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1 Introduction

The accurate specification of underlying asset distribution is crucial for option valuation frameworks.

In recent years, there has been a growing body of literature advocating for the incorporation of

heteroskedasticity of skewness in volatility models. These models utilize analytically approximation

of the innovations or non-Gaussian distribution when modelling the return and volatility dynamics.

This approach allows for more precise measurement and forecasting of asset volatility. The theo-

retical and empirical justifications for constructing reliable approximation such as Gram-Charlier

expansion have been provided by Jondeau and Rockinger (2001), Wang et al. (2022), Corrado

(2007), Schlögl (2013), Christoffersen et al. (2010), and other researchers consider a Cornish-Fisher

expansion (see, for example, Aboura and Maillard (2016)) or an Edgeworth expansion (Zhang

et al. (2011)). Notably, recent studies by Christoffersen et al. (2006), Barone-Adesi et al. (2008),

and Stentoft (2008) have provided option pricing framework considering non-Gaussian distribution

under discrete time GARCH-type models.

The aforementioned studies focus exclusively on applying mathematical tools such as a new

distribution to capture skewness in the underlying asset and do not consider incorporating the

empirical grounded properties simultaneously. Although dynamic volatility models with nonzero

third moment innovations are conceptually and theoretically attractive, current discrete-time mod-

els may lack the necessary flexibility to fully capture observed option biases, even when leverage

parameters are incorporated.

For instance, previous literature (Hull and White (1987), Christoffersen et al. (2006), Chernov

and Ghysels (2000),Christoffersen and Jacobs (2004), and so on) agree with the facts that 1) Out-

of-the-money put prices (and in-the-money call prices) are relatively high compared to the Black–

Scholes price; 2) Options with shorter maturity tend to exhibit stronger bias based on standard

models. These options are relatively more sensitive to the market conditions. Since trading occurs at

every tick, and traders price in their expectations to option prices instantaneously. It is necessary

to incorporate realized measures and skewness in the volatility modeling for deep in-the-money

(ITM) calls, deep out-of-the-money (OTM) puts, options with short maturities, and options traded

during periods of high market volatility. By introducing realized measures based on consideration

of non-zero third moments, we expect to filter more accurate information and subsequently derive

more precise option prices.
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Figure 1 presents a time series plot comparing the CBOE Skew Index and Realized Volatility.

Being similar to the CBOE VIX index, the CBOE SKEW Index (SKEW)1 is calculated from

the S&P 500 index options, reflecting the market expectation of distribution of the underlying

assets. Figure 1 reveals a notable negative correlation between the two variables. During periods

of market turbulence, such as the 2008 financial crisis and the 2020 stock market crash, Realized

Volatility reaches high levels, while the CBOE Skew Index stay at lower levels. Conversely, during

more stable market conditions, Realized Volatility tends to be lower, while the CBOE Skew Index

remains elevated. This indicates that options traders incorporate the probability of black swan

events into option prices, as captured by the Skew Index, during relatively calm market periods.

Furthermore, as depicted in Figure 1, the SKEW index has exhibited increasing volatility in recent

years, reaching its highest point in 2021, surpassing 170.
1CBOE SKEW Index White Paper: https://cdn.cboe.com/resources/indices/documents/SKEWwhitepaperjan2011.pdf
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Figure 1: CBOE Skew Index and Realized Volatility Times Series

Notes: Figure 1 plot the series of the CBOE Skew Index (SKEW, left axis) and realized volatility (RV, right axis) con-

structed by 5-minute close prices of S&P 500 index. The sample covers from January 3, 2000 to June 28, 2022. There

are 5592 observations. Daily Data of CBOE Skew Index is from https://www.cboe.com/us/indices/dashboard/skew/.

Realized volatilities constructed by 5-minute close prices are from the Realized Library.

From another perspective, Figure 2 illustrates a scatter plot depicting the relationship between

Realized Volatility (horizontal axis) and the CBOE Skew Index (vertical axis). The majority of

data points are concentrated in the lower-left region of the plot, indicating a significant negative

correlation between the two variables. This negative correlation implies that as market panic

intensifies, traders incorporate their bullish expectations into option prices, leading to a decrease

in the CBOE Skew Index.

Notably, the farthest data point on the right side of the plot corresponds to October 10, 2008,

which coincides with the highest level of Realized Volatility observed in Figure 1. This specific point

captures a period of heightened market volatility and uncertainty during the 2008 financial crisis.

The scatter plot reaffirms the negative relationship between Realized Volatility and the CBOE Skew
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Index, emphasizing the tendency for traders to incorporate their bullish outlook into option prices

when market conditions deteriorate.

The scatter plot provides empirical evidence of the dynamic interplay between Realized Volatility

and the CBOE Skew Index, highlighting the significance of market sentiment and the pricing of

options. The occurrence of high SKEW values is observed in connection with both low and high

values of VIX. It is worth noting that as RV rises to extreme values above 0.04, the upper limit

of SKEW values decreases. This phenomenon can be attributed to the fact that during periods of

plummeting stock prices, when the likelihood of a repeat crash may not be perceived as very high,

RV experiences a surge. This figure reinforces the importance of considering both volatility and

skewness in option pricing models to accurately capture market expectations and adequately price

options under different market conditions.

The accurate modeling of volatility dynamics in the underlying asset based on the realized

volatility is a crucial aspect of option valuation frameworks. A growing body of literature advocates

for incorporating empirically grounded properties into option pricing models. These studies utilize

observed (realized) quantities to update volatility, eliminating its latent nature. This modeling

approach enables more precise measurement and forecasting of asset volatility.

Researchers, including Andersen et al. (2001a), Andersen et al. (2001b), Barndorff-Nielsen

and Shephard (2002), and Corsi et al. (2013), among others, have provided both theoretical and

empirical support for the development of dependable measures of realized variance derived from

high-frequency intraday observations. Furthermore, recent studies by Christoffersen et al. (2015),

Christoffersen et al. (2014), Huang et al. (2017), Majewski et al. (2015), and Tong and Huang

(2021) illustrate that incorporating the dynamics of returns and realized variances together in op-

tion pricing models outperforms models that solely focus on optimizing returns.

Based on these insights, this study proposes an option pricing model that incorporates both

realized measures and nonzero skewness. Our modeling approach allows both dynamic volatilities

and skewness, and the inclusive model nests several previous discrete-time affine GARCH family

models with Gaussian distributed innovations. To stress the importance of joint information of

high-frequency observations and nonzero three moment distribution, the dynamic of skewness can

be indirectly upgraded by the realized measures.

We observe that both realized measures and skewness play a significant role in option pricing

for the SPX market across different time periods. Our newly proposed model, the Inverse Gaussian
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Figure 2: Skew-Volatility Negative Correlation Scatterplot

Notes: Figure 2 presents a scatter plot of realized volatility (RV) against skewness (SKEW) for the observed data.

The horizontal axis represents the RV values, while the vertical axis represents the corresponding SKEW values.

The scatter plot illustrates the relationship between RV and SKEW, showcasing the distribution of data points.

The highlighted red-colored data point in the bottom-right corner corresponds to the highest RV value observed

on October 10th, 2008, during the financial crisis. This data point serves as an exemplification of the significant

RV and comparatively low SKEW during periods of heightened market distress. The dataset used in this analysis

spans from January 3, 2000, to June 28, 2022, encompassing a total of 5592 observations. The daily data for

the CBOE Skew Index was obtained from the official website of the Chicago Board Options Exchange (CBOE) at

https://www.cboe.com/us/indices/dashboard/skew/. The realized volatilities, calculated based on 5-minute closing

prices, were constructed using the realized library.
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Affine Realized Volatility model, effectively captures the historical and risk-neutral distributions of

S&P 500 index returns. By optimizing the IG-ARV model using a dataset comprising S&P 500

index options, we achieve superior performance compared to various popular specifications. Notably,

incorporating the skewness leads to a notable improvement of 16.80% in pricing accuracy during out-

of-sample testing, surpassing the modeling of Gaussian distribution with realized measures, while

combining the realized measures reduces the pricing error by 30.60%, compared with only modeling

the skewed distribution of daily return and volatility. These findings highlight the importance of

considering the high-frequency information and the volatility smirk for effective risk hedging during

market turbulence and option trading.

This paper introduces a novel option pricing model that offers flexibility in accommodating

distinct overnight and intraday variance dynamics in the underlying asset price process. A key

aspect of this model is its reliance on nonparametric empirical proxies to capture the dynamics

of overnight and intraday variances. By incorporating these proxies, our model contributes to

the discrete-time framework. Furthermore, we leverage the multivariate Edgeworth-Sargan density

to derive analytical approximations for option valuation formulas, encompassing multiple nested

option-pricing specifications. This analytical approach simplifies the estimation process, enables

direct comparisons between nested models, and eliminates the need for simulation techniques.

The organization of the paper is as follows. In Section 2, we present the theoretical and empir-

ical arguments underpinning the use of realized volatility and inverse Gaussian distribution when

describing skewness. Section 3 introduces a novel option pricing model that is general enough to

variance dynamics and skewness in the underlying return process while drawing relevant information

from empirical quantities. In Section 4, we describe the physical estimation strategy and discuss

the different specifications that our option pricing framework encompasses. We also discuss the

estimation findings based on historical observations. Section 5 derives the option pricing formula

and investigates the empirical ability to fit the risk-neutral distribution embedded in option con-

tracts. We implement a risk-neutral optimization procedure and analyze the pricing performance

of proposed model in Section 6. Section 7 concludes.
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2 Realized Volatility and Skewness

2.1 Empirical Dynamics of Returns, Realized Volatilites, and Skewness

Figure 3 plots the daily time series of the S&P 500 index returns (Graph A) from January 3, 2000,

to June 28, 2022. Alongside, it presents the square root of the daily realized variances (Graph B),

and the skewness constructed by dividing the realized volatility of daily returns after subtracting

mean return (Graph C). The graph clearly depicts periods of market instability characterized by

significant fluctuations in returns and a heightened level of volatility. Notable turbulent periods

include the financial market crisis of 2008-2009, and 2020. We find that the adjusted skewness of

return tend to be more negative when encountering dramatic financial crisis, simutaneously to the

rise of realized volatilities plotted in Graph B. Note that the adjusted skewness of return present

a more volatile dynamic in recent times, especially after 2020, indicating that there exist some

information that cannot be captured by the first and second moments. It’s of great necessity to

specify a new dynamic model concerning heteroskedasticity in skewness.
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Figure 3: Time Series of Return, Realized Volatility, and Skew

Notes: Figure 3 presents the daily returns on the Standard & Poor’s (S&P) 500 index, Rt (Graph A); the daily

realized volatilities,
√
RVt (Graph B); and the daily RV-adjusted return skewness (Rt − E[Rt])/

√
RVt (Graph C).

