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Abstract 

This study unifies the two dominant concepts of systematic credit risk: Beta for observed 

systematic risk and asset correlation (AC) for unobserved (frailty) systematic risk. An analysis 

for U.S. mortgages shows that Beta contributes up to 76% of the total systematic risk, and the 

remaining is accounted for by AC. The systematic risk levels vary across types of lenders, types 

of recourse laws, and states. In addition, we find a stronger sensitivity of mortgage rates to the 

exposures to the estimated systematic risk levels than the single regulatory value (15%). Our 

comprehensive findings on systematic risk components help banks develop more accurate 

models, enhance their risk management ability and achieve a better pricing scheme. 
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1. Motivation  

Systematic risk in bank lending is critical for mortgage portfolios as these dominate in volume 

and granularity. During the Global Financial Crisis (GFC), delinquency rates of prime 

mortgages nearly tripled, and the foreclosure rates doubled from 2007 to 2008 (Aubuchon et 

al., 2009). At the same time, the delinquency rate of subprime mortgages quadrupled (Mayer 

et al., 2009). These changes are systematic as most mortgages have been affected. Therefore, a 

thorough understanding of the sources of systematic risk is crucial for managing mortgage 

portfolios. 

Systematic credit risk is commonly defined as the co-movement of observed default events and 

hence changes in default rates in granular loan portfolios. Standard industry practice assumes 

a single latent risk factor and does not allow us to disentangle the components comprising 

systematic risk. Due to this framework, the regulators set 15% as a systematic risk level for all 

residential mortgages. This hinders the recognition of the sources of systematic shocks. Our 

study unifies the two dominant systematic risk factors – observed and unobserved– to measure 

systematic risk components. We define failure beta (Beta) as the exposure level to the observed 

factor and asset correlation (AC) as the exposure to the unobserved (frailty) factor.  

Current literature on systematic credit risk poses two drawbacks. First, previous papers focus 

on estimating the sensitivity to observed systematic risk factors (i.e., failure beta) but ignore 

the measurement of unobserved systematic risk levels. Second, unobserved variation is 

included at different interpretational levels, making benchmarking across industry models 

difficult. As a consequence, national regulators do not consider internal estimates for Beta and 

AC. Our study sets out to solve these problems.  

We develop two-factor models to estimate Beta and AC to include common styles in the 

industry. The observed factor is measured by the mean probability of default (mean PD), and 

the unexplained variations of systematic risk are proxied by a set of time random effects. The 
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observed factor is standardized to ensure the same interpretational level as the unobserved 

factor. We start the model aligning with the industry standard in which unobserved factor is the 

sole contributor to systematic risk and gradually incorporate observed factors.  

In the first model (through-to-cycle model or TTC model), mean PD only reflects the impacts 

of loans and borrowers’ characteristics at origination times, so the unobserved factors explain 

most of the systematic risk. In the second model (limited point-in-time model or lPIT model), 

we start introducing the time-varying variables into the estimation of mean PD, so the observed 

factor explains the observed component of systematic risk, and the unobserved factor explains 

the unobserved component. In the third model (comprehensive point-in-time model or cPIT 

model), we estimate the mean PD by incorporating macroeconomic effects resulting in a greater 

degree of observed systematic risk and a lower degree of unobserved systematic risk.  

Using loan-level data on US securitized prime mortgages from 1999 to 2019 with 

approximately 20 million loans, we find that both observed and unobserved systematic risk 

factors drive mortgage defaults. When properly incorporating the observed systematic risk 

factors, the observed component outweighs the contribution from unobserved risk to the total 

systematic risk level. On average, the total systematic risk level is about 7% in relation to a 

theoretical value range between zero and one, of which the observed accounts for 75% and the 

unobserved accounts for 25%. Incorporating these two factors not only helps us to understand 

different sources of systematic risk thoroughly but also allows us to capture a higher level of 

systematic risk variations.  

The levels of systematic risk components vary across different sub-samples of loans. 

Specifically, higher-risk mortgages have higher levels of systematic risk than lower-risk 

mortgages. We also find that mortgages in CA are more sensitive to systematic risk factors than 

in other states, which could be explained due to the stronger co-movements in California’s real 

estate markets. Mortgages originated by non-bank lenders also carry a higher level of 
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systematic risk. We hypothesize that these lenders have narrower lending policies and originate 

loan portfolios with greater homogeneity and hence greater exposure to systematic risk. This is 

empirically proved by higher concentration indexes (HHI) in the core loan characteristics such 

as FICO, LTV, and DTI of nonbank lenders compared to the traditional banks. The systematic 

risk levels of non-recourse mortgages are higher than those originating in recourse states. Non-

recourse borrowers may be more likely to default strategically due to housing price shocks and 

hence be more exposed to systematic risk than recourse borrowers that are exposed to a 

combination of house price changes and idiosyncratic liquidity.  

We further identify that lenders price systematic risk. The unexpected loss is computed based 

on the estimated Beta and AC and used as the proxy for the exposure to systematic risk. 

Through a horse-race regression, we find that a one-percent change in the Beta-related 

unexpected loss leads to approximately 4 four basis points (bps) of adjustment in the mortgage 

rate, which is double the change induced by the AC-related unexpected loss. We also compare 

the explanatory power using R-square between the exposure to our estimated systematic risk 

levels and the regulatory value of 15%. The finding indicates that the explanatory power is 

slightly higher when two systematic risk components are included than one regulatory 

component. This sensitivity analysis is made possible by the methodology developed in this 

paper. 

Our paper makes several contributions to the literature. Firstly, our study develops a unifying 

framework for observed and unobserved systematic credit risk, allowing us to compare the 

influences of different systematic components empirically. Whilst we focus on mortgage loans, 

the framework may be generalized to other exposure classes. Secondly, our paper empirically 

estimates different systematic risk levels – Beta and AC – for different sub-samples of loans 

based on regions, lender types, and recourse types. Lastly, we directly test the role of systematic 
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risk in mortgage pricing and provide evidence that lenders intuitively price systematic risk to 

some degree.  

Our findings also carry practical implications for regulators and lenders. Regulators may revise 

regulations to incentivize systematic risk measurement, management, and optimization. 

Specifically, regulators do not distinguish between the level of systematic risk (a flat AC of 

15% issued for mortgage loans) and whether risk measures such as default probabilities reflect 

Beta through so-called point-in-time ratings. With the evolution of fintech taking over the 

market share, regulation of non-bank lenders may be in reach.  

For lenders, operating with a higher level of accuracy in risk measurement can open further 

opportunities for decision-makers to enhance their in-house models and competitiveness. Non-

bank lenders have greater exposure to frailty risks and may be subjected to regulatory 

parameters as is currently in use for banks under Basel III regulations. Including lender-specific 

systematic risk may ultimately increase financial resilience. 

This paper proceeds as follows. The following section reviews the relative empirical findings 

in the literature and develops the research hypotheses. Section 3 establishes a framework by 

constructing systematic risk measures and pricing systematic risk. Section 4 describes the data 

and constructions of variables. Section 5 presents and discusses the results of empirical tests, 

including payoff probability (PP) models, default probability (PD) models, measuring 

systematic risk levels, and the impact of systematic risk levels on mortgage rates. Finally, we 

deliberate the industry impacts in Section 6.  

 

2. Literature review and research hypothesis 

The literature has explored various sources of systematic risk for credit portfolio risk. The main 

feature of distinctions is observable and unobservable systematic risk. Most studies analyze the 
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impacts/sensitivity of observed systematic risk factors on PD (stream 1), while fewer papers 

estimate the unobserved component of systematic risk levels (stream 2). In addition, most 

papers focus on corporate loans, and few analyze mortgage loans. Hilscher and Wilson (2017) 

have developed a framework to measure observed systematic risk for corporate loans. Lee et 

al. (2021) deconstruct and measure unobserved risk for mortgages. To date, no methodology 

exists that combines both measures and applies these to either corporate or mortgage loans. We 

summarize related papers in Table 1.  

<Insert Table 1 here> 

 

2.1. Observed systematic risk for mortgage loans 

There is substantial literature on mortgage credit portfolio risk and the macroeconomy. Most 

research papers include macroeconomic variables as observed systematic factors in the PD 

models and predict mortgage defaults. For instance, Elul et al. (2010) examine the effects of 

unemployment on mortgage default probabilities; Amromin & Paulson (2009) and Crook and 

Banasik (2012) confirm the role of real estate prices as an essential risk driver; Goodstein et al. 

(2017), Gupta (2019), and Calabrese and Crook (2020) provide the empirical evidence on the 

positive effect of contagion factor amongst strategic defaulters.1 The above studies highlight 

the impact of observed systematic factors on default probabilities but do not explicitly estimate 

the absolute exposure level of systematic risk.  

Hilscher and Wilson (2017) measure the magnitude of observed systematic risk, albeit for 

different groups of corporate loans based on the rating. This is called failure beta, which is the 

                                                           
1 There are many comparable papers for corporates. Pesaran et al. (2006) show that firms’ default probabilities are 
determined by how strong the connection is between firms and business cycles and their interconnection in 
business cycles across the globe. Duffie et al. (2007) illustrate the prominent roles of S&P 500 returns and Treasury 
interest rates in predicting conditional future default probabilities.  
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sensitivity of firms’ PDs to the median (or mean) PD. They find that the failure beta increases 

monotonically as the rating decreases. The median PD proxy is practical for lenders as they can 

easily estimate and capture the effect of observed systematic risk. We adopt this proxy in our 

paper and capture the fluctuations of observed factors through mean PDs. Instead of 

investigating the sensitivity to systematic risk factors, we further estimate the levels of 

systematic risks and examine their impacts on the pricing.  

 

2.2. Unobserved systematic risk for mortgage loans 

Systematic default risk may also be exposed to unobservable risk factors. The effects of these 

factors are often referred to as the frailty effects. Most of the research in this stream pays more 

attention to a corporate credit default.2 The study of Jiménez & Mencía (2009) is among the 

first to develop a state space model to explain the default rates as the function of 

macroeconomic conditions and frailty risk factors in the Spanish banking system. They 

document the effects of macroeconomic factors on the expected exposures of default and 

identify the latent factors that drive the default density among different loan sectors. However, 

they do not estimate the systematic risk levels explicitly.  

This stream of credit risk research on lending products estimates the unobserved systematic 

risk levels, usually defined as asset correlation. A high value of asset correlation indicates a 

strong interlink amongst borrowers, meaning that they are more dependent on the general state 

                                                           
2 (Das et al., 2007) and (Duffie et al., 2009) analyze frailty effects for corporate default intensities and hence time 
clustering. They find that there is a significant gap between default prediction and the measured default intensities 
modelled by observable macroeconomic covariates such as Treasury bill rate or return of the S&P 500 stock index. 
Even after controlling for extra observable systematic factors, an excess degree of default correlation is still 
present. The other studies in this stream worth considering are (Dietsch & Petey, 2004), (Koopman et al., 2012), 
(Nickerson & Griffin, 2017). In a similar context, Azizpour et al. (2018) point out the role of the contagion effect 
on default clustering after controlling for macroeconomic and frailty factors and suggest that all three factors need 
to be included to achieve a better forecast of portfolio credit risk. However, they only provide the estimate of 
variance of default, and do not estimate the specific levels of exposure to different factors.    
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of the economy and more likely to default together in an adverse condition. The study of Calem 

& Follain (2003), managed by the Basel Committee, suggests the application of a 15% asset 

correlation assumption for mortgages on single-family residences. This rule was implicitly 

introduced in the Basel II rule in 2004 and has been widely applied in various banking systems, 

especially the G10 countries.3 The recent study by Lee et al. (2021) specifies systematic risk as 

the unexplained variation of default rates and deconstructs it into general systematic risk and 

rating-class-specific systematic risk. Their findings show that the medium-risk classes are more 

exposed to the former component, while the lower and higher-risk classes are more sensitive 

to the latter. Further, the empirical values are lower than the Basel benchmark parameter of 

15% for mortgage loans. 

The literature has pointed out that default clustering exposes both observable and unobserved 

(frailty) systematic risk factors, which could vary across different sub-samples. Previous 

research illustrates the effects of systematic risk factors for mortgages, but no paper estimates 

the relative importance of both effects. By deriving a unifying framework, we are first to 

incorporate both observed and unobserved systematic risk factors on the same interpretational 

level. There is likely a disparity in systematic risk levels among different mortgage groups, 

hence we also measure the systematic risk levels for different samples based on lender types 

(banks vs. nonbank lenders), recourse types (recourse states vs. non-recourse states), and states 

(California vs. other states) in our study.  

 

2.3. Pricing of mortgages 

                                                           
3 Hashimoto (2009) estimates the asset correlation for corporate loans. They find out that asset correlation is higher 
for high- and low-risk companies, but lower for middle-risk ones. 



