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equilibrium. Our model predicts that as concentration increases, the cryptocurrency
price falls, and its volatility spikes — in line with our empirical analysis of Bitcoin.
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1 Introduction

Cryptocurrencies are a new asset class that differs from classical asset classes, such as com-

modities, equities, bonds, and currencies, in several critical aspects. Due to these differences,

traditional asset pricing models are potentially inadequate for studying cryptocurrencies’

asset pricing characteristics, most notably prices and volatilities. This paper proposes a

continuous-time asset pricing model that studies mining pools’ concentration — one central

aspect of cryptocurrencies that has yet to be analyzed.

The vast majority of cryptocurrencies rely on permissionless blockchain protocols. These

protocols allow transferring cryptocurrency ownership without relying on the traditional

banking system. In permissionless blockchains, transaction validators take the role of banks

and intermediaries and add new transactions to the blockchain over time. The blockchain

randomly chooses a single transaction validator to record the next block of transactions and

rewards it for its effort. Since it is a permissionless blockchain and anyone can become a

transaction validator, it is highly competitive. In proof of work blockchains, like Bitcoin,

the transaction validators are referred to as miners or, more broadly, mining pools.1 To

increase the probability of recording the next block of transactions, mining pools increase

their computing power relative to other mining pools, potentially instigating an arms race.

Indeed, in recent years, advances in mining technology have intensified Bitcoin mining pools’

competition, resulting in significant variations in mining pools’ concentration over time, as

Figure 1 illustrates.2 The main aspect of mining pools central to our analysis is their role as

transaction validators, those who increase their cryptocurrency holdings even if they never

trade the cryptocurrency.

Our model predicts that as mining pools’ concentration increases, the cryptocurrency

price falls, and its volatility spikes when the market participants are price takers. We provide

novel empirical evidence verifying these predictions on Bitcoin. In line with our prediction

1A mining pool is a group of miners that share computing power and split rewards among its members.
Mining pools are advantageous since they smooth rewards to their members over time and, as a result,
dominate many blockchain ecosystems. Please refer to Cong, He, and Li (2021a) for an extensive discussion.
Although we call the transaction validators mining pools throughout the paper, our model’s predictions apply
to other permissionless blockchain protocols in which the concentration of transaction validators varies over
time due to exogenous shocks.

2Please see https://bitcoinmagazine.com/business/btc-coms-bitcoin-mining-pool-dominance-threatened-
by-poolin for anecdotal evidence.
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and evidence: (i) Makarov and Schoar (2021) show that Bitcoin price and mining pools’

concentration are negatively related; (ii) Gabaix (2011) and Herskovic, Kelly, Lustig, and

Nieuwerburgh (2020) show that volatility and concentration are positively related in pub-

licly listed firms. However, recent evidence from the US product markets runs against our

prediction and the evidence in Bitcoin. Grullon, Larkin, and Michaely (2019) among others

recently documented that higher concentration increases returns.

Further, our theory predicts, and the empirical analysis verifies, that mining pools’ con-

centration is an essential factor affecting cryptocurrency returns — a factor that the current

empirical literature has not yet explored. Liu and Tsyvinski (2021) find that cryptocurrency

returns are exposed to cryptocurrency network factors but not cryptocurrency production

factors. Their paper constructs production factors of cryptocurrency to proxy for the cost

(electricity and computing power) of mining. Consistent with our theory, they show that

technological fundamentals affect cryptocurrency valuations.

Lastly, we show that the cryptocurrency pricing implications are similar on the extensive

and intensive margin: the entry and exit of mining pools do not affect prices insofar as

through their effect on concentration.

We assume that a cryptocurrency’s real value — or at least a fraction of it if there is an

inflationary bubble — is determined by the sum of all the discounted future services it will

provide. These services take several forms, including access to real economies worldwide,

and transferring funds across borders and between entities while remaining anonymous.3

Mining pools are endowed with these cryptocurrency services over time based on their

size relative to the other mining pool, which we refer to as mining. When one mining pool

size is bigger than the other, it mines more of the cryptocurrency. In addition, our economy

features a household sector that cannot mine but instead can trade with mining pools to

access the cryptocurrency services. Changes to mining pools’ sizes over time determine their

concentration and is a critical determinant of the equilibrium.

Our theory builds on the intuitive yet novel insight that introducing competition requires

that each mining pool clears its mined cryptocurrency services separately from its competi-

tors in equilibrium. Accordingly, mining pools post fees for trading cryptocurrency services

3Our view is similar to Di Tella (2020)’s view in that the real value of money is the present value of
expenditures on its liquidity services and is consistent with Cong, Li, and Wang (2021b)s’ fundamental-
based view in which the demand for transactional benefits determines the value of cryptocurrency tokens.
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with other market participants. If market participants demand too many services from a

particular mining pool, it increases its fees. Instead, if market participants demand too few

services, the mining pool decreases its fees. The process continues until, eventually, supply

meets demand in every mining pool individually, and equilibrium reveals the market-clearing

fees.

We achieve market clearing at the mining pool level by viewing services that mining

pools mine as different goods. Imagine a shop that sells services from two separate service

providers (like mining pools). To clear their supply entirely, the two service providers would

have to set up relative prices proportional to the inverse of their relative supply; otherwise,

an arbitrage opportunity exists. So, if the first supplier has half of the supply of the second

supplier, the price for its services would have to be double the price of the second supplier.

The cryptocurrency is then a claim to all the future combined services the shop provides.

Accordingly, the equilibrium shows that the mining pools’ fees are inversely related to their

size, which corroborates Cong et al. (2021a)s’ findings.

Since each mining pool posts fees to clear services separately from the other mining pools,

the sum of all the discounted future services can be represented by the mining pools’ revenues:

mining pools’ fees times their services. The relationship between mining pools’ revenues and

cryptocurrency prices is instrumental and key to our findings. One novel and potentially

testable implication of our model is that the fundamental value of the cryptocurrency is

determined by the total revenues of the mining pools. In line with this prediction, Bolt and

Van Oordt (2020) documents an inverse relationship between daily volatility of USD/Bitcoin

exchange rate and Bitcoin transaction volume, which is a reasonable proxy for mining pools’

reveneus.

The prediction arises because exogenous changes to mining pool sizes have opposing

effects on mining pools’ concentration and total revenues. A shock that increases the sum of

mining pools’ revenues reduces mining pools’ concentration. The endogenous, equilibrium

relationship between concentration and total revenues is critical because it establishes the

relationship between mining pools’ concentration — an empirically observable quantity —

and cryptocurrency price and volatility. In our primary analysis, we measure concentration

with the established Herfindahl-Hirschman index (HHI).

Our framework allows the cryptocurrency price to differ from its intrinsic, fundamental
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Figure 1. Herfindahl-Hirschman Index over time. A time series plot of daily mining
pools’ concentration starting from January 2018 to February 2020. To obtain the daily
mining pool data, we scrapped https://bitcoinchain.com/pools. When we calculate the
Herfindahl-Hirschman index we assume that unknown mining pools are small and each one
can either mine one or zero blocks per day.

value and form a bubble. When the bubble is inflationary, only a fraction of the cryptocur-

rency value is determined by the sum of all the discounted future services it will provide.

However, as long as this fraction is strictly positive and at least a tiny fraction of the cryp-

tocurrency price is determined by its fundamentals, our model’s predictions apply. Our

model predicts that the bubble amplifies the effect of mining pools’ concentration on the

cryptocurrency price and its return volatility. We model the bubble by allowing the current

cryptocurrency price to depend on both future cryptocurrency prices and future services.4

The remainder of the paper is organized as follows. Section 2 summarizes the litera-

ture; Section 3 sets up the economy with mining pools and competition; Section 4 discusses

the equilibrium mechanism; Section 5 introduces the effects of concentration on the cryp-

4Tirole (1985) first introduced the interdependency between services and prices to analyze the value of
money, and more recently, Biais, Bisière, Bouvard, Casamatta, and Menkveld (2020) adopted it to cryp-
tocurrencies.
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tocurrency price and volatility and the effects of the bubble; Section 6 provides empirical

support to our main predictions using Bitcoin; Section 7 investigates entry and exit; Section

8 concludes.

2 Related Literature

Our paper fits into the literature studying the asset pricing implications of cryptocurren-

cies. Despite empirical work on cryptocurrency prices and volatilities, we still know very

little about their determinants and, specifically, little about the effects of mining pools’ con-

centration. Our paper is most closely related to Pagnotta (2021) and Biais et al. (2020).

Pagnotta (2021) studies the joint determination of bitcoin prices and blockchain security

using a game-theoretic setup, and Biais et al. (2020) study the bitcoin equilibrium price

using an overlapping generation model with miners, hackers, and investors. These papers

emphasize the security aspect of the blockchain as a determinant of cryptocurrency prices,

while this paper emphasizes the mining pools’ concentration.

Further, Cong et al. (2021b) study the demand side network effects of user adoption

on a cryptocurrency token value. They show that the token price determines both the

transactional benefit and the intertemporal carry cost of holding tokens, which incentivizes

the platform participants to either hold or sell the tokens and, eventually, to pin down the

token price through market-clearing with heterogeneous participants. Athey, Parashkevov,

Sarukkai, and Xia (2016) model Bitcoin as a medium of exchange of unknown quality that al-

lows users to avoid bank fees when sending remittances. They suggest that Bitcoin exchange

rates can be fully determined by two market fundamentals: the steady-state transaction vol-

ume of Bitcoin when used for payments and the evolution of beliefs about the likelihood

that the technology survives. Schilling and Uhlig (2019) show that a speculative equilibrium

where agents hold the cryptocurrency in anticipation of its appreciation exists under some

conditions. Sockin and Xiong (2021) model cryptocurrency as membership in a digital plat-

form developed to facilitate transactions between users of certain goods or services. They

show that platform users’ complementarity makes utility tokens appealing because they pre-

vent the platform from abusing its users. Fanti, Kogan, and Viswanath (2021) study the

tradeoffs between staking tokens for transaction validations and utilizing tokens for trades.

They show that the tradeoff pins the tokens’ value as a function of transaction volume, token
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velocity, and token supply schedule. Saleh (2021) studies the economics of Proof-of-Stake

systems and studies the implications of the consensus mechanism on the token’s value. Our

model’s predictions apply to other permissionless blockchain protocols such as Proof-of-Stake

as long as the concentration of the transaction validators varies over time due to exogenous

shocks.56

Our paper also complements earlier work on the production side of cryptocurrencies.

Easley, O’Hara, and Basu (2019) focus on the role of transaction fees and their impact

on the behavior of miners and users in a game-theoretic setup. Huberman, Leshno, and

Moallemi (2021) model how the decentralized design of Bitcoin, particularly the competition

among service providers and free entry, helps to protect users from monopoly pricing. Cong

and He (2019) analyze the impact of blockchain technology on competition and industrial

organization. Cong et al. (2021a) study the rise of mining pools as a risk-sharing mechanism

among smaller miners. They find that this risk-sharing mechanism escalates the technological

arms race among mining pools. Alsabah and Capponi (2020) study the mining pools’ research

and development investment decisions. We complement the above papers by focussing on

how changes in concentration and entry of mining pools affect cryptocurrency price and

volatility.

Our theory builds upon Zapatero (1995) and Pavlova and Rigobon (2007), which study

the asset pricing implications in an international finance context. Based on their work, we

model cryptocurrency services mined by different mining as different goods to account for the

competition between mining pools to attract market participants to clear their mined services

separately from the other mining pools. Our paper also relates to Cochrane, Longstaff, and

Santa-Clara (2008)s’ analysis that studies the asset pricing implications of two Lucas trees.

An essential feature our equilibrium inherits from these papers is equilibrium uniqueness,

unlike the studies of Biais et al. (2020) and Pagnotta (2021), which lead to multiple equilibria.

5The efficiency of Proof-of-Stake protocols relative to Proof-of-Work protocols is not yet clear, as Budish
(2018), Gans and Gandal (2019), and Abadi and Brunnermeier (2022) show.

6For an extensive survey of the literature on the economics of Bitcoin, please refer to John, O’Hara, and
Saleh (2022).
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3 An Economy with Mining Pools’ Concentration

This section lays out a tractable asset pricing model in which mining pools are competitive

and required to clear their mined (endowed) services separately from the other mining pools.

The resulting equilibrium studies the cryptocurrency pricing implications of mining pools’

concentration. The model builds upon the standard multi-good finite horizon endowment

economy, and time t is continuous and goes from zero to T . Two independent Brownian

motions drive uncertainty (Zt, Z̄t). The first captures shock to services (Zt), and the second

captures shock to the mining pools’ relative size (Z̄t).

3.1 Cryptocurrency Services and the Pricing Bubble

One Lucas tree (Yt) produces a perishable good that we call services. We assume that a

cryptocurrency’s real value — or at least a fraction of it if there is an inflationary bubble

— is determined by the sum of all the discounted future services it will provide. These

services take several forms, including access to real economies worldwide, and transferring

funds across borders and between entities while remaining anonymous. Since these services

must be utilized at a particular point in time, we view them as perishable goods.

The cryptocurrency price St represents a claim on all future services (Yt) per unit of

cryptocurrency; it is endogenous and determined in equilibrium.7 However, the cryptocur-

rency price may differ from its intrinsic, fundamental value and form a bubble. In this case,

the current cryptocurrency price depends on both future cryptocurrency prices and future

services. Formally, we assume that (Yt) depends on two sources: an exogenous, intrinsic

and unrelated to price source (Dt) and the endogenous, non-intrinsic price source (St). We

aggregate these two sources using a Cobb-Douglas function, such that

Yt ≡ (St)
β (Dt)

1−β , (1)

for a given parameter β ∈ (0, 1). The parameter β represents the bubble size. When

β → 0, we converge to a standard pure-exchange multi-good economy without a bubble. As

7The equilibrium outcome is invariant to coin creation. The dynamics of mining pools’ concentration
may arise because the blockchain endows newly minted coins to a particular mining pool each competing
round.
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β increases, the cryptocurrency price diverges away from its intrinsic value and forming a

bubble in the cryptocurrency price. With this Cobb-Douglas aggregator, we assume that

the feedback effect is less important when prices are high: the marginal feedback effect of

the cryptocurrency price (St) on its services (Yt) is smaller when the cryptocurrency price is

high (∂2Yt/∂
2St < 0).

