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Abstract

In this paper, we derive closed-form formulas of first-order approximation for

down-and-out barrier and floating strike lookback put option prices under a

stochastic volatility model, by using an asymptotic approach. To find the ex-

plicit closed-form formulas for the zero-order term and the first-order correction

term, we use Mellin transform. We also conduct a sensitivity analysis on these

formulas, and compare the option prices calculated by them with those gener-

ated by Monte-Carlo simulation.
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1. Introduction

A standard option gives its owner the right to buy (or sell) some underlying asset

in the future for a fixed price. Call options confer the right to buy the asset,

while put options confer the right to sell the asset. Path-dependent options

represent extensions of this concept. For example, a lookback call option confers5
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the right to buy an asset at its minimum price over some time period. A

barrier option resembles a standard option except that the payoff also depends

on whether or not the asset price crosses a certain barrier level during the

option’s life. Lookback and barrier options are two of the most popular types

of path-dependent options.10

Following the lead set by Black and Scholes [1] and assuming that the under-

lying asset price follows a geometric Brownian motion with constant volatility,

Merton [2] derived a closed-form pricing formula for down-and-out call options.

Reiner and Rubinstein [3] extended Merton’s result to other types of barrier

options. Goldman et al. [4], Goldman et al. [5], and Conze and Vishwanathan15

[6] provided closed-form pricing formulas for lookback options. For a good sum-

mary for research on path-dependent options under the Black-Scholes frame-

work, refer to [7]. As we know, the assumption that an asset price process

follows a geometric Brownian motion with constant volatility does not capture

the empirical observations, due to the volatility smile effect. So, it is desirable20

to overcome this drawback. There are different ways of extending the Black-

Scholes model to incorporate the “smile” feature: one way is to consider “local

volatility” and the other is to consider “stochastic volatility”.

One popular local volatility model is the constant elasticity of variance (CEV)

model introduced by Cox [8] and [9], where a closed-form pricing formula for25

European call options was presented. Davydov and Linetsky [10] derived solu-

tions for barrier and lookback option prices under the CEV process in closed

form, and demonstrated that barrier and lookback option prices and hedge ra-

tios under the CEV process can deviate dramatically from the lognormal values.

In [11], the pricing of certain path-dependent options was re-examined when the30

underlying asset follows the CEV diffusion process, by approximating the CEV

process using a trinomial method.

In general, the pricing problems of path-dependent options do not have analytic

solutions under stochastic volatility. Chiarella et al. [12] considered the prob-
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lem of numerically evaluating barrier option prices when the dynamics of the35

underlying are driven by the Heston stochastic volatility model and developed a

method of lines approach to evaluate the price as well as the delta and gamma

of the option. Park and Kim [13] investigated a semi-analytic pricing method

for lookback options in a general stochastic volatility framework. The resultant

formula is well connected to the Black–Scholes price that is the first term of a40

series expansion, which makes computing the option prices relatively efficient.

Further, a convergence condition for the expansion was provided with an error

bound. Leung [14] and Wirtu et al. [15] derived an analytic pricing formula

for floating strike lookback options under the Heston model by means of the

homotopy analysis method. The price is given by an infinite series whose value45

can be determined once an initial term is given well.

In addition, Kato et al. [16] derived a new semi closed-form approximation for-

mula for pricing an up-and-out barrier option under a certain type of stochastic

volatility model including SABR model. In a more recent paper by Funahashi

and Higuchi [17], a unified approximation scheme was proposed for a single bar-50

rier option under local volatility models, stochastic volatility models, and their

combinations. The basic idea of their approximation is to mimic a target under-

lying asset process by a polynomial of the Wiener process. They then translated

the problem of solving the first hit probability of the asset price into the prob-

lem of solving that of a Wiener process whose distribution of the passage time is55

known. Finally, utilizing Girsanov’s theorem and the reflection principle, they

showed that single barrier option prices can be approximated in a closed-form.

The main contribution of this paper is to derive new closed-form approxima-

tion formulas for pricing down-and-out put barrier options and floating strike

lookback put options under a certain type of stochastic volatility model, which60

is similar to the one in [16]. To achieve our goal, we apply the asymptotic ap-

proach discussed in [18] and Mellin transform. Mellin transform techniques were

used by Panini and Srivastav [19] to derive integral equation representations for

the price of European and American basket put options. Similarly, Yoon [20]
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applied Mellin transform to derive a closed form solution of the option price65

with respect to a European call option and a European put option with the

Hull-White stochastic interest rate. Moreover, Kim and Yoon [21] derived a

closed-form formula of a second-order approximation for a European corrected

option price under stochastic elasticity of variance (SEV) model.

The rest of the paper is organized as follows. Section 2 discusses the model70

framework and the features of down-and-out and floating strike lookback put

options. In Section 3, we give detailed discussions on an asymptotic approach

which is used to derive approximations to the risk-neutral values of these types

of options. In Section 4, we apply Mellin transform to derive a closed-form

formula of the first-order approximation for down-and-out barrier put options.75

In Section 5, we apply Mellin transform to derive a closed-form formula of the

first-order approximation for floating strike lookback put options. Section 6

presents sensitivity and comparison analysis, and demonstrate that the results

given by these closed-form formulas match well with those generated by Monte-

Carlo simulation. Section 7 gives a brief summary. Details on Mellin transform80

and derivation of the closed-form formulas in Sections 4 and 5 are provided in

Appendices A and B, respectively.