Daily realized volatility quantities are computed from 5-minute squared returns, sourced from the Realized Library.

The sample starts on January 3, 2000, and ends on June. 28, 2022.

Table 1 presents the summary statistics of daily returns and realized volatilities series. We

report the annualized percentage values of mean, median, and standard deviation. Table 1 shows

that there exist negative skewness (-0.1957) in the return series, while existing positive skewness in

the realized volatility series (3.3007). The reported values are similar to previous literature such as

Feunou and Okou (2019).
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Table 1: Summary Statistics of Returns and Realized Volatilities

Summary Statistics of Returns and Realized Volatilities

Mean (%) Median (%) Std. Dev. (%) Skewness Kurtosis

Return 6.3468 17.7244 19.1222 -0.1957 11.0480
Realized Volatility 13.6637 11.1262 9.6992 3.3007 22.6621

Notes: Table 1 presents the summary statistics for the studied series. Mean, median, and standard deviation

values are annualized and in percentages. The sample starts on January 3, 2000, and ends on June. 28, 2022.

So far, we have shown the skewed property in the return series, we then further investigate the

properties of the distribution of realized volatility.

2.2 Right-Skewed Distribution of Realized Volatility

Many studies have revealed that the Inverse Gaussian distribution (Johnson et al. (1995), Barndorff-

Nielsen (1997b), Tweedie (1957), Barndorff-Nielsen (1997a), and so on) can effectively approximate

the properties of realized volatility. Forsberg and Bollerslev (2002) find that the distribution of

realized volatility, conditioned on past squared daily returns, as well as the unconditional distribu-

tion of realized volatility, can be effectively approximated by an Inverse Gaussian (IG) distribution.

Similarly, Barndorff-Nielsen and Shephard (2002) show that their model-based estimation of actual

volatility demonstrates a good fit, not only with the log-normal distribution but also with the in-

verse Gaussian distribution. Other studies, such as Barndorff-Nielsen and Shephard (2001), have

verified the use of inverse Gaussian models for volatility.

The frequency distribution of realized volatility values is further examined through a histogram

analysis, as depicted in Figure 4. The histogram, constructed with 70 bins, provides a comprehensive

visualization of the distribution characteristics within the sample period from January 3, 2000, to

June 28, 2022. The histogram showcases the varying frequencies of RV values across the observed

range. Notably, the distribution exhibits a distinct skewness, indicating the presence of asymmetry

in the realized volatility values. To assess the goodness of fit, an inverse Gaussian distribution

is fitted to the observed data, and the resulting black curve closely aligns with the histogram’s

distribution. This demonstrates the efficacy of the inverse Gaussian density function in accurately

capturing the distribution’s shape and properties, further confirming its suitability as a modeling
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framework for the RV dynamics.

Figure 4: Inverse Gaussian Fitted Realized Volatility
Notes: Figure 4 shows the frequency histogram illustrating the distribution of realized volatility values. The horizontal

axis represents the range of realized volatility values, while the vertical axis represents the frequency of occurrence.

The histogram consists of 70 bins and pertains to the sample period spanning from January 3, 2000, to June 28,

2022. The bars of the histogram are depicted in a gray color scheme, visually representing the distribution’s frequency

characteristics. In addition, a fitted inverse Gaussian distribution curve is overlaid in black, providing a representation

of the theoretical distribution that closely aligns with the observed realized volatility values. Remarkably, the

histogram displays a pronounced skewness in the distribution of realized volatility values, with the inverse Gaussian

density function effectively capturing and approximating this distribution.

We have observed significant skewness in both returns and realized volatility. Therefore, it

is crucial to incorporate skewness into our modeling framework. In particular, the conditional

skewness necessitates modeling along with the realized measures. Our subsequent objective is to

develop a dynamic return model that encompasses these distinctive features.

3 The Model

This section develops an option pricing model that allows dynamic conditional asymmetries in

returns. Compared with existing models in which conditional skewness is deterministically related
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to conditional volatility and both undergo the same return shocks, our proposed model features a

separate dynamic equation and innovations for conditional skewness to disentangle the dynamics of

conditional volatility and conditional skewness. Moreover, latent variables are updated using their

model-free realized measures constructed from high-frequency historical returns on the underlying

asset, therefore, the model incorporates the information contained in returns (Rt), realized variances

(RVt), and realized skewness (RSt). The flexibility that the model offers for conditional skewness

as well as high-frequency information from the underlying asset may contribute to better volatility

and skewness forecasts of the underlying asset, and thus to more accurate option prices.

3.1 New Dynamic Conditional Skewness Model

The objective of our model is to explicitly include dynamic conditional skewness in the option

pricing framework. In traditional models, investors express preferences in terms of the expected

returns and the associated variance of their portfolio holdings. However, extensive empirical research

suggests that the distribution of asset returns is inadequately described solely by mean and variance

parameters. This necessitates the incorporation of the third moment, conditional skewness, into

the option pricing framework (see, for example, Harvey and Siddique (2000)). Holding all other

variables constant, investors would have a preference for portfolios with positive skewness over those

with negative skewness. This paper disentangles the conditional variance and conditional skewness

of asset return. We then characterize how conditional skewness enters asset return.

3.1.1 Asset Return Process

We impose that the return on day t+1, namely that Rt+1, incorporates effect of conditional skewness

by: 1) including rewards for accepting the risk of conditional skewness of the underlying asset; 2)

innovating Rt+1 by a skewed shock other than Gaussian distributed innovation. Specifically,

Rt+1 = r +

(
λz −

1

2

)
ht + (λy − ξ) st +

√
htz1,t+1 + η1y1,t+1, (1)

where r is the risk-free rate, ht and st are state variables that depict conditional variance and

conditional skewness. The first innovation, zt+1, is a standard normal distributed shock, conditional

on the information set on day t. We opt for the inverse Gaussian conditional distribution as the

second innovation, yt+1. We consider the one-parameter inverse Gaussian distribution, yt+1|Ft ∼

IG(st), where st is time-varying degree of freedom parameter. Then the conditional expectation of



13

Rt+1,

Et (Rt+1) = r +

(
λz −

1

2

)
ht + (λy − ξ + η1) st, (2)

is a linear combination of state variables ht and st. The conditionally expected total return is

Et (exp (Rt+1)) = exp (r + λzht + λyst) , (3)

which in turn ensures that λz and λy can be viewed as compensation for diffusive volatility and

skewness exposure, respectively. The skewness compensator parameter, ξ, in our model is itself a

particular function of other parameters:

ξ =
√
1− 2η1 − 1. (4)

3.1.2 Conditional Variance and Conditional Skewness

From the model above, it is relatively straightforward to derive the conditional moments based on

properties of normal distribution and inverse Gaussian distribution. We have

Skewt (Rt+1) =
3η31st√

V art (Rt+1)
, (5)

implying that the conditional skewness is entirely determined by st. Therefore, the dynamic of st
fully captures conditional skewness.

Additionally, conditional variance of asset returns is comprised of two components, originating

respectively from shocks following a normal distribution and shocks following an inverse Gaussian

distribution. These components adhere to the equation depicted as follows:

V art (Rt+1) = ht + η21st. (6)

In practice, it is clear that ht and st are related, but not equal to the conditional variances and

skewness of Rt+1. Nevertheless, we can still formulate the dynamics of these two state variables

with corresponding realized measures.

3.1.3 The Gaussian Shocked Volatility Dynamic

We are prepared to outline the dynamics of Gaussian part of conditional variances. Following

previous studies (see, for example, Feunou and Okou (2019), Christoffersen et al. (2014)), we

postulate the subsequent recursive dynamics under GARCH framework:

ht+1 = ω + βht + α
(
z2,t+1 − γ

√
ht

)2
, (7)
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where innovation term z2,t+1 is standard normal distributed, satisfying Corr (z1,t+1, z2,t+1) = ρ.

α
(
z2,t+1 − γ

√
ht

)2 is a non-central Gamma distributed innovation term, capturing the asymmetric

shock on variance. Specifically, γ is the parameter that measures the leverage effect. From equation

(7), we obtain unconditional conditional gaussian-distributed variance, and volatility persistence:

Et

(
h̄
)
=

ω + α

1− Persistanceh
, (8)

where Persistanceh = β + αγ2. The observed realized measures, R̃Vt+1, and ht are supposed to be

linked as

R̃Vt+1 = ht + σ

[(
z2,t+1 − γ

√
ht

)2
−
(
1 + γ2ht

)]
, (9)

where Et

(
R̃Vt+1

)
= ht. The given specification of equation (7) and equation (9) indicates that ht

follow univariate first-order autoregressive (AR(1)) processes.

The subsequent moments implied by the dynamic model will be crucial for comprehending the

models’ effectiveness in fitting both returns, realized variances and options. To begin with, consider

the expectation of variance one day ahead, represented as follows:

Et (ht+1) = (ω + α) +
(
β + αγ2

)
ht. (10)

Moving on, the conditional variance of Gaussian shocked variance implied by the model can be

derived as follows:

V art (ht+1) = 2α2
(
1 + 2γ2ht

)
, (11)

and

V ar
(
R̃Vt+1

)
= 2σ2

(
1 + 2γ2ht

)
(12)

with a similar structure.

Lastly, the conditional covariances between returns, Gaussian shocked conditional variances,

scaled realized variances can be expressed as:

Covt (Rt+1, ht+1) = −2αγρht, (13)

Covt (RVt+1, Rt+1) = −2ργσht. (14)
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3.1.4 The Inverse Gaussian Shocked Skewness Dynamic

We then model conditional skewness under the GARCH framework following the innovation struc-

ture of Christoffersen et al. (2006) and Feunou and Tédongap (2012). The dynamic of st

st+1 = w + bst + cy2,t+1 + a
h2
t

y2,t+1
, (15)

where y2,t+1 has an inverse Gaussian conditional distribution with degrees of freedom parameter

δt =
h2
t

η2
, conditional on the available information set on day t. The one-day-ahead conditional

expectation can be derived as

Et (st+1) =
(
w + aη42

)
+ bst +

(
c

η22
+ aη22

)
ht, (16)

and the unconditional expectation is

E (s̄) =

(
w + aη42

)
+
(

c
η2
2
+ aη42

)
E
(
h̄
)

1− b
, (17)

implying that the unconditional expectation of s is a linear transformation of that of h, where E
(
h̄
)

is given by equation (8).