Further, we assume the exogenous source of services follows

dDt = Dt

(
µDdt+ σDdZt

)
, (2)

where µD and σD are strictly positive constants. Our specification implies that the exogenous

source of services (Dt) does not depend on shocks to mining pools relative size, captured by

Z̄t. This assumption is for expositional simplicity and can be relaxed in future work. We

posit that St follows

dSt = St
(
µSt dt+ σSt dZt + σ̄St dZ̄t

)
, (3)

where µSt , σSt , and σ̄St are endogenous processes determined in equilibrium. With (3), we

implicitly assume that the cryptocurrency price cannot be zero. In addition to the cryptocur-

rency, each mining pool has the opportunity to borrow or lend with instantaneous riskless

interest rates in their local numeraire goods denoted by r1t and r2t, respectively. These se-

curities are in zero net supply and allow the mining pools to reduce exposure to the Lucas

tree. We refer to these securities as bonds and denote their prices by B1t and B2t. Interest

rates and bond prices are endogenous and determined in equilibrium.

3.2 Mining Pools and Households

We focus our analysis on two mining pools to keep the model and the equilibrium mechanism

transparent. Section 7 extends the model and investigates concentration in the extensive

margin, when the number of mining pools increase from two to three. Agents hold the

cryptocurrency because it provides access to valuable services. We abstract away from all

other potential reasons to hold the cryptocurrency.

Mining pools access the cryptocurrency’s services through either mining or trading. We

model mining of the cryptocurrency in reduced form as an exogenous time-varying endow-

ment distribution process that splits the proportion of cryptocurrency services between the
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two mining pools at every moment in time. The proportion of services that Pool-1 mines is

determined by λ1t ∈ (0, 1) (the share of the Lucas (1978) tree endowed to Pool-1 in time t)

while Pool-2 mines the residual λ2t ≡ 1− λ1t share.

The λ1t process captures the variation in mining pools’ relative sizes due to exogenous

shocks, like technological shocks. When Pool-1’s mining technology improves relative to

Pool-2, it mines a more significant share of the services and its size increases at the expense

of Pool-2: λ1t > λ2t. We refer to λit as Pool-i’s size throughout the analysis and shocks to

λit as shocks to mining pools’ size. We assume that Pool-1’s size process follows

dλ1t = λ1tλ2t

{
µλ1tdt+ σ̄dZ̄t

}
, λ10 ∈ (0, 1). (4)

These dynamics ensure that Pool-1 size always moves between zero and one.8

We introduce competition between the mining pools by requiring that each mining pool

clears its mined cryptocurrency services separately from its competitors in equilibrium. We

achieve this goal by viewing services that mining pools mine as different goods.

Like leading equilibrium asset pricing models with intermediaries, such as He and Krish-

namurthy (2013) and Brunnermeier and Sannikov (2014), where agents maximize consump-

tion over a lifetime, the mining pools, Pool-1, and Pool-2, in this model, derive utility from

consuming their services,

E

[∫ T

0

e−ρt log
(
ciit
)
dt

]
, i = 1, 2, (7)

where ρ > 0 and ciit is Pool-i’s consumption of its own services j at time t.

8We obtain λit dynamics by assuming that each mining pool’s absolute size process follows a geometric
Brownian motion

dFi
Fi

= µidt+ σidZi, (5)

where i = 1, 2, and Zi are standard independent Brownian motions uncorrelated with Z. Then, we define
the mining process of the first mining pool, which is a relative quantity, as λ ≡ F1

F1+F2
. By applying Itô’s

Lemma to this definition, we obtain (4). For further simplification, we introduce the standard Brownian
motion Z̄ ≡ σ1Z1

σ̄ − σ2Z2

σ̄ , and

µλ1t ≡
(
µ1 − λ1t (σ1)

2
)
−
(
µ2 − λ2t (σ2)

2
)
, (6)

where µ1, µ2, σ1, and σ2 are strictly positive constants, and σ̄ ≡
√
σ2

1 + σ2
2 .
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The households in the economy cannot mine, and their share of services remain fixed and

equal to the initial endowment when there are no financial markets. With financial markets,

households may trade with the mining pools and increase their share of cryptocurrency

services. Accordingly, we assume the households derive utility from consuming services of

both mining pools,

E

[∫ T

0

e−ρt
[
γ1 log

(
c1
at

)
+ log

(
c2
at

)]
dt

]
. (8)

The parameter γ1 captures the households’ demand-side preference for a particular mining

pool’s services. We assume it is constant because we focus our analysis on the supply-side

effects. Due to this Cobb-Douglas utility function, the expenditure share the households

devote to Pool-1 is given by γ1
1+γ1

, meaning that the households would like to allocate more

wealth to Pool-1 when γ1 > 1. We refer to γ1 as demand bias and assume that demand bias

is always towards Pool-1, γ1 ≥ 1, without loss of generality. While the equilibrium allows

for any γ1 ≥ 1, we focus the analysis and intuitions on the economy without demand bias,

γ1 = 1, since the services the two mining pools mine are indistinguishable.

Critically, the households’ Cobb-Douglas utility function implies that the households’

marginal rate of substitution between the two mined services is convex. The households

are willing to substitute one unit of services mined by Pool-1 (c1
at) for more units of servi-

ices mined by Pool-2 (c2
at) when they consume fewer services of Pool-1 and c1

at is low. This

assumption means that if fees were set equal and given that there is no demand bias, house-

holds would act like random agents and would allocate resources equally between the mining

pools, as one would expect in an economy with two indistinguishable commodities that are

being sold for the same price by two identical competing venues. Accordingly, the only

reason to allocate more resources to one mining pool is the fees this pool charges.

Furthermore, the mining pools utility function (7) is a special case of the households util-

ity function (8) in which the expenditure share of Pool-1 approaches 1, while the expenditure

share of Pool-2 approaches 0. Accordingly, from the mining pools’ point of view, services

are not substitutable, or substitution is exceedingly costly.

Our theory builds on the intuitive yet novel insight that introducing competition requires

that each mining pool clears its mined cryptocurrency services separately from its competi-

tors in equilibrium. Accordingly, mining pools post fees for trading cryptocurrency services
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with other market participants. If market participants demand too many services from a

particular mining pool, it increases its fees. Instead, if market participants demand too few

services, the mining pool decreases its fees. The process continues until, eventually, supply

meets demand in every mining pool individually, and equilibrium reveals the market-clearing

fees, pit for Pool-i, i = 1, 2. These fees represent the pay (in units of the numeraire) to obtain

one unit of services of Pool-i. In the spirit of commonly used price indices, our numeraire is

the simple average of the mining pools’ fees p1t and p2t, such that

p1t + p2t = p̄, (9)

where p̄ is an exogenous parameter, which we refer to as the fees index. Our choice of

numeraire is standard and borrowed from Pavlova and Rigobon (2007). Intuitively, it takes

current prices but fixes the quantities to precisely one unit per mining pool.9

To see how the cryptocurrency price and the fees are related, imagine a shop that sells

services from two separate service providers (mining pools). To clear their supply entirely,

the two service providers set up fees competitively. The no arbitrage condition then implies

that the cryptocurrency price is a claim to all the future combined services the shop provides:

St = Et
[∫ T

t

ξt,s (p1sλ1sYs + p2sλ2sYs) ds

]
, (10)

where ξt,s ≡ ξt/ξs is the equilibrium state price density process.

The households and the mining pools are price takers, and without loss of generality, we

set the initial supply share to equal the initial wealth share so that

λ10 =
γ1

1 + γ1

, λ20 =
1

1 + γ1

. (11)

This assumption is innocuous; it simplifies the exposition without affecting the economic

mechanism since it allows the constants in the propositions to cancel out.10

Further, we let Wa0 and Wi0, i = 1, 2, be the households and the mining pools’ value of

9We use the simple average for expositional clarity; a general weighted average of fees’ price index (X1p1t+
X2p2t = p̄), such as the well known Lowe and Laspeyres price indices, would not change our qualitative results
when X1, X2 > 0.

10A general initial distribution of the cryptocurrency (Wa0 = FaS0, W10 = F1S0, and W20 = F2S0, such
that Fa + F1 + F2 = 1 and with Fa, F1, F2 > 0 would not affect the equilibrium qualitative outcomes.
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the initial endowments, respectively. We assume that the households are endowed with 1− λ̂
shares of services at time 0; of those 1− λ̂ shares, a λ10 fraction is of Pool-1 good, and a λ20

fraction is of Pool-2 good. The two mining pools are initially endowed with the residual λ̂

shares of services; of those λ̂ shares, a λ10 fraction is of Pool-1 good, and a λ20 fraction is of

Pool-2 good. Thus, Wa0 = (1− λ̂)S0, W10 = λ̂λ10S0, and W20 = λ̂λ20S0.

Starting with these initial endowments, at every instant of time t, each market participant

chooses a nonnegative consumption and a portfolio of available securities (πSit, π
B1
it , π

B2
it ) to

maximize their utility subject to their dynamic budget constraint, which takes the following

standard form

dWit = Witπ
S
it

dSt + p1tλ1tYtdt+ p2tλ2tYtdt

St
+Witπ

B1
it

dB1t

B1t
+Witπ

B2
it

dB2t

B2t
− pitciitdt, (12)

for Pool-i = 1, 2, and

dWat = Watπ
S
at

dSt + p1tλ1tYtdt+ p2tλ2tYtdt

St
+Watπ

B1
at

dB1t

B1t
+Watπ

B2
at

dB2t

B2t
− p1tc

1
atdt− p2tc

2
atdt, (13)

for the households. The quantity πjit is endogenous and represents a fraction of Wit invested

at time t in security j, and i = 1, 2, a.

Remark 1 (Proof of Stake). The main aspect of mining pools central to our analysis is

their role as transaction validators, those who increase their cryptocurrency holdings even if

they never trade the cryptocurrency. Although we call the transaction validators mining pools,

which is a feature of proof of work protocols, our model’s predictions apply to other blockchain

protocols, such as proof of stake, as long as the concentration of transaction validators varies

over time due to exogenous shocks.

4 Equilibrium with Mining Pools’ Concentration

We define equilibrium in a standard way: cryptocurrency price, mining pools’ fees, bonds

prices, portfolio holdings, and consumption choices are such that (i) the mining pools and

households choose their optimal consumption of cryptocurrency services and security hold-

ings for given prices, and (ii) mining pools services clear individually for each mining pool

(goods markets clear), the cryptocurrency, and bonds markets clear.
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We start the equilibrium analysis by characterizing the mining pool fees. The mining

pools compete with each other by posting fees to trade their services with the other market

participants. Equilibrium determines the market-clearing fees so that the supply of services

meets the demand for services in each mining pool. The following proposition summarizes

the key results.

Proposition 1 (Fees). The mining pools post fees given by

p1t = p̄

γ1
1+γ1

1
λ1t

γ1
1+γ1

1
λ1t

+ 1
1+γ1

1
λ2t

, p2t = p̄

1
1+γ1

1
λ2t

γ1
1+γ1

1
λ1t

+ 1
1+γ1

1
λ2t

, (14)

to trade their services. The fees of Pool-i decrease as that mining pool becomes larger,

∂p1t

∂λ1t

< 0,
∂p2t

∂λ1t

> 0, (15)

while it increases as the households shift its preference to that pool, ∂p1t
∂γ1

> 0, ∂p2t
∂γ1

< 0.

Proposition 1 reveals that an increase in Pool-1’s size (λ1t ↑) directly reduces that mining

pool’s fees and indirectly increases Pool-2’s fees. A typical supply shift channel in which an

increased supply translates to lower fees and in line with Cong et al. (2021a)s’ findings,

whereby mining pool size is inversely related to the fees charged by that mining pool.

When the mined services are indistinguishable (γ1 = 1), the proposition reveals that the

two mining pools set up relative fees (p1t/p2t) proportional to the inverse of their relative

size (λ2t/λ1t). So, if Pool-1 has half the size of Pool-2, the price for Pool-1’s services is

double that of Pool-2’s services. When the services are distinguishable (γ1 > 1), the fees also

depend on the demand bias parameter (γ1): when the households prefer Pool-1’s services,

that mining pool fees increase. It is a typical demand channel in which stronger demand to

services translates to higher prices.

Due to the negative relationship between mining pool size and its fees, and since the sizes

(λit) and the fraction of fees (pit/p̄) are bounded in (0, 1), there is a single crossing between

the mining pool size and its fraction of fees, as Figure 2 illustrates. Accordingly, we define

the crossing point by λ1∗,
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Figure 2. Fees. These figures reveal that as the size of Pool-i increases, the mining pool
fees decrease. At λ1t = λ1∗, the decrease in Pool-i fees exactly offsets the increase in its size,
∂(p1t/p̄) = −∂λ1t. The left panel represents Pool-1, while the right panel Pool-2. Parameter
values are: D0 = 1, Dt = 2, β = 0.6, ρ = 0.98, σ = σ̄ = 0.4, T = 3, t = 1, γ1 = 5, and p̄ = 5.

p1t (λ1∗)

p̄
≡ λ1∗. (16)

Intuitively, when Pool-1’s size equals its fraction of fees (16), the increase in Pool-1’s size

exactly offsets the decrease in its fraction of fees. As a result, the fees multiplied by the

mining pool’s size attains its maximum at λ1t = λ1∗. Economically, the mining pool size

times its fees represents the revenue this mining pool attains in equilibrium relative to the

total revenue available. More explicitly, we define the revenue shares of Pool-1 and Pool-2

and the total revenue share as

V1t ≡ p1tλ1t, V2t ≡ p2tλ2t, Vt ≡ V1t + V2t, (17)

respectively.

