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Abstract 
 

The weighted price contribution (WPC) is a popular measure for price discovery. This paper 
examines the theoretical properties and empirical performance of the WPC. The benchmark 
measure for the WPC is the information share (IS) based on the variation of the efficient price. 
We derive the asymptotic value of the WPC under the assumption of normality. We show that 
the WPC converges to the IS when the returns follow independent normal distributions with zero 
mean, and it diverges from the IS when cross-period returns are correlated or the cross-period 
variance ratio is high. Our theoretical predictions based on normality hold well in the empirical 
analyses of the overnight price discovery for the S&P 100 index and its constituent stocks. As 
the correlation between overnight and daytime returns increases in recent years, the deviation 
between the WPC and the IS becomes large.   
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I. Introduction 
 

A core function of financial markets is price discovery, the process that incorporates new 

information into asset prices. The price discovery process is affected by a wide range of factors, 

including rules and regulations, characteristics of assets traded and market participants, features 

of the trading platform, etc.  How well a trading venue performs the price discovery function has 

a significant impact on the valuation, the volatility, and the liquidity of the traded assets. As new 

technologies and trading venues replace the traditional exchange-based market structure, their 

impact on price discovery and market efficiency will be an important issue for investors, 

regulators, as well as researchers.   

Early studies of price discovery focus on parallel markets where the same asset (or highly 

correlated assets) is traded simultaneously in different venues, e.g. NYSE versus regional 

exchanges in the United States. Hasbrouck (1995) and Harris, et al. (2002) are the two dominant 

models for parallel markets and have been adopted by numerous studies. They are analysed and 

compared in a special issue of the Journal of Financial Markets in 2002. Yan and Zivot (2010) 

use a structural cointegration model to bring new insights to the comparison. Lien and Shrestha 

(2009) and de Jong and Schotman (2010) introduce additional structures to improve the 

Hasbrouck model. Note that these models are designed for parallel markets and are inappropriate 

for non-overlapping sequential markets (e.g. Tokyo and New York) or time periods (e.g. the pre-

opening period and exchange trading hours). Recently Wang and Yang (2011) propose a model 

for measuring price discovery in sequential markets in the spirit of Hasbrouck (1995).  

A popular measure of price discovery in sequential markets is a non-parametric measure 

called the weighted price contribution (WPC). It was originally proposed by Barclay and Warner 

(1993) to measure price movements associated with different transaction sizes.  Cao, et al, 
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(2000) is the first to adopt it as a price discovery measure for sequential time periods and gives it 

the current name. The WPC has been used to measure price discovery during the pre-opening 

period (Cao, et al. 2000), during overnight trading (Barclay and Hendershott, 2003, 2008), and 

during opening and closing call auctions (Ellul, et al. 2005).  The need to empirically measure 

price discovery in sequential periods and the simplicity of the WPC greatly enhances its 

popularity, particularly for supplementing and supporting the core methodology and findings, 

e.g. Owens and Steigerwald (2005) and Agarwal, et al. (2007).  

Although the WPC is widely used, no one has explored its theoretical validity as a price 

discovery measure.1 Consider a trading day t that is divided into n consecutive periods.  Let pi,t 

be the log price of an asset at the end period i on day t. Let ri,t = pi,t-pi-1,t be the return in the ith 

period and rt = ∑ r୧,୲
୬
୧ୀଵ  be the daily return.  The WPC of the ith period is defined as 

(1)  WPCi = ∑
୰౟,౪
୰౪
ቀ

|୰౪|

∑ |୰౩|౐
౩సభ

ቁ୘
୲ୀଵ , i =1,…,n.  

The validity of the WPC as a price discovery measure seems to come from its definition: the 

contribution of the ith period to price discovery is measured by the cross-day weighted average 

return ratio ri,t/rt, with the weight for day t being |r୲| ∑ |rୱ|୘
ୱୀଵ⁄ .  Is ri,t/rt a valid measure for price 

discovery in the ith period?  Is it consistent with the definition of price discovery as the process of 

incorporating new information into asset prices?  This paper aims to answer these questions.  We 

first derive the asymptotic expression for the WPC in (1) under the assumption of normality. We 

show that it is primarily a measure of the volatility ratio across periods, not the return ratio as it 

appears.  We explore the theoretical relationship between the WPC and the characteristics of the 

return series: its mean, variance, and serial correlation.  We then draw theoretical comparison 

                                                            
1 Van Bommel (2011) explores the statistical properties of the WPC.  We relate our study to that of van Bommel 
(2011) in section III. 
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between the WPC in (1) and a benchmark measure of price discovery. Our benchmark is the 

information share (IS) measure proposed by Wang and Yang (2011), which is based on the 

variation in the efficient price as in Hasbrouck (1995).  We show that the WPC becomes a 

consistent estimator of the IS only when returns are uncorrelated and have zero means. The 

difference between the IS and the WPC crucially depends on return characteristics, especially 

return serial correlations.  

We support our theoretical findings by drawing empirical comparisons between the WPC 

and the IS in the context of estimating the overnight and daytime price discovery for the S&P 

100 index and its current constituent stocks. Several studies have documented significant 

overnight or pre-opening price discovery when the organized exchanges are closed, e.g. Cao, et 

al. (2000), Barclay and Hendershott (2003, 2004, and 2008), and Moulton and Wei (2005). 

Tompkins and Wiener (2008) and Cliff, et al. (2008) document positive overnight returns and 

negative daytime returns across major international markets.  The overnight price discovery is 

reflected in the price change between today’s market close and next day’s market open. We use 

the WPC and the IS measure of Wang and Yang (2011) to estimate overnight price discovery.  

The main empirical findings are the following: 

 For the S&P 100 index, the annual time-series analyses indicate that the overnight WPC is 

indeed largely determined by the standard deviation ratio of overnight and daytime returns, 

consistent with the theoretical analyses.  The asymptotic values of the overnight WPC are 

very close to the estimated WPC.  The difference between the overnight WPC and IS is 

mainly driven by the correlation between overnight and daytime returns and the standard 

deviation ratio.  
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 The cross-sectional analyses based on the S&P 100 stocks  confirms that the overnight WPC 

is determined by the standard deviation  ratio of overnight and daytime returns.  Furthermore, 

the correlation between overnight and daytime returns has strong effects on the overnight 

WPC and its deviation from the overnight IS.  Both effects are consistent with the theoretical 

predictions.  Other return characteristics (such as skewness and kurtosis) do not have strong 

effect on the WPC and its deviation from the IS. 

