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1 Introduction

Consider the formidable problem of an investor who wants to choose an optimal asset allocation

within her equity portfolio. The literature provides her with a few options: She can opt for a

traditional Markowitz approach (Markowitz, 1952) that requires estimation of expected returns,

variances and covariances with the number of moments to estimate escalating quickly. At the

other end of the spectrum, she might estimate a low-dimensional parametric portfolio policy

(Brandt et al., 2009) but the linear model might not provide sufficient flexibility. She can also

consult a large literature that relates characteristics to expected returns but even studies that

consider a multitude of firm-level characteristics (e.g. Gu et al. (2020)) only investigate expected

returns and do not speak to risk as perceived by different investors’ objective functions.

We provide a general solution to the portfolio optimization challenge. In short, we combine

the parametric portfolio policy approach that is well-suited to estimate portfolio weights for any

utility function with the flexibility of feed-forward networks from the machine learning literature.

The resulting approach that we label Deep Parametric Portfolio Policy is well-suited to integrate

different utility functions, to flexibly deal with leverage or portfolio weight constraints, and to

incorporate transaction costs.

Our results are fourfold. First, our model improves significantly over a standard linear

parametric portfolio policy. Utility gains range from around 30% to 100% depending on model

specification and the incorporation of constraints. Such gains are not restricted to only particular

time periods and come with only modest increases in turnover. Second, past return-based

stock characteristics turn out to be more relevant to the portfolio policy than accounting-based

characteristics. This is despite return-based characteristics typically incurring higher transaction

costs. Even when we model transaction costs explicitly in the objective function, return-based

characteristics remain among the most relevant ones. Third, utility gains arise for a variety of

investors’ utility functions that we consider. While our benchmark investor is a classical mean-

variance optimizer, our setup easily accommodates other utility functions. We investigate deep

parametric portfolio policies for the case of constant relative risk aversion and for loss aversion,

and we find substantial utility gains in all cases. Fourth, predictor interactions account for the

majority of differences between the estimated weights of the linear parametric portfolio policy
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and our model.

In essence, our model can be interpreted as a generalization of the linear parametric portfolio

policy approach in that we allow firm characteristics to be non-linearly related to portfolio weights.

More specifically, we allow portfolio weights to be of one of the arguably most flexible forms - a

neural network. This represents a significant conceptual change in two ways: First, by replacing

the linear specification by a neural network, we allow the relation between firm characteristics

and weights to be non-linear and we allow for potential interactions of firm characteristics. The

literature on using machine learning methods to predict future returns shows that such flexibility

is relevant to model the relation between firm characteristics and future returns, and can lead to

substantial improvements over less flexible specifications (Moritz and Zimmermann, 2016; Gu

et al., 2020). It is conceivable that such flexibility will also help to model the relation between

portfolio weights and firm characteristics. Second, flexibility comes at the cost of having to

estimate a model with a high-dimensional parameter vector. As such, it deviates from the original

motivation of the parametric portfolio policy literature that aimed to reduce portfolio optimization

to a low-dimensional problem in which only a small number of coefficients need to be estimated.

Our benchmark model has around 5,700 parameters compared to the three parameters that need

to be estimated in the application of Brandt et al. (2009). Nevertheless, Kelly et al. (2022) argue

that model complexity is a virtue for return prediction, and our approach can be viewed as an

exploration of that point in the context of parametric portfolio policies.

We start with a benchmark case of a largely unrestricted portfolio policy. In the benchmark

case, an investor who optimizes mean-variance utility can take long and short positions with the

only restriction that absolute individual stock positions cannot exceed three percent of the overall

portfolio. Other aspects of the optimization remain unrestricted, in particular, the investor does

not take into account transaction costs and short-selling constraints.

In the benchmark case, a network-based portfolio policy can increase investor utility by

about 100% relative to a linear portfolio policy but also incurs higher turnover. Both portfolio

policies take comparably large positions in individual stocks but the network-based policy has

turnover that is almost twice as large. We find that the difference in turnover can be traced to the

network-based policy putting larger weight on past-return based characteristics that have higher

turnover.
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We then investigate network-based portfolio policies in more realistic contexts that restrict

investors in various ways. In particular, we explore results for the case in which an investor cannot

take any short positions and for the case in which transaction costs and leverage are part of the

optimization problem. In both cases, we find that network-based policies yield higher utility than

a linear portfolio policy, with increases between 30% and 40%. For constrained portfolio policies

the importance of past-return based characteristics decreases while still being among the most

important characteristics. This matches the results of DeMiguel et al. (2020) who find that more

characteristics matter under transaction costs.

Moving beyond our benchmark mean-variance investor, we explore different investor prefer-

ences: First, we show that utility gains occur for mean-variance utility optimizers with different

degrees of risk aversion. We find larger utility gains for less risk averse investors and lower

gains for more risk averse investors, consistent with our finding that estimated portfolio policies

for more risk averse investors take less extreme positions and hold more diversified portfolios.

Second, we also find that utility gains are not restricted to mean-variance utility investors. We

find similar results when we consider an investor with constant relative risk aversion or with loss

aversion.

Overall, our contribution can be summarized as providing a general solution to the parametric

portfolio policy problem that combines recent advances in combining structural economic prob-

lems and machine learning methods (Farrell et al. (2021); Kelly et al. (2022)). Our setup seamlessly

incorporates non-linearities and interactions across firm characteristics. We also demonstrate

how constraints on leverage or portfolio weights can be easily added via customization of the

statistical loss function. Lastly, realistic estimates of transaction costs can be taken into account as

an additional constraint on the optimization problem.

1.1 Related Literature

Our work relates to three different strands of the literature. First, we build on a number of

studies that have investigated the portfolio optimization process via parametric portfolio policies

following the seminal study by Brandt et al. (2009). While Brandt et al. (2009) argued that it may

be worthwhile to consider non-linear functions and interactions in weight modeling, subsequent
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papers that have implemented and extended parametric portfolio policies parameterize portfolio

weights as a linear function of firm characteristics (e.g. Hjalmarsson and Manchev (2012), Ammann

et al. (2016)). DeMiguel et al. (2020) incorporate transaction costs, a larger set of firm characteristics,

and statistical regularization but also stay within the linear framework. Our deep parametric

portfolio policy replaces the linear model with a feed-forward neural network that accounts for

both non-linearity and possible interactions of firm characteristics. In addition, we use a larger set

of firm characteristics than previous studies and explore different regularization techniques for

both the linear and deep parametric portfolio policies.

Second, we add to a growing literature that explores the potential of machine learning

algorithms in finance (e.g. Heaton et al. (2017), Gu et al. (2020), Bianchi et al. (2020), Kelly et al.

(2022)). Studies in this literature typically consider a prediction task (e.g. predicting stock returns),

and optimize a standard statistical loss function such as the mean squared error (or a related

distance metric) between the actual and predicted values. Predicted values are used to construct

portfolio weights (e.g. Moritz and Zimmermann (2016), Gu et al. (2020)). In contrast, we optimize

a utility function instead of a common loss function and model portfolio weights directly as a

function of firm characteristics. This is similar to Cong et al. (2021) who directly optimize Sharpe

ratios using reinforcement learning. However, their model estimates scores for each stock and

creates long-short portfolios based on the highest and lowest scoring stocks, whereas our deep

parametric portfolio policy models stock weights directly as a function of firm characteristics.

Also somewhat related Uysal et al. (2021) employ different neural networks to find optimal risk

parity strategies among seven exchange-traded funds. The use of machine learning algorithms to

estimate coefficients of structural models (in our case, portfolio weights) as flexible functions has

also been recently proposed by Farrell et al. (2021).

Finally, we relate to the literature that examines which firm characteristics are jointly significant

in explaining expected returns (see, Fama and French (2008), Green et al. (2017), Freyberger et al.

(2020)). While all of these studies focus on cross-sectional regression models with extensions, Gu

et al. (2020) find that neural networks perform best in predicting mean returns for a large number

of firm characteristics. Our portfolio approach using neural networks considers all moments of

the return distribution beyond the expected return if they are relevant to an investor’s utility

function. Most of this literature ignores various real world constraints such as transaction costs
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(with Novy-Marx and Velikov (2016) and DeMiguel et al. (2020) being important exceptions) or

weight constraints, whereas we show how our model can seamlessly integrate transaction costs or

other constraints.

2 Model

2.1 Expected Utility Framework and Parametric Portfolio Policies

The starting point of our framework is the parametric portfolio policy model in Brandt et al.

(2009). Consider a universe of Nt stocks that an investor can invest in at each month t ∈ T. Each

stock i is associated with a vector of firm characteristics xi,t and a return ri,t+1 from date t to t + 1.

An investor’s objective is to maximize the conditional expected utility of future portfolio returns

rp,t+1:

max
{wi,t}

Nt
i=1

Et
[
u(rp,t+1)

]
= Et

[
u

(
Nt

∑
i=1

wi,tri,t+1

)]
, (1)

where wi,t is the weight of stock i in the portfolio at date t and u(·) denotes the respective utility

function.

Instead of directly deriving the weights wi,t (as e.g. following the traditional Markowitz

approach), we follow Brandt et al. (2009) and parameterize the weights as a function of firm

characteristics xi,t, i.e.

wi,t = f (xi,t; θ), (2)

where θ is the coefficient vector to be estimated. The idea behind parametric portfolio policies is

that one may exploit firm characteristics in order to tilt some benchmark portfolio towards stocks

that increase an investor’s utility, so that f (·) can be expressed as

wi,t = bi,t +
1

Nt
g(xi,t; θ), (3)

where bi,t denotes benchmark portfolio weights such as the equally weighted or value weighted

portfolio and x̂i,t denotes the characteristics of stock i, standardized cross-sectionally to have zero

mean and unit standard deviation in each cross section t.1

1The 1/Nt term is a normalization that allows the portfolio weight function to be applied to a time-varying number
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Brandt et al. (2009) and the subsequent literature (e.g. DeMiguel et al. (2020)) restrict firm

characteristics to affect the portfolio in a linear, additive manner, such that

wi,t = bi,t +
1

Nt
θT x̂i,t. (4)

In essence, our model can be interpreted as a generalization of the linear parametric portfolio

policy approach, as we allow x̂i,t to enter the model flexibly and non-linearly. More specifically, we

allow g(·) in equation (3) to take arguably one of the most flexible forms - a feed-forward neural

network (Hornik et al., 1989). This represents a significant conceptual change in two respects: First,

by replacing the linear specification with a neural network, we allow the relationship between

firm characteristics and weights to be non-linear, and we account for potential interactions of firm

characteristics. The literature on the use of machine learning methods to predict future returns

shows that such flexibility is relevant for modeling the relationship between firm characteristics

and future returns and can lead to significant improvements over less flexible specifications

(Moritz and Zimmermann, 2016; Freyberger et al., 2020; Gu et al., 2020). It is conceivable that such

flexibility also helps to model the relationship between portfolio weights and firm characteristics.

