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1 Introduction

Derivatives contracts allow market participants to exchange money and risk. Prominent

examples include interest rate and volatility derivatives. But investors are still exposed

to the risk of changes in market liquidity. The market liquidity of a security refers to

the degree to which an order can be executed at a price close to the consensus value

of the asset (Foucault et al., 2013). Liquidity risk, defined as the uncertainty about

future market liquidity, has a strong impact on asset returns (Amihud and Mendelson,

1986). For instance, the aggregate liquidity factor of Pástor and Stambaugh (2003) earns

a sizeable annualized risk premium of 4.81% over the period 1968-2020 and of 5.68%

between 2000 and 2020, despite the general improvement in liquidity conditions in the

last years. From an aggregate perspective, liquidity is known to exacerbate marketwide

swings. Market liquidity deteriorates the most precisely at times of economic downturns,

as trading frenzies widen the gap between sell and buy volumes.1

In this paper, we propose a new class of financial instruments designed to hedge against

fluctuations in market liquidity. Liquidity derivatives are contracts which condition their

payoff on metrics of liquidity of the underlying asset, such as the bid-ask spread. Informed

by a structural model, we show empirically that heterogeneous agents have the incentive

to trade liquidity derivatives and that these instruments have the potential to mitigate

systemic risk by allowing leveraged investors to derive counterbalancing profits when

prices deviate from fundamentals. Ultimately, liquidity derivatives are a natural remedy

to the amplification dynamics that are typical of financial crises, which often require the

intervention of Central Banks in their role of lenders of last resort.

Liquidity derivatives have already sparked the interest of the financial industry. In

2010, Citigroup pondered the rollout of derivatives based on a liquidity index reflecting

five indicators from the swap and options market to allow investors to trade on liquidity,

the CLX. Terry Benzschawel, managing director at Citi, commented on the product as

follows.

“We want to get natural buyers and sellers of liquidity together. We do have

an explicit hedging programme, based on the underlying assets in the index.

There is a basis risk, but the beauty is that as this widens, the strategy

involves buying up assets whose prices are falling, thereby providing liquidity

to the market.”

Risk

1Illiquidity – the difficulty of selling assets at a reasonable price – is at the heart of all financial crises. (The Economist).
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To date, liquidity derivatives have not yet been marketed, perhaps because the chal-

lenges of trading on liquidity are manyfold. For one, liquidity is multifaceted, requiring

the selection of a suitable proxy. Several measures of liquidity are available, but none can

be replicated by a portfolio. Further, academics and regulators might worry about the

tail risk of the contract which requires the seller to have deep pockets, limited exposure,

and a hedging strategy. This paper addresses these challenges and shows that liquidity

derivatives are a market-based solution to downward price-liquidity spirals. The lack of

a cash-and-carry arbitrage is common to several financial products. For instance, in the

large market for commodity derivatives the volatility of the underlying price is unspanned

(Trolle and Schwartz, 2009), and in the case of weather derivatives traded risks originate

even outside of the real economy. It is imporant to recognize that the risk of extreme

liquidity dry-ups is already borne by designated market makers (DMMs), who routinely

agree with firms to quote a maximum bid-ask spread on their stocks and a minimum

depth in exchange for an annual fee (Venkataraman and Waisburd, 2007). The principle

of efficient allocation of resources in financial markets suggests that liquidity risk can be

optimally distributed among investors by means of contingent claims.

We begin with a simple model to show theoretically that the lack of a market for

liquidity is responsible for the spiral between market and funding liquidity, highlighting

the benefits of the proposed class of derivatives for financial stability. In Brunnermeier

and Pedersen (2009), an adverse shock to arbitrageurs’ wealth reduces their liquidity pro-

vision to customers, in turn impacting prices and leading financiers to increase margin

requirements, which again tighten the capital constraint of arbitrageurs. As prices devi-

ate from fundamentals, arbitrageurs might also come across losses on existing positions.

Liquidity derivatives appreciate precisely when such deviations arise, stabilizing markets

and correcting both amplifying dynamics. Arbitrageurs disproportionately value payoffs

at times of low market liquidity, and have the reciprocated incentive to provide customers

with a payment in exchange for insurance against illiquidity. Deviations of prices from

fundamentals increase the value of arbitrageurs’ liquidity derivatives holdings, whose col-

lateral value also rises exactly at times of margin calls, thus softening the blow of both

loss and margin spirals.

Next, we propose a contract designed to effectively strip liquidity risk from financial

instruments in exchange for an upfront payment. We view liquidity derivatives as op-

tion contracts based on the evolution of the relative bid-ask spread of a reference asset

as recorded by an independent reporting entity, whose payoff cumulates the transaction

costs per unit of notional in excess of their value at the initiation of the contract. Thus,
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liquidity derivatives appreciate when illiquidity is high or sustained. While other classes

of derivatives could also reference market liquidity, we focus on options which resonate

with insurance purposes since money changes hands when the parties close the deal, re-

flect the volatility of the underlying process, and build on a vastly explored pricing theory.

We detail potential buy and sell sides of the market, which we derive from a comparative

argument advantage. Clearly, transaction costs are relatively more important for traders

with high turnover such as hedge funds than they are for buy-and-hold investors like

pension funds, who reap the benefit of higher returns mandated by unmarketable instru-

ments without their actual liquidation. These two categories of investors have opposite

downsides with respect to liquidity risk. Empirical support to this idea comes from the

juxtaposition between the exposure to the Pástor and Stambaugh (2003) (PS) liquidity

factor of two publicly available aggregate indices, the Barclay Hedge Fund Index and the

S&P Insurance Select Industry Index, after controlling for the Fama and French (2015)

factors plus momentum. While the loadings on PS are similar in absolute value, insur-

ance companies are positively exposed to liquidity risk and hedge funds are negatively

exposed to it, suggesting that arbitrageurs are naturally eager to trade contracts based

on liquidity with long-term investors. At the daily frequency, relative bid-ask spreads

are positive, mean reverting, and exhibit volatility clusters. Guided by Cox et al. (1985),

we price liquidity derivatives in an equilibrium framework where the risk compensation

reflects the estimated magnitude and volatility of future transaction costs and their co-

movement with the market returns, along the lines of the liquidity-adjusted CAPM by

Acharya and Pedersen (2005).

The third contribution of the paper is to assess empirically the properties of the

proposed pricing method. We use Monte Carlo techniques to simulate a representative

panel of model-consistent liquidity option prices for CRSP stocks traded on the NYSE in

the period spanning 2000 to 2020, and analyse their empirical properties. The resulting

median premium for a three-month horizon liquidity derivative is 67 basis points per

unit of notional, and the distribution of prices is positively skewed and follows the recent

decline in illiquidity documented in the literature. Liquidity derivatives significantly

reduce the exposure of stock returns to the PS liquidity factor. Simulated prices provide

a novel measure of illiquidity that reflect commonalities across stocks and peak during

the NBER recessions, in line with other traditional measures such as Amihud (2002)

and Pástor and Stambaugh (2003). Differently from benchmark liquidity proxies, our

proposed measure embeds a compensation for the risk-adjusted forecasted comovement

between illiquidity and the market. Equipped with the evidence that simulated prices
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capture well the component of returns induced by illiquidity, we show that portfolios of

stocks sorted on their instrument-level liquidity risk generate significant abnormal returns

with respect to classical asset pricing models including Fama and French (2015) factors

plus momentum, both at daily and at monthly frequencies, suggesting that liquidity

option prices represent a risk dimension yet to be explored. This finding is robust after

controlling for the confounding effect of size, volatility, volume, turnover, and relative

spread itself.

Literature Review Examples of academic research leading to innovation in the finan-

cial industry include Brenner and Galai (1989), who propose options referencing a volatil-

ity index which have been a useful guide to structure the contracts nowadays traded on

the VIX. The seminal paper by Amihud and Mendelson (1986) documents that expected

returns increase in assets’ trading costs as measured by their bid-ask spread. Brennan

and Subrahmanyam (1996) and Brennan et al. (1998) corroborate these findings by using

alternative measures of illiquidity. Mahanti et al. (2008) measure liquidity as the degree

to which assets are held by investors who are expected to trade more frequently. Other

notable contributions in this area include Amihud (2002), who measures illiquidity as

the price response to trading volume and shows that such measure commands higher

expected returns, and Pástor and Stambaugh (2003), who develop a measure of liquidity

based on return reversals. The insight of reversals as measures of liquidity is further

explored in Nagel (2012). Amihud et al. (2015) find evidence that less liquid assets earn

higher returns and shows that a portfolio of illiquid-minus-liquid stocks (IML) produces

significant risk-adjusted returns in an international sample. Relatedly, Amihud and Noh

(2021) find a time-varying IML premium which rises at times of financial distress. Unlike

their work, we characterize a financial contract designed to separate the compensation

commanded by the instrument-level market liquidity risk from asset returns. Derivatives

based on market liquidity have not yet been explored in the literature. The only excep-

tion is Golts and Kritzman (2010), who propose a cliquet option on the S&P 500 as a

reference process for market-wide illiquidity.2 Our work explicitly focuses on contracts

based on a measure of market liquidity, the relative bid-ask spread. We leave to future

research the extension to other proxies such as the market depth. Beyond proposing a

simple pricing model for liquidity derivatives, we simulate their prices for a representative

panel of NYSE firms to evaluate their hedging properties. In doing so, we introduce a

2Bhaduri et al. (2007) discuss how to hedge the funding liquidity risk which originates from the lock-up of capital in
managed funds, not to be confused with market liquidity risk.
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novel price-based measure of liquidity risk. Further, we detail potential buyers and sellers

of liquidity derivatives and analyse the systemic implications of such instruments for price

stability.

We thus naturally relate to the theoretical asset pricing literature. Among others,

Longstaff (1995) derives an upper bound to the discount resulting from the lack of mar-

ketability of a security. More recently, Acharya and Pedersen (2005) present a liquidity-

adjusted CAPM where a stock’s compensation depends on the interplay between its

illiquidity and returns with market illiquidity and market returns. Our work is similar

in spirit to Bongaerts et al. (2011), who develop an equilibrium framework with hetero-

geneous agents where illiquidity premia depend on the wealth, risk aversion, and trading

horizon of short-sellers. We complement this approach by providing a pricing model

for financial claims which condition their payoff on market liquidity in exchange for a

prespecified cash amount. Indeed, early resolution of uncertainty over future transac-

tions commands a premium in the cross-section (Schlag et al., 2021). Market liquidity

is intimately connected to funding liquidity (Gromb and Vayanos, 2002; Garleanu and

Pedersen, 2007; Pelizzon et al., 2016) and limits to arbitrage (surveyed in Gromb and

Vayanos, 2010). We contribute to this literature by showing that a market for liquidity

risk can improve efficiency and financial stability by preventing self-fulfilling impairments

to orderly markets.

The remainder of the paper is organized as follows. Section 2 introduces an equilibrium

model with heterogeneous agents and liquidity derivatives, and Section 3 proposes a

contract contingent on liquidity suggesting a simple pricing algorithm. Section 4 develops

testable hypotheses and provides empirical results. Section 5 concludes.

2 Theoretical Properties

We use a well-established, stylized environment to investigate the potential implications

of a market for liquidity risk. Such framework should have heterogeneous agents, to

investigate the scope for a market, and should allow to evaluate the systemic effects of

liquidity on market stability. The natural reference is Brunnermeier and Pedersen (2009)

(henceforth, B&P), that we enrich with a derivative contingent on the future liquidity of

traded assets.3 Section 2.1 briefly describes our framework. For ease of comparison with

3The model in B&P is the cornerstone of the intermediary asset pricing theory. Its empirical performance is strongly
validated in Adrian et al. (2014), who estimate that the leverage of intermediaries is able to explain 77% of the cross-
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the previous literature, we maintain intact the anatomy of the B&P model, preserving

its assumptions and notation. Indeed, our framework includes B&P as a special case

with only shares traded. Section 2.2 next shows that a derivative on liquidity is welfare-

improving and alleviates liquidity spirals in the otherwise identical B&P model. In doing

so, we make a clean case that the appetite for liquidity derivatives is a natural result of

agents heterogeneity, and that the lack of a market for liquidity is responsible for the

feedback loop between firesales and margin calls causing financial instability. We further

show that this characteristic is not shared by other derivatives.