 In recent years, the high correlations between the overnight and daytime returns of the S&P 

100 Index have resulted large deviations between the estimated WPC and IS. 

In summary, our theoretical analyses show that when returns have near zero mean and 

near zero correlation, the WPC is a valid measure for price discovery. We show theoretically and 

empirically that the value of the WPC and its deviation from the IS are very sensitive to return 

serial correlations. Because of the presence of serial correlations in most return series, the 

conceptually cleaner and empirically safer choice is the IS measure of Wang and Yang (2011) 

when measuring price discovery in sequential markets or time periods.   

This paper is organized as the following: section II defines sequential markets and 

motivates the IS of Wang and Yang (2011) as a benchmark measure for price discovery.  Section 

III explores the relationship between the WPC and return characteristics, and draws theoretical 

comparison between the IS and the WPC.  Section IV presents the structural VAR estimation of 

the IS and the empirical comparisons based on the overnight and daytime returns of the S&P 100 

index.  Section V concludes.   
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II. Information Flow and Price Discovery  

Price discovery is commonly defined as the incorporation of new information into asset 

prices, e.g. Garbade and Silber (1983), Hasbrouck (1995), and O’Hara (2003). By definition, 

new information leads price changes that are uncorrelated to its past. The random-walk 

component of price changes represents changes in the efficient price and reflects the market’s 

ability to collect and process information.  Therefore a natural measure for information flow or 

price discovery is the variance of the efficient price change.   

In this section, we define the structure of sequential markets and outline the IS measure 

for sequential markets proposed by Wang and Yang (2011). The sequential markets are a natural 

and appropriate setting for analysing the WPC. The definition in section I shows that the WPC is 

based on sequential price changes over time. Most empirical analyses of the WPC are based on 

sequential periods, e.g. the pre- versus post-opening periods, overnight versus daytime trading, 

etc.2 Van Bommel (2011) examines the statistical properties of the WPC under the same setting.   

To define sequential markets, we again consider a trading day with n sequential periods 

or markets.  These periods or markets do not have to be of equal length. They can be based on 

trading hours in Asia, Europe, and the United States, e.g. global currency trading in Wang and 

Yang (2011).  They can also be daytime and overnight periods at a single trading venue, e.g. 

Cao, et al. (2000) and Barclay and Hendershott (2003, 2004, and 2008).  The log price at the end 

of the ith period on day t can be written as pi,t = mi,t + ui,t, where mi,t is the efficient price 

reflecting information on economic fundamentals, and ui,t is a noise term resulting from short-

term mispricing or changes in liquidity and microstructure factors, e.g. bid-ask bounce or 

                                                            
2 When applied to parallel markets, as in Huang (2002), the WPC is based on the price change around a single trade 
at a given time.  It cannot be calculated when there are simultaneous trades in different markets. 
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inventory control.  The changes in the efficient price ∆mi,t = mi,t-mi-1,t, i=1,…,n, are serially 

uncorrelated and capture the permanent or information components in price innovations.  The 

information flow in the ith period is measured by var(∆mi,t).  The change of the efficient price 

over day t is ∆mt = ∑ ∆m୧,୲
୬
୧ୀଵ .  The information share of period i on day t is defined as 

(2)  ISi = 
୴ୟ୰ሺ∆୫౟,౪ሻ

୴ୟ୰ሺ∆୫౪ሻ
ൌ

୴ୟ୰ሺ∆୫౟,౪ሻ

∑ ୴ୟ୰ሺ∆୫౟,౪ሻ
౤
౟సభ

, i=1,…,n.   

The above measure is in the same spirit of Hasbrouck (1995), and is used as the benchmark for 

analysing the characteristics and performance of the WPC.  

For the empirical analysis, a trading day t is defined from the market close on day t-1 to 

the market close on day t.3  It is divided into overnight and daytime periods: n=2. Let po,t and pc,t 

be the log opening and closing values of the S&P 100 index (or individual stock price) 

respectively.  The overnight return is rN,t = po,t – pc,t-1 and the daytime return is rD,t = pc,t – po,t. 

Wang and Yang (2011) model the return vector, Rt = [rN,t, rD,t]′, as a structural VAR process:4  

(3)  B0Rt = a + ∑ B୩R୲ି୩
୏
୩ୀଵ + ηt,  

where ηt = [ηN,t, ηD,t]’ is the vector of structural shocks and a=[aN, aD]’ is the vector of intercepts. 

Here ηN,t and ηD,t are serially uncorrelated and reflect respectively the night-specific and day-

specific shocks to the return process.  Their variances are normalized to one. Therefore E(ηt)=0; 

E(η୲η୲ି୩
′ ) = 0 for k ≠ 0; E(η୲η୲

′ ) = I, a 2ൈ2 identity matrix.5 Any serial correlation between rN,t 

and rD,t, from short-term mispricing or microstructure factors, is captured by the structural 

coefficient B0, which is a lower triangular matrix: within the same trading day t, rN,t affects rD,t 

                                                            
3 Our definition of a trading day implies that the overnight period precedes the daytime trading period.  As shown by 
Wang and Yang (2011), rotating the periods does not affect the structural VAR estimation.   
4 Note that Rt differs from rt, which is the daily return pc,t – pc,t-1 defined in section II.  
5 An alternative and equivalent parameterization is to normalize the diagonal elements of B0 as unity and leave the 
variance of ηt as a positive diagonal matrix.  
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but not vice versa.  The impact of daytime trading on overnight returns is captured by the lagged 

returns on the right hand of (3).   