In this context, our model helps to understand the relationship between firm characteristics and

higher moments of portfolio return distributions beyond expected returns. Second, this flexibility

comes at the cost of having to estimate a model with a high-dimensional parameter vector. Thus,

it departs from the original motivation of the parametric portfolio policy literature, which aimed

to reduce portfolio optimization to a low-dimensional problem where only a small number of

coefficients need to be estimated. Our benchmark model has about 5,700 parameters compared

to the three parameters that need to be estimated when using Brandt et al. (2009). Nevertheless,

(Kelly et al., 2022) argue that model complexity is a virtue for return prediction, and our approach

can be viewed as an exploration of this point in the context of parametric portfolio policies.

Why might non-linear modeling of portfolio weights be important? Consider an investor who

trades off mean return against return volatility as the mean-variance investor(i.e. mean-variance

utility). The investor uses standard one-dimensional portfolio sorting techniques as pictured in

of stocks. Without this normalization, an increase in the number of stocks with an otherwise unchanged cross-sectional
distribution of characteristics leads to more radical allocations, although the investment opportunities are basically
unchanged.
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Figure B.1 in Appendix B. Decile portfolios formed on short-term reversal or sales-to-price display

monotonically increasing mean return.2 At the same time, the standard deviations decile portfolios

are non-linear in deciles, in particular top and bottom decile portfolios display high standard

deviation. This leads to the extreme portfolios having comparatively low Sharpe ratios relative to

decile portfolios in the middle of the distribution. A mean-variance (long-only) investor would

therefore be indifferent between investing in any portfolio in the upper half of the short-term

reversal distribution, and she would prefer to invest in portfolios in the middle of the sales-to-price

distribution rather than investing in the extreme portfolios. It is exactly these kinds of relationships

that a non-linear portfolio policy can capture. On top of modeling such non-linearities, our models

below also allow for interactions between different signal variables that cannot be represented by

one-dimensional portfolio sorts either.

2.2 Network architecture

We implement and compare a range of so-called feed-forward networks, a popular network

structure that is prominently used in prediction contexts such as image recognition but has also

recently been applied to stock return prediction. Conceptually, our feed-forward networks are

structured to estimate optimal portfolio weights and as such differ from networks used in pure

prediction contexts in two important ways.

First, the objective of our estimation is to maximize expected utility. Standard use of predictive

modeling (with or without networks) tries to minimize some distance metric (e.g. mean squared

error) between e.g. observed stock returns and predicted stock returns. For example, Gu et al.

(2020) use neural networks to predict stock returns using a penalized mean squared error as the

statistical loss function.

In contrast, we follow Brandt et al. (2009) and directly estimate portfolio weights. More

specifically, we predict portfolio weights, conditional on maximizing a given utility function

max
θ

1
T

T

∑
t=1

u
(
rp,t+1(θ)

)
=

1
T

T

∑
t=1

u

(
Nt

∑
i=1

f (xi,t; θ)ri,t+1

)
. (5)

2We picked these two variables for illustrative purposes as these variables are the most important return- and
fundamental-based variables in Gu et al. (2020).
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For example, in our base case, the loss function L that we aim to minimize with respect to θ is the

negative standard mean-variance utility:

L(θ) = 1
T

T

∑
t=1

γ

2

(
rp,t+1(θ)−

1
T

T

∑
t=1

rp,t+1(θ)

)2

− rp,t+1(θ)

 , (6)

where γ is the absolute risk aversion parameter. Note that minimizing Equation (6) is equivalent

to maximizing mean-variance utility.

Second, our loss function requires statistical moments of a portfolio per period. In order to

derive e.g. the portfolio return at t, we need to aggregate our outputs cross-sectionally. To do so,

we maintain the three-dimensional structure of our data, i.e. we do not treat it as two-dimensional

as e.g. Gu et al. (2020) do. Conceptually, our models can be depicted as shown in Figure 1.

[FIGURE 1 ABOUT HERE]

In Figure 1, the input data on the left form a cube (or 3D tensor) with dimensions time t,

stocks i and input variables k. Input data are fed into networks with different numbers of hidden

layers.3 The output of the neural network is then normalized by 1/Nt and added to the benchmark

portfolio b. The output of the model O is a two-dimensional matrix with dimensions t × i of

portfolio weights for each stock and time period.

Constructing a neural network requires many design choices, including the depth (number

of layers) and width (units per layer) of the model, respectively. Recent literature suggests that

deeper networks can achiever higher accuracy with less width than wider models (Eldan and

Shamir, 2016). However, for smaller data sets a large number of parameters can lead to overfitting

and/or vanishing or exploding gradients.4 Selecting the best network structure is a formidable

task and not our main objective.5 We rely on the results of Gu et al. (2020) and use their most

3Following Feng et al. (2018) and Bianchi et al. (2020) we only count the number of hidden layers while excluding
the output layer in the remainder of this paper.

4When training a deep neural network with gradient-based learning and backpropagation, we find the partial
derivatives by traversing the network from the last layer to the first layer. Using the chain rule, the deeper layers
of the network undergo continuous matrix multiplications to compute their derivatives. If the derivatives are large,
the gradient increases exponentially as we move down the model until it eventually explodes. If, on the other hand,
the derivatives are small, then the gradient decreases exponentially as we progress through the model until it finally
disappears.

5In practice, the task is often approximated by comparing a few different structures and selecting the one with the
best performance.
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successful model as our benchmark model. Thus, our benchmark model consists of an input layer,

three hidden layers and an output layer. We apply the geometric pyramid rule (Masters (1993)), i.e.

the first hidden layer consists of 32 nodes, the second hidden layer consists of 16 nodes and the

third hidden layer consists of eight nodes. As a robustness check, we consider different network

architectures in Appendix A.

As discussed in Section 2.1, the network’s output needs to be normalized and can be interpreted

as the deviation from a benchmark portfolio. In our application, the benchmark portfolio is the

equally weighted portfolio in all models. A common alternative would be a value weighted

benchmark portfolio where weights are determined by a stock’s market capitalization. We stick

with the equal weighted benchmark because there is empirical evidence (DeMiguel et al. (2009))

that it outperforms other benchmarks like the value weighted benchmark for longer periods.

At each node of the network, a linear transformation of the preceding outputs is fed into

an activation function. We choose to use the leaky rectified linear unit (leaky ReLU) activation

function at every node.

R(z) =


z if z > 0

αz otherwise
, (7)

where z denotes the input and α denotes some small non-zero constant, in our case 0.01.6

Moreover, we shift the activation function at every node in every hidden layer by adding a

constant (commonly referred to as bias in the machine learning literature).

Our benchmark network is estimated by minimizing the loss function (utility function) in Equa-

tion (6). To do so, we apply the commonly used ADAM stochastic gradient descent optimization

technique developed by Kingma and Ba (2014).

We further control for unreasonable results and overfitting in terms of portfolio weights by

ex-ante imposing an upper bound on an individual stock’s absolute portfolio weight of |3%|, i.e.

|wi,t| ≤ 0.03. (8)

6ReLU is the most popular activation function because it is cheap to compute, converges fast and is sparsely
activated. The disadvantage of transforming all negative values to zero is a problem called "dying ReLU". A ReLU
neuron is "dead" if it is stuck in the negative range and always outputs zero. Since the slope of ReLU in the negative
range is also zero, it is unlikely that a neuron will recover once it goes negative. Such neurons play no role in
discriminating inputs and are essentially useless. Over time, a large part of the network may do nothing. Leaky ReLU
fixes this problem because it has small slope for negative values instead of a flat slope.
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To control for the non-linearity and heavy parametrization of the model, we employ further

regularization techniques to prevent overfitting: first, we add lasso (l1) penalization of the

parameters. Second, we employ early stopping on a validation data set.7 Third, we use a dropout

layer (Srivastava et al., 2014).8 We employ dropout only in the beginning before the first hidden

layer. The combination together with l1-regularization and early stopping tremendously helps

to reduce overfitting and complexity. Fourth, we adopt an ensemble approach in training our

neural network (Hansen and Salamon, 1990). In particular, we initialize five neural networks with

different random seeds and construct predictions by averaging the predictions from all networks.

This reduces the variance across predictions since different seeds produce different predictions

due to the stochastic nature of the optimization process.

Finally, we adopt our own version of a batch normalization algorithm (Ioffe and Szegedy,

2015).9 Brandt et al. (2009) standardize characteristics cross-sectionally to have zero mean and

unit standard deviation across all stocks at date t. Therefore, the predictions are deviations from

the benchmark portfolio. However, applying the activation function destroys this distribution. In

our model each "observation" can be interpreted as a complete cross-section (e.g. a batch size of

12 refers to 12 complete cross-sections of data). However, the model of Brandt et al. (2009) needs

normalization on a cross-sectional level instead of a batch level. Thus, we employ our own version

of cross-sectional normalization after applying the activation function in each hidden layer, such

that the output of each node in the hidden layer is standardized cross-sectionally to have zero

mean and unit standard deviation across all stocks at date t. Hence, the output of each node in

each hidden layer can also be interpreted as a deviation from the benchmark portfolio.

7Early stopping refers to a very general regularization technique. At each new iteration, predictions are estimated
for the validation sample, and the loss (utility) is constructed. The optimization is terminated when the validation
sample loss starts to increase by some small specified number (tolerance) over a specified number of iterations (patience).
Typically, the termination occurs before the loss is minimized in the training sample. Early stopping is a popular
regularization tool because it reduces the computational cost.

8The basic idea of dropout is to randomly remove units (and their connections) from the neural network during
training. This prevents the units from becoming too similar. During training, samples are taken from an exponential
number of different "thinned" networks. At test time, it is easy to approximate the effect of averaging the predictions of
all these thinned networks by simply using a single, unthinned network with smaller weights.

9In general, training deep neural networks is complicated by the fact that the distribution of inputs to each layer
changes during training as the parameters of the previous layers change. This phenomenon is referred to as internal
covariate shift and can be remedied by normalizing the layer inputs. The strength of this method is that normalization
is part of the model architecture and is performed for each training mini-batch. Batch normalization allows much
higher learning rates to be used and less care to be taken in initialization.
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2.3 Data

We use the Open Source Asset Pricing dataset of Chen and Zimmermann (2022). The dataset

contains monthly US stock-level data on 205 cross-sectional stock return predictors, covering the

period from January 1925 to December 2020.

We focus on the period from January 1971 to December 2020, since comprehensive accounting

data is only sparsely available in the years prior to that. In addition, we also only keep common

stocks, i.e. stocks with share codes 10 and 11, and stocks that are traded on the NYSE (exchange

code equal to 1) to ensure that results are not driven by small stocks. We match the data with

monthly stock return data from the Center for Research in Security Prices (CRSP). We drop any

observation with missing return, size and/or a return of less than -100%. We include continuous

firm characteristics from Chen and Zimmermann (2022)’s categories Price, Trading, Accounting and

Analyst, respectively.10

Finally, we follow Gu et al. (2020) and replace missing values with the cross-sectional median

at each month for each stock, respectively. Additionally, similar to Gu et al. (2020) we rank all

stock characteristics cross-sectionally. As in Brandt et al. (2009) and DeMiguel et al. (2020), each

predictor is then standardized to have a cross-sectional mean of zero and standard deviation of

one. Note that each predictor is signed so that a larger value implies a higher expected return.