In order to keep the consistency of the framework, we impose Et

(
R̃St+1

)
= st. The measure-

ment equation then helps us build the relationship between realized measures and latent variable

sts:

R̃St+1 = st + d

[
cy2,t+1 + a

h2
t

y2,t+1
−
((

c

η22
+ aη22

)
ht + aη42

)]
. (18)

We refer to this general specification as the Dynamic Conditional Skewness (DCS) model. It is

noteworthy that the inclusion of the realized variance (RV) and realized skewness (RS) as factors

in the variance and skewness dynamic yields notable benefits in terms of both enhanced modeling

accuracy for current spot volatility and volatility term structure. Furthermore, this approach

enables the adoption of more flexible functional forms that effectively capture the skewness of the

underlying assets, which are pivotal elements in option valuation.

3.2 Nested Models
3.2.1 The Inverse Gaussian Affine Realized Volatility (IG-ARV) Model

Suppose there is only an inverse Gaussian distributed innovation in the return equation, we have

Rt+1 = r + vhRV
t + ηy1,t+1, (19)
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where r is the risk-free rate, and hRV
t is the conditional variance of return. Parameters v and

η describe the distribution of Rt+1, conditional on the information at time t. The parameter η

controls the spread or dispersion of the distribution. A negative η indicates that the distribution

is skewed towards the right. The inverse Gaussian distribution is used to model the daily returns,

where y1,t+1s are independent IG-distributed shocks with degrees of freedom parameter δt+1, which

is determined by the function hRV
t+1/η

2.

Then we specify the dynamic of hRV
t . Inverse Gaussian models for volatility were suggested

by Barndorff-Nielsen and Shephard (2001). We consider the following GARCH-type dynamic for

conditional variance.

hRV
t+1 = w + bhRV

t + cy2,t+1 + a

(
hRV
t

)2
y2,t+1

, (20)

where y2,t+1 satisfies inverse Gaussian distribution with degree of freedom δt+1, and Covt(y1,t+1, y2,t+1) =

0 for all t. Taking conditional expectation, we have

Et

[
hRV
t+1

]
= w + η4a+

(
b+

c

η2
+ aη2

)
hRV
t , (21)

and the unconditional variance can be derived as

E
[
h̄
]
=

w + η4a

1− Persistance , (22)

where

Persistence = b+
c

η2
+ aη2 (23)

denotes the volatility persistence set in the IG-ARV model. Additionally, the conditional variance

of variance is given by

V art[h
RV
t+1] =

(
c2

η2
− 2caη2 + aη6

)
hRV
t + 2a2η8, (24)

which also satisfies an affine structure. Finally, the observed RVt+1 and its conditional expectation

hRV
t are assumed to be linked as follows:

RVt+1 = hRV
t + d

[
cy2,t+1 + a

(
hRV
t

)2
y2,t+1

−
((

c

η2
+ aη2

)
hRV
t + aη4

)]
. (25)

Note that we hold the property that Et [RVt+1] = hRV
t , and the conditional variance of RVt+1 can

be derived as

V art[RVt+1] = d2
((

c2

η2
− 2caη2 + aη6

)
hRV
t + 2a2η8

)
. (26)
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3.2.2 The Affine Realized Volatility (ARV) Model

Wald (1947) has shown that y will converge to an asymptotic normal distribution as δ → ∞.

Therefore, for a finite h, we can let η → 0 to obtain a normal distribution. Therefore, the IG-ARV

model exhibits a close relationship with conventional GARCH processes. This connection becomes

apparent by considering the parameterization and taking the limit as η approaches zero:

v +
1

η
= λ, w + aη4 = ω + α,

b+
c

η2
+ aη2 = β + αγ2, aη4 = α,

c

η
− η3a = −2αγ, d2

(
c

η
− η3a

)2

= 4σ2γ2
2 ,

d2 · 2a2η8 = 2σ2.

(27)

then the IG-ARV model converges to the Affine Realized Volatility (ARV) model in Christoffersen

et al. (2014). The ARV model considers normal distribution shocks ε1,t+1 and ε2,t+1:

Rt+1 = r + λhRV
t − 1

2
hRV
t +

√
hRV
t ε1,t+1,

RVt+1 = hRV
t + σ

[(
ε2,t+1 − γ2

√
hRV
t

)2

−
(
1 + γ2

2h
RV
t

)]
,

hRV
t+1 = ω2 + β2h

RV
t + α2

(
ε2,t+1 − γ2

√
hRV
t

)2

.

(28)

It can be shown that the parameterization presented in Equation (27) ensures that the first two

conditional moments of the IG-ARV model align with those of the ARV model.

Proof: See Appendix A. ■

3.2.3 The Inverse Gaussian GARCH (IG GARCH) Model

If we close the dynamic of realized measures, and keep only one IG-distributed shock, y1,t+1, then

we obtain the Inverse Gaussian GARCH (IG GARCH) Model (Christoffersen et al. (2006)):

rt+1 = r + vht+1 + ηyt+1, (29)

ht+1 = w + bht + cyt + a
h2
t

yt
, (30)

where the degree of freedom of yt+1 is δt+1 = ht+1

η2 . The IG GARCH model involves integrating an

inverse Gaussian distribution with a volatility dynamic that follows a GARCH(1,1) model.
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3.2.4 The Heston-Nandi GARCH (HNG) Model

As the degrees of freedom parameter tends towards infinity, the standardized inverse Gaussian

distribution approaches the standard Gaussian distribution. By closing the measurement equation

of the ARV model, we can obtain the Heston-Nandi GARCH (HNG) model (Heston and Nandi

(2000)):

Rt+1 = r + λht −
1

2
ht +

√
htεt+1,

ht+1 = ω2 + β2ht + α2

(
εt+1 − γ

√
ht

)2
.

(31)

The relationship between the HNG model and the IG GARCH model is parallel to the relationship

between the ARV model and the IG-ARV model. As expected, The parameterization (except the

last equation) presented in equation (27) establishes a congruence between the first two conditional

moments of the IG GARCH model, and those of the HNG model.

4 Physical Measure Estimation

4.1 Optimization Method

In the computation of the conditional quasi-likelihood function, the observation vector for day t+1

is factored into its constituent components by leveraging both marginal densities and a Gaussian

copula function. Formally expressed, the likelihood contribution of the observation vector for day

t+ 1 is:

ft

(
Rt+1, R̃Vt+1, R̃St+1

)
=fr,t (Rt+1) fh,t

(
R̃Vt+1

)
fs,t

(
R̃St+1

)
× ct

(
Fr,t (Rt+1) , Fh,t

(
R̃Vt+1

)
, Fs,t

(
R̃St+1

))
,

(32)

where fr,t (Rt+1) , fh,t

(
R̃Vt+1

)
, and fs,t

(
R̃St+1

)
are the conditional marginal densities as-

sociated with returns, realized variance, and realized skewness, respectively. Correspondingly,

Fr,t (Rt+1) , Fh,t

(
R̃Vt+1

)
, and Fs,t

(
R̃St+1

)
are the conditional marginal cumulative distribution

functions (CDFs) related to these observations. The function ct (v, vh, vs) specifies the density as-

sociated with a Gaussian copula. Note that the innovation term in the measurement equation of
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ht+1 is Gaussian distributed, we have

fh,t

(
R̃Vt+1

)
=

exp

(
−

(
R̃Vt+1−ht

)2

2 vart
[
R̃Vt+1

]
)

√
2π vart

[
R̃Vt+1

] , (33)

Fh,t

(
R̃Vt+1

)
= Φ

 R̃Vt+1 − ht√
vart

[
R̃Vt+1

]
 , (34)

where Φ(·) is the Cumulative Distribution Function (CDF) of a standard normal distribution, while

the variance values vart

[
R̃Vt+1

]
are elaborated in equation (12). We also obtain

fs,t

(
R̃St+1

)
= fs,t (y2,t+1)

∣∣∣∣∣ dy2,t+1

dR̃St+1

∣∣∣∣∣
=

δt√
2π
(

−B1+
√
∆

2A1

)3 exp

−1

2

√−B1 +
√
∆

2A1
− δt√

−B1+∆
2A1

2
 ·

∣∣∣∣ 1

2A1

(
1− B1√

∆

)∣∣∣∣

=
δt√

∆π
(

−B1+
√
∆

A1

) exp

−1

2

√−B1 +
√
∆

2A1
− δt√

−B1+∆
2A1

2
 ,

(35)

and the conditional CDF of R̃St+1 is

Fs,t

(
R̃St+1

)
= Φ

 −δt√
−B1+

√
∆

2A1

+

√
−B1 +

√
∆

2A1

+ e2δtΦ

 −δt√
−B1+

√
∆

2A1

−

√
−B1 +

√
∆

2A1

 ,

(36)

where

A1 = dc, B1 = st − d

((
c

η22
+ aη22

)
ht + aη42

)
− R̃St+1, C1 = dah2

t , ∆ = B2
1 − 4A1C1. (37)

We impose that the asset return is innovated by both normal distribution and a skewed dis-

tribution (IG distribution), respectively. It is important to recognize that the exact conditional

marginal density of returns, denoted as fr,t (Rt+1), manifests as a convolution of a normal density

and an inverse Gaussian density. This function is lacking a closedform representation.
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However, the conditional characteristic function φr,t(v) for Rt+1 is obtainable in a closed-form

expression. Explicitly, this function is given as:

φr,t(v) ≡ Et

[
eivRt+1

]
= exp

(
ivr + ivλz +

(
iv (λy − ξ) + 1−

√
1− 2η1iv

)
st

)
,

(38)

where i stands for the imaginary unit. This characteristic function provides a comprehensive math-

ematical framework to capture the dynamics of conditional returns, especially in scenarios where

the marginal density fails to offer a tractable form. Thus, we exploit Fourier inversion formulas to

compute the quantities of interest:

Fr,t (Rt+1) =
1

2
− 1

π

∫ ∞

0

Im
[
e−iνRt+1φr,t(v)

]
ν

dν, (39)

fr,t (Rt+1) =
1

π

∫ ∞

0

Re
[
e−iνRt+1φr,t(ν)

]
dν. (40)

Additionally, the Gaussian copula function is formally specified as

ct (v, vh, vs) =
1√

|CMt|
exp

−1

2
(v, vh, vs)

(
CM−1

t − I3
)


v

vh

vs


 ,

where CMt denotes the conditional correlation matrix for
(
Rt+1, R̃Vt+1, R̃St+1

)
, represented as

CMt =


1 ρt 0

ρt 1 0

0 0 1


Here, ρt is defined as the conditional correlation between Rt+1 and R̃Vt+1 and is expressed as

ρt =
covt

(
Rt+1, R̃Vt+1

)
√
vart [Rt+1] vart

[
R̃Vt+1

] ,
where covt

(
Rt+1, R̃Vt+1

)
, vart [Rt+1], and vart

[
R̃Vt+1

]
are elaborated in equation (12). Subse-

quently, the log-likelihood function is computed via

lnLP =

T−1∑
t=1

ln
(
ft

(
Rt+1, R̃Vt+1, R̃St+1

))
. (41)
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This log-likelihood metric serves as an aggregate measure of the fit between the observed data and

the model, encapsulating the combined contributions from returns and both realized variances and

realized skewness.