The corresponding reduced form VAR is given by A(L)Rt = α + εt, where A(L) = I – 

A1L–...– AKLK, Ak=B଴
ିଵB୩, and α = B଴

ିଵa. The vector of reduced-form shocks is given by 

εt	ൌ	B଴
ିଵηt. As discussed above, the daily closing price pc,t can be viewed as a combination 

between an efficient price mt that follows a random walk, and a serially-correlated noise 

component.  Although the efficient price is not observable, Wang and Yang (2011) show that the 

daily change of the efficient price mt is given by  

(4)  Δmt = μ + ι′A(1)−1B଴
ିଵηt  = μ + h′ηt = μ + hNηN,t + hDηD,t, 

where μ = ι′A(1)−1B଴
ିଵa, ι = [1,1]’, and h’ ≡ [hN, hD] = ι′Aሺ1ሻିଵB଴

ିଵ.  Since E(η୲η୲
′ ) = I, therefore 

var(Δmt) = h୒
2 ൅ hD

2 , and the IS defined in (2) becomes  

(5)  ISi = 
hi
2

hN
2൅hD

2  , i = N or D.    

Note that A(1) in the reduced-form VAR is easily estimated by OLS and the B଴
ିଵ matrix is the 

lower triangle Cholesky factor of the estimated variance matrix of εt. Hence the IS is almost as 

easy to compute as the WPC.  

III. Understanding the WPC 

In this section, we explore the asymptotic properties of the WPC in (1) and compare them 

with the information share measure in (2). We can rewrite the WPC in (1) as 

   WPCi = 
ଵ

∑ |rs|T
sൌ1

∑ ୰౟,౪|୰౪|

୰౪
୘
୲ୀଵ ൌ

∑ ୱ୧୥୬ሺ୰౪ሻ୰౟,౪
౐
౪సభ

∑ |୰౪|
౐
౪సభ

ൌ
∑ ୱ୧୥୬ሺ୰౪ሻ୰౟,౪
౐
౪సభ

∑ ୱ୧୥୬ሺ୰౪ሻ୰౪
౐
౪సభ

, i =1,…,n.  
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where sign(x) is the sign of x, being 1 for positive x and -1 for non-positive x. The WPC then can 

be interpreted as the ratio of the weighted average returns, where the weight is sign(rt).  By the 

law of large numbers, 

(6)  WPCi →
୉ሾୱ୧୥୬ሺ୰౪ሻ୰౟,౪ሿ

୉ሺ|୰౪|ሻ
ൌ

୉ሾୱ୧୥୬ሺ୰౪ሻ୰౟,౪ሿ

୉ሾୱ୧୥୬ሺ୰౪ሻ୰౪ሿ
, i = 1,…,n. 

in probability as T → ∞. Equation (6) gives the large-sample WPC. Define rt = ri,t + r-i,t, we have 

the following theorem (the proof is given in the Appendix). 

Theorem on the Large-Sample WPC: 

Assume that the returns (ri,t , r-i,t) are jointly normally distributed with means (μi, μ-i), variances 

ሺσi
2,σ-i

2ሻ respectively and correlation ρ. Define μ = E(rt) = μi + μ-i and ߪଶ ൌ ௧ሻݎሺݎܽݒ ൌ ௜ߪ
ଶ ൅

௜ିߪ
ଶ ൅  ௜. The large-sample WPC isିߪ௜ߪߩ2

(7)  
୉ሾୗ୧୥୬ሺ୰౪ሻ୰౟,౪ሿ

୉ሺ|୰౪|ሻ
ൌ 	

ଶμ౟ቂ଴.ହିΦቀି
μ
σ
ቁቃାටమ

π
ୣ୶୮൤ି μమ

మσమ
൨ሺσ౟

మାρσ౟σష౟ሻ/σ

ଶμቂ଴.ହିΦቀି
μ
σ
ቁቃାට

మ
π
ୣ୶୮൤ି

μమ

మσమ
൨σ

,		 i = 1,…,n.  

where Ф is the standard normal cumulative distribution function.  

The Theorem reveals the determinants of the large-sample WPC under the normality 

assumption. It allows us to further explore the WPC’s relationship with return parameters (μ, σ, 

and ρ) and the IS in (1). The corollaries below can be easily seen from equation (7).  

Corollary 1: In the absence of autocorrelations (with respect to t),when μ =0 and ρ = 0, WPCi 

→ ISi in probability. 

When there is no autocorrelation within and across t, pi,t follows a random walk and is the 

efficient price.  Therefore ri,t = ∆mi,t, σ୧
ଶ = var(∆mi,t) in equation (1), ISi = σ୧

ଶ/σଶ. From (7), WPCi 

→ σ୧
ଶ/σଶ when μ →	0 and ρ →	0.  That is, when price follows a drift-less Gaussian martingale, 
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WPC and IS are identical.6  Corollary 1 points to the importance of μ and ρ in determining the 

relationship between the WPC and the IS. Figure 1 depicts the surface of (7) as functions of μ 

and ρ with μi = 0.2μ (μ-i = 0.8μ), σi = 1 and σ-i = 2.  It shows that the large-sample WPC is not 

very sensitive to changes in μ. On the other hand, it is very sensitive to the return serial 

correlation ρ.  

While the mean return is generally very small (μ	ൎ	0), especially at daily or higher 

frequencies, returns are generally serially correlated (ρ	് 0). We further explore the determinants 

of the WPC when μ →	0.  From (7), 

(8)  WPCi →	஢౟
మା஡஢౟஢ష౟

஢మ
  in probability when μ →	0 but ρ	് 0,  

The presence of the noise term makes ρ്0, resulting in the deviation between the WPC and the 

IS.  The result in (8) leads to the following corollaries.   

Corollary 2: 
డௐ௉஼೔

డሺఙ೔ ఙష೔⁄ ሻ
 > 0 when ߩ ൐

ିଶఙ೔ఙష೔
ఙ೔
మାఙష೔

మ  and μ → 0. 