2. Basic Model Set-up and Path-dependent Options

2.1. Stochastic volatility model

Let {St : t ≥ 0} denote the price process of a risky asset on some filtered prob-85

ability space (Ω,F , (Ft)t≥0,P), where P is the physical probability measure.

In this paper, we assume that {St : t ≥ 0} evolves according to the following

system of stochastic differential equations:

dSt = µStdt+ f (Yt)StdW
s
t ,

dYt = α (m− Yt) dt+ β
(
ρdW s

t +
√

1− ρ2dW y
t

)
, (1)

where µ, α > 0, β > 0 and m are constants, f is a function having non-zero

values and specifying the dependence on the hidden process {Yt : t ≥ 0}. The90
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processes {W s
t : t ≥ 0} and {W y

t : t ≥ 0} are independent standard Brownian

motions. The constant correlation coefficient ρ with −1 < ρ < 1 captures the

leverage effect. Here, µ is the drift rate. The mean-reversion process {Yt : t ≥ 0}

given in Eq. (1) is characterized by its typical time to obtain back to the mean

level m of its long-run distribution. The parameter α determines the speed of95

mean-reversion and β controls the volatility of {Yt : t ≥ 0}. In the sequel,

we shall refer to the above system as the stochastic volatility (SV) model. In

Sections 2 and 3, we will not specify the concrete form of f , but assume that f

is bounded and smooth enough, e.g., f ∈ C2
0 (R). Furthermore, f has to satisfy

a sufficient growth condition in order to avoid bad behavior such as the non-100

existence of moments of {St : t ≥ 0}. For numerical results in Section 6, we

choose f to take a special form as used in [22], [18] and [23].

We apply the well-known Girsanov theorem to change the physical measure P

to a risk-neutral martingale measure Q by letting

dW s∗
t =

µ− r

f (Yt)
dt+ dW s

t y and dW y∗
t = ξ (Yt) dt+ dW y

t ,

where ξ (Yt) represents the premium of volatility risk. Then the model equations

under the measure Q can be written as

dSt = rStdt+ f(Yt)StdW
s∗
t ,

dYt =

[
α (m− Yt)− β

(
ρ
µ− r

f(Yt)
+ ξ(Yt)

√
1− ρ2

)]
dt (2)

+β
(
ρdW s∗

t +
√

1− ρ2dW y∗
t

)
.

Note that {W s∗
t : t ≥ 0} and

{
W y∗

t : t ≥ 0
}

are independent standard Brownian105

motions under Q. As an Ornstein-Uhlenbeck (OU) process, {Yt : t ≥ 0} in Eq.

(1) has an invariant distribution, which is normal with mean m and variance

β2/2α. Thus, we can expect that if mean reversion is very fast, i.e., α goes

to infinity, the process {St : t ≥ 0} should be close to a geometric Brownian

motion. This means that if mean reversion is extremely fast, then the model of110

Black and Scholes would become a good approximation. In reality, however, it
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may not be the case. For fast but not extremely fast mean-reversion, the Black-

Scholes model needs to be corrected to account for the random characteristics

of the volatility of a risky asset. For this purpose, we introduce another small

parameter ϵ defined by ϵ = 1/α as done by [22]. For notational convenience, we115

put ν = β/
√
2α. With the help of these notations, the model equations under

Q is re-written as

dSt = rStdt+ f (Yt)StdW
s∗
t ,

dYt =

[
1

ϵ
(m− Yt)−

√
2ν√
ϵ
Λ (Yt)

]
dt+

√
2ν√
ϵ
dW y∗

t ,

where Λ(·), defined by

Λ(y) := ρ
µ− r

f(y)
+ ξ(y)

√
1− ρ2,

is the combined market price of risk.

2.2. Path-dependent options

Let V (T ) denote the payoff of a put option on the risky asset at its expiration120

T . Then its risk-neutral price at time t ∈ [0, T ] under our SV model is given by

P (t, s, y) = EQ
(
e−r(T−t)V (T )| St = s, Yt = y

)
.

Note that V (T ) depends on the type of options. In this paper, we consider two

types of path-dependent options: down-and-out put options and floating strike

lookback put options. For notational convenience, we put Ut := min0≤u≤t Su

and Zt := max0≤u≤t Su. The payoff of a down-and-out put option is given by

DOP (T ) := max{K − ST , 0} × 1UT>B ,

where K is the strike price, B is the barrier level satisfying 0 < B < K and

1UT>B is the indicator function. For a floating strike lookback put option, its

payoff has the form of LPfloat(T ) := ZT − ST . Applying Itô’s lemma, we can

obtain a partial differential equation (PDE) for P (t, s, y) as follows:125
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0 =
∂P

∂t
+

1

2
s2f2(y)

∂2P

∂s2
+ r

(
s
∂P

∂s
− P

)
+

√
2ρνs√
ϵ

f(y)
∂2P

∂s∂y

+
ν2

ϵ

∂2P

∂y2
+

(
1

ϵ
(m− y)−

√
2ν√
ϵ
Λ(y)

)
∂P

∂y
. (3)

The boundary conditions for Eq. (3) vary depending on the type of options. For

example, the boundary conditions for Eq. (3) when V (T ) = DOP (T ) are
P (T, s, y) = max{K − s, 0}, s > B,

P (t, B, y) = 0, 0 ≤ t ≤ T.