Following Proposition 1, a shock to the mining pools’ size has two competing effects.

It increases one mining pool size, but at the same time, it decreases its fees. The revenue

share summarizes these two competing effects and reveals which force dominates and is

more important for pricing. When the increase in the mining pool size effect dominates,
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the mining pool’s revenue share increases. Instead, when the decrease in the mining pool

fees effect dominates, the mining pool’s revenue share decreases. Alternatively, one could

translate the two competing effects to (i) an increase in one mining pool’s size, and (ii) a

decrease in the other mining pool’s size. What matters for pricing is the effect on the total

reveneue shares. An increase in the total reveneue shares has a positive effect on prices,

while a decrease has a negative effect on prices, as Figure 3 illustrates.

A simple manipulation shows that the revenue shares and the total revenue share are

given by

V1t = p̄

γ1
1+γ1

γ1
1+γ1

1
λ1t

+ 1
1+γ1

1
λ2t

, V2t = p̄

1
1+γ1

γ1
1+γ1

1
λ1t

+ 1
1+γ1

1
λ2t

, Vt = p̄
1

γ1
1+γ1

1
λ1t

+ 1
1+γ1

1
λ2t

. (18)

The following Proposition verifies our intuition.

Proposition 2 (Revenue Share). The mining pools’ revenue shares and the total revenue

share are given in (18), attain their maximum when the relative fees equal the size, λ1t = λ1∗,

where

λ1∗ =

√
γ1

1 +
√
γ1

, λ2∗ =
1

1 +
√
γ1

, (19)

and λ1∗ ≥ λ2∗ due to demand bias towards Pool-1 (γ1 ≥ 1).

The proposition reveals that when λ1t = λ1∗, the distribution of services across the mining

pools is optimal. When services are indistinguishable and γ1 = 1, the mining pools generate

the highest revenue shares when their sizes are equal (λ1t = λ2t = 1/2). Of course, exogenous

shocks to the mining pools’ sizes knock them out of the optimal balance.

The equilibrium dynamics reveal that when Pool-2 size becomes exceedingly small (λ2t →
0), and it mines few cryptocurrencies, equilibrium mandates Pool-2’s fees to increase towards

the fees index (p2t → p̄) to ensure that Pool-2’s services are not attractive and the market

clearing condition is satisfied. At the same time, Pool-1 size becomes exceedingly large

(λ1t → 1), it mines almost all of the cryptocurrencies, and equilibrium mandates the fees to

decrease towards zero (p1t → 0) to attract all the demand to Pool-1’s services.

Since there are only two mining pools in our economy, when one mining pool’s fraction
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of fees equal its size, it must also be true for the other mining pool,

p1t

p̄
= λ1t ⇐⇒ 1− p1t

p̄
= 1− λ1t ⇐⇒

p2t

p̄
= λ2t. (20)

Therefore, both mining pools must attain their maximum revenue share at λ1∗, eventually

giving rise to the inverted U-shape function of the total revenue share with respect to Pool-

1’s size, λ1t. Furthermore, it is apparent that the fees index parameter (p̄) is not responsible

for the inverted U-shape revenue share because the result applies for relative fees (pit/p̄).

Demand bias toward Pool-1 (γ1 > 1) increases this mining pool’s maximal revenue share

(λ1∗ >
1
2
). The intuition comes from the fact that the revenue share summarizes the com-

peting effects of the mining pool’s size and fees and attains its maximum when the decrease

in relative fees offsets the increase in size. So, when the expenditure share in Pool-1 ( γ1
1+γ1

)

is larger, the mining pool fees are also higher (Proposition 1), requiring a larger mining pool

size to offset it (λ1∗ ↑).
Next, we connect mining pools’ concentration to their total revenue shares, and show

that shocks that increase concentration decrease the total revenue share. We utilize the es-

tablished Herfindahl-Hirschman index (HHI) to measure concentration, when mining pools’

services are indistinguishable and there is no demand bias. However, when there is demand

bias (γ1 > 1), we centralize the HHI to ensure that it reaches its minimum when the distribu-

tion of services between the mining pools is optimal. In this way, the minimal concentration

is independent of the demand bias parameter.

Definition 1 (Concentration). Let Ht be the measure of concentration that attains its

minimum when mining pools’ sizes equal their relative fees, λ1t = λ1∗,

Ht ≡
λ2

1t

λ1∗
+
λ2

2t

λ2∗
, 1 ≤ Ht ≤

1

λ2∗
, λ2∗ ≤ λ1∗. (21)

As λ1t moves towards λ1∗, it reduces concentration (Ht), while moving away from λ1∗ in-

creases it.

To develop our intuition about the concentration measure (21), assume that mining

pools’ services are indistinguishable and there is no demand bias (γ1 = 1). In that case,

the concentration measure (Ht) coincides with the well-known HHI. It is minimized when

the mining pools have the same size (λ1t = λ2t = 1/2), and it is maximized when there

17



is only one mining pool, (λ1t = 1 or λ2t = 1). Notice that the minimum concentration

is attained precisely at λ1∗, when the distribution of services between the mining pools is

optimal. When there is demand bias (γ1 > 1), we normalize the HHI to ensure that the

minimum concentration is still attained when the distribution of services is optimal.

Whenever a shock to mining pools’ sizes arrives, it changes the mining pools’ concentra-

tion, and, at the same time, the total revenue shares. Critically, whenever a shock to the

mining pools’ sizes increases concentration it decreases the total revenue shares

∂Ht

∂λ1t

> 0 ⇐⇒ ∂Vt
∂λ1t

< 0. (22)

Much like the mining pools’ total revenue shares, our concentration measure (Ht) summarizes

the two competing effects and reveals which force dominates and is more important for

pricing: (i) an increase in one mining pool’s size and (ii) a decrease in the other mining pool’s

size. What matters is the effect on concentration. A decrease in concentration has a positive

effect on prices because the total revenue shares increase, while an increase in concentration

has a negative effect on prices because the total revenue shares decrease. The revenue shares

attain maximum precisely when concentration attains its minimum, as Proposition 2 reveals

and Figure 3 illustrates.

Equilibrium reveals that the total revenue share determines how a shock to the mining

pools’ sizes propagates in the economy, as evident by the following no-arbitrage implicit

pricing equation.

St = Et
[∫ T

t

ξt,s (p1sλ1sYs + p2sλ2sYs) ds

]
= Et

[∫ T

t

ξt,sVsYsds

]
, (23)

where ξt,s ≡ ξt/ξs.

The no-arbitrage condition (23) implies that the cryptocurrency price is a claim to all the

future combined services, and equilibrium determines that price so that the total demand

for the cryptocurrency services meets the total supply of services. Indeed, the second term

reveals that the cryptocurrency price (St) equals the sum of the discounted future services

the cryptocurrency provides, where the deflator is the equilibrium discount factor, ξ. The

total available services are Yt, which is splitted between the mining pools based on their sizes
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Figure 3. Concentration and Revenue Shares. Whenever a shock to the mining pools’
sizes arrives, it increases one mining pool’s size and decreases the other mining pool’s size.
The equilibrium fees of both mining pools readjust to reflect the new distribution of services.
Both the total revenue shares and mining pools’ concentration determine the direction of
the two competing effects. The figure furhter reveals that both the revenue shares and the
total revenue shares attain their maximum at λ1t = λ1∗. Parameter values are as in Figure
2.

λ1t and λ2t. Therefore, Pool-1’s services equal λ1tYt, and Pool-2’s services equal λ2tYt, at

time t. Since the mining pools compete and require to clear their services individually, they

post equilibrium market clearing fees. Accordingly, the pricing equation requires multiplying

the mining pools’ services by their respective equilibrium fees, eventually leading to the first

equality in (23).

By plugging the revenue shares definitions (17) in the second term and noticing that the

total revenue share (Vt) times the services (Yt) represent the mining pools’ total revenues,

we derive the third term. This term reveals that the mining pools’ total revenues (V Y )

determine the cryptocurrency price. A prediction implying that the cryptocurrency value

(or a fraction of it if there is an inflationary bubble) can be determined by the revenues of

mining pools, thereby providing a new testable implication for cryptocurrency pricing.

Of course, other potential state variables besides the total revenue share (Vt) may deter-

mine how a shock to the mining pools’ sizes propagates because we have yet to characterize
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the state price density. As we reveal soon, the total revenue share is the only mechanism for

mining pools’ sizes shocks.

Plugging the definition of Yt (1) into the no-arbitrage pricing equation (23) leads to

St = Et
[∫ T

t

ξt,sVs

(
(Ss)

β (Ds)
1−β
)
ds

]
, (24)

and reveals how future cryptocurrency prices feed back and determine the current cryp-

tocurrency price when there is a bubble (β > 0). At first glance, the feedback in the pricing

equation appears intractable. However, the logarithmic utility functions substantially im-

prove the tractability of the pricing equation and eventually lead to a closed-form and precise

characterization of the cryptocurrency price.

To further develop our equilibrium mechanism, it is helpful to first discuss the (stochastic)

discount factor in an implicit form as a function of the price-to-services ratio.

Lemma 1 (Implicit Discount Factor). The prevailing equilibrium discount factor is given

by

ξ0,t = S0

(
ρe−ρt

1− e−ρT

)
1

VtYt
= S0

(
ρe−ρt

1− e−ρT

)
1

Dt

1

Vt

(
St
Dt

)−β

, (25)

where ξs,t ≡ ξt/ξs, for s ≤ t.

In line with our intuitions and as (25) unravels, the discount factor, the process that

determines equilibrium prices, depends on prices by itself. Future cryptocurrency prices

feed back into the current price through the discount factor, introducing a bubble into the

cryptocurrency price controlled by the parameter β. It is clear from (25) that when there is

no bubble (β = 0), there is no feedback, and the discount factor is fully specified without

depending on endogenous prices. We derive the discount factor explicitly in the next section

after we characterize the cryptocurrency price.

Lemma 1 furhter reveals that the discount factor is inversely related to the exogenous

services (Dt) — a feature similar to a traditional asset pricing model — implying that high

values of services characterize good states of the world when there is no bubble (β = 0). Since

mining pools compete and equilibrium requires that they clear their services individually,

the discount factor is inversely related to mining pools’ total revenue shares (Vt), implying

that high values of total revenue shares characterize good states when there is no bubble.
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However, there is an additional effect through the price–to–services ratio when there is a

bubble (β > 0), revealing that the discount factor is inversely related to the price–to–services

raio and implying that high values characterize good states of the world.

Next, we investigate whether the bubble inflates or deflates the cryptocurrency price.

To answer that question, we first manipulate the services (1), and reveal that the price–to–

services ratio answers that question.

Yt = Dt

(
St
Dt

)β
. (26)

As (26) reveals, when St > Dt, the bubble increases the available services (Yt ↑) and,

therefore, inflates the cryptocurrency price. The reverse happens when St < Dt. The bubble

decreases the available services (Yt ↓) and deflates the cryptocurrency price.

Since prices are the sum of all discounted future services, one would anticipate that the

cryptocurrency price is always greater than current exogenous services (St > Dt). However,

since the mining pools compete and must clear their services individually by posting fees,

the cryptocurrency price is not necessarily higher than exogenous services. Imagine an

extreme case whereby Pool-1’s size approaches one and owns nearly all the services. To

clear markets, Pool-1’s fees are nearly zero, and as a result, so is Pool-1’s revenue share.

Since the other mining pool size is nearly zero, Pool-2’s revenue share is also nearly zero,

resulting in a near-zero total revenue share. Plugging a near-zero total revenue share into

our no-arbitrage condition (23), we observe that the cryptocurrency price is nearly zero

and certainly below the strictly positive exogenous services, as Figure 3 illustrates. The

resulting intuition suggests that when concentration becomes extreme, the cryptocurrency

bubble deflates its prices, while the bubble inflates prices when concentration is not extreme.

We formalize this intuition in the following section once we characterize the cryptocurrency

price and volatility.

5 Implications of Mining Pools’ Concentration

So far, we have analyzed the equilibrium mechanism and the implicit pricing formula. This

section completes the equilibrium characterization. Despite the feedback between future

cryptocurrency prices and the current price, our equilibrium admits precise closed-form ex-
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pressions. We start by characterizing the equilibrium cryptocurrency price and the discount

factor.

Proposition 3 (Cryptocurrency Price and Discount Factor). When the total revenue

share attains its maximum, the concentration attains its minimum, and whenever a shock

to the mining pools’ sizes increases concentration it decreases the total revenue shares (22).

The equilibrium cryptocurrency price is given by

St =

(
1− e−ρ(T−t)

ρ

) 1
1−β

Dt (Vt)
1

1−β . (27)

The discount factor between time 0 and t is given by

ξ0,t = ξ̄e−ρt
(

1− e−ρ(T−t)

ρ

)− β
1−β 1

Dt

(
1

Vt

) 1
1−β

, (28)

where Vt is the total revenue shares (18), Ht is the concentration measure (21), and ξ̄ ≡
S0

(
ρ

1−e−ρT
)
. The discount factor increases with concentration, and the cryptocurrency price

decreases with concentration, even when there is no bubble (β = 0).

The shocks to mining pools’ sizes have two opposing forces since when Pool-1’s size

increases, Pool-2’s size decreases in relative terms. It is not immediately clear whether

a shock that increases the size of one mining pool propagates positively or negatively to

prices. The equilibrium mechanism reveals, and Proposition 3 verifies that when a shock

to the mining pools’ sizes increases the total revenue share and decreases mining pools’

concentration (22), it propagates positively to the cryptocurrency prices. The proposition

further reveals that the cryptocurrency price peaks when concentration is minimized and

collapses to zero when concentration is maximized, even without a bubble (β = 0). Figure

4 illustrates this idea.

