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1 Introduction

Recent empirical work finds a flat, hump-shaped, or negative relation between the probability that a

firm fails to honor its fixed obligations (“distress risk”) and the cross-section of stock returns.1 The

most convincing explanation for that finding is Garlappi et al.’s (2008) and Garlappi and Yan’s (2011)

shareholder advantage theory, which argues that shareholders’ ability to extract economic rents from

debtholders in default lowers stock risk and thus the returns of distressed stocks. Further evidence

supporting that theory comes from Favara et al. (2012), who show that stock betas and volatilities

are lower in countries whose institutions favor shareholders over debtholders, and Aretz et al. (2018),

who show that the distress risk-stock return relation is more negative in the same countries. Also,

Hackbarth et al. (2015) find that an exogenous increase in shareholder advantage in the United States

in 1978 lowered stock betas and returns for all but most strongly distressed firms.

In our paper, we document that, analogous to the non-positive and often negative relation between

firm-level distress risk and the cross-section of stock returns in the prior literature, there is also a negative

relation between firm-level distress risk and the cross-section of corporate bond returns. In particular,

using Campbell et al.’s (2008) hazard model to capture the probability of failure (defined as a default,

bankruptcy filing, or performance-related delisting),2 we find a monthly distress premium in bonds of –30

to –50 basis points in both portfolio sorts and Fama-MacBeth (FM; 1973) regressions. Akin to stocks, the

premium is, however, only statistically significant when we control for popular stock and bond pricing

factors, such as the bond market beta and bond-price momentum (see Bai et al. (2018), Bali et al. (2019a)

and Bali et al. (2019b)). Finally, the negative premium is attributable to inter-firm variations in distress

risk. Keeping firm-level distress risk constant, intra-firm variations in distress risk due to variations in

bond indentures (as, e.g., in seniority, coupons, or collateral) are typically positively priced.

Our evidence that distress risk is negatively priced in corporate bonds comprises a serious blow to the

shareholder advantage theory. The shareholder advantage theory starts from the premise that debtholders

are entitled to a perpetual stream of coupon payments, but that they have awarded shareholders the

option to cease payments in return for a to-be-negotiated fraction of firm value. Given that the option

1See, for example, Dichev (1998), Campbell et al. (2008), and Da and Gao (2010).
2A large literature suggests that hazard-model predictions of failure in general — and Campbell et al.’s (2008) prediction

in particular — are vastly superior to, for example, discriminant-analysis or structural model-based predictions (see Shumway
(2001), Chava and Jarrow (2004), Bharath and Shumway (2008), Campbell et al. (2008), and Aretz et al. (2018)).
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issued by debtholders is a perpetual American put option, its systematic risk — if held short — increases

with the option exercise probability, which is equivalent to distress risk. Thus, the shareholder advantage

theory predicts that the expected debt return increases with distress risk. To put that intuition on a

more formal footing, we extend the simulation evidence of Garlappi et al. (2008), who employ Fan

and Sundaresan’s (2000) shareholder advantage model to create an artificial cross-section of expected

stock returns and distress risk under realistic model inputs. Doing so, they find that high shareholder

advantage can turn the expected stock return-distress risk relation negative. Picking up where they left

off, we, however, show that the expected debt return-distress risk relation is consistently positive in their

simulations, confirming that shareholder advantage cannot explain our bond pricing evidence.

To further show that shareholder advantage is not behind our bond evidence, we next condition the

bond distress premium on popular shareholder advantage proxies, such as research and development

(R&D) expenses, the Herfindahl sales index, and asset tangibility (see Garlappi et al. (2008) and Favara

et al. (2012)). Since lower R&D expenses predict fewer cash-flow-related debt covenants, while a higher

Herfindahl index and a lower asset tangibility predict greater fire-sale discounts in distress, low R&D

expenses, a high Herfindahl index, and a low asset tangibility indicate high shareholder advantage. Double-

sorted portfolios and FM regressions with interaction terms suggest that, while the shareholder advantage

proxies usually continue to condition the distress risk-stock return relation (even within our smaller

data sample), they are completely powerless to condition the distress risk-bond return relation. To make

matters worse, the proxies tend to condition the bond distress premium with the wrong signs.

Given the limited success of the shareholder advantage theory to yield a unified explanation for the

pricing of distress in stocks and bonds, we next take a fresh look at what could lie behind the distress

anomaly. As first pointed out by Guthrie (2011), the relation between the expected return on a claim of

a firm and the firm’s condition is jointly determined by asset and financial risk in neoclassical finance

models. Focusing on asset risk, Hackbarth and Johnson (2015), Aretz and Pope (2018), and Gu et al. (2018)

show that real-asset disinvestment options can lower the expected asset return of economically distressed

firms because the disinvestment options can be interpreted as American put options with a negative

systematic risk. Interestingly therefore, Table 2 in Campbell et al. (2008) suggests that firms classified by

them as distressed are, on average, not only more financially levered but also less profitable than other
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firms.3 It is thus entirely possible that a low asset risk, spurred by highly valuable negative systematic

risk disinvestment options, lies behind the distress anomaly in both stocks and bonds.

We use numerical methods to value an equity claim and a zero-coupon debt claim on a firm owning

production assets with embedded disinvestment options to study whether disinvestment risk can explain

the distress anomaly. Assuming disinvestment proceeds go to shareholders unless they fall into a “suspect

period” shortly before a debt default, in which case they go to debtholders, the model can produce a hump-

shaped relation between distress risk and both stock and bond returns, which is more consistent with the

empirical evidence than the shareholder advantage theory. To offer some more support for asset risk driving

the distress anomaly, we then condition the stock and bond distress premia on Novy-Marx’s (2013) gross

profitability and Aretz and Pope’s (2018) capacity overhang, defined as the difference between a firm’s

installed production capacity and its ex-ante optimal capacity.4 While the first proxy measures economic

profitability, the second measures how close a firm is to exercising its real-asset disinvestment options and

thus also the value of these options. Double-sorted portfolios and FM regressions with interaction terms

suggest that, with one exception, both gross profitability and capacity overhang significantly condition

the relations between distress risk and both stock and bond returns with the correct signs.

Our work adds to studies on the distress premium in stocks. Dichev (1998), Griffin and Lemmon

(2002), and George and Hwang (2010) show that Altman’s (1968) Z -Score and Ohlson’s (1980) O-Score,

two accounting distress risk proxies, are flat in or decrease with stock returns. Extracting a distress risk

proxy from Merton’s (1974) model, Vassalou and Xing (2004) find a positive premium. Da and Gao

(2010), however, question that premium, arguing it is attributable to illiquid stocks. Using the alternative

structural distress risk proxy of Moody’s KMV Corporation, Garlappi et al. (2008) and Garlappi and

Yan (2011) find a hump-shaped relation between distress risk and stock returns. Anginer and Yildizhan

(2018) report that corporate credit spreads, which increase with risk-neutral distress risk, do not price

stocks. Avramov et al. (2009) show that stock returns increase with credit ratings, implying a negative

distress risk-stock return relation. Using an efficient hazard model proxy, Campbell et al. (2008) report a

negative distress premium in stocks. We contribute to those studies by showing that, analogous to the

3Given that Campbell et al.’s (2008) profitability variable, NIMTA, contains financial expenses, it is not a pure proxy for
economic profitability. Using operating profitability, defined as the difference between sales and costs of gold sold scaled by
total assets, we, however, find that operating profitability also strongly declines over their distress risk portfolios.

4Aretz and Pope (2018) define the ex-ante optimal capacity as that capacity level equalizing the marginal benefit of
assets-in-place with the marginal cost of exercising growth options. See their paper for more technical details. An updated
version of the capacity overhang proxy can be downloaded from: <https://www.kevin-aretz.com>.
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often negative stock distress premium, the corporate bond distress premium can also be negative.

We also add to the literature by coming up with a new rationale for why both stock and bond returns

decrease with distress risk. Prior studies often argue that financial risk lies behind the negative stock

distress premium. As we already said, Garlappi et al.’s (2008) and Garlappi and Yan’s (2011) shareholder

advantage theory is the best-known example in that literature. Other examples include George and

Hwang (2010), who reason that firms with high systematic risk induced through high financial distress

costs endogenously choose low financial leverage ratios, and O’Doherty (2012), who speculates that high

asset-value uncertainty drives down the systematic risk of distressed stocks. One caveat about these

theories is that they often implicitly predict opposite effects of distress risk on stock and bond returns,

inconsistent with our main empirical evidence. In contrast, we propose a real-asset based explanation for

the distress anomaly suggesting that both stock and bond returns decline with distress risk.

We proceed as follows. Section 2 describes our analysis variables and data sources. In Section 3,

we study the relations between distress risk and the cross-sections of corporate bond, stock, and asset

returns. In Section 4, we investigate whether the shareholder advantage theory explains our empirical

findings. Section 5 explores whether real-asset disinvestment risk explains them. Section 6 gives the

results from several robustness tests. Section 7 summarizes and concludes our paper.

2 Methodology and Data

In this section, we describe our methodology and data. We first outline the hazard model and credit

ratings used to measure distress risk at the firm- and the bond-level, respectively. We next explain how

we calculate the returns on bonds and other assets. We finally discuss our data sources.

2.1 Calculating Firm- and Bond-Level Distress Risk

We follow Campbell et al.’s (2008) hazard model methodology to measure twelve-month-ahead firm-level

distress risk. In particular, we estimate a logit model of a dummy variable equal to one if a firm defaults

on its debt obligations, files for bankruptcy, or delists for performance reasons over the next twelve months

and else zero, Failure, on distress risk predictors measured at the start of the twelve-month period.5 We

5Shumway (2001) shows that a logit model is a special form of hazard model.
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can compactly write the logit model as:

Prob(Failurei,t = 1|Xi,t−12) =
1

1 + exp(−α− βXi,t−12)
, (1)

where α is a free parameter, β a vector of free parameters, and Xi,t−12 a vector containing the distress

risk predictors. Campbell et al. (2008) estimate logit model (1) recursively, using data from January

1963 to December of calendar year t, with t ranging from 1980 to 2003 in unit increments. They next

combine the logit model estimates obtained from the estimation window extending to December of

calendar year t with the distress risk predictor values over calendar year t+ 1. Doing so, they ensure

that the logit model prediction could have been computed by investors in real-time.