When V (T ) = LPfloat(T ), the boundary conditions become the following
∂P

∂z
(t, z, y, z) = 0, 0 ≤ t ≤ T, z > 0,

P (T, s, y, z) = z − s, 0 ≤ s ≤ z.

Note that in this case, P is a function of t, s, y and z (here, Zt = z).

3. Asymptotic Expansions

In this section, we apply an asymptotic expansion approach to establish partial

differential equations, which will be used to derive an approximate solution to

Eq. (3) and thus find an approximated value of a put option. We begin with130

re-organizing Eq. (3) in terms of the orders of ϵ as follows:

1

ϵ
L0P +

1√
ϵ
L1P + L2P = 0, (4)

where the operators L0, L1 and L2 are defined by

L0 := (m− y)
∂

∂y
+ ν2

∂2

∂y2
,

L1 :=
√
2ρνsf (y)

∂2

∂s∂y
−
√
2νΛ (y)

∂

∂y
, and

L2 :=
∂

∂t
+

1

2
s2f2 (y)

∂2

∂s2
+ r

(
s
∂

∂s
− ·
)
.
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In order to obtain an efficient approximate solution to P , as that in [24] and

[18], we apply the following asymptotic expansion of P :

P = P0 +
√
ϵP1 + ϵP2 + ϵ

√
ϵP3 + · · · , (5)

where P0, P1, ... are functions corresponding to varying orders of ϵ. Substituting135

P in Eq. (5) into the Eq.(4) and re-organizing terms, we obtain

0 =
1

ϵ
L0P0 +

1√
ϵ
(L1P0 + L0P1) + (L0P2 + L1P1 + L2P0)

+
√
ϵ (L0P3 + L1P2 + L2P1) + · · · . (6)

Our aim is to find P0 and P1.

Firstly, from the O(1/ϵ)-order term in Eq.(6), we get L0P0 = 0. If we assume

that P0 does not grow as fast as ey2/2, as that done in [25, Theorem 4.2], we can

show that P0 is independent of y. Secondly, from the O(1/
√
ϵ)-order term in140

Eq. (6), we get L1P0 +L0P1 = 0. Since P0 is independent of y, then L1P0 = 0.

It follows that L0P1 = 0. Again, if we assume that P1 does not grow as fast as

ey
2/2, then we can deduce that P1 is also independent of y.

Next, from the O(1)-order term in Eq. 6, we get

L0P2 + L1P1 + L2P0 = 0.

Since P1 is independent of y, we have L1P1 = 0 which implies that

L0P2 + L2P0 = 0. (7)

Seeing Eq. (7) as a Poisson equation for P2 in y, in order for it to have a145

solution, it is required to satisfy the centring condition

⟨L2P0⟩ = ⟨L2⟩P0 = 0, (8)

which is equivalent to

∂P0

∂t
+ rs

∂P0

∂s
+

1

2
s2⟨f2⟩∂

2P0

∂s2
− rP0 = 0. (9)

8



This is an equation for us to determine P0 term. Here, ⟨·⟩ denotes the expec-

tation with respect to the invariant distribution of the process {Yt : t ≥ 0},

i.e.,

⟨h⟩ =
∫ +∞

−∞
h(y)Φ(y)dy, where Φ(y) =

1√
2πν2

e−
(y−m)2

2ν2 .

Note that small ϵ value corresponds to fast-mean reverting. In this case, Yt

approaches to a constant and ⟨f2⟩ can be regarded as constant variance and

then Eq. (9) is the Black-Scholes PDE. Thus, for small ϵ, P0 represents the put150

option price under the Black-Scholes model.

Following Eq. (8), we have

L2P0 = L2P0 − ⟨L2⟩P0 =
1

2

(
f2 − ⟨f2⟩

)
s2

∂2P0

∂s2
,

which together with Eq. (7) implies

L0P2 = −1

2

(
f2 − ⟨f2⟩

)
s2

∂2P0

∂s2
. (10)

The solution to Eq. (10) can be expressed as

P2 = −1

2
(ϕ+ c) s2

∂2P0

∂s2
, (11)

where ϕ is a function of y which only satisfies the equation L0ϕ = f2−⟨f2⟩ and155

c is a function of other variables except y.

To derive an equation for P1, we consider the O(
√
ϵ)-term in Eq. (6) and obtain

L0P3 + L1P2 + L2P1 = 0.

This equation can be regarded as a Poisson equation for P3 in y, and in order

for it to have a solution, the following centring condition must be satisfied:

⟨L1P2 + L2P1⟩ = 0. (12)

After we substitute P2 in Eq. (11) into Eq. (12) and make simplification, we

obtain160

∂P1

∂t
+

1

2
⟨f2⟩s2 ∂

2P1

∂s2
+ rs

∂P1

∂s
− rP1 = c1s

3 ∂
3P0

∂s3
+ c2s

2 ∂
2P0

∂s2
, (13)
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where

c1 :=

√
2

2
⟨fϕ′⟩ρν and c2 :=

√
2

2
(2ρ⟨fϕ′⟩ − ⟨Λϕ′⟩) ν. (14)

This is an equation for us to determine the first correction term P1.