Similarly, the discount factor reveals that the economy achieves its best economic state

precisely when mining pools’ concentration is minimized, and the discount factor reaches

its minimum. The economic state deteriorates as concentration gets further away from its

minimum and reaches the worst economic state when concentration is the furthest away from

the minimum. When mining pools’ services are indistinguishable and there is no demand bias

(γ1 = 1), equilbrium achieves its worst economic state when either mining pool completely
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dominates and becomes a monopoly (λ1t = 0 or 1) since both extreme states are equidistant

from the minimum concentration state, achieved at λ1∗ = 1/2. When there is a demand

bias (γ1 > 1), the worst economic state occurs when Pool-2 becomes a monopoly, and

Pool-1 vanishes (λ1t = 0) since this extreme state is the furthest away from the minimum

concentration state, achieved at λ1∗ > 1/2.
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Figure 4. Discount Factor and the Cryptocurrency Price. When concentration is
minimized, the cryptocurrency price peaks and the discount factor reaches its minimum.
Alternatively, when concentration is maximized, the cryptocurrency price collapses to zero.
Parameter values are as in Figure 2.

The cryptocurrency shock sensitivity complements the cryptocurrency price analysis.

When concentration leans towards Pool-2 (λ1t < λ1∗), the cryptocurrency shock sensitivity

is positive, and therefore, a positive shock to Pool-1’s size (λ1t ↑) reduces concentration and

increases the cryptocurrency price. Due to symmetry, when concentration leans towards

Pool-1 (λ1t > λ1∗), the shock sensitivity is negative, and therefore, a positive shock to

Pool-2’s size (λ1t ↓) reduces concentration and increases the cryptocurrency price.

As the concentration drifts away from the optimum, the effect of a shock to the mining

pools’ sizes heightens, resulting in a more extreme cryptocurrency return volatility. This

result further highlights the equilibrium’s workings. As mining pools’ total revenue share

deteriorates and concentration becomes extreme, the cryptocurrency price drops. The drop

in the cryptocurrency price makes it an attractive investment to all the market partici-
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pants. To reduce the cryptocurrency’s attractiveness, equilibrium increases its volatility to

the point where market participants are indifferent between reducing and increasing their

cryptocurrency position, restoring the equilibrium. Overall, a shock to the mining pools’

size distribution that reduces concentration increases the cryptocurrency price but decreases

its total return volatility even without a bubble (β = 0). Proposition 4 summarizes our

findings, and Figure 5 illustrates them.

Similarly, when concentration drifts towards the optimum, the effect of a shock to the

mining pools’ sizes shrinks and is eventually turned off entirely when concentration is mini-

mized. At the optimum, a shock to the mining pools’ sizes does not affect the cryptocurrency

price. To sustain the elevated cryptocurrency price, equilibrium decreases the cryptocurrency

volatility to its minimal point to ensure market participants would still support the elevated

cryptocurrency price.

Proposition 4 (Cryptocurrency Volatility). The cryptocurrency shock sensitivities are

given by

σ̄St =
1

1− β

(
p1t

p̄
λ2t −

p2t

p̄
λ1t

)
σ̄, σSt = σD. (29)

The cryptocurrency is insensitive to shocks to the mining pools’ size distribution when mining

pools’ concentration is minimized. The absolute-term magnitude of the cryptocurrency shock

sensitivity to mining pools’ size distribution shocks increases with concentration even without

interdependency and β = 0:

∂ | σ̄St |
∂λ1t

=


∂σ̄St
∂λ1t

< 0 for λ1t < λ1∗,

− ∂σ̄St
∂λ1t

> 0 for λ1t > λ1∗.

Further, the absolute-term magnitude of the size distribution shock sensitivity increases with

the interdepency:

∂ | σ̄St |
∂β

=


∂σ̄St
∂β

> 0 for λ1t < λ1∗,

−∂σ̄St
∂β

< 0 for λ1t > λ1∗.

We now turn our attention to analyzing the implications of the bubble on the cryptocur-
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Figure 5. Volatility. On the left figure, we observe the cryptocurrency sensitivity to
positive technological shocks. On the right figure, we observe that the total return volatility is
minimized when mining pools’ concentration is the lowest, and increases with concentration.
Parameter values are as in Figure 2.
rency price. The bubble inflates prices when St(β > 0) > St(β = 0), where St(β = 0)

represents the cryptocurrency intrinsic value (the value that depends on services), while

St(β > 0) represents the cryptocurrency price with a bubble and all else equal. In that case,

only a fraction αt of the cryptocurrency price St depends on services

St(β = 0)

St(β > 0)
= αt ∈ (0, 1). (30)

However, the bubble (β > 0) either inflates or deflates the cryptocurrency price relative

to an economy without a bubble (β = 0). In the inflationary case, the cryptocurrency price

diverges from the value of the discounted exogenous services. We call this case an inflationary

bubble because as the bubble parameter increases and β approaches one, the cryptocurrency

price approaches infinity.11 In the deflationary case, instead, the cryptocurrency price is

depressed relative to the intrinsic, fundamental value. We call this case a deflationary bubble

because as the interdependency increases and β approaches one, the cryptocurrency price

collapses to zero.

Interestingly, the fees index (p̄) determines the bubble type. There are two possible

11The definition of an inflationary bubble is in-line with the definition of a bubble in the literature, such
as Scheinkman and Xiong (2003).
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scenarios. When the fees index is sufficiently high, the cryptocurrency price shifts between

an inflationary and deflationary bubble, depending on the concentration of the mining pools.

In states where the mining pools’ concentration is not extreme, the cryptocurrency is in an

inflationary bubble and shifts to a deflationary bubble as mining pools’ concentration crosses

a threshold and becomes extreme. When the fees index is low, instead, the economy is always

in a deflationary bubble, regardless of concentration. The following Proposition summarizes

our findings.

Proposition 5 (Bubble). The cryptocurrency price is in an inflationary bubble if and only

if the fees index is sufficiently elevated (p̄ > Pt) and mining pools’ concentration is not

extreme (λt < λ1t < λ̄t). An increased interdependency implies

(i) a more substantial effect of concentration on the return volatility,

∂

∂β

∂
√

(σ̄St )
2

+ (σSt )
2

∂λ1t

 < 0 ⇐⇒ λ1t < λ1∗. (31)

(ii) a more substantial effect of concentration on the cryptocurrency price, if the cryptocur-

rency price is in an inflationary bubble,

∂

∂β

(
∂St
∂λ1t

)
> 0 ⇐⇒ λ1t < λ1∗. (32)

(iii) a higher return volatility,
∂
√

(σ̄St )
2
+(σSt )

2

∂β
> 0.

(iv) a higher cryptocurrency price, ∂St
∂β

> 0, if and only if the cryptocurrency is in an

inflationary bubble.

The functions Pt, λt, and λ̄t are deterministic functions of time characterized in (A.39),

(A.40), and (A.41).

Proposition 5 verifies our intuitions derived from the implicit discount factor (1) and the

price–to–services ratio (26). When the ratio is bigger than one (St > Dt), the cryptocurrency

price feeds back positively to its services and introduces the inflationary bubble. In contrast,

when the ratio is smaller than one (St < Dt), the cryptocurrency price feeds back negatively

to its services and introduces the deflationary bubble.
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Accordingly, when the fees index is sufficiently high (p̄ > P ), the total revenue share

becomes higher (Vt ↑), and the cryptocurrency price is guaranteed to surpass the exogenous

services when the mining pools’ concentration is not extreme (λ < λ1t < λ̄). The effects are

stronger the bigger the bubble: in an extreme case where the bubble approaches its maximum

(β → 1), the positive feedback becomes so strong that it pushes the cryptocurrency price

towards infinity. In contrast, when the fees index is low (p̄ < P ), the total revenue share

decreases, and the cryptocurrency price never surpasses the exogenous services regardless of

the mining pools’ concentration. The effects are again stronger the bigger the bubble: in

an extreme case where the interdependency approaches its maximum (β → 1), the negative

feedback becomes so strong that it pushes the cryptocurrency price towards zero. Figure 6

illustrates these two cases in an example.

The bubble amplifies the concentration effects on the cryptocurrency return volatility.

Proposition 5 reveals that a bigger bubble implies a more substantial effect of mining pools’

concentration on the total volatility, regardless of the bubble type (31). Though, the effect

of a shock to the mining pools’ sizes shrinks and is eventually turned off entirely when

concentration is minimized. A similar effect occurs with the cryptocurrency price is in an

inflationary bubble, revealing that the bigger the bubble, the more substantial the effects

of mining pools’ concentration on the cryptocurrency price, (32). In a deflationary bubble,

the two effects are competing: on the one hand, a lower concentration (∂λ1t, λ1t < λ1∗)

amplifies the cryptocurrency price, but on the other hand, a bigger bubble (∂β) depresses

the cryptocurrency price.

6 Empirical Evidence from Bitcoin

This section presents novel empirical evidence to support our model’s prediction. To start the

analysis, we illustrate the importance of mining pools’ concentration to the cryptocurrency

price. Figure 7 plots the Bitcoin/Ethereum price ratio against the Herfindahl-Hirschman

index (HHI) of Bitcoin mining pools. We look at the ratio of Bitcoin to Ethereum price,

the second-biggest cryptocurrency in market capitalization, to take care of the systemic

cryptocurrency shocks. The red line is the fitted linear regression line. The figure clearly

shows that the Bitcoin price drops relative to the Ethereum price when Bitcoin mining pools’
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Figure 6. In the left panel, the cryptocurrency total return volatility becomes more sensitive
to shocks to the mining pools’ size distribution when the interdependency increases. In the
middle panel, the fees index is sufficiently high (p̄ = 5) and an inflationary bubble emerges
when the mining pools’ size distribution is not extreme (λ < λ1t < λ̄). As the mining pools’
sizes shift away from the optimum and towards the extreme, the cryptocurrency exits the
inflationary bubble and enters the deflationary bubble; λ and λ̄ identify the switching points.
On the right panel, the fees index is not high enough (p̄ = 5

3
), and a deflationary bubble

emerges. The rest of the parameters are as in Figure 2.

concentration increases, in line with our model’s predictions.

To understand the economic magnitude of the effect, Table 1 shows that when the HHI

index increases by 227.8 points (one standard deviation), the Bitcoin price falls relative to

the Ethereum price by -0.63 standard deviations. Further, to illustrate the positive rela-

tionship between mining pools’ concentration and the cryptocurrency volatility, we estimate

the monthly Bitcoin return standard deviations using daily returns and the monthly HHI

as the average of the daily HHIs. By doing so, we find a monthly correlation coefficient

of 0.54, which suggests that Bitcoin return standard deviation and Bitcoin mining pools’
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Figure 7. Scatterplot of the BTC/ETH dollar prices (y-axis) on the Herfindahl-Hirschman
index measure of Bitcoin mining pools (x-axis) with the fitted regression line. One standard
deviation increase in concentration decreases the Bitcoin price by 0.624 standard deviations
relative to the Ethereum price.

concentration are highly correlated.

Table 1. Bitcoin/Ethereum Price On The Bitcoin’s Mining Pools’ HHI

BTC/ETH HHI

Mean 1.84 933

Standard deviation 0.84 228

Corr(BTC/ETH,HHI) -0.63

Daily observations 521 521 521

Corr(σ(BTC),HHI) 0.54

Monthly observations 25

Dependent Variable BTC/ETH

constant 4.77(***)

(0.33)

HHI −0.63(***)

(0.06)

R2 0.40

Notes: To derive Corr(σ(BTC),HHI), we compute σ(BTC), the monthly BTC return standard deviation,

from the daily Bitcoin returns, and define the monthly HHI as the average of the daily HHI’s. The bot-

tom table presents the OLS regression of Bitcoin dollar price relative to the Ethereum dollar price on the

Herfindahl-Hirschman index. Variables are Standardized. Newey-West standard errors in parenthesis. (***)

corresponds to 1%.
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We downloaded the Bitcoin and Ethereum price data from Yahoo Finance and we

scrapped the website https://bitcoinchain.com/pools for the daily mining pool data. Our

sample period runs from 01/01/2018 until 01/28/2020 and includes US trading days only.

Finally, we calculated the Herfindahl-Hirschman index measure using the number of blocks

each mining pool has written, where we assume that unknown mining pools are small and

each one can mine either one or zero blocks per day.

So far, we have separately shown that the cryptocurrency price decreases with HHI,

while the cryptocurrency volatility increases with HHI. We continue with a joint estimation

of the conditional Bitcoin expected return and the volatility using the GARCH(1,1) model

of Bollerslev (1986). We include the Ethereum standardized return and the HHI index as

external regressors to the mean equation and the HHI index as an external regressor to the

volatility equation. Figure 8 shows the standardized Bitcoin return volatility estimate.

Table 2 presents the parameter estimates for three specifications that vary the mean

equation. One thing unequivocally clear from all those specifications is that the HHI jointly

decreases the Bitcoin return and increases the Bitcoin volatility. To understand the economic

magnitude of the combined effect, the first column of Table 2 implies that when the HHI

index increases by 228 points (one standard deviation), the conditional Bitcoin daily expected

return falls by roughly 1.9%, while the conditional daily return standard deviation increases

by roughly 7.24
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Figure 8. Standardized Bitcoin return volatility estimate using a GARCH(1,1) model.