-9- 

Literature on pricing mortgage spreads is limited for fixed-rate mortgages as the interest rate is 

determined at the origination time and remains unchanged throughout loans’ lifetimes. Lenders 

apply similar filtering standards to approve borrowers, which are likely risk-homogenous, and 

there is limited heterogeneity in mortgage interest rates. However, mortgage interest rates 

between lenders may differ due to different lending policies, risk appetites, and premiums for 

systematic risk levels due to concentrations. As systematic risk is strongly linked to the capital 

cost of lenders, it should be reflected in the mortgage spread.   

Rajan et al. (2015) conduct a year-by-year regression and find that the mortgage interest rate 

strongly relates to FICO and LTV over time. Antinolfi et al. (2016) describe the mortgage rates 

as a function of loan and borrower characteristics such as LTV, FICO, and loan amount. Levitin 

et al. (2020) find that mortgage rates are less likely to be influenced by loan and borrower 

characteristics during the housing bubble. The literature has shown that loan prices and 

borrower characteristics are related. Benetton et al. (2021) find a positive relationship between 

mortgage rate and capital requirements. Justiniano et al. (2022) discover a disconnect between 

mortgage interest rates and Treasury yields, which makes mortgages more affordable. The 

recent study by Nguyen et al. (2022) documents the positive relation between mortgage spreads 

and exposure to sea-level rise risk even after controlling for flood insurance. We argue that this 

climate exposure may manifest a form of systematic risk, so we expect a similar connection 

between mortgage spreads and our measures of systematic risk.  

The positive relationship between systematic risk levels and risk premium are well-documented 

in the literature for tradeable securities such as stocks (Fama & French, 2015), corporate bonds 

(Bai et al., 2019), options (Duan & Wei, 2009), futures contracts (Bessembinder, 1992), CDS 

(Wang et al., 2013), etc.  
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However, the pricing of systematic risk for mortgages has received much less attention. 

Therefore, we seek to answer how much systematic risk levels can explain the mortgage rate 

variations in our study. To the best of our knowledge, our study is the first to price the mortgage 

spreads against the systematic risk levels. We believe our results will have important 

implications for the pricing of mortgage loans in financial institutions going forward.  

 

3. Framework  

We proceed in four stages. Stage 1 models probabilities of prepayment/payoff (PPs). Stage 2 

models the probabilities of default (PDs) whilst controlling for PPs. In Stage 3, we estimate 

observed systematic risk using Beta and unobserved systematic risk using AC based on PDs 

from Stage 2. In Stage 4, we develop a regression model to test the price impact of the exposure 

to systematic risk. 

 

3.1.  Probabilities of payoff (Stage 1) 

We estimate a probability of payoff (PP) model to explain the payoff outcomes, which in turn 

impact probabilities of default based on the creditworthiness4 𝑉𝑉𝑖𝑖𝑖𝑖 of borrower i in time t. Payoff 

occurs if a random trigger variable  𝑉𝑉𝑖𝑖𝑖𝑖𝑃𝑃 falls below a deterministic threshold 𝜆𝜆𝑖𝑖𝑖𝑖−1𝑃𝑃 . The subscript 

-1 expresses that information is observed prior to this process: 

 𝑃𝑃𝑖𝑖𝑖𝑖 = �
1,𝑉𝑉𝑖𝑖𝑖𝑖𝑃𝑃 < 𝜆𝜆𝑖𝑖𝑖𝑖−1𝑃𝑃

0,𝑉𝑉𝑖𝑖𝑖𝑖𝑃𝑃 ≥ 𝜆𝜆𝑖𝑖𝑖𝑖−1𝑃𝑃  (1) 

We model PP as a probit model for a respective threshold: 

 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑃𝑃(𝑃𝑃𝑖𝑖𝑖𝑖 = 1) = 𝛷𝛷(𝜆𝜆𝑖𝑖𝑖𝑖−1𝑃𝑃 )  (2) 

 

                                                           
4 Credit worthiness is sometimes called the asset return following the early days terminology of the FOM and 
related to Merton model. 
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where 𝛷𝛷(𝜆𝜆𝑖𝑖𝑖𝑖−1𝑃𝑃 ) is the standard normal cumulative density function. The default threshold 

expressed as 𝜆𝜆𝑖𝑖𝑖𝑖−1𝑃𝑃  is a function of Xit-1 which are the set of information on loan and borrower 

characteristics. 

We use annual observations for our regressions since default events are usually recorded at the 

yearly interval as industry practice. The estimated PPs enter our Stage 2 regressions for PD to 

control selection bias induced by the payoff decision of borrowers. The distribution of 

observations over categories of the independent variables may be driven by a selective process 

in which payoff loans have distinctive features compared to default loans.  

PPs and PDs can be estimated by different factor models that may be stylized in through-to-

cycle (TTC) models and point-in-time (PIT) models. According to the Basel Accord, banks can 

build internal PD models based on a TTC concept to limit procyclical effects on capital 

requirements. PIT models are generally timelier and hence accurate than TTC models as they 

include time-invariant idiosyncratic information, time-varying idiosyncratic and 

macroeconomic factors. 

We estimate three models. First, a TTC model includes information at the origination time only. 

Second, a limited PIT model adds time-varying variables related to loans and borrowers, 

including change in LTV, loan age, and square of loan age next to the information at the 

origination time from the TTC model. Third, a comprehensive PIT model adds the 

macroeconomic factors – change in HPI and change in the unemployment rate.5 Including these 

two variables enables the comprehensive PIT model to capture the exposure to observed 

systematic risk thoroughly.  

                                                           
5 We do not incorporate the contagion effect in the comprehensive PIT model because this factor tends to have 
impact on strategic defaulters only (Borrowers tend to go default if being adversely impacted by house price 
fluctuations). In other words, the contagion effects may align with the housing risk. The measurement of this factor 
in the literature is localized at zip code level which could be overlapped with the measure of LTV change in our 
model.  
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We include state dummies in all models to control for the state fixed effects. In the PIT models, 

we include vintage dummies to control the overall economy at origination time. We use the 

subscript 𝜏𝜏 for all variables collected at the origination period and subscript t for variables 

collected at the current time. The subscript -1 expresses that information is observed prior to 

the process. 

The three PP model specifications are: 

 

 𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇(𝑃𝑃𝑖𝑖𝑖𝑖 = 1) = 𝛷𝛷(𝛼𝛼𝑃𝑃 + 𝛽𝛽𝑃𝑃𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖) (3) 

 𝑃𝑃𝑃𝑃𝑙𝑙𝑃𝑃𝑙𝑙𝑇𝑇(𝑃𝑃𝑖𝑖𝑖𝑖 = 1) = 𝛷𝛷(𝛼𝛼𝑃𝑃 + 𝛽𝛽𝑃𝑃𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖+𝜃𝜃𝑃𝑃𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖−1) (4) 

 𝑃𝑃𝑃𝑃𝑐𝑐𝑃𝑃𝑙𝑙𝑇𝑇(𝑃𝑃𝑖𝑖𝑖𝑖 = 1) = 𝛷𝛷(𝛼𝛼𝑃𝑃 + 𝛽𝛽𝑃𝑃𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖 + 𝜃𝜃𝑃𝑃𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖−1 + 𝛿𝛿𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑂𝑂𝑀𝑀𝑖𝑖−1) (5) 

where Pit is the payoff indicator; OrigX are variables at the origination time including FICO 

score, orig LTV, orig DTI, and dummy variables indicating loan purpose, number of borrowers, 

property types, origination channel and mortgage insurance requirement; CurrX represents 

time-varying characteristics such as change in LTV, loan age and square of loan age; Macro 

consists of change in HPI and change in unemployment rate. 

 

3.2. Probabilities of default (Stage 2) 

The set-up of PD model explains the creditworthiness6 𝑉𝑉𝑖𝑖𝑖𝑖 of borrower i in time t. Default occurs 

if  𝑉𝑉𝑖𝑖𝑖𝑖 falls below a default threshold 𝜆𝜆𝑖𝑖𝑖𝑖−1. The subscript -1 expresses that information is 

observed prior to the process. 

 𝐷𝐷𝑖𝑖𝑖𝑖 = �1, Vit < λit−1
0, Vit ≥ λit−1

 (6) 

We derive the unconditional PD model given a standard normal distribution for 𝑉𝑉𝑖𝑖𝑖𝑖 as: 

                                                           
6 Credit worthiness is sometimes called the asset return following the early days terminology of the FOM and 
related to Merton model. 
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 𝑃𝑃𝐷𝐷𝑖𝑖𝑖𝑖 = 𝑃𝑃(𝐷𝐷𝑖𝑖𝑖𝑖 = 1) = 𝑃𝑃(𝑉𝑉𝑖𝑖𝑖𝑖 < 𝜆𝜆𝑖𝑖𝑖𝑖−1) = 𝛷𝛷(𝜆𝜆𝑖𝑖𝑖𝑖−1) (7) 

 where 𝛷𝛷(𝜆𝜆𝑖𝑖𝑖𝑖−1) is the standard normal cumulative density function. The default threshold 

expressed as 𝜆𝜆𝑖𝑖𝑖𝑖−1 is a function of Xit-1 which are the set of information on loan and borrower 

characteristics including the proxies for negative equity and illiquidity as indicated in the DTM 

theory, the macroeconomic conditions, and payoff probability (PP).  

The three PD specifications are: 

 

 𝑃𝑃𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇(𝐷𝐷𝑖𝑖𝑖𝑖 = 1) = 𝛷𝛷(𝛼𝛼𝐷𝐷 + 𝛽𝛽𝐷𝐷𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖 +  𝛾𝛾𝐷𝐷𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖) (8) 

 𝑃𝑃𝐷𝐷𝑙𝑙𝑃𝑃𝑙𝑙𝑇𝑇(𝐷𝐷𝑖𝑖𝑖𝑖 = 1) = 𝛷𝛷(𝛼𝛼𝐷𝐷 + 𝛽𝛽𝐷𝐷𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖+𝜃𝜃𝐷𝐷𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖−1 + 𝛾𝛾𝐷𝐷𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖) (9) 

 𝑃𝑃𝐷𝐷𝑐𝑐𝑃𝑃𝑙𝑙𝑇𝑇(𝐷𝐷𝑖𝑖𝑖𝑖 = 1) = 𝛷𝛷(𝛼𝛼𝐷𝐷 + 𝛽𝛽𝐷𝐷𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖 + 𝜃𝜃𝐷𝐷𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖−1 + 𝛿𝛿𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑂𝑂𝑀𝑀𝑖𝑖−1 + 𝛾𝛾𝐷𝐷𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖)(10) 

where Dit is the default indicator and 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 are the estimated PPs from the Stage 1 regressions 

The list of variable descriptions is as follows: 

 

<Insert Table 2 here> 

 

3.3.  Measures of systematic risk (Stage 3) 

The dominant model for systematic risk in credit risk is the asymptotic single risk factor 

(ASRF) model or Vasicek model, where the default trigger variable 𝑉𝑉𝑖𝑖𝑖𝑖 is driven by a standard 

normal systematic factor 𝐹𝐹𝑖𝑖 and a standard normal idiosyncratic factor 𝑈𝑈𝑖𝑖𝑖𝑖: 

 𝑉𝑉𝑖𝑖𝑖𝑖 = √𝜔𝜔𝐹𝐹𝑖𝑖 + √1 − 𝜔𝜔𝑈𝑈𝑖𝑖𝑖𝑖 (11) 

The loading 𝜔𝜔 is known as the asset correlation, and the parameterization is chosen so that 𝑉𝑉𝑖𝑖𝑖𝑖 

is also standard normal. It can be shown that different parameterizations result in identical 

empirical estimates. 
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We extend the ASRF model by decomposing the systematic risk into a two-factor model, which 

explains the creditworthiness as a linear function of observed systematic risk (St), unobserved 

systematic risk (Ft), and idiosyncratic risk (𝑈𝑈𝑖𝑖𝑖𝑖). 

 𝑉𝑉𝑖𝑖𝑖𝑖 = �𝛽𝛽𝑆𝑆𝑖𝑖 + √𝜔𝜔𝐹𝐹𝑖𝑖 + �1 − 𝛽𝛽 − 𝜔𝜔𝑈𝑈𝑖𝑖𝑖𝑖  (12) 

Following the ASRF, we assume that 𝑆𝑆𝑖𝑖, 𝐹𝐹𝑖𝑖 and 𝑈𝑈𝑖𝑖𝑖𝑖 are independent and identically standard 

normally distributed. This assumption implies that the variance of asset value which is also the 

measure of total risk is equal to one.   

 𝜎𝜎 = 𝑣𝑣𝑀𝑀𝑂𝑂(𝑉𝑉𝑖𝑖𝑖𝑖) = 𝛽𝛽 + 𝜔𝜔 + 𝛾𝛾 = 1 (13) 

Where 𝛽𝛽 and 𝜔𝜔 measure systematic risk levels, and 𝛾𝛾 represents for idiosyncratic risk.  