2.1 Model setup

Consider a B&P economy that features J risky assets traded at times t = 0, 1, 2, 3. At

time t = 3, each security pays the fundamental value vj that is a random variable defined

in dollars amount on the probability space (Ω,F ,P). The conditional expectation of

the value of each stock j is vjt = Et[v
j] and follows ARCH dynamics, so that shocks to

economic fundamentals increase future volatility. Formally,

vjt+1 = vjt + ∆vjt+1 = vjt + σjt+1ε
j
t+1, εjt

i.i.d.∼ N (0, 1)

σjt+1 = σj + θj|∆vjt |
(1)

with σj, θj ≥ 0. However, the price of each stock pjt might in general differ from the

associated expected fundamental value vjt because of temporary imbalances in the order

flow (Grossman and Miller, 1988). Our measure of illiquidity is

Λj
t = pjt − v

j
t (2)

This model features two contracts. Stocks with price pt are ownership rights of a business

that has fundamental value vj. Liquidity derivatives are contingent claims on the illiq-

uidity of the stock that are characterized by a price λjt to be determined in equilibrium

and a payoff |Λj
t+1| that increases when subsequent price deviations from fundamentals

occur either from above or from below. The buyer of the derivative pays a fixed premium

at time t in exchange for a payoff contingent on illiquidity in date t+ 1, and the counter-

party takes the opposite side of the trade. There are three groups of market participants,

namely “customers” and “speculators,” who trade assets and are informed about funda-

sectional variation in stock returns. The introduction of a derivative dovetails with the received Grossman and Miller
(1988), on which B&P builds upon, who use a similar structure to address both the futures market and the underlying
stock market.
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mentals, and “financiers” who finance speculators but observe only prices as noisy signals

of the value of businesses.

2.1.1 Customers

Three risk-averse customers are indexed by the time they start trading, k = 0, 1, 2. At

time 0, costumer k has wealth W k
0 and zero shares, but discovers that she will experi-

ence an endowment shock of zk = {z1,k, . . . , zJ,k} shares at time t = 3. The endowment

shocks are random variables that for each stock sum to zero across customers. Denote

the vector of total demand shock of customers that arrived to the market up to time t

by Zt ≡
∑t

k=0 zk. Customers arrive sequentially to the exchange and it is their demand

pressure that causes prices to temporarily deviate from fundamentals until the date t = 2

when all customers are present and Z2 = 0. Before a customer arrives to the market-

place, her demand vectors for stocks and liquidity derivatives are ykt = 0 and ckt = 0,

respectively. After arrival, customers choose their positions in each period to maximize

exponential utility over terminal wealth U(W k
3 ) = − exp{−γW k

3 }. Customers’ wealth

evolves according to

W k
t+1 = W k

t + (pt+1 − pt)
′(ykt + zk) + (λt − |Λt+1|)′ckt (3)

2.1.2 Speculators

Speculators, such as hedge funds, are risk-neutral maximizers of terminal wealth W3 and

derive profits from the order flow imbalance by providing immediacy to customers. On

each date, they select their positions in stocks and derivatives (xt, ct). Speculators’ wealth

is affected by an independent standard normal shock ηt, and evolves according to

Wt = Wt−1 + (pt − pt−1)′xt−1 + (|Λt| − λt−1)′ct−1 + ηt (4)

While speculators are leveraged, the total margin on their positions cannot exceed their

capital Wt. Collateral requirements are set according to the following portfolio margining

rule.4 ∑
j

(xj+t mj+
t + xj−t mj−

t ) +
∑
j

(lj+t nj+t + lj−t nj−t ) ≤ Wt (5)

4Portfolio margining, a margin-setting methodology based on the greatest projected net loss of the positions in a portfolio,
has become a standard business practice in the financial industry. See, e.g., https://www.cboe.com/us/options/margin/
portfolio_margining_rules/ and https://www.eurex.com/ec-en/services/margining/eurex-clearing-prisma.
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where xj+t and xj−t are long and short positions in stocks, and lj+t and lj−t long and

short open positions in liquidity derivatives at time t, respectively. Finally, mj+
t (mj−

t )

indicates the amount of capital borrowed per unit of long (short) stock positions, and

similarly nj+t (nj−t ) denotes how much financing speculators can borrow against each unit

of long (short) derivative positions.

2.1.3 Financiers

Financiers provide capital to speculators, but observe only the stock price sequence. Con-

ditioning on this information, they set margins to limit counterparty credit risk targeting

a π value-at-risk (VaR), that is

π = Pr(−∆pjt+1 > mj+
t ) = Pr(∆pjt+1 > mj−

t ) (6)

Financiers accept derivative positions as collateral with the same VaR rule.

π = Pr(|Λj
t+1| < nj+t ) = Pr(−|Λj

t+1| > nj−t ) (7)

Since financiers are uninformed about fundamental values, the above probabilities are

conditional on the filtration generated by market prices Ft = σ{p0, . . . ,pt}. For example,

the VaR specification requires that price drops that exceed margins on long stock positions

only happen with probability π. Similarly, the collateral value of derivatives cannot exceed

the minimum expected payoff resulting from the position with confidence level 1 − π.

Margins m on stocks increase in price volatility and can increase in market illiquidity

(Brunnermeier and Pedersen, 2009, Proposition 3). Differently, margins n on liquidity

derivatives decrease as prices deviate from fundamentals and derivatives appreciate.

2.1.4 Equilibrium

An equilibrium is a pair of price processes (pt,λt) such that (i) the vectors (xt, ct) maxi-

mize speculators’ expected terminal profits subject to the margin constraint; (ii) For each

customers k, the choices (ykt , c
k
t ) maximize the expected utility after the arrival to the

marketplace and is zero beforehand; (iii) margins are set according to the VaR rule; and

(iv) the markets clear, namely xkt +
∑2

k=0 y
k
t = 0, and customers and speculators agree

on the amount ct =
∑2

k=0 c
k
t of derivatives transactions. A B&P economy obtains when

ct = 0.
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2.2 Model solution

Date t = 3 is a terminal condition for valuing the securities as of time 2 (see also Gross-

man and Miller, 1988). By backward induction, p2 = v2 and Λ2 = 0, whence λ1 = 0

follows, because the equilibrium price of a contingent claim whose payoff degenerates to

zero must equal zero. Price deviations from fundamentals arise at time t = 1 and t = 0,

that implies that liquidity derivatives are traded at time t = 0 as customer k = 0 and

speculators populate the marketplace, and settled at time t = 1. That is, any equilib-

rium is such that λ2 = λ1 = 0.5 The solution rests on a recursive optimization argument.

Throughout, let Γ denote a customer’s value function and J a speculator’s value function.

Liquidity increases in the wealth of speculators. In fact, when speculators finances are

unconstrained, illiquidity is zero as all arbitrage opportunities are executable. The basic

illiquidity problem arises because speculators have funding constraints in the form of the

VaR rules in Equations (6) and (7). Thus, speculators cannot exploit all arbitrage oppor-

tunity, and have to cherry-pick the most profitable investments. Speculators’ shadow cost

of capital in t = 1, denoted as φ1, is one plus the maximum profit per dollar invested.

φ1 = 1 + max
j

{
max

(
vj1 − p

j
1

mj+
1

,
pj1 − v

j
1

mj−
1

)}
(8)

At time t = 0, speculators maximize

E0[J1(W1, p1, v1, p0, v0)] = E0[W1φ1] (9)

subject to the margin constraint. For ease of comparison with Brunnermeier and Pedersen

(2009), we consider the case in which speculators are unconstrained at time t = 0. The

first order condition for speculators’ j-th stock holding is E0[φ1(pj1 − p
j
0)] = 0, and for a

position in derivative written on j is E0[φ1(λj0 − |Λ
j
1|)] = 0. Therefore,

pj0 =
E0[φ1p

j
1]

E0[φ1]
= E0[pj1] +

Cov0[φ1, p
j
1]

E0[φ1]

λj0 =
E0[φ1|Λj

1|]
E0[φ1]

= E0[|Λj
1|] +

Cov0[φ1, |Λj
1|]

E0[φ1]

(10)

During funding liquidity crises, the stochastic discount factor φ1 is higher than its ex-

pected value and prices deviate from fundamental values because speculators are con-

5Intuitively, illiquidity requires two periods to materialize, but the discussion that follows would result from any finite time
model with T ≥ 3.
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strained. Therefore, the term Cov0[φ1, |Λj
1|] is positive. From Equation (10), we recog-

nize that arbitrageurs are willing to pay a premium for liquidity derivatives that is higher

than the expected payoff in order to obtain insurance against fluctuations in illiquidity

that occur in states of the world where the shadow cost of capital is high. Moreover, in

equilibrium arbitrageurs are eager to trade both assets.6

Lemma 1. The solution to the customer’s mean-variance problem is

yj,k0 =
vj0 − p

j
0

γ(σj1)2
− zj,k

cj,k0 =
λj0 − E0|Λj

1|
γVar0(|Λj

1|)

Proof. See Appendix A �

Corollary 1. In equilibrium, customers sell liquidity derivatives to arbitrageurs.

Proof. Replace Equation (10) in the expression for cj,k0 that is given by Lemma 1. �

Importantly, the two markets load on different risk factors. The stock exchange is a

market for the fundamental value of the business, and the market for liquidity allows for

the transfer of liquidity risk. The attractiveness of the stock for customers results from

their endowment shock. On the other hand, customers are willing to provide arbitrageurs

with insurance against illiquidity as long as they are offered a larger premium than the

expected future payoff. As is standard with mean-variance preferences, the amount of

insurance the customers are willing to provide decreases with their risk aversion γ and

the variance of illiquidity Var0(|Λj
1|). The next result is a welfare characterization.

Proposition 1. Liquidity derivatives are welfare-improving.

Proof. Notice that the introduction of liquidity derivatives does not change the value

function of speculators. On the other hand, the value function of the customer Γ0 increases

because of the expanded possibility frontier. Formally,

Γ0(W k
0 , p0, v0) = − exp

[
− γW k

0 −
1

2

(∑
j∈J

(vj0 − E0p
j
1)2

(σj1)2
+
∑
j∈J

(λj0 − E0|Λj
1|)2

(Var0(|Λj
1|))2

Welfare improvement

+
∑
j

(vj1 − p
j
1)2

(σj2)2

)]

6Assume by contradiction that E0[φ1(pj1 − p
j
0)] > E0[φ1(λj0 − |Λ

j
1|)]. Arbitrageurs’ first order condition would proscribe

them to buy stocks exerting upward pressure on p0 until the equivalence between the profitability of their investment
opportunities is restored.
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that corresponds exactly to the customer value function in the B&P model aside from a

welfare-improving term that results from a market for liquidity derivatives. �

Intuitively, liquidity derivatives are contracts that give traders the option to hedge

their exposure and help move toward market completeness. Interestingly, their introduc-

tion leaves indifferent the speculators and improves the welfare of value investors such

as customers. A comparative advantage argument explains well the scope for a market

on liquidity. In the model, agents differ in their risk attitudes, access to funding, and

preferred turnover. Limits to arbitrage that arise from imbalance in the order flow and

funding liquidity constraints cause the pricing kernel of speculators to reflect the avail-

ability of capital. Speculators are willing to pay a premium over and above the expected

value of the payoff for an asset whose reward is high in states where funding is con-

strained, markets are illiquid, and the dollar remuneration per unit of capital is large.

Conversely, customers do not have access to funding and are eager to take the other side

of a trade earning positive expected return. The next result characterizes the systemic

implications of these instruments.

Proposition 2. Liquidity derivatives attenuate both margin and loss spirals, mitigating

the effect of adverse shocks to speculators’ wealth on market prices.

Proof. First, note that in equilibrium the speculator is always long in the derivative,

c0 > 0. To simplify notation, we prove the statement for the case of J = 1 assets.