The distress risk predictors in X contain NIMTA, the ratio of net income to the sum of the market

value of equity and the book value of total liabilities (“market-value-adjusted total assets”); TLMTA,

the ratio of the book value of total liabilities to market-value-adjusted total assets; CASHMTA, the

sum of cash and short-term assets to market-value-adjusted total assets; and MB, the market-to-book

ratio. To mitigate the effects of outliers on MB, Campbell et al. (2008) add 10% of the difference

between the market value and the book value of equity to the book value of equity, setting book values

of equity that continue to be negative to $1. The vector X further contains EXRET, the monthly log

stock return minus the monthly log S&P 500 return; SIGMA, a stock’s volatility obtained from daily

data over the prior three months;6 SIZE, the log ratio of a stock’s market capitalization to the S&P

500’s total market capitalization; and PRICE, the log stock price truncated at $15.

To enhance the distress risk predictors’ timeliness, Campbell et al. (2008) use quarterly accounting

data in their calculations, assuming that the accounting variable values become publicly available with a

two-month reporting gap (i.e., two months after the end of the fiscal quarter). To guard against outlier

effects, they winsorize the distress risk predictors at the 5th and 95th percentiles.7

6More specifically, they calculate volatility as the square root of 252 times the average of the squared daily stock
return over the prior three months, assuming that the expected daily stock return is equal to zero. In case of stocks with
fewer than five non-zero returns over the three-month period, they replace the volatility estimate with the cross-sectional
mean of the volatility estimates of stocks with more than five non-zero returns over the same period.

7Since we do not have access to the failure data used by Campbell et al. (2008), we are unable to estimate logit model (1)
ourselves. Fortunately, however, Jens Hilscher sent us the output from recursively estimating that model as described in the
text. We use the logit model output obtained from the longest estimation window (1980-2008) to calculate our firm-level
distress risk proxy for the post-2010 sample period. Doing so is unlikely to cause problems since the recursive estimates sent
to us show strong signs of converging over the sample period extending to 2008. We thank Jens Hilscher and his co-authors
for sharing the estimation output from their recursive logit model estimations with us.
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We rely on corporate bond ratings issued by Moody’s and S&P’s to measure intra-firm variations in

distress risk induced through the characteristics of a bond issue — as opposed to the inter-firm variations

captured by the firm-level distress risk proxy. To that end, we follow Bai et al. (2018) and assign a number

to different ratings. In particular, we assign a value of one to AAA ratings, a value of two to AA+ ratings,

and so on, until ultimately assigning a value of 21 to C ratings. As a result, investment-grade bonds

have a value between one (AAA) and ten (BBB–), while non-investment-grade bonds have a value above

ten. We finally compute Rating as the value associated with the most recent rating if only one agency

issues ratings or the average of the most recent values if both agencies issue ratings.

2.2 Calculating the Returns on Corporate Bonds and Other Assets

In line with Bessembinder et al. (2009), Bao et al. (2011), and Jostova et al. (2013), we calculate

the net return of corporate bond i over month t, ri,t, using:

ri,t =
Pi,t +AIi,t + Ci,t
Pi,t−1 +AIi,t−1

− 1, (2)

where P is the bond price,AI the accrued interest, and C the coupon payment. The price P is calculated

as follows. To minimize confounding effects arising from bid-ask spreads, we start by calculating a

bond’s daily price as the trading-volume-weighted average of intra-day transaction prices over that

day, as also done by Bessembinder et al. (2009). In line with Bai et al. (2018), we next calculate two

types of bond returns, namely: (i) the return from the start of month t to the end of month t; and (ii)

the return from the start of month t to the start of month t+ 1, where we define the start (end) of a

month as the first (last) five trading days within that month. If we have more than one non-missing

daily bond price within either the start- or end-of-month window, we choose the daily price closest to

the first/last trading day of a month in our calculations. Finally, if we are able to calculate both types

of returns, we use the start-of-month to start-of-month (type (ii)) return in our empirics.

To calculate the accrued interest AI, we first compute the daily coupon rate. The daily coupon

rate is the coupon rate divided by 360 if a bond’s day-count basis is “30/360” or “ACT/360,” and it

is the coupon rate divided by the actual number of calendar days per year if the day-count basis is

“ACT/ACT.” We next count the calendar days between the current month-end t and the previous

coupon payment date, assuming that a month has 30 calendar days if the day-count basis is “30/360”
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and the actual number of days per month when it is “ACT/360” or “ACT/ACT.” Also, we use the

date of the first coupon payment and the coupon payment frequency to infer on which days the

coupons are paid. We finally calculate the accrued interest AI as the daily coupon rate multiplied by

the number of days between the current month-end t and the previous coupon payment date.

As is standard in the literature, we impose the following filters on our bond return data. First, we

remove bonds not traded or listed in U.S. public markets. Second, we exclude bonds that are structured

notes, are mortgage-, asset-, or agency-backed, or are equity-linked. Third, we remove convertible

bonds. Fourth, we remove bonds with a price below $5 or above $1,000. Fifth, we keep only fixed and

zero coupon bonds. Sixth, we remove bonds with less than one year to maturity. Seventh, we eliminate

bond transactions that are labeled as when-issued or lock-in or have special sales conditions. Eighth,

we remove transaction records that are canceled, subsequently corrected, or reversed. Finally, we only

keep transactions with a trading volume that is larger than $10,000.

In addition to bond returns, we also investigate the stock returns of the subsample of firms with

bonds outstanding over our bond sample period (July 2002 to June 2017). While we directly obtain the

stock returns from CRSP, we replace a stock’s return over its delisting month with its delisting return if

the delisting return is non-missing. If a stock’s return over its delisting month is missing, we replace

the return with –30% for NYSE and AMEX stocks and –55% for NASDAQ stocks, as advocated by

Shumway (1997) and Shumway and Warther (1999). We do not exclude stocks with low prices from the

stock subsample associated with our bond sample since only large well-capitalized firms issue bonds,

rendering that restriction unnecessary. When we later, however, shift our focus to a more comprehensive

cross-section of stocks, we exclude stocks with a one-month-lagged price below $1.

We finally also take a look at a firm’s asset return, defined as the return to both its shareholders

and debtholders. Since we are unable to observe the return on private debt, we approximate the asset

return using a value-weighted average of the returns on a firm’s stock and its outstanding bonds,

using either the book or market leverage ratio to derive the weights. We assume that firms have only

common stock outstanding (i.e., we ignore preferred stock), and we calculate the return on outstanding

bonds as the value-weighted average of the returns on all of the firm’s outstanding bond issues. In

line with Fama and French (1992), we define the book leverage ratio as the ratio of the book value

of assets to the book value of equity, while we define the market leverage ratio as the ratio of the
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book value of assets to the market value of equity, using the sum of common equity plus balance-sheet

deferred taxes as book value of equity. We use the ratios from the fiscal year ending in calendar year

t− 1 to calculate weights from July of calendar year t to June of calendar year t+ 1.

2.3 Calculating Risk Factors and Control Variables

We use portfolio sorts and FM regressions to investigate the pricing of distress risk. In the portfolio

sorts, we adjust for risk by regressing a portfolio’s return on risk factors and reporting the intercept

from that regression (“alpha”). As risk factors, we choose either the Fama and French (1993) five-factor

model factors or the Bai et al. (2018) nine-factor model factors. The five Fama-French (1993) factors

are the excess stock market return (MKTStock), the returns of stock spread portfolios formed on size

(SMB) and the book-to-market ratio (HML), as well as the returns of bond spread portfolios formed

on the term structure (TERM) and default risk (DEF). The term structure spread portfolio is long on

long-term government bonds and short on one-month Treasury bills. Conversely, the default risk spread

portfolio is long on long-term corporate bonds and short on long-term government bonds. The nine Bai

et al. (2018) factors add to the former five factors the return on a stock spread portfolio on momentum

(MOMStock), Pastor and Stambaugh’s (2003) stock liquidity risk factor (LIQ), the excess bond market

return (MKTBond), and the return on a bond momentum spread portfolio (MOMBond). The excess bond

market return is the return on a value-weighted portfolio of our sample bonds minus the one-month

Treasury-bill rate. The bond momentum spread portfolio is long an equally-weighted portfolio of bonds

with a past return over months t− 6 to t− 1 in the top decile and short an equally-weighted portfolio

of bonds with that past return in the bottom decile (see Jostova et al. (2013)).8

In the FM regressions, we control for risk by including both stock and bond factor exposures and

characteristics as control variables in our estimations. In particular, the bond-return regressions include

a bond’s exposures to the excess stock (MKTStock) and bond (MKTBond) market returns and to the

SMB, HML, MOMStock, MOMBond, TERM, DEF, and LIQ spread portfolio returns. They further

include a bond’s years-to-maturity, log bond amount outstanding, most recent credit rating, and lagged

one-month excess return. Conversely, the stock regressions include a stock’s exposures to the excess

stock and bond market returns and to the MOMBond, TERM, DEF, and LIQ spread portfolio returns,

8To avoid losing the first seven months of our sample period, we use the bond momentum spread portfolio return
from Gergana Jostova’s website over the July 2002-January 2003 period in our empirical work.
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while directly adding the stock’s one-month-lagged log market value of equity, log book-to-market ratio,

and past-eleven-month compounded return.9 In case of both the stock and bond portfolios, we estimate

the exposures using rolling window regressions over the past 36 months of monthly data, winsorizing

the estimated exposures at the 1st and 99th percentiles per month to mitigate outlier effects.

2.4 Data Sources

We obtain stock data from CRSP and accounting data from Compustat. We collect bond data, including

intraday transaction prices, trading volumes, and buy and sell indicators, from the enhanced version of the

Trade Reporting and Compliance Engine (TRACE). In contrast to the Lehman Brothers Fixed Income

Database, Datastream, and Bloomberg, which are quote-based databases, TRACE is a trade-based

database, offering higher market transparency (see Bessembinder et al. (2006)) and covering about 99% of

all public bond-market transactions since February 2005 (see Bao et al. (2011)). We rely on the Mergent

Fixed Income Securities Database (FISD) to obtain bond characteristics, including offering-amount and

-date, maturity date, coupon-rate, -type, and -payout frequency, bond-type, -rating, and -option features,

and issuer information. We obtain MKTStock, SMB, HML, and MOMStock from Ken French’s website,

while we obtain LIQ from Lubos Pastor’s website. We retrieve the corporate and government bond

portfolio returns underlying the bond risk factors TERM and DEF from DataStream.