4.2 Estimation Results

Table 2 presents the outcomes obtained through maximum likelihood estimation based on historical

data using the physical distribution. The data covers the period from January 3, 2000, to December

31, 2019. The parameters ω and w are estimated by aiming for the unconditional sample variance,

which can be implied from the unconditional variance equation of each model.

In all considered models, the market price of risk is ascertained to be positive, a characteristic

that can be directly inferred from the parameters λ in the ARV model and the HNG model.

Similarly, in the IG model and the IG-ARV model, the equation v + 1
η yields equivalent outcomes,

further indicating a positive market price of risk.

The results imply properties of skewness and volatility. The estimates of η in both the IG-

ARV model and the IG model are negative and statistically significant, which implies that the

inverse Gaussian distribution to display negative skewness. Negative ηs filtered by these models

also explain the negative relationship between skewness and volatility, as in equation (??). When

considering an offsetting positive value of vht+1 in the return equation, the dynamic nature of the

system can produce both positive and negative returns that are centered around a small positive

value. Moreover, the positive and statistically significant γ in the HNG model and the ARV

model indicate the leverage effect. The parameter d in the IG-ARV model is also significant and

statistically positive, indicating the necessity and utility of the modelling of measurement equation.

The likelihood values provide us with the means to evaluate the effectiveness of the different

specifications being considered. The loglikelihood value of the IG-ARV model is 67428, exceeding

the other models. Therefore, the IG-ARV model exhibits better ability while fitting the observed

data. Note that loglikelihood values of models considering realized measures (the IG-ARV model

and the ARV model) are generally larger than the models only considering daily close-to-close

return dynamics. Additionally, the second-to-last row of Table 2 reports the volatility persistence

of each model. All models exhibit variance persistence levels above 0.96.
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Table 2: Estimation on Historical Returns and Realized Variance

Estimation on Historical Returns and Realized Variance

Parameters IG-ARV IG ARV HNG

v 796.21651 1047.7570
(104.9118) (24.6388)

λ 0.7330 1.49E-06
(0.0146) (0.0040)

a 2.35E+04 5.30E+06
(262.9164) (7.15E+05)

α 4.82E-06 4.47E-06
(2.40E-08) (4.72E-09)

b -0.1964 -10.7152
(0.0285) (0.9741)

β 3.96E-06 0.7718
(1.66E-07) (0.0022)

c 1.99E-06 6.25E-06
(1.38E-08) (2.44E-07)

γ 454.2649 211.3512
(1.2055) (0.8895)

d 1.1363
(0.0751)

σ 9.15E-06
(1.43E-07)

η -0.0013 -9.54E-04
(5.93E-05) (2.24E-05)

πP 0.9602 0.9705 0.9948 0.9715
L 67428 16447 57616 16384

Notes: The estimation results for the five models using maximum likelihood estimation are presented in Table 2.

The dataset comprises daily returns and realized measures of the Standard & Poor’s (S&P) 500 index, covering

the period from January 3, 2000, to December 31, 2019. The Inverse Gaussian Affine Realized Volatility (IG-

ARV) model and the Affine Realized Volatility (ARV) model are estimated using close-to-close returns and

realized variances. The Inverse Gaussian GARCH (IG) model and the Heston-Nandi GARCH (HNG) model are

estimated using close-to-close returns. The estimated parameters are reported, with their respective standard

errors denoted in parentheses. In order to facilitate model comparison, the last row displays the log likelihood

value, while the second-to-last row presents the measure of volatility persistence, calculated based on the specific

characteristics of each model.
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5 Option Pricing Procedures

5.1 Moment Generating Function (MGF)

In order to obtain the characteristic function of the process, we follow previous literature concerning

closed-form option pricing formula (see, for example, Christoffersen et al. (2006); Christoffersen

et al. (2014), and so on) and derive the Moment Generating Function (MGF). We show that the

moment generating function is affine, which satisfites

Ψt,t+M (u) ≡ Et

exp
u

M+1∑
j=1

Rt+j

 = Et

Et+1

exp
u

M+1∑
j=1

Rt+j


= exp (A(u,D(u,M), F (u,M))ht+1 +B(u,D(u,M), F (u,M))st + C(u,D(u,M), F (u,M)) +G(u,M)) ,

(42)

the recursive rule can be written as

D(u,M + 1) = A(u,D(u,M), F (u,M)),

F (u,M + 1) = B(u,D(u,M), F (u,M)),

G(u,M + 1) = C(u,D(u,M), F (u,M)) +G(u,M).

(43)

where

D(u, 1) = A(u, 0, 0)

F (u, 1) = B(u, 0, 0),

G(u, 1) = C(u, 0, 0).

(44)

See Appendix B for the explicit expression for the terms

Proof: See Appendix B. ■

5.2 Risk Neutralization

The dynamic conditional skewness (DCS) model under Q measure is given by

Rt+1 = r − 1

2
ht −

(√
1− 2η∗1C

2 − 1
)
s∗t +

√
htz

∗
1,t+1 + η∗1y

∗
1,t+1, (45)

ht+1 = ω + βht + α
(
z∗2,t+1 − γ∗

√
ht

)2
, (46)

s∗t+1 = w∗ + bs∗t + c∗y∗2,t+1 + a∗
(h∗

t )
2

y∗2,t+1

, (47)
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R̃Vt+1 = h∗
t + σ

[(
z∗2,t+1 − γ∗

√
ht

)2
−
(
1 + γ∗2h∗2

t

)]
, (48)

R̃St+1 = st + d

[
cy2,t+1 + a

h2
t

y2,t+1
−
((

c

η22
+ aη22

)
ht + aη42

)]
. (49)

where

η∗1 = η1C, w∗ =
w√
C
, c∗ =

cD√
C
, a∗ =

a

D
√
C (1 + σ2 (γ∗2 − γ2))

2 .

The mapping relationship of state variables and innovations between P measure and Q measure is

shown in Appendix C.

Proof: See Appendix C. ■

5.3 Option Pricing Formula

By applying Fourier inversion on the risk-neutral conditional characteristic function, we obtain the

following proposition.

Proposition 1 At time t, the price of a European call option matures at time t+M is:

C(t,M) = StP1(t,M)− exp(−rM)XP2(t,M), (50)

where

P1(t,M) =
1

2
+

∫ +∞

0

ℜ

ΨQ
t,t+M (1 + iu) exp

(
−rM − iu log

(
X
St

))
πiu

 du,

P2(t,M) =
1

2
+

∫ +∞

0

ℜ

ΨQ
t,t+M (iu) exp

(
−iu log

(
X
St

))
πiu

 du,

(51)

where ΨQ
t,t+M can by replacing parameters in Ψt,t+M based on results in subsection 5.2.

5.4 Option Data

We utilize European options that are based on the S&P 500 index. The data we analyze covers

the time frame from January 6, 2016, to December 18, 2019. In line with literature for researching

the option skewness, we apply a number of standard filters to the data. We only keep European

call options sample, and keep observations on Wednesdays. The option dataset consist of option

contracts on 205 Wednesdays. Following Christoffersen et al. (2006) and Bakshi et al. (1997), we



25

restrict attention to option contracts with maturities between 7 and 180 days, and price quotes

lower than $3/8 are not included. Quotes not satisfying the arbitrage restriction

C(t, τ) ≥ max(0, S(t)−K,S(t)− D̄(t, τ)−KB(t, τ))

are taken out of the sample as well. Finally, our option dataset contain 173158 observations.

Table 3 gives an overview of the full-sample data, sorting by moneyness (S/K) and days-to-

maturity (DTM). Options are divided into out-of-the-money ones (S/K < 0.97), at-the-money ones

(0.97 ⩽ S/K < 1.03), and in-the-money ones (S/K ⩾ 1.06) by moneyness. The proposed moneyness

and maturity classifications produce 36 categories for which the empirical results will be reported.

Option prices are reported with notation $, bid-ask spread are reported in the parentheses, and the

number of contracts are reported in the braces. The average call option price for the full sample is

$43.62 and the average bid-ask spread is 0.93. Nearly 41.18% contracts lies in the group with DTM

< 30, with a short day-to-maturity. With the DTM increases, the number of contracts decreases,

while the average price increases. Bid-ask spread is the smallest for options with 30-60 days to

maturity From the perspective of moneyness, 55.74% observations are ATM options. Average price

and bid-ask spread increase with moneyness, implying that the intrinsic value of ITM calls and the

liquidity of OTM calls.

Our data is divided into two periods: an in-sample period and an out-of-sample period. We

apply the in-sample period to estimate the models while applying the results to explore the pricing

error in the out-of-sample period. The in-sample period spans from January 6, 2016 to December 26,

2018. The out-of-sample period spans from January 2, 2019 to December 18, 2019. The recognizable

volatility smirk can be observed in Table 4. When examining deep in-the-money call options with

less than 30 days until maturity, the average implied volatility is 28.77%, whereas the corresponding

out-of-the-money call options have implied volatilities of less than 17.53%. However, as maturity

increases, the smirk tends to flatten out. For options with more than 150 days until maturity, deep

in-the-money calls have average implied volatility of around 20%, while out-of-the-money calls have

average implied volatility nearly 11%.