Consider the case Z1 > 0, that implies p1 ≤ v1, Λ1 < 0, and x1 ≥ 0. In equilibrium, the

funding constraint binds and

m+
1

(
Z1 −

2

γ(σ2)2
(v1 − p1)

)
+ n+

1 l1 = b0 + p1x0 + c0|Λ1|+ η1

Combining the implicit function theorem with the market clearing conditions,

∂m+
1

∂p1

∂p1

∂η1

x1 +m+
1

2

γ(σ2)2

∂p1

∂η1

+
∂n+

1

∂p1

∂p1

∂η1

c0 =
∂p1

∂η1

x0 +
∂|Λ1|
∂p1

∂p1

∂η1

c0 + 1

It is useful to recall that ∂|Λ1|
∂p1

= |Λ1|
Λ1

= sign(Λ1). Importantly, the sensitivity of the

liquidity derivative’s payoff to the price of the underlying has the opposite sign of the

direction of the order flow imbalance Z1. The latter is an unique key property to counter

loss spirals, which arise if the order flow imbalance pushes prices away from fundamentals
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in the opposite direction to previous exposures of arbitrageurs. After rearranging terms,

∂p1

∂η1

=
1

2
γ(σ2)2

m+
1 +

∂m+
1

∂p1
x1 +

∂n+
1

∂p1
c0 − x0 + c0

Liquidity derivatives mitigate both margin and loss spirals. Indeed, when financiers are

uninformed about the fundamental value of the security the impact of the term
∂m+

1

∂p1
x1 < 0

that gives rise to a margin spiral is mitigated by the effect of
∂n+

1

∂p1
c0 > 0. Intuitively, while

on the one hand financiers require more skin in the game when observing prices moving

further below fundamentals, the collateral value of the derivative position that profits

from illiquidity increases. Speculators further encounter a loss spiral if x0 is of the same

sign as x1, because price drops are accompanied by losses on the previous positions.

The latter effect is offset by the long position in the liquidity derivative that appreciates

precisely when the price is lower than fundamental value of the business, i.e., when the

demand pressure moves against the arbitrage position. Appendix B proves the converse

case with Z1 ≤ 0. �

Importantly, liquidity derivatives stabilize market prices against loss spirals by con-

ditioning the revenues of speculators to future realizations of order flow imbalance. As

share prices move adversely and speculators are forced to post more collateral to finance

their stock positions, portfolio margining enables to borrow against the increased value

of derivatives position.7 Summarizing, liquidity derivatives have three features worth

emphasizing. Arbitrageurs always demand insurance against market illiquidity, because

it positively correlated with their shadow cost of capital. Margins on liquidity deriva-

tives are countercyclical. Liquidity derivatives condition the wealth of arbitrageurs to

imbalance in the order flow, mitigating loss spirals on existing positions. Since empir-

ically illiquidity and volatility are correlated (Stoll, 1978), one might wonder whether

these characteristics are spanned by volatility derivatives.8 Without making additional

assumptions, it is not possible to establish whether arbitrageurs enter the market for

volatility as buyers or as sellers, so as to pin down the effect of these derivatives on mar-

gin spirals as generally as in the case of liquidity derivatives.9 However, the next result

7The results achieved by maintaining for ease of comparison the specification of preferences as in B&P are conservative.
Real-world arbitrageurs are arguably risk averse over margin calls and losses on previous positions and would have a larger
insurance motive, thus strengthening the stabilizing effects of liquidity derivatives on financial markets.

8We thank Tarun Chordia and Davide Tomio for this observation.
9Specifically, to establish the direction of the exposure of arbitrageurs to volatility derivatives we would require an as-
sumption about the sign of the covariance of their payoff with the arbitrageurs’ stochastic discount factor, Cov0[φ1, σ

j
1] =

θjCov0[φ1, ε
j
1]. In fact, shocks to the fundamentals εj1 impact positively both the illiquidity |Λj

1|, at the numerator of the
shadow cost of capital φ1, and the margins on stocks m1, at the denominator of φ1. Which of the two effects prevails is

12



shows that volatility derivatives do not prevent loss spirals.

Lemma 2. Volatility derivatives do not have the stabilizing effects on market prices

achieved by liquidity derivatives.

Proof. For clarity of notation, we prove the statement in the one-asset case J = 1 without

loss of generality. From Equation (1), at t = 0 the value of σ1 is known. Volatility deriva-

tives are contingent claims with market price st and payoff σ2. It is worth emphasizing

that, since p2 = v2, σ2 represents the time t = 2 volatility of both the fundamental value

and the stock price, as well as the expected value of σ3. The sensitivity of the volatil-

ity derivative payoff to the price of the underlying obtains from the ARCH specification

which models the future volatility as a function of the current fundamental value of the

business.

∂σ2

∂p1

=
∂σ2

∂v1

∂v1

∂p1

=
∂σ2

∂v1

(11)

=
∂σ + θ|v1 − v0|

∂v1

(12)

= θ sign (∆v1) = θ sign (ε1) (13)

Recall that arbitrageurs’ positions in the stock x1 depends on the order flow imbalance

Z1. Innovations to the fundamental value ε1 might or might not be of the same sign as

the imbalance in the order flow Z1, a distinct source of randomness which results from

the distribution of endowment shocks across customers. Therefore, volatility derivatives

do not hedge speculators against loss spirals, which hit the speculators if the imbalance

in the order flow has the opposite sign as their previous exposures x0. �

In general, liquidity spirals are induced by external stakeholders uninformed about

fundamental values, who require collateral when the two legs of an arbitrage position

widen following price swings caused by demand and supply forces. We have discussed

the case of financiers, but investors in hedge funds are similarly uninformed and might

redeem their quotas when the legs of an arbitrage position diverge (Shleifer and Vishny,

1997). Payoffs contingent on market liquidity effectively hedge speculators in those states

of the world by establishing a countercyclical connection between market and funding

liquidity which prevents self-fulfilling impairments to orderly markets.

ultimately an empirical question.
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3 A Market for Liquidity Risk

We have formally argued that liquidity derivatives improve welfare and financial stabil-

ity. In the B&P model, both customers and speculators observe the fundamental value

of stocks. Real world trading venues are however more complex. In Section 3.1 we char-

acterize the potential buy and sell sides of the market for liquidity derivatives, and in

Section 3.2 we describe a suitable proxy for price deviations from fundamental values.

Section 3.3 illustrates desirable properties for the payoff structure of derivatives based on

liquidity. Section 3.4 develops a simple pricing technique for liquidity derivatives.

3.1 Liquidity Derivatives: Demand and Supply

The scope of liquidity derivatives is to facilitate the transfer of market liquidity risk be-

tween investors. As the model in Section 2 illustrates, the appetite for derivatives on

market liquidity is a natural result of agents’ heterogeneity. Traders with high turnover,

such as hedge funds (arbitrageurs) typically hold assets for short investment horizons,

which exposes their business model to the risk of large transaction costs and of their co-

movement with the market. At the opposite end of the spectrum, buy-and-hold investors

(customers) such as insurance companies and pension funds do not face high execution

costs since they trade infrequently, and view favorably the return compensation resulting

from periods of prolonged illiquidity.10

As an illustration of the magnitude of the differential exposures of investors to liquidity

risk, we carry the following empirical exercise. We measure the average performance of

hedge funds and of insurance companies by collecting publicly available data from the

Barclay Hedge Fund Index and the S&P Insurance Select Industry Index.11 These series

consist of monthly returns from June 2003, the first value of the S&P Insurance Index,

to December 2020, and quantify the aggregate performance of businesses in these two

sectors. Table 1 presents the results of time-series regressions of the industry returns

indexes on the benchmark Fama and French (2015) model plus momentum augmented

with the Pástor and Stambaugh (2003) liquidity factor, which is a long-short portfolio of

stocks sorted according to their sensitivity to aggregate liquidity shocks.12 The coefficients

10The insight that clientele group holding periods lead to differential exposures to market liquidity dates back to the asset
pricing model developed by Amihud and Mendelson (1986). More recently, Bongaerts et al. (2011) build a model where
lock-up investors differ from high-turnover traders in their exposure to transaction costs.

11The data sources are https://portal.barclayhedge.com/cgi-bin/indices/displayIndices.cgi?indexID=hf and
https://www.spglobal.com/spdji/en/indices/equity/sp-insurance-select-industry-index, respectively.

12Data are collected from Robert Stambaugh’s website (http://finance.wharton.upenn.edu/~stambaug/), which provides
further details about the construction of this variable.
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on the control variables display values and magnitudes in line with the economic theory.

Importantly, insurance companies and hedge funds have opposite exposures to liquidity

risk. The return to the average firm in the hedge fund industry rises with PS, with an

economically large coefficient estimate of 0.11. Conversely, the return to the average firm

in the insurance industry moves in the other direction, with a statistically significant

coefficient of -0.15. The similarity in size but the difference in sign of these estimates

suggest that the scope for risk transfers between market participants who are differently

exposed to liquidity risk is substantial.

Investors differ in their exposures to liquidity risk along many other dimensions.

Clearly, some traders have a comparative advantage in processing information about

fundamentals, and others are more knowledgeable about the dynamics of the order flow

(Pasquariello and Vega, 2007). Within the banking sector, the most liquid assets are

held by shadow banks, and the least liquid by commercial banks (Hanson et al., 2015).

The group of investors exposed to liquidity risk is numerous, and includes DMMs, who

are committed to provide traders with immediacy when liquidity dries up. These inter-

mediaries, often referred to as liquidity providers of last resort, are themselves heavily

exposed to liquidity risk (Menkveld and Wang, 2013). The potential sell-side of the mar-

ket is rich as well. For instance, Berkshire Hataway, who exemplifies well the customers

in our model interested in the fundamental value of the stocks, uses extensively the sale

of derivatives to generate revenues and cash (Frazzini et al., 2018). These reasons lead

us to investigate further how to price liquidity derivatives.

3.2 The Reference Process

Liquidity has many faces. However, the liquidity risk of a position refers to uncertainty

about its future transaction costs, and is traditionally identified as a nontraded risk factor

(Pástor and Stambaugh, 2003). To fix ideas, suppose an investor has a long (short) stock

position and wants to hedge against fluctuations in the bid (ask) price, while willing to

retain other risks associated with the asset on the portfolio. The time t immediacy cost

is captured by the distance between the market order execution and the midquote mt,

pt =
1

2

(
at + bt + dt(at − bt)

)
= mt +

1

2
dt

(
at − bt

)
(14)

where at and bt are respectively the best ask and bid quotes, and dt = 1 for buyer

initiated trades and −1 otherwise. The parallel with Eq. (2) from B&P is apparent. Eq.

(14) decomposes the time t value of a position in its midprice, proxying for fundamental
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value, and trading costs, capturing the cost of immediate liquidation.13 Asset returns

result from the evolution of both terms (Amihud and Mendelson, 1986). Of course, high

prices are bad news for buyers and low prices penalize sellers, so that for each value of dt

the execution costs map to the half bid-ask spread.

The above example clarifies that the bid-ask spread is a reasonable proxy for the

instrument-level market liquidity risk of standard-sized positions, i.e., those with negligi-

ble price impact, when fundamental values are not observable. To achieve comparability

across firms, we consider the time t execution costs ct, defined as one half times the

relative spread.

ct =
1

2

at − bt
mt

(15)

Empirically, relative spreads are a feasible reference process, and do not suffer from

estimation issues as other liquidity measures such as price impact. Contemporary data

on the relative spread in Eq. (15) are readily available from third-party reporting entities.

Market prices are carefully monitored both at the SEC and at the exchange level to

prevent and sanction manipulative conducts, and the quotes posted by market makers

are tied to the tightest composite bid-ask spread resulting from competition between

trading venues.14

3.3 Hedging Liquidity Risk

We term liquidity derivatives financial claims contingent on the market illiquidity of the

underlying asset. Many are however the payoff structures which respond to that criterion.

We have argued that the relative bid-ask spread is a suitable reference process. In order

to impose further discipline, we engineer these instruments to separate liquidity risk from

fundamental risk over a specified horizon. It is worth noting that returns embed a peri-

odic compensation for both fundamental and liquidity risk, and that modern accounting

practices often involve the mark-to-market appraisal of financial assets. Because of these

reasons, it is appropriate to condition the derivative’s payoff on the dynamics of illiquid-

13We leave to future research a generalization of round-trip transaction costs to the price impact of large positions, noting
that Eq. (14) naturally extends to an arbitrary q-sized position. Indeed, denoting through upper bars weighted averages

of best prices at the quantities quoted on the limit order book, pt(q) = 1
2

(
at(q) + bt(q) + dt

(
at(q) − bt(q)

))
measures

the depth.
14Among other NYSE provisions available at https://nyseguide.srorules.com/rules, rule 104 (a) prescribes that prices

entered by DMMs shall be not more than the Designated Percentage away from the then current National Best Bid
Offer (NBBO) available across US exchanges. Rule 6140 (d) explicitly forbids exchange members or organizations to
participate or have any interest, directly or indirectly, in the profits of a manipulative operation or knowingly manage or
finance a manipulative operation.
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ity of the underlying asset over the holding period.15 Consider a payoff function of the

following form.