The total systematic risk level will be the sum of 𝛽𝛽 and 𝜔𝜔. To align with the literature, we name 

these two sources of systematic risk as Beta and asset correlation (AC), respectively. We can 

estimate Beta and AC through a conditional PD (CPD) model. We derive the CPD model as 

follows: 

  𝐶𝐶𝑃𝑃𝐷𝐷𝑖𝑖𝑖𝑖 = 𝑃𝑃(𝐷𝐷𝑖𝑖𝑖𝑖 = 1|𝑆𝑆 = 𝑠𝑠,𝐹𝐹 = 𝑓𝑓) = 𝑃𝑃(𝑉𝑉𝑖𝑖𝑖𝑖 < 𝜆𝜆𝑖𝑖𝑖𝑖−1|𝑠𝑠𝑖𝑖,  𝑓𝑓𝑖𝑖) 

   = 𝛷𝛷 �𝜆𝜆𝑖𝑖𝑖𝑖−1−�𝛽𝛽𝑠𝑠𝑖𝑖−√𝜔𝜔𝑓𝑓𝑖𝑖
�1−𝛽𝛽−𝜔𝜔

� 

 = 𝛷𝛷 � 𝜆𝜆𝑖𝑖𝑖𝑖−1
�1−𝛽𝛽−𝜔𝜔

− �𝛽𝛽
�1−𝛽𝛽−𝜔𝜔

𝑠𝑠𝑖𝑖 −
√𝜔𝜔

�1−𝛽𝛽−𝜔𝜔
𝑓𝑓𝑖𝑖� 

= 𝛷𝛷(𝑀𝑀 ∗ 𝜆𝜆𝑖𝑖𝑖𝑖−1 + 𝑏𝑏 ∗ 𝑠𝑠𝑖𝑖 + 𝑀𝑀 ∗ 𝑓𝑓𝑖𝑖) (14) 

Where 𝜆𝜆𝑖𝑖𝑖𝑖−1 is the idiosyncratic risk factor, 𝑠𝑠𝑖𝑖 is the observed systematic risk factor and 𝑓𝑓𝑖𝑖 is 

the unobserved systematic risk factor. The two systematic factors are standardized to be able 

to compare their magnitudes. The coefficients of the CPD model are reparametrized to match 

the regression parameters: 

 𝑀𝑀 = 1
�1−𝛽𝛽−𝜔𝜔

; 𝑏𝑏 = − �𝛽𝛽
�1−𝛽𝛽−𝜔𝜔

;𝑀𝑀𝑎𝑎𝑎𝑎 𝑀𝑀 = − √𝜔𝜔
�1−𝛽𝛽−𝜔𝜔

 (15) 

Beta (𝛽𝛽) and AC (𝜔𝜔) are estimated as follows: 
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 �̂�𝛽 = 𝑏𝑏�2

1+𝑏𝑏�2+𝑐𝑐̂2
; 𝜔𝜔� = 𝑐𝑐̂2

1+𝑏𝑏�2+𝑐𝑐̂2
 (16) 

Following Hilscher & Wilson (2017), we employ mean PDs by time as the proxy for the 

observed systematic component. Systematic risk is defined as the variation in the average 

default rate. We control the influences of idiosyncratic risk factors related to loans and 

characteristics on default clusters consistent with Das et al. (2007) and Lando & Nielsen (2010). 

Moving from the TTC model to PIT models, more time-varying covariate and macroeconomic 

factors are added to explain PDs with the consequence that PDs will reflect more volatilities in 

the average default rate. We expect the observed systematic variation to be the smallest for the 

TTC model and the largest for the comprehensive PIT model.   

We employ the set of time (year) dummy variables to represent changes in business cycles 

through time and impose the normal distribution to estimate the exposure to unobserved 

systematic risk. The unobserved component measures the business cycle condition which is left 

unexplained by observed risk factors (residual systematic variation) and is also known as 

frailty. We expect the unobserved systematic risk level to be the largest for the TTC model and 

the smallest for comprehensive PIT models. We estimate the CPD model specified in Eq. (14) 

through a nonlinear mixed model with a quasi-Newton algorithm. The dependent variable (i.e., 

default rate) is transformed to the probability using the probnorm function. Mortgage lenders 

can replicate this approach. 

We also estimate the CPD models for subsamples that are based on several criteria, such as 

lender types (bank vs. nonbank), recourse types (recourse vs. non-recourse states), and states 

(California vs. nine others). To ensure that the impacts of observed and unobserved systematic 

risk factors on loans from different groups are comparable, we adjust Eq. (14) by including the 

dummy variables for group classification and their interactions with the systematic components 

in the models. This method allows us to concurrently estimate the exposures to observed and 
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unobserved systematic factors of two or more groups. The CPD model is now designed as 

follows: 

𝐶𝐶𝑃𝑃𝐷𝐷𝑖𝑖𝑖𝑖 = 𝑃𝑃(𝐷𝐷𝑖𝑖𝑖𝑖 = 1|𝑆𝑆𝑖𝑖 = 𝑠𝑠𝑖𝑖,  𝐹𝐹𝑖𝑖 = 𝑓𝑓𝑖𝑖) 

 = 𝛷𝛷�𝑀𝑀0 ∗ 𝜆𝜆𝑖𝑖𝑖𝑖−1 +∑ (𝑀𝑀𝑘𝑘 ∗ ∆𝑖𝑖𝑖𝑖)𝑘𝑘
𝑘𝑘=1 + 𝑏𝑏 ∗ 𝑠𝑠𝑖𝑖 + ∑ (𝑀𝑀𝑘𝑘 ∗ 𝑠𝑠𝑖𝑖 ∗ ∆𝑖𝑖𝑖𝑖)𝑘𝑘

𝑘𝑘=1 + 𝑎𝑎 ∗ 𝑓𝑓𝑖𝑖 + ∑ (𝑒𝑒𝑘𝑘 ∗ 𝑓𝑓𝑖𝑖 ∗ ∆𝑖𝑖𝑖𝑖)𝑘𝑘
𝑘𝑘=1 � 

  (17) 

 where ∆𝑖𝑖𝑖𝑖 represents the dummy variables, k is the number of dummy/interaction variables less 

one (for the reference category).  

For region, lender, and recourse types, there are two groups of loans in the sample (CA vs. 

other states, banks vs. nonbank lenders, and recourse vs. non-recourse states), so one dummy 

and one interaction term are added to the model.7 Class-specific Beta (𝛽𝛽) and AC (𝜔𝜔) will be 

computed from the estimated parameters as follows: 

 �̂�𝛽0 = 𝑏𝑏�2

1+𝑏𝑏�2+𝑑𝑑�2
;  𝜔𝜔�0 = 𝑑𝑑�2

1+𝑏𝑏�2+𝑑𝑑�2
 (18) 

  �̂�𝛽𝑘𝑘 = (𝑏𝑏�+𝑐𝑐̂𝑘𝑘)2

1+(𝑏𝑏�+𝑐𝑐̂𝑘𝑘)2+(𝑑𝑑�+�̂�𝑒𝑘𝑘)2
;  𝜔𝜔�𝑘𝑘 = (𝑑𝑑�+𝑒𝑒𝑘𝑘)2

1+(𝑏𝑏�+𝑐𝑐̂𝑘𝑘)2+(𝑑𝑑�+�̂�𝑒𝑘𝑘)2
 (19) 

where reference groups are California, nonbank lenders, and non-recourse states.  

Instead of estimating the CPD model with a default indicator, we obtain the default rates for 

each subsample and time and run Eq. (17) to reduce the computational burden.  

 

3.4.  Pricing tests (Stage 4) 

Liu et al. (2012) use data at issuance and find the relationship between the spread of debt 

contracts and recovery rates. In this sense, we analyze whether the mortgage interest rates 

reflect the impact of systematic risk at origination. We measure the exposure to systematic risk 

level as the unexpected loss, which is the basis for lender capital and funding costs. The 

                                                           
7 We also estimate the systematic risk levels for risk classes in the robustness test. Ten risk classes are formed, 
hence nine dummies and nine interaction terms will be added to the model. The reference group is the lowest-
risk class.  
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unexpected loss is calculated as the difference between the 99th percentile of the CPD (i.e., 

VaR) and the expected loss. This is also considered the capital requirement for lenders to 

remain solvent over a one-year horizon.  

 𝑈𝑈𝑈𝑈𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑘𝑘 = 𝛷𝛷 �𝛷𝛷
−1(𝑃𝑃𝐷𝐷)+√𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑘𝑘𝛷𝛷−1(0.999)

√1−𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑘𝑘
� − 𝑃𝑃𝐷𝐷 (20) 

Where 𝛷𝛷−1(𝑃𝑃𝐷𝐷) is the inversed function of unconditional PD returning the linear combination 

of logistic regression estimated in either Eq. (5), (7) or (9); srisk is the exposure to systematic 

risk factors, which could be Beta, AC or total risk; 99.9% is the conservative value of single 

systematic risk factor according to Basel III to represent the state of the global economy.  

To create more heterogeneity in systematic risk levels, we randomly split mortgages into sub-

samples with approximately 10,000 loans each and estimate systematic risk levels for each sub-

sample. As a result, we obtain around 2,000 sub-samples and have 2000 variations of 

unexpected loss for the pricing regression.   

Loan-level prices may be based on loans and borrowers’ characteristics according to 

underwiring criteria. Therefore, we add FICO, DTI, LTV, loan size, dummy variables for 

property type (single-family house or others), loan purpose (purchased or refinancing), number 

of borrowers (one or more), origination channel (retail or third-party originator), occupation 

status (investment or residency), and mortgage insurance. We include the national average rate 

on a 30-year mortgage8 in the pricing equation. This allows us to capture the variations in 

mortgage rates compared to the national rate as well as vintage effects. We also include state 

dummy variables to control state regulation and lending competition. Standard errors are 

clustered by lender to control for the lending standard9. We define the pricing regression as 

follows: 

                                                           
8 We collect the data on national average rate on 30-year mortgages from FRED St. Louis FED database 
https://fred.stlouisfed.org/series/MORTGAGE30US 
9 We remove observations with missing observations in lender name which is approximately 1.8 million loans. 
This leaves us more than 18 million loans in the sample for the pricing tests.  
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𝐼𝐼𝑎𝑎𝐼𝐼_𝑂𝑂𝐼𝐼𝑖𝑖,𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽𝑈𝑈𝑈𝑈𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑘𝑘,𝑖𝑖 + 𝛾𝛾𝑅𝑅𝑀𝑀𝐼𝐼𝑒𝑒𝑖𝑖 + 𝛿𝛿𝑂𝑂𝑖𝑖,𝑖𝑖 + 𝜂𝜂𝑠𝑠 (21) 

where UL is unexpected loss reflecting the borrower’s exposure to the systematic risk factor, 

Rate is the national average of a 30-year mortgage; X represents the loan and borrower 

characteristics, 𝜂𝜂𝑠𝑠 represents the state dummies.10 All observations are recorded at the 

origination time.  

 

4. Data description 

We obtain data on mortgage loans from the Federal Housing Finance Agency (FHFA), which 

includes information on mortgage contract characteristics at the origination period and monthly 

loan performance. The mortgages are originated by banks and non-banks and securitized by the 

US Federal Home Loan Mortgage Corporation.11 

The original data set consists of more than 1.4 billion observations at monthly intervals from 

February 1999 to December 2019. Since mortgages with different maturities may have different 

term premiums, we restrict our analysis to only 30-year fixed-rate mortgages. We also dropped 

observations where the information on borrowers and loan characteristics such as FICO, DTI, 

LTV, occupancy status, number of borrowers, property type, loan purpose, and origination 

channel is unavailable. Furthermore, we exclude mortgages that were financed for investment 

purposes, second homes, and those with a prepayment penalty.12 Loans ceasing their existence 

in the sample due to third-party or reperforming sales are excluded. After recording the default 

events of loans that were delinquent for 90 days or more or involved in foreclosure events, we 

                                                           
10 We also run the piecewise Linear Regression which the spline expansions of continuous variables. The results 
remain robust. 
11 FDIC (2019)states that banks sold nearly half of their 1–4 family originations, while nonbanks sold more than 
97 percent. 
12 Loans supporting for investment account for 6.13% and loans with prepayment penalty only account for 0.11% 
in the full sample.  
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immediately removed the loans from the data set. After all filter rules, the final sample is 

reduced to around one billion observations. 