Our main bond sample period, determined by the availability of TRACE data, is July 2002 to June

2017. In our stock tests, we, however, sometimes rely on the longer sample period from January 1981 to

December 2017, which is determined by our firm-level distress risk proxy.

3 The Pricing of Distress Risk in Corporate Bonds

In this section, we study the relation between firm-level distress risk and the cross-section of corporate

bond returns. We start with offering summary statistics on our analysis variables. We next provide the

9Following Fama and French (1992), we calculate the log book-to-market ratio as the log of the ratio of the book value
of equity to the market value of equity, where the book value of equity is total assets minus total liabilities plus deferred
taxes minus preferred stock from the fiscal year-end in calendar year t− 1 and the market value of equity is the stock
price times shares outstanding at the end of calendar year t− 1. We use the computed value from July of calendar year t
to June of calendar year t+ 1. Following Carhart (1997), we calculate the past-eleven-month momentum return as the
compounded return over months t− 12 to t− 2, leaving a one-month gap between the compounding period and the
current month t to avoid that the momentum return also captures short-term reversal effects.
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mean excess returns and alphas of bond portfolios and their associated stock portfolios univariately

sorted based on our firm-level distress risk proxy. We finally report the same statistics for bond portfolios

double-sorted on both the firm-level distress risk proxy and intra-firm distress risk as captured by bond

ratings as well as asset portfolios univariately sorted on firm-level distress risk.

3.1 Summary Statistics

Table 1 reports summary statistics on our analysis variables, with Panels A, B, and C focusing on bond,

stock, and firm characteristics, respectively. The summary statistics include the number of observations,

the mean, standard deviation, and the 1st, 5th, 25th, 50th, 75th, 95th, and 99th percentiles. The table

shows that our bond sample contains 556,965 bond-month observations over the sample period from

July 2002 to June 2017. While the number of observations in our sample appears low compared to the

number of observations used in other studies, we note that we lose many observations in the process of

merging with the stock and firm characteristics data.10 The average bond in our sample has a monthly

return of 0.62%, a rating of 7.49 (BBB+), a market size of 0.57 billion dollars, and a time-to-maturity

of 9.63 years. Conversely, the average stock has a monthly return of 0.96% and a market size of 58.6

billion dollars. The average twelve-month-ahead distress risk of the firms in our sample is only 0.09%,

which is much lower than the average reported in Campbell et al. (2008). The reason is that bonds

are almost exclusively issued by large firms, which tend to have a low distress risk.

Insert Table 1 here.

3.2 Portfolios Univariately Sorted on Firm-Level Distress Risk

We next analyze the relation between firm-level distress risk and the cross-section of corporate bond

returns. To do so, we sort our bond sample into portfolios according to the decile breakpoints of

the firm-level distress risk proxy distribution at the end of month t− 1. We value- or equally-weight

the portfolios, using the notional bond value outstanding at the end of month t− 1 to calculate the

value weights, and hold the portfolios over month t. We follow an analogous procedure to also sort

the subsample of stocks associated with the bonds into value- or equally-weighted portfolios, using

10More specifically, our initial bond return sample contains 826,845 bond-month return observation, so that 269,880
observations are lost in the process of merging.

10



the market value of equity at the end of month t− 1 to calculate the value weights. For each set of

portfolios (i.e., the value or equally-weighted stock or bond portfolios), we create a spread portfolio

long the highest distress risk portfolio and short the lowest portfolio. To adjust for systematic risk, we

regress each portfolio’s return on the five Fama and French (1993) factors or the nine Bai et al. (2018)

factors introduced in Section 2.3 and report the alphas from these regressions.

Table 2 presents the mean excess returns, alphas, and other characteristics of the stock and bond

distress portfolios, with Panel A focusing on the value-weighted and Panel B on the equally-weighted

portfolios. Plain numbers are estimates, whereas the numbers in square parentheses are t-statistics

calculated using Newey and West (1987) standard errors with a lag length of twelve months. The other

characteristics are the time-series averages of the cross-sectional distress risk average and the number of

assets (bonds or stocks) per portfolio. Consistent with Campbell et al.’s (2008) evidence on the stock

pricing of distress risk, Table 2 suggests that the mean excess returns and alphas of the value- and

equally-weighted bond portfolios decrease with distress risk. Also consistent with Campbell et al. (2008),

only the decreases in the alphas but not those in the mean excess returns are, however, statistically

significant. For example, Panel A suggests that, while the bond spread portfolio long the top and short

the bottom value-weighted distress portfolio has an insignificant mean excess return of –0.09% per month

(t-statistic: –0.34), its five-factor alpha is a significant –0.41% (t-statistic: –2.32) and its nine-factor

alpha a significant –0.55% (t-statistic: –2.69). The left panel of Figure 1 graphically shows the relations

between the mean excess bond returns and alphas and the distress portfolios.

Insert Table 2 here.

More directly corroborating Campbell et al.’s (2008) evidence, Table 2 further shows that the mean

excess returns and alphas of the stock portfolios formed using only stocks associated with the bonds also

decrease with distress risk. As before, however, only the decreases in the alphas but not those in the mean

excess returns are significant. For example, Panel A suggests that, while the stock spread portfolio long

the top and short the bottom value-weighted distress portfolio has an insignificant mean excess return

of –0.13% (t-statistic: –0.15), its five- and nine-factor alphas are a significant –0.97% (t-statistics: –1.92)

and –1.01% (t-statistic: –2.18), respectively. The right panel of Figure 1 graphically shows the relations

between the mean excess stock returns and alphas and the distress portfolios.

Figure 2 plots the exposures of the stock and bond distress portfolios on Bai et al.’s (2018) nine
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Figure 1: Mean Excess Returns and Alphas of Distress-Sorted Portfolios

This figure plots the mean excess returns and Fama-French five-factor and Bai et al. nine-factor model alphas of the
value-weighted distress-sorted bond (left panel) and stock portfolios (right panel) over our sample period.

risk factors, shedding light on why the mean excess returns of the portfolios are so different from their

alphas. The figure shows striking trends in the exposures over the portfolios. Starting with the bond

portfolios, we see that, of the stock risk factors, the stock market and liquidity exposures increase almost

monotonically over the distress portfolios, while the SMB, HML, and stock MOM exposures produce no

discernable patterns. Conversely, of the bond market factors, only the bond market exposure but not the

bond MOM, DEF, or TERM exposures increase over the distress portfolios. Given that both the stock

and the bond market as well as the LIQ factor produce, on average, positive excess returns over our

sample period,11 it is no surprise that the alphas of the bond distress spread portfolios are significantly

lower than their mean excess returns. Turning to the stock portfolios, the stock market, HML, and bond

market exposures increase almost monotonically over the distress portfolios. Given that the HML factor

also produces a positive average return over our sample period, it is also not surprising that the alphas

of the stock distress spread portfolios are significantly lower than their mean excess returns.

11To be more specific, the average monthly returns of the stock market portfolio, the bond market portfolio, and the
liquidity spread portfolio are 0.70%, 0.53%, and 0.24% per month, respectively.
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Figure 2: Factor Exposures of Distress-Sorted Bond and Stock Portfolios

This figure plots the factor exposures of the value-weighted distress-sorted bond (upper panels) and stock portfolios
(lower panels) over our sample period. We use the nine-factor model to estimate the factor exposures for each
portfolio. We show the factor exposures on the factors, MKTStock, SMB and HML, in the left panel, the factors
(MOMStock, MOMBond and LIQ) in the middle panel and the factors (MKTBond, TERM and DEF) in the right panel.

3.3 Portfolios Double-Sorted on Firm-Level and Intra-Firm Distress Risk

A potential explanation for the negative relation between firm-level distress risk and corporate bond

returns obtained in the previous subsection could be that distressed firms issue higher quality bonds

than safer firms. Distressed firms may, for example, grant a higher priority to their bondholders and

may issue more secured bonds. To refute that explanation, we now measure the quality of a bond issue

using its most recently available credit rating and sort our bond sample into double-sorted portfolios

according to their firm- and bond-level distress risk at the end of month t− 1. As before, we either

value- or equally-weight the portfolios and hold them over month t. We adjust for risk by regressing a

portfolio’s return on Bai et al.’s (2018) nine risk factors and reporting the intercept.

Table 3 presents the results from the double-sorted portfolio formation exercise. In Panel A, we start

13



with sorting our bond sample into four credit rating classes: investment-grade (Rating: 1-10), speculative

(11-13), highly speculative (14-16), and junk bonds (17-21). Within each class, we sort bonds into quintile

portfolios according to their firm-level distress risk. Looking at value- and equally-weighted portfolios

in Panels A.1 and A.2, respectively, Panel A suggests that the nine-factor alphas significantly decrease

over the distress portfolios within each class. In fact, controlling for a bond’s credit rating, the negative

distress risk-bond alpha relations become more pronounced, with the alphas of the high-minus-low

distress spread portfolios now never attracting a t-statistic above –2.50. Panel B reverses the exercise,

first sorting into firm-level distress quintiles and then into the four credit rating classes. Looking at value-

and equally-weighted portfolios in Panels B.1 and B.2, respectively, Panel B suggests that, except for

the top distress quintile, the nine-factor alphas significantly increase over the credit rating classes within

each distress quintile. Most pronouncedly, within the bottom distress quintile, the alphas increase by

0.42% as we move from the value- or equally-weighted investment-grade portfolio to the corresponding

junk-bond portfolio (t-statistics about 4.60; see Panels B.1 and B.2).

Insert Table 3 here.

3.4 Asset Portfolios Univariately Sorted on Firm-Level Distress Risk

We finally take a look at the relation between firm-level distress risk and asset returns. Table 4 shows

the nine-factor alphas of value- or equally-weighted asset portfolios sorted on firm-level distress risk,

with the portfolios being formed using the same procedures as before. The table suggests that the

nine-factor alphas of the asset portfolios decrease with distress risk, which is perhaps unsurprising

given that both stock and bond returns do so, too. Interestingly, however, the magnitudes of the

decreases are slightly smaller than for the stock and bond portfolios, with, for example, the alphas of

the high-minus-low distress spread portfolio now only being between –0.22% and –0.38% per month. In

accordance, the t-statistics of the spread portfolio alphas are now slightly less significant, with them

being around –1.90 except for the book-leverage value-weighted asset return.

