (1)
v — 2
€it = Oig |/ Y Zit, Zip~t(v) (2)
2 2 2 2
o;p = witai-€; 1+ Bi0o;+ 011 <0)- €y, (3)

where 1(e;,—1 < 0) is 1 if ¢, is positive and 0 otherwise. Equation (1) for r;; allows for
a small serial correlation in the return process and a non-zero unconditional mean. Given
information at ¢ — 1, Equations (2) and (3) imply that ¢;; follows a non-standardized t
distribution with a scale parameter o;;: t,(0, L;Qazt). Its probability density function (PDF)
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Table 1: GARCH model with potential asymmetry and t-distributed innovations

I vy w « 15} ) v
BAC  -0.108%** (.147*** (0.122%*%% (0.130%** 0.892*%** _0.045%*  3.191%**
(0.028) (0.015) (0.002) (0.025) (0.019) (0.025) (0.251)
C -0.115%%  0.140%*F  0.309%**  (0.222%F*F  0.807*** -0.058%**F  3.095%H*
(0.064) (0.022) (0.010) (0.024) (0.029) (0.024) (0.206)
GS -0.127F*F 0.120%%F  0.234%FF  0.179%FF  0.846%*F*  -0.051%*F  3.067***
(0.045) (0.022) (0.005) (0.024) (0.026) (0.024) (0.255)
JPM  -0.082 0.131°FF%  0.401%**  0.267*** 0.799%F* -0.133*** 3.061***
(0.083) (0.037) (0.010) (0.026) (0.036) (0.026) (0.314)
MS -0.102%%  Q.127*%F  0.275%HF  (0.228%FF  (0.818%F*  _0.091* K 3. 178Kk
(0.053) (0.026) (0.007) (0.024) (0.028) (0.024) (0.258)
WFEC  -0.068**  0.075%%%  0.164™%%* 0.173*** 0.863*** -0.074*** 3.075%**
(0.039) (0.017) (0.004) (0.023) (0.022) (0.023) (0.192)

Note: 1. *, ** and *** refer to statistical significance at 10%, 5%, and 1% levels.
2. Heteroscedasticity-robust standard errors are reported in parenthesis.

which allows us to estimate the model parameters by Maximum Likelihood Estimation
(MLE).

Table 1 reports the estimation results. The conditional mean equation is not our focus.
We just notice that the AR(1) coefficient, ~;, is small but significant for all banks, showing
the small serial correlation in the CDS return time series. The variance equation is our focus
here. The parameters of the variance equation and the degree of freedom parameter for the t
distribution are all very significant. There are three interesting observations for the variance
equation estimation results.

First, just like the stock returns,? the conditional variance for the CDS returns exhibits
high levels of persistency (a; + 8; + ; is very close to 1 for all banks), which means that

the risk of left-tail risk is a highly persistency process. In other words, a period of rapidly

2Table 2 in the Appendix reports the counterpart results on the stock returns of the same sample banks.



changing left-tail risk is very likely to be followed by another period of volatile left-tail risk.

Second, all the sample banks exhibit asymmetry in volatility response to CDS return
shocks. In addition, their §;’s are negative but smaller in magnitude than «;. This means a
negative CDS return shock increases the CDS volatility less than a positive shock does. This
result differs from the finding of Glosten et al. (1993) in two aspects. Glosten et al. (1993)
find that a negative stock index return shock increases volatility more than a positive shock
does. In addition, they also find that a positive return shock actually decreases volatility.
Indeed, the asymmetry of CDS return volatility is like the mirror image of what Nelson (1991)
finds for daily stock index return volatility by his E-GARCH model. Thus, CDS volatility
asymmetry is actually the opposite of the stock volatility asymmetry, which is confirmed
for the sample banks by the stock return results reported in Table 2 of the Appendix. The
intuition behind this observation is that as the value of a CDS contract comes from the
riskiness of the reference entity, a positive CDS return shock actually means the reference
entity becomes more risky; thus, it is bad news for the reference entity, so the CDS volatility
surges more in response to a positive CDS return shock than to a negative CDS return shock.