We aggregated the monthly data into an annual sample as many industry metrics are based on 

a one-year reporting period. We take the average values for metric variables such as FICO 

score, DTI, LTV, loan balance, loan age, and interest rate. The HPI data at the zip code level is 

merged into the annual sample, and current house values are imputed as the product of the 

original house value and the ratio of current HPI and original HPI. We exclude observations 

with missing current house values.  Finally, the national HPI and UER at annual intervals 

collected from the Federal Reserve Bank of St. Louis database are merged, and their percentage 

changes are computed. Our annual sample from 1999 to 2019 consists of 99,151,998 

observations, covering approximately 20 million loans.  

In total, we observed 1,075,584 default events representing an average default rate of roughly 

1.07%, and 14,534,452 payoff events, equivalents to a payoff rate of 14.44%. Table 3 shows 

the default rate and payoff rate for categorical variables. 

<Insert Table 3 here> 

Refinance mortgages and the ones with a single borrower, non-single-family homes and loans 

originated through third-party (TPO) channels have a greater default rate. Mortgage-insured 

loans also have a greater default rate as these borrowers are required to obtain a costly mortgage 

insurance. This helps mitigate loss given default but increases the risk for the additional 

expense. 

In short, we detect that loans that are refinanced, have one borrower, support for single-family 

homes, involve in third-party origination, and require mortgage insurance have a higher default 

rate than their counterparts. We expect that these attributes will have a positive effect on the 
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probability of default. In contrast, there is only a minor difference in payoff rates across various 

groups of loans. Most groups have an average payoff rate of 14% per annum. 

 Considering the changes in default rate and payoff rate over the sample period, most of the 

default events occurred during the crisis period between 2008 and 2010. The peak is reached 

with 438,903 events, equivalent to a default rate of 2.317%. This affirms the existence of default 

clustering and mortgage exposures to systematic risk factors. Furthermore, loans originated just 

before the GFC (from 2005 to 2007) have the highest default rate of 2.4%. This reveals the 

relaxed lending standards during the pre-crisis (Dell’Ariccia et al., 2012).   

Table 4 provides the descriptive statistics for metric variables FICO, original DTI, original 

LTV, LTV_change, loan age, and macroeconomic variables. The average FICO score is 731, 

which is considered to be a good credit rating. The average original DTI is 34.1%, which means 

that 34.1% of borrowers’ income is spent on paying mortgage debt, making it one of the biggest 

spending categories for households. The original LTV is 74% (the median is roughly 80%), 

reflecting a standard requirement from banks that borrowers are usually required to have at 

least 20% of the house value as a deposit. Meanwhile, the change in LTV is around -10% due 

to amortization and house price gains. Current LTVs may have increased due to house price 

losses during the GFC. The average loan age in our sample is 3.2 years, and the maximum loan 

age is slightly more than 20 years. Although our sample consists of 30-year fixed-rate 

mortgages, most of them are paid off before maturity. Regarding macroeconomic variables, 

HPI has increased on average by 2.4%, and the unemployment rate also increases by around 

1.4% per year.  

<Insert Table 4 here> 

We also observe the average values of metric variables for default and payoff sub-samples. 

Payoff loans have higher FICO, lower LTV, and lower DTI than default loans. These findings 
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support the DTM, where loans with higher liquidity (DTI) and leverage (LTV) are more likely 

to default and less likely to refinance or payoff loans. 

 

5. Empirical results 

5.1. Probabilities of payoff  

In this section, we present the estimation results of the PP models in Table 5 based on probit 

regressions.13  

A higher default risk corresponds to a lower payoff risk. We find that the coefficients on 

original LTV and LTV_change are both negative. This suggests that a higher LTV, possibly 

driven by a drop in house price, reduces the refinance and hence payoff likelihood. Original 

DTI has a positive sign which suggests that borrowers with a higher DTI may be more 

motivated to pay off or refinance their loans to reduce their interest payments. The 

unemployment rate – a proxy associated with illiquidity – has a negative effect on PP, meaning 

that job losses may restrict borrowers from paying off. The coefficients on other loan and 

borrower characteristics are consistent with the literature. Regarding model fit, the AUROC 

and R-square values constantly increase from the first to the last models, meaning that a more 

complex model doubtlessly explains more variations in payoff rate. 

<Insert Table 5 here> 

 

5.2. Probabilities of default  

We display the estimation results for PD models in Table 6. All estimates are highly consistent 

across the three models and follow the directions suggested by the descriptive analysis. Lower 

FICO scores, higher LTV, and higher DTI ratios have lower PDs. These results are consistent 

                                                           
13 We obtain the consistent results when employing multinomial logit regression.  
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with numerous studies in the literature (Mayer et al., 2009; Elul et al., 2010; Chan et al., 2016). 

In addition, we certify that refinanced loans, loans with single borrowers, loans supporting non-

single-family houses, loans originating through a third party, or those whose borrowers are 

required to obtain mortgage insurance are riskier and have a greater PD.  

<Insert Table 6 here> 

The results are as expected regarding the impact of time-varying factors. The coefficients on 

change in LTV are positive in all models. This indicates that an increase in LTV likely induced 

by a drop in house value raises the PD. In other words, an increase in the house price index 

leads to a rise in home equities, supporting borrowers to make loan payments. This explains 

the negative coefficient on change in HPI. In contrast, borrowers may not continue serving the 

loans if the unemployment rate surges. These empirical results support the DTM theory.  

The model fit measured by the AUROC ratio increases from 77.8% in the TTC model to 84.5% 

in the most comprehensive PIT model. The Pseudo R-square improves from 9.7% to 16.9% 

across three models. The more complex model again proves to be a better candidate to explain 

the variations in default rates. Since we proxy the systematic risk by the variations of the 

average PD and hence default rate, we argue that a more complex PD model is also superior to 

the TTC model in capturing observed systematic risk factors. We demonstrate this by showing 

movements of default rate and mean PD over time across three models.  

<Insert Figure 1 here> 

The TTC model's average PD is relatively flat and slightly decreases after 2008 due to the 

tightened lending standards on mortgages after the housing bubble burst in 2007. Obviously, 

the estimates from the TTC model do not align with the default rate. Rajan et al., (2015) 

acknowledge a poor model performance in predicting loan creditworthiness. Mean PD of the 

limited PIT model is more aligned with the default rate as being adjusted by the macroeconomic 
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state at the origination time and change in local HPI. However, this model could not properly 

capture the fluctuations in the default rate. With the inclusion of macroeconomic factors such 

as a change in national HPI and unemployment rate, the comprehensive PIT model is best suited 

for predicting default as the dashed lines showing the average of PD follow the solid line of 

default rate closely.  

 

5.3.  Measures of systematic risk  

5.3.1. Full sample 

Our main analysis aims to measure the levels of systematic risk in residential mortgages. 

Through the CPD model, we estimate Beta as the observed systematic level and AC as the 

unobserved (latent) systematic level. Table 7 presents the regression of the CPD model in Panel 

A and the additional estimates for systematic risk levels in Panel B. We have three CPD models, 

which differ from the observed systematic risk factor proxy - the mean PDs obtained from the 

corresponding unconditional PD models. 

<Insert Table 7 here> 

In the TTC model, where the observed systematic risk factor does not capture the 

macroeconomic condition, we find that the unobserved factor is the principal contributor to the 

systematic risk level. The coefficient on this factor is estimated at 0.261, indicating that an 

increase of one standard deviation unit leads to an increase of 26.1% in default rate. Meanwhile, 

the coefficient on the observed counterpart is not statistically significant. As we control for 

more macroeconomic factors in the following models, the observed effect becomes more 

prominent in explaining the variation of default rates. The frailty effect reduces in magnitude 

but remains meaningful. We find in the comprehensive PIT model that the coefficient on the 

observed factor is 0.246 while that on the frailty factor is 0.138.  
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We reparametrize systematic risk levels based on the sensitivity to systematic risk factors Beta 

and AC. As we move from the TTC model to the PIT models, we find that Beta significantly 

increases from 0 to 5.6%, and AC decreases from 6.4% to 1.8%. In the comprehensive PIT 

model, we indicate that Beta contributes explicitly 76% and AC contributes 24% to the total 

systematic risk levels. The total systematic risk has increased from 6.4% in the TTC model to 

7.4% in the comprehensive PIT model. As the variance of the default rate is estimated at 

10.28%, the sum of Beta and AC can explain roughly 70% of the default clustering. Even 

though the total systematic risk is always a combination of two components, incorporating the 

observed factor into the CPD model instead of relying on a single unobserved factor improves 

the predictive accuracy of PDs. We visualize the changes in Beta and AC across three models 

in Figure 2.  

<Insert Figure 2 here> 

We demonstrate the changes in observed and unobserved factors over the sample period across 

three models in Figure 3. The frailty factor acquires the remaining fluctuations in the business 

cycle left by the observed factor. The observed systematic risk factors do not fully reflect the 

macroeconomic conditions in the TTC and limited PIT models; hence the frailty factor plays 

an important role in capturing the default clustering and aligns with NBER recession periods.  

<Insert Figure 3 here> 

In the comprehensive PIT model, the observed factor reflects the impacts of housing market 

volatility and the unemployment rate. The residual frailty factor shows more noise. We notice 

minor spikes in frailty factors in 2005 and 2017, which the observed factor could not explain. 

These demonstrate a rise in default variations due to a lowering of lending standards in 2005 

(Koopman et al., 2012). 

 

5.3.2. Sub-sample analysis 
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We now implement the estimation for multiple sub-samples to examine whether different 

groups of loans have different exposures to systematic risk factors. We present the estimations 

for in Table 8. Three panels in Table 8 show the following results: Panel A is for banks and 

nonbank sub-samples, Panel B is for recourse and non-recourse sub-samples, and Panel C is 

for California and other states. Consistent with the main results, the unobserved factor is the 

dominant factor in explaining default clustering in the TTC model but becomes less important 

after controlling for the observed systematic risk factor.  

<Insert Table 8 here> 

Lender types 

We analyze the systematic risk levels in mortgages originated by banks and nonbank lenders.14 

The exposure to the observed factor is more potent for banks, while the exposure to the 

unobserved factor is more substantial for nonbank lenders. The total systematic risk levels are 

comparable between banks and nonbank lenders in the partial models. However, we notice a 

higher total systematic risk level in nonbank mortgages than bank mortgages in the 

comprehensive PIT model, where both systematic risk factors are properly incorporated.  

The study by Demyanyk & Loutskina (2016) shows that nonbank lenders are more likely to 

relax their lending standards and originate mortgages to riskier borrowers. They are also not 

under strict regulatory oversight as compared to banks Irani et al. (2021). Their funding sources 

rely on the short-term line of credit provided by banks, so the variations in funding costs may 

harm borrowers, leading to a higher delinquent rate (Kim et al. (2018). As a result, nonbank 

mortgages may be more sensitive to systematic risk. Furthermore, the HHI indexes based on 

                                                           
14 Banks are defined as depository institutions including credit unions and savings associations. Nonbanks are 
mainly mortgage companies. Other nonbank lenders can be subsidiaries of bank holding companies, finance 
companies or real estate investment trusts. We check the description of their business lines on Bloomberg/their 
website/SEC to decide whether the lenders are bank or nonbank. In sum, we have 68 nonbank lenders and 38 
traditional banks in our sample.  
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the core loan characteristics such as FICO, LTV, and DTI are higher for nonbank lenders than 

traditional banks.15 This reveals that nonbank loan portfolios are narrower and more 

concentrated than banks, resulting in originations of more homogeneous diversifying 

idiosyncratic risk.  

Recourse types 

Next, we investigate the systematic risk levels of mortgages between recourse and non-recourse 

states. Recourse lenders have access to the collateralizing house and the general borrower 

assets. Hence, borrowers default if they encounter negative equity and liquidity constraints. 

Non-recourse lenders have only access to the collateralizing house and borrowers default if 

they experience negative equity.  Non-recourse mortgages potentially have higher systematic 

risk levels than recourse mortgages as the defaults are more driven by systematic risk housing 

markets (see Cotter et al. (2015)). 

Our results show that in all three models, Beta and AC of mortgages in non-recourse states are 

consistently higher than those in recourse states. As a result, the total systematic risk levels of 

non-recourse mortgages are greater than those of recourse mortgages. This finding is aligned 

with Ghent & Kudlyak (2011) and Elul & Tilson (2016). 

States 

We continue estimating the exposure to systematic risk at the state level as the various state-

related macroeconomics may exert different impacts on systematic default risk. Cotter et al. 

(2015) find that California’s housing market is exposed to the greatest risk compared to the 

                                                           
15 FICO-related HHI is 10.4 for nonbank lenders and 10.1 for banks. LTV-related HHI is 14 for nonbank lenders 
and 13.5 for banks. DTI-related HHI is 10.2 for nonbank lenders and 10.1 for banks.  
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other regions. Since mortgage default is closely linked to housing market volatility, we estimate 

the systematic risk levels between California and other states.16  

We find that the estimations of Beta and AC are much higher for California than in other states, 

which is strongly consistent with Cotter et al. (2015). Our finding can be explained by the 

higher housing market risk in California and the nature of a non-recourse state which is more 

sensitive to systematic risk factors.  