Insert Table 4 here.

Overall, we conclude from this section that there is a robust negative relation between firm-level

distress risk and the cross-section of corporate bond returns, which becomes statistically significant once
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we control for popular risk factors. We are able to draw the same conclusions for the subsample of stocks

associated with our bond sample. Variations in bond quality across differentially-distressed firms are not

responsible for the negative distress risk-bond return relation, but work against it. Controlling for such

variations, the negative relation becomes more pronounced and significant. Given the effects of firm-level

distress risk on bond and stock returns, we also find a negative relation between firm-level distress risk

and asset returns, which are the value-weighted average of stock and bond returns.

4 Does Financial Risk Explain the Bond Distress Premium?

In this section, we study whether financial risk can explain why stock and corporate bond returns decrease

with distress risk. Garlappi et al.’s (2008) and Garlappi and Yan’s (2011) shareholder advantage theory,

for example, suggests that shareholders’ ability to extract economic rents from debtholders in distress

explains the negative stock distress premium. To see whether that theory can also explain a negative

bond distress premium, we first repeat Garlappi et al.’s (2008) simulation exercise to identify the sign of

the effect of shareholder advantage on the bond distress premium. We next rerun our asset pricing tests

allowing the bond distress premium to depend on popular shareholder advantage proxies.

4.1 Shareholder Advantage and the Pricing of Distressed Debt

4.1.1 A Shareholder Advantage Model of the Firm

In line with Garlappi et al. (2008), we now study whether the shareholder advantage model of Fan and

Sundaresan (2000) can explain the distress anomaly in stocks and corporate bonds. Fan and Sundaresan

(2000) look at a debt and equity-financed firm operating in continuous time indexed by t. The firm is

exposed to a flat corporate tax rate of τ and loses a fraction of firm value α in bankruptcy (“deadweight

costs of bankruptcy”). The value of the firm’s unlevered assets, Vt, obeys:

dVt = (µ− δ)Vtdt+ σVtdBt, (3)

where µ is the expected return on the unlevered assets, δ < µ the dividend yield, σ the volatility of the

unlevered assets, and dBt is the increment of a standard Brownian motion.
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Turning to the financing side of the model, Fan and Sundaresan (2000) assume that the firm’s

entire debt takes the form of a single perpetuity with a coupon payment of c per time unit. Since

the coupon payment is tax-deductable, it creates a tax shield. Shareholders are able to strategically

default on the coupon payment. They use that possibility when the unlevered asset value Vt drops

below the threshold level ṼS endogenously chosen by them. In default, shareholders and debtholders

negotiate about the residual levered firm value, with shareholders ultimately receiving the fraction θ̃

of residual value and debtholders the fraction 1− θ̃. The fractions are determined by maximizing

the joint benefit to shareholders and debtholders in a Nash bargaining game:

θ̃∗ = argmax
[
θ̃υ(V )− 0

]η [
(1− θ̃)υ(V )− (1− α)V

](1−η)
= η

(
1− (1− α)V

υ(V )

)
, (4)

where υ(V ) is the levered asset value, and η shareholders’ bargaining power. Equation (4) shows

that the fraction of firm value allocated to shareholders in default, θ̃, increases with shareholders’

bargaining power, η, and the fraction of firm value lost in bankruptcy, α.

Using standard real options techniques outlined in, for example, Dixit and Pindyck (1994), Fan

and Sundaresan (2000) derive closed-form solutions for the levered firm value, υ(V ), the equity value,

Ẽ(V ), the debt value, D̃(V ), and the default threshold, ṼS . Building up on Fan and Sundaresan’s

(2000) results, Garlappi et al. (2008) derive closed-form solutions for the time-0 expectation of the

equity value at time t, E0(Ẽ(Vt)), and the probability that the unlevered asset value Vt hits the

threshold ṼS over the period from time 0 to T , Prob(0,T ](V0) (“strategic default probability”). Using

the equity value expectation, they calculate the expected equity return, defined as the ratio of the

expected equity value to its current value. We show the closed-form solutions derived by Fan and

Sundaresan (2000) and Garlappi et al. (2008) in Appendix A. In the same appendix, we also derive

the time-0 expectation of the debt value at time t, E0(D̃(Vt)), which, since D̃(V ) = υ(V )− Ẽ(V ),

only requires us to derive the time-0 expectation of the levered asset value, E0(υ(Vt)). Using the

expected levered asset value and the expected debt value, we calculate the expected levered asset

return and the expected debt return over and above the expected equity return.
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PanelA: Expected Asset Return
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PanelB: Expected Stock Return
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PanelC: Expected Debt Return
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Figure 3: Shareholder Advantage and Expected Asset, Stock, and Debt Returns

The figure shows the monthly expected levered asset returns (Panel A), stock returns (Panel B), and debt returns

(Panel C) of decile portfolios sorted according to strategic default risk in the shareholder advantage model of Fan and

Sundaresan (2000) with a shareholder bargaining power (eta) of either 0.20, 0.50, or 0.80. We describe the simulations

and analytical formulas used to create the figure in Section 4.1 and Appendix A, respectively.

4.1.2 Simulation Results

We use the closed-form solutions derived in Section 4.1.1 to extend the simulation exercise of Garlappi

et al. (2008). In line with them, we calculate expected returns over a one-month horizon and default

risk over a one-year horizon, and we set the risk-free rate, r, to 0.04, the payout rate, δ, to 0.04, the

tax rate, τ , to 0.35 and the bankruptcy costs, α, to 0.50. Also in line with them, we draw the coupon

rate, c, the expected unlevered asset return, µ, and the initial unlevered asset value, V0, from uniform

distributions with support [0.05, 0.10], [δ + 1
2σ, 3(δ + 1

2σ)], and [VS , VS + 1.25], respectively. Since we

do not have access to the asset volatility estimates from Moody’s KMV Corporation, we also draw

these from a uniform distribution with support [0.10, 0.30]. Relying on a shareholder bargaining power

η of 0.20, 0.50, or 0.80, we simulate 100,000 firms and calculate their expected levered asset returns,

expected equity returns, expected debt returns, and default risk using the formulas in Appendix A. We

next sort the firms into ten decile portfolios according to their distress risk. We finally compute the

equally-weighted expected levered asset-, equity-, and debt-returns of the portfolios.

Figure 3 plots the results from the simulations, with Panels A, B, and C focusing on the expected

levered asset, equity, and debt return, respectively. Panel B corroborates Garlappi et al.’s (2008) result

that a higher shareholder bargaining power, η, can turn the default risk-expected equity return relation

from being almost monotonically positive to hump-shaped, with high default risk firms having a
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(marginally) lower expected equity return than low default risk firms. Conversely, consistent with the

intuition that debtholders hold a zero-risk long perpetuity and a high-risk short put option entitling

shareholders to default on their debt payments, and that the short option’s risk increases with default

risk, Panel C shows that the default risk-expected debt return relation is consistently positive in all our

simulations. Perhaps surprisingly, the panel, however, also suggests that the relation does not become

more but less positive with a higher shareholder bargaining power. Panel A hints at the reason, with it

suggesting that the negative effect of shareholder bargaining power on the default risk-expected debt

return relation stems from a similarly negative effect of shareholder bargaining power on the default

risk-expected levered asset return relation. Notwithstanding, the most important takeaway is that,

under realistic model input parameters, the Fan and Sundaresan (2000) shareholder advantage model

produces a consistently positive default risk-expected debt return relation.

4.2 Conditioning the Bond Distress Premium on Shareholder Advantage

Section 4.1 presents theoretical evidence that shareholder advantage theories are unable to explain a

negative distress premium in corporate debt including bonds. To further substantiate that evidence,

we next condition the bond distress premium estimate obtained in Section 3 on popular shareholder

advantage proxies, including a firm’s R&D intensity, its industry concentration, and its asset tangibil-

ity. Opler and Titman (1994) show that highly levered firms with a high R&D intensity often encounter

cash flow problems in recessions, triggering their cash-flow-related covenants and preventing them from

renegotiating their debt. Conversely, Shleifer and Vishny (1992) and Acharya et al. (2011) show that

firms operating in concentrated industries and mostly owning intangible assets are often forced to

sell their assets at fire-sale discounts in distress, making debtholders more willing to compromise to

avoid a liquidation. Thus, the literature usually interprets a lower R&D intensity, a higher industry

concentration, and a lower asset tangibility as signalling greater shareholder advantage.

We calculate a firm’s R&D intensity as the ratio of its R&D expenses to its total assets. In

accordance with Garlappi et al. (2008), we employ the sales-based Herfindahl index to measure an

industry’s concentration. We calculate that Herfindahl index for industry j as:

Herfindahlj =

Ij∑
i=1

s2
i,j ,
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where si,j is the fraction of firm i’s sales over the total sales of FF49 industry j, and Ij is the number

of firms belonging to that industry. We calculate a firm’s asset tangibility as the ratio of its gross

property, plant and equipment (PPE) to its total assets. We take all accounting variables required

to calculate the shareholder advantage proxies from the fiscal-year end in calendar year t− 1. We

use the proxies from July of calendar year t to June of calendar year t+ 1.

We start with using portfolio sorts to gauge the effect of the shareholder advantage proxies on the

distress premium in corporate bonds. To do so, we sort our bond sample (alternatively, the associated

stock sample) into portfolios according to the tercile breakpoints of each shareholder advantage proxy

at the end of month t− 1. Within each shareholder advantage portfolio, we next sort the same assets

into portfolios according to the quintile breakpoints of firm-level distress risk at the end of month

t− 1, giving us portfolios double-sorted on each shareholder advantage proxy and distress risk.12 We

either value- or equally-weight the double-sorted portfolios and hold them over month t, adjusting for

risk by regressing each portfolio’s return on the nine Bai et al. (2018) risk factors.