Third, the CDS returns for all the sample large U.S. banks exhibit a conditional lep-
tokurtic property (v; close to 3). Thus, if investors want to bet on the risk of bank liabilities,
they should be prepared to face extreme outcomes more often than implied by the Gaussian
distribution.

Figure 3 plots the extracted conditional volatility (standard deviation) of CDS returns.
All the sample U.S. banks experienced volatility spikes during the peak of the recent financial

crisis period, around the summer of 2007 to the spring of 2009.> Except for some periodic

3The conditional volatility of JPM and Citi also peaked in 2003 when SEC fined them for their roles in
the Enron issue. See https://www.sec.gov/news/press/2003-87.htm.



small spikes, the conditional volatility time series for all banks have trended downward since

the crisis, showing a lower risk of betting on individual banks’ risk separately.
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Figure 3: Extracted conditional volatility of CDS returns

4 Conditional Correlations for Multivariate CDS Re-
turns

With the conditional variance of univariate CDS returns in place, we are ready to apply the
DCC model proposed by Engle (2002), with a slight modification, to estimate the conditional
correlations among CDS returns. A brief review of the DCC model with modification is as
follows.

To transit from scalar to vector notations, let ¢; be the column vector of daily innovations

of CDS returns for all banks on day ¢: € = (€14, €2y, ..., €6¢)". The conditional covariance
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matrix of ¢ is

E(€t€;|]t—l) = Zt'

The DCC model specifies ¥, as follows:

Et = DthDt, where Dt = diag{\/ Eiﬂg}.

D, is a diagonal matrix with diagonal elements of 0;,; estimated in the previous section, and
R; is the conditional correlation matrix and our estimation target in this section.
To model the R; process, let’s assume that the conditional covariance matrix of the

standardized innovations (i.e. unconditional mean 0 and variance 1) e; = (e14, €2, ...€6¢)" 18

Q:. (In the context of Section 3, e;; = =5t = ,/% - 2i1.) The i’th row, j’th column element

Oi,t

;¢ of Q; following the GARCH(1,1) model is
Gijit = Pij + K(€i—1€j0-1 — Pij) + Mije—1 — Pij), (4)
or

Qi = Pij(1 — K —=X)+ Kei—1€j-1 + A ji—1, (5)

where p; ; is the unconditional correlation between e;; and e;,, ¢ ; = p; ;. Equation (4) can
be rewritten as

_1—rk=A .
Gijt = P =1\ T K Z AN e i-sjis)- (6)
s=1

The i’th row, j'th column element in the R; matrix is

i jt

Qi i tqj,5,t

Pijt =

11



The matrix version of Equation (5) is
Qt = S(l — KR — )\) + H(et_leé_l) + )\Qt—lu

where S is the unconditional covariance matrix of e;’s. So the conditional covariance matrix
Q) is positive definite, as it is a weighted average of a positive semidefinite and a positive
definite matrix. Consequently, the correlation matrix R; is positive definite, too.

To estimate the DCC model, I make the following statistical specification:

Elee| 1) = %,

% = DR, D,

D? = diag{w;} + diag{a;} o e,_1€,_| + diag{B;} o D> | + diag{s;} o diag{1(e,_1 < 0)} 0 e,_1€,_,,
e = Dt_let,

Qi =S(1—k—N\) +re1€, | +AQy_1,

R, = diag{Q} > Qudiag{Q} *,

— v —2
6t|]t—1 ~ tv( 0,

v Rtan)a

where o is the Hadamard element-by-element product of two matrices of the same size.
Notice that I modify the original DCC model by changing the conditional distribution for
ei|l;—1 from a multivariate Gaussian distribution to a multivariate t distribution. As the
univariate GARCH model estimation results in Section 3 show that all banks exhibit t
distribution with the degree of freedom very close to 3, we can specify the multivariate t
distribution for these banks jointly with a degree of freedom v, which is a free parameter

to be estimated in this subsection. The location parameter vector 0 is a column vector of
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0’s because the conditional mean is 0 for all e;; by construction. The scaling matrix is ”%2

times the conditional correlation matrix R;. n is the number of elements in e;, so n = 6 in
_>
0

our setting. To estimate the DCC model by MLE, we need the PDF for t,( 0, "T_ZIRt, n):

