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Abstract  

This article provides a comprehensive in-sample and out-of-sample analysis of the predictive 
ability of commodity risk factors for future long-horizon changes in investment opportunities. 
Motivated by the theories of storage and hedging pressure, the factors are constructed according 
to signals that are linked to backwardation and contango. The encouraging findings on predictive 
ability lead us to propose an Intertemporal CAPM (ICAPM) implementation that utilizes the 
commodity risk factors as state variables. We show that the proposed model implies 
intertemporal “hedging” risk premiums that are theoretically consistent with rational pricing by 
risk-adverse investors. The model is also able to price relatively well a large cross-section of test 
assets that include stocks, fixed income securities and commodities. 

 

Keywords: ICAPM; Theory of Storage; Hedging Pressure Hypothesis.  

JEL classification: G13, G14. 

This version: May 2014. 

_____________________________________________________________________ 
 
1 EDHEC Business School, 392 Promenade des Anglais, Nice, France; Tel: +33 (0)4 9318 3255; e-mail: 
Joelle.Miffre@edhec.edu.  
 2 Cass Business School, City University London, Faculty of Finance, ECIY 8TZ, London, England; Tel: +44 (0)20 7040 
0186; e-mail:  a.fuertes@city.ac.uk. Corresponding author. 
3 Auckland University of Technology, Department of Finance, Private Bag 92006, 1142 Auckland, New Zealand. 
Phone: +64 9 921 9999; e-mail: adrian.fernandez@aut.ac.nz; adrian.fernandez102@alu.ulpgc.es. 
 
The authors acknowledge the useful comments of Guiseppe Bertola, Chris Brooks, Jerry Coakley, Eirini Konstantinidi, 
Abraham Lioui, David Rapach, George Skiadopoulos, Raman Uppal, seminar participants at Liverpool University 
Management School,  EDHEC Business School and Universitat de les Illes Balears, Departament d'Economia de 
l'Empresa, Auckland University of Technology, and conference participants at the 2014 Conference on Modelling 
Macroeconomic and Financial Time Series, Loughborough University, 2014 Money Macro and Finance Workshop on 
“Empirical Modelling of Financial Markets”, Brunel University, London, 2014 Conference in Honour of Professor Ron 
Smith, Birkbeck College, London, 2012 EDHEC-Risk Days Conference, London, and 2011 CSDA Conference on 
Computational and Financial Econometrics, London. 



2 
 

1. Introduction 

The literature on commodity futures pricing centers around the theory of storage (Kaldor, 

1939; Working, 1949; Brennan, 1958) and the hedging pressure hypothesis (Cootner, 1960; 

Hirshleifer, 1988). The theory of storage links the slope of the term structure of commodity 

futures prices (hereafter, TS) to the incentive of agents to own the physical commodity. With 

high inventories, the term structure slopes upward and markets are contangoed. Conversely, 

when inventories are depleted, the utility from owning the physical asset (known as 

convenience yield) is likely to exceed storage and financing costs; the futures curve slopes 

downward and markets are backwardated. Fama and French (1987) show that the difference 

between the futures and spot price (the basis) depends on interest rates and seasonals in 

convenience yields. Erb and Harvey (2006), Gorton and Rouwenhorst (2006), and Gorton et 

al. (2012) also support the theory of storage by showing that the risk premium of commodity 

futures can be modeled as a function of either the basis or the level of inventories.1 

The hedging pressure hypothesis relates the evolution of commodity futures prices to the 

net positions of hedgers and speculators. Futures prices are expected to rise when hedgers are 

net short and speculators are net long; this market state is known as backwardation. 

Conversely, futures prices are expected to fall when hedgers are net long and speculators net 

short; this is known as contango. Hedging pressure (hereafter, HP) has been shown to play a 

critical role as determinant of commodity futures risk premia (Carter et al., 1983; 

Bessembinder, 1992; de Roon et al., 2000; Basu and Miffre, 2013).2 

                                                                 
1 Alternatively, the behavior of commodity spot and futures prices has been studied in a risk-

neutral world using competitive rational expectations models of storage (Deaton and Laroque, 1992; 
Routledge et al., 2000). In these models, the non-negativity constraint on inventory is crucial to 
understanding the dynamics of the spot price and the shape of the forward curve. Extensions of 
storage models that allow for a risk premium can be found in Casassus et al. (2009) and Baker (2012). 

2 The sharp increase in commodity assets under management post-2004 revived the debate on the 
function of speculators as both liquidity and risk-bearing providers and on their potential influence on 
futures prices, volatility and cross-market linkages (Stoll and Whaley, 2010; Brunetti et al., 2011;  
Büyükşahin and Robe, 2014). Theoretical models can rationalize the recent commodity price 
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Momentum (hereafter, Mom) can also be theoretically linked to the commodity futures 

cycle through the theory of storage. Deviations of inventories from normals levels are likely 

to be persistent as inventories can only be replenished through new production which may 

take some time depending on the commodity. Thus, following a negative shock to inventories 

(that pushes up the spot price) a period of high expected futures risk premiums will follow as 

inventories get gradually restored. Gorton et al. (2012) adduce evidence to support this view. 

The returns on strategies that exploit TS, HP or Mom signals can thus be interpreted as a 

compensation for bearing risk during times when inventories are low or when hedgers are net 

short or when the commodity futures curve slopes downwards. Not surprisingly, the returns 

of long-short commodity TS, HP or Mom mimicking portfolios explain well the cross-

sectional variation in commodity futures returns (Basu and Miffre, 2013; Bakshi et al., 2013; 

Szymanowska et al., 2014). Given the link between the shape of the commodity futures curve 

and the dynamics of commodity supply and consumption (see Ready, 2014, in the context of 

crude oil), commodity risk factors may predict changes in future investment opportunities. 

This article provides evidence that commodity TS, HP and Mom risk factors contain 

information about future long-horizon aggregate market returns (and volatilities) that is not 

fully revealed by traditional predictors. The notable predictive ability of the commodity risk 

factors, both in-sample and out-of-sample, encourages us to attempt a novel implementation 

of Merton (1973)’s intertemporal CAPM (ICAPM) using them as intertemporal “hedging” 

factors. We validate this idea empirically by showing that the intertemporal risk prices 

estimated by the Generalized Method of Moments (GMM) method are consistent with the 

direction of predictability of the underlying commodity state variables. More specifically, the 

results suggest that rational investors are willing to pay a higher price on assets that hedge 

                                                                                                                                                                                                       

dynamics in terms of endogenous demand shocks and changes in oil supply fundamentals (Baker, 
2012; Baker and Routledge, 2012; Ready, 2014). 
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intertemporal risk and demand a lower price on assets that underperform when future market 

conditions are predicted to deteriorate.3 The model can price relatively well a cross-section of 

32 test assets, including stocks, fixed income securities and commodity futures.   

Further analysis confirms that both legs of our analysis, time-series predictability and 

cross-sectional asset pricing, are robust. The favorable findings on long-horizon predictability 

are unchallenged when we consider alternative inference methods, forecasting schemes 

(rolling versus recursive) and forecast evaluation periods. The cross-sectional asset pricing 

evidence is affirmed with various market portfolio proxies, test assets, estimation method and 

under distinct ICAPM formulations with time-additive or recursive utility. 

Our study adds to a recent but fast growing literature that contends that commodity risk 

factors can forecast economic activity and are able to price traditional assets (Baker and 

Routledge, 2012; Bakshi et al., 2013; Koijen et al., 2013b; Yang, 2013).4 It also relates to a 

literature that shows that commodity market variables such as the returns of commodity 

futures, open interests, oil supply/demand shocks or the Baltic Dry Index are priced risk 

factors that explain cross-sectional differences in expected stock returns (Boons et al., 2012; 

Hong and Yogo, 2012; Hou and Szymanowska, 2013; Ready, 2013, 2014; Bakshi et al., 

2014). Our main point of departure from these studies is to contend that commodity TS, HP 

and Mom factors can play a double role. First, they are good predictors relative to known 

state variables, both in-sample and out-of-sample, for future investment opportunities. 

Second, their innovations proxy risk factors that explain the cross-sectional pattern of asset 

returns in a plausible manner according to the baseline Merton’s (1973) ICAPM theory.  

                                                                 
3 These findings are broadly in line with the theoretical model of Ready (2014) which predicts that 

oil supplies that are unresponsive to growth expectations act as partial hedge against growth shocks, 
thereby lowering the risk associated with these shocks and consequently the equity premium. 

4 Baker and Routledge (2012) show that bond excess returns are higher when the crude oil futures 
curve slopes downward. Bakshi et al. (2013) document that the commodity TS and Mom factors 
forecast real GDP growth and traditional asset returns. Koijen et al. (2013b) argue that the TS factor 
relates to global recessions, while Yang (2013) links it to producers’ investment shocks.  
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In what follows, Section 2 outlines the ICAPM theory. Section 3 describes the data and 

the factor-mimicking TS, HP and Mom portfolios. Section 4 discusses the evidence on the 

predictive ability of the commodity risk factors, and on their plausibility as ICAPM state 

variables. Section 5 provides robustness checks and Section 6 briefly concludes.  