Table 2. Estimates of a GARCH(1,1) Model

Dependent Variable r(BTC)t r(BTC)t r(BTC)t

Mean equation

constant 0.0891(***) 0.0164(***) 0.0581(***)

(0.0202) (0.0033) (0.0051)

r(ETH)t 0.7748(***) 0.7933(***) 0.7811(***)

(0.1700) (0.0366) (0.0287)

HHIt −8.2× 10−5(***) — −4.3× 10−5(***)

(1.7× 10−5) — (4× 10−6)

ar1 — — 0.8562(***)

— — (0.0123)

ma1 — — -0.8093(***)

— — (0.0088)

Variance equation

constant 2.9× 10−5 2× 10−6 2.64× 10−4(***)

(0.0114) (11.9× 10−5) (0.85× 10−4)

HHIt 2.3× 10−5(**) 2.8× 10−5(***) 2.5× 10−5(**)

(1.2× 10−5) (9× 10−6) (1.0× 10−5)

α1 0.436(***) 0.4349(***) 0.4313(***)

(0.1415) (0.0633) (0.0441)

β1 0.5822(***) 0.5625(***) 0.5824(***)

(0.0973) (0.0307) (0.0387)

Q(5) Std.Residuals (p.value) 0.07520 0.06420 0.1405

Q(5) Std.Squared.Residuals (p.value) 0.6568 0.6054 0.6309

Notes: Returns are standartized. Q stands for the Weighted Ljung-Box Test. Robust standard errors

in parenthesis. (***),(**) corresponds to 1%, and 5%, respectively. We assume a skew-generalized error

distribution for the innovations’ conditional density.
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7 Extension

So far, the main analysis focuses on the cryptocurrency pricing implications of concentra-

tion in the intensive margin when there are two mining pools and without entry. While the

resulting equilibrium mechanism is transparent, the economic setup is unsuitable for inves-

tigating the pricing implications in the extensive margin when the number of mining pools

changes. This section extends the model to three mining pools and investigates the pricing

implications of concentration in the extensive margin when the third mining pool enters the

economy.

The section reveals that the effects of mining pools’ concentration laid out in the primary

analysis carry over to a setup with multiple mining pools and apply to the extensive margin.

Similar to the main body, shocks to mining pools’ sizes propagate to the cryptocurrency

price through the total revenue share, and these shocks have the opposite effect on the

concentration. As a result, when a third mining pool emerges and takes market power from

both incumbent mining pools, total revenue shares increase, and concentration decreases,

implying that cryptocurrency price increases and volatility drops. Concentration effects are

amplified when there is a bigger bubble, much as the primary analysis predicts.

We assume that the incumbent mining pools know that a third mining pool exists, but

its size is negligible. Thus, we model entry as the size of the third mining pool increases away

from zero (λ3t ↑). Accordingly, the two mining pools’ economy extends straightforwardly to

a three mining pools’ economy, and the economics and intuitions carries over from the main

analysis.

There is one Lucas tree that produces perishable services. But instead of two mining

pools, there are three mining pools that compete to own a share of services at the expense

of the other mining pools. With three mining pools, there are two exogenous time-varying

dynamic processes that determine the proportion of the service tree that Pool-1 and Pool-2

own at every moment in time, and Pool-3 owns the residual share. Similar to the main
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analysis, we assume that Pool-1’s and Pool-2’s size processes follow

dλ1t = λ1t

{
µλ1tdt+ λ2tσ̄1dZ̄1t + λ3tσ̄2dZ̄2t

}
, λ10 ∈ (0, 1), (33)

dλ2t = λ2t

{
µλ2tdt− (λ1t + λ3t) σ̄1dZ̄1t + λ3tσ̄2dZ̄2t

}
, λ20 ∈ (0, 1), (34)

and λ3t ≡ 1 − λ1t − λ2t, where σ̄1 and σ̄2 are strictly positive constants and the Brownian

motions Z̄1 and Z̄2 are correlated with correlation equaling ρ > 0, explicitly given in (36).12

This characterization ensures that mining pool sizes are strictly between zero and one and

their sum equals one all the time:

λit ∈ (0, 1), Σiλit = 1, i = 1, 2, 3, t ∈ [0, T ], (37)

We assume that mining pools’ services are indistinguishable and are no demand biases,

implying that households derive utility from consuming services of the three mining pools,

E

[∫ T

0

e−ρt
[
log
(
c1
at

)
+ log

(
c2
at

)
+ log

(
c2
at

)]
dt

]
. (38)

The mining pools’ objectives are similar to the main analysis, given in (7). Our con-

centration measure (21) coincides with the well-known Herfindahl-Hirschman index, which

straightforwardly extends to an economy with three mining pools

Ht = λ2
1t + λ2

2t + λ2
3t. (39)

12We obtain λit dynamics by assuming that each mining pool’s size process follows a geometric Brownian
motion

dFi
Fi

= µidt+ σidZi, (35)

where i = 1, 2, 3, and Zi are standard independent Brownian motions uncorrelated with Z. Then, we define
the size of Pool-1 and Pool-2 as λ1 ≡ F1

F1+F2+F3
, and λ2 ≡ F2

F1+F2+F3
, respectively. By applying Itô’s Lemma

to this definition, we obtain (33) and (34). For further simplification, we introduce the standard Brownian
motions Z̄1 ≡ σ1Z1

σ̄1
− σ2Z2

σ̄1
and Z̄2 ≡ σ1Z1

σ̄2
− σ3Z3

σ̄2
, where σ̄1 ≡

√
σ2

1 + σ2
2 and σ̄2 ≡

√
σ2

1 + σ2
3 . Notice that

Z̄1 and Z̄2 are correlated with

ρ =
σ2

1

σ̄1σ̄2
. (36)
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The remaining economic ingredients are identical to the main economic setup in Section

3. Proposition 8 in the internet Appendix B reports the equilibrium quantities with three

mining pools, verifies that our equilibrium with two mining pools straightforwardly extends

to three mining pools, and the equilibrium mechanism and intuitions are generalized.

It is worth emphasizing that households’ demand biases would bias toward the incum-

bents and against the entrant, reducing the entrant’s effect on equilibrium quantities. There-

fore, it is reasonable to assume that demand biases are time varying and shrink as the third

mining pool size increases. We leave this extension to future work.

Lastly, the following proposition summarizes the equilibrium effects of the entrant mining

pool on the incumbent mining pools. These effects are predicted by the equilibrium effects

of concentration in line with the main analysis.

Proposition 6 (Extensive Margin). As a third mining pool emerges and takes market

power from incumbents (λ1t, λ2t >
1
3
, λ3t <

1
3
), concentration decreases and

(i) The fees of incumbents increase

∂p1t

∂λ3t

> 0,
∂p2t

∂λ3t

> 0. (40)

(ii) Total revenue shares increase, resulting in a higher cryptocurrency price and a lower

discount factor even without a bubble.

(iii) The absolute-term magnitude of the cryptocurrency shock sensitivities to mining pools’

sizes shocks increase even without a bubble:

∂ | σ̄S1t |
∂λ3t

< 0,
∂ | σ̄S2t |
∂λ3t

< 0.

(iv) A bigger bubble implies that the effect of concentration on the return volatility is more

substantial

∂

∂β

∂
√

(σ̄S1t)
2

+ (σ̄S2t)
2

+ (σSt )
2

∂λ3t

 < 0. (41)

(v) A bigger bubble implies that the effect of concentration on the cryptocurrency price
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increases, if the cryptocurrency price is in an inflationary bubble,

∂

∂β

(
∂St
∂λ3t

)
> 0. (42)

8 Conclusion

This paper incorporates two central ingredients of cryptocurrencies, mining pools and a

cryptocurrency price bubble, into a traditional asset pricing model to study the implications

of mining pools’ concentration on the price and return volatility of cryptocurrencies.

The main aspect of mining pools central to our analysis is their role as transaction val-

idators. Those who increase their cryptocurrency exposure even without trading. Although

we call the transaction validators mining pools, which is a feature of proof of work protocols,

our model’s predictions apply to other blockchain protocols, such as proof of stake, as long

as the concentration of transaction validators exogenously varies over time.

We present all the equilibrium quantities in precise closed-form expressions and find

that as mining pools’ concentration increases, the cryptocurrency price falls, and its return

volatility spikes. We further show that the cryptocurrency pricing implications are similar

both on the extensive and intensive margin: the entry and exit of mining pools do not affect

prices insofar as through their effect on concentration. Our empirical analysis of Bitcoin

verifies the model’s predictions.

Our framework allows the cryptocurrency price to differ from its intrinsic, fundamental

value and form a bubble. When the bubble is inflationary, only a fraction of the cryptocur-

rency value is determined by the sum of all the discounted future services it will provide.

However, as long as this fraction is strictly positive and at least a tiny fraction of the cryp-

tocurrency price is determined by its fundamentals, our model’s predictions apply. Our

model predicts that the bubble amplifies the effect of mining pools’ concentration on the

cryptocurrency price and its return volatility.

Our theory builds on the intuitive yet novel insight that modeling competition in a tradi-

tional asset pricing economy requires that each market participant clear markets separately

from its competitors in equilibrium. Accordingly, the mining pools post fees for trading cryp-

tocurrency services with other market participants. The equilibrium shows that the mining

pools’ fees are inversely related to their size, corroborating empirical findings. Importatnly,
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since each mining pool posts fees to clear services separately from the other mining pools, the

sum of all the discounted future services can be represented by the mining pools’ revenues:

mining pools’ fees times their services. One novel and potentially testable implication of

our model is that the fundamental value of the cryptocurrency is determined by the total

revenues of the mining pools.

The paper highlights the importance of mining pools’ concentration to cryptocurrencies’

asset pricing underpinnings. Nevertheless, since mining pool data is hard to come by, mining

pools’ concentration is explored by relatively few papers empirically. It would be interesting

to extend our analysis beyond permissionless blockchains, such as Bitcoin, and investigate

mining pools’ concentration on permissioned blockchains. In those blockchains, mining pools

can coordinate to control concentration and, by doing that, regulate the cryptocurrency

price and return volatility advantageously. Theoretically, extending the model to study

the tradeoffs mining pools face in choosing which cryptocurrency to mine across a menu of

cryptocurrencies would be interesting.

A Proofs

In this section we show how to derive the equilibrium quantities. We conjecture and later verify that the

security market is dynamically complete. As such, there exist a unique state price density process, ξ, and

the no arbitrage condition always holds.

Proof of Lemma 1 (Implicit Discount Factor) . Following the martingale method, we restate the dy-

namic budget constraints (12) and (13) as

ξtWit = Et

[∫ T

t

ξvpivc
i
ivdv

]
, i = 1, 2, (A.1)

ξtWat = Et

[∫ T

t

ξv
(
p1vc

1
av + p2vc

2
av

)
dv

]
. (A.2)

The mining pool i chooses ciit to maximize its utility subject to the budget constraint (A.1) evaluated at time

t = 0, while the households choose c1at, c
2
at to maximize (8) subject to the budget constraint (A.2) evaluated

at time t = 0. We obtain the following first order conditions for the consumption choices of the mining pools
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and the households

e−ρt

c11t
=

1

y1
ξtp1t, (A.3)

e−ρt

c22t
=

1

y2
ξtp2t, (A.4)

e−ρtγ1

c1at
=

1

ya
ξtp1t, (A.5)

e−ρt

c2at
=

1

ya
ξtp2t, (A.6)

where yi denotes the Lagrange multiplier for mining pool i, and ya denotes the Lagrange multiplier for the

households. By utilizing the market clearing conditions in consumption goods,

c11t + c1at = λ1tYt, (A.7)

c22t + c2at = λ2tYt, (A.8)

we find that the pool-specific state price densities are

ξtp1t = (λ1tYt)
−1
e−ρt (y1 + γ1ya) , (A.9)

ξtp2t = (λ2tYt)
−1
e−ρt (y2 + ya) . (A.10)

By using the numeraire (9), we find the following expression for the state price density

ξt = e−ρt
1

p̄

1

Yt

(
y1 + γ1ya

λ1t
+
y2 + ya
λ2t

)
. (A.11)

We find the following Lagrange multipliers by plugging the optimal consumptions (A.3), (A.4), (A.5), (A.6)

into the appropriate budget constraint (A.1), (A.2), and using the initial endowments:

y1
1− e−ρT

ρ
= ξ0W10 = ξ0λ̂λ10S0, (A.12)

y2
1− e−ρT

ρ
= ξ0W20 = ξ0λ̂λ20S0, (A.13)

(γ1 + 1) ya
1− e−ρT

ρ
= ξ0Wa0 = ξ0

(
1− λ̂

)
S0. (A.14)

We substitute the Lagrange multipliers into the state price density (A.11), utilize the expression for Yt (1),

and obtain the following desired result:
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ξt = e−ρt
1

Yt

1

p̄

(
y1 + γ1ya

λ1t
+
y2 + ya
λ2t

)
=

1

p̄
ξ0S0

(
ρe−ρt

1− e−ρT

)
1

Yt

(
1

λ1t

{
λ̂λ10 +

γ1

γ1 + 1

(
1− λ̂

)}
+

1

λ2t

{
λ̂λ20 +

1

γ1 + 1

(
1− λ̂

)})
(A.15)

=
ξ0S0

p̄

(
ρe−ρt

1− e−ρT

)
1

Yt

(
λ10

λ1t
+
λ20

λ2t

)
= ξ0S0

(
ρe−ρt

1− e−ρT

)
1

Yt

(
γ1

1 + γ1

1

p̄λ1t
+

1

1 + γ1

1

p̄λ2t

)
(A.16)

= ξ0S0

(
ρe−ρt

1− e−ρT

)
1

Dt

(
St
Dt

)−β (
γ1

1 + γ1

1

p̄λ1t
+

1

1 + γ1

1

p̄λ2t

)
. (A.17)

Proof of Proposition 1 (Fees). We now determine the fees charged by the mining pools. Substituting

the Lagrange multipliers (A.12), (A.13) and (A.14) into the mining pool specific state price densities (A.9)

and (A.10) we obtain

ξtp1t = (λ1tYt)
−1
ρ

(
e−ρt

1− e−ρT

)
ξ0S0

{
λ̂λ10 +

γ1

γ1 + 1

(
1− λ̂

)}
, (A.18)

ξtp2t = (λ2tYt)
−1
ρ

(
e−ρt

1− e−ρT

)
ξ0S0

{
λ̂λ20 +

1

γ1 + 1

(
1− λ̂

)}
. (A.19)

To isolate the fees, we plug the expression for ξ (A.17) into the equations above, and find

p1t

p̄
=

γ1
λ1t

γ1
λ1t

+ 1
λ2t

=

γ1
1+γ1

1
λ1t

γ1
1+γ1

1
λ1t

+ 1
1+γ1

1
λ2t

, (A.20)

p2t

p̄
=

1
λ2t

γ1
λ1t

+ 1
λ2t

=

1
1+γ1

1
λ2t

γ1
1+γ1

1
λ1t

+ 1
1+γ1

1
λ2t

. (A.21)

By differentiating the fees, it is straightforward to show that ∂p1t
∂λ1t

< 0, ∂p2t
∂λ1t

> 0, ∂p1t
∂γ1

> 0, and ∂p2t
∂γ1

< 0.