Our final dataset contains 157 predictors for a total of 5,154 firms. Each month, the dataset

contains a minimum of 1,213, a maximum of 1,855 and an average of 1,422 firms. Table C.1 in the

appendix lists the included predictors by original paper. The last two columns in the table describe

the predictor category, taken from Chen and Zimmermann (2022), and the update frequency of

each predictor.11 As part of our robustness check, we exploit that information in Appendix A to

construct non-fully connected networks.

10All characteristics are calculated at a monthly frequency. For variables that are updated at a lower frequency, the
monthly value is simply the last observed value. We assume the standard lag of six months for annual accounting
data availability and a lag of one quarter for quarterly accounting data availability. For IBES, we assume that earnings
estimates are available by the end date of the statistical period. For other data, we follow the respective original research
in regards to availability.

11Many accounting-based variables are categorized as updating monthly although the accounting information only
changes at an annual frequency. This is because those predictors are scaled by market capitalization in the original
papers and market capitalization can change monthly based on price and shares outstanding.
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2.4 Out-of-sample testing strategy

Following Brandt et al. (2009) and Gu et al. (2020), we use an "expanding window" strategy to

generate out-of-sample results. More specifically, we split our data into a training sample used to

estimate the model, a validation sample used to tune the hyperparameters of the model and a test

sample used to evaluate the out-of-sample performance of the model.

We initially train the model on the first 20 years of the dataset, validate it on the following five

years and evaluate its out of-sample-performance on the year following the validation window.

We then recursively increase the training sample by one year. Each time the training sample is

increased, we refit the entire model while holding the size of the validation and test window fixed.

The result is a sequence of performance evaluation measures corresponding to each expanding

window, in our case 30 in total. Note that this approach ensures that the temporal ordering of the

data is maintained. The testing strategy is depicted graphically in Figure 2.

[FIGURE 2 ABOUT HERE]

2.5 Model interpretation

Machine learning models are notoriously difficult to interpret and neural networks are no excep-

tion. In our application, understanding the estimated relation between input (firm characteristics)

and output (estimated portfolio weights) is essential though to shed light on the relation between

firm characteristics and future returns, and to compare our results to the previous literature. We

provide three ways of interpreting the models and identifying the most important predictors

among the plethora of variables that enter our models.

First, we evaluate how the deep parametric portfolio policy exploits non-linearities and

interactions. To do so we take our portfolio weights obtained from the estimated neural net

model, and estimate a linear surrogate model. The linear surrogate model regresses estimated

weights on firm characteristics. While the linear surrogate model perfectly explains the linear

parametric portfolio policy, the R2 of the deep parametric portfolio policy gives an indication of

how well a linear model without higher-order terms and interactions can explain the estimated

weights. In a next step, we estimate a penalized regression model of the estimated weights on
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firm characteristics as well as all possible two-way interactions. This allows us to infer the degree

to which interactions and non-linearities play a role.

Second, we evaluate the variable importance by the decrease in model performance when

a particular variable is missing from the model. That is, for every out-of-sample period we set

all values of a variable to zero while holding the remaining variables fixed. We then calculate

the utility loss as compared to the original model in every out-of-sample period and take the

average across all models. For the sake of comparability, we scale the average utility loss across all

variables for each model so that they add up to one. As a result, we are able to rank the variables

according to the average utility loss that occurs if they are excluded from the model.

In addition, we provide another measure of variable importance based on the aforementioned

linear surrogate model. Since the model contains standardized firm characteristics as predictors,

a coefficient’s magnitude can directly be interpreted as a measure of the variable’s relevance.

This method is particularly useful to identify the most important firm characteristics interactions

because the linear surrogate model seamlessly controls for firm characteristics’ main effects.12

Third, we attempt to evaluate the sensitivity of the model to each variable. Typically, partial

dependence plots provide an assessment of the variables of interest over a range of values. At each

value of the variable, the model is evaluated while the remaining variables remain unchanged,

and the results are then averaged. However, since the sum of all weights in each cross-section is

equal to one and thus the mean weight prediction is always the same, applying this method to

parametric portfolio policies does not produce reasonable results. To circumvent this problem,

we evaluate the sensitivity of the model before the final normalization step. We follow Gu et al.

(2020) so that we evaluate individual predictors over their support [-2,2] and keep all other

predictors fixed at their median value of zero. For interaction effects, we vary pairs of predictors

simultaneously across their support [-2,2] while holding all other variables fixed at their median

value of zero.

Finally, we also evaluate the sensitivity of the different moments of the portfolio return

distribution to each characteristic. To do this, we follow the same approach as for the partial

dependence on the weights, with the main difference being that we vary one characteristic over

12Specifically, we derive the most important two-way interactions through a penalized regression model that
includes the 500 most important two-way interaction terms as well as the main variables and calculate the respective
standardized coefficients.
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its support and fix all other variables at their original value instead of at their median value. We

do this because the higher moments depend on the covariance, coskewness, etc. of the variables.

3 Results

3.1 Benchmark portfolios

Table 1 presents the comparison between different portfolios based on their utility, weights and

return characteristics. We compare a simple equally weighted and a value weighted portfolio

with the parametric portfolio policy of Brandt et al. (2009) and our own deep parametric portfolio

policy.13 Analogous to Brandt et al. (2009) we provide results as follows: We report (1) the utility

that a respective portfolio strategy yields, (2) distributional characteristics of the portfolio weights,

(3) properties of the portfolio returns and (4) the alphas of a Fama-French six-factor model.

The first row of Table 1 reports the utility for a mean-variance investor with absolute risk

aversion of five. The equally weighted and value weighted portfolio yield utilities of 0.0024 and

0.0029, respectively. The standard parametric portfolio policy greatly outperforms the simple

portfolios, yielding a utility of 0.0267. However, the deep parametric portfolio policy results

in a utility of 0.0469, almost twice as large as the utility from the linear parametric portfolio

policy, suggesting that taking into account predictor interactions and non-linear relationships can

significantly improve an investor’s utility.

The next set of rows gives insight into the distribution of the respective portfolio weights. The

active portfolios take comparably large positions, with the average absolute weight of the deep

portfolio policy being almost nine times as large as in case of the equally weighted and value

weighted portfolio, respectively. However, due to the weight constraint shown in Equation (8)

these positions are not extreme. Although the average absolute weight is larger in the deep model

as compared to the linear model, the maximum (1.7% versus 2.1%) and minimum weights (1.8%

versus 2.2%) are smaller. Comparing the actively managed portfolios, we find that both have

similar levels of leverage, with the deep parametric policy being slightly higher (387% versus

315%), yet producing almost twice as much turnover (770% versus 394%), where w+
i,t−1 is the

13To increase comparability between the linear and deep parametric portfolio policy we differ slightly from Brandt
et al. (2009) in that the linear model includes l1-regularization and early stopping, similar to the deep model.
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portfolio before rebalancing at time t, that is,

w+
i,t−1 = wi,t−1 ∗ (1 + ri,t). (9)

As Ang et al. (2011) show, average gross leverage of hedge fund companies amounts to 120%

in the period since the financial crisis 2007-2008. This indicates that both the linear and the

deep portfolio policies are rather unrealistic in the benchmark case. We address this later on by

including a penalty term for turnover and a constraint for leverage in our objective function in

Section 4.2.

The monthly mean returns of 4.7% and 7% in the linear and deep policy case are much higher

than the mean returns of around 1.1% in the equally weighted and value weighted portfolio

cases due to their highly levered nature. Note that our deep model yields a 2.3 percentage

point increase as compared to the linear policy, while its variance increases only modestly by

0.7 percentage points, thereby leading to a Sharpe ratio that is around 40% higher. In fact, both

models significantly outperform the market porfolios with more than twice as large Sharpe ratios.

In terms of skewness and kurtosis the deep portfolio policy stands out as compared to the other

portfolios. In particular, the portfolio exhibits a positive skewness (1.05) and high kurtosis (6.51).

However, the third and fourth moments are of no interest for an investor with mean-variance

preference.

The bottom set of rows reports the alphas and its standard errors with respect to a six-factor

model (that appends a momentum factor to the Fama-French five-factor model). The market

portfolio alphas are both not significantly different from zero. The linear policy alpha is 3.2%.

The deep policy alpha is even higher, amounting to 5.6%. Both alphas are highly statistically

significant. These large unexplained returns can partially be attributed to the highly levered

nature of the active portfolios, as we show in the following sections.

[TABLE 1 ABOUT HERE]

These results are robust to changing the network architecture as we show in Appendix A.

More specifically, we confirm our results for different levels of model complexity and non-fully
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connected networks.

3.2 Surrogate model, variable importance and partial dependence

Surrogate model

As a first test to assess the relevance of non-linear relationships between weights and predictor

variables, we examine how well a linear model with all predictors can explain the estimated

weights of our models. Figure 3 shows the adjusted R2 of an annual linear regression of predicted

weights on firm characteristics. As expected, the linear model perfectly explains the linear portfolio

policy with an adjusted R2 of one in each year. In the case of deep portfolio policy, the linear

model only explains between about 60% and 73% of the variation in the weights, suggesting that

a substantial amount of the variation in the estimated weights can be attributed to non-linearity

and interaction terms. Moreover, the variation that can be explained by linear effects appears to

vary substantially from year to year in the deep model. With the addition of all possible two-way

interactions, the surrogate model explains about 97% of the variation in DPPP weights in each year.

Thus, most of the variation in DPPP weights can be explained by a linear model with interaction

terms. Interestingly, this implies that the non-linear activation function is not that important to

the model.

[FIGURE 3 ABOUT HERE]

Variable importance

Next, we turn to the aforementioned measure of variable importance. Figure 4 compares

the most important variables in the linear and deep parametric portfolio policies according to

our variable importance measure discussed in Section 2.5. For both models, we find that the

majority of the most important predictors relate to past returns. Short-term reversal is the most

important variable in both models, mirroring findings in Moritz and Zimmermann (2016) and

Gu et al. (2020). The deep parametric portfolio policy is even more tilted towards such variables.

In particular, out of the twenty most important variables in the linear parametric portfolio case,
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eleven are price-related, seven are accounting-related and two are analyst-related. In the deep

parametric portfolio case, fourteen of the twenty most important variables are price-related, five

are accounting-related and one is analyst related. As past-return based variables typically imply

higher turnover, this is consistent with the higher turnover of the resulting portfolio policy. Our

alternative measure of variable importance, shown in Figure B.2 in the Appendix, shows similar

results.

[FIGURE 4 ABOUT HERE]

We also illustrate the main interaction effects for the deep parametric portfolio policy when

controlling for the main effects of each predictor. Figure 3 illustrates that two-way interactions

among firm characteristics play an important role in the deep model. Figure 5 shows the main

two-way interactions from the surrogate model.

[FIGURE 5 ABOUT HERE]

Partial dependence

As for the partial dependencies, we find that the sensitivity of the respective portfolio weights

to the predictors is different for the linear and the deep approach, respectively. To illustrate,

we examine the sensitivity of the portfolio weights to three fundamental variables, namely the

book-to-market ratio (BM), liquid assets (cash), and quarterly return on assets (roaq), as well as an

analyst variable, namely earnings forecast revisions per share (AnalystRevision), and four past

return-based variables, namely 12-month momentum (Mom12m), short-term reversal (STreversal),

seasonal momentum (MomSeason), and intermediate momentum (IntMom). Recall that each

predictor is signed, so a larger value implies a higher expected return.