Let λ୧ ൌ
σ౟
σష౟

.  From (8) we have WPCi →
σ౟
మାρσ౟σష౟

σ౟
మାσష౟

మ ାଶρσ౟σష౟
ൌ

λ౟ାρ

λ౟ାλ౟
షభାଶρ

.  Then it is easy to see 

that 
డௐ௉஼೔
డఒ೔

ൌ
ଶλ౟ାρλ౟

మାρ

λ౟
మሺλ౟ାλ౟

షభାଶρሻమ
 > 0 when ρ > 

ିଶλ౟
ଵାλ౟

మ ൌ
ିଶఙ೔ఙష೔
ఙ೔
మାఙష೔

మ .  The condition holds when ρ ൒ 0 and 

may not hold when ρ ≪ 0, e.g. when ρ = -1.  Corollary 2 shows that WPCi is an increasing 

function of the relative volatility ߪ௜ ⁄௜ିߪ  when the mean return is small and the serial correlation 

ρ is not severely negative.  Figure 2 depicts the surface of equation (9) as functions of ρ and the 

                                                            
6 Von Bommel (2011) compares the WPC with the benchmark measure θi = 1 - 

୴ୟ୰ሺ୰౪|୰౟,౪ሻ

୴ୟ୰ሺ୰౪ሻ
 which is the population R2 

for the unbiasedness regression rt = α + βri,t + εt.  One can easily show that θi = 
஢౟
మା஡మ஢ష౟

మ ାଶ஡஢౟஢ష౟
஢మ

, therefore θi = ISi 

when μ=0 and ρ=0.  When ρ്0, which usually is the case for the observed returns, θi depends on price movements 
in other periods σି୧

ଶ .  This contradicts the definition of price discovery as the process of incorporating new 
information into prices. Therefore we believe that θi is not the appropriate benchmark for price discovery. 



 

10 

 

relative volatility λi = ߪ௜ ⁄௜ିߪ .  WPCi is increasing in ߪ௜ ⁄௜ିߪ  when ρ ൒ 0.  The opposite is true 

when ρ < 0 and λi is very small, or when ρ is close to -1.    

Corollary 3: 
డௐ௉஼೔
డఘ

ൌ
ఙ೔ఙష೔
ఙర

ሺିߪ௜
ଶ െ ௜ߪ

ଶሻ when μ → 0.  

Because the denominator in (8) σ2 is also a function of ρ, the impact of ρ on WPCi 

depends on the relative values of σi and σ-i. Figure 2 shows that WPCi is increasing in ρ when 

௜ߪ ⁄௜ିߪ  < 1 (except the extreme case of ߪ௜ ⁄௜ିߪ  = 0) and is decreasing in ρ when ߪ௜ ⁄௜ିߪ  > 1.  To 

illustrate the intuition behind the result, consider a market with two sequential trading periods 

(n=2).  Corollary 3 states that 
ப୛୔େభ
ப஡

>0 if σ1<σ2.  Note that σ1 < σ2 indicates volatility spill-over 

from yesterday’s period 2 to today’s period 1. A higher ρ leads to greater spill-over, increasing 

period 1’s proportional variance σ1/σ.  This in turn increases WPC1 as shown in Figure 1.   

Corollary 4: When 
ఓమ

ఙమ
→ ∞, WPCi →	μi/μ in probability. 

Corollary 4 sets the condition when the WPC in (1) converges to the ratio of mean 

returns. Since the condition is never satisfied in real financial data, the WPC in (1) does not 

measure the ratio of the average returns μi/μ.  

The above analyses provide several insights to the properties of the WPC (1) and its 

relationships with the IS. The IS in (2) and (5) have a clear economic interpretation as the 

relative changes in the efficient price in different markets/periods. It is difficult to give such an 

interpretation to the WPC in (1) and (7) because of the correlation ρ. Note that IS in (5) is 

independent of ρ. From Corollary 3, 
డሺௐ௉஼೔ିூௌ೔ሻ

డఘ
ൌ

ఙ೔ఙష೔
ఙర

ሺିߪ௜
ଶ െ ௜ߪ

ଶሻ when μ → 0.  Conditional on 

௜ିߪ
ଶ ് ௜ߪ

ଶ, the difference between the WPC and the IS widens as ρ deviates from zero.   
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IV. Empirical Comparison between the IS and the WPC 

The analyses in the previous section are based on the assumption that returns are 

normally distributed. In this section, we empirically explore the determinants of the WPC and its 

deviation from the IS.  The aims for the empirical analyses are two folds. First, we assess the 

theoretical predictions of section III against S&P 100 index returns that may not be normally 

distributed and examine how the WPC is affected by non-normality in returns, i.e. skewness and 

kurtosis. Second, we want to explore the determinants of the deviations between the WPC and 

the IS.  

Many studies have documented significant overnight or pre-opening price discovery.  

The overnight and daytime periods can be viewed as two sequential markets, even though there 

may or may not be overnight trading.  This overnight-daytime sequential markets provide the 

platform for the empirical analyses. While the daily closing values of the S&P 100 index are 

available for many decades, the daily opening value of the index is available from DataStream 

only from March 5, 1999.  Our sample period is from March 5, 1999 to April 20, 2010.  Figure 3 

shows the index value over the sample period.  It has three distinctive trends: a bear market due 

to the burst of the technology bubble from mid-2000 to early 2003, a bull market from early 

2003 to late 2007, and the crash associated with the recent global financial crisis.  We will 

examine the WPC in these three sub-periods. 

Table 1 reports the overnight and daytime returns and volatility of the S&P 100 index 

over the sample period.  The magnitudes of the daytime return and volatility are much larger 

than overnight return and volatility.  The “bad-day and good-night” return pattern generally does 

not hold for the S&P 100 index.  Only four of the eleven years have the average overnight return 
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higher than the average daytime return.  The result is consistent with Tompkins and Wiener 

(2008) but in contrast with Cliff, et al. (2008).   

The annual estimates of the overnight IS (ISN) and the overnight WPC (WPCN) are 

reported in Table 2.  ISN is estimated from the structural VAR in (2) and WPCN is based on 

equation (5).  The lag length of the structural VAR is based on the Schwarz criterion. We also 

report the ratio of overnight and daily return volatility (σN/σ), the correlation between overnight 

and daytime returns Cor(rN,rD), and the large-sample WPCN (WPC୒
଴ ) calculated from equation 

(8) using the sample statistics.  There are several features in Table 2:  

 Confirming Corollary 1, when the correlation between night return and day return is small, as 

in 1999 and 2001 – 2006, the overall similarity between the IS and the WPC is evident.  The 

differences between the WPC and the IS become large (more negative) when the overnight 

and daytime return correlations are large in 2000 and 2007-2009. Given the large empirical 

differences in recent years, using the IS or the WPC may lead to different economic 

conclusions. 