We summarize the previous formal analysis as the following theorem.

Theorem 1. Under the SV model governed by Eq. (1), an approximation of

the risk-neutral value P of a path-dependent put option is given by165

P = P0 +
√
ϵP1 +O(ε), (15)

for small ϵ, where P0 and P1 are determined by Eqs. (9) and (13) with corre-

sponding boundary conditions, respectively, such that P0 is the put option price

under the Black-Scholes model with constant effective volatility
√
⟨f2⟩ and P1

is the first-order correction term.

Finally, as mentioned in Section 2, boundary conditions for Eqs. (8) and (13)170

depend on the types of options that we consider. We describe the corresponding

boundary conditions and solve these equations in the next two sections.

4. Determining P0 and P1 for Down-and-out Put Options

In this section, we use Mellin transform to derive analytical expressions of the

P0 and P1 terms for down-and-out put options.175

4.1. P0 term for down-and-out put options

In order to use Mellin transform to calculate the P0 term for down-and-out put

options, noting that P0 is independent of y under our assumption, we first follow

the method in [26] and use the boundary condition,

P (T, s, y) = max{K − s, 0}, for s > B,

to set up the boundary condition of P0 for s ≥ 0 as follows:

P0 (T, s) := (K − s)1B<s<K −
(
B

s

)k1−1(
K − B2

s

)
1B2

K <s<B
, (16)

10



where k1 = 2r/⟨f2⟩. Now, we apply Mellin transform to Eq. (9) to convert this

PDE into the following ODE:

dP̂0

dt
+

(
1

2
⟨f2⟩(w2 + w)− rw − r

)
P̂0 = 0. (17)

The solution to Eq. (17) is given by180

P̂0 (t, w) = θ̂(w)e
1
2 ⟨f

2⟩(w2+(1−k1)w−k1)(T−t), (18)

where θ̂ is a function of w, determined by the boundary condition (16).

Next, we take inverse Mellin transform of Eq. (18) and obtain

P0(t, s) = P0(T, s) ∗M−1eλ(w+η)2+δ,

where

λ =
1

2
⟨f2⟩ (T − t) , η =

1− k1
2

, δ = −λη2 − r (T − t)

and the operation ∗ means the convolution.. Applying Table A.2 in Appendix

A and the boundary condition given in Eq. (16), we have

P0 (t, s) = P0 (T, s) ∗
(

eδsη

2
√
λπ

e−
1
4λ (ln s)2

)
=

∫ K

B

(K − u) eδ
( s
u

)η ( 1

2
√
λπ

e−
1
4λ (ln(

s
u ))

2
)

du

u
− (19)

∫ B

B2

K

(
B

u

)k1−1(
K − B2

u

)
eδ
( s
u

)η ( 1

2
√
λπ

e−
1
4λ (ln(

s
u ))

2
)

du

u
.

After some careful calculation, for down-and-out put options, we derive a closed-

form expression of the P0 term as follows:185

P0(t, s) = Ke−r(T−t)
(
Φ
(
−∆−

( s

K

))
− Φ

(
−∆−

( s

B

)))
−

s
(
Φ
(
−∆+

( s

K

))
− Φ

(
−∆+

( s

B

)))
−

Ke−r(T−t)

(
B

s

)k1−1 [
Φ

(
∆−

(
B

s

))
− Φ

(
∆−

(
B2

sK

))]
+

B

(
B

s

)k1
[
Φ

(
∆+

(
B

s

))
− Φ

(
∆+

(
B2

sK

))]
, (20)
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where Φ(·) is the CDF of the standard normal distribution and

∆±(x) =
1√

⟨f2⟩(T − t)

[
ln(x) +

(
r ± 1

2
⟨f2⟩

)
(T − t)

]
.

Note that P0 given in Eq. (20) is precisely the same as the price of a down-

and-out put option given in the literature, e.g., [27] (Chapter 26, p.606) or [28]

(Chapter 4), if we let σ2 = ⟨f2⟩. For details of the derivation of formula (20),

we refer the reader to Appendix B.

4.2. P1 term for down-and-out put options190

For down-and-out put options, the boundary conditions for P1 are
P1(T, s) = 0, for s ≥ B,

P1(t, B) = 0, for 0 < t < T.

We again follow the method in [26] and extend the boundary conditions P1(T, s) =

0, for s ≥ B as P1 (T, s) = 0 for all s ≥ 0.

Next, we apply Mellin transform to Eq. (13) to get

dP̂1

dt
+

(
1

2
⟨f2⟩

(
w2 + w

)
− rw − r

)
P̂1 = (−c1w (w + 1) (w + 2) + c2w (w + 1)) P̂0.

Solving this equation, we obtain

P̂1 (t, w) =
[
c1 (T − t)w3 − (c2 − 3c1) (T − t)w2 − (c2 − 2c1) (T − t)w

]
P̂0 (t, w) .