Figure 6 shows the marginal effects of characteristics on the mean portfolio weights of the

respective characteristic according to our partial dependence measure discussed in Section 2.5. As

implied by the linearity of the approach, the variables are linearly related to expected portfolio

returns in the case of the standard parametric portfolio policy. In contrast, we can see slight
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non-linearities for the deep model. However, the marginal relation is close to linear for the

fundamental variables for both models. The most significant curvature can be observed for the

intermediate momentum variable and short-term reversal variable, which is the most important

variable in both models. Lastly, Figure B.3 in the Appendix displays the partial dependence

of the deep parametric portfolio policy for different time periods. Figure B.3 better highlights

non-linearities because results are not averaged across models.

[FIGURE 6 ABOUT HERE]

In addition, we show marginal interaction effects as described above for the deep model.

We use the four past return-based variables and show partial dependence on portfolio weights

grouped on five evenly distributed values of the book-to-market (BM) ratio. The results are

shown in Figure 7. As expected, the marginal relationship changes between different values of the

book-to-market ratio. Most of the return-based variables exhibit a negative correlation with the

book-to-market ratio. As a result, the largest slope is likely to be seen in the interaction between a

low book-to-market ratio and high values for the return-based variables, especially for 12-month

momentum and short-term reversal.

[FIGURE 7 ABOUT HERE]

Portfolio moments

Next, we report the sensitivity of the predictors to the distribution of portfolio returns. Figure

8 shows the marginal effects of characteristics on expected portfolio returns. Again, the variables

are linearly related to expected portfolio returns in the case of the standard parametric portfolio

policy. In contrast, in the case of the deep portfolio policy, the variables all follow a slightly

concave pattern. As already shown in Figure 4, the variables based on past returns (Mom12m,

STReversal, MomSeason, IntMom) are the most important and therefore have steeper slopes,

showing that the models are more sensitive to these variables.
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[FIGURE 8 ABOUT HERE]

Figure 9 illustrates the sensitivity of portfolio volatility to firm characteristics. We first note

that volatility is higher for the deep model, which is consistent with our main results. Moreover,

the volatility of the portfolio has the highest sensitivity to STreversal among all the variables

studied. Interestingly, the portfolio reaches its minimum volatility for values close to zero in the

PPP case for each variable. In the DPPP case, the minimum portfolio volatility lies at values of -2

for each variable, with STreversal being the only exception. This suggests that covariance among

input variables plays a larger role in the DPPP case.

[FIGURE 9 ABOUT HERE]

4 Extensions

4.1 Long only

A large majority of equity portfolios face restrictions on short selling. In Table 2, we show the

results from estimating long-only portfolios. We follow Brandt et al. (2009) such that we truncate

the portfolios weights at zero (while still keeping keeping the cap of 3% per stock). We rebalance

the portfolio weights as follows:

w∗
i,t =

max[0, wi,t]
Nt

∑
j=1

max[0, wi,t]

. (10)

This term is added at the end of the optimization process to make sure the portfolio weights sum

to one.

Again, the deep portfolio policy yields the highest utility. However, the utility decrease

compared to the unconstrained case is also the highest for the deep portfolio policy. Still, the

utility of the deep portfolio policy is around four times higher than the utility of the market

portfolios and around 40% higher than the utility of the linear portfolio policy.

As in the unconstrained case, the estimated models produce higher maximum portfolio

weights, however, the deep portfolio policy yields a maximum portfolio weight of 1.64% whereas
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the linear model only yields a maximum portfolio weight of 0.42%. Turnover follows a similar

pattern, i.e. both active portfolios result in a much higher turnover than the market portfolios

and the deep portfolio policy produces a higher turnover than the linear portfolio policy (125%

versus 72%). Different from the table for the unconstrained model, this table reports the fraction

of weights that are equal to zero. Interestingly, the deep portfolio policy does not include 11% of

stocks, while the linear portfolio policy does not include 32% of the available stocks. Since the

deep portfolio policy invests in more stocks but has a higher individual maximum weight, this

indicates that many weights are possibly very low.

The deep portfolio policy yields higher expected returns than the linear portfolio policy, with

a moderate increase in volatility resulting in a Sharpe ratio that is around 20% higher than the

Sharpe ratio of the linear portfolio policy. Interestingly, the third and fourth moments of all

portfolio policies are similar and not heavily skewed or tailed. Lastly, the alphas of the Fama-

French model are a lot smaller, while still being highly significant in both the linear and the deep

portfolio policy case. The estimated portfolios are much more realistic without the ability to take

extreme short positions. Nonetheless, the deep portfolio policy is still able to outperform all other

portfolios.

The comparison between the unconstrained (Table 1) and the long-only case (Table 2) also

yields interesting insights. First, the unconstrained portfolio can consist of both positive and

negative weights, while the constrained portfolio can only consist of positive weights. Second, the

unconstrained portfolio benefits from using the short positions as leverage to increase exposure

to the long positions. Consistent with those arguments, the linear portfolio policy has a similar

fraction of short positions and stocks not held in the two models. Also, the maximum weight

of the linear portfolio policy decreases by around 80% in the long-only case as compared to the

unconstrained case. Interestingly, both findings do not apply to the deep portfolio policy. The

fraction of short positions is a lot higher than the fraction of stocks not held in the long-only deep

portfolio policy. Moreover, the maximum weight is similar in the unconstrained and constrained

case. This can be attributed to the non-linearity of the deep model and interactions.

[TABLE 2 ABOUT HERE]
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The R2 that a surrogate model with first order and all possible two-way interactions achieves

in explaining the portfolio weights, lies between around 0.88 and 0.96. In contrast, the benchmark

model achieves a more consistent R2 of about 0.98. The long-only model achieves the lowest R2

of all models, which might be due to the strong penalty function that cannot be modeled by the

linear surrogate model. Figure 10 depicts this graphically.

[FIGURE 10 ABOUT HERE]

In terms of variable importance, the picture is also similar to the unconstrained models. Figure

11 shows the variable importance of the 50 most important firm characteristics, ranked by average

importance across all models. These include the two benchmark models, the linear and deep

long-only models, and the linear and deep constraint models from Section 4.2. Each column

corresponds to a single model, and the color gradations within each column indicate the most

important (black) to least important (white) firm characteristics. The third and fourth columns

correspond to the long-only models and show that the importance of the variables is similar

to the benchmark models. In both the unconstrained and the long only models, characteristics

based on past returns are at the top, with short-term reversal being the most important variable in

three of the four models. In the linear long model the industry return of big firms (IndRetBig)

exhibits the highest importance. Moreover, the importance in terms of values is similar between

the benchmark and the long-only models. To conclude, these results show that the long-only

investor also relies heavily on past return-based characteristics.

[FIGURE 11 ABOUT HERE]

4.2 Transaction costs and leverage

As mentioned in the previous sections, the results of the unconstrained linear and the deep

portfolio policy yield unfeasible portfolios with high leverage and turnover. To show that the

deep portfolio policy also outperforms the regular portfolio policy in a more realistic setting, we

include a penalty term for transactions costs similar to DeMiguel et al. (2020) and include an

additional constraint for maximum leverage.
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In our estimation, we use estimated transaction costs from Chen and Velikov (2021).14 Thus,

analogously, we define transaction costs κi,t as the effective half bid-ask spread. We follow

DeMiguel et al. (2020) in constructing the penalty term added to the policy optimization as

TC = Et[
Nt

∑
i=1

|κi,t(wi,t − w+
i,t−1)|], (11)

where w+
i,t−1 is the portfolio before rebalancing as in Equation (9).

The leverage constraint is constructed analogously to our weight constraint in Equation (8).

Ang et al. (2011) show that the average gross leverage of hedge fund companies amounts to 120%

in the period since the financial crisis 2007-2008. We use a slightly more conservative number of a

maximum leverage of 100%. The penalty is constructed such that the gross leverage cannot exceed

100% in a single period in model training. This constraint is formulated for every period t as

Nt

∑
i=1

wi I(wi < 0) ≥ −1 (12)

for each period, where I(wi < 0) is a vector where an element is one if the corresponding portfolio

weight is smaller than zero and zero otherwise.

Table 3 shows the results for the penalized and constrained optimization process. We see that

the constraints lead to a decrease in utility for the deep and linear policy. The utility decrease

is greater for the deep policy. Both estimated portfolios still outperform the market portfolios.

Interestingly, the constraints lead to the deep portfolio policy being much closer to the linear one.

This indicates that the deep model exploits the short-selling ability and characteristics with high

turnover to create high weights in good performing stocks with less diversification. Nevertheless,

the deep model still has a higher turnover than the linear model (168% versus 97%). Therefore,

the model can still generate more mean-variance utility despite higher turnover than the linear

model. Overall, in both models, the maximum and minimum positions are less extreme than in

the unconstrained case and thus more realistic compared to the unconstrained case.

Furthermore, the return and the variance decrease in both active models. However, the linear

portfolio policy only suffers a small decrease in Sharpe ratio, while the deep portfolio policy’s

14We thank the authors for making an updated version of the data available.
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Sharpe ratio decreases by around a third. The third and fourth moment are similar across all

portfolios. The alphas of the estimated models are much smaller, but still highly significant.

[TABLE 3 ABOUT HERE]

Regressing the portfolio weights onto a model of first-order as well as all possible two-way

interaction terms yields a yearly R2 of around 0.98 to 0.99. This results in the highest R2 of all

models. Comparing this to the benchmark as well as the long-only case shows, that terms of an

order above two as well as non-linearities further lose their influence on the portfolio weights

when introducing transaction costs as well as leverage constraints, i.e. drawing a more realistic

picture. Figure 10 depicts this graphically.

Comparing the variable importance of the firm characteristics with the previous models, we

find that this set of constraints leads to a very different picture in terms of variable importance.

Figure 11 shows the importance of the variables for the constrained models in columns five and six.

The figure illustrates that the importance of characteristics based on past returns is much lower

compared to the previous four models. Overall, short-term reversal loses its place as the most

important variable in the linear model, and we can see that the loadings are much more balanced

across variables similar to the results of DeMiguel et al. (2020). In the deep model, short-term

reversal is still the most important variable, but it becomes evident that its importance is lower

than in the previous models. As in the linear model, the loadings become more balanced in the

deep model when introducing transaction costs and leverage constraints. This is also underlined

by lower (higher) maximum (minimum) portfolio weights compared to the previous models.

The mean absolute portfolio weights are also much smaller than for the benchmark portfolios.

This shows that the constraints lead to a more diversified portfolio, which is reflected in a more

balanced importance of firm characteristics.
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5 Different investor utility functions

5.1 Different risk aversion parameters

Different investors may exhibit different levels of risk aversion. Our benchmark model uses an

absolute risk aversion coefficient of five. Table 4 shows how our model performs for different

degrees of risk aversion in the mean-variance case. In order to meaningfully interpret the

differences in utility, we do not report utility itself, but rather the difference in utility relative to a

constant benchmark, i.e. an equally weighted portfolio. Other than that, we report the same result

metrics as before.