2. Market Return Predictability and Intertemporal Asset Pricing  

The fundamental insight of intertemporal asset pricing theory is that, in solving their lifetime 

consumption decisions under uncertainty, long-term investors care not only about the level of 

their invested wealth but also about the future returns on that wealth. In this paper, we focus 

on the simplified formulation of the Merton (1973) Intertemporal Capital Asset Pricing 

Model (ICAPM) which, in discrete time and logarithmic form, can be expressed as follows 

௧൫ܴ,௧ାଵ൯ܧ ൌ ெݒܥ௧ሺܴ,௧ାଵ, ܴெ,௧ାଵሻ  ௭ݒܥ௧ሺܴ,௧ାଵ,  ௧ାଵሻ    (1)ݖ∆

for risky assets i =1,…,N, where Et(.) is the expectation operator, ܴ,௧ାଵ is the asset i return 

between t and t+1 in excess of the risk-free rate, ܴெ,௧ାଵ is the market portfolio excess return 

which summarises the current investment opportunity set, and ݖ௧ାଵ is a state variable whose 

innovation (denoted ∆ݖ௧ାଵ) signals a change in future investment opportunities. Equation (1) 

says that the expected excess return of asset i is determined by a weighted sum of its 

conditional covariances with the return on total invested wealth and with news about future 

returns on invested wealth; the weights ߛெ	and ߛ௭ are the prices of market risk and 

intertemporal risk, respectively. Equation (1) collapses to the static CAPM when investors do 

not care about changes in future investment opportunities, ௭ ൌ 0, when the investment 

opportunity set is constant, ݒܥ௧൫ܴ,௧ାଵ, ௧ାଵ൯ݖ∆ ൌ 0, or when the intertemporal risk and 
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market risk are perfectly cross-sectionally correlated. For investors with time-additive utility, 

the parameter	ߛெ	can be interpreted as the relative risk aversion (RRA) coefficient.5 

The ICAPM theory does not identify the state variables. This leads to the perverse 

situation where the theory can be exploited as a “fishing license” (Fama, 1991) for ad hoc 

risk factors. Yet, the problem lies in bad habits of using the theory because “one could do a 

lot to make sure the candidate state variables really are plausible investment-opportunity state 

variables” (Cochrane (2005; Ch.9). Two key restrictions ought to be tested.  

 The first ICAPM restriction implies that the state variables must be able to predict long-

horizon changes in investment opportunities. To probe it, we estimate by OLS the following 

predictive equations for the first and second moment of market returns, respectively  

௧ାଵ,௧ାܯܴ ൌ ܽ  ௧ࢠ′܊   ௧ାଵ,௧ା ,             (2)ݑ

௧ାଵ,௧ାܯܸ ൌ ܿ  ௧ܢ′܌  ݁௧ାଵ,௧ା ,                     (3) 

where t=1,…,T are months and ܶ is the effective sample size (the original number of months 

minus the horizon q). The target variable in (2) is the market portfolio excess log return 

continuously compounded from month t+1 to month t+q; formally, ܴܯ௧ାଵ,௧ା ൌ ௧ାଵܯܴ 

⋯  ,௧ା. The regressand in (3) is the sum of future monthly realized variancesܯܴ

௧ାଵ,௧ାܯܸ ൌ ௧ାଵܯܸ  ⋯  ௧ା, constructed from daily market portfolio returns.6 Theܯܸ

state variables are collected in the ܭ ൈ 1 vector ܢ௧ ≡ ሺݖଵ,௧, … ,   .′,௧ሻݖ

The second ICAPM restriction links the direction of the long-horizon predictability with 

intertemporal asset pricing. If a particular state variable ݖ,௧ has predictive slopes ܾ  0 

                                                                 
5  This simplified ICAPM version is adopted by Maio and Santa-Clara (2012), Bali and Engle 

(2010), Hahn and Lee (2006), Petkova (2006) and others; see Cochrane (2005; Ch.9) for a derivation.  
Using the more general Epstein and Zin (1989) recursive utility which disentangles risk aversion from 
intertemporal substitution, Campbell (1993) derives an ICAPM specification in which the prices of 
market risk and intertemporal risk prices are restricted parameters parameters, and the former is no 
longer interpreted as RRA coefficient. Variants and extensions of Campbell’s (1993) model are 
developed by Campbell (1996), Maio (2013), Campbell and Vuolteenaho (2004) and others. 

6 The latent market volatility on month t can be consistently estimated ex post as the realized 
variance or sum of squared daily market returns, ܸܯ௧ ൌ ∑ ௗ,௧ܯܴ

ଶ
ௗୀଵ  with D the number of days on 

month t, if the daily market returns are independent. The correlation function confirms the latter.  
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(market return) and ݀ ൏ 0 (market variance), this means that negative innovations in ݖ,௧ are 

proxy with good news about future investment opportunities. Then such a variable should 

have a positive risk price ߛ  0. The intuition is that assets that do poorly when there is bad 

news about future market returns are undesirable because they reduce the consumer’s ability 

to hedge changes in future investment opportunities. This positive (negative) correlation 

between ܾ ( ݀) and ߛ also holds under Campbell’s (1993) ICAPM formulation with 

recursive preferences but it requires RRA > 1 so that the investor’s desire to hedge 

intertemporal risk outweighs his ability to profit from higher ܴ,௧ାଵ	when there is good news.   

Following Campbell (1996), Petkova (2006), Maio (2013) and others, we construct the 

innovations to the state variables via a vector autoregressive (VAR) model   

   ൬
௧ାଵܯܴ
௧ାଵܢ

൰ ൌ ቀ
ோெߤ
ૄ௭

ቁ  ൬ۯ
௧ܯܴ െ ோெߤ
௧ܢ െ ૄ௭

൰  ቀ
݁ெ,௧ାଵ
௭,௧ାଵ܍

ቁ,                     (4) 

estimated by OLS with monthly data t=1,…,T. The innovations in the state variables, denoted 

௧ାଵ ≡ ሺ ଵ݂,௧ାଵ,…,  ݂,௧ାଵሻ′ , are the residual sequences ܍ො௭,௧ାଵ orthogonalized with respect to 

  .௧ାଵ, and standardized so that they have the same standard deviation as ݁̂ெ,௧ାଵܯܴ

The asset pricing model can be implemented by the one-step generalized method of 

moments (GMM) procedure developed by Hansen (1982). The first N sample moments are 

the pricing errors for risky assets i=1,…,N, and the remaining K+1 sample moments account 

for the uncertainty associated with estimating the factor means . Formally, we have 

்݃ሺ܊ሻ ൌ
ଵ

்
∑

ە
ۖ
۔

ۖ
,௧ାଵܴۓ െ ௧ାଵܯெ൫ܴ,௧ାଵ൯ሺܴߛ െ ெሻߤ

												െܢ′൫ܴ,௧ାଵ൯ሺ௧ାଵ െ ሻܢૄ
௧ାଵܯܴ െ ெߤ
௧ାଵ െ ܢૄ

்ିଵ
௧ୀ ൌ ,        (5) 

and the parameters of interest are the market risk price ߛ, and the intertemporal “hedging” 

risk prices ܢ ≡ ሺߛ௭భ, … , ܊ ௭಼ሻ′. The vectorߛ ≡ ሺߛெ, ܢ′, ,ெߤ    .ሻ′ collects all the parameters′ܢૄ
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3. State Variables and Data 

The analysis is based on data from January 1989 to August 2011 (T=272 months). The factor-

mimicking portfolio construction, explained next, employs end-of-month prices of front-end 

futures contracts for N=27 commodities from Datastream.7 The cross-section is dictated by 

the availability of data on large hedgers and speculators positions which is published by the 

Commodity Futures Trading Commission in the Commitments of Traders Report.  

3.1 BACKWARDATION, CONTANGO AND INTERTEMPORAL RISK 

Our leading conjecture is that factor-mimicking portfolios formed according to measures of 

backwardation (and contango) can predict the first two moments of aggregate market excess 

returns over long horizons. This conjecture is motivated by a recent literature which links the 

backwardation and contango dynamics of commodity futures markets with future economic 

activity (Baker and Routledge, 2012; Bakshi et al., 2013; Koijen et al., 2013b; Yang, 2013) 

and with commodity supply dynamics (see Ready, 2014, for crude oil) 

The TS factor-mimicking portfolio employs as backwardation/contango signal the end-

of-month roll yield defined as the average of the intra-month daily roll yields, ܴ݈݈௧ ≡

ሺ1/ܦሻ∑ ,ሺ݀ܨ݈݊ ଵܶሻ௧ െ ,ሺ݀ܨ݈݊ ଶܶሻ௧

ௗୀଵ   with ݈݊ܨሺ݀, ଵܶሻ௧ and ݈݊ܨሺ݀, ଶܶሻ௧  the futures prices 

of the nearby and second-nearest contracts on day d of month t. The backwardation/contango 

signal for the HP portfolio is jointly derived from two hedging pressure measures; ܪ ܲ,௧
௦ ≡

ைூሺ௦,ሻ,
ைூሺ௦,ሻ,ାைூሺ௦,ௌሻ,

 where ܱܫሺܿ݁ݏ, ,ܿ݁ݏሺܫܱ ሻ,௧ andܮ ܵሻ,௧ are speculators’ open interests 

pertaining to long and short positions, respectively, reported at the end of week i=1,…,4 

during month t, and ܪ ܲ,௧
ௗ ≡

ைூሺௗ,ሻ,
ைூሺௗ,ሻ,ାைூሺௗ,ௌሻ,

 defined similarly for hedgers. These 

                                                                 
7 The 27 commodities include 12 agricultural products (cocoa, coffee C, corn, cotton n°2, 

concentrated frozen orange juice, rough rice, oats, soybean meal, soybean oil, soybeans, sugar n°11, 
wheat), 5 energy contracts (electricity, gasoline, heating oil, light sweet crude oil, natural gas), 4 
livestock commodities (feeder cattle, frozen pork bellies, lean hogs, live cattle), 5 metals (copper, 
gold, palladium, platinum, silver), and lumber. The price series are obtained from Datastream 
employing front contracts up to one month before maturity. 
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weekly measures are averaged to define the corresponding monthly ܪ ௧ܲ
ௗ and  ܪ ௧ܲ

௦ 

measures. The HP portfolio buys the contracts with the lowest ܪ ௧ܲ
ௗ and the highest 

ܪ ௧ܲ
௦, and shorts the contracts with the highest ܪ ௧ܲ

ௗ and the lowest ܪ ௧ܲ
௦.  The Mom 

portfolio buys (sells) the contracts with the highest (lowest) past 12-month return. 