HT =
1

2
max

{
HT −K, 0

}
(16)

HT accumulates through the investment horizon T the relative spreads ci of the un-

derlying in excess of its value at inception of the contract, and K is a strike price.

HT =
T∑

i=t+1

max{ci − ct, 0} (17)

This instrument compensates the holder of an arbitrary asset for large deviations of

transaction costs from their level at the beginning of the contract, earning more the higher

and longer-lasting is illiquidity. As an example, Figure 1 displays the 2000Q1 time-series

behavior of the relative spread of Walmart Inc., and the corresponding step-wise option

payoff plotted against time.

Together, Eq. (16) and (17) mirror the configuration of weather options actively

traded over the counter, where market participants agree on a designed institution to

measure the reference process. Importantly, the structure we posit is consistent with the

insurance purpose of avoiding large losses resulting from high or sustained illiquidity, and

maps the difficult issue of measurement of liquidity risk to the well-understood field of

option pricing theory. Undoubtedly, there are other types of derivatives that in principle

could reference the bid-ask spread as underlying, such as futures or swaps. We focus on

options mainly for two reasons. First, their limited downside risk, that differs from the

obligations to trade at maturity that a future imposes, makes them a natural candidate

for insurance-like purposes. Second, differently from swaps, which involve continuous

exchanges of cash flows without any initial outflow, options require the payment of their

premium una tantum that fits well with the idea of a “hedge-and-forget” strategy.

In the literature, there have been some suggestions on how to trade on liquidity at

the aggregate level, essentially by buying and selling long-short portfolios of stocks sorted

on firm-level liquidity measures (e.g. Amihud et al. (2015)) or on their sensitivity to

aggregate liquidity shocks, as in the case of the Pástor and Stambaugh (2003) liquidity

factor. Special interest for instrument-level liquidity derivatives arises as illiquidity is

not reduced through a standard diversification argument as other risks (Amihud, 2018).

15The approach resonates well with the Basel III liquidity regulation, which requires high-quality liquid assets to be
continuously marketable.
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Illiquidity is additive: buying and selling a portfolio of illiquid assets means bearing the

sum of the illiquidity costs of its components, hence using an aggregated instrument like

IML to hedge a specific portfolio of assets is ill-suited. If, on one side, investors may

be concerned about high trading costs when holding exactly their optimal portfolio of

securities, on the other side they have the disadvantage of deviating from optimality if

they need to hold a portfolio imperfectly correlated with their personal optimum.

We are aware of negative effects that could take place due to the introduction of liq-

uidity derivatives. A short position in liquidity derivatives might result in a substantial

downside tail risk. Fortunately, such risk can be partially mitigated by exploiting the

phenomenon of “flight-to-liquidity,” whereby illiquid markets induce investors to rebal-

ance their portfolios toward liquid assets. Another well-known property of liquidity is

its strong degree of comovement in the cross section of assets often referred to as “com-

monality in liquidity.” As an example, Chordia et al. (2000) report a coefficient of 0.79

when regressing the firm-level percentage changes in relative quoted bid-ask spreads on

their cross-sectional average. Thus, liquidity option sellers can diversify their exposures

to several underlying assets and retain on their portfolios the risk of liquidity at the mar-

ket level. It is advisable that issuers of liquidity derivatives invest into money market

instruments such as T-Bills to derive offsetting gains when market liquidity deteriorates.

This strategy represents a partial hedge for the option seller. To further mitigate credit

risk, the contract could include a provision ruling out the option exercise if the seller

experiences a loss larger than a pre-specified threshold. Reducing the risk the seller has

to bear, such clauses would lower the cost premium of the contract. For simplicity, this

feature is not considered here but could be discussed in future research.

3.4 Pricing Liquidity Derivatives

At the core of liquidity risk is the impossibility of a replication in the Black and Scholes

(1973) tradition. The lack of stable correlation patterns for liquidity is intriguing, and

hinders statistical arbitrage. In these regards, liquidity risk resembles the unspanned risk

that weather derivatives channel to active financial markets since two decades (Alaton

et al., 2002). More generally, the pricing of derivatives often assumes a stochastic process

for the underlying source of randomness. To choose a suitable specification, we first look

at the empirical properties of relative bid-ask spreads at the daily level, following the

approach used in the seminal work of Grünbichler and Longstaff (1996) in the framework

of the valuation of volatility options. In our sample, relative spreads are strictly positive
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by construction and relatively persistent, with a cross-sectional median autocorrelation

that decays slowly (from 0.57 for the first order until 0.41 with 20 lags).16 This behavior

is similar to what documented in Groß-KlußMann and Hautsch (2013) at the intraday

level.17 Relative spreads seem also to be mean reverting. The cross-sectional median

first-order autocorrelation in the first difference of the spread is -0.46 while higher-order

autocorrelations are close to zero. These figures are close to what reported in Harvey

and Whaley (1992) for changes in the volatility of S&P500 options, and indicate that the

conjecture of mean reversion is reasonable. To further test this property, we regress the

squared changes in spreads on their level and find a slope that is significant at the 1%

level in 95% of the stocks included in our sample. To sum up, at the daily frequency, rel-

ative bid-ask spreads are positive, mean reverting, and exhibit volatility clusters. These

empirical facts suggest that a stochastic process in the tradition of Cox et al. (1985)

(henceforth CIR) is a reasonable specification to describe the dynamics of the relative

bid-ask spreads in Eq.(15). Grünbichler and Longstaff (1996) reach the same conclusion

by using the same tests on stock volatility when proposing a pricing model for volatil-

ity options.18 Tractability of the process under both the physical and the risk-neutral

measure is also appealing. Thus, we specify a CIR process for the relative spread.19

dct = α(µ− ct)dt+
√
ctσdBt (18)

In Eq. (18), the parameters (α, µ, σ) have the usual interpretation as mean-reversion

speed, long-run mean, and standard deviation of the square root process, respectively,

and are required to conform to the Feller condition to ensure non-negativity of the spread.

16Our sample of NYSE-traded stocks for the period 2000-2020 is described in Section 4 below.
17A crucial difference between daily and intraday spreads is that the former do not exhibit the “seasonality” patterns

that can be observed at higher frequencies. Chan et al. (1995) and Chung et al. (1999) document that spreads are
higher in the beginning of a trading day and decrease in the course of the trading session, a pattern explained by a
higher adverse-selection component due to the processing of overnight information in the morning. Focusing on the daily
frequency (end-of-day), we side-step this component thereby working with a variable reflecting more closely transaction
costs investors incur.

18Earlier, we showed theoretically that liquidity and volatility represent two distinct, albeit correlated, sources of risk. And
indeed, empirically the median correlation between firm-level return volatility and relative spread across the stocks in
the sample is only 0.36, i.e. around two thirds of liquidity variation are due to different factors other than volatility.
Furthermore, liquidity risk is priced in the cross-section after controlling for volatility. The IML portfolio (Amihud
et al., 2015; Amihud and Noh, 2021) is built grouping stocks into illiquidity portfolios within volatility terciles and yet
delivers a Fama-French-Carhart-adjusted premium of 0.40% (t-statistic 3.12) for the period 1998-2017 (Amihud, 2018).
Thus, liquidity risk is unspanned by volatility derivatives.

19It is worth stressing that using the CIR to represent the behavior of the relative spread does not mean we consider
it an exogenous variable. The spread reflects in fact a variety of elements among which trading behavior driven by
informational asymmetries and adverse selection, although mitigated using the daily frequency, and the impact of order
flow imbalances, as illustrated in the model in Section 2. We use a stochastic process just for pricing purposes instead
of modelling explicitly what drives the spread, which is not what we are looking for, exactly as it happens for stocks in
the Black and Scholes (1973) model, that does not conflict with stock prices being equilibrium outcomes and, as such,
endogenous to the choices of market participants.
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These parameters can be easily estimated by Maximum Likelihood of the transition

density of the CIR process, which is proportional to a noncentral χ2 distribution, using

OLS regressions as initial values (Klad́ıvko, 2007). Under the risk-neutral measure,

dct = α̃(µ̃− ct)dt+
√
ctσdB

Q
t , α̃ = α + %, µ̃ =

αµ

α + %
(19)

In incomplete markets, non arbitrage is silent about the market price of risk, which

requires an equilibrium argument. Guided by Cox et al. (1985), we let % denote the

stock-specific ratio of the covariance between changes in relative bid-ask spreads and

percentage changes in optimally invested wealth (approximated through market returns)

to the relative spread. Eq. (19) shows that a more negative % implies a slower speed

of reversion and a higher long-run mean. Both features increase the standard deviation

of the risk-adjusted CIR process (Hördahl and Vestin, 2005). The market price of risk

takes the form θ = %
√
c

σ
, thus retaining the property of a higher risk compensation for

negative comovements of liquidity with the market (remindful of the liquidity-adjusted

CAPM in Acharya and Pedersen, 2005). Rephrasing, a liquidity option on a stock whose

transactions cost are particularly high at times of negative marketwide returns demands

higher premia.

We compute the model-implied prices of liquidity derivatives Ct through Monte Carlo

techniques, by simulating multiple times the underlying process under the Q-measure

and averaging the resulting discounted payoffs, as is standard with path-dependent in-

struments.

Ct,T = e−rTEQ
t [HT ] (20)

which can be evaluated numerically by using a large number N of simulated paths.

4 Empirical Estimation

We have shown that liquidity derivatives are beneficial to financial markets and provided

a simple pricing method. We now turn to the data and study the empirical properties

of simulated liquidity option prices, henceforth LOPs. For simplicity, we focus on stocks

as most bonds trade over-the-counter. Section 4.1 illustrates descriptive statistics about

option prices for a panel of stocks traded on the NYSE. Section 4.2 develops testable

hypotheses illustrating the economic motivation behind them, with empirical findings

presented in the subsequent sections. In more detail, Section 4.3 provides evidence that
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liquidity options effectively strip liquidity risk out of financial assets. Section 4.4 intro-

duces a novel measure of aggregate illiquidity based on option prices. Finally, Section 4.5

documents strong links between LOPs and stock returns which survive risk adjustments

and the confounding effect of correlated variables.

4.1 Data Description and Summary Statistics

We apply our pricing formula to CRSP stocks listed on the NYSE during the period

January 2000-December 2020. The sample is confined to stocks listed on the NYSE to

avoid the effect of differences in microstructure (Amihud, 2002; Reinganum, 1990) and

in trading algorithms between exchanges (Korajczyk and Sadka, 2008).20 The NYSE

is the world’s largest stock exchange by market capitalization. It combines an auction

market system with the obligations for DMMs to maintain continuous, two-sided quotes

to their assigned securities to guarantee that all auction orders are fully executed. Thus,

the exchange ensures the continuity of the bid-ask spread reference process required by

liquidity derivatives. At the same time, DMMs contribute with human judgment as well

as capital to determine closing prices that accurately reflect the mix of buy and sell

interest at the end of the day. For instance, DMMs incorporate news releases into the

close prices, which are crucial references for equity-linked products such as derivatives.21.

The data selection closely follows Amihud (2002) with details reported in Appendix C.

This procedure leaves us with a sample that include only a limited number of relatively

small stock.22 Nevertheless, it is important to address the potential concern that some

stocks are so small and so illiquid that liquidity derivatives would simply not be traded on

them. However, this is unlikely because investors often have the interest to actively trade

firms with small market capitalization as a large extent of profitable investment strategies

exploiting anomalies make use of such firms. Novy-Marx and Velikov (2016) show that

microcaps (stocks below the NYSE 20th size percentile) earn high gross Sharpe ratios

in most anomalies relative to other size groups, but the difference considerably shrinks

after accounting for transaction costs. Hou et al. (2020) find that 65% of anomalies

are statistically insignificant after excluding microcaps. This considerations motivate

the interest for financial claims hedging uncertainty about transaction costs for smaller

stocks. Besides, the results below hold also with more restrictive selection criteria. We

20For example, while trading on Nasdaq takes place mostly through market makers, the majority of trades on the NYSE
occurs between buying and selling investors directly.