The results indicate that investors with a risk aversion of five experience the biggest gains in

utility relative to the equally weighted portfolio benchmark. In our case, utility increases seem to

follow a concave trend that peaks for γ equal to five. In general, we observe that utility gains over

an equally weighted portfolio decrease with higher risk aversion, which is due to the fact, that the

portfolio of the highly risk averse investor is more diversified and therefore, closer to the equally

weighted portfolio. This shows, that the equally weighted portfolio performs better for investors

with higher risk aversion.

We further observe a negative correlation between risk aversion and absolute portfolio weights

as well as leverage and turnover. This aligns with the intuition of more risk averse investors not

focusing on single high return characteristics, but rather on diversifying their portfolio with a

more balanced weight distribution. This in turn results in portfolios that display lower expected

returns, but also lower volatility for more risk averse investors. Moreover, all portfolios seem to

have a similar Sharpe ratios. The third and fourth moment of the portfolio return distributions

tend to be less extreme the higher the risk aversion, indicating that the portfolio distributions of

the investors with higher risk aversion is more normally distributed. Intuitively, as the portfolios

become more realistic, the alpha of the Fama-French regression decreases.

[TABLE 4 ABOUT HERE]
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5.2 CRRA and loss aversion

Analogously to varying risk aversion for a mean-variance investor, we can account for different

investor types by changing the utility function in our optimization process in Equation (1). In

particular, we explore linear and deep portfolio policies for an investor with constant relative risk

aversion utility defined as

u(rp,t+1) =
(1 + rp,t+1)

1−γ

1 − γ
, (13)

where γ is the relative risk aversion of the investor, and for a loss-averse investor according to

Tversky and Kahneman (1992) with utility defined as

u(rp,t+1) =


−l(W − (1 + rp,t+1))

b if (1 + rp,t+1) < W

((1 + rp,t+1)− W)b otherwise
, (14)

where W is a reference wealth level determined in the editing stage, the parameter l measures the

investor‘s loss aversion and the parameter b captures the degree of risk seeking over losses and

risk aversion over gains.

Table 5 reports the results for the linear and deep portfolio policy for an investor with constant

relative risk aversion of five and an investor with a subjective wealth level W equal to one, loss

aversion of 2.5 and parameter value b equal to one which corresponds to pure loss aversion.

Strikingly, for both preferences the deep portfolio policy achieves higher utility than the linear

portfolio policy.

The results for the CRRA preferences are similar to those for mean-variance preferences with

similar risk aversion, except that the third and fourth moment of the deep policy are not as

extreme. The differences in the higher moments can be attributed to the investor’s preference

for higher order moments, which differentiate the CRRA investor from an equally risk-averse

mean-variance investor. In our data, however, the effect of the higher order moments is not strong

enough to heaviliy change the portfolio weight distribution and the resulting portfolio returns.

By far the most interesting part of the loss averse investor’s preference is the fact that she

actually cares about the mean to standard deviation ratio of returns, which measures the size

of the tail of the portfolio return distribution, rather than the mean to variance ratio, which is
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important to a mean-variance investor. This is also reflected in the results in Figure 5. Both

portfolios show a high variance compared to the mean-variance and CRRA investor, however,

they also display a higher skewness. This high positive skewness illustrates a highly right tailed

distribution. Interestingly, the Sharpe ratios between the linear and deep portfolio policy are very

close, while the deep model results in more than twice the utility than the linear model. The deep

portfolio policy produces a high variance paired with a high skewness and kurtosis. Thus, the

portfolio return distribution is heavily tailed to the right with no particularly high losses. The

weight distribution of the portfolios is still very similar to the other utility models, while the deep

portfolio policy produces slightly higher leverage and turnover.

[TABLE 5 ABOUT HERE]

6 Conclusion

Building on the parametric portfolio policy of Brandt et al. (2009), we show that feed-forward

neural networks can be used to optimize portfolios based on a large number of firm characteristics

for different investor preferences. We develop a flexible framework that can be used to implement

neural networks for portfolio choice problems to optimize different utility functions with flexible

constraints. Our results show that neural networks can be used to optimize portfolio weighting

directly based on firm characteristics. Further, we show that traditional distance loss functions can

be replaced by context-specific utility functions. Our empirical results indicate that neural networks

perform significantly better than linear models in regards to portfolio allocation, suggesting that

firm characteristics are non-linear and interactive. Moreover, we can use our framework to shed

light on the relationship between firm characteristics and higher moments of the portfolio return

distributions. Finally, we find that the models for a mean-variance investor with an absolute risk

aversion of five are consistent when it comes to a set of dominant predictors, the strongest of

which are associated with price trends, including short-term reversals and momentum. Moreover,

we find that neural networks are able to better exploit these predictors.

The results show that overall, neural networks are successful in portfolio choice problems.

They help to solve the challenge of identifying reliable economic factors for asset pricing by
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allowing factors to affect not only the expected return, but to also affect higher moments of

the return distribution non-linearly and in an interactive manner. Finally, our flexible approach

helps practitioners to create reasonable portfolio allocations based on firm characteristics and

preferences, highlighting the growing role of machine learning and non-linear models in finance.
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Figure 1: Neural Network Structure
This figure presents the core structure of our neural networks. White circles denote the input layer, grey
circles denote the hidden layer and black circles denote the output layer. The data cube on the left depicts
the structure of our data, i.e. we have k variables across i cross-sections in t periods. The rectangle on the
right depicts our output, i.e. weights across i cross-sections in t periods. The output of the neural network
is normalized by 1/Nt and added to the benchmark portfolio b. The final output is labeled O.
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Figure 2: Out-Of-Sample Testing Strategy
This figure presents our out-of-sample testing strategy. We recursively increase our training window,
presented by the black portion of each bar, while holding validation and test window constant, presented
by the grey portions of each bar.
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Figure 3: Surrogate R2

This figure depicts the R2 of the surrogate models in the benchmark case. More specifically, the "PPP"-line
depicts the R2 of a linear surrogate model in case of the PPP, the "DPPP"-line depicts the R2 of a linear
surrogate model in case of the DPPP and the "DPPP2"-line depicts the R2 of a surrogate model including
first order effects and all possible two-way interactions.
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Figure 4: Variable importance for PPP and DPPP
Variable importance for the 20 most influential variables in the linear and deep parametric portfolio policy.
Variable importance is an average over all training samples and normalized to sum to one.
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Figure 5: Variable importance of two-way interactions for DPPP
Variable importance for the 20 most influential two-way interactions in the surrogate model for the deep
parametric portfolio policy. Variable importance is an average over all test samples and normalized to sum
to one.
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Figure 6: Marginal association between portfolio weights and characteristics
The panels show the sensitivity of mean portfolio weights (vertical axis) to the individual characteristics,
holding all other covariates fixed at their original values.
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Figure 7: Marginal association between portfolio weights and interaction of past return based character-
istics with BM
The panels show the sensitivity of mean portfolio weights (vertical axis) to four past return based character-
istics grouped on the five values of book-to-market ratio (BM), holding all other covariates fixed at their
original values.
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Figure 8: Marginal association between expected portfolio returns and characteristics
The panels show the sensitivity of expected portfolio returns (vertical axis) to the individual characteristics,
holding all other covariates fixed at their original values.
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Figure 9: Marginal association between the portfolios’ volatility and characteristics
The panels show the sensitivity of the portfolios’ volatility (vertical axis) to the individual characteristics,
holding all other covariates fixed at their original values.
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Figure 10: Surrogate R2 across models
This figure depicts the R2 of the surrogate model including first order and all possible two-way interactions
in the benchmark, as well as the long-only and transaction cost/leverage constraint case. More specifically,
the "DPPP_Main"-line depicts the R2 in the benchmark case, the "DPPP_Long"-line depicts the R2 in the
long-only case and the "DPPP_Con"-line depicts the R2 in the transaction cost/leverage constraint case.
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Figure 11: Variable importance across models
Ranking of the 50 most important stock characteristics in terms of overall model contribution. Characteristics
are ranked by average importance across all models, with the most influential characteristics at the top and
the least influential characteristics at the bottom. Columns correspond to individual models, with "Main"
representing unconstrained models, "Long" representing long-only models, and "Con" representing models
with constrained leverage and transaction costs. The color gradations within each column indicate the most
important (black) to the least important (white) stock characteristics.
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Tables

Table 1: Deep and linear portfolio policy

EW VW PPP DPPP

Utility 0.0024 0.0029 0.0267 0.0469

|wi| ∗ 100 0.0694 0.0694 0.5060 0.6057
max wi ∗ 100 0.0704 0.1113 2.0748 1.7260
min wi ∗ 100 0.0704 0.0410 -2.2097 -1.8370
∑ wi I(wi < 0) 0.0000 0.0000 -3.1475 -3.8665
∑ wi I(wi < 0)/Nt 0.0000 0.0000 0.4334 0.4411
∑ |wi,t − w+

i,t−1| 0.0931 0.0779 3.9370 7.6984

Mean 0.0110 0.0105 0.0468 0.0701
StdDev 0.0587 0.0552 0.0897 0.0965
Skew -0.3716 -0.5039 -0.1451 1.0537
Kurt 3.6591 3.3455 1.8391 6.5084
SR 0.1865 0.1908 0.5216 0.7266

FF5 + Mom α -0.0002 -0.0003 0.0323 0.0559
StdErr(α) 0.0007 0.0006 0.0040 0.0051

This table shows out-of-sample estimates of the deep and linear portfolio policies with 157 firm characteris-
tics as specified in Equation 1 and optimized for a mean-variance investor with absolute risk aversion of
five. The regular portfolio policy is a linear model for Equation 3, while the deep model is a feed-forward
neural network with three hidden layers and 32, 16, and eight nodes, respectively. We use data from the
Open Source Asset Pricing Dataset from January 1971 to December 2020. The columns labeled "EW", "VW",
"PPP" and "DPPP" show the statistics of the equal-weighted portfolio, value-weighted portfolio, parametric
portfolio policy, and deep parametric portfolio policy, respectively. The first row shows the utility of the
investor. The second set of rows shows statistics on portfolio weights averaged over time. These statistics
include the average absolute portfolio weight, the average maximum and minimum portfolio weights, the
average sum of negative weights in the portfolio, the average proportion of negative weights in the portfolio,
and the turnover in the portfolio. The third set of rows shows the first four moments of the final portfolio
return distributions as well as the Sharpe ratios. The bottom panel shows the alphas and their standard
errors with respect to the Fama-French five-factor model extended to include the momentum factor.
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Table 2: Long-only deep and linear portfolio policy

EW VW PPP DPPP

Utility 0.0024 0.0029 0.0084 0.0116

|wi| ∗ 100 0.0694 0.0694 0.0694 0.0694
max wi ∗ 100 0.0704 0.1113 0.4155 1.6420
min wi ∗ 100 0.0704 0.0410 0.0000 0.0000
∑ wi I(wi < 0) 0.0000 0.0000 0.0000 0.0000
∑ wi I(wi = 0)/Nt 0.0000 0.0000 0.3173 0.1148
∑ |wi,t − w+

i,t−1| 0.0931 0.0779 0.7222 1.2519

Mean 0.0110 0.0105 0.0153 0.0198
StdDev 0.0587 0.0552 0.0526 0.0573
Skew -0.3716 -0.5039 -0.5551 -0.4191
Kurt 3.6591 3.3455 3.5843 4.0876
SR 0.1865 0.1908 0.2900 0.3447