The signals are averaged over a 12-month ranking period and the long-short portfolio is 

held for one month. All positions, long and short, are fully-collateralized. The long portfolio 

contains the 20% most backwardated (equally weighted) contracts according to each signal, 

and the short portfolio includes the 20% most contangoed (equally weighted) contracts.8 

To illustrate the ability of the HP, TS and Mom signals to capture the commodity futures 

cycle, we plot end-of-month crude oil futures prices in Figure 1. Shaded areas signify months 

when the commodity futures contract is in backwardation according to a given signal; 

namely, when ܴ݈݈௧  0 in Panel A, ܪ ௧ܲ
௦  0.5 and ܪ ௧ܲ

ௗ ൏ 0.5 in Panel B, and the 

past 12-month average return is positive in Panel C. The three panels show a good (albeit 

imperfect) correspondence between backwardation and rising futures prices.  

3.2 TRADITIONAL STATE VARIABLES  

We benchmark the predictive ability of the commodity risk factors against that of well-

known state variables as employed in two groups of models.  The first group comprises five 

popular ICAPM applications that employ traditional predictors (e.g., term spread and 

dividend yield) as state variables. The second group comprises three widely-used multifactor 

models in the equity pricing literature which were not originally conceived as ICAPM 

applications but whose risk factors (beyond the market) have been subsequently interpreted 

                                                                 
8   The 20% composition of the long and short HP portfolios is attained via a double-sort based, 

first, on hedgers' HP with the 50th quantile as breakpoint and, second, speculators' HP with the 40th 
quantile. We computed the fraction of the months in which each of the 27 commodities enters the 
long (short) portfolio. The unreported results, available upon request, did not reveal any clear pattern; 
namely, the HP, TS and Mom risk premia are not driven by specific commodities. 
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as intertemporal risk factors: the returns of size (SMB), value (HML), and momentum (Eq-

Mom) sorted equity portfolios, and a liquidity risk factor. Appendix A provides details.  

3.3 MARKET PORTFOLIO AND TEST ASSETS 

We proxy the market portfolio by a mix of stocks, bonds and commodities with weights 50%, 

40% and 10%, respectively, which broadly reflect the proportion of each asset class in total 

wealth: the U.S. value-weighted equity index obtained from Kenneth French’s library, the 

Barclays bond index, and the Standard & Poor's Goldman Sachs Commodity Index (S&P-

GSCI). The bond and commodity index observations are obtained from Bloomberg.  

Table I presents summary statistics for the market portfolio (Panel A) and the state 

variables (Panels B to D). All returns are logarithmic and in excess of the 1-month Treasury 

bill rate. The pairwise return correlations between the three commodity state variables are 

positive but low (0.38 at most), which motivates their joint inclusion in our empirical models.  

[Insert Table I around here] 

The pricing models are tested over a large cross-section of assets (N=32) that comprise 

25 equity portfolios (CRSP NYSE/AMEX/NASDAQ stocks sorted by size and book-to-

market) from Kenneth French’s library, 6 bond portfolios (U.S. Treasury bond indices with 

maturities of 1, 2, 5, 10, 20 and 30 years) from the CRSP database, and the S&P-GSCI.  

Empirical Results 

4.1 LONG-HORIZON PREDICTIVE ABILITY OF COMMODITY RISK FACTORS 

Are the commodity risk factors able to predict future changes in investment opportunities 

over long horizons? To address this question, we begin by estimating equations (2) and (3) 

applying OLS to the full set of observations; this enables an in-sample predictability analysis. 

Second, we conduct an out-of-sample predictability analysis based on recursive windows. 
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The commodity factor-mimicking portfolio returns are cumulated over p (current and 

past p-1) months to define the predictor ࢠ௧ in equations (2) and (3). For instance, we define 

ௌ,௧்ݖ̃ ≡ ∑ ௌ,்ݖ
௧
ୀ௧ିሺିଵሻ , where ்ݖௌ, is the month j excess return of the commodity TS factor-

mimicking portfolio; we consider p={24, 36, 60} months. The empirical equity risk factors 

SMB, HML, Eq-Mom and L are similarly transformed into cumulative sums. This is a 

convenient dimensionality reduction since, by matching the persistence of predictors and 

predictands, it circumvents the need for adding lags of the variables.9  

 The estimation results for equations (2) and (3) using traditional state variables and 

commodity risk factors are shown in Tables II and III, respectively. Throughout the analysis 

we consider the nine pairwise combinations of horizon q and cumulative length p (for SMB, 

HML, Eq-Mom and L) equal to 24, 36, 48 months; for space limitations, Table II reports only 

the predictive regressions corresponding to p=q=60 months, but we discuss the results for all 

p and q combinations. The tables report OLS slope estimates together with autocorrelation 

and heteroskedasticity (h.a.c.) t-statistics based on Newey and West (1987).  

Various features are observed in both sets of results that affirm conventional wisdom. 

The magnitude of the predictive slopes and the predictive power given by the തܴ	ଶ generally 

increase with the horizon (see e.g., Cochrane, 2005; Ch. 20). The second moment of the 

aggregate market excess return is easier to predict than its first moment, as borne out by the 

higher predictive power obtained for equation (3) than for equation (2). Third, for a given 

horizon q the predictive power of empirical risk factors (i.e., factor mimicking portfolio 

returns) improves with the cumulation length p which confirms that by aggregation it is 

possible to filter out excessive short-term fluctuations that are unrelated to the business cycle.  

                                                                 
9 Aggregate market returns (and variance) over long horizons of 24, 36 and 60 months are, like 

traditional predictors, very persistent as suggested by the first-order autocorrelation coefficient. The 
empirical risk factors require cumulation over at least 24 months to achieve similar persistence. Time-
series plots show that the cumulated empirical risk factors have a higher ‘signal-to-noise’ ratio than 
the monthly factor-mimicking portfolio returns, namely, they can mimic better the slow changes in 
long-horizon investment opportunities. Detailed results are available from the authors upon request. 
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The results in Table II affirm the findings of what Cochrane (2005; Ch. 20) describes as 

a ‘new generation’ of empirical research that documents long-horizon predictability of 

aggregate market returns; see also Maio and Santa-Clara (2012) for recent evidence. The 

predictive power reaches 38.7% (market return) and 67.3% (market variance), respectively. 

[Insert Table II and Table III around here] 

The predictability results in Table III for the commodity risk factors are very 

encouraging. First, the predictive slopes essentially keep the same sign across 

specifications.10 Second, the predictive ability of the proposed commodity risk factors is 

remarkable, reaching 61.4% (market return) and 77.2% (market variance). This suggests that 

commodity risk factors are good competitors to traditional predictors, namely, they contain at 

least as much information on changes in future investment opportunities as known 

predictors.11  But do they contain additional information? To address this question, the 

commodity state vector ሺ்̃ݖௌ,௧, ,ு,௧ݖ̃  ሻ’ is added to the traditional regressions, and we	ெ,௧ݖ̃

reassess predictive power and conduct a Wald test for the null hypothesis that the predictive 

coefficients of the commodity risk factors are jointly zero. The results for p=q=60 months (all 

other cases are available upon request) are shown in the bottom section of Table II. 

The predictive power of traditional state variables for market returns is greatly enhanced 

by adding commodity factors from 21% on average (Table II; top panel), to 59% on average 

(Table II; bottom panel). For the market variance, the predictive power almost doubles from 

41% to 79% on average when the commodity risk factors are added (Table II; bottom panel). 

The Wald test statistics for the null hypothesis that traditional predictors encompass the 

                                                                 
10 In the market returns equation the predictive slopes of TS and HP are negative, and those of 

Mom are typically positive; the other way round in the market variance equation. Bakshi et al. (2013) 
also document different signs for the slopes of the commodity TS and Mom factors in a regression 
analysis of their role as leading indicators of economic activity.  

11 Regarding market returns, the traditional state variables achieve a predictive power of 20.32% 
on average with range [1.47%, 38.73%] over all nine combinations of p and q; the predictive power of 
the commodity risk factors averages 37.25% with range [8.39%, 61.44%], which represents a notable 
improvement. The counterpart figures for the market variance reveal a similar improvement. 
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commodity risk factors, ܪ: ்ܾௌ ൌ ܾு ൌ ܾெ ൌ 0 in eq. (2) and ܪ: ்݀ௌ ൌ ݀ு ൌ ݀ெ ൌ

0 in eq. (3) are significant. This analysis suggests that commodity risk factors contain 

information on changes in future investment opportunities not revealed by known predictors.  

We should note a caveat of asymptotic inference (i.e., standard t-tests and Wald tests) in 

predictability regressions, namely, the size distortions induced by the large persistence of the 

predictors. Seeking to shield our analysis from this critique we compute subsampling p-

values for uncentered statistics using the minimum-volatility block size selection method 

proposed by Romano and Wolf (2001). In Tables II and III, we employ bold font (asterisks) 

to denote significance according to asymptotic (subsampling) inference. The significance of 

the predictive slopes somewhat lessens but the inferences from the Wald suggesting the 

traditional factors do not encompass commodity risk factors test remain unchallenged. 