Proof of Proposition 2 (Revenue Share). Plugging the equilibrium fees into the revenue share defini-

tions (17) we obtain our desired result,

V1t = p̄

γ1
1+γ1

γ1
1+γ1

1
λ1t

+ 1
1+γ1

1
λ2t

, V2t = p̄

1
1+γ1

γ1
1+γ1

1
λ1t

+ 1
1+γ1

1
λ2t

, Vt = p̄
1

γ1
1+γ1

1
λ1t

+ 1
1+γ1

1
λ2t

. (A.22)
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In order to determine the maximal revenue shares and the total revenue share, we set

∂

∂λ1t

(
1

γ1
1+γ1

1
λ1t

+ 1
1+γ1

1
λ2t

)
= 0,

and obtain our desired result,

λ1∗ =

√
γ1

1 +
√
γ1
, λ2∗ =

1

1 +
√
γ1
. (A.23)

The point λ1∗ is the global maximum because the revenue shares and the total revenue share are strictly

concave and continuous functions of λ1t for 0 < λ1t < 1.

Proof of Proposition 3 (Cryptocurrency Price and Discount Factor). We find the cryptocurrency

price St from the no arbitrage relation, which identifies the cryptocurrency price as the discounted services

produced by the two mining pools,

St =
1

ξt
Et

[∫ T

t

ξs {p1sλ1sYs + p2sλ2sYs} ds

]
=

1

ξt
e−ρt

1− e−ρ(T−t)

1− e−ρT
ξ0S0, (A.24)

where the equality follows from plugging the individual state price densities (A.18) and (A.19), and noting

that λ10 + λ20 = 1. Substituting the state price density ξt (A.15) into the above characterization we obtain

the following expression for the cryptocurrency price

St = Yt

[
1− e−ρ(T−t)

ρ

] 1

1
p̄λ1t

{
λ̂λ10 + γ1

γ1+1

(
1− λ̂

)}
+ 1

p̄λ2t

{
λ̂λ20 + 1

γ1+1

(
1− λ̂

)}


= Yt

[
1− e−ρ(T−t)

ρ

] [
1

λ10

p̄λ1t
+ λ20

p̄λ2t

]
= Yt

[
1− e−ρ(T−t)

ρ

] [
γ1 + 1

γ1
p̄λ1t

+ 1
p̄λ2t

]
. (A.25)

The above expression can be further simplified by substituting the expressions for the fees charged by mining

pools (14). By doing so, we obtain

St = Yt

[
1− e−ρ(T−t)

ρ

]
[λ1tp1t + λ2tp2t] . (A.26)

The above expression for the cryptocurrency price depends on Yt, which then depends on the endogenous

cryptocurrency price. We substitute the expression for Yt (26) and the definition of Vt ≡ λ1tp1t + λ2tp2t to

obtain the desired expression for the cryptocurrency price,

St = Dt

(
1− e−ρ(T−t)

ρ

) 1
1−β

(Vt)
1

1−β . (A.27)
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By plugging the total revenue share (18), the closed-form expression of the cryptocurrency price becomes

St = Dt

[
1− e−ρ(T−t)

ρ

] 1
1−β

[
γ1 + 1

γ1
p̄λ1t

+ 1
p̄λ2t

] 1
1−β

. (A.28)

By plugging the cryptocurrency price into the implicit discount factor (25), we find that the discount factor

is given by

ξ0,t = ξ̄e−ρt
(

1− e−ρ(T−t)

ρ

) −β
1−β 1

Dt

(
1

Vt

) 1
1−β

, (A.29)

where ξ̄ ≡ S0

(
ρ

1−e−ρT

)
. The cryptocurrency price S0 is obtained from the expression for St (27) evaluated

at t = 0. Lastly, observe that dSt/dVt > 0 (A.27) and dξt/dVt < 0 (A.29), for any β ∈ [0, 1). We further

note that

∂Ht

∂λ1t
= (1 +

√
γ1)

(
2λ1t√
γ1
− 2 (1− λ1t)

)
< 0⇐⇒ ∂Vt

∂λ1t
= − p̄ (1 + γ1)(

γ1
λ1t

+ 1
1−λ1t

)2

(
− γ1

λ2
1t

+
1

(1− λ1t)
2

)
> 0,

which leads to

dξt
dλ1t

=
dξt
dVt

dVt
dλ1t

> 0 ⇐⇒ dHt

dλ1t
> 0, (A.30)

dSt
dλ1t

=
dSt
dVt

dVt
dλ1t

< 0 ⇐⇒ dHt

dλ1t
> 0, (A.31)

for any β ∈ [0, 1).

Proof of Proposition 4 (Volatility). By applying Itô’s Lemma to both sides of the cryptocurrency price

(27) and comparing the volatility terms we find that

σSt = σD, (A.32)

σ̄St =
1

1− β

(
γ1

1+γ1
1
λ1t

γ1
1+γ1

1
λ1t

+ 1
1+γ1

1
λ2t

λ2t +

1
1+γ1

1
λ2t

γ1
1+γ1

1
λ1t

+ 1
1+γ1

1
λ2t

λ1t

)
=

1

1− β

(
p1t

p̄
λ2t −

p2t

p̄
λ1t

)
σ̄, (A.33)

where the last equality follows from plugging the fees’ representation (14). We note that σ̄St = 0 if and only

if
(
p1t
p̄ λ2t − p2t

p̄ λ1t

)
= 0, which translates to

γ1

λ2
1t

− 1

λ2
2t

= 0,

after plugging the fees’ representation (14). Solving for the optimal λt that satisfies the σ̄St = 0 requirement
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we obtain

λ1t =

√
γ1

1 +
√
γ1
, (A.34)

which is the point at which the mining pools’ concentration is minimized. We further observe that

∂σ̄St
∂λ1t

=
1

1− β
σ̄

p̄

(
∂p1t

∂λ1t
λ2t − p1t − p2t −

∂p2t

∂λ1t
λ1t

)
, (A.35)

which implies that
∂σ̄St
∂λ1t

< 0 since the signs of all the elements in the brackets are negative, as (15) reveals.

The shock sensitivity magnitude can be expressed as

| σ̄St | =


σ̄St for λ1t < λ1∗,

0 for λ1t = λ1∗,

−σ̄St for λ1t > λ1∗.

By taking the derivative of the shock sensitivity magnitude and given the sign of
∂σ̄St
∂λ1t

, we obtain our desired

result,

∂ | σ̄St |
∂λ1t

=


∂σ̄St
∂λ1t

< 0 for λ1t < λ1∗,

− ∂σ̄St
∂λ1t

> 0 for λ1t > λ1∗.

Lastly,

∂σ̄St
∂β

=
1

1− β
σ̄St > 0, (A.36)

which implies

∂ |σ̄St |
∂β

=


∂σ̄St
∂β > 0 for λ1t < λ1∗,

−∂σ̄
S
t

∂β < 0 for λ1t > λ1∗.
. (A.37)

Proof of Proposition 5 (Bubble). We denote by St (β = 0) and St (β > 0) the cryptocurrency prices

when β = 0 and β > 0, respectively. Following the cryptocurrency price representation (27), a necessary

and sufficient condition for the existence of an inflationary bubble is

St (β > 0) > St (β = 0) ⇐⇒ 1− e−ρ(T−t)

ρ
Vt > 1. (A.38)
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We look for the fees index p̄ that satisfies (A.38) when the revenue share is maximized (λ1t = λ1∗). That is,

p̄ >

(
1 +
√
γ1

)2
(1 + γ1)

ρ

1− e−ρ(T−t)
≡ Pt. (A.39)

This condition guarantees that there exists some value of λ1t for which there is an inflationary bubble (A.38).

If the inflationary bubble exists at the maximum (λ1t = λ1∗) it must also exist in the neighbourhood of (λ1∗)

since the total revenue share is strictly concave in λ1t. We define λt and λ̄t as the lower and upper bounds

of this neighbourhood; we find λt and λ̄t by looking for λt that solves (A.38) with equality:

λt =

[
γ1−1
γ1+1 + Ftp̄

]
−
√[

γ1−1
γ1+1 + Ftp̄

]2
− 4Ftp̄

γ1
γ1+1

2Ftp̄
, (A.40)

λ̄t =

[
γ1−1
γ1+1 + Ftp̄

]
+

√[
γ1−1
γ1+1 + Ftp̄

]2
− 4Ftp̄

γ1
γ1+1

2Ftp̄
, (A.41)

Ft =
1− e−ρ(T−t)

ρ
. (A.42)

We now turn to prove the four bullet points. To prove (i), we take the cross derivative of the total

volatility and find that

∂

∂β

∂
√(

σ̄St
)2

+
(
σSt
)2

∂λ1t

 =
1

1− β

(
∂σ̄St
∂λ1t

)
σ̄St√(

σ̄St
)2

+
(
σSt
)2
[

2−
(
σ̄St
)2(

σ̄St
)2

+
(
σSt
)2
]
< 0 ⇐⇒ λ1t < λ1∗,

since
∂σ̄St
∂λ1t

< 0 all the time, and σ̄St > 0 if and only if λ1t > λ1∗. To prove (ii), we take the cross derivative

of the cryptocurrency price and find that

∂

∂β

(
∂St
∂λ1t

)
=

1

(1− β)
2

∂Vt
∂λ1t

[
log

(
1− e−ρ(T−t)

ρ
Vt

)
+ 1− β

]
.

The square brackets are positive if the cryptocurrency is in an inflationary bubble since
(

1−e−ρ(T−t)

ρ Vt

)
> 1,

and ∂Vt
∂λ1t

> 0 if and only if λ1t < λ1∗, as the proof of Proposition (2) reveals. To prove part (iii), we

differentiate the total volatility with respect to the interdependency parameter and find that

∂

√(
σ̄St
)2

+
(
σSt
)2

∂β
=

(
σ̄St
)2√(

σ̄St
)2

+
(
σSt
)2 1

1− β
> 0,

where σ̄St is given in (29). Lastly, to prove (iv) we take the derivative of St with respect to the interdependency
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parameter and find that

∂St
∂β

=Dt

(
1− e−ρ(T−t)

ρ
Vt

) 1
1−β ( 1

1− β

)2

log

(
1− e−ρ(T−t)

ρ
Vt

)
,

which implies that ∂St
∂β > 0 if and only if the cryptocurrency is in an inflationary bubble, as (A.38) reveals.

Proposition 7 (Portfolios). Markets are dynamically complete; the mining pools and households hold their

entire wealth in the cryptocurrency.

Proof of Proposition 7 (Portfolios). We start by characterizing the dynamics of the bonds. Each bond

is riskless in terms of its mining pool’s numeraire:

dBiit = riitB
i
itdt, i = 1, 2. (A.43)

Converting these bonds to the numeraire we obtain

B1t = p1tB
1
1t, B2t = p2tB

2
2t. (A.44)

By applying Itô’s Lemma to both sides of the above equations, we find that

σB1
t = 0, σ̄B1

t = −σ̄ λ1t

λ1t + γ1λ2t
, (A.45)

σB2
t = 0, σ̄B2

t = σ̄
γ1λ2t

λ1t + γ1λ2t
. (A.46)

Notice that σ̄B1
t 6= 0 and σ̄B2

t 6= 0 probability almost surely since λ1t ∈ (0, 1). We define the global bond

security BW , which is locally riskless in the numeraire. This additional security is not required but it

simplifies the analysis. It is simply defined as the sum of the two bonds.

To dynamically complete the financial markets and to replicate any financial claim, we require three

independent investment opportunities: the cryptocurrency, Pool-1’s bond, and the global bond. We denote

the vector of portfolio weights of agent i in the cryptocurrency and mining pool one bond by πi, and the

volatility matrix of these two securities by Σ, such that

πi ≡

[
πSi
πB1
i

]
, Σ ≡

[
σSt σ̄St
0 σ̄B1

t

]
, (A.47)

where i = 1, 2, a. Solving for the optimal wealth (A.2) (A.1), we find that Wit ∝ 1
ξt

, and by applying Itô’s

Lemma to both sides of this equation we obtain

Σ′πi = θt, (A.48)
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where θt is the vector of market prices of risk. It is given by

θt =

[
σSt
σ̄St

]
, (A.49)

which is obtained from applying Itô’s Lemma to both sides of (A.29). Since σSt 6= 0, as Proposition 4 reveals,

we invert Σ′ and obtain that πSi = 1 and πB1
i = 0 for i = 1, 2, a.