FF5 + Mom α -0.0002 -0.0003 0.0048 0.0090
StdErr(α) 0.0007 0.0006 0.0008 0.0011

This table shows out-of-sample estimates of the deep and linear portfolio policies with long-only weights
in Equation 10 with 157 firm characteristics as specified in Equation 1 and optimized for a mean-variance
investor with absolute risk aversion of five. The regular portfolio policy is a linear model for Equation 3,
while the deep model is a feed-forward neural network with three hidden layers and 32, 16, and eight nodes,
respectively. We use data from the Open Source Asset Pricing Dataset from January 1971 to December
2020. The columns labeled "EW", "VW", "PPP" and "DPPP" show the statistics of the equal-weighted
portfolio, value-weighted portfolio, parametric portfolio policy, and deep parametric portfolio policy,
respectively. The first row shows the utility of the investor. The second set of rows shows statistics on
portfolio weights averaged over time. These statistics include the average absolute portfolio weight, the
average maximum and minimum portfolio weights, the average sum of negative weights in the portfolio,
the average proportion of negative weights in the portfolio, and the turnover in the portfolio. The third set
of rows shows the first four moments of the final portfolio return distributions as well as the Sharpe ratios.
The bottom panel shows the alphas and their standard errors with respect to the Fama-French five-factor
model extended to include the momentum factor.

44



Table 3: Constrained and Penalized deep and linear portfolio policy

EW VW PPP DPPP

Utility 0.0021 0.0028 0.0139 0.0169

|wi| ∗ 100 0.0694 0.0694 0.1749 0.1819
max wi ∗ 100 0.0704 0.1113 0.6827 0.7866
min wi ∗ 100 0.0704 0.0410 -0.6817 -0.9814
∑ wi I(wi < 0) 0.0000 0.0000 -0.7607 -0.8113
∑ wi I(wi < 0)/Nt 0.0000 0.0000 0.3417 0.3181
∑ |wi,t − w+

i,t−1| 0.0931 0.0779 0.9699 1.6756

Mean 0.0110 0.0105 0.0202 0.0254
StdDev 0.0587 0.0552 0.0424 0.0469
Skew -0.3716 -0.5039 -0.8764 -0.7162
Kurt 3.6591 3.3455 2.5245 2.7795
SR 0.1865 0.1908 0.4766 0.5412

FF5 + Mom α -0.0002 -0.0003 0.0093 0.0142
StdErr(α) 0.0007 0.0006 0.0013 0.0017

This table shows out-of-sample estimates of the deep and linear portfolio policies with the transaction costs
penalty in Equation 11 and leverage constraint in Equation 12 with 157 firm characteristics as specified in
Equation 1 and optimized for a mean-variance investor with absolute risk aversion of five. The regular
portfolio policy is a linear model for Equation 3, while the deep model is a feed-forward neural network
with three hidden layers and 32, 16, and eight nodes, respectively. We use data from the Open Source
Asset Pricing Dataset from January 1971 to December 2020. The columns labeled "EW", "VW", "PPP" and
"DPPP" show the statistics of the equal-weighted portfolio, value-weighted portfolio, parametric portfolio
policy, and deep parametric portfolio policy, respectively. The first row shows the utility of the investor.
The second set of rows shows statistics on portfolio weights averaged over time. These statistics include the
average absolute portfolio weight, the average maximum and minimum portfolio weights, the average sum
of negative weights in the portfolio, the average proportion of negative weights in the portfolio, and the
turnover in the portfolio. The third set of rows shows the first four moments of the final portfolio return
distributions as well as the Sharpe ratios. The bottom panel shows the alphas and their standard errors
with respect to the Fama-French five-factor model extended to include the momentum factor.
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Table 4: Deep portfolio policy for mean-variance investors with different degrees of risk aversion

γ = 2 γ = 5 γ = 10 γ = 20

% Utility Increase 780.4002 1885.2435 565.3362 122.6475

|wi| ∗ 100 0.6749 0.6057 0.5295 0.3847
max wi ∗ 100 1.8125 1.7260 1.6331 1.2971
min wi ∗ 100 -1.8523 -1.8370 -1.8039 -1.3872
∑ wi I(wi < 0) -4.3656 -3.8665 -3.3171 -2.2737
∑ wi I(wi < 0)/Nt 0.4451 0.4411 0.4344 0.4171
∑ |wi,t − w+

i,t−1| 8.5704 7.6984 6.7283 4.8273

Mean 0.0786 0.0701 0.0628 0.0482
StdDev 0.1115 0.0965 0.0824 0.0656
Skew 1.3035 1.0537 0.3598 0.5061
Kurt 8.2253 6.5084 0.9416 1.3940
SR 0.7046 0.7266 0.7621 0.7345

FF5 + Mom α 0.0626 0.0559 0.0492 0.0368
StdErr(α) 0.0058 0.0051 0.0043 0.0033

This table shows out-of-sample estimates of the deep portfolio policies with 157 firm characteristics as
specified in Equation 1 and optimized for a mean-variance investor with absolute risk aversion of two,
five, ten and 20, respectively. The deep model is a feed-forward neural network with three hidden layers
and 32, 16, and eight nodes, respectively. We use data from the Open Source Asset Pricing Dataset from
January 1971 to December 2020. The columns labeled "γ = 2", "γ = 5", "γ = 10" and "γ = 20" show the
statistics of the deep parametric portfolio policy with risk aversion of two, five, ten and 20, respectively.
The first row shows the difference in utility relative to an equally weighted portfolio. The second set of
rows shows statistics on portfolio weights averaged over time. These statistics include the average absolute
portfolio weight, the average maximum and minimum portfolio weights, the average sum of negative
weights in the portfolio, the average proportion of negative weights in the portfolio, and the turnover in the
portfolio. The third set of rows shows the first four moments of the final portfolio return distributions as
well as the Sharpe ratios. The bottom panel shows the alphas and their standard errors with respect to the
Fama-French five-factor model extended to include the momentum factor.

46



Table 5: Deep portfolio policy with different investor preferences

CRRA LA
PPP DPPP PPP DPPP

Utility -0.2253 -0.2063 0.0266 0.0574

|wi| ∗ 100 0.4972 0.6127 0.5034 0.6468
max wi ∗ 100 2.0363 1.7452 2.0743 1.7618
min wi ∗ 100 -2.1712 -1.8709 -2.1577 -1.7841
∑ wi I(wi < 0) -3.0841 -3.9171 -3.1290 -4.1627
∑ wi I(wi < 0)/Nt 0.4351 0.4430 0.4307 0.4490
∑ |wi,t − w+

i,t−1| 3.7816 7.8053 3.7464 8.3677

Mean 0.0473 0.0711 0.0473 0.0783
StdDev 0.0890 0.0982 0.0871 0.1359
Skew -0.1004 0.8169 0.0996 3.5153
Kurt 1.3766 4.9609 0.8451 33.2542
SR 0.5309 0.7246 0.5424 0.5763

FF5 + Mom α 0.0324 0.0570 0.0338 0.0624
StdErr(α) 0.0040 0.0052 0.0040 0.0067

This table shows out-of-sample estimates of the deep and linear portfolio policies with 157 firm characteris-
tics as specified in Equation 1 and optimized for an investor with constant relative risk aversion preference
(CRRA) with relative risk aversion of five and a loss averse (LA) investor with loss aversion of 2.5, subjective
wealth level of one and degree of risk seeking of one, respectively. The regular portfolio policy is a linear
model for Equation 3, while the deep model is a feed-forward neural network with three hidden layers and
32, 16, and eight nodes, respectively. We use data from the Open Source Asset Pricing Dataset from January
1971 to December 2020. The columns labeled "PPP" and "DPPP" show the statistics of the parametric
portfolio policy, and deep parametric portfolio policy, respectively. The first row shows the utility of the
investor. The second set of rows shows statistics on portfolio weights averaged over time. These statistics
include the average absolute portfolio weight, the average maximum and minimum portfolio weights, the
average sum of negative weights in the portfolio, the average proportion of negative weights in the portfolio,
and the turnover in the portfolio. The third set of rows shows the first four moments of the final portfolio
return distributions as well as the Sharpe ratios. The bottom panel shows the alphas and their standard
errors with respect to the Fama-French five-factor model extended to include the momentum factor.
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Appendix A Changing the Network Architecture

A.1 Model complexity

Our benchmark model is a relatively shallow neural net with only three hidden layers. It is

conceivable that a more complex model can achieve even higher utility gains over a linear model.

For example, Goodfellow et al. (2016) observe that neural nets with more hidden layers tend to

outperform neural nets with fewer hidden layers but more nodes per layer. Kelly et al. (2022)

report evidence in support of complex models in the context of forecasting aggregate stock market

returns.

We extend our benchmark model to include between two and five hidden layers. All models

start with 32 nodes in the first hidden layer and then halve the number of nodes in each subse-

quent layer. The number of parameters across models therefore varies between 5,600 and 5,768.

Additionally, we add different possible learning rates to our hyperparameter tuning and increase

the number of epochs and patience for early stopping, to account for the different complexities of

the models and to ensure that more complex models also reach their respective potential.

Table C.2 shows results. The second model is our original benchmark model that we added for

comparison.15 The remaining columns contain results based on networks with two, four or five

hidden layers. Overall, utility increases with more complex models but the increases are relatively

modest. Interestingly, more complex models lead to lower turnover. Expected returns are roughly

unchanged (or slightly lower for more complex models), whereas the return’s standard deviation

decreases. This suggests that improvements in mean-variance utility for more complex models

are driven by decreases in variance rather than by increases in mean returns.

[TABLE C.2 ABOUT HERE]

A.2 Non-fully connected networks

Theoretically, there is a large range of different options to how one may adjust the network

structure. In this section, we explore one structural change. Following Bianchi et al. (2020), we

15Note that the utility slightly differs from our benchmark in Section 3.1. This is due to the aforementioned fact that
we add different possible learning rates as well as increase the number of epochs and patience for early stopping. We
do so not only for the model variations, but also for our benchmark to ensure consistency across models.
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split our input according to its characteristics and feed the resulting input groups separately into

the model. This is illustrated in Figure B.4.

[Figure B.4 ABOUT HERE]

More specifically, we split our data according to its update frequency and its data category,

respectively. For update frequency we divide our data into monthly, yearly and quarterly

characteristics. For data category we divide our data into Accounting, Price, Trading and Analyst

characteristics. The update frequency and data category of each predictor is shown in Table C.1 in

the appendix.

We interact only characteristics with the same frequency (category) in the first hidden layer

which can be interpreted as a dimension reduction for each frequency (category). After that we

proceed with the ordinary network architecture in the second and third hidden layer. These are

just two different network structure variations out of the plethora of different possibilities.