21For additional information, see https://www.nyse.com/article/nyse-closing-auction-insiders-guide.
22Table 2 shows that the 5th percentile for market capitalization is 160 millions of dollars.
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use Bloomberg data because of better reporting quality of bid and ask quotes.

As discussed in Section 3.4, we price liquidity derivatives at the end of each month by

fitting a CIR process to the relative bid-ask spreads at the market close using one-year

estimation windows. We then obtain the price of liquidity options by simulating N =

100, 000 bid-ask spread paths per stock over a maturity of T = 3 months and averaging

across the resulting payoffs. The investment horizon is standard, such as for instance the

time interval between successive delivery dates of benchmark futures contracts. Without

loss of generality, we normalize the strike price to zero since computational costs prevent

us from calculating large panels of option prices for an arbitrary set of strike values. The

daily risk-free rate from Kenneth French’s website is used for discounting.23 French’s

market factor returns proxy for changes in optimally invested wealth when computing

their covariance with changes in relative spreads.

Our sample includes 1,755 listed firms for a total of 192,746 firm-month LOPs. Table

2 shows descriptive statistics for firm characteristics and simulated option prices. The

median price required to remove uncertainty about transaction costs over the next three

months amounts to 67 bps of the stock price at the contract initiation. Option prices

exhibit a substantial degree of variation (the standard deviation is 612 bps) and a skewness

of 4.45, with the average price roughly four-fold as big as the median. These and other

interesting facts are summarized in Figure 2, which represents cross-sectional option

prices deciles every year.24 Looking at the time-series dimension, liquidity options are

particularly expensive during the dot-com bubble in 2001 and in the course of the financial

crisis peaking in 2009. Unsurprisingly, the premium required to hedge against illiquidity

includes also a component related to market-wide conditions. Overall, prices are higher

for the first part of the sample and remarkably drop after 2009, in line with the general

decline in illiquidity observed in recent years (Amihud and Mendelson, 2015). From a

cross-sectional perspective, the distribution is strongly right-skewed. In other words,

liquidity options are cheap for most stocks and thus appealing for investors willing to pay

upfront a small amount to engage in a hedge-and-forget strategy.

Aware of the fact that the CIR process used in Eq. (18) is an approximation aimed at

delivering tractability, we explore how well it captures the behavior of the relative bid-ask

spread for pricing purposes with a simple exercise. We compute the realized payoff over

a maturity of 3 months that one would have obtained by investing in liquidity options if

23For details, see https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/f-f_factors.html.
24We exclude the year 2000 from the picture as it would represent data about only December, 2000, which is when liquidity

option prices are first available using a one-year estimation window.
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these were available, discounting it back to the pricing time. Then, we sort options into

10 portfolios based on their price at the end of each month t and regress equal-weighted

portfolio payoffs at month t+3 on the corresponding time-t equal-weighted portfolio prices

using OLS. Simulated option prices predict 52% of the variation in realized payoffs, with a

regression slope coefficient of 0.28 and a t-statistic above 51. Figure 3 helps visualizing this

performance by showing the time average of portfolios payoffs against the time average

of portfolio prices. With the exception of portfolio 10, the two quantities line up nicely

with a corresponding R2 of 0.79. In addition to the pricing algorithm, simulated option

prices and realized payoff might diverge because of differences between the physical and

the risk-neutral measure. Since prices are smaller than payoffs, these risk adjustments are

negative, as it should indeed occur for instruments hedging risks. Intuitively, deviations

from the 45-degree line in the plot increase along the x-axis because more expensive

portfolios require higher adjustments. These findings confirm that the pricing procedure

is reliable as it satisfies fundamental asset pricing restrictions.

4.2 Hypotheses Development

First, we empirically investigate whether the proposed liquidity options effectively strip

liquidity risk out of financial assets. Let us assume excess returns follow well-established

multifactor models like the Fama and French (1993) three-factors model, augmented with

a traded risk factor like the one suggested in Pástor and Stambaugh (2003) to account for

liquidity risk. If liquidity options provide a valid hedge against liquidity risk, we expect

that a portfolio containing one stock and the corresponding option exhibits returns which

are less exposed to liquidity factors than non-hedged stock returns.

Hypothesis 1. The return of a portfolio composed of one stock and one corresponding

liquidity option is significantly less exposed to a proxy for liquidity risk than the stock

return alone.

Second, we have reason to believe that LOPs reflect commonalities in the cross-section.

Other than being affected by illiquidity at the instrument level, stocks are exposed also to

aggregate liquidity risk (Acharya and Pedersen, 2005; Pástor and Stambaugh, 2003) and

as such they covary with it. Hence, we expect the price of liquidity derivatives to pick

up some of the exposure to common liquidity shocks, in such a way that an aggregated

measure of simulated option prices captures market-wide conditions in similar fashion to

other well-known measures of illiquidity (Amihud, 2002; Pástor and Stambaugh, 2003).

In particular, we expect it to spike during crisis periods.
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Hypothesis 2. A cross-sectionally aggregated measure of liquidity option prices reflects

market-wide liquidity conditions, similarly to the aggregate measures in (Amihud, 2002)

and Pástor and Stambaugh (2003).

Third, we explore the link between LOPs and stock returns. If Hypothesis 1 and 2

hold, liquidity options are clearly relevant for financial markets, and as such they are prone

to impact the cross-section of returns. Since the payoff of liquidity options accumulates

in the realized bid-ask spread, which is known to positively affect stock compensation

(Amihud and Mendelson, 1986), we expect stock returns to increase in LOPs. Further-

more, since LOPs reflect asset-specific liquidity risk, they capture a component of returns

that is not spanned by traditional factor models lacking an explicit liquidity factor. Thus,

we expect that portfolios of stocks sorted according to simulated option prices generate

abnormal returns in such a framework.

Hypothesis 3. Stock returns increase in liquidity option prices. Portfolios sorted on

option prices violate the mean-variance efficiency of multifactor models which do not

include a liquidity risk factor.

4.3 Hypothesis 1: Liquidity-hedged Portfolios

Returns of single stocks (“raw” positions) are compared with “hedged” positions obtained

by financing the purchase of the corresponding liquidity options by selling a part of the

shares with the same value, in such a way that the initial investment is equal to the initial

stock price in both cases. The return of a liquidity-hedged position between time t and

the maturity of the option at t+3 consists of two components, namely the ordinary stock

appreciation and the liquidity option payoff, relative to the initial outflow. Dividends

and eventual differences between the mid-price and the adjusted price used to calculate

returns are accounted for. To reflect the compensation of positions financed by borrowing

at the risk-free rate, we focus on excess returns. A thorough explanation of the procedure

is provided in the Appendix D.

Next, we test the hypothesis that hedged positions are less exposed to liquidity risk.

As a proxy for it, we use the traded liquidity factor provided by Pástor and Stambaugh

(2003). In order to reduce the noise in the estimation of factor loadings, we first sort

stocks into 10 portfolios based on their LOPs, and we then regress raw portfolio returns

and hedged portfolio returns on Fama and French (1993) model plus momentum plus PS

on a rolling basis using 60-months windows. Rolling estimation delivers time series of

liquidity factor loadings that allows to formally test Hypothesis 1. Table 3 shows that
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the absolute mean exposure to PS across portfolios almost halves thanks to liquidity

options, passing from 0.0235 to 0.0119.25 Single-portfolio loadings substantially shrink,

exhibiting sometimes more than a 10-fold reduction. In three cases the exposure actually

increases, but this happens for portfolios starting with low betas (portfolios 3, 4, and 7).

We stress that, in addition to sample uncertainty, we cannot expect to observe exactly

zero loadings because PS is meant to capture price impact, a dimensions of liquidity

only partially overlapping with bid-ask spreads. Importantly, portfolios heavily exposed

to PS remarkably benefit from liquidity options. A prominent example is portfolio 10,

whose liquidity beta is more than 20 times smaller when hedged. This result is of primary

importance as portfolio 10 contains the stocks with the highest LOPs and thus those for

which liquidity concerns are most urgent.

As an explicit statistical test for Hypothesis 2, we use a t-test for difference in means

allowing for different variances by using the loadings obtained with a rolling estimation,

following the approach of Savor and Wilson (2013, 2014). The last column of the table

reports p-values for the null hypothesis that the absolute mean liquidity beta of a raw

position is less than or equal to the hedged position one. The null is rejected in 7

cases, suggesting that liquidity options significantly alter the liquidity risk profiles of

the portfolios considered, in line with the objective of their design. To sum up, these

contracts strongly reduce the exposure of portfolios to aggregate liquidity risk, thereby

revealing strong potential for the financial industry.

4.4 Hypothesis 2: Commonality in Liquidity

In the presence of strongly skewed prices, as emerged from Figure 2, a natural cross-

sectional measure for LOPs is the median of the distribution in each month, as in Cakici

and Zaremba (2021). This constitutes an option-based market-wide proxy for illiquidity

capturing transaction costs, that we name OPT . We compare it to two well-known

measures. The first is ILLIQ (Amihud, 2002) at the monthly frequency. The second one

is the aggregate liquidity from Pástor and Stambaugh (2003).26 To transform it into an

illiquidity measure, we flip its sign, and denote it with PSLIQ. OPT is also contrasted

with a simpler aggregate built using the cross-sectional median of the relative bid-ask

spread, the underlying of liquidity options, that we call SPREAD. Standardized time-

series of these four measures are plotted in Figure 4, where shaded regions correspond to

25It is important to focus on absolute mean values to avoid the comparison to be biased due to potentially negative betas.
26Notice that this corresponds to what is plotted in their Figure 1, which differs from the innovations ut (Eq. (8) in their

paper).
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NBER recession periods.

OPT is reported in red. As other measures, it spikes up in 2001 to reflect investors’

concerns about liquidity during the dot-com bubble. After a general decrease in the

subsequent years, all the four aggregates reach high levels during the sub-prime crisis,

but with different timing. PSLIQ and SPREAD come to their respective peak of the

period first, closely followed by ILLIQ. OPT keeps rising during the entire recession,

hitting its local highest point some months later. In the remaining years, all measures

stay below their mean, except for ILLIQ and PSLIQ. Both these two clearly jump

upwards towards the end of the sample to reflect the shock induced by the Covid-19

pandemic, but the former remains high also afterwards. OPT and SPREAD are less

affected by this phenomenon. The measures are clearly persistent, with a first-order

autocorrelation above 0.9, apart from PSLIQ, whose distinctive trait is a strong mean

reversion (autocorrelation of 0.05).

To a large extent, OPT captures important changes in liquidity at the aggregate level,

but exhibits some differences with respect to other measures. This happens because of

the complex nature of illiquidity. While ILLIQ and PSLIQ reflect price responses asso-

ciated with every dollar of trading activity and temporary price changes accompanying

order flows, respectively, the bid-ask spread is influenced by different aspects of market

liquidity. LOPs, in particular, reflect the no-arbitrage compensation required to insure

against uncertainty over future transaction costs relative to the spread at the time of

pricing, thereby capturing a dimension of liquidity which differ not only from the two

we have just mentioned, but also from SPREAD, which instead reflects only point-wise

deviations from the fundamental price that do not accumulate over the holding period to

reflect concerns about cumulative illiquidity. Moreover, OPT includes a risk-adjustment

component consistent with an equilibrium model, a feature absent in the other metrics.

Finally, it must be stressed that since liquidity options are not actually observed, an

option-based illiquidity measure is the result of a simulation exercise. With traded op-

tions, OPT would gain a genuine forward-looking behavior, something unprecedented

in the liquidity literature. Given these considerations, it is not surprising that ILLIQ,

PSLIQ and SPREAD span together only 77% of the variation of OPT in a time-series

regression, leaving unexplained almost one fourth of the movements in the market-wide

illiquidity captured by LOPs. OPT stands therefore as a complementary illiquidity mea-

sure to traditional ones that can be employed in future research.
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4.5 Hypothesis 3: Abnormal Returns

As a first step to investigate the relation between stock returns and instrument-level

liquidity risk, we perform univariate portfolio sorting based on LOPs, which are firm-

specific, at the end of each month, grouping stocks into 10 equal-weighted portfolios.