Finally, applying inverse Mellin transform, we obtain an explicit closed-form

expression of P1 as follows195

P1 (t, s) = M−1
(
P̂1 (t, w)

)
= c1 (T − t)

(
−s

d

ds
P0 (t, s)− 3s2

d2

ds2
P0 (t, s)− s3

d3

ds3
P0 (t, s)

)
− (c2 − 3c1) (T − t)

(
s
d

ds
P0 (t, s) + s2

d2

ds2
P0 (t, s)

)
(21)

− (c2 − 2c1) (T − t)

(
−s

d

ds
P0 (t, s)

)
,

where P0 is given in the previous section, c1 and c2 are given in Eq. (14).
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We summarize the above analysis and calculation on down-and-out put options

in the following theorem.

Theorem 2. Under the SV model governed by Eq. (1), an approximation of

the risk-neutral value P of a down-and-out barrier put option is given by200

P = P0 +
√
ϵP1 +O(ε), (22)

where P0 and P1 are given by Eqs. (20) and (21), respectively.

5. Determining P0 and P1 for Lookback Put Options

In this section, we use Mellin transform to derive analytical expressions of the

P0 and P1 terms for floating strike lookback put options.

5.1. P0 term for lookback put options205

For lookback floating strike put options, the boundary conditions of P0 are
∂P0

∂z
(t, z, z) = 0,

∂P0

∂z
(T, s, z) = 1, for 0 < s < z.

Similar to the case of down-and-out put options, we extend the second boundary

condition to 0 < s < ∞ as follows:

∂P0

∂z
(T, s, z) := 1s<z −

(z
s

)k1−1

· 1z<s, for 0 < s < ∞.

Then, by integrating each side of the last equation, we can obtain

P0 (T, s, z) =

∫ z

s

−
(
ξ

s

)k1−1

dξ = − 1

k1

(z
s

)k1

s+
1

k1
s (23)

for s > z. For convenience, we let u = s/z and Q0 = P0/z. With these

notations, Eq. (9) becomes210

∂Q0

∂t
+

1

2
u2⟨f2⟩∂

2Q0

∂u2
+ ru

∂Q0

∂u
− rQ0 = 0, (24)

with boundary conditions

Q0 (T, u) = − 1

k1
u1−k1 +

1

k1
u, for u > 1, (25)

and Q0(T, u) = 1, for 0 < u < 1.

13



Note that except the boundary conditions, Eq. (24) is identical to Eq. (9).

Applying Mellin transform in the same way as that for the case of down-and-

out put options, we can derive the solution to Eq. (24) as follows:

Q0(t, u) = θ̂(w) ∗M−1eλ(w+η)2+δ.

Again, applying Table A.2 and P0 given in Eq. (16), we have

Q0(t, u) = Q0(T, u) ∗ eδzη
(

1

2
√
π
λ− 1

2 e−
1
4λ (ln z)2

)

=

∫ 1

0

(1− ξ) eδ
(
u

ξ

)η (
1

2
√
π
λ− 1

2 e−
1
4λ (ln(

u
ξ ))

2
)

dξ

ξ
+ (26)

∫ ∞

1

(
−1

k1
ξ1−k1 +

ξ

k1

)
eδ
(
u

ξ

)η (
1

2
√
π
λ− 1

2 e−
1
4λ (ln(

u
ξ ))

2
)

dξ

ξ
.

After calculating integrals, for floating strike lookback put options, we derive a

closed-form expression of the P0 term as follows:215

P0(t, s, z) = ze−r(T−t)Φ
(
−∆−

(s
z

))
− sΦ

(
−∆+

(s
z

))
(27)

− z

k1

(s
z

)1−k1

e−r(T−t)Φ
(
−∆−

(z
s

))
+

s

k1
Φ
(
∆+

(s
z

))
,

where Φ(·) is the CDF of the standard normal distribution. Note that P0 given

in Eq. (27) is precisely the same as the price of a floating strike put option

given in the literature, e.g., [27] (Chapter 26, p.608) or [28] (Chapter 4), if

we let σ2 := ⟨f2⟩. Details of the derivation of this formula can be found in

Appendix B.220

5.2. P1 term for lookback put options

For floating strike lookback put options, the boundary conditions for P1 are
P1(T, s, z) = 0, for 0 < s < z,

∂P1

∂z
(t, z, z) = 0, for 0 < t < T and z > 0.

Just like that for the P0-term for floating strike lookback put options, we let

u = s/z and Q1 = P1/z.. With these notation changes, Eq. (13) is converted

14



to the following

∂Q1

∂t
+

1

2
⟨f2⟩u2 ∂

2Q1

∂u2
+ ru

∂Q1

∂u
− rQ1 = c1u

3 ∂
3Q0

∂u3
+ c2u

2 ∂
2Q0

∂u2
(28)

with Q1(T, u) = 0 for 0 < u < 1.225

Note that Eq. (28) is essentially the same as Eq. (13), except the notational

difference. So, we have

Q1 (t, u) = c1 (T − t)

(
−u

d

du
Q0 (t, u)− 3u2 d2

du2
Q0 (t, u)− u3 d3

du3
Q0 (t, u)

)
− (c2 − 3c1) (T − t)

(
u
d

du
Q0 (t, u) + u2 d2

dz2
Q0 (t, u)

)
(29)

− (c2 − 2c1) (T − t)

(
−u

d

du
Q0 (t, u)

)
,

where Q0 is given previously. Consequently, we have

P1 (t, s, z) = c1 (T − t)

(
−s

d

ds
P0 (t, s, z)− 3s2

d2

ds2
P0 (t, s, z)− s3

d3

ds3
P0 (t, s, z)

)
− (c2 − 3c1) (T − t)

(
s
d

ds
P0 (t, s, z) + s2

d2

ds2
P0 (t, s, z)

)
(30)

− (c2 − 2c1) (T − t)

(
−s

d

ds
P0 (t, s, z)

)
,

where c1 and c2 are the same as those defined previously.