Another well-known critique of traditional predictive regressions is that they have 

performed poorly in real time. In order to produce evidence on the relative predictive ability 

of commodity risk factors that is free from this critique (also known as “look-ahead” bias), 

we assess the extent to which models estimated with data available up to time t are able to 

predict aggregate market returns and variances over an unseen (out-of-sample) future period. 

To this end, the total sample period comprising T months is divided into an estimation period 

(T-T1) and a holdout or evaluation period (T1). We obtain recursive parameter estimates 

ሺܽ௧, ௧ᇱ࢈ , ܿ௧, ௧ᇱࢊ ሻ for equations (2) and (3) over expanding samples starting; the first sample is 

1989:01-2003:11, the second sample is 1989:01-2003:12 and so on, which implies T1=(1/3)T. 

The out-of-sample predictions for q=p=60 are summarized in Table IV. 

We report the mean absolute error, ܧܣܯ ൌ ଵ

భ்
∑ หݑො௧ାଵ,௧ାหభ்
௧ୀଵ , and root mean square 

error, ܴܧܵܯ ൌ ට
ଵ

భ்
∑ ො௧ାଵ,௧ାݑ

ଶభ்
௧ୀଵ , where ݑො௧ାଵ,௧ା ≡ ௧ାଵ,௧ାݕ െ  ௧,௧ା denotingݕ ො௧ାଵ,௧ା withݕ

the actual aggregate market return (or variance) from month t+1 to t+q, and ݕො௧ାଵ,௧ା the 



14 
 

prediction based on data up to month t. Since the historical average is the most common 

benchmark for evaluating forecasting models of the equity premium, we also present the out-

of-sample ሺOOSሻ statistic തܴைைௌ,
ଶ ൌ 1 െ ெௌா

ெௌாೞ
  which gives the proportional reduction in 

MSE for an arbitrary forecast model m relative to the historical average; ܧܵܯ௦௧ ൌ

ଵ

భ்
∑ ሺభ்
௧ୀଵ ௧ାଵ,௧ାݕ െ  ത௧ାଵ,௧ା are recursive forecasts from a naive version ofݕ ത௧ାଵ,௧ାሻଶ  whereݕ

equations (2) and (3) with only a constant (i.e., ܊′ ൌ 0 and ܌′ ൌ 0).  

 In order to assign significance to the out-of-sample predictability results we conduct 

tests of various hypotheses using two tests. The null hypothesis ܪ: ܧܵܯ∆ ൌ 0 where 

ܧܵܯ∆ ൌ ௧ௗܧܵܯ െ :ܪ  versus the alternativeܧܵܯ ܧܵܯ∆ ് 0 are assessed using the 

Diebold and Mariano (1995) t-test for non-nested models; likewise for the MAE. In order to 

assess whether a given forecasting model yields a significantly smaller MSE than the 

historical average (i.e., ܪ: തܴைைௌ
ଶ ൌ 0 versus തܴைைௌ

ଶ  0) we deploy the one-sided 

encompassing t-test proposed by Clark and West (2007) for nested models. The same test is 

applied to evaluate the null hypothesis ܪ: ‘the forecasts from a traditional model encompass 

the forecasts from the same model expanded with the commodity risk factors’ (ܥܰܧଵ) versus 

 : ‘the commodity risk factors add significant information to the traditional predictors’, andܪ

 : ‘the forecasts from the commodity model encompass the forecasts from the same modelܪ

expanded with traditional predictors’ (ܥܰܧଶሻ versus ܪ: ‘the traditional predictors add 

significant information to the commodity risk factors’. All tests are adjusted for serial 

dependence in prediction errors using the Newey-West (1987) method. 

The smallest out-of-sample predictive errors (in absolute terms as borne out by the MAE 

and RMSE, and relative to the historical average as borne out by the തܴைைௌ
ଶ ) correspond with 

the commodity-based model which significantly outperforms all traditional models. The 

 ଵ hypothesis is clearly refuted which suggests that commodity risk factors add significantܥܰܧ
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information to traditional state variables. In sharp contrast, the ܥܰܧଶ hypothesis is most often 

not rejected which suggests that commodity risk factors encompass traditional predictors.  

Are the commodity risk factors also able to predict real economic activity? To answer 

this question we collect quarterly real GDP data for the G7 countries from Datastream and 

estimate the predictive regression, ln	ሺܦܩ ௧ܲା/ܦܩ ௧ܲାଵሻ ൌ ܽ  ௧ࢠ′܊   ௧ାଵ,௧ା, for theݑ

equivalent horizons h={8, 12, 20} quarters. The results are reported in the bottom panel of 

Table II. Reassuringly, the signs of the slopes are economically plausible as they coincide 

with those obtained for the market returns predictive equation and are opposite of those in the 

market variance predictive regression. The predictive ability reaches 70% and confirm that 

the three commodity risk factors have predictive ability for future economic conditions. 

4.2 ARE THE FACTOR RISK PRICES CONSISTENT WITH ICAPM THEORY? 

We now assess the compatibility of the time-series predictive slopes and the intertemporal 

risk prices obtained by GMM estimation of equation (1) using a cross-section of 32 test 

assets. Table VI reports the GMM estimation results. We begin by discussing the results for 

the commodity-based multifactor pricing model which are reported in the leftmost column.  

[Insert Table V and Figure 2 around here] 

The GMM estimates of the covariance risk prices ்ߛௌ and ߛு are negative, in line with 

the negative (positive) predictive slopes for market returns (variances) reported in Table II. 

This confirms that rational agents are prepared to pay higher prices on assets that are able to 

hedge intertemporal risk. The estimate for ߛெ is positive which is consistent with the 

positive (negative) link between the Mom state variable and future market returns (variances) 

documented in the long-run predictability analysis. Hence, rational investors require a 

positive premium for holding assets that are poor hedges against intertemporal risk.12  

                                                                 
12  The joint predictive ability of the commodity TS, HP and Mom factors is greater than that 

obtained with pairs of (or individual) factors; e.g., the തܴଶ of predictive regressions for ܴܯ௧,௧ା with 
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In sharp contrast, traditional state variables generally fail to produce intertemporal risk 

prices whose sign is consistent with the direction of long-horizon predictability, in line with 

the recent evidence in Maio and Santa-Clara (2012). To illustrate with an example, a decrease 

in the term spread (TERM) anticipates a decline in investment opportunities as suggested by 

the predictive slopes in Table II. Hence, assets that covary positively with innovations to 

TERM do not hedge reinvestment risk and therefore a positive premium is required. 

However, the estimates of ்ߛாோெ in Panel C of Table V are negatively signed.13  

 Finally, we compare the models’ ability to capture the cross-sectional variation in the 

average excess returns of ܰ ൌ 32 tests assets using three criteria. The first criterion is the 

mean pricing error defined using the absolute or square loss function,	ܧܣܯ ൌ ଵ

ே
∑ |ොߙ|
ே
ୀଵ  or 

ܧܵܯܴ ൌ ටଵ

ே
∑ ොߙ

ଶே
ୀଵ 	where ߙො ≡ ்݃,൫܊መ ൯ is the pricing error for asset i. The second measure 

is the degrees-of-freedom adjusted fraction of the cross-sectional variation in average excess 

returns captured by the pricing model, തܴଶ ൌ 1 െ ಿሺఈෝሻ

ಿሺோതሻ
. The third criterion is a J test 

statistic for the null hypothesis that the sum of squared pricing errors is zero, ܬ ൌ

ܶሾ்݃൫܊መ ൯
ᇱ
መ܊ିଵ்݃ሺ܁ ሻሿ which follows a ேିሺାଵሻ

ଶ 	distribution asymptotically, and ܁ is the NൈN 

spectral density matrix of the sample moments. As shown in Table V, the commodity-based 

pricing model achieves the lowest pricing errors (MAE and RMSE of 0.11% and 0.14%, 

respectively, and the largest explanatory power ( തܴଶ of 66.55%). Secondly, the J test does not 

                                                                                                                                                                                                       

q=60 months reaches 19% on average with factors in pairs, which is well below the 38% obtained 
jointly (Table III). Likewise, the ICAPM specification based on the three state variables has much 
better pricing power at 66.52% (Table V; Panel A) than the nested models with paired factors at 
20.27% on average. These results affirm the low correlations among the TS, HP and Mom risk factors. 

13 The relative risk aversion levels (ߛ) suggested by the multifactor models, ranging from 4.07 to 
7.27, are plausible according to expected-utility theory (see e.g. Maio and Santa-Clara, 2012; Bali and 
Engle, 2010; Cochrane, 2005; Mehra and Prescott, 1985). Other theories challenge this interpretation, 
e.g., Epstein and Zin (1989) propose recursive utility functions that disentangle the relative risk 
aversion and elasticity of intertemporal substitution, and Rabin (2000) questions the ability of 
expected-utility theory to rationalize risk aversion over both small and large stakes.  
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reject the null for the commodity-based ICAPM, in contrast with various traditional models. 

Finally, Figure 2 plots for each test asset the average excess return vis-à-vis the 

corresponding model prediction. The points are at least as close to the 45 line for the 

commodity-based model as for the traditional models. For completeness, we should note that 

the GMM estimation of the nested CAPM equation corroborates that the intertemporal 

“hedging” risks play a crucial role; the CAPM equation has essentially no pricing ability as 

borne out by a negligible തܴଶ of -0.97% and a strongly significant J statistic of 52.97. 