Table 5 presents the nine-factor alphas of the bond and stock portfolios double-sorted on shareholder

advantage and distress risk. In Panels A to C, we use R&D intensity, the Herfindahl index, and asset

tangibility to proxy for shareholder advantage, respectively. In each panel, the column titled “Strong

(Weak) Shareholder Power” shows the alphas of those portfolios containing the 33% of firms with

the highest (lowest) shareholder advantage according to the proxy used in the panel. Remarkably,

the table suggests that, despite them being almost always significant, the declines in the bond alphas

over the distress portfolios are virtually unrelated to shareholder advantage. Using asset tangibility to

measure shareholder advantage, Panel C, for example, suggests that the decline in the value-weighted

bond alpha is 0.31% (t-statistic: –2.48) for strong shareholder advantage firms and 0.48% (t-statistic:

–2.38) for weak shareholder advantage firms. Looking at either value- or equally-weighted portfolios,

the two other proxies, R&D intensity and the Herfindahl index, yield similarly narrow differences in

the bond alpha declines over the set of distress portfolios (see Panels A and B).

Insert Table 5 here.

Turning to the stock portfolios, the situation changes dramatically. Supporting Garlappi et al.

12We only sort into two median portfolios in case of R&D intensity. We do so since, when following other studies and
setting missing R&D expenditures equal to zero, more than half of all firms have zero R&D expenditures, making it
impossible to sort into more granular (e.g., decile or quintile) portfolios.
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(2008), we find that the stock alpha declines over the distress portfolios are far more pronounced for

strong than weak shareholder advantage firms. Using the Herfindahl index to measure shareholder

advantage, Panel B, for example, suggests that the decline in the value-weighted stock alpha is 0.62%

(t-statistic: –2.05) for strong and 0.08% (t-statistic: –0.26) for weak shareholder advantage firms. Using

the two other two shareholder advantage proxies, we find similarly large differences between the two

types of firms (see Panels A and C). Notwithstanding, presumably due to the fact that we study a

relatively narrow cross-section of stocks, the stock alpha declines are often insignificant.

We next also run FM regressions of bond (alternatively, stock) returns over month t on combinations

of firm-level distress risk, the shareholder advantage proxies, interactions between firm-level distress

risk and the shareholder advantage proxies, and controls measured at the end of month t − 1. To

mitigate that the firm-level distress risk proxy is heavily right-skewed, we take its natural log before

entering it into the regressions. Also, instead of directly including the shareholder advantage proxies

in the regressions, we rely on dummy variables signalling that shareholder advantage is high according

to either shareholder advantage proxy. LowR&D is a dummy variable equal to one if a firm’s R&D

intensity is below the third quartile in a month, else zero; HighHSI is a dummy variable equal to

one if a firm operates in an industry with a Herfindahl index value above the median, else zero; and

LowTangibibility is a dummy variable equal to one if a firm’s asset tangibility is below the median in

a month, else zero. Table 6 reports the results from the regressions, with Panel A focusing on the

bond return regressions and Panel B on the stock return regressions. Plain numbers are monthly risk

premium estimates (in percent), while the numbers in square parentheses are t-statistics calculated

from Newey and West (1987) standard errors with a lag length of twelve months.

Insert Table 6 here.

Starting with the bond regressions in Panel A, model (1) suggests that, using only distress risk and

the controls as exogenous variables, distress risk earns a significantly negative premium of –26 basis

points per month (t-statistic: –3.23). Allowing the shareholder advantage proxies to independently or

jointly condition the negative distress premium, models (2) to (9) suggest that neither does so, with

no interaction term attracting an absolute t-statistic larger than 1.25. Turning to the stock regressions

in Panel B, model (1) suggests that using only distress risk and the controls as exogenous variables

produces a negative albeit insignificant relation between distress risk and stock returns (t-statistic:
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–0.48). More importantly, models (2) to (9) show that two shareholder advantage proxies suggest that

high shareholder advantage produces a significantly more negative distress risk-stock return relation,

consistent with Garlappi et al. (2008). In particular, model (3) shows that a low R&D intensity leads

the stock distress premium to decline by 30 basis points (t-statistic: –2.36), while model (5) shows that

operating in a high Herfindahl index industry lowers it by 25 basis points (t-statistic: –2.11). In contrast,

model (7) shows that a low asset tangibility does not affect the stock distress premium.

Overall, this section offers evidence that popular shareholder advantage proxies do not condition the

bond distress premium obtained in Section 3, despite them continuing to condition the same premium in

stocks even in our narrow cross-section and short sample period. Thus, shareholder advantage does not

offer a consistent explanation for the distress premia in stocks and corporate bonds.

5 Does Asset Risk Explain the Bond Distress Premium?

In this section, we ask whether real options models of the firm are more successful in explaining why stock

and corporate bond returns decrease with distress risk. Assuming investments are only partially reversible,

the models suggest that economically unprofitable firms are close to exercising their disinvestment options,

lowering their expected asset returns. Yet, if economic and financial distress change in tandem, disinvestment

options may also lead expected stock and debt returns to decline with financial distress. We first study

that possibility within a real options model in which the firm can gradually disinvest capacity. The model

is standard except for allowing the firm to be equity- and debt-financed. We next rerun our asset pricing

tests allowing the stock and bond distress premiums to depend on disinvestment proxies.

5.1 The Pricing of Distressed Debt Under Disinvestment

5.1.1 A Real Options Model of the Firm Allowing for Disinvestment

We study a modified version of the standard real options model of Aretz and Pope (2018), who extend

Pindyck’s (1988) model to allow for the gradual disinvestment of productive capacity. In the model, a

monopolistic firm operating in continuous time indexed by t optimally makes capacity and production

decisions to maximize profits from producing and instantaneously selling some quantity of a homogenous

output good. The firm has an initial productive capacity of K̄. Each capacity unit allows the firm to

21



produce and sell one unit of output per time unit, so that quantity, Q, is within {0; K̄}. Each output

unit is sold at a stochastic price, θ, evolving according to the differential equation:

dθ = (µ− δ)θdt+ σθdW, (5)

where µ is the total expected return, δ the dividend yield, and σ the volatility of the return of a

traded asset replicating the variations in price, and W is a Brownian motion. The variable costs of

producing Q units of output, C(Q), are: c1Q+ 1
2c2Q

2, while the fixed costs, F (K̄) are: fK̄, where

c1 ≥ 0, c2 ≥ 0, and f ≥ 0 are parameters. The firm’s total profits per time unit, π(Q), are then:

π(Q) = θQ− c1Q−
1

2
c2Q

2 − fK̄, (6)

implying that the firm maximizes profits by choosing Q = min( θ−c1c2
; K̄) in each instant. Finally, the

firm is able to sell off productive capacity for a unit price equal to s ≥ 0. In comparison to Aretz and

Pope (2018), the only differences between our model and theirs is that (i) we do not allow the firm to

expand its productive capacity, and (ii) we include fixed production costs F (K̄). In Appendix B, we

show how to derive the firm’s optimal disinvestment policy and how to value the firm.

Turning to the financing side of the model, we assume that the firm’s entire debt takes the form of

one single zero-coupon bond with a contractual payment of C and a maturity time of T . If the value

available to debtholders exceeds C at time T , shareholders pay off debtholders, and the firm continues

to exist. If it does not, the firm defaults and is liquidated. To satisfy their claims, debtholders have full

recourse to the firm’s productive assets at time T , but not past profits, which the firm instantaneously

distributes to shareholders as dividends. In addition, although the firm also instantaneously distributes

disinvestment proceeds to shareholders, debtholders are able to reclaim these proceeds in default if they

fall within a “suspect period” (a legally-defined period preceding the default time; see Wood (2007,

Chapter 17)). Using risk-neutral pricing, the value of debt, D(θ, C), is then:

D(θ, C) = EQ
[
e−r(T−t) min(C, V (θ(T ), K̄(T )) + S)

]
, (7)

where EQ is the risk-neutral expectation, r the risk-free rate, V (θ(T ), K̄(T )) the value of the remaining

productive capacity at time T , and S the compounded-up value of the disinvestment proceeds that
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fell within the suspect period. Conversely, Cox and Rubinstein (1985) show that the instantaneous

expected debt return is ∂D(θ,C)
∂θ × θ

D(θ,C) multiplied by the expected excess return of the asset replicating

variations in the price θ. Given that there is no closed-form solution for the expectation in Equation (7),

we use Monte Carlo simulations to find the value and expected return of the debt claim.

We also calculate the equity value using a discounted risk-neutral expectation. Having done so, we

again use Cox and Rubinstein’s (1985) formula to derive the expected equity return.

5.1.2 Monte Carlo Simulation Results

We use Monte Carlo simulations to find out whether the real options model can produce negative relations

between distress risk and both expected stock and debt returns, using 100,000 iterations for each set of

parameters. We assume that the firm starts with an initial capacity, K̄, of 1.00. Also, we set the total

expected return, µ, the dividend yield, δ, and the volatility, σ, of the price replication asset equal to 16%,

4%, and 30%, respectively, while we set the production cost parameters, c1, c2, and f , equal to 0.00, 0.30,

and 0.20, respectively. The zero-coupon bond has a contractual payment, C, of 10 and a maturity time,

T , of 2.00. To vary the attractiveness of disinvestment, we set the disinvestment price, s, to 0.00, 4.00, or

8.00. We assume that shareholders capture disinvestment proceeds over the first year, but debtholders

over the second. To vary the firm’s economic (and also financial) health, we choose an initial price, θ,

between 0.45 and 2.50, where 0.45 is slightly above the level below which the firm would instantaneously

start disinvesting when the disinvestment price is at its highest value (s = 8.00).

Figure 4 plots the results from the simulation exercise, with Panels A, B, and C displaying the

expected asset, equity, and debt return, respectively. Panel A suggests that the expected asset return

increases (decreases) with the firm’s economic health when the disinvestment price is low (high), in line

with Aretz and Pope’s (2018) main conclusions. The intuition is that when firms have disinvestment

options and are close to exercising them, disinvestment options reduce asset risks and produce lower

expected asset returns. Panels B and C reveal that disinvestment options also reduce the expected stock

and debt returns of economically distressed firms since the benefits from disinvestment can accrue to both

shareholders and debtholders. Taken together, the real options model thus confirms that disinvestment

options can explain why both stock and bond returns decrease with distress risk.
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Figure 4: Disinvestment Option and Expected Asset, Stock, and Debt Returns

The figure shows the expected asset returns (Panel A), stock returns (Panel B), and debt returns (Panel C) over

differenct economic health conditions of firms in a modified version of the standard real options model of Aretz and

Pope (2018) with a disinvestment attractiveness (s) of either 0.00, 4.00, or 8.00. We describe the simulations and

analytical formulas used to create the figure in Section 5.1 and Appendix B, respectively.