We summarize the above analysis and calculation on floating strike lookback230

put options in the following theorem.

Theorem 3. Under the SV model governed by Eq. (1), an approximation of

the risk-neutral value P of a floating strike lookback put option is given by

P = P0 +
√
ϵP1 +O(ε), (31)

where P0 and P1 are given by Eqs. (27) and (30), respectively.

6. Numerical Results and Sensitivity Analysis235

In this section, we conduct a numerical study to investigate the sensitivity of

the first-order correction term P1 and our approximation results P0+
√
ϵP1 with

15



respect to the initial value of underlying asset. This means that we set t = 0

throughout this section. We also compare the results given by our closed form

formulas with those generated by the Monte-Carlo simulation.240

Table 1: The role and numerical value of parameters

Parameter Role Value

r risk-free interest rate 0.035

B barrier level 1500

K put option strike price 2700

c1 as defined in Section 3 -0.004

c2 as defined in Section 3 -0.018

First of all, as done by [22], [18] and [23], we choose f to take the following form

f(y) = 0.35
(
tan−1(y) +

π

2

)
/π + 0.05.

Secondly, the values of other parameters used in this section are given in Table

1, whenever they are required to be fixed.

Here, we do not choose precise values of β and ρ, and particular forms of ξ(y)

(in Section 2) and ϕ(y) (in Section 3) to calculate the above values of c1 and c2.

Instead, c1 and c2 are calibrated from the term structure of the implied volatility

surface as described in the book of [22]. Specifically, the implied volatility Iϵ of

a European vallina call option with fast mean-reverting stochastic process can

be approximated by the following formula

Iϵ = a
ln(Ks )

T − t
+ b+ o(

√
ϵ)

with

a = − c1

⟨f2⟩3/2
and b =

√
⟨f2⟩+ c1

⟨f2⟩3/2

(
r +

3

2
⟨f2⟩

)
− c2√

⟨f2⟩
.

The parameters a and b are estimated as the slope and intercept of the regression

fit of the observed implied volatilities as a linear function of logmoneyness-to-

maturity-ratio ln(K/s)/(T − t). From the calibrated values a and b on the

16



observed implied volatility surface, the parameters c1 and c2 are obtained as

c1 = −aσ⟨f2⟩3/2 and c2 =
√

⟨f2⟩((
√

⟨f2⟩ − b)− a(r +
3

2
⟨f2⟩)).

Thirdly, note that when t = 0, s = z. Hence, in this case, the formula for P0

given by Eq. (27) is simplified.

Figure (1A) shows how the
√
ϵP1-term for a down-and-out barrier put option245

changes with respect to a variation of ϵ values. As we can see, for fixed ϵ,

when s increases, P1 decreases first, and then increases after it hits its trough.

When ϵ gets smaller (equivalently, the mean-reverting speed gets larger),
√
ϵP1

approaches to a zero. Figure (1B) shows how the value of P0 +
√
ϵP1 for a

down-and-out put option varies with respect to the change of ϵ values. As we250

can see, when the value of ϵ changes from 0.01 to 0.0001, the value of P0+
√
ϵP1

does not vary much. In fact, the values of P0+
√
ϵP1 match well with the result

of Monte-Carlo simulation in all cases. Furthermore, in all cases, the value of

P0 +
√
ϵP1 declines as s increases.
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100

200

300
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700
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Monte Carlo

(B)

Figure 1: Plots of
√
ϵP1 and P0 +

√
ϵP1 with different values of ϵ, against the initial value of

the underlying asset, for down-and-out put option

Figure (2A) shows how the
√
ϵP1-term for a floating strike lookback put changes255

with respect to a variation of ϵ values. In a similar pattern, for a fixed ϵ-value,

when s increases, P1 decreases first and then increases after it hits its trough.

17



Similar to the case of down-and-out put options, when ϵ gets smaller (equiva-

lently, the mean-reverting speed gets larger),
√
ϵP1 approaches to zero. Figure

(2B) shows how the value of P0 +
√
ϵP1 for a floating strike put varies with re-260

spect to the change of ϵ values. When the value of ϵ changes from 0.01 to 0.001,

the value of P0 +
√
ϵP1 varies. But, when the value of ϵ changes from 0.001 to

0.0001, the value of P0 +
√
ϵP1 does not vary much. The values of P0 +

√
ϵP1

match well with the result of Monte-Carlo simulation when ϵ = 0.001 or 0.0001.