Figure 5 shows portfolio daily average excess returns in bps. As expected, there is a clear

increasing relation between option prices and returns that is notably strong for stocks

whose liquidity options are more expensive. The difference between portfolio 10 and

portfolio 1 is 4 bps with a t-statistic of 5.11, which means returns significantly spread along

the dimension of liquidity option prices. The results hold also at the monthly frequency,

where the top-minus-bottom-decile average excess return is 94 bps (t-statistic=5.20).

Second, we test well-known empirical asset pricing models on the 10 option-prices-

sorted portfolios. Table 4 reports the intercept and the R2 for time-series regressions of

the type

rt,t+1 = α + βFt + εt (21)

where α is the intercept, rt,t+1 is an N×1 vector of excess returns from t to t+1, β is the

loading matrix on the K traded factors in Ft which in turn includes the market excess

return (CAPM), Fama and French (1993) factors (FF3), FF3 plus the Momentum factor

(Carhart, 1997) (FF4), Fama and French (2015) factors (FF5) and FF5 plus Momentum

(FF6), and εt is the error term. t-statistics are computed using Newey and West (1987)

standard errors with 5 lags. Overall, traditional factor models struggle to explain portfo-

lios sorted according to LOPs. Despite achieving a high R2, they consistently fail to clear

the asset pricing restriction of zero alpha. In particular, 9 out of 10 alphas are significant

for CAPM, FF3 and FF4, and 5 for FF5 and FF6. The GRS statistic (Gibbons et al.,

1989) rejects the null hypothesis of zero alphas well below the 1% significance level for

all models. Importantly, significant alphas concentrate in portfolios with more expensive

liquidity options and increase along this dimension, in line with economic intuition: risk

adjustments from well-known factors do not alter the findings of Figure 5. A portfolio

going long in the top decile and short in the bottom decile produces a daily alpha of

at least 3.7 bps in all models with a t-statistic never below 4.79. In other words, the

majority of its mean excess return over the period (4 bps) cannot be explained through

the exposure to traditional factors. As a benchmark, the mean excess returns of the

market factor, SMB, HML, Momentum, RMA and CMA are 3.36, 1.35, -0.21, 1.41, 0.57

and 0.79 bps, respectively. The abnormal remuneration of the long-short portfolio is
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therefore not only statistically but also economically significant. Results with monthly

data (bottom panel) are very similar. The GRS test hypothesis is rejected in all models

and the LOP-long-short portfolio earns a significant alpha of at least 84 basis points.

The reader may be concerned that the positive relation between returns and LOPs

could be partially driven by correlation with confounding variables, as often argued in the

literature (Amihud and Mendelson, 2015). Small firms are tipycally more illiquid than

larger ones. Moreover, size is well-known in the anomaly literature since it proxies for the

exposure to SMB, an important traded risk factor. Volatility and illiquidity are positively

correlated (Stoll, 1978), and volatility heavily affects the impact that illiquidity has on

stock returns (Spiegel and Wang, 2005). Volume (in dollars), turnover (Datar et al.,

1998) and relative bid-ask spread are three alternative measures of illiquidity at the stock

level which may partially overlap with LOPs. The correlations between LOPs and these

variables have the sign one would expect: -0.21 with size (log market equity); 0.07 with

volatility (measured by monthly standard deviation of stock returns following Amihud

and Noh (2021)); -0.07 with volume; 0.04 with turnover and 0.30 with relative spread.

Table 5 reports the time average of these firm characteristics for the 10 equal-weighted

portfolios sorted on LOPs. Mean values are normalized into the [0, 1] interval so that the

portfolio with lowest value will display a zero and the one with the highest value will have

a 1. Portfolios with high option prices are composed of relatively small and volatile stocks,

which are illiquid according to both relative spread and dollar volume. The relation with

turnover is instead non-monotonic, increasing at first and then dropping for the last two

portfolios.

To account for the influence of these variables on excess returns of option-price-sorted

portfolios, we use bivariate conditional sorts as nonparametric tool and carry out a similar

analysis to the univariate case. At the end of each month, stocks are first sorted into

terciles based on one of the variables just mentioned and then grouped with respect to

LOPs into 5 portfolios within each tercile. We thus end up with 15 control-and-LOP-

sorted portfolios in the spirit of Amihud et al. (2015). The patterns of average excess

returns of the resulting double-sorted portfolios are summarized in Figure 6, which is

the two-dimensional counterpart of Figure 5. It shows that stock returns increase in

liquidity option prices within all terciles of the five controls we consider. A more detailed

representation is provided in Table 6. This includes also t-statistics for the average return

of LOP-long-short portfolios within each conditioning tercile in the second-to-last column,

a high hurdle to gauge the robustness of the findings described in the univariate case.

As a benchmark, the last column shows that returns follow the patterns documented in
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the literature for the control variables. The increasing relation between option prices and

returns persists after controlling for every variable, i.e. returns are generally larger for

higher option prices within all the control-terciles. With the only exception of stocks

very frequently traded, the difference between the 5th portfolio (“Expensive”) and the

1st one (“Cheap”) is always significant. Importantly, this happens even for the first

size-tercile and the last volatility-tercile, alleviating concerns that results are driven by

micro-caps or by volatility. Returns significantly spread along the LOP dimension also

after conditioning on turnover or the relative bid-ask spread underlying the options.

This confirms that the relation between liquidity derivative prices and excess returns

goes beyond what traditional liquidity measures capture, thanks to their intrinsic risk-

adjustment and their ability to compensate for cumulative illiquidity, as discussed in

Section 4.4. Results are largely confirmed at the monthly frequency, as shown in Table

7.

The previous findings document that liquidity option prices capture an “illiquidity

dividend” embedded in stock returns which persists at every level of a set of covariates

correlated with illiquidity. We now examine whether this conclusion survives the risk-

adjustment by testing traditional factor models against the newly built double-sorted

portfolios. Results are presented in Table 8, which reports the value of the GRS statistic

together with the R2 for the models listed on the rows. As for the univariate sorting,

Fama-French models generate a good fit for the data, yet they do not pass asset pricing

tests: the null hypothesis of mean-variance efficiency is rejected for all models and for

all the sets of portfolios considered (the 1% critical value for the GRS test is 2.04).

To investigate whether the remuneration of the long-short portfolios based LOPs after

controlling for size, volatility, volume, turnover and relative spread is due to the exposure

to Fama-French factors, the last three columns show their alphas and the relative t-

statistic for each characteristic-tercile. For example, the column 15− 11 of the first panel

contains the intercept for a long-short portfolio obtained as the difference between the

highest-LOP portfolio and the lowest-LOP portfolio within the smallest size-tercile. As

the economic intuition would suggest, pricing errors on long-short portfolios are somewhat

smaller than in the univariate case because double-sorting nets out the effect of the

conditioning variables, which are known to impact stock returns. The largest alphas

occur for small, volatile stocks which are rarely traded with low turnover and high bid-ask

spreads. Notably, alphas are strikingly similar to the average excess returns displayed in

Table 6, even when 6 factors are considered. Put differently, the spread in stock returns

along the LOP dimension cannot be explained as a compensation for traditional risk
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factor exposures even after controlling for the effect of confounding correlated variables.

These findings persist also with monthly data, as reported in Table 9. The GRS statistics

in fact always largely exceed the 1% critical value (2.12) and the within-tercile long-short

portfolio alphas are almost always significant and very close to the average excess returns

of the same portfolios.

5 Conclusion

The large degree of time-series variation in market liquidity underlines the business need

of investors to hedge their exposures to its fluctuations. We show theoretically that the

lack of a market for liquidity is responsible for the spirals between market and funding

liquidity. Guided by the principle of efficient allocation of resources in financial markets,

we propose a novel liquidity derivative to fill this gap and improve financial stability,

and suggest a simple pricing algorithm. We view liquidity derivatives as offering a payoff

that accumulates every time the relative bid-ask spread of the underlying financial asset

exceeds the transaction costs per unit of notional at the beginning of the contract which

appreciates when illiquidity is high or sustained. Liquidity derivatives are a clear and

interpretable measure reflecting market participants’ expectations about future trans-

action costs. As such, they have the potential of becoming informative indicators for

market watchers as well as for policymakers who want to assess the most appropriate

course of action needed to avoid sudden adverse market outcomes. The hedging property

of these instruments is supported empirically. Stock returns significantly spread along

instrument-level liquidity risk and portfolios of stocks sorted on their simulated liquidity

derivative prices generate anomalies that persist after controlling for variables correlated

with illiquidity.
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Appendix A: Proof of Lemma I

Proof. We have shown that liquidity derivatives only trade at time t = 0, therefore the
customers’ value function at time t = 1 is the same as in B&P, to which we direct the
reader for a derivation.

Γ1(W k
1 , p1, v1) = − exp

{
− γ
[
W k

1 +
∑
j

(vj1 − p
j
1)2

2γ(σj2)2

]}
(A.1)

At time t = 0, customer k = 0 arrives to the market and maximizes E0[Γ1(W k
1 , p1, v1)].
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Where the first equality holds because customers are price takers. Replacing Equation
(1) into Equation (3), we get

E0[W k
1 ] = W k

0 + (E0v1 − p0)′(yk0 + zk) + (λ0 − E0|Λ1|)ck0 (A.3)

Var0[W k
1 ] = (yk0 + zk)

2σ2
1 + (ck0)2Var0(|Λj

1|) (A.4)

where σ1 = diag(σ1
1, . . . , σ

J
1 ). We obtain the solution to the customer’s problem by taking

the first order conditions for an interior optimum.
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1|)

(A.5)

�

Appendix B: Proof of Proposition II

Proof. The case of Z1 ≤ 0, that implies p1 ≥ v1, Λ1 > 0, and x1 ≤ 0 is analogous. We
have

∂p1

∂η1

=
−1

2
γ(σ2)2

m−1 +
∂m−1
∂p1

x1 +
∂n+

1

∂p1
c0 + x0 + c0

(B.1)

When financiers are uninformed, the term
∂m−1
∂p1

x1 < 0, which gives rise to a margin

spiral, is attenuated by
∂n+

1

∂p1
c0 > 0. The speculator who was previously short-selling the
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stock faces a loss spiral when upward price movements drive prices further away from
fundamentals. Note that losses on initial positions are balanced by larger benefits from
liquidity derivatives. �

Appendix C: Sample Selection

The sample selection closely follows Amihud (2002). We select stocks from CRSP re-
stricting to ordinary common shares (first digit of CRSP code is 1) of non-financial firms
(SIC-code excluding the interval [6000, 6999]). In every year, only stocks with available
closing price for more than 200 days in that year and with price greater than $5 at the
end of the year are included, to avoid that “penny stocks” drive the results. The exis-
tence of a lower bound imposed by the SEC to the bid-ask spread would make estimation
more noisy for such firms (Amihud, 2002). Finally, all firms must have data on market
capitalization at the end of the previous year. This excludes derivatives like American
Depositary Receipts of foreign stocks and scores and primes.

Because of better reporting quality regarding bid and ask quotes, we then use data
from Bloomberg, including returns and accounting measures. Daily observations where
the absolute spread is non-positive or greater than 5$ are deleted (Chung and Zhang,
2014; Korajczyk and Sadka, 2008). We drop stale data points about bid and ask quotes:
if the same ask and bid appear for more than 5 days in a row, only the first 5 observations
are kept. If the daily closing price is missing, the midquote is used instead. Volume is
winsorized at the 1st and 99th percentile of its cross-sectional distribution in each year.

Liquidity option prices are simulated for firms with less than 100 missing data for the
relative spread in each year t. This is a lower bound that ensures reliability of parameter
estimates. LOPs equal to zero and prices with negative MLE estimates of σ in Eq. (19)
are deleted. Although we impose a high level of precision in our numerical procedure
(100,000 Monte Carlo simulations), economically non-meaningful results due to purely
computational limits can still occur. Moreover, we drop prices for which the Akaike
Information Criterion (AIC) relative to the CIR parameter estimation exceeds the 99th

percentile of each year to ensure data are of sound quality. Finally, prices are trimmed
at the 99th percentile of the distribution of the corresponding year, and multiplied by
10000 to obtain values in basis points (bps) to improve readability. Whenever a price is
lower than 1 bps (8029 observations), it is set to 1 bps to make it a meaningful value.