The observed characteristics can also be shown in Figure 5. Figure 5 is generated with four

subplot. Subplot (a) represents the implied volatility (IV) smirk for in-sample options with a

maturity period (T) of less than 30 days. Subplot (b) displays the IV smirk for in-sample options

with a maturity period of 30 days or more. Subplot (c) presents the IV smirk for out-of-sample
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Table 3: Sample Properties of S&P 500 Index Options

Moneyness Days-to-Maturity

S/K <30 30-60 60-90 90-120 120-150 >150 Subtotal

OTM

<0.94 $1.0140 $1.8322 $3.9381 $5.6319 $7.1442 $10.2967 $3.5860

(0.2583) (0.3002) (0.3923) (0.4572) (0.5092) (0.6382) (0.3712)

{2175} {8062} {3873} {2478} {1622} {1122} {19332}

0.94-0.97 $2.5001 $5.5174 $12.7058 $20.1375 $29.8769 $40.1327 $7.6388

(0.2583) (0.3368) (0.5117) (0.6459) (0.7677) (0.9850) (0.3765)

{11357} {16468} {4779} {2290} {970} {581} {36445}

ATM

0.97-1.00 $10.9120 $22.6246 $38.4705 $53.4278 $66.0420 $76.0613 $20.6123

(0.4000) (0.5657) (0.7622) (0.9278) (1.0203) (1.1877) (0.5278)

{29137} {19311} {5115} {2379} {962} {553} {57457}

1.00-1.03 $48.0328 $63.5765 $80.0355 $53.4278 $66.0420 $76.0613 $20.6123

(1.2301) (1.0227) (1.1039) (1.2554) (1.2652) (1.4881) (1.1556)

{20769} {12672} {3317} {1396} {583} {320} {39057}

ITM

1.03-1.06 $107.2964 $118.3561 $135.3762 $149.4875 $160.9370 $171.8856 $118.4182

(3.2344) (1.9713) (1.5388) (1.7240) (1.9026) (2.0535) (2.4648)

{5679} {4773} {1482} {566} 274 {170} {12944}

>=1.06 $234.9214 $258.9795 $291.7120 $341.1983 $354.8294 $367.7687 $275.6942

(5.3573) (3.9288) (3.3761) (3.4247) (3.5783) (3.5153) (4.1489)

{2188} {2911} {1262} {754} {474} {334} {7923}

Subtotal

$34.6327 $41.5437 $55.8299 $67.0211 $354.8294 $367.7687 $43.6152

(0.9928) (0.8209) (0.9111) (1.0270) (1.1274) (1.2807) (0.9306)

{71305} {64197} {19828} {9863} {4885} {3080} {173158}

Notes: Table 3 reports average option price, bid-ask spread and number of contracts. It consist of the average

quoted bid-ask mid-point price and the average effective bid-ask spread (obtained by subtracting the ask price

from the bid-ask mid-point). These values are presented in parentheses. Additionally, the total number of

observations for each moneyness-maturity category is shown in braces. The data used for analysis spans January

6, 2016, to December 18, 2019, resulting in a total of 173,158 call options. The summary statistics are derived

from the daily information of the last quote for each option contract, obtained prior to 3:00 p.m. CST. In

this context, S represents the spot S&P 500 index level, and K denotes the exercise price. The terms “OTM”,

“ATM”, and “ITM” indicate out-of-the-money, at-the-money, and in-the-money options, respectively.
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Table 4: Implied Volatility, In-Sample and Out-of-Sample

Moneyness Days-to-Maturity

S/K <30 30-60 60-90 90-120 120-150 >150

Panel A. In-Sample, 2016-2018

<0.94
0.1753 0.1337 0.1204 0.1106 0.1084 0.1116

(1,801) (5,880) (2,640) (1,622) (1,052) (716)

0.94-0.97
0.1259 0.1004 0.1018 0.1044 0.1085 0.1169

(7,432) (11,402) (3,295) (1,490) (593) (350)

0.97-1.00
0.1005 0.1020 0.1117 0.1201 0.1227 0.1275

(20,011) (13,775) (3,610) (1,544) (575) (350)

1.00-1.03
0.1233 0.1236 0.1314 0.1383 0.1394 0.1441

(14,472) (9,180) (2,440) (921) (337) (206)

1.03-1.06
0.1717 0.1511 0.1498 0.1555 0.1545 0.1599

(4,105) (3,753) (1,099) (385) (185) (118)

>=1.06
0.2877 0.2172 0.2058 0.2113 0.2033 0.2008

(1,570) (2,327) (962) (542) (324) (223)

Panel B. Out-of-Sample, 2019

<0.94
0.1377 0.1199 0.1164 0.1138 0.1156 0.1174

(374) (2,182) (1,233) (856) (570) (406)

0.94-0.97
0.1146 0.1134 0.1134 0.1180 0.1235 0.1263

(3,925) (5,066) (1,484) (800) (377) (231)

0.97-1.00
0.1147 0.1210 0.1292 0.1355 0.1406 0.1439

(9,126) (5,536) (1,505) (835) (387) (203)

1.00-1.03
0.1437 0.1455 0.1488 0.1522 0.1547 0.1597

(6,297) (3,492) (877) (475) (246) (114)

1.03-1.06
0.1808 0.1725 0.1694 0.1732 0.1725 0.1758

(1,574) (1,020) (383) (181) (89) (52)

>=1.06
0.2592 0.2230 0.2189 0.2222 0.2199 0.2148

(618) (584) (300) (212) (150) (111)

Notes: Table 4 reports the implied volatility of S&P 500 index options. The implied volatilities of individual calls

are then averaged within each moneyness-maturity category. Moneyness is determined by comparing the spot

S&P 500 index level (denoted as S) with the exercise price (denoted as K). The number of contracts are reported

in the parentheses. The period of analysis for the in-sample data ranges from January 6, 2016, to December 26,

2018. On the other hand, the out-of-sample data covers the period from January 2, 2019, to December 18, 2019.
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options with a maturity period of less than 30 days, while subplot (d) shows the IV smirk for

out-of-sample options with a maturity period of 30 days or more.

Figure 5 shows that as the maturity period (T) increases, the IV smirk becomes flatter. This

observation aligns with the conclusions derived from Table 4. Specifically, when considering in-

sample options, those with shorter maturities exhibit a more pronounced IV smirk, with larger

differences in implied volatility between deep in-the-money and out-of-the-money options. However,

as the maturity period increases, the differences in implied volatility between these options become

less pronounced, resulting in a flatter IV smirk.

5.5 Fitting Options

We evaluate the performance of different models by utilizing the implied volatility rootmean-squared

error (IVRMSE) metric, which has been advocated by Renault (1997) as a suitable tool for com-

paring model performance in option pricing. The IVRMSE quantifies the discrepancy between

model-based and market-based implied volatilities. To compute the IVRMSE, we employ the Black

and Scholes (1973) formula (BS) to invert the model-based option price, denoted as CMod
j , for each

contract $j$. Consequently, the model-based implied volatility, denoted as IVMod
j , can be formally

derived as:

IVMod
j = BS−1

(
CMod

j

)
.

a similar procedure to obtain the market-based implied volatilities, denoted as IVMkt
j :

IVMkt
j = BS−1

(
CMkt

j

)
.

Consequently, the implied volatility error, denoted as $e−j$, is computed as the difference between

the market-based and model-based implied volatilities:

ej = IVMkt
j − IVMod

j

The IVRMSE is then obtained as the square root of the mean of the squared errors:

IVRMSE ≡

√√√√ 1

N

N∑
j=1

e2j ,

where N represents the size of the option sample. The IVRMSE serves as a comprehensive mea-

sure of the overall discrepancy between the model’s implied volatilities and the market’s implied

volatilities, allowing for a robust comparison of model performance in option pricing.
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(a) In-sample, T<30 (b) In-sample, T⩾30

(c) Out-of-Sample, T<30 (d) Out-of-Sample, T⩾30

Figure 5: In-sample and Out-of-Sample Implied Volatility

Notes: The graph illustrates the implied volatility (IV) smirk for different subsets of S&P 500 index options based on

their maturity period (T) and whether they are in-sample or out-of-sample. Subplot (a) represents the IV smirk for

in-sample options with a maturity period of less than 30 days, consisting of a total of 49,391 observations. Subplot

(b) displays the IV smirk for in-sample options with a maturity period of 30 days or more, comprising a larger dataset

of 71,896 observations. Subplot (c) shows the IV smirk for out-of-sample options with a maturity period of less than

30 days, consisting of 21,914 observations. Finally, subplot (d) presents the IV smirk for out-of-sample options with

a maturity period of 30 days or more, which includes 29,957 observations.
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The estimation of model parameters through the minimization of IVRMSE involves significant

computational intensity since the Black-Scholes Model (BSM) inversion needs to be performed

for each set of model option prices attempted by the optimizer. To overcome this, we adopt the

approach proposed by Trolle and Schwartz (2009), who minimize the vega-weighted root-mean-

squared error (VWRMSE) instead:

VWRMSE ≡

√√√√ 1

N

N∑
j=1

e2j ≡

√√√√ 1

N

N∑
j=1

(
CMKT

j − CMOD
j

BSVMKT
j

)2

where BSVMKT
j represents the Black-Scholes vega option (the derivative with respect to volatility)

computed using the market-implied volatility level. IVRMSE and VWRMSE generally yield similar

values. In the subsequent tables, we will report both IVRMSE and VWRMSE, but our analysis will

primarily focus on the IVRMSE values. Instead of directly minimizing VWRMSE, we estimate the

risk-neutral parameters by maximizing the likelihood function based on Gaussian vega-weighted

option errors:

lnLO ∝ −1

2

N∑
j=1

{
ln
(
VWRMSE2

)
+

e2j

VWRMSE2

}
where ej represents the individual option errors.