 WPCN has a correlation of 0.94 with volatility ratio σN/σ. While not reported in Table 2, the 

correlation between WPCN and return ratio r̅୒ r̅⁄  is -0.03.  These findings support Equation 

(9) and Corollaries 2 & 4. The WPC is a measure for variance ratio, not return ratio.  

 The theoretical WPC୒
଴  from equation (7) is very similar to the estimated sample WPCN from 

equation (5), indicating that the normality assumption holds reasonably well for the S&P 100 

index returns. While not reported in Table 2, the correlation coefficient between WPCN and 

WPC୒
଴  is 0.98.  

 The estimated overnight information shares vary from 2.7% to 38%.  What drives the 

variation remains unclear in the literature. 
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While the above analyses generally support the theoretical predictions in section III, they 

are based on unconditional correlations without controlling the effects of other variables. For 

example, the year 2004 has a relatively low Cor(rN,rD) = -0.082 but a large difference between 

the IS and the WPC. This suggests that high Cor(rN,rD) is not the only condition for large 

deviation between WPCN and ISN. Other parameters (e.g. σN/σ) and the normality assumption 

may have a joint effect on WPC and WPCN-ISN. Similarly, the correlation between WPCN and 

Cor(rN,rD) is negative (-0.56) even though σD > σN. It appears to violate Corollary 3 which 

predicts a positive effect from Cor(rN,rD) when σD > σN.  However Corollary 3 requires σN and 

σD to be held constant while Cor(rN,rD) changes.  Therefore a direct test of Corollary 3 beyond 

normality requires a regression analysis where the influence of other variables can be controlled. 

Another concern is the calculation of the opening value of the S&P 100 index which may lead to 

artificially high overnight and daytime return correlation.  If a stock is not traded at the opening, 

the previous closing price is used to calculate the index’s opening value. This may lead to 

spurious autocorrelation between daytime and overnight returns of the index.7  This potential 

problem can be avoided by using individual stocks where the opening price is taken from the 

first trade of the day. 

The above issues motivate our cross-sectional regression analyses based on the stocks in 

the S&P 100 index.  The aim is to directly test how the theoretical predictions obtained under 

normality are affected by non-normality characteristics in return series (such as skewness and 

kurtosis). The regression analyses also allow us to examine the effect of a factor of interest, e.g. 

Cor(rN,rD), while controlling the effects of other factors.  We start by looking at the cross-

sectional summary statistics of return characteristics and the estimated WPC and IS for S&P 100 

                                                            
7 We thank Raymond Liu for pointing out this potential problem.   



 

14 

 

stocks in Panel A of Table 3.  The average overnight return is higher than the average daytime 

return, although the difference is not statistically significant.  Daytime volatility is much higher 

than overnight volatility.  Overnight returns are more skewed and have greater kurtosis.  The 

average daytime and overnight return correlation ranges from -0.24 to 0.12.  The average 

overnight information share is 25%, higher than the average overnight WPC which is 21%8.   

The overnight WPC does not capture the wide cross-sectional range in information share 

revealed by IS.  For most stocks, overnight and daytime returns are not autocorrelated across 

trading days; and the number of lags in the SVAR model is mostly zero.  This is not surprising 

given the sample of large and actively traded stocks.  Figure 4 shows the scatter graph of WPCN 

against ISN. There is a positive cross-sectional correlation between WPCN and ISN, consistent 

with their positive time-series correlation (0.66) for the S&P 100 index in Table 2.   

Panel B of Table 3 reports WPCN - ISN in relation to the different quartiles of the 

variance ratio σN/σD and the overnight-daytime correlation Cor(rN,rD).  When σN/σD and 

Cor(rN,rD) are both in their bottom quartiles, i.e. σN/σD < 0.484 and Cor(rN,rD) < -0.08, the 

average deviation between WPCN and ISN is 2.6%. When σN/σD and Cor(rN,rD) are both in their 

top quartiles, i.e. σN/σD ൒ 0.562 and Cor(rN,rD)	൒ 0.004, the average difference becomes -11.3%.  

Out of the 100 stocks, 35 have the deviation between WPCN and ISN greater than 5%, with a 

mean value of 9.5%. The deviation between WPCN and ISN can be substantial depending on 

σN/σD and Cor(rN,rD).  

We explore the empirical relationship between the WPC and return characteristics using 

the following cross-sectional regression:  

                                                            
8 We note that the average WPCN and ISN for individual stocks are higher than those of the S&P 100 index reported 
in Table 2.  As discussed in footnote 8, when a stock is not traded at opening, its previous closing price is taken as 
its opening price when calculating the index opening value.  This results in a zero overnight return, reducing the 
overnight return variance and overnight price discovery for the index.   
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(9)  WPCN,i = β0 + β1(r̅୒,୧/r̅ୈ,୧) + β2(σN,i/σD,i) + β3Cor(rN,i,rD,i)  
+ β4SkewN,i+ β5SkewD,i + β6ln(KurtN,i/3) + β7ln(KurtD,i/3) + β8SVARLagi + εi 

 
for i = 1,…,100.  The variables r̅୒/r̅ୈ and σN/σD allow us to examine the theoretical predictions 

in Corollaries 2 and 4.  Given that σN < σD, Corollary 3 requires β3 > 0 while holding σN / σD 

constant.  Non-normal return characteristics, i.e. skewness and kurtosis, are included to examine 

the sensitivities of WPC to non-normalities.  SVARLagi is the number of lags in the SVAR 

model (2) for estimating ISN.  Even though SVARLag does not directly enter the calculation of 

the WPC, it is added to capture any effect of inter-daily correlation, as oppose to correlation 

between rN,t and rD,t, on the WPC. We estimate equation (9) for the full sample and for three 

trend-based sub-periods.  The results are reported in Table 4.9 The t-statistics are based on the 

heteroskedastic-consistent standard errors. The findings are summarized as the following:  

 Consistent with Corollaries 3 and 4, σN/σD has a strong positive effect on WPCN with all t-

statistics above 11.  The coefficients of  r̅୒/r̅ୈ switch signs across sub-periods and are 

extremely small when they are significant.   

 After controlling the effect of other variables, especially σN/σD, there is a strong positive 

relationship between WPCN and Cor(rN,rD).  This is in contrast to the negative unconditional 

correlation in Table 2, and confirms Corollary 3 and the asymptotic relationship in Figure 2 

when normality does not hold.  The positive relationship is robust in all sub-periods, with a 

slight upward trend over time.   