Appendix D: Liquidity-hedged Positions

We describe here in detail the computation of returns used in Section 4.3. We focus
on 3-month returns to match the time to maturity of the 3-months European liquidity
options we simulate. For each stock, the raw (non-hedged) return between time t and
t+ 3, where t represents months, is simply the percentage change between the dividend-
adjusted prices, i.e. rt+3 = pt+3/pt − 1. We build a hedged position such that the initial
investment is still pt to make the two strategies comparable. This is achieved by selling
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a part of the stock with equal value to the price of one liquidity option. Since option
prices are expressed in bps of the mid-price at t, mt, one needs to account for potential
differences between pt and mt. Let Ct be the price of a 3-month option, now expressed
in decimals of mt. A hedged position ζt has initial value

ζt = pt

(
1− mt

pt
Ct

)
+ pt

(
mt

pt
Ct

)
= pt (D.1)

Multiplying Ct by the ratio mt/pt converts it into dollars and ensures ζt = pt even with
pt 6= mt. At time t + 3, i.e. at the maturity of the option, the investor obtains the
corresponding payoff Xt+3, which is also expressed in bps per unit of notional. Hence,
the value of the position at t+ 3 will be

ζt+3 = pt+3

(
1− mt

pt
Ct

)
+mtXt+3 (D.2)

The ratio of ζt+3 to pt minus 1 represents the return of a hedged position, which can be
compared with rt+3. Hypothesis 2 is tested after subtracting the risk-free rate such that
we compare investments financed by borrowing pt.
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Figures

Figure 1: Example of liquidity option payoff
This Figure shows the payoff of a liquidity option on the relative spread of Walmart Inc. for
the first quarter of 2000. The daily payoff accrual is one half the difference between the relative
spread and its value at the initiation of the contract, when such difference is positive, and zero
otherwise. The option payoff is the sum of the daily payoff accruals at the maturity.
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Figure 2: Liquidity option prices distribution
This Figure shows yearly cross-sectional liquidity option prices deciles (bps) from 2001 to 2020.
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Figure 3: Liquidity option prices vs Realized payoffs
This Figure shows average liquidity option prices (bps, x-axis) against average realized payoffs
(bps, y-axis) for 10 equal-weighted portfolios sorted on option prices. Data from January 2001
to December 2020.
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Figure 4: Comparison of liquidity measures
This Figure shows market-wide illiquidity measures from December 2000 to December 2020.
ILLIQ refers to Amihud (2002). OPT is the monthly cross-sectional median option price.
PSLIQ is the aggregate liquidity measure from Pástor and Stambaugh (2003), with flipped
sign. SPREAD is the monthly cross-sectional median relative bid-ask spread. Series are
standardized. Grey shaded areas represent NBER recessions.
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Figure 5: Average excess returns: 10 equal-weighted portfolios
This Figure shows the average excess returns of 10-equal weighted portfolios of stocks sorted on
liquidity option prices on a monthly basis. Daily data from January 2001 to December 2020.
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Figure 6: Average excess returns: conditional double-sorted portfolios
This Figure shows average excess returns of conditional double-sorted portfolios. Portfolios are
formed on a monthly basis by sorting stocks first into terciles based on size (top-left panel),
volatility (top-right), dollar volume (middle-left), turnover (middle-right) or relative bid-ask
spread (bottom-left) and then into quintiles based on liquidity option prices for each tercile.
Daily data from January 2001 to December 2020.



Tables

Table 1: Heterogeneous Liquidity Exposures

This Table reports estimates from the monthly time-series regressions of the Barclay Hedge Fund Index and the Standars
and Poor’s Insurance Index on the Fama and French factors plus momentum augmented with the Pastor and Stambaugh
aggregate liquidity factor. The data range from June 2003, the first value of the Standars and Poor’s Insurance Index, to
December 2020. Heteroskedasticity-robust standard errors in parentheses.

Barclay Hedge Fund Index S & P Insurance Index

Rm − Rf 0.35*** 0.99***

(0.02) (0.06)

SMB 0.02 -0.04

(0.03) (0.09)

HML 0.01 0.58***

(0.05) (0.10)

RMW -0.06 -0.18

(0.04) (0.13)

CMA -0.07 -0.28*

(0.06) (0.16)

MOM -0.03 -0.05

(0.02) (0.04)

PS 0.11*** -0.15***

(0.02) (0.06)

Observations 210 210

R2 0.82 0.83
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Table 2: Summary statistics

This Table reports summary statistics of the sample consisting of CRSP stocks traded on the NYSE with Bloomberg data
from January, 2000 to December, 2020 with corresponding distribution percentiles. Market Cap. is market capitalization
expressed in million of dollars. Volume represents monthly average traded volume in millions of dollars. Rel. spread is the
monthly average ratio of the difference between the best bid and ask quotes to the midquote, measured in basis points.
ILLIQ refers to the Amihud (2002) illiquidity measure at the stock and at the monthly level. C denotes liquidity option
prices expressed in basis points per units of notional for a contract maturity of three months. m is the monthly average
midquote. Volatility is the monthly standard deviation of stock returns. Turnover is the monthly average ratio of dollar
volume to market capitalization.

Percentiles

N Mean SD Skewness Min Max 1% 5% 25% 50% 75% 95% 99%

Market Cap. 241401 10734 29439 6.96 1.07 580934 53.03 160.17 821.91 2444.45 7998.35 43749 160282

Volume 291545 20.73 44.14 6.16 0.00 2419 0.01 0.12 1.50 6.13 20.38 88.14 221.13

Rel. Spread 291733 38.28 200.36 23.50 0.28 16471 1.27 1.86 4.71 10.98 23.52 113.15 479.64

ILLIQ 290608 0.1465 1.6788 20.3975 0.00 45.6963 0.00 0.0001 0.0007 0.0025 0.0122 0.2081 1.5712

C 192746 279.72 611.51 4.45 1.00 7974.33 1.00 1.98 20.64 67.38 233.59 1325.58 3318.96

m 291733 42.01 93.50 22.47 0.09 6421.76 1.98 4.89 14.17 25.65 45.67 114.75 275.91

Volatility 289183 0.02 0.26 482.57 0.01 134.29 0.01 0.01 0.01 0.02 0.03 0.05 0.09

Turnover 241261 0.37 0.58 19.41 0.00 55.06 0.01 0.03 0.14 0.24 0.43 1.07 2.25
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Table 3: Liquidity factor loadings: raw and hedged portfolios

This Table presents absolute mean loadings on Pástor and Stambaugh (2003) liquidity factor in a multifactor model
including Fama and French (1993) plus momentum for 10 equal-weighted portfolios sorted on liquidity option prices.
Loadings refer to raw returns and to returns hedged with liquidity options for each stock in each portfolio. The last column
reports the p-value for the null hypothesis that the mean absolute exposure of raw position is less than or equal to that of a
hedged position, from a t-test for difference in means that allows for unequal variances based on rolling estimates following
the approach in Savor and Wilson (2013, 2014). Data from January 2001 to December 2020.

Portfolio
number

Absolute
mean
exposure

P-value
difference
in means

Raw Hedged

1 0.0223 0.0053 0.004

2 0.0351 0.0198 0.000

3 0.0025 0.0214 0.962

4 0.0004 0.0151 0.991

5 0.0207 0.0040 0.022

6 0.0241 0.0010 0.000

7 0.0013 0.0104 0.799

8 0.0514 0.0359 0.003

9 0.0274 0.0037 0.002

10 0.0494 0.0024 0.001

Mean 0.0235 0.0119
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Table 4: Alphas and R2 of equal-weighted portfolios sorted on liquidity option
prices

This Table shows alphas (bps) and R2 for CAPM, Fama and French (1993) (FF3), FF3 plus the Momentum factor (Carhart,
1997) (FF4), Fama and French (2015) (FF5) and FF5 plus Momentum (FF6) factor models tested on 10 equal-weighted
portfolios sorted on liquidity option prices at the end of each month. The top and the bottom panel present daily and
monthly data, respectively, from January 2001 to December 2020. t−statistics in brackets are obtained by using Newey
and West (1987) standard errors with 5 lags.

Decile portfolio

1 2 3 4 5 6 7 8 9 10 10-1 R2

Daily data

CAPM alpha 1.79 2.13 1.36 1.63 1.67 2.77 2.02 3.36 4.49 5.91 4.12 84.53

(2.32) (2.89) (1.84) (2.23) (2.28) (3.78) (2.61) (4.04) (4.74) (6.04) (5.18)

FF3 alpha 1.42 1.81 1.00 1.28 1.26 2.29 1.41 2.66 3.71 5.31 3.89 92.23

(2.39) (3.18) (1.79) (2.28) (2.39) (4.36) (2.79) (5.24) (6.39) (7.76) (5.00)

FF4 alpha 1.58 1.96 1.08 1.36 1.29 2.29 1.35 2.60 3.58 5.32 3.74 92.40

(2.75) (3.49) (1.90) (2.41) (2.41) (4.34) (2.67) (5.14) (6.27) (7.71) (4.79)

FF5 alpha 0.91 1.22 0.28 0.61 0.64 1.74 0.89 2.23 3.26 4.87 3.96 92.83

(1.57) (2.24) (0.53) (1.17) (1.29) (3.49) (1.85) (4.53) (5.76) (7.17) (5.10)

FF6 alpha 0.95 1.25 0.30 0.64 0.65 1.75 0.89 2.22 3.24 4.88 3.93 93.09

(1.75) (2.42) (0.57) (1.24) (1.32) (3.51) (1.84) (4.52) (5.78) (7.23) (5.09)

Monthly data

CAPM alpha 25.57 33.84 19.24 25.29 26.87 50.04 33.65 64.16 85.96 116.89 91.32 80.37

(1.43) (2.07) (1.12) (1.46) (1.54) (2.60) (1.61) (3.08) (3.87) (3.91) (5.02)

FF3 alpha 20.51 29.84 15.14 21.86 21.29 43.30 24.85 52.65 75.52 109.31 88.81 89.68

(1.58) (2.83) (1.37) (1.67) (2.07) (3.38) (2.05) (4.75) (6.18) (4.96) (4.14)

FF4 alpha 27.34 32.75 16.36 23.56 22.87 45.19 28.02 53.60 74.60 111.60 84.26 89.90

(2.12) (3.21) (1.52) (1.67) (2.23) (3.39) (2.22) (4.25) (5.12) (4.64) (3.77)

FF5 alpha 2.30 13.96 -1.56 -2.36 4.06 22.75 11.92 37.06 56.99 86.59 84.28 90.93

(0.20) (1.35) (-0.15) (-0.19) (0.41) (2.01) (1.00) (3.65) (4.83) (4.52) (4.16)

FF6 alpha 2.81 14.23 -1.38 -2.11 4.26 22.99 12.18 37.21 57.06 86.86 84.06 91.58

(0.27) (1.49) (-0.13) (-0.17) (0.45) (2.1) (1.05) (3.63) (4.81) (4.72) (4.07)
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Table 5: Normalized average portfolio characteristics

This Table presents average firm characteristics for 10 equal-weighted portfolios sorted on liquidity option prices (C).
Average characteristics are normalized into the [0, 1] interval. Size is the log market equity. Volatility is the monthly
standard deviation of stock returns. Volume is the trade volume in million of dollars. Turnover is the ratio of dollar volume
to market capitalization. The relative bid-ask spread is the bid-ask spread divided by the midquote. Data from January
2001 to December 2020.