Furthermore, in all cases, the value of P0 +
√
ϵP1 increases as s increases.265
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Figure 2: Plots of
√
ϵP1 and P0 +

√
ϵP1 with different values of ϵ, against the initial value of

the underlying asset, for floating strike put option

7. Conclusion Remarks

This article establishes explicit closed-form solutions for first order approxima-

tions of down-and-out barrier and floating strike lookback put option prices

under a stochastic volatility model by means of Mellin transform. The zero-

order terms in the solutions for the prices of both types of put options coincide270

with those in [27] or [28] under the classical Back-Scholes model. Our numeri-

cal analysis shows that the results given by those explicit closed-form solutions

match well with those generated by Monte-Carlo simulation. This confirms the

accuracy of the approximation. Furthermore, we also discussed the sensitivity

18



of the first-order error terms and the approximation with respect to the under-275

lying asset price and the mean-reverting speed of the OU-process which governs

the volatility.

Appendix A. Mellin Transform

The Mellin transform is an integral transform that may be regarded as the

multiplicative version of the two-sided Laplace transform. It is often used in

the theory of asymptotic expansions. For a locally Lebesgue integrable function

h : R+ → R, the Mellin transform denoted by Mh or ĥ, is given by

ĥ(w) = (Mh) (w) :=

∫ +∞

0

sw−1h(s) ds, w ∈ C,

and if a < Re(w) < b and c such that a < c < b exists, the inverse of the Mellin

transform is expressed by

h(s) =
(
M−1ĥ

)
(s) =

1

2πi

∫ c+i∞

c−i∞
s−wĥ(w) dw.

In this paper, we use the following properties of Mellin transform.

Table A.2: List of properties of Mellin transform used in this paper

function Mellin tansform

h ĥ

sh′ −wĥ

s2h′′ w(w + 1)ĥ

s3h(3) −w(w + 1)(w + 2)ĥ

eδsη

2
√
λπ

e−
1
4λ (ln s)2 eλ(w+η)2+δ

sh′ + s2h′′ w2ĥ

−sh′ − 3s2h′′ − s3h(3) w3ĥ

Here, λ, η and δ are not related to w or s, and h′, h′′ and h(3) are the first-order,280

second-order and third-order derivatives of h, respectively.
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Appendix B. Derivation of Formulas (20) and (27)

In this appendix, we give detailed derivation of the formulas (20) and (27).

Appendix B.1. Derivation of formula (20)

From Eq. (19), we know that285

P0 (t, s) =

∫ K

B

(K − u) eδ
( s
u

)η ( 1

2
√
λπ

e−
1
4λ (ln(

s
u ))

2
)

du

u
−

∫ B

B2

K

(
B

u

)k1−1(
K − B2

u

)
eδ
( s
u

)η ( 1

2
√
λπ

e−
1
4λ (ln(

s
u ))

2
)

du

u
.

By letting v = lnu, we convert the first integral to∫ lnK

lnB

(K − ev)sηeδe−ηv

(
1

2
√
λπ

e−
1
4λ (ln s−v)2

)
dv

=
sηeδ

2
√
λπ

(∫ lnK

lnB

Ke−
1
4λ (v2−2v ln s+(ln s)2+4ληv)dv

−
∫ lnK

lnB

e−
1
4λ (v2−2v ln s+(ln s)2+4λ(η−1)v)dv

)

=
sηeδ

2
√
λπ

(∫ lnK

lnB

Ke−
1
4λ (v−ln s+2λη)2+λη2−η ln sdv

−
∫ lnK

lnB

e−
1
4λ [v−ln s+2λ(η−1)]2+λ(η−1)2−(η−1) ln sdv

)
,

we further apply the following changes of variables

x′ :=
v − ln s+ 2λη√

2λ
and x′′ :=

v − ln s+ 2λ(η − 1)√
2λ

to get ∫ lnK

lnB

(K − ev)sηeδe−ηv

(
1

2
√
λπ

e−
1
4λ (ln s−v)2

)
dv

=
eδ√
2π

Keλη
2

∫ ln(K
s

)+2λη
√

2λ

ln(B
s

)+2λη
√

2λ

e−
x′2
2 dx′ − seλ(η−1)2

∫ ln(K
s

)+2λ(η−1)
√

2λ

ln(B
s

)+2λ(η−1)
√

2λ

e−
x′′2
2 dx′′


= Keδ+λη2

[
Φ

(
ln(Ks ) + 2λη

√
2λ

)
− Φ

(
ln(Bs ) + 2λη

√
2λ

)]

−seδ+λ(η−1)2

[
Φ

(
ln(Ks ) + 2λ(η − 1)

√
2λ

)
− Φ

(
ln(Bs ) + 2λ(η − 1)

√
2λ

)]
.
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Now, if we plug into δ, η and λ into the above formula, we derive∫ lnK

lnB

(K − ev)sηeδe−ηv

(
1

2
√
λπ

e−
1
4λ (ln s−v)2

)
dv

= Ke−r(T−t)
[
Φ
(
−∆−

( s

K

))
− Φ

(
−∆−

( s

B

))]
−s
[
Φ
(
−∆+

( s

K

))
− Φ

(
−∆+

( s

B

))]
.