 Skewness does not have any effect on WPCN. The overnight kurtosis KurtN has a small 

negative effect, while the daytime kurtosis does not affect WPCN in the last two sub-periods.  

                                                            
9 The regression results with log[WPC/(1-WPC)] as the dependent variable are similar to those in Table 4. We report 
the results for WPC in Table 4 to draw comparison with the results for WPC – IS reported in Table 5. 
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 The inter-daily return correlation, represented by SVARLag, has a small negative effect on 

WPCN in the second sub-period.     

We analyse the cross-sectional determinants of the deviations between WPCN and ISN 

using the same explanatory variables as in equation (9).  Table 5 reports the estimation of 

equation (9) with WPCN – ISN as the dependent variable. The main findings are: 

 Table 5 shows that the deviation between WPCN and ISN is large (negative) when Cor(rN,rD) 

is large (positive).  This is consistent with the results of the SP500 index in Table 2 and 

provides empirical support for Corollary 1.   

 The results show that σN/σD has a negative effect on the deviation between WPCN and ISN: 

WPCN tends to severely underestimate ISN when σN/σD is large. This explains the anomaly in 

Table 2: the year 2004 has the highest σN/σ hence a large negative WPCN - ISN, even though 

Cor(rN,rD) is relatively small.  

 The daytime skewness has a small positive effect on WPCN - ISN in the first two sub-periods 

but not in the full sample.  The overnight skewness has little effect.  

 Table 5 shows that the overnight kurtosis has a small negative effect on WPCN - ISN, with 

similar magnitude as in Table 4. The daytime kurtosis has a small positive effect.   

 WPCN – ISN is affected by SVARLag, representing the inter-daily return autocorrelation, 

because the IS takes into account the possible autocorrelations in returns whereas WPC does 

not. We find that the SVARLag reduces WPCN – ISN in up markets, and increases WPCN – 

ISN in down markets.   

In summary, our empirical analyses show that the theoretical predictions obtained under 

normality reasonably hold for the S&P100 stock returns that are not exactly normal. The WPC 

from equation (1) is sensitive to the relative volatility (Corollary 2) and return serial correlation 
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(Corollary 3).  It is not sensitive to the ratio of mean returns (Corollary 4).  Large serial 

correlation leads to large deviations between the WPC and the IS (Corollary 1).  In addition, we 

find that the WPC tends to severely underestimate the IS when the relative volatility ratio is 

large.  We find that return features related to non-normality, i.e. skewness and kurtosis, have 

relatively little effect on the WPC or its deviation from the IS.  

V. Conclusion 

Price discovery is a central function of financial markets and a central theme in market 

microstructure literature.  We theoretically and empirically analysed the properties of the WPC, a 

popular measure for price discovery in sequential markets. We adopt the information share 

measure of Wang and Yang (2011) as a comparison benchmark and argue that price discovery 

measures should be based on changes in the efficient price. We show that the deviation between 

the WPC and the IS can be substantial depending on the cross-period variance ratio and return 

correlation. Therefore the IS should be the preferred measure for price discovery. While our 

analysis is based on sequential trading periods or markets, future research should explore the 

performance of the WPC when trading takes place simultaneously in parallel markets.  
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Appendix: Proof of Equation (7) 

Following the definitions and notations in sections II and III, we aim to find expressions 

for E(|rt|) and E[sign(rt)ri,t], where sign(∙) is the sign function. We can write E(|rt|) as  

 Eሺ|r୲|ሻ ൌ Eሾr୲Iሺr୲ ൐ 0ሻሿ െ Eሾr୲Iሺr୲ ൑ 0ሻሿ 

																												ൌ Eሺr୲ሻ െ 2Eሾr୲Iሺr୲ ൑ 0ሻሿ 

 														ൌ 2μ ቂ. 5 െ Φ ቀെ
μ

σ
ቁቃ ൅ ඥ2/π	exp	ሺെ

μమ

ଶσమ
ሻσ, 

where I(·) is the indicator function. Similarly 

 Eൣsignሺr୲ሻr୧,୲൧ ൌ Eൣsignሺr୲ሻr୧,୲Iሺr୲ ൐ 0ሻ൧ ൅ Eൣsignሺr୲ሻr୧,୲Iሺr୲ ൑ 0ሻ൧ 

 																											ൌ Eൣr୧,୲Iሺr୲ ൐ 0ሻ൧ െ Eൣr୧,୲Iሺr୲ ൑ 0ሻ൧ 	 

																																								ൌ E൫r୧,୲൯ െ 2Eൣr୧,୲Iሺr୲ ൑ 0ሻ൧. 

Define μ୧|ି୧ ൌ μ୧ ൅ ሺρσ୧/σି୧ሻ൫rି୧,୲ െ μି୧൯ as the conditional mean of ri,t given r-i,t.  Using the 

identity r୧,୲ ൌ μ୧ ൅ ቂቀr୧,୲ െ μ୧|ି୧ቁ ൅ ሺρσ୧/σି୧ሻሺr୲ െ μሻቃ /ሺ1 ൅ ρσ୧/σି୧ሻ, we find 

 Eൣr୧,୲Iሺr୲ ൑ 0ሻ൧ ൌ μ୧EሾIሺr୲ ൑ 0ሻሿ ൅
୉ቂቀ୰౟,౪ିμ౟|ష౟ቁ୍ሺ୰౪ஸ଴ሻቃାሺρσ౟/σష౟ሻ୉ሾሺ୰౪ିμሻ୍ሺ୰౪ஸ଴ሻሿ