 

5.4. Pricing impact of systematic risk level 

5.4.1. Full sample 

Table 9 reports the regression results examining the impacts of the exposures to systematic risk 

components on the mortgage rate. We compare our estimation results with the regulatory 

framework, where a benchmark of 15% is widely applied to calculate the unexpected loss. We 

find that the variations in mortgage rates are positively related to the exposure to systematic 

risk levels. The exposure levels to two systematic components differ according to the degree of 

observed factors included in the model.  

<Insert Table 9 here> 

In the TTC model in Column 1, most systematic risk exposure is explained by the AC, and 

hence unobserved factors solely explain the systematic risk. The coefficient on the UL 

generated from Beta is not statistically significant, while that on the AC-induced UL is 

significant at 0.0196. The regulatory model could be comparable to the TTC model due to the 

similar assumption that the latent factor dominates the systematic risk exposure. Although the 

explanatory powers between the two models are indifferent with similar R-square values, we 

                                                           
16 We also adopt Cotter et al. (2015)’s regional category and estimate the systematic risk levels at regional level. 
The results consistently show that mortgages in California are more exposed to systematic risk and have a higher 
systematic risk level for both Beta and AC. We present the results in the Appendix A.  
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notice a stronger sensitivity of mortgage rate to the exposure based on the estimated AC than 

the regulatory value. In particular, a one-percent increase in the UL induced by AC leads to an 

increase of roughly two bps in the mortgage rate, while a similar increase in the UL caused by 

the regulatory value leads to a rise of 1.5 bps in the mortgage rate. This finding could suggest 

the use of the in-house estimations from the lenders for a better pricing model.  

For the limited PIT model in Column 2, both coefficients on systematic risk components are 

positive (0.0318 for Beta-related UL and 0.0162 for AC-induced UL) and statistically 

significant. The mortgage rate is more exposed to the observed component than the unobserved 

one. In particular, a one-percent increase in the unexpected loss (i.e., ULBeta) leads to a rise of 

3.2 basis points (bps) in the mortgage rate, but a similar increase in the ULAC only results in 

half of the magnitude (1.6 bps).  

When moving to the comprehensive PIT model in Column 3, the mortgage rate is only related 

to the observed component only (the coefficient on ULBeta of 0.045 at the 1% level). A one-

percent increase in the UL based on Beta results in a jump of 5 bps in the mortgage rate. The 

coefficient on the unobserved component is not statistically significant. We also look at R-

square to examine the explanatory power across three models (i.ed. higher R-square, better 

model). Moving from the TTC model to the cPIT model, the R-square increases from 88.09% 

to 88.19%, which indicate that the comprehensive PIT model is the best for explaining the 

variations in mortgage rates. This finding signifies the crucial role of observed risk in 

determining the mortgage rate. 

In summary, systematic risk is priced in the mortgage rate. The observed risk factor plays a 

more critical role than the unobserved risk factor in explaining the variations in mortgage rates. 

In addition, incorporating both risk factors helps boost pricing accuracy compared to a single-
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factor regulatory framework. Our findings pave the way for mortgage lenders to achieve a better 

pricing scheme. 

 

5.4.2. Sub-sample 

Table 10 presents the pricing results for different sub-samples, including banks vs. nonbank 

lenders (Panel A), non-recourse states vs. recourse states (Panel B), and  CA vs. other states 

(Panel C). At first glance, all coefficients on systematic risk components are positive, indicating 

the relevance of including systematic risk in mortgage pricing. The exposures of mortgage rates 

to systematic risk components vary across different sub-samples.  

<Insert Table 10 here> 

The results for different lenders presented in Panel A show that mortgages issued by banks are 

more sensitive to the observed systematic risk, but those originated by nonbank lenders show 

a stronger sensitivity to the unobserved systematic risk. In the TTC model where the 

unobserved factor takes the dominant role, a one-percent increase in the unexpected loss 

induced by AC causes a rise of 1.6 bps for nonbank mortgages and less than one bp for bank 

mortgages. A similar increase in the comprehensive PIT model where the observed factor takes 

the leading role generates a 3.8 bps for nonbank mortgages and 4.2 bps for bank mortgages. 

With the current industry practice assuming an unobserved factor as the single shock to the 

systematic risk, nonbank lenders may charge higher interest rates for mortgages to compensate 

for the higher level of systematic risk. If properly incorporating both systematic factors in the 

model, bank mortgages tend to be higher than nonbank mortgages. This is because banks are 

subjected to heavy regulation and need to charge a higher interest rate to cover the capital 

requirement.  
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The results for different types of recourse law in Panel B are consistent with the main analysis. 

The exposure to the unobserved factor takes the dominant role in explaining the variations of 

mortgage rates in the TTC model but becomes less important when more observed factors are 

incorporated in the PIT models. As we move from the TTC model to the cPIT model, the 

magnitudes of coefficients on ULBeta increase and those on ULAC decrease for both recourse 

and nonrecourse subsamples. However, we notice that the unobserved factor remains effective 

on the non-recourse mortgage rates even after the observed factor is fully incorporated. This 

finding signifies the importance of including two pricing factors for nonbank lenders.  

Regarding the pricing impact on mortgages across states (Panel C), our empirical evidence 

suggests positive relationships between mortgage rates and exposures to systematic risk factors. 

However, there is a slight divergence in the state-level results compared to the main analysis. 

The regressions for other states depict a common finding in which the pricing impact of Beta-

related exposure increases and that of AC-related exposure decreases from the TTC model to 

the PIT models. For CA mortgages, both systematic factors’ contributions in explaining the 

variations of mortgage rates increase as we move from the simple model to more 

comprehensive ones. The possible explanation for the CA result applies to the nature of being 

a non-recourse state. We believe the unobserved factor remains effective even after fully 

incorporating the observed factor. Despite that, the observed effect outweighs the unobserved 

counterpart.      

 

5.5. Robustness tests 

5.5.1. Using different default indicator 

We now change the default definition to delinquencies over 60 days in addition to foreclosure. 

This definition increases the number of default events as well as default rates. We replicate the 

estimation for the full sample and summarize the result in Panel A of Table 11. The results are 
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consistent with the main finding where the influence of Beta (AC) in driving systematic risk 

levels gets stronger (weaker) as we move from the TTC model to the PIT models. However, 

the total systematic risk level is smaller than for delinquencies over 60 days as these 

delinquencies include idiosyncratic factors (e.g., forgetfulness) to a greater extent than 

systematic factors. This could be because the early-delinquent borrowers have a level of 

resilience to the point that they can recover and solve the initial problem. However, the 

contributions of Beta and AC remain consistent, where Beta is still the dominant component 

when properly controlling both factors.  

<Insert Table 11 here> 

 

5.5.2. Using the first principal component as the proxy for observed systematic risk factor 

We replace the proxy of the observed systematic risk factor by the first principal component of 

default rates and reproduce the estimations for systematic risk levels. Since the number of loans 

(cross-section) is much larger than the number of years (time-series), extracting the common 

factors through the principal component analysis could be problematic. We calculate the 

average default probability by state-year. We then extract the first principal component (PC1) 

from a panel of 52 states and 21 years. Before replicating the regression of the CPD model in 

Eq. (14) and estimating the systematic risk levels, we standardized the PC1 to allow for the 

magnitude comparison between Beta and AC. We summarize the results in Panel B of Table 

11. The results are strongly consistent with our main finding regarding magnitudes and 

significance. The total systematic risk level across the three models is consistently at 7%, and 

Beta’s influence becomes greater when more observed factors are incorporated into the model.  

 

5.5.3. Risk-class estimations 
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Our final robustness test is to estimate the systematic risk level for different risk classes. Note 

that the risk classes are defined based on each individual loan's average default probabilities. 

We ensure that the number of default events is comparable between risk classes, so the default 

rates converge to conditional default probabilities. Hence, the first class has the most 

observations and the lowest default rate, while the last class has the least observations with the 

highest default rate.  

<Insert Table 12 here> 

We find that Beta estimates are not statistically significant throughout the classes in the TTC 

model, leaving AC as the sole contributor to the total systematic risk. In the limited PIT model, 

the contributions of Beta and AC are mostly comparable, but the driving force of AC tends to 

be stronger than Beta for higher-risk mortgages. As risk profiles for these mortgages could be 

entangled with multiple factors, the narrow involvement of observed systematic risk factors in 

the limited PIT could not help to capture the exposure. Therefore, AC likely overperforms Beta 

with this model. Regarding the comprehensive PIT model, Beta probably outweighs AC in 

forming total systematic risk. However, systematic risk is mainly driven by the frailty factor in 

the two lowest-risk classes, implying that low-risk mortgages are unlikely to suffer the adverse 

effects from macroeconomic risks but rather driven by the frailty factors.  

We further notice that Beta and AC likely increase from the lowest to the highest-risk class, 

indicating that higher-risk mortgages have greater exposure to systematic risk factors than 

lower-risk mortgages. In the comprehensive PIT model, for example, Beta estimates rise from 

0% to nearly 12%, and AC estimates rise from 0.7% to roughly 4%. Higher-risk mortgages are 

more exposed to systematic risk factors than lower-risk mortgages. This finding is strongly 

consistent to Hilscher & Wilson (2017).  
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Calem & Follain (2003) suggest the application of 15% for systematic risk levels in mortgages 

on single-family residencies which Basel regulations have adopted. Our analysis indicates that 

it may be more reasonable to use lower and different systematic risk levels for various 

mortgages based on their distinctive levels of risk. Consequently, a more suitable capital level 

may be derived to absorb potential future loan losses.  

 

6. Industry impact 

This research paper develops a unifying framework to measure the exposure levels to 

systematic risk for mortgages. The empirical evidence indicates that mortgage defaults are 

exposed to both observed and unobserved (frailty) systematic risk factors. Observed factors are 

dominant in driving systematic risk levels. We find meaningful differences in the exposures to 

systematic risk factors across regions, lenders, and recourse types. The model allows for a 

greater level of control when implementing risk measures compared to the current situation of 

placing all risks under a single parameter.    

We also provide evidence of a positive relationship between mortgage rates and systematic risk 

levels, suggesting that mortgages with higher systematic risk levels require a higher premium. 

The inclusion of systematic risk levels in pricing is documented, and parameters differ for 

observed and unobserved risk. Pricing against systematic risk levels may be refined following 

more precise measures. For regulators, our findings suggest accounting for different systematic 

risk exposures in the regulatory regime to strengthen the financial system's resilience.  

This could entail potential changes for institutions within this industry. At the moment, there is 

likely a dearth of knowledge regarding the systematic risk for banks and non-bank lenders. This 

is reflected in how regulators do not consider varying levels of systematic risk in their 

regulations and guidelines (currently using a standard AC of 15%). Our research results can 
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assist policymakers in minimizing and adapting to a higher granular level of risk, which could 

push banks to improve their risk measurement frameworks.  Furthermore,  non-bank lenders 

should be included in the Basel framework due to their increased vulnerability to this risk.  

Hopefully, the fruits of our research will assist organizations in the banking industry reduce the 

risks of mortgage defaults and increase profitability and growth through more streamlined and 

efficient risk settings. This can indirectly increase the option of adopting more favorable 

conditions for less risky consumers through lowered interest rates and more targeted loan 

offerings. Future research may improve mortgage portfolio strategies to benefit both banks and 

consumers.  

However, it should be noted that the results are explicitly related to securitized US mortgages 

and the credit risks that may be applicable to these loans. Loan providers based outside the US 

in other international markets may have characteristics that may not be reflective of our 

analysis. Further research may generalize our empirical findings. 
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Tables and Figures 

Table 1: Literature review 

Note: This table summarizes the literature review on systematic risk. Stream 1 refers to studies estimating the impacts of systematic risk factors but do not estimate the 
systematic risk levels. Stream 2 refers to those estimating systematic risk levels explicitly.   