Following Pavlova and Rigobon (2007), we obtain these interest rates, riit, by applying Itô’s Lemma to

the mining pool specific state price density, ξtpit, given in (A.9) and (A.10), which leads to

r1
1t = ρ+ βµSt + (1− β)µDt +

1

2
β(β − 1)

1

S2
t

[(
σSt
)2

+
(
σ̄St
)2]− 1

2
β(1− β)

1

D2
t

(
σDt
)2

+ β(1− β)σDt σ
S
t

+ λ2t

{(
µ1 − λ1t (σ1)

2
)
−
(
µ2 − λ2t (σ2)

2
)}

−
(
σDt
)2 − [ 1

1− β
λ1tλ2tσ̄

1
γ1
λ1t

+ 1
λ2t

(
+
γ1

λ2
1t

− 1

λ2
2t

)]2

− λ2
2tσ̄

2 − λ2tσ̄

[
β

1− β
λ1tλ2tσ̄

1
γ1
λ1t

+ 1
λ2t

(
+
γ1

λ2
1t

− 1

λ2
2t

)]

and

r1
2t = ρ+ βµSt + (1− β)µDt +

1

2
β(β − 1)

1

S2
t

[(
σSt
)2

+
(
σ̄St
)2]− 1

2
β(1− β)

1

D2
t

(
σDt
)2

+ β(1− β)σDt σ
S
t

− λ1t

{(
µ1 − λ1t (σ1)

2
)
−
(
µ2 − λ2t (σ2)

2
)}

−
(
σDt
)2 − [ 1

1− β
λ1tλ2tσ̄

1
γ1
λ1t

+ 1
λ2t

(
+
γ1

λ2
1t

− 1

λ2
2t

)]2

− λ2
1tσ̄

2 − λ1tσ̄

[
β

1− β
λ1tλ2tσ̄

1
γ1
λ1t

+ 1
λ2t

(
+
γ1

λ2
1t

− 1

λ2
2t

)]
.
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B Internet Appendix – Three Mining Pools

Proposition 8 (Asset Prices with Three Mining Pools). The mining pools post fees given by

pit = p̄
1
λit

1
λ1t

+ 1
λ2t

+ 1
λ3t

, i = 1, 2, 3, (B.1)

to trade their services. Mining pools’ revenue shares and the total revenue share are give by

Vit = pitλit = p̄
1

1
λ1t

+ 1
λ2t

+ 1
λ3t

, Vt = p̄
3

1
λ1t

+ 1
λ2t

+ 1
λ3t

. (B.2)

When the total revenue share attains its maximum, the concentration attains its minimum, and their partial

derivatives are negatively related for any feasible λ1t and λ2t,

∂Ht

∂λit
< 0 ⇐⇒ ∂Vt

∂λit
> 0, i = 1, 2. (B.3)

The equilibrium cryptocurrency price and discount factor are given by

St =

(
1− e−ρ(T−t)

ρ

) 1
1−β

Dt (Vt)
1

1−β , ξ0,t = ξ̄e−ρt
(

1− e−ρ(T−t)

ρ

)− β
1−β 1

Dt

(
1

Vt

) 1
1−β

, (B.4)

where Vt is given in (B.2), and ξ̄ ≡ S0

(
ρ

1−e−ρT

)
. The discount factor increases with concentration, and the

cryptocurrency price decreases with concentration, even without interdependency (β = 0). The cryptocurrency

shock sensitivities are given by

σ̄S1t =
1

1− β

(
p1t + p3t

p̄
λ2t −

p2t

p̄
(λ1t + λ3t)

)
σ̄1, σ̄S2t =

1

1− β

(
p1t + p2t

p̄
λ3t −

p3t

p̄
(λ1t + λ2t)

)
σ̄2,

(B.5)

σSt = σD. (B.6)

The cryptocurrency price is in an inflationary bubble if and only if the fees index is sufficiently elevated

(p̄ > P2t), and mining pools’ concentration is not extreme (B.51), where P2t is a deterministic function of

time, defined in (B.50). An increased interdependency implies

(i) A higher return volatility,
∂
√

(σ̄S1t)
2
+(σ̄S2t)

2
+(σSt )

2

∂β > 0.

(ii) A higher cryptocurrency price, ∂St
∂β > 0, if and only if the cryptocurrency is in an inflationary bubble.

Proof of Proposition 8 (Asset Prices with Three Mining Pools). In this section we derive the equi-

librium quantities for three mining pools. We conjecture and later verify that the security market is dy-

namically complete, and therefore, there exist a unique state price density process, ξ, and the no arbitrage

1



condition always holds. The dynamic budget constraints are given by

dWit =Witπ
S
it

dSt + p1tλ1tYtdt+ p2tλ2tYtdt+ p3tλ3tYtdt

St
+Witπ

B1
it

dB1t

B1t
+Witπ

B2
it

dB2t

B2t
+Witπ

B3
it

dB3t

B3t

−pitciitdt, (B.7)

for Pool-i = 1, 2, 3, and

dWat =Watπ
S
at

dSt + p1tλ1tYtdt+ p2tλ2tYtdt+ p3tλ3tYtdt

St
+Watπ

B1
at

dB1t

B1t
+Watπ

B2
at

dB2t

B2t
+Watπ

B3
at

dB3t

B3t

−p1tc
1
atdt− p2tc

2
atdt− p3tc

3
atdt, (B.8)

for the households. The quantity πjit is endogenous and represents a fraction of Wit invested at time t in

security j, and i = 1, 2, 3, a. Following the martingale method, we restate these dynamic budget constraints

as

ξtWit = Et

[∫ T

t

ξvpivc
i
ivdv

]
, i = 1, 2, 3, (B.9)

ξtWat = Et

[∫ T

t

ξv
(
p1vc

1
av + p2vc

2
av + p3vc

3
av

)
dv

]
. (B.10)

The mining pool i chooses ciit to maximize its utility subject to the budget constraint (B.9) evaluated at

time t = 0, while the households choose c1at, c
2
at, c

3
at to maximize (38) subject to the budget constraint (B.10)

evaluated at time t = 0. We obtain the following first order conditions for the consumption choices of the

mining pools and the households
e−ρt

c11t
=

1

y1
ξtp1t, (B.11)

e−ρt

c22t
=

1

y2
ξtp2t, (B.12)

e−ρt

c33t
=

1

y3
ξtp3t, (B.13)

e−ρt

c1at
=

1

ya
ξtp1t, (B.14)

e−ρt

c2at
=

1

ya
ξtp2t, (B.15)

e−ρt

c3at
=

1

ya
ξtp3t, (B.16)

where yi denotes the Lagrange multiplier for mining pool i, and ya denotes the Lagrange multiplier for the

2



households. By utilizing the market clearing conditions in consumption goods,

c11t + c1at = λ1tYt, (B.17)

c22t + c2at = λ2tYt, (B.18)

c33t + c3at = λ3tYt, (B.19)

we find that the pool-specific state price densities are

ξtp1t = (λ1tYt)
−1
e−ρt (y1 + ya) , (B.20)

ξtp2t = (λ2tYt)
−1
e−ρt (y2 + ya) , (B.21)

ξtp3t = (λ3tYt)
−1
e−ρt (y3 + ya) . (B.22)

By using the numeraire

p1t + p2t + p3t = p̄, (B.23)

we find the following expression for the state price density

ξt = e−ρt
1

p̄

1

Yt

(
y1 + ya
λ1t

+
y2 + ya
λ2t

+
y3 + ya
λ3t

)
. (B.24)

Similar to the main analysis, the households and the mining pools are price takers, and without loss of

generality, we set the initial supply share to equal the initial wealth share so that

λ10 =
1

3
, λ20 =

1

3
, λ30 =

1

3
. (B.25)

Further, we let Wa0 and Wi0, i = 1, 2, 3, be the households and the mining pools’ value of the initial

endowments, respectively. We assume that the households are endowed with 1− λ̂ shares of services at time

0; of those 1 − λ̂ shares, a λ10 fraction is of Pool-1 good, and a λ20 fraction is of Pool-2 good, and a λ30

fraction is of Pool-3 good. The three mining pools are initially endowed with the residual λ̂ shares of services;

of those λ̂ shares, a λ10 fraction is of Pool-1 good, a λ20 fraction is of Pool-2 good, and a λ30 fraction is of

Pool-3 good. Thus, Wa0 = (1 − λ̂)S0, W10 = λ̂λ10S0, W20 = λ̂λ20S0, and W30 = λ̂λ30S0. By plugging the

optimal consumptions (B.11), (B.12), (B.13), (B.14), (B.15), (B.16) into the appropriate budget constraint

3



(B.9), (B.10), and using the initial endowments we find the Lagrange multipliers:

y1
1− e−ρT

ρ
= W10 = λ̂λ10ξ0S0, (B.26)

y2
1− e−ρT

ρ
= W20 = λ̂λ20ξ0S0, (B.27)

y3
1− e−ρT

ρ
= W30 = λ̂λ30ξ0S0, (B.28)

3ya
1− e−ρT

ρ
= Wa0 =

(
1− λ̂

)
ξ0S0. (B.29)

We substitute the Lagrange multipliers into the state price density, (B.24), utilize the expression for Yt, (1),

and obtain the following desired result:

ξt = e−ρt
1

Yt

1

p̄

(
y1 + ya
λ1t

+
y2 + ya
λ2t

+
y3 + ya
λ3t

)
=
S0ξ0
p̄Yt

(
ρe−ρt

1− e−ρT

)(
1

λ1t

{
λ̂λ10 +

1

3

(
1− λ̂

)}
+

1

λ2t

{
λ̂λ20 +

1

3

(
1− λ̂

)}
+

1

λ3t

{
λ̂λ20 +

1

3

(
1− λ̂

)})
.

(B.30)

Next, by substituting the Lagrange multipliers (B.26), (B.27), (B.28), and (B.29) into the mining pool

specific state price densities (B.20), (B.21) and (B.22), we obtain the mining pools fees

ξtp1t = (λ1tYt)
−1
ρ

(
e−ρt

1− e−ρT

)
ξ0S0

{
λ̂λ10 +

1

3

(
1− λ̂

)}
, (B.31)

ξtp2t = (λ2tYt)
−1
ρ

(
e−ρt

1− e−ρT

)
ξ0S0

{
λ̂λ20 +

1

3

(
1− λ̂

)}
, (B.32)

ξtp3t = (λ3tYt)
−1
ρ

(
e−ρt

1− e−ρT

)
ξ0S0

{
λ̂λ30 +

1

3

(
1− λ̂

)}
. (B.33)

To isolate the fees, we plug the expression for ξ (B.30) into the equations above, and find

p1t

p̄
=

1
λ1t

1
λ1t

+ 1
λ2t

+ 1
λ3t

, (B.34)

p2t

p̄
=

1
λ2t

1
λ1t

+ 1
λ2t

+ 1
λ3t

, (B.35)

p3t

p̄
=

1
λ3t

1
λ1t

+ 1
λ2t

+ 1
λ3t

. (B.36)
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By plugging the equilibrium fees into the revenue share definitions (17) we obtain our desired result,

Vit = p̄
1

1
λ1t

+ 1
λ2t

+ 1
λ3t

, Vt = p̄
3

1
λ1t

+ 1
λ2t

+ 1
λ3t

, i = 1, 2, 3. (B.37)

The cryptocurrency price St is obtained from the no arbitrage condition, which identifies the cryptocurrency

price as the discounted services produced by the three mining pools,

St =
1

ξt
Et

[∫ T

t

ξs {p1sλ1sYs + p2sλ2sYs + p3sλ3sYs} ds

]
=

1

ξt
e−ρt

1− e−ρ(T−t)

1− e−ρT
ξ0S0, (B.38)

where the equality follows from plugging the individual state price densities (B.31), (B.32), and (B.33), and

noting that λ10 +λ20 +λ30 = 1. Substituting the state price density ξt (B.30) into the above characterization

we obtain the following expression for the cryptocurrency price

St = Yt

[
1− e−ρ(T−t)

ρ

][
3

1
p̄λ1t

+ 1
p̄λ2t

+ 1
p̄λ3t

]
. (B.39)

The above expression can be further simplified by substituting the expressions for the fees charged by mining

pools (B.34), (B.35), and (B.36). By doing so, we obtain

St = Yt

[
1− e−ρ(T−t)

ρ

]
[λ1tp1t + λ2tp2t + λ3tp3t] . (B.40)

The above expression for the cryptocurrency price depends on Yt, which then depends on the endogenous

cryptocurrency price. We substitute the expression for Yt (26) and the definition of Vt ≡ λ1tp1t + λ2tp2t +

λ3tp3t to obtain the desired expression for the cryptocurrency price,

St = Dt

(
1− e−ρ(T−t)

ρ

) 1
1−β

(Vt)
1

1−β . (B.41)

By plugging the total revenue share (18), the closed-form expression of the cryptocurrency price becomes

St = Dt

[
1− e−ρ(T−t)

ρ

] 1
1−β

[
3

1
p̄λ1t

+ 1
p̄λ2t

+ 1
p̄λ3t

] 1
1−β

. (B.42)

Similarly, we find that the discount factor is given by

ξ0,t = ξ̄e−ρt
(

1− e−ρ(T−t)

ρ

) −β
1−β 1

Dt

(
1

Vt

) 1
1−β

, (B.43)

where ξ̄ ≡ S0

(
ρ

1−e−ρT

)
. The cryptocurrency price S0 is obtained from the expression for St evaluated at

t = 0. Next, we show that the partial derivatives of the concentration and total revenue share are negatively
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related (B.3).

∂Ht

∂λ1t
= 2 (2λ1t − (1− λ2t)) < 0 ⇐⇒ ∂Vt

∂λ1t
= − 3p̄(

1
λ1t

+ 1
λ2t

+ 1
1−λ1t−λ2t

)2

(
− 1

λ2
1t

+
1

(1− λ1t − λ2t)
2

)
> 0.