(2)n =1+ eiR[let]_;, v > 2.
L(5)[m(v —2)]2|R|2 V=2

fledli-1) =

DCC estimation involves two steps: the first step of conditional variance estimation
and the second step of conditional correlation estimation. As Section 3 already reports
the conditional variance estimation results, I only report the parameter estimates for the
conditional correlation model of Equation (4): £=0.00842(0.01025) and A=0.99057(0.01235),
as well as the degree of freedom parameter v = 3.40151(0.34480). The parentheses contain
the heteroscedasticity-robust standard errors for the parameter estimates. Just like the
univariate conditional variance model, the conditional correlations are also very persistent:
Kk + A is very close to 1.

Figure 4 shows the pairwise conditional correlation time series extracted from the esti-
mated DCC model. Compared with the univariate conditional volatility depicted in Figure 3,
the time-series dynamics of the conditional correlation looks very different. Instead of peak-
ing during the crisis and declining afterwards, the conditional correlations climbed during
the crisis and stayed at the plateau all the way to the end of sample, September 2018.

To see the trend of the conditional correlation more clearly, Figure 5 reports the average
conditional correlation. The persistently elevated conditional correlation of the CDS returns
for the big U.S. banks since the 2007-08 financial crisis means the left-tail risks of these big
banks have been tied together closely since the crisis and have shown no sign of divergence.

This reflects the ever similar models against extreme losses by the big U.S. banks, possibly
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Figure 4: Extracted pairwise conditional correlation of CDS returns
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Figure 5: Average extracted conditional correlation of CDS returns
due to their incentive to avoid large idiosyncratic shocks during severe crises, at least as
perceived by market participants. This result contrasts with the ups and downs in the bank
stock return correlations, shown in Figures 6 and 7 in the Appendix, which reflects that
banks’ normal business gains and losses still diverge (low correlations) during good times
and converge (high correlation) during bad times, as frequently observed in the empirical
literature.

Combining the observations from Figures 3 and 5, we can see that even though the risk
of betting on catastrophic losses of individual banks may have receded with the economic
recovery after the crisis, the benefit of diversification in CDS contracts is greatly reduced as
the risk of betting on one large U.S. bank is ever similar to the risk of betting on any other

large U.S. bank.

15



5 Conclusion

A CDS contract protects its buyer from the potential default loss of the reference entity, but
CDS holders are not required to hold the reference liability. Thus by longing or shorting a
CDS contract, an investor is essentially betting on the risk of the reference entity. Conse-
quently, the second moments of CDS returns measure the risk of such a behavior of betting
on risk. For the univariate time series, a GARCH model with asymmetry and leptokurtosis
is fitted to the conditional variance process. For the multivariate time series, a DCC model
slightly modified with standardized residuals following a multivariate t distribution is fitted
to the conditional correlation process.

Based on more than one and a half decades of daily CDS returns for six large U.S. banks,
I find that both the conditional variances and correlations are highly persistent. Volatility
asymmetry and leptokurtosis are significant for all the sample banks. But in contrast to the
conventional findings on stock return volatility asymmetry, a positive shock to CDS returns
increases volatility more than a negative shock does. Nevertheless, the economic fundamental
stays the same: bad news increases volatility more than good news does, whether for stock
or CDS returns.