No Paper Region Period Model Asset class 
Observed 
syst.risk 
factor 

Unobserved 
syst.risk 
factor 

Stream 

1 Our paper US 1999 – 2019 Nonlinear mixed model Mortgage Yes Yes 2 
2 Lee et al. (2021) US 2002 - 2014 State space  Mortgage No Yes 2 
3 Calem and Follain (2003) US 1982 – 2000 Survival model Mortgage No Yes 2 
4 Gupta (2019) US 2000 - 2010 IV regression  Mortgage Yes No 1 
5 Goodstein et al. (2017) US 2005 - 2009 Logit Mortgage Yes No 1 
6 Amromin and Paulson (2009) US 2004 - 2007 Probit  Mortgage Yes No 1 
7 Elul et al. (2010) US 2005 - 2009 Logit Mortgage Yes No 1 

8 Calabrese and Crook (2020) UK 2006 - 2015 
Spatial generalised 
extreme value survival 
model 

Mortgage 
Yes No 1 

9 Leow and Crook (2016) UK 2002 - 2011 Logit Mortgage Yes No 1 

10 Crook and Banasik (2012) US 1988 - 2008 Error correction  
Consumer credit 
and mortgage  Yes No  1 

11 Hashimoto (2009) Japan 1985 to 2005  Ordered probit model Corporate  No Yes 2 

12 Jiménez and Mencía (2009) Spain 1984 - 2006 Vector autoregression 
(VAR)  Corporate  Yes Yes 1 

13 Azizpour et al. (2018) US 1970 -2012 Method of maximum 
likelihood Corporate  Yes Yes 1 

14 Hilscher and Wilson (2017) US 1986 – 2013 
Dynamic logit model for 
Failure score 
OLS for failure Beta 

Corporate Yes No 2 

15 Nickerson and Griffin (2017) US 2000 - 2007 Joint model estimated by 
MLE Corporate Yes Yes 1 

16 Duffie et al. (2009) US 1979 - 2004 Autoregressive Gaussian 
time-series model Corporate No Yes 1 
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17 Dietsch and Petey (2004) 
France 
and 
Germany 

1995 – 2001 
(France)  
1997 – 2001 
(Germany) 

Probit ordered model 
 Corporate No Yes 1 

18 Koopman et al. (2012) US 1981 - 2005 Logit Corporate Yes Yes 1 

19 Duffie et al. (2007) US 1980 - 2004 Double stochastic model 
with joint MLE Corporate Yes No 1 

20 Das et al. (2007) US 1979 - 2004 Doubly stochastic model Corporate Yes No 1 

21 Pesaran et al. (2006) US 1987 - 2003 
Global vector 
autoregressive 
macroeconomic model 

Corporate Yes No 1 
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Table 2: Variable definitions 
 

Note: This table presents the variable definitions used in our paper. The data source for indicator variables, 
borrower characteristics, and loan characteristics is Federal Housing Finance Agency. Unemployment rate 
(UER) and HPI are sourced from the FRED database provided by the St. Louis Federal Reserve Bank.  
Variable Description 
Dit Default indicator equals to 1 if loans have been delinquent for 90 days or 

more, have been acquired by REO acquisition or REO disposition, or have 
been involved in short sale or charge off and zero otherwise 

Pit Payoff indicator equals to 1 if a loan balance becomes zero due to the 
prepaid, matured or repurchase prior to property disposition and zero 
otherwise  

FICO Borrower’s credit score created by Fair Isaac Corporation  
Orig LTV Ratio between original mortgage loan amount and house value 
Orig DTI Ratio between borrower’s monthly debt payment and total monthly income 

at the origination time 
Refinancing Dummy variable receives value of 1 if mortgage is either cash-out or no 

cash-out refinanced and zero otherwise 
Multiple  Dummy variable receives value of 1 if there are more than one borrower 

obligated to repay loan and zero otherwise 
SF Dummy variable receives value of 1 if property type secured by the 

mortgage is single-family home and zero otherwise 
TPO Dummy variable receives value of 1 if mortgage was originated or involved 

in the third-party organization such as a broker or a correspondent and zero 
otherwise 

MI Dummy variable receives value of 1 if borrower is required to obtain a 
mortgage insurance and zero otherwise 

PP Estimated payoff probability 
LTV_change Difference between current LTV and Orig LTV 

Current LTV estimated with annual data is ratio of current loan balance and 
house value. We estimate current house value based on the HPI at zip code 
level as the product of original house value and ratio of current HPI and 
original HPI.   

Loan age Time between current year and origination year 
Loan age2 Square of loan age 
HPI_change Percentage change of national HPI in year t as compared to year t-1 
UER_change Percentage change of national unemployment rate in year t as compared to 

year t-1 
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Table 3: Mortgage performance by categorical variables 

Note: This table describes the mortgage data at the annual level. The loan purpose indicates whether a mortgage 
is a house purchase or loan refinance. The number of borrowers indicates whether a mortgage has one or more 
than one borrower. SF loans variable indicates whether the property type secured for the mortgage is a single-
family home. Channel shows whether mortgages originated by a retail lender or associated with a third-party 
organization. Mortgage insurance shows whether mortgage insurance is required. Current year is the observation 
year. Origination year is the year when a mortgage is originated.  

Note: 

Loan features No of Obs 
No of  
default 
events 

Default 
rate 
(%) 

No of  
payoff 
events 

Payoff rate 
(%) 

Loan purpose      
Purchase 43,036,162 405,235 0.942% 6,288,710 14.613% 

Refinancing 57,601,686 670,349 1.164% 8,245,742 14.315% 
Number borrowers      

One  45,168,500 625,638 1.385% 11,045,786 14.510% 
Multiple 55,469,348 449,946 0.811% 3,488,666 14.231% 

SF loans      

Yes 76,123,640 852,241 1.120% 11,045,786 14.510% 
No 24,514,208 223,343 0.911% 3,488,666 14.231% 

Channel       

Retail 47,162,282 401,645 0.852% 6,611,743 14.019% 
Third Party Organization 53,475,566 673,939 1.260% 7,922,709 14.816% 

Mortgage insurance      
Yes 24,082,880 371,277 1.542% 3,344,278 13.887% 
No 76,554,968 704,307 0.920% 11,190,174 14.617% 

Current year       

1999-2001 5,453,769 25,542 0.468% 640,974 11.753% 
2002-2004 13,112,030 94,829 0.723% 3,332,001 25.412% 
2005-2007 15,018,287 107,900 0.718% 1,487,388 9.904% 
2008-2010 18,941,112 438,903 2.317% 2,595,133 13.701% 
2011-2013 15,850,737 245,030 1.546% 3,058,410 19.295% 
2014-2016 14,877,321 83,195 0.559% 1,716,325 11.537% 
2017-2019 17,384,592 80,185 0.461% 1,704,221 9.803% 

Origination year      
1999-2001 12,548,238 126,434 1.008% 2,988,301 23.815% 
2002-2004 26,691,452 253,843 0.951% 4,035,595 15.119% 
2005-2007 19,007,701 463,158 2.437% 2,542,449 13.376% 
2008-2010 15,675,743 161,879 1.033% 2,523,562 16.099% 
2011-2013 11,239,249 22,093 0.197% 1,054,863 9.386% 
2014-2016 10,662,843 33,246 0.312% 978,982 9.181% 
2017-2019 4,812,622 14,931 0.310% 410,700 8.534% 

All 100,637,848 1,075,584 1.069% 14,534,452 14.442% 
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Table 4: Descriptive Statistics 

  

Note: This table shows the descriptive statistics of metric variables for the full sample, default loans, and payoff 
loans. The definitions of all the below variables are presented in Table 2.  
 Full sample Default loans Payoff loans 

 Mean 
Std. 

Error Min Max Mean 
Std. 

Error Mean 
Std. 

Error 
FICO 731.734 54.866 300.000 850.000 684.547 56.182 731.750 53.953 
Orig LTV  0.736 0.162 0.060 1.050 0.790 0.132 0.732 0.162 
Orig DTI  0.341 0.112 0.010 0.650 0.388 0.110 0.341 0.113 
LTV_change  -0.098 0.144 -0.627 0.299 -0.006 0.177 -0.236 0.169 
Loan age (Years) 3.181 3.156 0.000 20.792 4.139 2.958 3.452 2.969 
HPI_change 0.024 0.052 -0.074 0.114 -0.008 0.056 0.022 0.051 
UER_change 0.014 0.193 -0.163 0.601 0.100 0.257 0.028 0.195 
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Table 5: Estimation of payoff probability (Stage 1) 

Note: This table presents the payoff probability (PP) estimate. The TTC model for PP is specified in 
Equation (3). The limited PIT model for PP is specified in Equation (4). The comprehensive PIT model for 
PP is specified in Equation (5). The dependent variable in all four models is the payoff indicator. Dummies 
for origination years and states are skipped for simplicity. Standard errors are in parentheses. *, **, *** 
indicate significance at the 10%, 5% and 1% confidence levels respectively. The fit statistics include the 
value of area under the curve (AUROC), rescaled R-square. The number of observations is also provided.  

 TTC Limited PIT Comprehensive PIT 

Intercept -1.775*** 
 (0.003) 

-1.413*** 
 (0.003) 

-1.151*** 
 (0.003) 

FICO 0.083*** 
 (0) 

0.024*** 
 (0) 

0.016*** 
 (0) 

Orig LTV -0.001 
 (0.001) 

-1.112*** 
 (0.002) 

-1.135*** 
 (0.002) 

Orig DTI 0.043*** 
 (0.001) 

0.296*** 
 (0.002) 

0.318*** 
 (0.002) 

Refinancing -0.05*** 
 (0) 

0.035*** 
 (0) 

0.039*** 
 (0) 

Multiple borrowers 0.089*** 
 (0) 

0.107*** 
 (0) 

0.105*** 
 (0) 

Property types 0.05*** 
 (0) 

0.022*** 
 (0) 

0.02*** 
 (0) 

Third-party origination 0.017*** 
 (0) 

0.027*** 
 (0) 

0.027*** 
 (0) 

Mortgage insurance -0.029*** 
 (0) 

-0.022*** 
 (0.001) 

-0.023*** 
 (0.001) 

LTV_change  -6.654*** 
 (0.003) 

-6.913*** 
 (0.003) 

Loan age  -0.023*** 
 (0) 

-0.068*** 
 (0) 

Loan age2  -0.007*** 
 (0) 

-0.006*** 
 (0) 

HPI_change   -4.768*** 
 (0.006) 

UER_change   -1.06*** 
 (0.002) 

Vintage dummies No Yes Yes 
State dummies Yes Yes Yes 
AUROC 0.549 0.862 0.869 
Max-rescaled R-square 0.007 0.368 0.378 
No of obs 99,151,998 99,151,998 99,151,998 
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Table 6: Estimation of default probability (Stage 2) 

Note: This table presents the PD estimate. The TTC model for PD is specified in Equation (8). The limited 
PIT model for PD is specified in Equation (9). The comprehensive PIT model for PD is specified in Equation 
(10). The dependent variable in all models is the default indicator defined in Table 2. Dummies for origination 
years and states are skipped for simplicity. Standard errors are in parentheses. *, **, *** indicate significance 
at the 10%, 5% and 1% confidence levels respectively. The fit statistics include the value of area under the 
curve (AUROC), rescaled R-square. The number of observations is also provided. 

 TTC Limited PIT Comprehensive PIT 

Intercept 
-0.553*** 
 (0.007) 

-0.730*** 
 (0.007) 

-0.590*** 
 (0.007) 

FICO 
-0.366*** 
 (0) 

-0.416*** 
 (0) 

-0.428*** 
 (0) 

Orig LTV 
0.978*** 
 (0.004) 

1.031*** 
 (0.005) 

1.035*** 
 (0.005) 

Orig DTI 
0.747*** 
 (0.004) 

0.697*** 
 (0.004) 

0.71*** 
 (0.004) 

Refinancing 
0.113*** 
 (0.001) 

0.119*** 
 (0.001) 

0.123*** 
 (0.001) 

Multiple borrowers 
-0.15*** 
 (0.002) 

-0.21*** 
 (0.001) 

-0.215*** 
 (0.001) 

Property types (SF) 
-0.002 
 (0.001) 

-0.034*** 
 (0.001) 

-0.036*** 
 (0.001) 

Third-party origination 
0.071*** 
 (0.001) 

0.064*** 
 (0.001) 

0.065*** 
 (0.001) 

Mortgage insurance 
0.01*** 
 (0.001) 

0.04*** 
 (0.001) 

0.046*** 
 (0.001) 

Payoff probability 
-2.988*** 
 (0.075) 

-0.186*** 
 (0.006) 

-0.169*** 
 (0.006) 

Change in LTV  
1.294*** 
 (0.006) 

1.276*** 
 (0.006) 

Loan age  
0.162*** 
 (0.001) 

0.14*** 
 (0.001) 

Loan age2  
-0.011*** 
 (0) 

-0.008*** 
 (0) 

Change in HPI   
-1.845*** 
 (0.014) 

UER change   
0.232*** 
 (0.003) 

Vintage dummies No Yes Yes 
State dummies Yes Yes Yes 
AUROC 0.778 0.844 0.845 
Max-rescaled R-square 0.097 0.162 0.169 
Number of observations 99,151,998 99,151,998 99,151,998 
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Table 7: Estimates of CPD model (Stage 3) 