ሾଵାሺρσ౟/σష౟ሻሿ
  

Therefore we have 

 EሾIሺr୲ ൑ 0ሻሿ ൌ Φሺെμ/ߪሻ, 

 E ቂቀr୧,୲ െ μ୧|ି୧ቁ Iሺr୲ ൑ 0ሻ	|	rି୧,୲ቃ ൌ െ ቂ
ሺଵିρమሻσ౟

మ

ଶπ
ቃ
ଵ/ଶ

exp	ሺെ
ሺ୰ష౟,౪ାμ౟|ష౟ሻ

మ

ଶሺଵିρమሻσ౟
మ ሻ, 

 E ቂቀr୧,୲ െ μ୧|ି୧ቁ Iሺr୲ ൑ 0ሻቃ ൌ െ ሺଵିρమሻσ౟
మ

√ଶπ	σ
exp	ሺെ μమ

ଶσమ
ሻ, 

 Eሾሺr୲ െ μሻIሺr୲ ൑ 0ሻሿ ൌ െሺ2πσଶሻିଵ/ଶσଶ ׬ d	exp	ሺെ
ሺ୰౪ିμሻమ

ଶσమ
ሻ

଴
ି∞ ൌ െ

σ

√ଶπ
exp	ሺെ

μమ

ଶσమ
ሻ, 

where the last expression illustrates how these expectations are evaluated. Finally, putting the 

above together, we obtain 

 Eൣr୧,୲Iሺr୲ ൑ 0ሻ൧ ൌ μ୧Φ ቀെ
μ

σ
ቁ െ

σ౟
మାρσ౟σష౟
√ଶπ	σ

exp	ሺെ μమ

ଶσమ
ሻ, 

 Eሾsignሺr୲ሻr୧,୲ሿ ൌ 2μ୧ ቂ. 5 െ Φ ቀെ
μ

σ
ቁቃ ൅ ඥ2/π	exp	ሺെ

μమ

ଶσమ
ሻ σ౟

మାρσ౟σష౟
	σ

. 

Equation (8) is given by 
୉ሾsignሺ୰౪ሻ୰౟,౪ሿ

୉ሺ|୰౪|ሻ
. 
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Table 1: Overnight and Daytime Returns of the S&P100 Index 

In this table, “r̅୒”, “r̅ୈ”, and “r̅” are the average overnight, daytime, and daily return 
respectively; “σN”, “σD”, and “σ” are the overnight, daytime, and daily return volatility 
respectively; “ryear” is the annual index return.  
 

Year r̅୒ (%) σN (%) r̅ୈ (%) σD (%) r̅ (%) σ (%) ryear (%) 

1999 0.016 0.296 0.086 1.117 0.101 1.135 21.6 
2000 0.018 0.302 -0.075 1.389 -0.057 1.485 -14.4 
2001 -0.015 0.460 -0.050 1.390 -0.065 1.474 -16.1 
2002 -0.085 0.881 -0.024 1.551 -0.108 1.721 -27.3 
2003 0.038 0.563 0.047 1.002 0.085 1.103 21.4 
2004 -0.003 0.375 0.020 0.622 0.017 0.700 4.4 
2005 0.030 0.257 -0.034 0.567 -0.004 0.620 -0.9 
2006 -0.007 0.056 0.066 0.592 0.059 0.596 14.7 
2007 0.000 0.138 0.014 0.943 0.015 0.993 3.8 
2008 -0.020 0.308 -0.163 2.403 -0.183 2.527 -46.3 
2009 -0.023 0.278 0.092 1.478 0.069 1.606 17.5 
Full -0.005 0.411 -0.001 1.286 -0.005 1.375 -14.8 
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Table 2: Overnight Price Discovery for the S&P100 Index 

In this table, “σN/σ” is the ratio of overnight and daily return volatility; “Cor(rN,rD)” is the 
correlation between overnight and daytime returns; “SVar Lags” is the number of lags in the 
structural VAR model based on the Schwarz criterion; “ISN” and “WPCN” are the overnight 
information share (equation 12) and the overnight weighted price contribution (equation 6) 
respectively. WPC୒

଴  is the large-sample WPCN, i.e. equation (8), based on the sample statistics of 
a given year.     

 

Year σN/σ Cor(rN,rD) 
WPCN

(%)  
ISN 
(%) 

WPCN-ISN 
(%) 

WPC୒
଴  

(%) 
SVar 
Lags 

1999 0.260 -0.070 5.1 3.8 1.3 5.0 0 
2000 0.204 0.221 7.7 16.6 -8.9 8.3 0 
2001 0.312 0.024 13.1 13.9 -0.8 10.4 2 
2002 0.512 -0.080 23.8 19.6 4.2 22.5 0 
2003 0.510 -0.092 18.0 19.4 -1.4 21.7 1 
2004 0.537 -0.082 25.6 38.0 -12.4 24.8 1 
2005 0.414 -0.011 14.0 17.8 -3.8 16.7 1 
2006 0.093 0.020 1.1 2.7 -1.6 1.0 1 
2007 0.139 0.298 6.1 17.8 -11.7 5.9 0 
2008 0.122 0.350 5.3 13.6 -8.3 5.5 2 
2009 0.173 0.386 8.5 31.5 -23 9.1 1 
Full 0.300 0.064 11.5 14.6 -3.1 10.7 2 

Cross-Correlation     
  Cor(rN,rD) -0.75     
  WPCN 0.94 -0.56     
  ISN 0.48 0.12 0.66    
  WPCN-ISN 0.34 -0.73 0.15 -0.64    
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Table 3: Summary Statistics for S&P100 Stocks 
 

Panel A of this table reports time-series and cross-sectional summary statistics for S&P100 
stocks.  The columns report various time-series statistics for individual stocks.  The rows report 
cross-sectional statistics of 100 stocks.  Subscript N (D) indicates overnight (daytime) statistics.  
“SVAR Lags” is the number of lags in the SVAR model based on Schwarz criterion.  Panel B 
reports the average value of WPC-IS in relation to the quartiles of  σN/σD and Cor(rN,rD).  The 
bottom quartiles of σN/σD and Cor(rN,rD) are 0.484 and -0.08 respectively.  The top quartiles of 
σN/σD and Cor(rN,rD) are 0.562 and 0.004 respectively.   
 