5.2 Conditioning the Bond Distress Premium on Disinvestment Options

Section 5.1 offers theoretical evidence that disinvestment options may be behind the negative relations

between distress risk and both stock and corporate bond returns. To empirically test that possibility,

we condition the stock and bond distress premia obtained in Section 3 on two disinvestment option

value proxies, gross profitability and the extent to which a firm’s installed capacity exceeds its optimal

capacity (“capacity overhang”). A low gross profitability and high capacity overhang signal that a

firm is economically unprofitable, suggesting that its disinvestment options are deep in-the-money. In

line with Novy-Marx (2013), we calculate a firm’s gross profitability as the ratio of the difference

between its sales and costs of good sold (“gross profits”) to its total assets. We take the values of the

accounting variables from the fiscal year ending in calendar year t − 1 and use the calculated ratio

from July of calendar year t to June of calendar year t+ 1. In line with Aretz and Pope (2018), we

use a recursively estimated stochastic frontier model to measure capacity overhang. The stochastic

frontier model decomposes a firm’s installed capacity into the sum of an optimal capacity estimate and

a positively-signed capacity overhang residual. Installed capacity is proxied for using the log of the sum

of PPE and long-term intangibles. Conversely, optimal capacity is a linear function of optimal capacity

determinants (as, e.g., log sales, log costs of goods sold, and stock volatility) and a normally-distributed

mean-zero error term. Finally, the capacity overhang residual is a normally-distributed error term
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truncated from below at zero. Crucially, the expectation of that residual is a linear function of capacity

overhang determinants (as, e.g., the percent decline in sales over some past period if positive, else

zero). We provide more details about the capacity overhang variable in Appendix B.

We again start with portfolio sorts to estimate the conditioning effect of disinvestment option

value on the bond and stock distress premia. To do so, we sort our bond sample (alternatively, the

associated stock sample) into portfolios according to the tercile breakpoints of each disinvestment

value proxy at the end of month t− 1. Within each disinvestment value portfolio, we next sort the

same assets into portfolios according to the quintile breakpoints of firm-level distress risk at the end of

month t− 1, giving us portfolios double-sorted on disinvestment value and distress risk. As before, we

either value- or equally-weight the portfolios and hold them over month t. We form a high-minus-low

distress spread portfolio within each disinvestment value portfolio, once again adjusting the spread

portfolio for risk by regressing its return on the nine Bai et al. (2018) factors.

Table 7 presents the nine-factor alphas of the bond and stock portfolios double-sorted on disinvestment

value and distress risk, with Panel A using gross profitability and Panel B capacity overhang to measure

disinvestment value. In each panel, the column titled “High (Low) Disinvestment Value” shows the alphas

of those portfolios containing the 33% of firms with the highest (lowest) disinvestment values according

to the proxy used in the panel. Starting with the bond portfolios, we see that a higher disinvestment

value predicts a more negative distress risk-bond return relation. For example, Panel A suggests that,

while the value-weighted bond distress spread portfolio has a mean monthly return of –0.24% (t-statistic:

–2.65) for high gross-profitability (i.e., low disinvestment value) stocks, the same portfolio attracts a more

than double mean return of –0.57% (t-statistic: –2.55) for low gross-profitability (i.e., high disinvestment

value) stocks. In the same vein, Panel B suggests that the mean return of that spread portfolio is –0.25%

(t-statistic: –3.04) for low capacity overhang (i.e., low disinvestment value) stocks, but a much higher

–0.42% (t-statistic: –2.38) for high capacity overhang (i.e., high disinvestment value) stocks.

Insert Table 7 here.

Importantly, the table shows that the conditioning effect of disinvestment value on the distress

risk-stock return relation is also negative in three out of four cases. For example, Panel A suggests

that, while the equally-weighted stock distress spread portfolio has a mean monthly return of 0.17%
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(t-statistic: 0.78) for high gross-profitability (i.e., low disinvestment value) stocks, the same portfolio

attracts a much lower mean return of –0.10% (t-statistic: –0.33) for low gross-profitability (i.e., high

disinvestment value) stocks. However, presumably again due to us studying a narrow cross-section of

stocks over a short sample period, the stock spread portfolios never attract a significant alpha for

either the high or low disinvestment value stocks (most negative t-statistic: –1.10).

Table 8 presents the results from FM regressions of bond (Panel A) or stock (Panel B) returns

over month t on combinations of distress risk, the disinvestment value proxies, interactions between

these variables, and control variables at the end of month t− 1. Running the FM regressions, we are

able to test for the significance of the conditioning effect of disinvestment value on the bond or stock

distress premium. To alleviate skewness and kurtosis effects, we take the log of distress risk and the

disinvestment value proxies before entering them into the regressions. As before, instead of directly

including the disinvestment value proxies in the regressions, we again rely on dummy variables signalling

that a firm is close to exercising its disinvestment options according to either proxy. LowGrossProfits

is a dummy variable equal to one if a firm’s gross profitability is below the median, else zero; and

HighOverhang is a dummy variable equal to one if a firm’s capacity overhang is above the median, else

zero. The control variables are exactly the same as those also used in Table 6.

Starting with the bond regressions, Panel A suggests that a higher disinvestment value significantly

decreases the distress risk-bond return relation. Using either disinvestment value proxy, columns (3)

and (5), for example, show that a lower gross profitability (signalling a higher disinvestment value)

decreases the bond distress premium by 0.27% per month (t-statistic: –2.08), while a higher capacity

overhang (also signalling a higher value) decreases that premium by 0.17% (t-statistic: –1.98). Jointly

using the disinvestment value proxies, column (6) suggests that only gross profitability, but not capacity

overhang, significantly conditions the distress premium in bonds.

Insert Table 8 here.

Turning to the stock regressions, Panel B suggests that gross profitability, but not capacity overhang,

also significantly conditions the distress risk-stock return relation with the anticipated sign in the model

featuring both disinvestment value proxies (see column (6)). However, likely as a result of the limited

sample size in these tests, the other conditioning effects fail to attract significance.
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Overall, our empirical findings in this section suggest that low gross profitability or high capacity

overhang, both signalling valuable disinvestment options, can go some way toward explaining the

negative distress risk-bond return relation, as suggested by real options models of the firm. Alas, the

same variables lack power to explain the distress risk-stock return relation in the subsample of stocks

associated with our bond sample. In the next section, we thus study the variables’ ability to explain

that relation in a more comprehensive cross-section of stocks over a longer sample period.

6 Robustness Test

Since our idea to explain the negative relations between distress risk and the cross-sections of stock and

corporate bond returns using disinvestment options is new to the literature, it is somewhat unnatural to

immediately test that idea on the subsample of stocks of firms that also have bonds outstanding. To

remedy that problem, we next estimate the conditioning effect of disinvestment options on the distress

risk-stock return relation using a more comprehensive cross-section of stocks over a longer sample

period. In particular, we now consider the entire cross-section of CRSP common stocks traded on the

NYSE, AMEX, and Nasdaq over the 1981 to 2017 sample period.13 In line with other studies, we exclude

financial (SIC code: 6000-6999) and utility stocks (4900-4949). To alleviate market microstructure biases,

we further exclude stocks with a one-month-lagged market capitalization in the bottom quartile from

both the equally-weighted portfolios and the FM regressions (see Hou et al. (2016)).

Table 9 presents the mean returns, alphas, and characteristics of value-weighted (Panel A) and

equally-weighted distress risk portfolios (Panel B) formed using the same conventions as in Table 2, but

featuring the more comprehensive cross-section of stocks over the longer sample period. Corroborating

the evidence of Campbell et al. (2008), the main message of the table is that the more comprehensive

data also produces a distress anomaly, which typically becomes significant when we control for the

Fama-French (1993) three factors or the Bai et al. (2019) nine factors. More importantly, Table 10

shows the results from repeating the FM regressions conditioning the distress risk-stock return relation

on the disinvestment proxies (gross profitability and capacity overhang) in Table 8 using the more

comprehensive data. The table shows that a lower gross profitability (signalling a higher disinvestment

value) yields a significantly more negative stock distress premium (see columns (3) and (6)), while it

13The starting point of the longer sample period is dictated by the availability of the distress risk proxy.
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does not suggest that capacity overhang significantly conditions that premium.

Insert Table 9 here.

Insert Table 10 here.

In sum, the stock pricing tests conducted on the more comprehensive sample over the longer

sample period thus offer some more evidence that operating profitability significantly conditions the

distress risk-stock return relation, but, unfortunately, not that capacity overhang does the same.

7 Conclusion

We offer empirical evidence suggesting a negative relation between firm-level distress risk and the

cross-section of corporate bond returns, similar to the often negative relation between distress risk

and stock returns obtained in prior studies. The negative distress risk-bond return relation becomes

economically larger and statistically significant when controlling for popular stock and bond pricing

factors, shows up in both value- and equally-weighted portfolio sorts and FM regressions, and is not

attributable to distressed firms issuing higher-quality bonds than safer firms. Combining stock and

bond returns to calculate a proxy for the asset return, we further offer evidence that distress risk is

also negatively, albeit less significantly so, related to the cross-section of asset returns.

Our findings have important implications for the literature. In particular, they are first in casting

some doubt on shareholder advantage explaining the distress anomaly, in particular, and shareholder

advantage theories, in general. They do so since, as we show, shareholder advantage theories are unable

to produce a negative relation between distress risk and debt returns. Consistent with that observation,

popular shareholder advantage proxies fail to condition the bond distress premium estimate in our

empirical work. We finally show that real options asset pricing models are more promising to explain

why both stock and bond returns decrease with distress risk. These models predict that disinvestment

options can lead asset returns to decrease with distress risk, with the low asset returns likely dragging

down stock and bond returns, too. Supporting these models, disinvestment value proxies have some

ability to condition the relations between distress risk and both stock and bond returns.

28



References

Acharya, V., Sundaram, R.K., John, K., 2011. Cross-country variations in capital-structures: The
role of bankruptcy codes. Journal of Financial Intermediation 20, 25–54.

Altman, E.I., 1968. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy.
The Journal of Finance 23, 589–609.

Anginer, D., Yildizhan, C., 2018. Is there a distress risk anomaly? pricing of systematic default risk
in the cross-section of equity returns. Review of Finance 22, 633–660.