Next, observe that ∂St/∂Vt > 0 (B.41) and ∂ξt/∂Vt < 0 (B.43), for any β ∈ [0, 1), leading to

∂ξt
∂λ1t

=
∂ξt
∂Vt

∂Vt
∂λ1t

> 0 ⇐⇒ ∂Ht

∂λ1t
> 0, (B.44)

∂St
∂λ1t

=
∂St
∂Vt

∂Vt
∂λ1t

< 0 ⇐⇒ ∂Ht

∂λ1t
> 0, (B.45)

for any β ∈ [0, 1). The result applies for λ2t straightforwardly.

By applying Itô’s Lemma to both sides of the cryptocurrency price (B.42) and comparing the volatility

terms we find that

σSt = σD, (B.46)

σ̄S1t =
1

1− β

(
p1t

p̄
λ2t +

p3t

p̄
λ2t −

p2t

p̄
λ1t −

p2t

p̄
λ3t

)
σ̄1, (B.47)

σ̄S2t =
1

1− β

(
p1t

p̄
λ3t −

p3t

p̄
λ1t +

p2t

p̄
λ3t −

p3t

p̄
λ2t

)
σ̄2. (B.48)

We denote by St (β = 0) and St (β > 0) the cryptocurrency prices when β = 0 and β > 0, respectively. Fol-

lowing the cryptocurrency price representation (B.41), a necessary and sufficient condition for the existence

of an inflationary bubble is

St (β > 0) > St (β = 0) ⇐⇒ 1− e−ρ(T−t)

ρ
Vt > 1. (B.49)

We look for the fees index p̄ that satisfies (B.49) when the revenue share is maximized
(
λ1∗ = 1

3 , λ2∗ = 1
3

)
,

leading to

p̄ >
3ρ

1− e−ρ(T−t)
≡ P2t. (B.50)

This condition guarantees that there exists some values of λ1t and λ2t for which there is an inflationary

bubble (B.49). If the inflationary bubble exists at the maximum (λ1t = λ1∗, λ2t = λ2∗) it must also exist in

the neighbourhood of (λ1∗, λ2∗) since the total revenue share is strictly concave in λ1t and λ2t. Accordingly,

the cryptocurrency price is in an inflationary bubble if and only if the following condition holds:

3p̄

(
1− e−ρ(T−t)

ρ

)
>

1

λ1t
+

1

λ2t
+

1

1− λ1t − λ2t
. (B.51)

We now turn to prove the results involving effects of increased interdependency on return volatility and
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cryptocurrency price. To prove (i), we differentiate the total volatility with respect to the interdependency

parameter and find that

∂

√(
σ̄S1t
)2

+
(
σ̄S2t
)2

+
(
σSt
)2

∂β
=

(
σ̄S1t
)2

+
(
σ̄S2t
)2√(

σ̄S1t
)2

+
(
σ̄S2t
)2

+
(
σSt
)2 1

1− β
> 0, (B.52)

where σ̄S1t and σ̄S2t are given in (B.47) and (B.48). Lastly, to prove (ii) we take the derivative of St with

respect to the interdependency parameter and find that

∂St
∂β

=Dt

(
1− e−ρ(T−t)

ρ
Vt

) 1
1−β ( 1

1− β

)2

log

(
1− e−ρ(T−t)

ρ
Vt

)
, (B.53)

which implies that ∂St
∂β > 0 if and only if the cryptocurrency is in an inflationary bubble, as (B.49) reveals.

Proof of Proposition 6 (Extensive Margin). Let (λ1t, λ2t, λ3t ≡ 1− λ1t − λ2t) be the initial distribu-

tion of share of mining pools, where λ1t, λ2t >
1
3 , λ3t <

1
3 . When Pool-3 increases and takes market share

from Pool-1 and Pool-2 we have dλ1t, dλ2t < 0, and we observe that concentration decreases

dHt =2λ1tdλ1t + 2λ2tdλ2t − 2 (1− λ1t − λ2t) (dλ1t + dλ2t)

=2 (λ1t − λ3t) dλ1t + 2 (λ2t − λ3t) dλ2t < 0. (B.54)

To prove (i), we observe that the change in Pool-1 fees is given by

dp1t =− p̄(
1 + λ1t

λ2t
+ λ1t

λ3t

)2

(
1

λ2t
+

1

λ3t
+
λ1t

λ2
3t

)
dλ1t −

p̄(
1 + λ1t

λ2t
+ λ1t

λ3t

)2

(
−λ1t

λ2
2t

+
λ1t

λ2
3t

)
dλ2t > 0, (B.55)

which is strictly positive because λ3t < λ2t. A similar outcome is obtained from p2t because λ3t < λ1t.

To prove (ii), we observe that the change in total revenue share is given by

dVt = − 3p̄(
1
λ1t

+ 1
λ2t

+ 1
λ3t

)2

{(
− 1

λ2
1t

+
1

λ2
3t

)
dλ1t +

(
− 1

λ2
2t

+
1

λ2
3t

)
dλ2t

}
> 0, (B.56)

which follows from λ3t, < λ1t, λ2t. The cryptocurrency price and the discount factor are given in (B.4).

Hence, an increase in total revenue share leads to a higher cryptocurrency price and a lower discount factor,

regardless of β ∈ [0, 1).

To prove (iii), we observe that the shock sensitivities can be represented as

σ̄S1t =

(
1

1− β

)
1

p̄
(p1tλ2t + p3tλ2t − p2tλ1t − p2tλ3t) σ̄1 =

(
1

1− β

)
1

p̄
(p1tλ2t + p3tλ2t + p2tλ2t − p2t) σ̄1

=

(
1

1− β

)(
λ2t −

p2t

p̄

)
σ̄1 (B.57)
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and

σ̄S2t =

(
1

1− β

)
1

p̄
(p1tλ3t − p3tλ1t + p2tλ3t − p3tλ2t) σ̄2 =

(
1

1− β

)
1

p̄
(p1tλ3t + p2tλ3t + p3tλ3t − p3t) σ̄2

=

(
1

1− β

)(
λ3t −

p3t

p̄

)
σ̄2 (B.58)

Given our assumption on mining pools’ sizes: λ1t, λ2t >
1
3 , λ3t <

1
3 , we find that λ1t − p1t

p̄ > 0,

λ2t − p2t
p̄ > 0, and λ3t − p3t

p̄ < 0. To see why, observe that

3
p1t

p̄
< 1 ⇐⇒ 1

λ1t

(
3

1
λ1t

+ 1
λ2t

+ 1
λ3t

)
≤ 1

λ1t

(
λ1t + λ2t + λ3t

3

)
=

1

λ1t

(
1

3

)
< 3

(
1

3

)
< 1, (B.59)

where the first inequality follows because the harmonic mean is always less than the arithmetic mean, the

equality follows because λ1t + λ2t + λ3t = 1, and the last inequality follows because λ1t >
1
3 . Consequently,

we find that

p1t

p̄
<

1

3
< λ1t,

p2t

p̄
<

1

3
< λ2t. (B.60)

Since p1t
p̄ + p2t

p̄ + p3t
p̄ = 1, we conclude that p3t

p̄ > 1
3 > λ3t. Thus,

|σ̄S1t| =
(

1

1− β

)(
λ2t −

p2t

p̄

)
σ̄1, |σ̄S2t| = −

(
1

1− β

)(
λ3t −

p3t

p̄

)
σ̄2, (B.61)

and the change in absolute value of σ̄S1t is given by

d|σ̄S1t| =
(

1

1− β

)(
dλ2t −

1

p̄
dp2t

)
σ̄1 < 0, (B.62)

since dλ2t < 0 and dp2t > 0. The change in absolute value of σ̄S2t is given by

d|σ̄S2t| = −
(
dλ3t −

1

p̄
dp3t

)
σ̄2 < 0, (B.63)

since dλ3t > 0 and dp3t = −dp1t − dp2t < 0.

To prove (iv), we start from the derivative of the total volatility with respect to the interdependency, given

in (B.52), and find that it is characterized as follows

∂

√(
σ̄S1t
)2

+
(
σ̄S2t
)2

+
(
σSt
)2

∂β
=

(
σ̄S1t
)2

+
(
σ̄S2t
)2√(

σ̄S1t
)2

+
(
σ̄S2t
)2

+
(
σSt
)2 1

1− β
=

1√
1

(σ̄S1t)
2
+(σ̄S2t)

2 +
(σSt )

2(
(σ̄S1t)

2
+(σ̄S2t)

2
)2

1

1− β
.
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As a result, a change in concentration propagates to the total volatility only through the following expression:

d
((
σ̄S1t
)2

+
(
σ̄S2t
)2)

= 2σ̄S1tdσ̄
S
1t + 2σ̄S2tdσ̄

S
2t, (B.64)

where σ̄S1t and σ̄S2t are given in (B.57) and (B.58), respectively. In light of (B.60), we observe that σ̄S1t > 0,

σ̄S2t < 0, and the change in σ̄S1t is negative, while the change in σ̄S2t is positive

dσ̄S1t =
1

1− β

(
dλ2t −

1

p̄
dp2t

)
σ̄1 < 0, (B.65)

dσ̄S2t =
1

1− β

(
dλ3t −

1

p̄
dp3t

)
σ̄2 > 0. (B.66)

Hence,

d
((
σ̄S1t
)2

+
(
σ̄S2t
)2)

= 2σ̄S1tdσ̄
S
1t + 2σ̄S2tdσ̄

S
2t < 0, (B.67)

d
((
σ̄S1t
)2

+
(
σ̄S2t
)2)2

= 2
((
σ̄S1t
)2

+
(
σ̄S2t
)2) (

2σ̄S1tdσ̄
S
1t + 2σ̄S2tdσ̄

S
2t

)
< 0. (B.68)

Eventually, this leads to a more substantial effect of concentration on the return volatility.

Lastly, we prove (v). We have derived ∂St
∂β in (B.53), which is copied below for convenience.

∂St
∂β

=Dt

(
1− e−ρ(T−t)

ρ
Vt

) 1
1−β ( 1

1− β

)2

log

(
1− e−ρ(T−t)

ρ
Vt

)
.

The total change in ∂St
∂β when Pool-3 emerges is given by

d

(
∂St
∂β

)
=Dt

1

1− β

(
1− e−ρ(T−t)

ρ
Vt

) β
1−β 1− e−ρ(T−t)

ρ
dVt

(
1

1− β

)2

log

(
1− e−ρ(T−t)

ρ
Vt

)

+Dt

(
1− e−ρ(T−t)

ρ
Vt

) 1
1−β ( 1

1− β

)2
1

1−e−ρ(T−t)

ρ Vt

1− e−ρ(T−t)

ρ
dVt > 0. (B.69)

We have already shown that when Pool-3 emerges, dVt > 0, (B.56), and when the cryptocurrency is in

an inflationary bubble, 1−e−ρ(T−t)

ρ Vt > 1, (B.49), eventually leading to our desired resutl that an increased

interdependency implies that the effect of concentration on the cryptocurrency price increases, if the cryp-

tocurrency price is in an inflationary bubble.

Proposition 9 (Portfolios). Markets are dynamically complete; the mining pools and households hold their

entire wealth in the cryptocurrency.

Proof of Proposition 9 (Portfolios). We start by characterizing the dynamics of the bonds. Each bond

is riskless in terms of its mining pool’s numeraire:

dBiit = riitB
i
itdt, i = 1, 2, 3. (B.70)
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Converting these bonds to the numeraire we obtain

B1t = p1tB
1
1t, B2t = p2tB

2
2t, B3t = p3tB

3
3t (B.71)

By applying Itô’s Lemma to both sides of the above equations, we find that

σB1
t = 0, σ̄B1

1t = −σ̄1
λ1t

λ2t

p1t

p̄
, σ̄B1

2t = −σ̄2λ1t
p1t

p̄

1

λ2
3t

{λ3t (1− λ1t) + λ1t} (B.72)

σB2
t = 0, σ̄B2

1t = −σ̄1

(
1− p2t

p̄

)
, σ̄B2

2t = −σ̄2
λ2t

λ3t

p2t

p̄
(B.73)

σB3
t = 0, σ̄B3

1t = −σ̄1
λ3t

λ2t

p3t

p̄
, σ̄B3

2t = σ̄2

(
1− p3t

p̄

)
. (B.74)

Notice that σ̄B1
1t , σ̄

B1
2t , σ̄

B2
1t , σ̄

B2
2t , σ̄

B3
1t , σ̄

B3
2t 6= 0 probability almost surely since λ1t, λ2t ∈ (0, 1). We define the

global bond security BW , which is locally riskless in the numeraire. This additional security is not required

but it simplifies the analysis. It is simply defined as the sum of the three bonds.

To dynamically complete the financial markets and to replicate any financial claim, we require four

independent investment opportunities: the cryptocurrency, Pool-1’s bond, Pool-2’s bond, and the global

bond. We denote the vector of portfolio weights of agent i in the cryptocurrency and mining pool bonds by

πi, and the volatility matrix of these two securities by Σ, such that

πi ≡

 π
S
i

πB1
i

πB2
i

 , Σ ≡

σ
S
t σ̄S1t σ̄S2t
0 σ̄B1

1t σ̄B1
2t

0 σ̄B2
1t σ̄B2

2t

 , (B.75)

where i = 1, 2, 3, a.

Solving for the optimal wealth (B.10) (B.9), we find that Wit ∝ 1
ξt

, and by applying Itô’s Lemma to

both sides of this equation we obtain

Σ′πi = θt, (B.76)

where θt is the vector of market prices of risk. It is given by

θt =

σ
S
t

σ̄S1t
σ̄S2t

 , (B.77)

which is obtained from applying Itô’s Lemma to both sides of (B.43). Since σS1t, σ
S
2t 6= 0, as Proposition 8

reveals, we invert Σ′ and obtain that πSi = 1 and πB1
i = 0, πB2

i = 0 for i = 1, 2, 3, a.

Following Pavlova and Rigobon (2007), we obtain the interest rates, riit, by applying Itô’s Lemma to the

mining pool specific state price density, ξtpit, given in (B.20), (B.21), and (B.22).
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