Robustness Checks 

5.1 TIME-SERIES PREDICTIVE ABILITY 

The out-of-sample predictive analysis for alternative choices of forecasting schemes, 

evaluation versus estimation period ratio (T1/T-T1) and horizon is summarized in Appendix B. 

To preserve space, we focus on the (R)MSE metric since the results for MAE are very similar.  

First, the predictive regressions estimated over rolling windows of fixed 15-year length 

lead to similar conclusions (Panel I). Second, at a 24-month horizon, the commodity-risk 

factor model still yields significantly better forecasts than the historical average and than 

most of the traditional models. Unsurprisingly, the forecast errors increase relative to the 60-

month horizon (Table III). The findings are also unchallenged when we entertain a longer 

forecast evaluation period of T1=1/2T months starting on May 2000 (Panel III). 

5.2 CROSS-SECTIONAL PRICING 

Robustness checks on the role of the commodity factor-mimicking portfolios as priced factors 

that proxy intertemporal risk are shown in Appendix C. Panel I, column one, shows results 

for a GMM system with intercept ߛො which is positive (but small) suggesting some 

misspecification. But the risk prices remain consistently signed in relation with the long-

horizon predictive slopes in Table II. Panel I, column two, entertains a simpler system that 
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excludes the K factor means. The main findings are unchallenged; including the means helps 

in identification as borne out by the lower MAE and higher തܴଶ of the original N+K+1 system. 

 Columns three and four of Panel I pertain to two-step efficient GMM that gives less 

weight to the noisier moment conditions, and iterated GMM with identical asymptotic 

properties but potentially better finite-sample performance. Explanatory power is given by 

the weighted least squares (WLS) R2 statistic, and the J statistic represents now the weighted 

sum of squared pricing errors.14 The results are very similar and reveal limited efficiency 

gains. The penultimate column of Panel I illustrates that the signs of the OLS (beta) risk 

prices obtained through the two-step Fama and MacBeth (1973) approach are plausible. 

The last column entertains Campbell’s (1993) ICAPM version based on a representative 

agent model with the non-expected utility function of Epstein and Zin (1989) and a loglinear 

approximation of the budget constraint. Model 1 is Campbell’s equation (36) which is 

derived by assuming that the (co)variances of lognormal asset returns and consumption are 

time constant, and Model 2 is equation (42) that relaxes this assumption. The signs of the 

commodity factor risk prices estimated by one-step GMM are unchanged.15  

Panel II considers as test assets the 25 portfolios sorted by size and momentum (25 

SMom) from Kenneth French’s library alongside the same 6 U.S. Treasury-bond indices and 

the S&P-GSCI; the 25 portfolios sorted by size and book-to-market (25 SBM); and the  25 

size and momentum sorted portfolios (25 SMom). Panel III, considers as alternative market 

                                                                 
14 In two-step and iterated GMM, the weighting matrix is the first NN block of the inverse of ܁, 

and ܴௐௌ
ଶ ൌ 1 െ હෝഥᇱ܁ࡺ

∗ିહෝഥ/܀ഥᇱ܁ࡺ
∗ି܀ഥ, where હෝഥ and ܀ഥ are N1 vectors of demeaned pricing errors and 

demeaned excess returns, respectively, and ܁ࡺ
∗ ≡ ݀݅ܽ݃ேሺ܁ሻ. ܴௐௌ

ଶ  gives the explanatory power of 
models for ‘repackaged’ portfolios which may not be of interest to investors (Cochrane, 2005). 

15 Appendix C reports the market risk price ߛெ ≡ ߛ  ሺߛ െ 1ሻெ and intertemporal risk prices 
ߛ ≡ ሺߛ െ 1ሻ for Model 1 and ߛெ ≡ ߛ  ሺߛ െ 1 െ ሻெ and ߛ ≡ ሺߛ െ 1 െ ሻ for Model 2, 
where ݆ ൌ ሼܶܵ,  is the RRA whose estimate is 6.69 (Model 1) or 6.53 (Model 2),  is a ߛ ;ሽ݉ܯ,ܲܪ
coefficient resulting from the conditional heteroskedasticity of asset returns and consumption whose 
estimate is a significant 20.03, and   ≡ ሺெ, ்ௌ,ு, ெሻᇱ is a nonlinear function of a discount 
coefficient ߩ and the matrix A of our VAR equation (4) with innovations orthogonalized (and scaled) 
as noted in Section 2. Following Maio (2012) and Campbell and Vuolteenaho (2004) we adopt a value 
for ߩ that implies a constant consumption to wealth ratio of about 5% per annum (ߩ ൌ 0.95ଵ/ଵଶ). 
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portfolio proxies: the US value-weighted equity index; the US value-weighed equity index 

(60% loading) and the Barclays bond index (40% loading); and the US value-weighted equity 

index (90% loading) together with the S&P-GSCI (10% weight). The one-step GMM 

estimates obtained for these cases do not materially challenge the main findings.16  

Conclusions 

This paper studies the long-horizon predictive ability of factor-mimicking commodity 

portfolios based on term structure, hedging pressure or momentum signals that are motivated 

by the theories of storage and hedging pressure. The factors proxy the 

backwardation/contango risk and contain information on future changes in investment 

opportunities that is not fully revealed by traditional predictors. The results hold both in-

sample and out-of-sample, for different forecasting schemes, horizons and evaluation periods. 

 Accordingly, we conjecture that commodity risk factors are plausible candidates as state 

variables in a novel empirical implementation of Merton’s (1973) ICAPM. The findings 

support this conjecture in that the estimated intertemporal risk prices are consistent with the 

direction of time-series predictability. Moreover, the commodity-based multifactor model can 

price well a cross-section of equity, fixed income and commodity portfolios. The findings are 

robust to alternative choices of estimation method, test assets and market portfolio proxy.  

Our work adds to a recent strand of the literature that ascribes a role to commodity 

market variables, such as the basis and open interests, as leading indicators of economic 

activity and as sources of priced risk. The evidence reported may inspire further research on 

the interactions between commodity futures, traditional assets classes and the business cycle.  

                                                                 
16 The in-sample and out-of-sample predictive analyses based on these market portfolio proxies are 

qualitatively similar to those reported earlier in Tables II to IV. Results are available upon request. 
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Figure 1. Historical crude oil futures prices and backwardation. 

The continuous line denotes the end-of-month futures price of crude oil. Shaded areas denote months when 
the average of daily roll yields is positive (front-end futures curves slope downward) in Panel A, when 
speculators are net long and hedgers are net short in Panel B, or when the 12-month average returns are 
positive (Panel C). The sample period runs from January 1989 to August 2011. 

Panel A: Backwardation states identified from Term Structure signal

 

Panel B: Backwardation states identified from Hedging Pressure signal 

 

Panel C: Backwardation states identified from Momentum signal 
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Figure 2. Individual pricing errors of nine candidate ICAPMs. 

This figure plots the average excess returns in percentage per annum (p.a.) of 32 test assets against the corresponding excess returns predicted from nine ICAPM 
specifications. The test assets are the 25 SBM portfolios, 6 U.S. Treasury-bond indices with maturities of 1, 2, 5, 10, 20 and 30 years, and the S&P-GSCI. The 
sample period is January 1989 to August 2011. The commodity-based ICAPM considers as risk factors the market portfolio and the innovations in the commodity 
TS, HP and Mom state variables. The remaining models are described in Appendix A. 
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Table I. Summary statistics for market portfolio and state variables. 
 
Panels A and B report summary statistics for the annualized excess log returns of the market portfolio and  
commodity-based state variables based on term structure (TS), hedging pressure (HP) and momentum 
(Mom). Panel C summarizes the excess returns of equity-based state variables based on size (SMB), value 
(HML), and momentum (Eq-Mom), all in annualized form, and for the non-traded liquidity factor of Pastor 
and Stambaugh (2003; L). Panel D pertains to state variables from the predictability literature. The market 
portfolio is proxied by a combination of the value-weighted CRSP stock index (50% weight), the Barclays 
bond index (40%) and the S&P-GSCI (10%). The risk-free rate is proxied by the one-month Treasury-bill 
rate. Appendix A provides detailed definitions for the state variable reported in Panels C and D. 
 
 

   
 
  

Mean StDev. Min. Max.

Panel A: Market 0.0578 0.0869 ‐0.1606 0.0609

Panel B: State variables from the commodity pricing literature

TS 0.0521 0.1044 ‐0.0921 0.0908

HP 0.0581 0.0896 ‐0.0577 0.0962

Mom 0.0802 0.1270 ‐0.1044 0.1256

Panel C: State variables from the equity pricing literature

SMB 0.0198 0.1177 ‐0.1639 0.2202

HML 0.0264 0.1121 ‐0.1268 0.1387

Eq‐Mom 0.0799 0.1764 ‐0.3472 0.1839

L 0.0022 0.0627 ‐0.2704 0.2874

Panel D: State variables from the predictability literature

TERM 0.0182 0.0121 ‐0.0053 0.0376

PE 3.1894 0.2748 2.5893 3.7887

VS 1.4945 0.6060 ‐1.9280 3.3411

DEF 0.0095 0.0042 0.0055 0.0338

TBILL 0.0369 0.0224 0.0002 0.0882

DY ‐3.8811 0.3231 ‐4.5282 ‐3.2114

FED 0.0399 0.0245 0.0007 0.0985

CP 0.0122 0.0162 ‐0.0458 0.0583
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Table II. Long-horizon predictability regressions for traditional state variables. 
The table presents predictive regressions for future market portfolio returns and variances at horizon of q=60 months. The state variables are dictated by extant models; see 
Appendix A. The empirical risk factors SMB, HML, Eq-Mom and L are cumulated over p=60 (current and past) months. The market portfolio is a combination of the value-
weighted CRSP stock index (50% loading), Barclays bond index (40% loading) and S&P-GSCI (10% loading). The table reports the OLS predictive slopes with Newey-
West (1987) t-statistics in parentheses; bold denotes significant slopes at conventional 10%, 5% or 1% levels using standard asymptotic inference. *, **, *** denote 
significant at 10%, 5% and 1% level using subsampling p-values based on the minimum-volatility block selection method of Politis and Wolf (2001).  All regressions include 
an (unreported) intercept. തܴଶ is the adjusted coefficient of determination. The bottom part of the table reports two diagnostics for the model at hand augmented with the 
commodity risk factors: a Wald test for the null hypothesis that the traditional predictors encompass the commodity risk factors, namely, ܪ: ்ܾௌ ൌ ܾு ൌ ܾெ ൌ 0 in eq. 
(2), Panel A, and ܪ: ்݀ௌ ൌ ݀ு ൌ ݀ெ ൌ 0 in eq. (3), Panel B, and the adjusted coefficient of determination ( തܴ∆

ଶ ). The sample period is 1989:01 to 2011:08.  