Note: Panel A of this table presents the estimation results of the conditional PD model specified in Equation (14). 
The dependent variable is the annual default rate. The independent variable includes observed and unobserved 
systematic risk factors. Panel B of this table presents the estimates of Beta and AC as specified in Equation (16). 
The total systematic risk level is the sum of Beta and AC. Beta’s contribution is the ratio of Beta to total systematic 
risk, and AC’s contribution is the ratio of AC to total systematic risk. Default variance represents the default 
clustering or observable systematic risk. Total S.Risk explanation shows the ratio between total systematic risk and 
default variance to show how the estimated systematic risk has explained much default variance. The name of the 
model is consistent with the PD models, including the TTC model specified in Equation (8), the Limited PIT model 
specified in Equation (9), and the comprehensive PIT model specified in Equation (10). Standard errors are in 
parentheses. *, **, *** indicate significance at the 10%, 5% and 1% confidence levels respectively. 
 TTC model Limited PIT Comprehensive PIT 
Panel A: CPD equation    
a -2.423*** 

 (0.058) 
-2.409*** 
 (0.035) 

-2.398*** 
 (0.03) 

b -0.011 
 (0.056) 

0.222*** 
 (0.038) 

0.246*** 
 (0.033) 

c 0.261*** 
 (0.04) 

0.161*** 
 (0.025) 

0.138*** 
 (0.021) 

Panel B: Systematic risk levels    

Beta 0 
 (0.001) 

0.046*** 
 (0.015) 

0.056*** 
 (0.014) 

AC 0.064*** 
 (0.018) 

0.024*** 
 (0.007) 

0.018*** 
 (0.005) 

Total systematic risk 0.064*** 
 (0.019) 

0.07*** 
 (0.016) 

0.074*** 
 (0.015) 

Beta’s contribution  0 66% 76% 
AC’s contribution 100% 34% 24% 
Default variance 0.103 0.103 0.103 
Total S.Risk explanation 62% 68% 72% 
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Table 8: Systematic risk levels for sub-samples (Stage 3) 

Note: This table presents the estimates of Beta and AC for different types of lenders (banks vs. nonbank 
lenders) in Panel A, for different types of the judicial system (recourse vs. non-recourse states) in Panel B, and 
for different states (CA vs other states). Non-recourse states include AK, AZ, CA, CT, ID, MN, NC, ND, OR, 
TX, UT, and WA. Other states follow the recourse rule. Beta and AC are estimated as specified in Eq. (18) and 
Eq. (19) for each sub-sample. The dependent variable is the default rate by year of each sub-sample. The 
independent variables are observed and unobserved systematic risk factors. Each model uses the standardized 
Mean PD from the corresponding PD model as the proxy of observed systematic risk factor. Unobserved factors 
are proxied by a set of time (year) dummies. Standard errors are in parentheses. *, **, *** indicate significance 
at the 10%, 5% and 1% confidence levels respectively. All results are expressed in percentages.  
Panel A: Banks vs. Nonbank institutions   

 TTC 
model 

Limited 
PIT 

Comp. 
PIT  TTC 

model 
Limited 
PIT 

Comp. 
PIT 

 Beta  AC 

Bank 3.122* 
 (0.017) 

5.309*** 
 (0.017) 

5.446*** 
 (0.013)  4.364*** 

 (0.013) 
2.623*** 
 (0.008) 

1.406*** 
 (0.004) 

Nonbank 3.427** 
 (0.016) 

5.145*** 
 (0.016) 

5.188*** 
 (0.016) 

 3.735*** 
 (0.011) 

2.433*** 
 (0.007) 

2.444*** 
 (0.007) 

Panel B: Recourse states vs. Non-recourse states 

 TTC 
model 

Limited 
PIT 

Comp. 
PIT  TTC 

model 
Limited 
PIT 

Comp. 
PIT 

 Beta  AC 

Recourse 2.831* 
 (0.014) 

4.198*** 
 (0.013) 

4.897*** 
 (0.014)  

3.334*** 
 (0.01) 

2.123*** 
 (0.006) 

1.987*** 
 (0.006) 

Non-
recourse 

3.329* 
 (0.018) 

5.359*** 
 (0.018) 

6.364*** 
 (0.016)  

4.7*** 
 (0.014) 

2.906*** 
 (0.009) 

2.087*** 
 (0.006) 

Panel C: California vs. Other states 

 TTC 
model 

Limited 
PIT 

Comp. 
PIT  TTC 

model 
Limited 
PIT 

Comp. 
PIT 

 Beta  AC 

California 7.262** 
 (0.034) 

9.441*** 
 (0.03) 

11.439*** 
 (0.016)  

8.126*** 
 (0.023) 

5.337*** 
 (0.016) 

1.213*** 
 (0.004) 

Other 
states 

3.149** 
 (0.015) 

4.135*** 
 (0.013) 

4.701*** 
 (0.014)  

3.408*** 
 (0.01) 

2.078*** 
 (0.006) 

2.109*** 
 (0.006) 
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Table 9: Pricing results on full sample (Stage 4) 

Note: This table presents the impact of exposure to systematic risk on the mortgage interest rate. The exposure 
is computed as the unexpected loss (UL) as the difference between the VaR and unconditional PD. As specified 
in Basel III, VaR is calculated from the estimated systematic risk levels (Beta or AC), PD, and conservative 
systematic risk value (0.999). The names of the columns correspond to the PD models, which are the TTC 
model specified in Eq. (8), the limited PIT model specified in Eq. (9), and the comprehensive PIT model 
specified in Eq. (10). Rate is the national average rate on 30-year fixed-rate mortgages. We include all loans 
and borrowers’ characteristics, including FICO, DTI, LTV, original loan size, dummies for single-family 
property, refinancing loans, multiple borrowers, third-party originations, and mortgage insurance as control 
variables. State dummies are also included. Standard errors are clustered by lenders to control for standard 
lending differences and are reported in parentheses. *, **, *** indicate significance at the 10%, 5% and 1% 
confidence levels respectively. We also provide the R-square and number of observations for each pricing 
regression at the bottom of the table.  
 Regulatory 

value TTC Limited PIT Comp. PIT 

ULBeta  0.0034 
 (0.005) 

0.0318*** 
 (0.003) 

0.045*** 
 (0.006) 

ULAC  0.0196*** 
 (0.005) 

0.0162** 
 (0.008) 

0.0003 
 (0.004) 

UL15% 
0.015*** 
 (0.003)    

Rate 0.8693*** 
 (0) 

0.8694*** 
 (0) 

0.8568*** 
 (0) 

0.8581*** 
 (0) 

Intercept 0.0282*** 
 (0.002) 

0.0313*** 
 (0.002) 

0.0316*** 
 (0.002) 

0.0309*** 
 (0.001) 

Control variables Yes Yes Yes Yes 
Lender and state 
dummies  Yes Yes Yes Yes 

R-square 88.10 88.09 88.14 88.19 
No of obs 18,050,132 18,050,132 18,050,132 18,050,132 
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Table 10: Pricing results for sub-samples (Stage 4) 

Note: This table presents the impact of exposure to systematic risk on the mortgage interest rate for different sub-samples. The exposure is computed as the unexpected loss 
(UL) as the difference between the VaR and unconditional PD. VaR is calculated from the estimated systematic risk levels (Beta or AC), PD and conservative systematic 
risk value (0.999) as specified in Basel III. The names of the columns correspond to the PD models, which are the TTC model specified in Eq. (8), the limited PIT model 
specified in Eq. (9), and the comprehensive PIT model specified in Eq. (10). Rate is the national average rate on 30-year fixed-rate mortgages. We include all loans and 
borrowers’ characteristics, including FICO, DTI, LTV, original loan size, dummies for single-family property, refinancing loans, multiple borrowers, third-party originations, 
and mortgage insurance as control variables. State dummies are also included. Panel A shows the pricing results for banks and nonbank lenders. Panel B shows the pricing 
results for recourse and non-recourse states. Panel C shows the pricing results for California and other states. Standard errors are clustered by the lender to control for lending 
standards and are reported in parentheses. *, **, *** indicate significance at the 10%, 5% and 1% confidence levels respectively. We also provide the R-square and number 
of observations for each pricing regression at the bottom of each panel. 
Panel A Banks  Nonbank lenders 
 TTC Limited PIT Comp. PIT  TTC  Limited PIT Comp. PIT 

ULBeta 
0.0085*** 
 (0.003) 

0.0231*** 
 (0.004) 

0.0417*** 
 (0.007)  0.0148*** 

 (0.005) 
0.028*** 
 (0.005) 

0.038*** 
 (0.008) 

ULAC 0.0095*** 
 (0.003) 

0.024*** 
 (0.005) 

0.0073** 
 (0.003)  0.016*** 

 (0.005) 
0.0172** 
 (0.008) 

0.0056 
 (0.005) 

Rate 0.8606*** 
 (0.016) 

0.8484*** 
 (0.018) 

0.8491*** 
 (0.018)  0.8734*** 

 (0.011) 
0.8624*** 
 (0.011) 

0.8637*** 
 (0.012) 

Intercept 0.0331*** 
 (0.002) 

0.0322*** 
 (0.002) 

0.0312*** 
 (0.002)  0.0311*** 

 (0.002) 
0.0317*** 
 (0.002) 

0.0313*** 
 (0.002) 

Control variable Yes Yes Yes  Yes Yes Yes 
Seller cluster Yes Yes Yes  Yes Yes Yes 
State dummy Yes Yes Yes  Yes Yes Yes 
R-square 87.09 87.14 87.23  88.72 88.75 88.79 
No of obs 7,827,193 7,827,193 7,827,193  10,222,939 10,222,939 10,222,939 
Panel B Recourse states  Non-recourse states 
 TTC Limited PIT Comp. PIT  TTC  Limited PIT Comp. PIT 

ULBeta 
0.0126*** 
 (0.004) 

0.0296*** 
 (0.004) 

0.0453*** 
 (0.007)  0.0108*** 

 (0.003) 
0.0224*** 
 (0.003) 

0.0328*** 
 (0.005) 

ULAC 0.0161*** 
 (0.005) 

0.0199*** 
 (0.007) 

0.0044 
 (0.004)  0.0119*** 

 (0.003) 
0.0198*** 
 (0.004) 

0.0109*** 
 (0.003) 

Rate 0.8799*** 
 (0.011) 

0.8681*** 
 (0.012) 

0.8692*** 
 (0.012)  0.8524*** 

 (0.008) 
0.8411*** 
 (0.009) 

0.8422*** 
 (0.009) 

Intercept 0.0316*** 
 (0.002) 

0.0316*** 
 (0.002) 

0.0308*** 
 (0.002)  0.0326*** 

 (0.001) 
0.0326*** 
 (0.001) 

0.0322*** 
 (0.001) 
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Control variable Yes Yes Yes  Yes Yes Yes 
Seller cluster Yes Yes Yes  Yes Yes Yes 
State dummy Yes Yes Yes  Yes Yes Yes 
R-square 87.79 87.83 87.90  88.56 88.60 88.65 
No of obs 11,502,573 11,502,573 11,502,573  6,547,559 6,547,559 6,547,559 
Panel C CA  Other states 
 TTC Limited PIT Comp. PIT  TTC  Limited PIT Comp. PIT 

ULBeta 
0.0034*** 
 (0.001) 

0.0061*** 
 (0.001) 

0.0077*** 
 (0.001) 

 0.0147*** 
 (0.004) 

0.0337*** 
 (0.004) 

0.042*** 
 (0.006) 

ULAC 0.0043*** 
 (0.001) 

0.007*** 
 (0.002) 

0.0086*** 
 (0.002) 

 0.0165*** 
 (0.005) 

0.0185** 
 (0.008) 

0.0102** 
 (0.005) 

Mortgage30US 0.8513*** 
 (0.008) 

0.846*** 
 (0.008) 

0.8469*** 
 (0.008) 

 0.8728*** 
 (0.011) 

0.8601*** 
 (0.011) 

0.8626*** 
 (0.011) 

Intercept 0.0297*** 
 (0.001) 

0.0301*** 
 (0.001) 

0.0301*** 
 (0.001)  0.0322*** 

 (0.002) 
0.0322*** 
 (0.002) 

0.0320*** 
 (0.002) 

Control variable Yes Yes Yes  Yes Yes Yes 
Seller cluster Yes Yes Yes  Yes Yes Yes 
State dummy Yes Yes Yes  Yes Yes Yes 
R-square 88.94 88.94 88.95  87.92 87.97 88.02 
No of obs 2,353,651 2,353,651 2,353,651  15,696,481 15,696,481 15,696,481 
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Table 11: Robustness tests – Systematic risk level using different proxies 
 