Table 5 presents the results of the option-based estimation. It is evident that our option-fitting

approach produces accurate parameter estimates, as indicated by relatively small standard errors

and substantial model likelihoods. Since we solely fit the model on options, the resulting estimates

correspond to risk-neutral parameters. Consequently, we do not estimate the market prices of risk,

that is, parameters v and λ. It is important to note that, to ensure model consistency during the

estimation process, we filter volatility on returns and realized variance (RV) while fitting the option

implied volatilities (IVs). Following the historical estimation approach, we apply variance targeting

method to and the theoretical unconditional risk-neutral variance formula to match sample variance.
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Table 5: In-Sample Estimation Results on Options: 2016-2018

In-Sample Estimation Results on Options: 2016-2018

Parameters IG-ARV IG ARV HNG

a 105.3807 -465.1278
(248.3539) (3.4471)

α 3.79E-10 3.42E-06
(1.02E-08) (4.25E-08)

b 1.0101 0.8996
(0.0338) (0.0003)

β 0.9837 0.8266
(0.3775) (0.1100)

c -4.72E-06 5.19E-06
(6.56E-07) (4.18E-09)

γ 229.5147 213.1854
(94.0646) (75.8540)

d 5.9185
(0.6588)

σ 3.18E-06
(1.80E-07)

η -0.0065 -0.0066
(2.52E-06) (8.72E-06)

πQ 0.9016 0.9998 0.9837 0.9821
L 222188 87334 224858 67428

Notes: Table 5 presents the risk-neutral estimation results for the inverse Gaussian Affine Realized Volatility

(IG-ARV) model, the inverse Gaussian GARCH (IG) model, the Affine Realized Volatility (ARV) model, and

the Heston-Nandi GARCH (HNG) model. The data used for estimation comprises Wednesday European call

contracts sourced from OptionMetrics. Several filters are applied to clean the option data, as illustrated in the

data-cleaning subsection. The observed period spans from January 6, 2016, to December 26, 2018, corresponding

to the in-sample data in Table 4. The estimated parameters and their corresponding standard errors are reported.

Standard errors are reported in the parentheses. The final row presents the loglikelihood values for each model.

The second-to-last row reports the volatility persistences under Q measure, defined by the dynamics of each

model, respectively.



32

We observe that the estimates of the IG-ARV model and the IG model exhibit a high degree

of similarity, while the estimates of the ARV model and the HNG model also show considerable

similarity. The estimated coefficients for η remain negative and statistically significant, supporting

the negative relationship mentioned in the interpretation of Table 2. Additionally, the estimated

coefficients for γ remain positive and statistically significant, indicating the robust presence of the

leverage effect. The volatility persistences under Q measure exceed 0.90 for each of the models.

The log-likelihood values for the IG-ARV model and the ARV model are 222,188 and 224,858,

respectively, as both models incorporate the Lt(RVt+1) component.

6 Empirical Pricing Performance

6.1 In-Sample Pricing Performance

We proceed to analyze the IVRMSE results based on the parameters presented in Table 5 by

categorizing the data based on moneyness, maturity, and VIX levels. Moneyness and maturity

utilize the bins defined in Table 3. The decomposed IVRMSE results are reported in Table 6.

Table 6 presents the in-sample IVRMSE values for different models. The IG-ARV model demon-

strates an IVRMSE of 5.2985, indicating a relatively low level of discrepancy between the model-

based implied volatilities and the observed market volatilities. In comparison, the IG model, which

also incorporates the inverse Gaussian distribution to model returns and volatility but lacks high-

frequency information, exhibits a higher IVRMSE of 6.9496. Similarly, the ARV model, which

incorporates high-frequency information but models the dynamic of realized variances using a nor-

mal distribution, shows a higher IVRMSE of 5.3981. The HNG model, which solely considers daily

return and volatility dynamics with a normal distribution, displays the highest IVRMSE of 10.2170.

By incorporating skewness, the IG-ARV model reduces the IVRMSE by 1.85% compared to the

IG model. Furthermore, by incorporating high-frequency information and modeling the dynamics

of realized variances, the IG-ARV model reduces the IVRMSE by 23.76% compared to the ARV

model. In terms of pricing performance, when compared to the HNG model that only models daily

return and volatility, the IG-ARV model exhibits a significant improvement of 48.14%.

Furthermore, Table 6 reveals that the overall improvement in option fit achieved by the IG-ARV

model is not driven by any specific subset of the data. However, it is noteworthy that the IG-ARV
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model demonstrates particularly strong performance when pricing options with a shorter time to

maturity (DTM) of less than 30 days. This subset, as shown in Table 3, constitutes approximately

41.18% of our sample. Options with a DTM of less than 30 days exhibit a distinct volatility

smirk, suggesting that the combination of the inverse Gaussian distribution and the inclusion of

high-frequency information contributes to enhanced option valuation performance in this category.

Consider now the Panel C of Table 6, which reports the IVRMSE across VIX level categories.

We see that the IG-ARV model performs the best in the highest VIX level category, where all the

models displays the highest IVRMSE. The IG-ARV model reduces IVRMSE by 9.51% than the sec-

ond best performing model. Containing empirical quantities improves the pricing performance by

28.95% given inverse Gaussian distributed innovation (comparing to the IG model), while consid-

ering skewness help to reduce the IVRMSE by 25.21% given upgrading the forecasting of volatiltity

using the realized measures.

6.2 Out-of-Sample Pricing Performance

We further analyze the overall IVRMSE results based on the estimates in Table 5 by disaggregating

the data according to moneyness, maturity, and VIX levels. This segmentation, based on the bins

provided in Table 3, allows us to examine the individual components of the IVRMSE. Table 7

reports the detailed breakdown of these results.

The first column of Table 7 reports the out-of-sample total IVRMSE of the IG-ARV model,

the IG model, the ARV model, and the HNG model. We find, that the IVRMSEs are relatively

smaller than those in Table 6, and the IG-ARV model still performs the best among the four models.

Total IVRMSE of the IG-ARV model is 5.2985, reducing the pricing error of 16.80% by considering

skewness under the framework (in comparison with the ARV model). Besides, taking into account

the empirical quantities help to reduce IVRMSE by 30.60% (in comparison with the IG model).

When coming to the different categories by moneyness, maturity, and VIX level, Table 7 shows

that the IVRMSE the IG-ARV model, which has the lowest overall IVRMSE in Table 7, has the

lowest IVRMSE in each of the six moneyness categories considered. As is shown by Christoffersen

et al. (2006), models consider skewness (the IG-ARV model and the IG model) exhibit better

performances when pricing the deep ITM call options, that is, when S/K ⩾ 1.06. Here the IVRMSE

of the IG-ARV model and the IG model are 12.1286 and 12.2141, respectively, indicating the better

fitness of inverse Gaussian based modelling.
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Table 6: In-Sample IVRMSE Option Error by Moneyness, Maturity, and VIX: 2016-2018

In-Sample IVRMSE Option Error by Moneyness, Maturity and VIX

Model To
ta

l

S/
K

<
0.

94

0.
94
⩽

S/
K

<
0.

97

0.
97
⩽

S/
K

<
1.

00

1.
00
⩽

S/
K

<
1.

03

1.
03

⩽
S/

K
<

1.
06

S/
K
⩾

1.
06

Panel A. Partitioned by Moneyness

IG-ARV 5.2985 3.5251 4.7216 5.0063 4.3604 4.2306 12.8750
IG 6.9496 2.8288 4.1337 6.9073 7.0915 7.7373 15.6413
ARV 5.3981 4.5843 3.7325 3.8820 4.6590 6.9478 14.3931
HNG 10.2170 10.0187 11.3259 11.0412 9.0239 7.0315 9.6514

Model To
ta

l

T
<

30

30
⩽

T
<

60

60
⩽

T
<

90

90
⩽

T
<

12
0

12
0⩽

T
<

15
0

T
⩾

15
0

Panel B. Partitioned by Maturity

IG-ARV 5.2985 5.7235 5.0877 4.8672 4.7640 4.6825 4.5392
IG 6.9496 8.4675 6.2353 4.8376 3.9557 3.9205 4.3740
ARV 5.3981 6.3555 4.8063 4.4043 4.2171 3.9706 4.0697
HNG 10.2170 8.9401 10.9136 11.1979 11.1967 11.2305 10.9079

Model To
ta

l

V
IX

<
15

15
⩽

V
IX

<
20

20
⩽

V
IX

<
25

25
⩽

V
IX

<
30

V
IX

⩽
30

Panel C. Partitioned by VIX Level

IG-ARV 5.2985 5.0669 4.2095 5.7276 7.4121 10.7804
IG 6.9496 4.9291 8.0286 10.3139 11.3134 15.1727
ARV 5.3981 3.5886 5.4219 8.0778 10.3626 14.4146
HNG 10.2170 6.0213 6.1931 6.8937 8.9406 11.9140

Notes: Table 6 presents the IVRMSE for the IG-ARV, IG, ARV, and HNG models, categorized by moneyness,

maturity, and VIX level. The sample consists of European call options on the S&P 500 index from OptionMetrics,

with parameter estimates obtained from Table 5. The in-sample period spans from January 6, 2016, to December

26, 2018. Panel A displays IVRMSEs based on moneyness (measured by S/K), Panel B presents IVRMSEs based

on days to maturity (DTM), and Panel C shows IVRMSEs based on the VIX level. All IVRMSE values are

expressed as percentages, representing the discrepancy between model-based implied volatilities and observed

market volatilities.
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Table 7: Out-of-Sample IVRMSE Option Error by Moneyness, Maturity, and VIX: 2019

Out-of-Sample IVRMSE Option Error by Moneyness, Maturity and VIX

Model To
ta

l

S/
K

<
0.

94

0.
94

⩽
S/

K
<

0.
97

0.
97
⩽

S/
K

<
1.

00

1.
00

⩽
S/

K
<

1.
03

1.
03
⩽

S/
K

<
1.