Aretz, K., Florackis, C., Kostakis, A., 2018. Do stock returns really decrease with default risk? new
international evidence. Management Science 64, 3821–3842.

Aretz, K., Pope, P.F., 2018. Real options models of the firm, capacity overhang, and the cross
section of stock returns. The Journal of Finance 73, 1363–1415.

Avramov, D., Chordia, T., Jostova, G., Philipov, A., 2009. Credit ratings and the cross-section of
stock returns. Journal of Financial Markets 12, 469–499.

Bai, J., Bali, T.G., Wen, Q., 2018. Common risk factors in the cross-section of corporate bond
returns. Journal of Financial Economics, Forthcoming .

Bali, T.G., Subrahmanyam, A., Wen, Q., 2019a. The economic uncertainty premium in the corporate
bond market. Working Paper .

Bali, T.G., Subrahmanyam, A., Wen, Q., 2019b. Long-term reversals in the corporate bond market.
Working Paper .

Bao, J., Pan, J., Wang, J., 2011. The illiquidity of corporate bonds. The Journal of Finance 66,
911–946.

Bessembinder, H., Kahle, K.M., Maxwell, W.F., Xu, D., 2009. Measuring abnormal bond performance.
Review of Financial Studies 22, 4219–4258.

Bessembinder, H., Maxwell, W., Venkataraman, K., 2006. Market transparency, liquidity externalities,
and institutional trading costs in corporate bonds. Journal of Financial Economics 82, 251–288.

Bharath, S.T., Shumway, T., 2008. Forecasting default with the merton distance to default model.
The Review of Financial Studies 21, 1339–1369.

Campbell, J.Y., Hilscher, J., Szilagyi, J., 2008. In search of distress risk. The Journal of Finance 63,
2899–2939.

Carhart, M.M., 1997. On persistence in mutual fund performance. The Journal of Finance 52,
57–82.

Chava, S., Jarrow, R.A., 2004. Bankruptcy prediction with industry effects*. Review of Finance 8,
537–569.

Da, Z., Gao, P., 2010. Clientele change, liquidity shock, and the return on financially distressed
stocks. Journal of Financial and Quantitative Analysis 45, 27–48.

Dichev, I.D., 1998. Is the risk of bankruptcy a systematic risk? The Journal of Finance 53, 1131–1147.

29



Dixit, A.K., Pindyck, R.S., 1994. Investment under Uncertainty. Princeton University Press,
Princeton, N.J.

Fama, E., MacBeth, J.D., 1973. Risk, return, and equilibrium: Empirical tests. Journal of Political
Economy 81, 607–36.

Fama, E.F., French, K.R., 1992. The cross-section of expected stock returns. The Journal of Finance
42, 427–465.

Fama, E.F., French, K.R., 1993. Common risk factors in the returns on stocks and bonds. Journal
of Financial Economics 33, 3–56.

Fan, H., Sundaresan, S.M., 2000. Debt valuation, renegotiation, and optimal dividend policy. The
Review of Financial Studies 13, 1057–1099.

Favara, G., Schroth, E., Valta, P., 2012. Strategic default and equity risk across countries. The
Journal of Finance 67, 2051–2095.

Garlappi, L., Shu, T., Yan, H., 2008. Default risk, shareholder advantage, and stock returns. The
Review of Financial Studies 21, 2743–2778.

Garlappi, L., Yan, H., 2011. Financial distress and the cross-section of equity returns. The Journal
of Finance 66, 789–822.

George, T.J., Hwang, C.Y., 2010. A resolution of the distress risk and leverage puzzles in the cross
section of stock returns. Journal of Financial Economics 96, 56–79.

Griffin, J.M., Lemmon, M.L., 2002. Book-to-market equity, distress risk, and stock returns. The
Journal of Finance 57, 2317–2336.

Gu, L., Hackbarth, D., Johnson, T., 2018. Inflexibility and stock returns. The Review of Financial
Studies 31, 278–321.

Guthrie, G., 2011. A note on operating leverage and expected rates of return. Finance Research
Letters 8, 88–100.

Hackbarth, D., Haselmann, R., Schoenherr, D., 2015. Financial distress, stock returns, and the 1978
bankruptcy reform act. Review of Financial Studies 28, 1810–1847.

Hackbarth, D., Johnson, T., 2015. Real options and risk dynamics. The Review of Economic Studies
82, 1449–1482.

Hou, K., Xue, C., Zhang, L., 2016. A comparison of new factor models. Working Paper .

Jostova, G., Nikolova, S., Philipov, A., Stahel, C., 2013. Momentum in corporate bond returns.
Review of Financial Studies 20, 1649–1693.

Merton, R.C., 1974. On the pricing of corporate debt: The risk structure of interest rates. The
Journal of Finance 29, 449–470.

Newey, W.K., West, K.D., 1987. A simple, positive semi-definite, heteroskedasticity and autocorre-
lation consistent covariance matrix. Econometrica 55, 703–708.

Novy-Marx, R., 2013. The other side of value: The gross profitability premium. Journal of Financial
Economics 108, 1–28.

30



O’Doherty, M.S., 2012. On the conditional risk and performance of financially distressed stocks.
Management Science 58, 1502–1520.

Ohlson, J.A., 1980. Financial ratios and the probabilistic prediction of bankruptcy. Journal of
Accounting Research 18, 109–131.

Opler, T.C., Titman, S., 1994. Financial distress and corporate performance. The Journal of Finance
49, 1015–1040.

Pastor, L., Stambaugh, R.F., 2003. Liquidity risk and expected stock returns. Journal of Political
Economy 111, 642–685.

Shleifer, A., Vishny, R.W., 1992. Liquidation values and debt capacity: A market equilibrium
approach. The Journal of Finance 47, 1343–1366.

Shumway, T., 1997. The delisting bias in crsp data. The Journal of Finance 52, 327–340.

Shumway, T., 2001. Forecasting bankruptcy more accurately: A simple hazard model. The Journal
of Business 74, 101–124.

Shumway, T., Warther, V.A., 1999. The delisting bias in crsp’s nasdaq data and its implications for
the size effect. The Journal of Finance 54, 2361–2379.

Vassalou, M., Xing, Y., 2004. Default risk in equity returns. The journal of finance 59, 831–868.

31



T
a
b
le

1
:
D
e
sc
ri
p
ti
v
e
S
ta

ti
st
ic
s

In
th

is
ta

b
le

,
w

e
p
re

se
n
t

d
es

cr
ip

ti
v
e

st
a
ti

st
ic

s
fo

r
o
u
r

a
n
a
ly

si
s

va
ri

a
b
le

s.
P

a
n
el

A
re

p
o
rt

s
th

e
n
u
m

b
er

o
f

b
o
n
d
-m

o
n
th

o
b
se

rv
a
ti

o
n
s,

th
e

cr
o
ss

-s
ec

ti
o
n
a
l

m
ea

n
,

m
ed

ia
n
,

st
a
n
d
a
rd

d
ev

ia
ti

o
n
,

a
n
d

se
le

ct
ed

p
er

ce
n
ti

le
s

o
f

th
e

m
o
n
th

ly
co

rp
o
ra

te
b

o
n
d

re
tu

rn
,

a
n
d

b
o
n
d

ch
a
ra

ct
er

is
ti

cs
in

cl
u
d
in

g
th

e
m

o
st

re
ce

n
t

cr
ed

it
ra

ti
n
g
,

th
e

y
ea

rs
-u

n
ti

l-
m

a
tu

ri
ty

,
a
n
d

th
e

m
a
rk

et
si

ze
(i

n
b
il
li
o
n
s)

.
T

h
e

cr
ed

it
ra

ti
n
g

is
a
n

in
te

g
er

b
et

w
ee

n
o
n
e

a
n
d

2
1
,

w
it

h
o
n
e

re
fe

rr
in

g
to

a
tr

ip
le

A
ra

ti
n
g

a
n
d

2
1

to
a

C
ra

ti
n
g
.

P
a
n
el

B
re

p
or

ts
th

e
n
u
m

b
er

of
st

o
ck

-m
on

th
ob

se
rv

at
io

n
s,

th
e

cr
os

s-
se

ct
io

n
al

m
ea

n
,

m
ed

ia
n
,

st
an

d
ar

d
d
ev

ia
ti

on
an

d
se

le
ct

ed
p

er
ce

n
ti

le
s

of
th

e
m

on
th

ly
st

o
ck

re
tu

rn
,

an
d

st
o
ck

ch
ar

ac
te

ri
st

ic
s

in
cl

u
d
in

g
m

ar
ke

t
si

ze
(i

n
b
il
li
on

s)
.

P
an

el
C

re
p

or
ts

fi
rm

ch
ar

ac
te

ri
st

ic
s.

D
is

tr
es

s
ri

sk
is

th
e

p
ro

b
ab

il
it

y
th

at
th

e
fi

rm
fa

il
s

ov
er

th
e

co
m

in
g

tw
el

ve
m

on
th

s,
ca

lc
u
la

te
d

u
si

n
g

th
e

m
et

h
o
d
ol

og
y

of
C

am
p
b

el
l

et
al

.
(2

00
8)

.
B

o
ok

le
ve

ra
ge

is
th

e
ra

ti
o

of
b

o
ok

as
se

ts
to

b
o
ok

eq
u
it

y,
an

d
m

ar
ke

t
le

ve
ra

ge
is

th
e

ra
ti

o
of

b
o
ok

as
se

ts
to

m
a
rk

et
eq

u
it

y.
A

ss
et

si
ze

is
th

e
b

o
o
k

va
lu

e
o
f

th
e

fi
rm

’s
to

ta
l

a
ss

et
s,

m
ea

su
re

d
in

b
il
li
o
n
s.

T
h
e

sa
m

p
le

p
er

io
d

is
fr

o
m

J
u
ly

2
0
0
2

to
J
u
n
e

2
0
1
7
.

S
ta

n
d

ar
d

P
er

ce
n
ti

le
s

O
b

s
M

ea
n

D
ev

ia
ti

on
1

5
25

50
75

95
99

P
an

el
A

:
B

on
d

C
h

ar
ac

te
ri

st
ic

s

R
et

u
rn

(%
)

5
56

,9
6
5

0.
62

4.
48

–9
.5

1
–3

.6
8

–0
.5

1
0.