Note: This table shows the results from robustness tests when changing the default indicator and the proxy of 
observed factors. Panel A shows the estimates of Beta, AC, and total systematic risk levels when the default 
indicator is defined as either being delinquent for at least 60 days or being involved in foreclosure events. Panel 
B shows the estimates when the first principal component obtained from the state-year PD panel is used as the 
proxy for the observed systematic risk factor. Beta’s (AC’s) contribution is the ratio between Beta (AC) and 
the total systematic risk level. Standard errors are reported in parentheses. *, **, *** indicate significance at 
the 10%, 5% and 1% confidence levels respectively. 
Panel A: Different default indicator 
 TTC  Limited PIT Comprehensive PIT 

Beta 0.0165* 
 (0.009) 

0.0312*** 
 (0.009) 

0.0351*** 
 (0.009) 

AC 0.0258*** 
 (0.008) 

0.0136*** 
 (0.004) 

0.0117*** 
 (0.004) 

Total systematic risk  0.0423*** 
 (0.012) 

0.0449*** 
 (0.01) 

0.0468*** 
 (0.01) 

Beta's contribution 39% 70% 75% 
AC's contribution 61% 30% 25% 
Panel B: The first principal component as the proxy for observed factor 
 TTC Limited PIT Comprehensive PIT 

Beta 
0.0295* 
 (0.015) 

0.0456*** 
 (0.015) 

0.0512*** 
 (0.015) 

AC 
0.0375*** 
 (0.011) 

0.0238*** 
 (0.007) 

0.0203*** 
 (0.006) 

Total systematic risk  
0.067*** 
 (0.018) 

0.0694*** 
 (0.016) 

0.0715*** 
 (0.016) 

Beta's contribution 44% 66% 72% 
AC's contribution 56% 34% 28% 
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Table 12: Robustness test - Systematic risk levels across risk classes  

Note: This table presents the estimates of Beta and AC for different risk classes. Risk classes are categorized based 
on average PD per loan, and the number of default events in each class is ensured to be comparable. The lowest risk 
class consists of mortgages with the lowest PD. The highest risk class consists of mortgages with the highest PD. 
Beta and AC are estimated as specified in Eq. (18) and Eq. (19) for each risk class. The dependent variable is the 
default rate by year of each risk class. The independent variables are observed and unobserved systematic risk 
factors. Each model uses the standardized Mean PD from the corresponding PD model to proxy for observed 
systematic risk factors. Unobserved factors are proxied by the set of time (year) dummies. Standard errors are in 
parentheses. *, **, *** indicate significance at the 10%, 5% and 1% confidence levels respectively. 

 TTC  
Limited 

PIT 
Comp. 

PIT  TTC  
Limited 

PIT 
Comp. 

PIT 
 Beta  AC 
Lowest-risk 
class 

1.532 
 (0.01) 

0.103 
 (0.001) 

0.023 
 (0.001)  

3.608*** 
 (0.011) 

0.593*** 
 (0.002) 

0.619*** 
 (0.002) 

2nd class 
1.46 
 (0.013) 

0.768* 
 (0.004) 

0.236 
 (0.001)  

6.107*** 
 (0.019) 

1.003*** 
 (0.003) 

0.402*** 
 (0.001) 

3rd class 
1.184 
 (0.012) 

1.477* 
 (0.007) 

0.721*** 
 (0.001)  

6.888*** 
 (0.021) 

1.583*** 
 (0.005) 

0.035*** 
 (0) 

4th class 
0.949 
 (0.011) 

2.006** 
 (0.01) 

1.557*** 
 (0.002)  

7.239*** 
 (0.022) 

2.158*** 
 (0.007) 

0.113*** 
 (0) 

5th class 
0.722 
 (0.01) 

2.32* 
 (0.012) 

2.456*** 
 (0.006)  

7.625*** 
 (0.023) 

2.988*** 
 (0.009) 

0.574*** 
 (0.002) 

6th class 
0.528 
 (0.009) 

2.578 
 (0.015) 

3.43*** 
 (0.01)  

7.798*** 
 (0.024) 

4.352*** 
 (0.013) 

1.291*** 
 (0.004) 

7th class 
0.269 
 (0.006) 

3.094 
 (0.019) 

4.305*** 
 (0.014)  

8.344*** 
 (0.025) 

5.655*** 
 (0.017) 

2.105*** 
 (0.006) 

8th class 
0.097 
 (0.004) 

4.001 
 (0.024) 

5.515*** 
 (0.018)  

8.814*** 
 (0.026) 

7.088*** 
 (0.021) 

2.99*** 
 (0.009) 

9th class 
0.004 
 (0.001) 

5.693* 
 (0.032) 

7.442*** 
 (0.024)  

9.824*** 
 (0.029) 

8.882*** 
 (0.026) 

3.919*** 
 (0.011) 

Highest-risk 
class 

0.737 
 (0.012) 

8.925* 
 (0.046) 

11.648*** 
 (0.026)  

11.773*** 
 (0.034) 

12.868*** 
 (0.036) 

3.297*** 
 (0.01) 
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Figure 1: Default rate and Mean PD 

Note: This figure shows the fluctuations of default rate (solid line) and Mean PD (dash line) over time for three 
different PD models, including the TTC model specified in Eq. (8), the limited PIT model specified in Eq. (9), 
and the comprehensive PIT model specified in Eq. (10). The shaded areas indicate the recession periods as 
defined by NBER. The mean deviation between the observed default rate and estimated PD is 0.4% for the 
TTC model, 0.3% for the limited PIT model, and 0.2% for the comprehensive PIT model.  
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Figure 2: Beta and AC estimates 

Note: This figure plots the estimates of Beta (solid line) and AC (dash line) as specified in Equation (16) based 
on the estimation results of three different CPD models. Each CPD model uses the standardized mean PD from 
the corresponding PD models, including the TTC model specified in Eq. (8), the limited PIT model specified in 
Eq. (9), and the comprehensive PIT model specified in Eq. (10).  
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Figure 3:  Observed and unobserved (frailty) systematic risk factors 

Note: This figure plots the fluctuations of observed (solid line) and unobserved (dash line) systematic risk 
factors for three models over time. The observed systematic risk factor is proxied by the standardized Mean 
PD from the TTC model specified in Eq. (8), the limited PIT model specified in Eq. (8), and the comprehensive 
PIT model specified in Eq. (10). The unobserved systematic risk factor estimated from conditional PD model 
specified in Eq. (14). The shaded areas indicate NBER recession periods. 
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Appendix A: Robustness test for regional sample 

We adopt Cotter et al. (2015)’s categorization and compare our estimates with their results. Our 

measures would correlate perfectly to theirs if house prices were the only systematic risk driver. 

We find a strong association between the total systematic risk in our paper and the housing risk 

in Cotter et al. (2015) as the correlation is approximately 52% to 70%. The correlation is the 

strongest for the TTC model and the weakest for the comprehensive PIT model. As the 

correlation between our TTC model and their model is the highest, this could imply that the 

housing correlation only represents the unobserved systematic factor and could not capture the 

impact of the observed counterpart. That is why the correlation between our results and their 

results drops when we incorporate more observed factors into the model. 

Looking at systematic risk components across regions, we observe that mortgages in California 

have substantially higher exposure to systematic risk factors than those in other regions. In the 

TTC model where we do not control for the observed factor, the AC estimate reaches the highest 

level at 13.3%. In the PIT models, the Beta estimates for California are also the highest value. 

This result is greatly consistent with Cotter et al. (2017), in which they find that the house price 

risk in CA is also the highest at 77%. Mortgages in California prove to have a much higher 

systematic risk than in other regions, which is likely induced by housing market risk. 

For other regions, we find a similar pattern where the contribution of Beta in total systematic 

risk is higher than that of AC. However, this is not the case for the West South-Central region, 

where AC exceeds Beta in all models, indicating a more vital driving force of unobserved factors. 

The house price correlation in the paper of (Cotter et al., 2015) is also the smallest for this region 

at 22%. House prices are less likely driven by systematic factors in this region.
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Systematic risk levels across different regions (Stage 3) 

Note: This table presents the estimation results of Beta, AC, and total systematic risk for CA and nine regions. Pacific region includes the states AK HI OR WA; Mountain region includes AZ 
CO ID MT NM NV UT WY; West North Central (WNC) region includes IA KS MN MO ND NE SD; West South Central (WSC) region includes AR LA OK TX; East North Central (ENC) 
region includes IL IN MI OH WI; East South Central (ESC) region includes AL KY MS TN; South Atlantic region includes DC DE FL GA MD NC SC VA WV; Middle Atlantic region includes 
NJ NY PA and New England region includes CT MA ME NH RI VT. Beta and AC are estimated based on Eq. (18) and Eq. (19) for each region. The dependent variable is the default rate by 
year of each region. The independent variables are observed and unobserved systematic risk factors. Each model uses the standardized Mean PD from the corresponding PD model as the proxy 
of observed systematic risk factor. Unobserved factors are proxied by the set of time (year) dummies. Standard errors are in parentheses. *, **, *** indicate significance at the 10%, 5% and 1% 
confidence levels respectively. All results are in percentage. The last column reports the house price correlation found in Cotter et al. (2015)’s paper to compare with our estimates. The last row 
shows the correlation between our estimates (total systematic risk) from Cotter et al. (2015) as a benchmark. 

 TTC 
Limited 

PIT Comp. PIT  TTC 
Limited 

PIT 
Comp. 

PIT  TTC 
Limited 

PIT Comp. PIT House price correlation in 
Cotter et al. (2015)  

 Beta   AC   Total systematic risk 

CA 0.22 
 (0.007) 

7.582** 
 (0.029) 

11.427*** 
 (0.015) 

 13.313*** 
 (0.033) 

5.416*** 
 (0.016) 

1.132*** 
 (0.004) 

 13.533*** 
 (0.034) 

12.998*** 
 (0.028) 

12.559*** 
 (0.015) 77% 

Pacific 0.004 
 (0.001) 

4.712*** 
 (0.011) 

5.227*** 
 (0.013) 

 6.166*** 
 (0.017) 

1.162*** 
 (0.004) 

1.643*** 
 (0.005) 

 6.17*** 
 (0.017) 

5.874*** 
 (0.01) 

6.87*** 
 (0.014) 44% 

Mountain 0 
 (0) 

6.837*** 
 (0.021) 

8.853*** 
 (0.021) 

 10.52*** 
 (0.027) 

3.22*** 
 (0.01) 

2.589*** 
 (0.008) 

 10.52*** 
 (0.027) 

10.058*** 
 (0.02) 

11.442*** 
 (0.022) 41% 

WNC 0.004 
 (0.001) 

2.532** 
 (0.009) 

3.479*** 
 (0.011) 

 4.134*** 
 (0.011) 

1.418*** 
 (0.004) 

1.749*** 
 (0.005) 

 4.138*** 
 (0.011) 

3.949*** 
 (0.009) 

5.228*** 
 (0.012) 27% 

WSC 0.263 
 (0.002) 

0.348 
 (0.004) 

1.011 
 (0.011) 

 1.177*** 
 (0.003) 

1.639*** 
 (0.005) 

5.124*** 
 (0.015) 

 1.441*** 
 (0.004) 

1.987*** 
 (0.005) 

6.136*** 
 (0.018) 22% 

ENC 0.009 
 (0.001) 

3.29*** 
 (0.011) 

4.506*** 
 (0.014) 

 5.376*** 
 (0.015) 

1.836*** 
 (0.006) 

2.179*** 
 (0.007) 

 5.385*** 
 (0.015) 

5.126*** 
 (0.011) 

6.685*** 
 (0.015) 39% 

ESC 0.175 
 (0.003) 

1.415** 
 (0.007) 

2.27* 
 (0.012) 

 2.676*** 
 (0.008) 

1.353*** 
 (0.004) 

2.996*** 
 (0.009) 

 2.851*** 
 (0.008) 

2.768*** 
 (0.007) 

5.266*** 
 (0.015) 38% 

South Atlantic 0.111 
 (0.004) 

4.103** 
 (0.017) 

6.169*** 
 (0.015) 

 7.299*** 
 (0.02) 

3.093*** 
 (0.009) 

1.81*** 
 (0.006) 

 7.411*** 
 (0.02) 

7.196*** 
 (0.016) 

7.979*** 
 (0.016) 34% 

Middle Atlantic 0.266 
 (0.005) 

3.169*** 
 (0.009) 

3.866*** 
 (0.008) 

 4.625*** 
 (0.013) 

1.139*** 
 (0.004) 

0.774*** 
 (0.002) 

 4.891*** 
 (0.014) 

4.309*** 
 (0.009) 

4.64*** 
 (0.008) 39% 

New England 0.262 
 (0.005) 

3.952*** 
 (0.013) 

5.23*** 
 (0.01) 

 6.28*** 
 (0.017) 

1.946*** 
 (0.006) 

0.953*** 
 (0.003) 

 6.542*** 
 (0.018) 

5.898*** 
 (0.013) 

6.183*** 
 (0.011) 69% 

Correlation with Cotter et al. (2015)’s results  72% 69% 52%  
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