06

S/
K
⩾

1.
06

Panel A. Partitioned by Moneyness

IG-ARV 3.4988 1.6536 2.0662 2.4188 3.1178 4.5753 12.1286
IG 5.0413 6.2313 3.7478 3.2014 4.7909 7.7735 12.2141
ARV 4.2055 1.7735 2.1061 2.8486 4.3343 6.8437 13.1212
HNG 4.3865 1.9231 1.9801 3.0704 4.9489 7.2511 12.6400

Model To
ta

l

T
<

30

30
⩽

T
<

60

60
⩽

T
<

90

90
⩽

T
<

12
0

12
0⩽

T
<

15
0

T
⩾

15
0

Panel B. Partitioned by Maturity

IG-ARV 3.4988 3.8033 3.1218 3.3239 3.4656 3.6106 3.7650
IG 5.0413 5.1952 4.7622 4.9466 5.1260 5.5206 5.6910
ARV 4.2055 4.6768 3.7089 3.8670 3.9883 4.1601 4.3164
HNG 4.3865 4.5882 3.9921 4.3688 4.5902 4.8256 5.0335

Model To
ta

l

V
IX

<
15

15
⩽

V
IX

<
20

V
IX

⩾
20

Panel C. Partitioned by VIX Level

IG-ARV 3.4988 3.0616 3.4876 5.5606
IG 5.0413 4.3102 5.3459 7.2013
ARV 4.2055 3.4012 4.4044 6.8833
HNG 4.3865 3.3363 4.8452 6.9286

Notes: Table 7 presents the IVRMSE for the IG-ARV, IG, ARV, and HNG models, categorized by moneyness,

maturity, and VIX level. The sample consists of European call options on the S&P 500 index from OptionMetrics,

with parameter estimates obtained from Table 5. The out-of-sample period spans from January 2, 2019, to

December 18, 2019. Panel A displays IVRMSEs based on moneyness (measured by S/K), Panel B presents

IVRMSEs based on days to maturity (DTM), and Panel C shows IVRMSEs based on the VIX level. All IVRMSE

values are expressed as percentages, representing the discrepancy between model-based implied volatilities and

observed market volatilities.
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Robust improvements given by considering both skewness and high-frequency information are

shown in Panel B and Panel C. The advantages provided by the IG-ARV model are not limited

to any specific range of maturity or VIX level. In terms of shortest maturity, the IG-ARV model

exhibits improvement of 17.11%, while 19.22% reduction of IVRMSE in the hightest VIX level

category. As expected, all models face the greatest challenge in accurately fitting options during

periods of high market volatility. We also find that considering realized measures help to reduce

pricing error, since the IG-ARV model and the ARV model perform better in the highly-volatile

times.

7 Conclusion

This study develops a new and flexible option-pricing model that explicitly incorporates the dy-

namics of skewness and realized volatility. An important feature of the model is that the dynamics

of variances are governed by their empirical proxies. Given that these proxies are constructed in

discrete time, our model contributes to the discrete-time family.

From a theoretical viewpoint, the structure of the new model and the application of the in-

verse Fourier transform enable us to derive closed-form option valuation formulas that nest several

option-pricing specifications. This feature facilitates the estimation procedure, allows for a direct

comparison of nested models, and avoids the need to resort to simulation techniques.

From an empirical viewpoint, our new proposed option pricing model performs well. In terms

of pricing accuracy, the model improves significantly upon popular specifications when optimized

on a dataset of S&P 500 index options, realized variances, and returns. In particular, the joint

modeling of skewness and realized volatility accounts for an out-of-sample gain of 16.80% in pricing

accuracy.
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Appendix

Appendix A. Proof of Moment Matching

Following Christoffersen et al. (2006), the random shocks in the return equation and GARCH

equation follow Inverse-Gaussian distribution:

Rt+1 = r + vhRV
t + ηy1,t+1,

hRV
t+1 = w + bhRV

t + cy2,t+1 + a

(
hRV
t

)2
y2,t+1

,

(A-1)

where Cov (y1,t+1, y2,t+1) = 0, and y1,t+1, y2,t+1
i.i.d∼ IG(δ).2

Applying the same technique as IGG model, we can derive the first two moments of equation

A-1.

Note that here we need to specify the measurement equation, in which the basic idea is

Et[RVt+1] = hRV
t . We follow the specification of the measurement equation of ARV model, that is,

RVt+1 = hRV
t + d

[
cy2,t+1 + a

(
hRV
t

)2
y2,t+1

− (· · · )

]
︸ ︷︷ ︸

whose conditional expectation equals to 0

. (A-2)

We first explicitly write down the terms in the square bracket.

Et

[
cy2,t+1 + a

(
hRV
t

)2
y2,t+1

]
= c · δt+1 + a ·

(
hRV
t

)2 · ( 1

δt+1
+

1

δ2t+1

)

= c · h
RV
t

η2
+ a

(
hRV
t

)2 ·( η2

hRV
t

+
η4(

hRV
t

)2
)

=

(
c

η2
+ aη2

)
hRV
t + aη4,

(A-3)

thus the measurement equation can be written into

RVt+1 = hRV
t + d

[
cy2,t+1 + a

(
hRV
t

)2
y2,t+1

−
((

c

η2
+ aη2

)
hRV
t + aη4

)]
. (A-4)

The additional parameter d is born to have something to do with parameter σ, which will be pinned

down later in the moment-matching equations.
2See Section 1.1 in Christoffersen et al. (2006).
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Then we derive the first two moments of IG-ARV model. Note that there’s little difference in

return equation and GARCH equation in the IG model and the IG-ARV model, we have

Et[Rt+1] = r + vhRV
t + η · δt+1

= r + vhRV
t + η · h

RV
t

η2

= r +

(
v +

1

η

)
hRV
t .

(A-5)

V art[Rt+1] = η2V art[y1,t+1] = hRV
t . (A-6)

In terms of RV and h, we have

Et[RVt+1] = hRV
t , (A-7)

V art[RVt+1] = d2
(
c2V art[y2,t+1] + 2ca

(
hRV
t

)2
Covt

(
y2,t+1,

1

y2,t+1

))
= d2

((
c2

η2
− 2caη2 + aη6

)
hRV
t + 2a2η8

)
,

(A-8)

Et[h
RV
t+1] =

(
w + aη4

)
+

(
b+

c

η2
+ aη2

)
hRV
t , (A-9)

V art[h
RV
t+1] =

(
c2

η2
− 2caη2 + aη6

)
hRV
t + 2a2η8. (A-10)

To sum up, we have

v +
1

η
= λ,

w + aη4 = ω + α,

b+
c

η2
+ aη2 = β + αγ2,

aη4 = α,

c

η
− η3a = −2αγ,

d2
(
c

η
− η3a

)2

= 4σ2γ2
2 ,

d2 · 2a2η8 = 2σ2.

(A-11)

Thus we obtain all the parameters of IG-ARV model, where d = σ
α and the others are the same

with IG model.
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Appendix B. Proof of Moment Generating Function

To begin with, consider the one-step-ahead MGF:

Et [exp (ν1Rt+1 + ν2ht+1 + ν3st+1)]

= Et

exp


ν1
(
r +

(
λz − 1

2

)
ht + (λy − ξ) st +

√
htz1,t+1 + η1y1,t+1

)
+ν2

(
ω + βht + α

(
z2,t+1 − γ

√
ht

)2)
+ν3

(
w + bst + cy2,t+1 + a (ht)

2

y2,t+1

)



= exp

(
ν1r + ν2ω + ν3w +

(
ν1

(
λz −

1

2

)
+ ν2β

)
ht + ν3bst

)
· Et

[
exp

(
ν1
√
htz1,t+1 + ν2α

(
z2,t+1 − γ

√
ht

)2)]
· Et [(ν1η1y1,t+1)] · Et

[
exp

(
ν3

(
cy2,t+1 + a

h2
t

y2,t+1

))]
(B-1)

based on the independence of y1,t+1 and y2,t+1.

Using the Cholesky representation, we can rewrite

z1,t+1 = ρz2,t+1 +
√

1− ρ2z3,t+1,

where Corr [z2,t+1, z3,t+1] = 0. Moreover, by exploiting the identity

logE
[
exp

(
a(z + b)2

)]
=

ab2

1− 2a
− 1

2
log(1− 2a),

for z distributed as a standard normal random variable. One can check that

Et

[
exp

(
ν1
√

htz1,t+1 + ν2α
(
z2,t+1 − γ

√
ht

)2)]
= exp

((
ν2αγ

2 +
2ν2α

1− 2ν2α
(ν1ρ− 2ν2αγ)

2

)
ht −

1

2
log (1− 2ν2α)

)
,

(B-2)

Et [exp (ν1η1y1,t+1)] = exp
(
st − st

√
1− 2ν1η1

)
, (B-3)

Et

[
exp

(
ν3

(
cy2,t+1 + a

h2
t

y2,t+1

))]
=

δt+1√
δ2t+1 − 2ν3ch2

t

exp

(
δt+1 −

√(
δ2t+1 − 2ν3ch2

t

)
(1− 2ν3c)

)
.

(B-4)

Note that δt+1 = ht

η2
2
, multiplication of the three terms yields

exp


(
ν2αγ

2 + 2ν2α
1−2ν2α

(ν1ρ− 2ν2αγ)
)
ht − 1

2 log (1− 2ν2α)

+st − st
√
1− 2ν1η1

− 1
2 log

(
1− 2ν3cη

4
2

)
+
(

1
η2
2
− 1

η2
2

√
(1− 2ν3cη42) (1− 2ν3c)

)
ht

 . (B-5)
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Therefore, we obtain

Et [exp (ν1Rt+1 + ν2ht+1 + ν3st+1)]

= exp

(
ν1r + ν2ω + ν3w +

(
ν1

(
λz −

1

2

)
+ ν2β

)
ht + ν3bst

)

· exp


(
ν2αγ

2 + 2ν2α
1−2ν2α

(ν1ρ− 2ν2αγ)
)
ht − 1

2 log (1− 2ν2α)

+st − st
√
1− 2ν1η1

− 1
2 log

(
1− 2ν3cη

4
2

)
+
(

1
η2
2
− 1

η2
2

√
(1− 2ν3cη42) (1− 2ν3c)

)
ht

 .

= exp (A(ν1, ν2, ν3)ht +B(ν1, ν2, ν3)st + C(ν1, ν2, ν3)) ,

(B-6)

where

A(ν1, ν2, ν3) = ν1

(
λz −

1

2

)
+ ν2β + ν2αγ

2 +
2ν2α

1− 2ν2α
(ν1ρ− 2ν2αγ) +

1

η22
− 1

η22

√
(1− 2ν3cη42) (1− 2ν3c),

B(ν1, ν2, ν3) = ν3b+ 1−
√
1− 2ν1η1,

C(ν1, ν2, ν3) = ν1r + ν2ω + ν3w − 1

2
log (1− 2ν2α)−

1

2
log
(
1− 2ν3cη

4
2

)
.