Panel A: Summary statistics of returns, WPCN, and ISN 
 

Mean St Dev Min Median Max 

r̅୒ 0.014 0.066 -0.124 0.009 0.254 
r̅ୈ 0.002 0.063 -0.285 0.005 0.127 
σN 1.29 0.399 0.664 1.22 2.43 
σD 2.12 0.564 1.22 1.98 3.62 

SkewN -1.71 3.62 -21.5 -0.872 6.08 
SkewD -0.058 0.595 -3.44 0.019 2.33 
KurtN 2.59 0.945 1.15 2.36 5.63 
KurtD 1.14 0.496 0.475 1.02 3.08 

Cor(rN,rD) -0.037 0.068 -0.240 -0.028 0.120 
ISN 0.25 0.07 0.08 0.25 0.45 

WPCN 0.21 0.03 0.14 0.21 0.27 
SVAR Lags 0.57 1.56 0 0 9 

 

Panel B: Difference between WPCN and ISN 
 

Cor(rN,rD) < -0.08 -0.08 ൑ Cor(rN,rD) < 0.004 Cor(rN,rD) ൒ 0.004 
WPCN-ISN #Stocks WPCN-ISN #Stocks WPCN-ISN #Stocks 

σN/σD < 0.484 2.6% 3 -0.5% 8 -3.2% 13 
0.484 ൑ σN/σD < 0.562 2.2% 13 -3.6% 27 -5.7% 10 

σN/σD ൒ 0.562 -1.2% 8 -9.1% 15 -11.3% 3 
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Table 4: Cross-Sectional Determinants of the WPC 

This table presents the results of the following cross-sectional regressions: 
 

WPCN,i = β0 + β1(r̅୒,୧/r̅ୈ,୧) + β2(σN,i/σD,i) + β3Cor(rN,i,rD,i)  
+ β4SkewN,i+ β5SkewD,i + β6ln(KurtN,i/3) + β7ln(KurtD,i/3) + β8SVARLagi + εi 

 
where SVARLagi is the number of lags in the SVAR model for estimating ISN, i = 1,…,100.  
Subscript N (D) indicates overnight (daytime) statistics.  The t-statistics below the coefficients 
are based on the heteroskedastic-consistent standard errors.  The asterisks ** and * indicate 
statistical significance at 1% and 5% respectively.  
 

  

Full Sample 
1999/3/5 – 
2010/4/20 

Down Trend 
2000/7/1 –  
2003/1/31 

Up Trend 
2003/2/1 – 
 2007/9/30  

Down Trend 
2007/10/1 – 
 2009/1/31  

Constant -0.061** -0.076** -0.063** -0.086** 
 -3.21 -5.16 -2.81 -4.38 

r̅୒/r̅ୈ 7ൈ10-6**
 -6ൈ10-5 4ൈ10-5 -0.001* 

 3.67 -0.33 0.09 -2.01 

σN/σD 0.601** 0.630** 0.608** 0.671** 
 16.0 19.0 11.5 12.9 

Cor(rN,rD) 0.238** 0.229** 0.274** 0.318** 
 9.34 9.08 5.66 10.3 

SkewN 0.0004 -0.0001 0.001 -0.001 
 0.68 -0.14 0.88 -0.83 

SkewD -0.001 0.007* -0.006 -0.002 
 -0.27 1.79 -0.69 -0.29 

KurtN -0.018** -0.026** -0.021** -0.024** 
 -7.48 -8.66 -6.68 -3.40 

KurtD 0.013** 0.028** 0.003 0.007 
 3.22 4.43 0.37 0.88 

SVARLag -0.002 0.001 -0.011* 0.005 
 -1.16 0.46 -2.32 1.34 

Rഥଶ 0.75 0.81 0.69 0.66 
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Table 5: Cross-Sectional Determinants of WPC-IS 

This table presents the results of the following cross-sectional regressions: 
 

WPCN,i – ISN,i = β0 + β1(r̅୒,୧/r̅ୈ,୧) + β2(σN,i/σD,i) + β3Cor(rN,i,rD,i)  
+ β4SkewN,i+ β5SkewD,i + β6ln(KurtN,i/3) + β7ln(KurtD,i/3) + β8SVARLagi + εi 

 
where SVARLagi is the number of lags in the SVAR model for estimating ISN, i = 1,…,100.  
Subscript N (D) indicates overnight (daytime) statistics.  The t-statistics below the coefficients 
are based on the heteroskedastic-consistent standard errors.  The asterisks ** and * indicate 
statistical significance at 1% and 5% respectively.  
 

  

Full Sample 
1999/3/5 – 
2010/4/20 

Down Trend 
2000/7/1 –  
2003/1/31 

Up Trend 
2003/2/1 – 
 2007/9/30  

Down Trend 
2007/10/1 – 
 2009/1/31  

Constant 0.232** 0.140** 0.176** 0.111** 
 5.60 7.72 5.46 4.89 

r̅୒/r̅ୈ 9.6ൈ10-6** -4ൈ10-5 0.001 -0.0003 
 2.80 -0.27 1.07 -0.37 

σN/σD -0.487** -0.301** -0.405** -0.230** 
 -5.80 -7.83 -5.15 -4.17 

Cor(rN,rD) -0.548** -0.611** -0.640** -0.516** 
 -10.3 -22.7 -10.2 -13.7 

SkewN 0.0005 0.001 0.002 -0.004* 

 0.25 0.78 1.40 -1.97 

SkewD 0.006 0.008* 0.019* 0.004 
 0.77 1.99 2.16 0.68 

KurtN -0.023** -0.030** -0.017** -0.031** 
 -4.71 -8.82 -2.86 -4.06 

KurtD 0.023** 0.036** 0.009 0.019* 

 2.52 5.08 1.08 2.30 

SVARLag 0.005 0.044** -0.072** 0.061** 
 0.91 10.8 -3.19 5.23 

Rഥଶ 0.72 0.89 0.84 0.81 
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Figure 1: The WPC as a function of μ and ρ 

Under the assumption of normally distributed returns, the figure depicts the large-sample WPC, 
i.e. equation (8), as a function of daily mean return μ and the cross-period return correlation ρ. It 
assumes that μi = 0.2μ (μ-i = 0.8μ) with σi = 1 and σ-i = 2.  
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Figure 2: The WPC as a function of ρ and σi/σ-i 

Under the assumption of normally distributed returns, the figure depicts the large-sample WPC, 
i.e. equation (8), as a function of return serial correlation ρ and the relative volatility σi/σ-i, 
assuming the mean return is zero μ = 0.  
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Figure 3: S&P100 Index 
 

 
 

 
Figure 4: WPCN – ISN Scatter Graph 
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