Similarly, we can evaluate the second integral∫ B

B2

K

(
B

u

)k1−1(
K − B2

u

)
eδ
( s
u

)η ( 1

2
√
λπ

e−
1
4λ (ln(

s
u ))

2
)

du

u

to obtain

Ke−r(T−t)

(
B

s

)k1−1 [
Φ

(
∆−

(
B

s

))
− Φ

(
∆−

(
B2

sK

))]
−B

(
B

s

)k1
[
Φ

(
∆+

(
B

s

))
− Φ

(
∆+

(
B2

sK

))]
.

Putting these two integrals together yields formula (20).290

Appendix B.2. Derivation of formulas (27)

From Eq. (26), we have

Q0(t, u) =

∫ 1

0

(1− ξ) eδ
(
u

ξ

)η (
1

2
√
λπ

e−
1
4λ (ln(

u
ξ ))

2
)

dξ

ξ
+

∫ ∞

1

(
− 1

k1
ξ1−k1 +

ξ

k1

)
eδ
(
u

ξ

)η (
1

2
√
λπ

e−
1
4λ (ln(

u
ξ ))

2
)

dξ

ξ
.

We let v = ln ξ. For the first integral, we have∫ 1

0

(1− ξ)eδ
(
u

ξ

)η (
1

2
√
λπ

e−
1
4λ (ln(

u
ξ ))

2
)

du

u

=

∫ 0

−∞
uη (1− ev) eδ−vη

(
1

2
√
λπ

e−
1
4λ (lnu−v)2

)
dv

=
uηeδ

2
√
λπ

(∫ 0

−∞
e−

1
4λ (v

2−2v lnu+(lnu)2+4ληv)dv

−
∫ 0

−∞
e−

1
4λ (v

2−2v lnu+(lnu)2+4λ(η−1)v)dv

)
=

uηeδ

2
√
λπ

(∫ 0

−∞
e−

1
4λ (v−lnu+2λη)2+λη2−η lnudv

−
∫ 0

−∞
e−

1
4λ (v−lnu+2λ(η−1))2+λ(η−1)2−(η−1) lnudv

)
.
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Next, we let

v′ :=
v − lnu+ 2λη√

2λ
and v′′ :=

v − lnu+ 2λ (η − 1)√
2λ

.

Then, we have∫ 1

0

(1− ξ)eδ
(
u

ξ

)η (
1

2
√
λπ

e−
1
4λ (ln(

u
ξ ))

2
)

du

u

=
eδ√
2π

(∫ − lnu+2λη√
2λ

−∞
e−

v′2
2 +λη2

dv′ − u

∫ − lnu+2λ(η−1)√
2λ

−∞
e−

v′′2
2 +λ(η−1)2dv′′

)

= eδ+λη2

Φ

(
− lnu+ 2λη√

2λ

)
− ueδ+λ(η−1)2Φ

(
− lnu+ 2λ (η − 1)√

2λ

)
= e−r(T−t)Φ

(
−∆−

(s
z

))
−
(s
z

)
Φ
(
−∆+

(s
z

))
.

For the second integral, we have295 ∫ ∞

1

(
− 1

k1
ξ1−k1 +

ξ

k1

)
eδ
(
u

ξ

)η (
1

2
√
λπ

e−
1
4λ (ln(

u
ξ ))

2
)

dξ

ξ

=

∫ ∞

0

(
− 1

k1
e(1−k1)v +

1

k1
ev
)
eδuηe−vη

(
1

2
√
λπ

e−
1
4λ (lnu−v)2

)
dv

=
eδuη

2k1
√
λπ

∫ ∞

0

(
−eηv−

1
4λ (lnu−v)2 + ev(1−η)− 1

4λ (lnu−v)2
)
dv

=
eδuη

2k1
√
λπ

(∫ ∞

0

−e−
1
4λ (v−lnu−2λη)2+λη2+η lnudv

+

∫ ∞

0

e−
1
4λ (v−lnu−2λ(1−η))2+λ(1−η)2+(1−η) lnudv

)
,

where we use the fact that k1−1+η = −η. Further, we introduce a new variable

v′′′ :=
v − lnu− 2λη√

2λ
.
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Then, we have∫ ∞

1

(
− 1

k1
ξ1−k1 +

ξ

k1

)
eδ
(
u

ξ

)η (
1

2
√
λπ

e−
1
4λ (ln(

u
ξ ))

2
)

dξ

ξ

=
eδuη

k1
√
2π

(∫ ∞

− lnu−2λη√
2λ

−e−
v′′′2

2 eλη
2+η lnudv′′′

+

∫ ∞

− lnu+2λ(η−1)√
2λ

e−
v′′2
2 eλ(η−1)2+(1−η) lnudv′′

)

= − 1

k1
eδ+λη2

u1−k1Φ

(
lnu+ 2λη√

2λ

)
+

1

k1
ueδ+λ(η−1)2Φ

(
lnu+ 2λ (1− η)√

2λ

)
= − 1

k1

(s
z

)1−k1

e−r(T−t)Φ
(
−∆−

(z
s

))
+

1

k1

( s
z

)
Φ
(
∆+

(s
z

))
.

Putting these two integrals together and using the fact that P0 = zQ0, we can

obtain our formula (27).
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