For the multi-period one, we denote Ψ as the corresponding MGF, and denote M as day-to-

maturity. We expect that the multi-period MGF keep exponentially affine, that is,

Ψt,t+M (u) ≡ Et

exp
u

M∑
j=1

Rt+j

 = exp (D(u,M)ht + F (u,M)st +G(u,M)) .

By applying the law of conditional expectation iteration,

Ψt,t+M (u) ≡ Et

exp
u

M+1∑
j=1

Rt+j

 = Et

Et+1

exp
u

M+1∑
j=1

Rt+j


= Et

exp (uRt+1) · Et+1

exp
u

M+1∑
j=2

Rt+j


= Et

[
exp (uRt+1) · Et+1

[
exp

(
u

M∑
k=1

Rt+1+k

)]]

= Et [uRt+1 +D(u,M)ht+1 + F (u,M)st+1 +G(u,M)]

= exp (A(u,D(u,M), F (u,M))ht+1 +B(u,D(u,M), F (u,M))st + C(u,D(u,M), F (u,M)) +G(u,M)) ,

(B-7)
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the recursive rule can be written as

D(u,M + 1) = A(u,D(u,M), F (u,M)),

F (u,M + 1) = B(u,D(u,M), F (u,M)),

G(u,M + 1) = C(u,D(u,M), F (u,M)) +G(u,M).

(B-8)

where

D(u, 1) = A(u, 0, 0)

F (u, 1) = B(u, 0, 0),

G(u, 1) = C(u, 0, 0).

(B-9)

Appendix C. Proof of Risk-Neutralization

Note that the model contains three random shocks, we follow Christoffersen et al. (2010) to apply

the following pricing kernel:

Zt+1 =
exp (ν1,tz1,t+1 + ν2,tz2,t+1 + ν3,ty1,t+1 + ν4,ty2,t+1)

Et [exp (ν1,tz1,t+1 + ν2,tz2,t+1 + ν3,ty1,t+1 + ν4,ty2,t+1)]
. (C-1)

As is illustrated in the model, Corrt(y1,t+1, y2,t+1) = 0, Corrt(z1,t+1, z2,t+1) = ρ. Then we obtain

Zt+1 =
exp (ν1,tz1,t+1 + ν2,tz2,t+1 + ν3,ty1,t+1 + ν4,ty2,t+1)

exp
(
1
2ν

2
1,t + ρν1,tν2,t +

1
2ν

2
2,t + st − st

√
1− 2ν3,t + δt − δt

√
1− 2ν4,t

) (C-2)

We need to impose that

EQ
t [exp (Rt+1)] = exp(r), (C-3)

where

EQ
t [exp (Rt+1)] = Et [Zt+1 exp (Rt+1)] , (C-4)

that is,

Et

exp


ν1,tz1,t+1 + ν2,tz2,t+1 + ν3,ty1,t+1 + ν4,ty2,t+1

− 1
2ν

2
1,t − ρν1,tν2,t − 1

2ν
2
2,t − st + st

√
1− 2ν3,t − δt + δt

√
1− 2ν4,t

+r +
(
λz − 1

2

)
ht + (λy − ξ) st +

√
htz1,t+1 + η1y1,t+1


 = exp(r),

(C-5)



42

therefore,

ν1,t
√
ht + ρν2,t

√
ht + λzht − st

√
1− 2 (ν3,t + η1) + st

√
1− 2ν3,t + (λy − ξ) st = 0. (C-6)

For the shocks, we have the risk-neutral expectation

EQ
t [exp (u1z1,t+1 + u2z2,t+1 + u3y1,t+1 + u4y2,t+1)]

= Et [Zt+1 exp (u1z1,t+1 + u2z2,t+1 + u3y1,t+1 + u4y2,t+1)]

= Et

exp


ν1,tz1,t+1 + ν2,tz2,t+1 + ν3,ty1,t+1 + ν4,ty2,t+1

− 1
2ν

2
1,t − ρν1,tν2,t − st + st

√
1− 2ν3,t − δt + δt

√
1− 2ν4,t

+u1z1,t+1 + u2z2,t+1 + u3y1,t+1 + u4y2,t+1




= exp

 1
2u

2
1 + (u1 + ρu2) ν1,t +

1
2u

2
2 + (u2 + ρu1) ν2,t + ρu1u2

−st
√
1− 2 (ν3,t + u3) + st

√
1− 2ν3,t − δt

√
1− 2 (ν4,t + u4) + δt

√
1− 2ν4,t

 .

(C-7)

Consider the following transformation:

(z1,t+1, z2,t+1, y1,t+1, y2,t+1)
′
=
(
z∗1,t+1 +A, z∗2,t+1 +B,Cy∗1,t+1, Dy∗2,t+1

)′
, (C-8)

therefore,

EQ
t [exp (u1z1,t+1 + u2z2,t+1 + u3y1,t+1 + u4y2,+1)]

= EQ
t

[
exp

(
u1

(
z∗1,t+1 +A

)
+ u2

(
z∗2,t+1 +B

)
+ u3Cy∗1,t+1 + u4Dy∗2,t+1

)]
= exp

(
1

2
u2
1 + u1A+

1

2
u2
2 + u2B + ρu1u2 + s∗t − s∗t

√
1− 2u3C + δ∗t − δ∗t

√
1− 2u4D

)
,

(C-9)

which implies that

z1,t+1 = z∗1,t+1 + (ν1,t + ρν2,t) , (C-10)

z2,t+1 = z∗2,t+1 + (ρν1,t + ν2,t) . (C-11)

Additionally,

−st

√
1− 2 (ν3,t + u3) + st

√
1− 2ν3,t = s∗t − s∗t

√
1− 2u3C, (C-12)

−δt

√
1− 2 (ν4,t + u4) + δt

√
1− 2ν4,t = δ∗t − δ∗t

√
1− 2u4D. (C-13)

To write the equation above in a tighter way, we take st as an example:

st ·
2u3√

1− 2ν3,t +
√

1− 2 (ν3,t + u3)
= s∗t

2u3C

1 +
√
1− 2u3C

,

st ·
1√

1−2ν3,t

1 +
√

1− 2u3 · 1
1−2ν3,t

= s∗t
C

1 +
√
1− 2u3C

.

(C-14)
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Then we have

C =
1

1− 2ν3,t
, st ·

√
C = s∗tC ⇒ st = s∗t

√
C. (C-15)

Similarly,

D =
1

1− 2ν4,t
, δt = δ∗t

√
D. (C-16)

Consequently, we can derive the the dynamic conditional skewness (DCS) model under Q measure:

Rt+1 = r +

(
λz −

1

2

)
ht + (λy − ξ) st +

√
htz1,t+1 + η1y1,t+1

= r +

(
λz −

1

2

)
ht + (λy − ξ) st +

√
ht

(
z∗1,t+1 + ν1,t + ρν2,t

)
+ η1Cy∗1,t+1

= r − 1

2
ht −

(√
1− 2ν3,t −

√
1− 2 (ν3,t + η∗1C)

)
st +

√
htz

∗
1,t+1 + η∗1y

∗
1,t+1

= r − 1

2
ht −

(√
1− 2η∗1C

2 − 1
)
s∗t +

√
htz

∗
1,t+1 + η∗1y

∗
1,t+1.

(C-17)

Based on the mapping relationship of shocks under P measure and Q measure, the dynamic of ht

under Q can be written as

ht+1 = ω + βht + α
(
z∗2,t+1 + ρν1,t + ν2,t − γ

√
ht

)2
= ω + βht + α

(
z∗2,t+1 − γ∗

t

√
ht

)2
,

(C-18)

where γ∗
t = γ − ρν1,t+ν2,t√

ht
. In order to keep the model affine, we set ρν1,t + ν2,t = χ

√
ht, then

γ∗
t = γ∗ = γ − χ, (C-19)

where χ is a constant premium to estimate. Therefore, the measurement equation concerning ht

under Q measure is

R̃Vt+1 = ht + σ

[(
z∗2,t+1 − γ∗

√
ht

)2
−
(
1 + γ2ht

)]
= h∗

t + σ

[(
z∗2,t+1 − γ∗

√
ht

)2
−
(
1 + γ2h∗

t

)]
,

(C-20)

where

h∗
t = ht + σ

(
γ∗2 − γ2

)
ht. (C-21)
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Then, the dynamic of conditional skewness is equivalent to

s∗t+1

√
C = w + bs∗t

√
C + cD · y∗2,t+1 + a

h∗2
t

(1+σ(γ∗2−γ2)2)

y∗2,t+1D
, (C-22)

which can be reduced to

s∗t+1 = w∗ + bs∗t + c∗y∗2,t+1 + a∗
h∗2
t

y∗2,t+1

, (C-23)

where

w∗ =
w√
C
, c∗ =

cD√
C
, a∗ =

a

D
√
C (1 + σ (γ∗2 − γ2))

2 . (C-24)

Appendix D: Optimization Method of the IG-ARV model

We apply the Quasi Maximum Likelihood Estimation (QMLE) when estimating the models. The

joint quasi-log-likelihood of returns and realized variance is determined by taking the logarithm

of the bivariate inverse Gaussian distribution (BVIGD). We refer to as Lt (Rt+1, RVt+1), which

combines two components, the return part and the RV part.

The quasi-log-likelihood of returns at time t+ 1 conditional on information known at time t is

defined using the inverse Gaussian distribution

Lt(Rt+1) = log(δt+1)−
1

2
log(2π)− 3

2
log

(
Rt+1 − (rf + vht+1)

η

)

− 1

2

√Rt+1 − (rf + vht+1)

η
− δt+1√

Rt+1−(rf+vht+1)
η

2

− log (−η) .

(D-1)

The quasi-log-likelihood of realized variance at time t+1 conditional on information known at time

t is similarly given by:

Lt(RVt+1) = log(δt+1)−
1

2
log(2π)− 3

2
log

(
− (C −RVt+1) +

√
∆

2A

)

− 1

2

√−(C −RVt+1) +
√
∆

2A
− δt+1√

−(C−RVt+1)+
√
∆

2A

2

− log(2A) + log

(
1− C −RVt+1√

∆

)
,

(D-2)
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where

∆ = (C −RVt+1)
2 − 4AB,

A = cd, B = ad
(
hRV
t

)2
, C = hRV

t − d

((
c

η2
+ aη2

)
hRV
t + aη4

)
.

(D-3)
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