Table C.3 shows the results for the benchmark linear and deep portfolio policy followed by

the two different architectures for the deep portfolio policy. The results indicate that the different

architectures produces similar but slightly better results. Both new models produce slightly higher

leverage and turnover than the base deep portfolio policy. Moreover, the new models yield higher

Sharpe ratios by reducing the variance of the portfolio return distributions. The highest deviation

can be observed in the third and fourth moment of the return distribution, where both new models

show less extreme skewness and kurtosis which results in more realistic return distributions.

[TABLE C.3 ABOUT HERE]
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(a) Short-Term Reversal
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(b) Sales-To-Price

Figure B.1: Mean returns, standard deviations and Sharpe ratios of one-dimensional portfolio sorts
Mean returns, standard deviations and Sharpe ratios of decile portfolios sorted on short-term reversal (left panel) and sales-to-price ratio (right
panel).
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Figure B.2: Regression coefficients from a linear surrogate model for PPP and DPPP
Variable importance is measured as the coefficients of a linear surrogate model of the estimated weights
on the input variables. The plot shows the variable importance for the 20 most influential variables in the
linear and deep parametric portfolio policies. Variable importance is an average over all training samples
and normalized so that the sum equals one.
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Figure B.3: Marginal association between portfolio weights and characteristics for different time periods
The panels show the sensitivity of mean portfolio weights (vertical axis) to the individual characteristics in
different time periods, holding all other covariates fixed at their original values.
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Figure B.4: Non-Fully Connected Neural Network Structure
This figure presents the structure of our non-fully connected networks. White circles denote the input layer,
grey circles denote the hidden layer and black circles denote the output layer. The data cube on the left
depicts the structure of our data, i.e. we have k variables across i cross-sections in t periods. The rectangle
on the right depicts our output, i.e. weights across i cross-sections in t periods. The output of the neural
network is normalized by 1/Nt and added to the benchmark portfolio b. The final output is labeled O.
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Table C.1: Included characteristics

Acronym Long Description Author(s) Year, Journal Category Frequency

ChInvIA Change in capital inv (ind adj) Abarbanell and Bushee 1998, AR Accounting yearly

GrSaleToGrInv Sales growth over inventory growth Abarbanell and Bushee 1998, AR Accounting yearly

GrSaleToGrOverhead Sales growth over overhead growth Abarbanell and Bushee 1998, AR Accounting yearly

IdioVolAHT Idiosyncratic risk (AHT) Ali, Hwang, and Trombley 2003, JFE Price monthly

EarningsConsistency Earnings consistency Alwathainani 2009, BAR Accounting yearly

Illiquidity Amihud’s illiquidity Amihud 2002, JFM Trading monthly

BidAskSpread Bid-ask spread Amihud and Mendelsohn 1986, JFE Trading monthly

grcapx Change in capex (two years) Anderson and Garcia-Feijoo 2006, JF Accounting yearly

grcapx3y Change in capex (three years) Anderson and Garcia-Feijoo 2006, JF Accounting yearly

betaVIX Systematic volatility Ang et al. 2006, JF Price monthly

IdioRisk Idiosyncratic risk Ang et al. 2006, JF Price monthly

IdioVol3F Idiosyncratic risk (3 factor) Ang et al. 2006, JF Price monthly

CoskewACX Coskewness using daily returns Ang, Chen and Xing 2006, RFS Price monthly

Mom6mJunk Junk Stock Momentum Avramov et al 2007, JF Price monthly

OrderBacklogChg Change in order backlog Baik and Ahn 2007, Other Accounting yearly

roaq Return on assets (qtrly) Balakrishnan, Bartov and Faurel 2010, JAE Accounting quarterly

MaxRet Maximum return over month Bali, Cakici, and Whitelaw 2010, JF Price monthly

ReturnSkew Return skewness Bali, Engle and Murray 2015, Book Price monthly

ReturnSkew3F Idiosyncratic skewness (3F model) Bali, Engle and Murray 2015, Book Price monthly

CBOperProf Cash-based operating profitability Ball et al. 2016, JFE Accounting yearly

OperProfRD Operating profitability R&D adjusted Ball et al. 2016, JFE Accounting yearly

Size Size Banz 1981, JFE Price monthly
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Table C.1: Included characteristics

Acronym Long Description Author(s) Year, Journal Category Frequency

SP Sales-to-price Barbee, Mukherji and Raines 1996, FAJ Accounting yearly

EP Earnings-to-Price Ratio Basu 1977, JF Price monthly

InvGrowth Inventory Growth Belo and Lin 2012, RFS Accounting yearly

BrandInvest Brand capital investment Belo, Lin and Vitorino 2014, RED Accounting yearly

Leverage Market leverage Bhandari 1988, JFE Price monthly

ResidualMomentum Momentum based on FF3 residuals Blitz, Huij and Martens 2011, JEmpFin Price monthly

Price Price Blume and Husic 1972, JF Price monthly

NetPayoutYield Net Payout Yield Boudoukh et al. 2007, JF Price monthly

PayoutYield Payout Yield Boudoukh et al. 2007, JF Price monthly

NetDebtFinance Net debt financing Bradshaw, Richardson, Sloan 2006, JAE Accounting yearly

NetEquityFinance Net equity financing Bradshaw, Richardson, Sloan 2006, JAE Accounting yearly

XFIN Net external financing Bradshaw, Richardson, Sloan 2006, JAE Accounting yearly

DolVol Past trading volume Brennan, Chordia, Subra 1998, JFE Trading monthly

FEPS Analyst earnings per share Cen, Wei, and Zhang 2006, WP Analyst monthly

AnnouncementReturn Earnings announcement return Chan, Jegadeesh and Lakonishok 1996, JF Price monthly

REV6 Earnings forecast revisions Chan, Jegadeesh and Lakonishok 1996, JF Analyst monthly

AdExp Advertising Expense Chan, Lakonishok and Sougiannis 2001, JF Accounting monthly

RD R&D over market cap Chan, Lakonishok and Sougiannis 2001, JF Accounting monthly

CashProd Cash Productivity Chandrashekar and Rao 2009, WP Accounting yearly

std_turn Share turnover volatility Chordia, Subra, Anshuman 2001, JFE Trading monthly

VolSD Volume Variance Chordia, Subra, Anshuman 2001, JFE Trading monthly

retConglomerate Conglomerate return Cohen and Lou 2012, JFE Price monthly

Continued on next page
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Table C.1: Included characteristics

Acronym Long Description Author(s) Year, Journal Category Frequency

RDAbility R&D ability Cohen, Diether and Malloy 2013, RFS Accounting yearly

AssetGrowth Asset growth Cooper, Gulen and Schill 2008, JF Accounting yearly

EarningsForecastDisparity Long-vs-short EPS forecasts Da and Warachka 2011, JFE Analyst monthly

CompEquIss Composite equity issuance Daniel and Titman 2006, JF Accounting monthly

IntanBM Intangible return using BM Daniel and Titman 2006, JF Accounting yearly

IntanCFP Intangible return using CFtoP Daniel and Titman 2006, JF Accounting yearly

IntanEP Intangible return using EP Daniel and Titman 2006, JF Accounting yearly

IntanSP Intangible return using Sale2P Daniel and Titman 2006, JF Accounting yearly

ShareIss5Y Share issuance (5 year) Daniel and Titman 2006, JF Accounting monthly

LRreversal Long-run reversal De Bondt and Thaler 1985, JF Price monthly

MRreversal Medium-run reversal De Bondt and Thaler 1985, JF Price monthly

EquityDuration Equity Duration Dechow, Sloan and Soliman 2004, RAS Price yearly

cfp Operating Cash flows to price Desai, Rajgopal, Venkatachalam 2004, AR Accounting yearly

ForecastDispersion EPS Forecast Dispersion Diether, Malloy and Scherbina 2002, JF Analyst monthly

ExclExp Excluded Expenses Doyle, Lundholm and Soliman 2003, RAS Analyst quarterly

ProbInformedTrading Probability of Informed Trading Easley, Hvidkjaer and O’Hara 2002, JF Trading yearly

OrgCap Organizational capital Eisfeldt and Papanikolaou 2013, JF Accounting yearly

sfe Earnings Forecast to price Elgers, Lo and Pfeiffer 2001, AR Analyst monthly

GrLTNOA Growth in long term operating assets Fairfield, Whisenant and Yohn 2003, AR Accounting yearly

AM Total assets to market Fama and French 1992, JF Accounting yearly

BMdec Book to market using December ME Fama and French 1992, JPM Accounting yearly

BookLeverage Book leverage (annual) Fama and French 1992, JF Accounting yearly
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Table C.1: Included characteristics

Acronym Long Description Author(s) Year, Journal Category Frequency

OperProf operating profits / book equity Fama and French 2006, JFE Accounting yearly

Beta CAPM beta Fama and MacBeth 1973, JPE Price monthly

EarningsSurprise Earnings Surprise Foster, Olsen and Shevlin 1984, AR Analyst quarterly

AnalystValue Analyst Value Frankel and Lee 1998, JAE Analyst monthly

AOP Analyst Optimism Frankel and Lee 1998, JAE Analyst monthly

PredictedFE Predicted Analyst forecast error Frankel and Lee 1998, JAE Accounting monthly

FR Pension Funding Status Franzoni and Marin 2006, JF Accounting monthly

BetaFP Frazzini-Pedersen Beta Frazzini and Pedersen 2014, JFE Price monthly

High52 52 week high George and Hwang 2004, JF Price monthly

IndMom Industry Momentum Grinblatt and Moskowitz 1999, JFE Price monthly

PctAcc Percent Operating Accruals Hafzalla, Lundholm, Van Winkle 2011, AR Accounting yearly

PctTotAcc Percent Total Accruals Hafzalla, Lundholm, Van Winkle 2011, AR Accounting yearly

tang Tangibility Hahn and Lee 2009, JF Accounting yearly

Coskewness Coskewness Harvey and Siddique 2000, JF Price monthly

RoE net income / book equity Haugen and Baker 1996, JFE Accounting yearly

VarCF Cash-flow to price variance Haugen and Baker 1996, JFE Accounting monthly

VolMkt Volume to market equity Haugen and Baker 1996, JFE Trading monthly

VolumeTrend Volume Trend Haugen and Baker 1996, JFE Trading monthly

AnalystRevision EPS forecast revision Hawkins, Chamberlin, Daniel 1984, FAJ Analyst monthly

Mom12mOffSeason Momentum without the seasonal part Heston and Sadka 2008, JFE Price monthly

MomOffSeason Off season long-term reversal Heston and Sadka 2008, JFE Price monthly

MomOffSeason06YrPlus Off season reversal years 6 to 10 Heston and Sadka 2008, JFE Price monthly
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Table C.1: Included characteristics

Acronym Long Description Author(s) Year, Journal Category Frequency

MomOffSeason11YrPlus Off season reversal years 11 to 15 Heston and Sadka 2008, JFE Price monthly

MomOffSeason16YrPlus Off season reversal years 16 to 20 Heston and Sadka 2008, JFE Price monthly

MomSeason Return seasonality years 2 to 5 Heston and Sadka 2008, JFE Price monthly