 

FF1993 C1997 PS2003 CV2004 HL2006 P2006 BE2010 FF1993 C1997 PS2003 CV2004 HL2006 P2006 BE2010

SMB ‐0.15 ‐0.20 ‐0.13 0.03 0.04 0.04
(‐1.50) (‐1.95) (‐1.30) (2.53) (3.07) (3.60)

HML ‐0.07 0.01 ‐0.06 0.02 0.00 0.02
(‐0.62) (0.06) (‐0.50) (1.12) (0.24) (1.42)

Eq‐Mom 0.15 ‐0.02
(2.26) (‐2.44)

L 0.06 ** 0.02
(0.94) (3.37)

TERM 1.82 4.27 * 5.18 10.21 *** 2.27 ‐0.35 ‐0.56 ‐1.53 *** ‐1.69 *** ‐0.54
(0.92) (2.15) (2.25) (6.61) (1.02) (‐1.50) (‐2.11) (‐4.45) (‐8.15) (‐1.94)

PE ‐0.28 0.04
(‐5.20) (5.54)

VS 0.03 ** 0.00
(1.23) (‐0.63)

DEF 1.26 1.76 2.41 ‐2.85 ‐3.32 * ‐3.07 *

(0.12) (0.20) (0.26) (‐2.87) (‐4.30) (‐3.94)
TBILL 1.99 ‐0.88 **

(1.23) (‐3.97)

DY 0.17 0.00
(3.11) (‐0.23)

[0.31] [0.64]

FED 4.60 *** ‐0.87 ***

(4.35) (‐8.23)

CP 0.03 0.00

(2.83) (‐1.46)

11.23 14.22 12.89 33.56 9.47 38.73 30.52 16.65 33.74 38.58 43.15 39.82 22.31 64.02 67.28 16.35

Observations 213 213 213 213 213 213 213 213 213 213 213 213 213 213 213 213

Models augmented with commodity TS , HP  and Mom  risk factors:

Wald test (ENC) 171.48 *** 191.41 *** 161.43 *** 88.80 *** 179.94 *** 57.44 ** 112.72 *** 132.54 *** 493.25 ** 344.30 ** 437.23 *** 245.17 *** 305.22 *** 361.73 *** 358.53 *** 237.27 ***

56.65 61.83 57.00 63.37 58.83 75.83 66.26 57.71 82.56 84.81 83.32 76.65 79.04 89.24 90.07 77.35

Panel A: Market return

KVLN2013

Panel B: Market variance

KVLN2013

2 (%)R

2 (%)commR
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Table III. Long-horizon predictability regressions for commodity state variables. 

The table presents predictive regressions estimated over the full sample from 1989:01 to 2011:08 for the future 
market portfolio return (Panel A) and market variance (Panel B) at horizons q={24, 36, 60} months.  The state 
variables are commodity TS, HP and Mom factor-mimicking portfolio returns cumulated over the current and past 
 െ 1 months, for p={24, 36, 60}. The market portfolio is a combination of the value-weighted CRSP stock index 
(50% loading), Barclays bond index (40% loading) and S&P-GSCI (10% loading). Panel C reports predictive 
regressions for GDP growth of the G7 countries using quarterly data over equivalent horizons and cumulative periods 
of 8, 12 and 20 quarters ahead. All regressions include an (unreported) intercept. The table reports the OLS predictive 
slopes. Bold denotes significant slopes at conventional 10%, 5% or 1% levels using standard asymptotic inference 
based on Newey-West (1987) t-statistics reported in parentheses. *, **, *** denotes significance at 10%, 5% and 1% 
level based on empirical p-values derived by subsampling the uncentered t-statistics using the minimum-volatility 
block selection of Politis and Wolf (2001). തܴଶ is the adjusted coefficient of determination.  

 

Horizon: q =24 q =36 q =60 q =24 q =36 q =60 q =24 q =36 q =60

TS ‐0.46 ** ‐0.37 ‐0.78 *** ‐0.40 ‐0.47 *** ‐0.51 ** ‐0.85 *** ‐0.59 *** ‐0.45 **

(‐2.47) (‐2.09) (‐6.41) (‐2.20) (‐3.30) (‐3.11) (‐7.61) (‐4.63) (‐2.78)

HP ‐0.17 ‐0.14 ‐0.38 *** ‐0.06 ‐0.12 ‐0.35 ‐0.01 ‐0.13 ‐0.58 ***

(‐1.57) (‐1.57) (‐4.64) (‐0.70) (‐1.52) (‐5.00) (‐0.26) (‐2.59) (‐6.50)

Mom 0.18 * 0.46 *** 0.64 *** 0.34 ** 0.56 *** 0.48 *** 0.65 *** 0.73 *** 0.48 ***

(2.65) (4.16) (8.96) (5.12) (7.33) (6.21) (8.13) (8.42) (4.42)

8.39 24.16 41.62 18.93 46.59 31.94 49.08 61.44 53.09

TS 0.02 0.01 0.04 0.01 0.02 0.02 0.05 0.02 ‐0.03
(1.53) (0.51) (2.86) (0.74) (1.02) (1.37) (4.21) (2.55) (‐2.49)

HP 0.04 ** 0.05 0.06 *** 0.04 0.05 0.06 *** 0.02 0.03 0.05 **

(5.20) (4.76) (5.83) (3.58) (4.95) (9.83) (3.96) (6.39) (6.25)
Mom 0.01 ‐0.01 ‐0.09 *** ‐0.01 ‐0.04 * ‐0.07 *** ‐0.06 *** ‐0.08 *** ‐0.05 ***

(0.95) (‐0.95) (‐11.66) (‐1.34) (‐4.32) (‐11.68) (‐4.97) (‐9.71) (‐6.10)

14.83 12.41 65.93 12.61 32.64 75.69 48.24 77.15 73.22

TS ‐0.03 ‐0.02 ‐0.12 ‐0.02 ‐0.04 ‐0.08 ‐0.10 ‐0.08 ‐0.09

(‐0.80) (‐0.43) (‐2.54) (‐0.41) (‐0.92) (‐1.89) (‐3.75) (‐2.62) (‐1.62)

HP ‐0.01 ‐0.01 ‐0.02 ‐0.01 ‐0.01 ‐0.04 ‐0.02 ‐0.03 ‐0.11 *

(‐0.65) (‐0.22) (‐0.86) (‐0.34) (‐0.75) (‐1.92) (‐2.09) (‐2.83) (‐3.30)

Mom ‐0.01 0.05 0.16 *** 0.04 0.10 * 0.12 0.13 *** 0.17 *** 0.11 *

(‐0.27) (1.51) (3.86) (2.31) (3.77) (3.62) (3.91) (6.60) (2.44)

‐1.66 3.35 42.38 2.22 29.98 32.51 50.55 70.70 35.47

Panel C: Real economic activity

Panel B: Market variance

p =36 p =60p =24

Panel A: Market return

Cumulative length:

2 (%)R

2 (%)R

2 (%)R
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Table IV. Out-of-sample predictive ability of commodity and traditional state variables.  

The table reports statistics and tests to compare the out-of-sample (OOS) predictive ability of commodity risk 
factors and traditional predictors; see Appendix A for details on the latter. MAE is the mean absolute error, 
RMSE is the root mean squared error, ܴைைௌ

ଶ  is the percentage reduction in MSE achieved by the model at hand 
relative to the historical average benchmark; asterisks denote significant reduction at the 10% (*), 5% (**) or 
1% (***) levels. The first two equal-predictive-ability tests are based on the Diebold and Mariano (1995) t-
statistic for the null hypothesis ܪ: ܧܣܯ∆ ൌ ௧ௗܧܣܯ െ ܧܣܯ ൌ 0 against ܪ: ܧܣܯ∆ ് 0, and 
:ܪ ܧܵܯ∆ ൌ 0 against ܪ: ܧܵܯ∆ ് 0. The next two tests are based on the Clark and West (2007) MSE-
adjusted t-statistic for ܪ: ‘the forecasts from a traditional model encompass the forecasts from the 
same model augmented with the commodity risk factors’ (ܥܰܧଵ), and for ܪ: ‘the forecasts from the 
commodity model encompass the forecasts from a traditional model augmented with the commodity 
risk factors’ (ܥܰܧଶሻ. *, **, *** denote significant at 10%, 5% and 1% level. All test statistics are corrected 
for autocorrelation a là Newey-West (1987). The forecasts are obtained through a recursive window scheme. 
The out-of-sample forecast evaluation period runs from December 2003 until the sample end on August 2011. 