Portfolio
number

C Size Volatility Volume Turnover Relative
spread

1 0.000 0.943 0.153 0.921 0.241 0.082

2 0.013 1.000 0.047 1.000 0.268 0.031

3 0.027 0.989 0.000 0.939 0.501 0.006

4 0.042 0.917 0.044 0.805 0.637 0.000

5 0.060 0.781 0.108 0.590 0.749 0.035

6 0.082 0.628 0.220 0.429 0.974 0.091

7 0.112 0.453 0.381 0.250 1.000 0.170

8 0.159 0.225 0.672 0.096 0.920 0.310

9 0.275 0.000 1.000 0.000 0.243 0.624

10 1.000 0.257 0.812 0.267 0.000 1.000
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Table 6: Average excess returns of conditional double-sorted portfolios (daily)

This Table presents average excess returns for conditional double-sorted portfolios formed at the end of each month by
sorting stocks first on the left-hand variable and then on liquidity option prices. Size refers to market capitalization.
Volatility is the monthly standard deviation of stock returns. Volume is the trade volume in dollars. Turnover is the ratio
of dollar volume to market capitalization. The relative bid-ask spread is the bid-ask spread divided by the midquote. The
second-to-last column reports in brackets the t-statistic for the average returns of LOP-long-short portfolio within each
tercile of the conditioning variable. Daily data from January 2001 to December 2020.

Liquidity Option Price

Cheap 2 3 4 Expensive 5-1 All

Size

Small 7.71 7.41 7.47 8.93 10.69 2.98 (2.69) 8.08

Medium 5.41 4.88 5.26 5.62 6.98 1.56 (1.99) 5.77

Large 4.26 4.20 4.44 4.26 5.86 1.60 (2.33) 4.83

Volatility

Stable 4.14 4.17 4.29 4.81 5.52 1.38 (2.72) 4.77

Medium 5.16 4.55 5.48 5.81 6.82 1.66 (2.35) 5.79

Volatile 7.59 7.41 7.80 10.14 12.12 4.53 (3.58) 8.77

Volume

Infrequent 9.26 8.03 8.09 9.14 11.76 2.50 (2.31) 8.22

Medium 5.55 5.40 6.11 6.18 8.07 2.52 (2.86) 6.33

Frequent 4.15 4.14 4.12 3.82 5.31 1.16 (1.49) 4.48

Turnover

Low 6.52 7.16 7.81 9.00 9.75 3.23 (3.46) 7.94

Medium 4.85 4.53 5.46 5.19 7.58 2.72 (3.50) 5.74

High 4.42 3.86 4.71 5.01 7.47 3.05 (2.95) 5.01

Relative bid-ask spread

Low 3.95 3.55 4.52 5.16 6.69 2.74 (3.21) 4.95

Medium 3.94 4.49 5.45 6.55 6.99 3.04 (3.19) 5.55

High 7.32 7.53 10.06 10.71 13.42 6.11 (5.08) 8.53

All 5.49 5.01 5.74 6.35 8.82 3.32 (4.88)
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Table 7: Average excess returns of conditional double-sorted portfolios (monthly)

This Table presents average excess returns for conditional double-sorted portfolios formed at the end of each month by
sorting stocks first on the left-hand variable and then on liquidity option prices. Size refers to market capitalization.
Volatility is the monthly standard deviation of stock returns. Volume is the trade volume in dollars. Turnover is the ratio
of dollar volume to market capitalization. The relative bid-ask spread is the bid-ask spread divided by the midquote. The
second-to-last column reports in brackets the t-statistic for the average returns of LOP-long-short portfolio within each
tercile of the conditioning variable. Monthly data from January 2001 to December 2020.

Liquidity Option Price

Cheap 2 3 4 Expensive 5-1 All

Size

Small 148.29 142.76 154.19 177.12 220.14 71.85 (3.07) 160.91

Medium 104.33 93.64 101.93 112.13 135.68 31.35 (1.98) 112.73

Large 82.78 78.47 85.14 80.48 115.92 33.14 (2.17) 93.26

Volatility

Stable 80.70 83.14 83.82 96.39 111.76 31.07 (3.09) 95.20

Medium 98.79 87.52 105.46 114.11 133.22 34.44 (2.74) 114.02

Volatile 141.04 141.00 151.23 201.61 253.45 112.41 (3.83) 169.16

Volume

Infrequent 187.73 162.76 171.92 185.27 252.85 65.12 (2.43) 163.41

Medium 105.21 108.98 121.23 115.98 156.99 51.78 (2.92) 123.15

Frequent 80.06 74.83 75.00 74.16 99.68 19.61 (1.24) 85.36

Turnover

Low 128.48 141.60 154.62 187.79 198.70 70.22 (3.78) 158.21

Medium 92.27 87.37 104.37 102.36 152.95 60.68 (3.51) 112.77

High 81.99 68.67 87.41 95.83 146.27 64.29 (3.04) 95.86

Relative bid-ask spread

Low 71.40 79.07 82.53 67.96 97.53 26.14 (2.45) 84.97

Medium 102.30 94.01 107.02 117.87 113.08 10.78 (0.65) 111.79

High 197.44 207.65 201.69 217.38 288.92 91.48 (3.06) 175.13

All 104.90 96.78 111.30 125.47 179.87 74.96 (5.05)
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Table 8: GRS statistic and R2 of conditional double-sorted portfolios (daily)

This Table reports the GRS F -statistic (Gibbons et al., 1989) and R2 for CAPM, Fama and French (1993) (FF3), FF3
plus the Momentum factor (Carhart, 1997) (FF4), Fama and French (2015) (FF5) and FF5 plus Momentum (FF6) factor
models tested on cross-sections of 3x5 equal-weighted (conditionally) double-sorted portfolios. Alphas are reported for
long-short portfolios for each tercile of the conditioning variable. t− statistics in brackets are obtained using Newey and
West (1987) standard errors with 5 lags. Daily data from January 2001 to December 2020.

Bivariate portfolios Long-short portfolio alpha

GRS
statistic

R2 on
the PFs (%)

15 − 11 25 − 21 35 − 31

Size x Option price
CAPM 3.16 79.55 3.27 1.58 1.47

(3.13) (2.05) (2.16)
FF3 6.10 90.05 3.27 1.54 1.41

(3.13) (1.99) (2.09)
FF4 6.09 90.23 2.97 1.35 1.29

(2.91) (1.75) (1.9)
FF5 5.30 90.76 3.43 1.72 1.54

(3.31) (2.24) (2.29)
FF6 5.33 91.05 3.37 1.68 1.52

(3.37) (2.23) (2.27)

Volatility x Option price
CAPM 4.47 79.98 1.37 1.85 4.86

(2.70) (2.81) (3.82)
FF3 6.29 88.65 1.14 1.60 4.59

(2.47) (2.51) (3.63)
FF4 6.21 89.55 1.12 1.45 4.08

(2.41) (2.30) (3.39)
FF5 5.59 89.27 1.35 1.80 4.33

(2.93) (2.80) (3.45)
FF6 5.59 90.16 1.34 1.77 4.25

(2.91) (2.81) (3.57)

Volume x Option price
CAPM 4.12 79.03 2.73 2.41 0.89

(2.61) (2.81) (1.19)
FF3 8.52 89.64 2.73 2.22 0.73

(2.61) (2.62) (0.99)
FF4 8.74 89.94 2.41 1.94 0.51

(2.39) (2.35) (0.71)
FF5 7.83 90.22 2.81 2.33 1.07

(2.72) (2.75) (1.47)
FF6 8.00 90.62 2.75 2.28 1.03

(2.76) (2.8) (1.48)

Turnover x Option price
CAPM 5.23 81.50 3.26 2.52 2.90

(3.62) (3.24) (2.92)
FF3 7.50 88.90 2.92 2.16 2.58

(3.49) (2.98) (2.65)
FF4 7.54 89.09 2.75 2.02 2.28

(3.28) (2.83) (2.41)
FF5 6.75 89.61 2.88 2.23 2.69

(3.45) (3.07) (2.77)
FF6 6.81 89.91 2.85 2.21 2.63

(3.40) (3.11) (2.81)

Relative spread x Option price
CAPM 5.58 79.40 2.14 2.59 6.39

(2.84) (2.99) (5.28)
FF3 8.00 89.15 1.62 2.06 6.19

(2.49) (2.74) (5.14)
FF4 8.25 89.54 1.52 1.93 5.96

(2.32) (2.56) (4.91)
FF5 7.40 89.70 1.87 2.26 6.41

(2.87) (3.01) (5.33)
FF6 7.60 90.20 1.85 2.24 6.37

(2.89) (3.00) (5.29)
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Table 9: GRS statistic and R2 of conditional double-sorted portfolios (monthly)

This Table reports GRS F -statistic (Gibbons et al., 1989) and R2 for CAPM, Fama and French (1993) (FF3), FF3 plus the
Momentum factor (Carhart, 1997) (FF4), Fama and French (2015) (FF5) and FF5 plus Momentum (FF6) factor models
tested on cross-sections of 3x5 equal-weighted (conditionally) double-sorted portfolios. Alphas are reported for long-short
portfolios for each tercile of the conditioning variable. t− statistics in brackets are obtained using Newey and West (1987)
standard errors with 5 lags. Monthly data from January 2001 to December 2020.

Bivariate portfolios Long-short portfolio alpha

GRS
statistic

R2 on
the PFs (%)

15 − 11 25 − 21 35 − 31

Size x Option price
CAPM 2.95 75.01 83.70 35.05 28.33

(3.88) (2.36) (1.92)
FF3 4.48 87.45 85.33 35.85 25.47

(4.00) (2.35) (1.75)
FF4 4.59 87.79 73.94 34.21 27.12

(3.48) (1.99) (1.53)
FF5 3.27 88.60 91.12 42.69 33.42

(3.77) (2.78) (2.22)
FF6 3.34 89.43 90.45 42.55 33.46

(3.69) (2.75) (2.20)

Volatility x Option price
CAPM 3.12 75.37 26.58 39.27 122.43

(2.58) (3.83) (3.65)
FF3 4.41 85.38 21.68 36.39 121.42

(2.66) (3.79) (3.60)
FF4 4.28 86.96 20.13 32.60 105.20

(2.58) (3.49) (3.16)
FF5 3.10 86.46 22.45 35.14 108.95

(2.69) (3.77) (3.37)
FF6 3.10 88.52 22.36 34.93 108.12

(2.79) (3.85) (3.27)

Volume x Option price
CAPM 2.93 74.54 73.88 53.83 15.03

(3.15) (3.06) (1.00)
FF3 4.32 85.81 75.36 51.67 11.73

(3.07) (2.94) (0.80)
FF4 4.74 86.49 61.67 46.52 8.92

(2.58) (2.38) (0.55)
FF5 3.18 87.20 72.71 57.76 18.62

(2.91) (3.36) (1.26)
FF6 3.43 88.52 71.96 57.43 18.42

(2.73) (3.31) (1.29)

Turnover x Option price
CAPM 4.25 75.83 66.81 55.25 66.09

(3.28) (2.98) (3.39)
FF3 4.97 84.89 61.72 49.96 62.99

(3.54) (3.33) (3.43)
FF4 5.54 85.73 58.51 46.70 56.22

(3.06) (2.8) (2.87)
FF5 4.22 85.96 59.82 50.06 61.41

(3.49) (3.30) (3.02)
FF6 4.46 87.32 59.65 49.88 61.04

(3.45) (3.28) (3.03)

Relative spread x Option price
CAPM 3.93 72.44 21.40 19.78 106.45

(2.09) (1.37) (3.62)
FF3 4.60 83.77 18.05 18.85 106.14

(1.77) (1.41) (3.59)
FF4 4.77 85.17 14.89 8.35 91.53

(1.46) (0.69) (3.28)
FF5 3.40 85.11 20.17 16.73 102.24

(2.00) (1.03) (3.56)
FF6 3.53 87.30 19.98 16.15 101.44

(2.08) (1.2) (3.53)

52


	Introduction
	Theoretical Properties
	Model setup
	Customers
	Speculators
	Financiers
	Equilibrium

	Model solution

	A Market for Liquidity Risk
	Liquidity Derivatives: Demand and Supply
	The Reference Process
	Hedging Liquidity Risk
	Pricing Liquidity Derivatives

	Empirical Estimation
	Data Description and Summary Statistics
	Hypotheses Development
	Hypothesis 1: Liquidity-hedged Portfolios
	Hypothesis 2: Commonality in Liquidity
	Hypothesis 3: Abnormal Returns

	Conclusion
	Proof of Lemma I
	Proof of Proposition II
	Sample Selection
	Liquidity-hedged Positions