MomSeason06YrPlus Return seasonality years 6 to 10 Heston and Sadka 2008, JFE Price monthly

MomSeason11YrPlus Return seasonality years 11 to 15 Heston and Sadka 2008, JFE Price monthly

MomSeason16YrPlus Return seasonality years 16 to 20 Heston and Sadka 2008, JFE Price monthly

MomSeasonShort Return seasonality last year Heston and Sadka 2008, JFE Price monthly

NOA Net Operating Assets Hirshleifer et al. 2004, JAE Accounting yearly

dNoa change in net operating assets Hirshleifer, Hou, Teoh, Zhang 2004, JAE Accounting yearly

EarnSupBig Earnings surprise of big firms Hou 2007, RFS Accounting quarterly

IndRetBig Industry return of big firms Hou 2007, RFS Price monthly

PriceDelayRsq Price delay r square Hou and Moskowitz 2005, RFS Price monthly

PriceDelaySlope Price delay coeff Hou and Moskowitz 2005, RFS Price monthly

PriceDelayTstat Price delay SE adjusted Hou and Moskowitz 2005, RFS Price monthly

STreversal Short term reversal Jegadeesh 1989, JF Price monthly

RevenueSurprise Revenue Surprise Jegadeesh and Livnat 2006, JFE Accounting quarterly

Mom12m Momentum (12 month) Jegadeesh and Titman 1993, JF Price monthly

Mom6m Momentum (6 month) Jegadeesh and Titman 1993, JF Price monthly

ChangeInRecommendation Change in recommendation Jegadeesh et al. 2004, JF Analyst monthly

OptionVolume1 Option to stock volume Johnson and So 2012, JFE Trading monthly

OptionVolume2 Option volume to average Johnson and So 2012, JFE Trading monthly

BetaTailRisk Tail risk beta Kelly and Jiang 2014, RFS Price monthly
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Table C.1: Included characteristics

Acronym Long Description Author(s) Year, Journal Category Frequency

fgr5yrLag Long-term EPS forecast La Porta 1996, JF Analyst monthly

CF Cash flow to market Lakonishok, Shleifer, Vishny 1994, JF Accounting monthly

MeanRankRevGrowth Revenue Growth Rank Lakonishok, Shleifer, Vishny 1994, JF Accounting yearly

RDS Real dirty surplus Landsman et al. 2011, AR Accounting yearly

Tax Taxable income to income Lev and Nissim 2004, AR Accounting yearly

RDcap R&D capital-to-assets Li 2011, RFS Accounting yearly

zerotrade Days with zero trades Liu 2006, JFE Trading monthly

zerotradeAlt1 Days with zero trades Liu 2006, JFE Trading monthly

zerotradeAlt12 Days with zero trades Liu 2006, JFE Trading monthly

ChEQ Growth in book equity Lockwood and Prombutr 2010, JFR Accounting yearly

EarningsStreak Earnings surprise streak Loh and Warachka 2012, MS Accounting monthly

NumEarnIncrease Earnings streak length Loh and Warachka 2012, MS Accounting quarterly

GrAdExp Growth in advertising expenses Lou 2014, RFS Accounting yearly

EntMult Enterprise Multiple Loughran and Wellman 2011, JFQA Accounting monthly

CompositeDebtIssuance Composite debt issuance Lyandres, Sun and Zhang 2008, RFS Accounting yearly

InvestPPEInv change in ppe and inv/assets Lyandres, Sun and Zhang 2008, RFS Accounting yearly

Frontier Efficient frontier index Nguyen and Swanson 2009, JFQA Accounting yearly

GP gross profits / total assets Novy-Marx 2013, JFE Accounting yearly

IntMom Intermediate Momentum Novy-Marx 2012, JFE Price monthly

OPLeverage Operating leverage Novy-Marx 2010, ROF Accounting yearly

Cash Cash to assets Palazzo 2012, JFE Accounting quarterly

BetaLiquidityPS Pastor-Stambaugh liquidity beta Pastor and Stambaugh 2003, JPE Price monthly
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Table C.1: Included characteristics

Acronym Long Description Author(s) Year, Journal Category Frequency

BPEBM Leverage component of BM Penman, Richardson and Tuna 2007, JAR Accounting monthly

EBM Enterprise component of BM Penman, Richardson and Tuna 2007, JAR Accounting monthly

NetDebtPrice Net debt to price Penman, Richardson and Tuna 2007, JAR Accounting monthly

PS Piotroski F-score Piotroski 2000, AR Accounting yearly

ShareIss1Y Share issuance (1 year) Pontiff and Woodgate 2008, JF Accounting monthly

DelDRC Deferred Revenue Prakash and Sinha 2012, CAR Accounting yearly

OrderBacklog Order backlog Rajgopal, Shevlin, Venkatachalam 2003, RAS Accounting yearly

DelCOA Change in current operating assets Richardson et al. 2005, JAE Accounting yearly

DelCOL Change in current operating liabilities Richardson et al. 2005, JAE Accounting yearly

DelEqu Change in equity to assets Richardson et al. 2005, JAE Accounting yearly

DelFINL Change in financial liabilities Richardson et al. 2005, JAE Accounting yearly

DelLTI Change in long-term investment Richardson et al. 2005, JAE Accounting yearly

DelNetFin Change in net financial assets Richardson et al. 2005, JAE Accounting yearly

TotalAccruals Total accruals Richardson et al. 2005, JAE Accounting yearly

BM Book to market using most recent ME Rosenberg, Reid, and Lanstein 1985, JF Accounting monthly

Accruals Accruals Sloan 1996, AR Accounting yearly

ChAssetTurnover Change in Asset Turnover Soliman 2008, AR Accounting yearly

ChNNCOA Change in Net Noncurrent Op Assets Soliman 2008, AR Accounting yearly

ChNWC Change in Net Working Capital Soliman 2008, AR Accounting yearly

ChInv Inventory Growth Thomas and Zhang 2002, RAS Accounting yearly

ChTax Change in Taxes Thomas and Zhang 2011, JAR Accounting quarterly

Investment Investment to revenue Titman, Wei and Xie 2004, JFQA Accounting yearly
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Table C.1: Included characteristics

Acronym Long Description Author(s) Year, Journal Category Frequency

realestate Real estate holdings Tuzel 2010, RFS Accounting yearly

AbnormalAccruals Abnormal Accruals Xie 2001, AR Accounting yearly

FirmAgeMom Firm Age - Momentum Zhang 2004, JF Price monthly

The table displays all available characteristics from the data set marked as clear, the author(s), year as well as journal of publication.
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Table C.2: Deep portfolio policy with different number of hidden layers

Layer 2 Layer 3 Layer 4 Layer 5

Utility 0.0510 0.0559 0.0548 0.0567

|wi| ∗ 100 1.2532 1.1636 1.1648 0.9059
max wi ∗ 100 2.3479 2.1713 2.3620 2.2910
min wi ∗ 100 -2.2734 -2.1431 -2.3701 -2.3172
∑ wi I(wi < 0) -8.5341 -7.8884 -7.8970 -6.0309
∑ wi I(wi < 0)/Nt 0.4838 0.4751 0.4704 0.4607
∑ |wi,t − w+

i,t−1| 15.4961 14.1319 14.5830 11.8094

Mean 0.1111 0.1042 0.1159 0.1037
StdDev 0.1553 0.1392 0.1566 0.1374
Skew 0.2862 0.3584 0.6250 0.6940
Kurt 1.6373 1.0855 1.9909 1.4173
SR 0.7155 0.7486 0.7400 0.7550

FF5 + Mom α 0.0933 0.0863 0.0988 0.0885
StdErr(α) 0.0085 0.0076 0.0088 0.0077

This table shows out-of-sample estimates of the deep portfolio policies with different number of hidden
layers with 157 firm characteristics as specified in Equation 1 and optimized for a mean-variance investor
with absolute risk aversion of five. The deep models are feed-forward neural networks with two (32, 16),
three (32, 16, 8), four (32, 16, 8, 4) and five (32, 16, 8, 4, 2) hidden layers (nodes), respectively. We use data
from the Open Source Asset Pricing Dataset from January 1971 to December 2020. The columns labeled
"Layer 2", "Layer 3", "Layer 4" and "Layer 5" show the statistics of the deep parametric portfolio policy with
two, three, four and five hidden layers, respectively. The first row shows the utility of the investor. The
second set of rows shows statistics on portfolio weights averaged over time. These statistics include the
average absolute portfolio weight, the average maximum and minimum portfolio weights, the average sum
of negative weights in the portfolio, the average proportion of negative weights in the portfolio, and the
turnover in the portfolio. The third set of rows shows the first four moments of the final portfolio return
distributions as well as the Sharpe ratios. The bottom panel shows the alphas and their standard errors
with respect to the Fama-French five-factor model extended to include the momentum factor.
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Table C.3: Deep portfolio policy with different network architectures

PPP DPPP Frequency Category

Utility 0.0267 0.0469 0.0499 0.0473

|wi| ∗ 100 0.5060 0.6057 0.6360 0.6355
max wi ∗ 100 2.0748 1.7260 1.7891 1.7235
min wi ∗ 100 -2.2097 -1.8370 -1.8926 -1.8203
∑ wi I(wi < 0) -3.1475 -3.8665 -4.0847 -4.0813
∑ wi I(wi < 0)/Nt 0.4334 0.4411 0.4471 0.4478
∑ |wi,t − w+

i,t−1| 3.9370 7.6984 8.3253 8.2927

Mean 0.0468 0.0701 0.0699 0.0670
StdDev 0.0897 0.0965 0.0898 0.0889
Skew -0.1451 1.0537 0.2517 0.2430
Kurt 1.8391 6.5084 1.7880 2.2713
SR 0.5216 0.7266 0.7790 0.7535

FF5 + Mom α 0.0323 0.0559 0.0564 0.0526
StdErr(α) 0.0040 0.0051 0.0048 0.0046

This table shows out-of-sample estimates of three deep portfolio policies and one linear portfolio policy
with 157 firm characteristics as specified in Equation 1 and optimized for a mean-variance investor with
absolute risk aversion of five. The regular portfolio policy is a linear model for Equation 3, while the deep
model is a feed-forward neural network with three hidden layers and 32, 16, and eight nodes, respectively.
We use data from the Open Source Asset Pricing Dataset from January 1971 to December 2020. The
columns labeled "PPP", "DPPP", "Frequency" and "Category" show the statistics of the linear portfolio
policy, deep portfolio policy, deep portfolio policy with variables grouped by frequency, and deep portfolio
policy with variables grouped by category, respectively. The last to columns refer to different network
architectures where the variables are only interacted with variables of their own group in the first hidden
layer. The first row shows the utility of the investor. The second set of rows shows statistics on portfolio
weights averaged over time. These statistics include the average absolute portfolio weight, the average
maximum and minimum portfolio weights, the average sum of negative weights in the portfolio, the
average proportion of negative weights in the portfolio, and the turnover in the portfolio. The third set of
rows shows the first four moments of the final portfolio return distributions as well as the Sharpe ratios.
The bottom panel shows the alphas and their standard errors with respect to the Fama-French five-factor
model extended to include the momentum factor.
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