 

Model MAE RMSE H0:MAE= 0 H0:MSE= 0 H0:ENC 1 H0:ENC 2

Panel A: Market returns

Commodity-based 0.1230 0.1332 74.78 ***    
FF1993 0.3528 0.3677 ‐95.37 7.31 *** 4.91 *** 5.76 *** ‐0.48

C1997 0.3690 0.3769 ‐105.25 11.36 *** 7.28 *** 4.00 *** ‐0.60

PS2003 0.7125 0.7603 ‐735.09 6.71 *** 4.71 *** 4.60 *** ‐0.48

CV2004 0.2114 0.2568 4.70 1.88 * 2.17 ** 1.62 * 1.88 **
HL2006 0.2441 0.3068 ‐36.02 2.00 ** 2.29 ** 2.64 *** 1.39 *
P2006 0.2154 0.2473 11.67 * 2.32 ** 2.52 ** 2.84 *** 4.07 ***
BE2010 0.1896 0.2449 13.33 ** 1.39 1.74 * 2.34 *** 2.27 ***

0.2381 0.2938 ‐24.73 2.07 ** 2.33 ** 2.67 *** ‐4.11

Panel B: Market variance

Commodity-based 0.0136 0.0153 79.51 ***    
FF1993 0.0221 0.0241 63.10 *** 2.42 ** 2.69 *** 0.93 ‐5.53

C1997 0.0276 0.0303 41.39 *** 3.14 *** 3.26 *** 1.85 ** ‐5.52

PS2003 0.0910 0.0940 ‐463.45 12.17 *** 6.56 *** 5.36 *** ‐4.96

CV2004 0.0336 0.0347 23.45 *** 6.35 *** 5.69 *** 4.09 *** ‐5.60

HL2006 0.0418 0.0420 ‐12.73 10.35 *** 11.72 *** 6.71 *** ‐1.72

P2006 0.0291 0.0304 41.26 *** 4.79 *** 4.43 *** 4.29 *** ‐1.01

BE2010 0.0226 0.0232 65.62 *** 2.93 *** 2.85 *** 5.87 *** 4.06 ***
0.0391 0.0394 0.82 13.64 *** 12.34 *** 12.58 *** ‐1.66KVLN2013

Prediction errors Equal‐predictive‐ability tests

KVLN2013

2 (%)OOSR
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Table V. Factor risk premia for commodity-based and traditional ICAPM specifications. 

The table reports the one-step GMM estimation results for a commodity-based ICAPM implementation (Panel I) and 
eight traditional ICAPM implementations (Panels II and III); see Appendix A for details on the latter. CV2004 
corresponds to an unrestricted version of Campbell and Vuolteenaho (2004). The test assets are 25 equity portfolios 
sorted by size and book-to-market (25 SBM), 6 U.S. Treasury-bond indices with maturities of 1, 2, 5, 10, 20 and 30 
years, and the S&P-GSCI.  is the market (covariance) risk price. The remaining ௭ in the table are the intertemporal 
(covariance) risk prices. The remaining ௭ in the table are the covariance risk associated with traditional state variables 
from the equity pricing and predictability literatures. Bold font denotes significant covariance risk prices at the 10% 
level or better. Robust GMM t-statistics are reported (in parentheses) based on the Bartlett kernel with Newey-West 
optimal bandwidth selection. The performance metrics are: mean absolute pricing error (MAE), degrees-of-freedom 
adjusted fraction of the cross-sectional variance in average excess returns explained by the model ( തܴଶ), and the chi-
squared J test statistic for the null hypothesis that the sum of squared pricing errors is zero. *, ** and *** denote test 
rejection at the 10%, 5% and 1% levels, respectively. The sample covers the period 1989:01-2011:08. 
 

 

γM 4.07 5.21 5.79 5.56 6.35 6.93 7.15 5.16 7.27
(1.37) (2.22) (2.34) (2.09) (2.41) (2.61) (2.28) (1.54) (3.08)

γTS ‐40.53
(‐5.62)

γHP ‐17.06
(‐2.27)

γMom 45.52
(6.37)

γSMB 2.36 2.02 2.17
(1.04) (0.83) (0.98)

γHML 6.42 7.92 8.58
(2.16) (2.76) (3.72)

γEq‐Mom 8.38
(2.16)

γL ‐24.73
(‐4.21)

γTERM ‐12.47 ‐11.15 ‐5.55 ‐13.13 ‐12.33
(‐3.26) (‐3.10) (‐1.17) (‐2.88) (‐3.34)

γPE ‐1.77
(‐0.35)

γVS ‐29.82
(‐4.08)

γDEF 2.78 ‐34.04 ‐39.31
(0.57) (‐4.04) (‐5.31)

γTBILL ‐42.14
(‐9.00)

γDY ‐9.62
(‐2.32)

γFED ‐49.62
(‐7.50)

γCP ‐0.85
(‐0.14)

MAE (%) 0.11 0.17 0.15 0.15 0.12 0.15 0.13 0.13 0.16

RMSE (%) 0.14 0.21 0.19 0.19 0.16 0.22 0.16 0.16 0.22

66.52 32.49 37.97 40.80 57.73 21.27 54.37 57.17 22.89

J  test 32.38 48.49 ** 55.11 *** 46.79 ** 47.97 ** 46.51 ** 34.18 33.58 45.61

Panel III: Risk factors from predictability literature 

KVLN2013CV2004 HL2006  P2006  BE2010 

Panel I: 

Commodity  

risk factors FF1993 C1997 PS2003

Panel II: Equity risk factors

2 (%)R
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APPENDIX A. Description of state variables in traditional ICAPM implementations. 
 

Panel I outlines eight multifactor models that have been interpreted according to the ICAPM theory of Merton (1973). Definitions and sources for each of the 
state variables are provided in Panel II. All the variables are sampled at the monthly frequency for our empirical analysis. 
   
Panel I: Multifactor models

Fama and French 

(FF1993)

Carhart              

(C1997)

Pastor and 

Stambaugh 

(PS2003)

Campbell and 

Vuolteenaho 

(CV2004)

Hahn and Lee 

(HL2006)

Petkova             

(P2006)

Bali and Engle 

(BE2010)

Koijen et al. 

(KVLN2013)

SMB   
HML   
Eq‐Mom 
L 
TERM     
PE 
VS 
DEF   
TBILL 
DY 
FED 
CP 

Panel II: Description of state variables 

Name Definition  Data source

SMB Size factor (difference in returns between small and large capitalization stocks) K.R. French's website

HML Value factor (difference in returns between high and low book‐to‐market stocks) K.R. French's website

Eq‐Mom Equity momentum factor (difference in returns between winner and loser stocks) K.R. French's website

L Innovations in aggregate liquidity construced by Pastor and Stambaugh (2003) R. F. Stambaugh's website

TERM Slope of Treasury yield curve (yield spread between the 10 year T‐bond and 3 month T‐bill) US Federal Reserve website

PE Price earnings (log ratio of the price of the S&P 500 index to a ten‐year moving average of earnings) R. Shiller's website

VS Value spread (difference between the log book‐to‐market ratios of small‐value and small‐growth stocks) K.R. French's website

DEF Default spread (difference between the yields on BAA‐ and AAA‐rated corporate bonds) US Federal Reserve website

TBILL 3‐month T‐bill rate US Federal Reserve website

DY Dividend yield (log ratio of the sum of annual dividends to the level of the S&P 500 index) Bloomberg

FED Federal reserve fund rate US Federal Reserve website

CP Cochrane‐Piazzesi (2005) bond factor obtained as the fitted value from a regression of excess bond returns on forward rates M. Piazzesi's website

State variables from the literature on equity pricing  State variables from the predictability literature
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APPENDIX B. Out-of-sample predictive ability results for alternative evaluation period, horizon and recursive scheme. 

The table reports results of three robustness checks on the out-of-sample (OOS) predictive ability of commodity risk factors vis-à-vis traditional predictors; see Appendix A 
for details on the latter. RMSE is the root mean squared error, ܴைைௌ

ଶ  is the percentage reduction in MSE achieved by the model at hand relative to the historical average 
benchmark. The first equal-predictive-ability test is based on the Diebold and Mariano (1995) t-statistic for the null hypothesis ܪ: ܧܵܯ∆ ൌ ௧ௗܧܵܯ െ ܧܵܯ ൌ 0 
against ܪ: ܧܵܯ∆ ് 0. The next two tests are based on the Clark and West (2007) MSE-adjusted t-statistic for ܪ: ‘the forecasts from a traditional model encompass the 
forecasts from the same model augmented with the commodity risk factors’ (ܥܰܧଵ), and for ܪ: ‘the forecasts from the commodity model encompass the forecasts from a 
traditional model augmented with the commodity risk factors’ (ܥܰܧଶሻ. *, **, *** denote significant at 10%, 5% and 1% level. All test statistics are corrected for 
autocorrelation a là Newey-West (1987). In Panel I the forecasts are obtained through a rolling-window estimation scheme of the model coefficients; in Panel II the horizon q 
is 24 months; in Panel III the out-of-sample period is half of the total sample period. In each panel all other specifications are as indicated in parenthesis in the top row.  