Moreover, the conditional variance processes for the univariate CDS return time series
track the overall economic situations well: surging during the financial crisis and declining
afterwards. In contrast, the conditional correlation processes for the multivariate CDS re-
turn time series climbed during the crisis but have not subsequently returned. The CDS
correlation dynamics also form a sharp contrast with the stock correlation dynamics for the
same sample banks. As similar modelling strategies are applied to both the univariate and
multivariate CDS return time series, as well as the stock return time series, the differences

between the dynamics of the CDS conditional correlations with those of the CDS conditional
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volatility, as well as with those of the stock conditional correlations, reveal their intrinsically
different economic fundamentals. The risk of betting on the risk of an individual bank may
have decreased after the crisis, but the lack of diversification in investing in a basket of large
U.S. banks’ CDS contracts has remained as severe as during the peak of the crisis, even
though the diversification in investing in their stocks might improve from time to time. The
economic reason behind this observation may be that even though each large U.S. bank has
taken actions to improve its risk profile, and their regular gains and losses may converge or
diverge over time, their models against extreme losses have remained similar to each other
at such a historical level that the tendency for them to collapse together is now just as high

as during the peak of the crisis.

6 Appendix: Conditional Variance and Correlation of

Stock Returns

This appendix provides the counterpart results of Sections 3 and 4 on the stock returns of
the same sample banks.

First, Table 2 reports the estimation results of the conditional variance model in Equa-
tions (1) to (3) on stock returns. The main qualitative difference between the results of stock
returns and those of CDS returns is that the leverage parameter ¢ is positive for stock returns
while it is negative for CDS returns, and both are statistically significant. This means that
bad news for stocks increases stock volatility more than good news does, while good news for
CDS increases CDS volatility more. However, notice that good news for CDS (i.e., higher
CDS spreads) actually is bad news for the reference entity. So the economic fundamental

stays the same: bad news for the reference entity increases volatility, no matter whether for
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Table 2: GARCH model with potential asymmetry and t-distributed innovations

o

7 gl w a p v
BAC  0.045%%% -0.033%F% 0.023%%*% (.056%*F (.908%*% (.071%F* 5224%**
(0.005)  (0.008)  (0.001)  (0.019)  (0.015)  (0.019)  (0.574)
C 0.011%*  0.006 0.027%%%  0.050%**  0.906*** 0.087*F* 5 419%**
(0.006)  (0.008)  (0.001)  (0.019)  (0.016)  (0.019)  (0.560)
GS  0.056%*%*% -0.032%F* 0.039%** 0.026 0.930%*%%  0.063%**  6.690%**
(0.007)  (0.006)  (0.000)  (0.022)  (0.011)  (0.022)  (0.876)
JPM  0.052%%  -0.044%F* 0.027%%* 0.031*%  0.917%%% 0.096%F* 5.635%**
(0.005)  (0.007)  (0.001)  (0.019)  (0.015)  (0.019)  (0.597)
MS  0.042%F%  -0.019%F* 0.045%F* 0.026 0.926%*%  0.078%%*  6.700%**
(0.008)  (0.007)  (0.000)  (0.025)  (0.013)  (0.025)  (0.800)
WEC  0.034%%%  -0.073%%F  0.017%%F 0.020%*%  0.921%F* 0.096%** 6.030%**
(0.004)  (0.007)  (0.001)  (0.017)  (0.015)  (0.017)  (0.700)

Note: 1. *, ** and *** refer to statistical significance at 10%, 5%, and 1% levels.
2. Heteroscedasticity-robust standard errors are reported in parenthesis.
stock or CDS returns.

Second, for stock returns, the two DCC model parameters in Equation (4) and the degree
of freedom for the t distribution are estimated as £=0.01329(0.00398), A=0.98030(0.01134),
and v = 5.45627(0.66209). The qualitative difference between stock and CDS DCC model
results are in the extracted conditional correlation time series, as shown in Figures 6 and
7. Unlike CDS correlations, stock correlations have ups and downs, peaking during the
financial crisis, European sovereign debt crisis and around the 2016 election period. This
shows that banks’ normal business gains and losses, as opposed to extreme loss scenarios,
still diverge during good times and converge during bad times. There are no persistent

elevated correlations for stock returns after the financial crisis.
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Figure 6: Extracted pairwise conditional correlation of stock returns
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Figure 7: Average extracted conditional correlation of stock returns
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