   

Model

Panel A: Market returns
Commodity-based 0.133 74.78 ***    0.143 32.50 **    0.174 40.11 ***   
FF1993 0.383 ‐107.8 5.930 *** 6.790 *** ‐0.477 0.241 ‐87.90 3.677 *** 2.788 *** ‐0.484 0.285 ‐89.80 2.759 *** 3.601 *** 0.744
C1997 0.393 ‐118.4 8.407 *** 3.228 *** ‐0.604 0.306 ‐202.9 4.921 *** 5.972 *** ‐0.548 0.292 ‐100.2 3.304 *** 3.477 *** 0.517
PS2003 0.809 ‐824.4 5.641 *** 5.415 *** ‐0.478 0.236 ‐80.79 3.786 *** 1.266 ‐1.088 0.554 ‐618.1 3.288 *** 3.324 *** 0.934

CV2004 0.278 ‐9.023 3.108 *** 1.510 * 1.875 ** 0.153 24.37 *** 0.318 ‐1.982 0.293 0.285 ‐90.31 3.017 *** 3.063 *** 1.901 **
HL2006 0.305 ‐31.71 2.236 ** 2.421 *** 1.393 * 0.158 19.18 *** 0.612 2.163 ** 1.556 * 0.230 ‐23.93 1.109 2.341 *** ‐0.986

P2006 0.246 14.73 ** 2.612 *** 2.820 *** 4.067 *** 0.199 ‐28.56 1.651 * ‐1.978 0.199 0.304 ‐117.0 3.708 *** 2.261 ** 2.650 ***
BE2010 0.243 16.57 *** 1.693 * 2.249 *** 2.273 *** 0.155 22.33 *** 0.623 2.988 *** 1.519 * 0.190 15.30 *** 0.400 1.850 ** ‐0.061

0.294 ‐21.99 2.296 ** 2.537 *** ‐4.112 0.152 25.14 *** 0.428 2.558 *** 1.801 ** 0.217 ‐10.40 0.890 2.259 ** ‐2.040

Panel B: Market variance
Commodity-based 0.015 79.51 ***    0.022 26.96 ***    0.017 48.22 ***   
FF1993 0.026 51.36 *** 1.825 * 1.209 ‐5.527 0.027 ‐4.126 1.628 3.238 *** 0.920 0.022 34.89 *** 2.572 *** 1.518 ‐1.540
C1997 0.029 37.20 *** 2.211 ** 1.404 ‐5.523 0.032 ‐42.35 2.208 ** 3.874 *** 0.774 0.025 15.84 *** 2.792 *** 2.246 ** ‐2.215
PS2003 0.092 ‐515.3 7.360 *** 6.030 *** ‐4.964 0.027 ‐4.008 1.652 * 3.322 *** 0.978 0.064 ‐433.3 3.352 *** 3.402 *** ‐0.321
CV2004 0.032 27.03 *** 7.736 *** 5.689 *** ‐5.596 0.028 ‐5.897 1.948 * ‐2.980 ‐1.187 0.029 ‐10.07 *** 3.185 *** 3.662 *** 1.140
HL2006 0.038 ‐2.566 7.893 *** 8.201 *** ‐1.720 0.025 10.28 ** 1.296 2.070 ** ‐0.850 0.032 ‐34.40 4.220 *** 6.735 *** 2.106 **
P2006 0.031 28.81 *** 4.962 *** 4.742 *** ‐1.009 0.029 ‐16.56 2.027 ** ‐1.224 ‐1.396 0.031 ‐24.79 *** 3.947 *** 4.574 *** 1.117

BE2010 0.026 49.28 *** 4.626 *** 7.884 *** 4.061 *** 0.025 12.42 ** 1.668 * 2.061 ** ‐0.857 0.017 62.68 *** ‐0.100 3.955 *** ‐0.517

0.036 6.780 4.755 *** 6.851 *** ‐1.663 0.023 27.99 *** 0.148 ‐0.161 0.340 0.028 ‐0.599 2.520 *** 5.040 *** 1.613 *

(p =q =60;  (Recursive scheme; 

Prediction errors Equal‐predictive‐ability testsPrediction errors Equal‐predictive‐ability tests

Panel III: Evaluation sample size  

KVLN2013

KVLN2013

Panel II: Horizon q =24 months 

Prediction errors Equal‐predictive‐ability tests

Panel I: Rolling scheme 

 (Recursive scheme; p =q =60)1 1 3T T ) 1 1 3T T )
1 1 2 )T T

RMSE
0 0H MAE : 0 1H ENC: 0 2H ENC: RMSE

0 0H MAE : 0 1H ENC: 0 2H ENC: RMSE
0 0H MAE : 0 1H ENC: 0 2H ENC:

2 (%)OOSR 2 (%)OOSR 2 (%)OOSR
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APPENDIX C. Commodity-based ICAPM results with alternative estimation methodology, test assets and market portfolio proxy. 
The table reports estimation results of the commodity-based ICAPM.  is a mispricing constant, ெ is the price of market risk, (்ௌ, ு, ெሻ′ are the intertemporal risk 
prices. In Panel I, the ‘GMM estimation’ column reports one-step, two-step and iterative GMM estimates for systems of dimensions N+K+1 or N+1 with or without intercept; 
N is the number of test assets and K is the number of state variables; the ‘OLS estimation’ column reports two-stage Fama and MacBeth (1973) beta risk prices; the column 
‘ICAPM with EZ utility’ reports the one-step GMM estimates of the Campbell’s (1993) ICAPM formulation based on Epstein and Zin (1989) recursive preferences; the 
model on the left column is the formulation which imposes restrictions on risk prices assuming constant (co)variances of asset returns and consumption, the model on the 
right is the counterpart equation relaxing this assumption. In Panel II, the test assets are 25 equity portfolios sorted by size and book-to-market (25 SBM), 25 equity 
portfolios sorted by size and momentum (25 SMom), 6 U.S. Treasury-bond indices with various maturities, and the S&P-GSCI. In Panel III, the market portfolio is proxied 
by equity, bond and commodity indices in the specified proportions (Panel C). The results in Panel II and III are based on one-step GMM  estimation of equation (5). Robust 
GMM t-statistics (in parentheses) are based on the Bartlett kernel with Newey-West (NW) optimal bandwidth selection. Significant coefficients at the 10%, 5% or 1% levels 
are in bold. In the Fama-MacBeth (1973) column, the (underlined) t-statistics are based on the Shanken (1992) covariance. The NW t-statistics for Campbell’s (1993) 
ICAPM are based on standard errors derived using the delta method. The diagnostics are the mean absolute error (MAE), the root mean squared error (RMSE), the adjusted 
fraction of the cross-sectional variance in average excess returns explained by the model ( തܴଶ) and its weighted least squares version (ܴௐௌ

ଶ ሻ, and the J test statistic for the 
null of zero (weighted) sum of squared pricing errors; *, ** and *** denote test rejection at the 10%, 5% and 1% levels. The sample period is 1989:01-2011:08. 

 

  One‐step  

N +K +1 

 One‐step  

N +1 

 Two‐step 

N +K +1 

Iterative 

N +K +1 

γ0 0.002 0.002
(14.38) (3.77)

(1.26)
γM 3.004 5.667 4.814 4.939 0.004 0.002 12.40 8.148 4.463 6.050 7.249 2.316 3.674 2.303

(1.16) (1.62) (1.76) (1.97) (12.77) (7.77) (6.46) (2.71) (1.48) (1.80) (2.22) (1.29) (1.35) (1.19)
(1.86) (0.96)

γTS ‐23.94 ‐44.23 ‐32.77 ‐21.71 ‐0.018 ‐0.016 ‐20.67 ‐29.69 ‐41.89 ‐25.47 ‐22.85 ‐23.40 ‐35.47 ‐26.73
(‐4.12) (‐4.94) (‐4.97) (‐3.82) (‐4.28) (‐3.23) (‐5.96) (‐5.06) (‐5.87) (‐2.99) (‐2.46) (‐4.91) (‐5.28) (‐5.15)

(‐1.60) (‐1.54)
γHP ‐7.618 ‐18.40 ‐6.987 ‐5.797 ‐0.0033 ‐0.0014 ‐11.27 ‐8.656 ‐19.26 ‐28.20 ‐27.30 ‐12.24 ‐18.49 ‐12.27

(‐1.28) (‐2.11) (‐1.04) (‐1.00) (‐0.91) (‐0.38) (‐5.31) (‐2.44) (‐2.55) (‐3.75) (‐3.31) (‐2.54) (‐2.58) (‐2.38)
(‐0.27) (‐0.13)

γMom 24.90 47.54 39.43 29.06 0.0171 0.0133 19.01 29.73 52.11 48.39 44.74 28.14 44.24 30.21
(4.37) (5.22) (5.10) (4.46) (3.53) (2.67) (6.94) (6.32) (6.57) (5.95) (4.42) (5.71) (6.23) (5.83)

(1.51) (1.25)
MAE (%) 0.116 0.154 0.134 0.157 0.114 0.109 0.113 0.126 0.115 0.136 0.116 0.134
RMSE (%) 0.157 0.192 0.184 0.202 0.138 0.134 0.134 0.157 0.143 0.175 0.146 0.172

55.97 38.66 44.01 38.79 40.37 46.54 69.09 70.69 81.56 31.30 76.19 49.66 63.81 51.20

98.64 98.80

J  test 60.70 ** 33.94 33.60 37.17 30.67 47.35 29.94 30.73 * 25.81 34.76 32.85 33.83

  60% Equity 

40% Bonds
100% Equity  

 90% Equity 

10% Comm. 

Panel III: Market portfolio proxyPanel II: Testing assets

GMM estimation   OLS estimation

(covariance risk prices) (beta risk prices)
25 SMom,  

6 Bonds,  

S&P‐GSCI

25 SBM 25 SMom

Panel I: Methodology

   Fama‐MacBeth (1973)

Campbell (1993)  

EZ‐ICAPM 

Model 1   Model 2      

homosk   heterosk

2 (%)WLSR
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