44
1.

69
5.

13
11

.3
9

C
re

d
it

R
a
ti

n
g

55
6
,9

65
7.

49
3.

49
1.

00
1.

00
5.

00
7.

00
9.

50
14

.5
0

16
.0

0

T
im

e-
to

-M
a
tu

ri
ty

(y
ea

rs
)

5
5
6,

96
5

9.
63

8.
82

1.
17

1.
62

3.
72

6.
55

11
.1

3
27

.9
7

29
.9

3

M
a
rk

et
S
iz

e
(i

n
b

il
li

on
s)

5
56

,9
6
5

0.
57

0.
61

0.
00

0.
01

0.
25

0.
40

0.
75

1.
75

3.
00

P
an

el
B

:
S

to
ck

C
h

ar
ac

te
ri

st
ic

s

R
et

u
rn

(%
)

5
56

,9
6
5

0.
96

10
.2

1
–2

7.
05

–1
3.

15
–3

.4
9

0.
96

5.
31

14
.3

3
28

.4
5

M
a
rk

et
S
iz

e
(i

n
b

il
li

on
s)

5
56

,9
6
5

58
.6

0
82

.7
0

0.
23

1.
12

7.
34

21
.6

0
70

.2
0

24
0.

00
36

4.
00

P
an

el
C

:
F

ir
m

C
h

ar
ac

te
ri

st
ic

s

D
is

tr
es

s
R

is
k

(%
)

55
6
,9

65
0.

09
0.

32
0.

01
0.

01
0.

03
0.

04
0.

06
0.

21
1.

14

B
o
o
k

L
ev

er
a
ge

55
6
,9

65
6.

71
26

.1
1

1.
41

1.
66

2.
26

3.
19

6.
92

16
.1

2
32

.2
4

M
a
rk

et
L

ev
er

a
g
e

5
56

,9
6
5

4.
23

6.
51

0.
28

0.
49

1.
11

1.
94

4.
00

17
.0

7
32

.2
5

A
ss

et
S

iz
e

(i
n

b
il

li
o
n

s)
5
56

,9
6
5

25
5.

22
52

3.
35

0.
70

2.
41

12
.9

4
39

.1
2

17
8.

35
17

87
.6

3
22

65
.7

9

32



Table 2: Bond and Stock Portfolios Univariately Sorted on Firm-Level Distress Risk

In this table, we present the mean excess returns and alphas of bond and stock portfolios univariately sorted on firm-level
distress risk. We form the portfolios by sorting either bonds or stocks into portfolios according to the decile breakpoints
of our firm-level distress risk proxy at the end of month t− 1. The firm-level distress risk proxy is Campbell et al.’s (2008)
hazard-model probability that a firm fails over the coming twelve months. We either value- (Panel A) or equally-weight the
portfolios (Panel B) and hold them over month t. We calculate the bond weights using notional bond values outstanding
and the stock weights using market equity values. We also form a spread portfolio long the highest distress risk decile and
short the lowest (“High–Low”). The table reports the time-series average of the cross-sectional averages of distress risk,
the average numbers of bonds/stocks per portfolio, and the average excess bond/stock returns, Fama-French five-factor
alphas and Bai et al. (2019) nine-factor alphas for each bond/stock portfolio. Average distress risk, the average excess
returns, and the alphas are in monthly percentage terms. We obtain the alphas from regressing a portfolio’s return
on the relevant factors and reporting the intercept from that regression. The five-factor model factors are the excess
stock market return (MKTStock), the size factor (SMB), the value factor (HML), the term factor (TERM) and the
default factor (DEF). The nine-factor model adds to these the stock momentum factor (MOMStock), the stock liquidity
risk factor (LIQ), the bond market factor (MKTBond) and the bond momentum factor (MOMBond). Newey and West
(1987)-adjusted t-statistics calculated using a twelve-month lag-length are given in parentheses.

Bonds Stocks

Mean Mean Mean Mean
Dist. # Mean FF5 B9 Dist. # Mean FF5 B9

Decile Risk Bonds Return Alpha Alpha Risk Stocks Return Alpha Alpha

Panel A: Value-Weighted Distress Risk Portfolios

1 (L) 0.01 377 0.56 0.49 0.21 0.01 71 0.45 –0.10 –0.12
2 0.02 384 0.50 0.46 0.14 0.02 71 0.58 0.06 0.06
3 0.03 382 0.60 0.54 0.20 0.03 71 0.56 –0.03 –0.08
4 0.03 382 0.50 0.42 0.08 0.03 71 0.65 –0.01 –0.08
5 0.04 383 0.46 0.37 0.04 0.04 71 0.81 0.12 0.10
6 0.05 382 0.45 0.31 –0.06 0.05 71 0.92 0.20 0.13
7 0.07 387 0.48 0.35 0.02 0.06 71 0.87 0.08 0.02
8 0.09 382 0.42 0.26 –0.10 0.09 71 0.65 –0.22 –0.24
9 0.14 388 0.45 0.23 –0.15 0.15 71 0.72 –0.15 –0.17
10 (H) 0.51 408 0.47 0.07 –0.34 0.76 72 0.33 –1.07 –1.12

H–L –0.09 –0.41 –0.55 –0.13 –0.97 –1.01
t-stat. [–0.34] [–2.32] [–2.69] [–0.15] [–1.92] [–2.18]

Panel B: Equally-Weighted Distress Risk Portfolios

1 (L) 0.01 377 0.58 0.51 0.26 0.01 71 0.73 0.11 0.05
2 0.02 384 0.53 0.48 0.19 0.02 71 0.75 0.13 0.07
3 0.03 382 0.64 0.58 0.27 0.03 71 0.80 0.12 0.05
4 0.03 382 0.57 0.50 0.17 0.03 71 0.89 0.16 0.05
5 0.04 383 0.48 0.40 0.12 0.04 71 1.10 0.31 0.19
6 0.05 382 0.52 0.40 0.01 0.05 71 1.17 0.35 0.26
7 0.07 387 0.52 0.39 0.09 0.06 71 1.00 0.11 –0.02
8 0.09 382 0.49 0.30 –0.12 0.09 71 1.07 0.03 –0.03
9 0.14 388 0.52 0.30 –0.11 0.15 71 1.08 –0.03 –0.20
10 (H) 0.51 408 0.52 0.10 –0.35 0.76 72 1.01 –0.57 –0.72

H–L –0.05 –0.41 –0.62 0.28 –0.68 –0.77
t-stat. [–0.17] [–2.07] [–2.72] [0.30] [–1.09] [–1.81]
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Table 3: Bond Portfolios Double-Sorted on Firm- and Bond-Distress Risk

In this table, we present the nine-factor model alphas of bond portfolios double-sorted on firm- and bond-level distress risk.
In Panel A, we form the portfolios by sorting bonds into portfolios according to their most recent credit rating at the end
of month t− 1. Within each credit rating portfolio, we then sort into portfolios according to the quintile breakpoints of
our firm-level distress risk proxy at the same time. In Panel B, we reverse the exercise, first sorting into quintile firm-level
distress risk portfolios and then into credit-rating portfolios. The firm-level distress risk proxy is Campbell et al.’s (2008)
hazard-model probability that a firm fails over the coming twelve months. The credit rating is an integer between one
and 21, with one referring to a triple A rating and 21 to a C rating. Investment grade bonds have numbers from 1 to 10,
speculative bonds from 11 to 13, highly speculative bonds from 14 to 16, and junk bonds from 17 to 21. We either value-
(Panels A.1 and B.1) or equally-weight the portfolios (Panels A.2 and B.2) and hold them over month t. We calculate the
bond weights using notional bond values outstanding and the stock weights using market equity values. Within each
first-sorting-variable portfolio, we form a spread portfolio long the highest second-sorting-variable portfolio and short the
lowest (“High–Low”). The table shows the average number of bonds per portfolio and the Bai et al. (2018) nine-factor
alpha, in monthly percentage terms. See the caption of Table 2 for details on how we calculate the nine-factor model
alpha. Newey and West (1987)-adjusted t-statistics calculated using a twelve-month lag-length are in parentheses.

Panel A: First Sorting Variable: Credit Rating; Second: Distress Risk

Credit Rating

Investment Highly
Grade Speculative Speculative Junk

Distress Risk Obs Alpha Obs Alpha Obs Alpha Obs Alpha

Panel A.1: Value-Weighted Distress Risk Portfolios

1 (Low Distress) 605 0.15 99 0.31 39 0.34 33 0.55
2 600 0.13 97 0.17 38 0.14 33 0.36
3 602 –0.02 97 0.18 38 0.13 32 0.36
4 595 –0.13 97 0.10 38 0.02 33 0.01
5 (High Distress) 565 –0.29 95 –0.16 37 –0.36 31 –0.73

High–Low –0.43 –0.47 –0.70 –1.28
t-statistic [–2.58] [–2.74] [–2.73] [–3.05]

Panel A.2: Equally-Weighted Distress Risk Portfolios

1 (Low Distress) 605 0.20 99 0.32 39 0.41 33 0.61
2 600 0.21 97 0.22 38 0.28 33 0.38
3 602 0.05 97 0.24 38 0.24 32 0.38
4 595 –0.13 97 0.16 38 0.14 33 0.02
5 (High Distress) 565 –0.30 95 –0.15 37 –0.29 31 –0.74

High–Low –0.50 –0.47 –0.70 –1.34
t-statistic [–2.47] [–2.81] [–2.72] [–3.10]
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Table 3 continued

Panel B: First Sorting Variable: Distress Risk; Second: Credit Rating

Distress Risk

Q1 Q2 Q3 Q4

Credit Rating Obs Alpha Obs Alpha Obs Alpha Obs Alpha

Panel B.1: Value-Weighted Distress Risk Portfolios

Investment Grade 756 0.15 747 0.08 744 –0.12 708 –0.27
Speculative 122 0.23 123 0.10 125 0.15 138 –0.12
Highly Speculative 44 0.26 44 0.09 45 –0.04 45 –0.22
Junk 42 0.57 42 0.30 42 0.32 36 –0.14

High–Low 0.42 0.22 0.44 0.13
t-statistic [4.52] [1.87] [3.39] [0.51]

Panel B.2: Equally-Weighted Distress Risk Portfolios

Investment Grade 756 0.20 747 0.17 744 –0.09 708 –0.29
Speculative 122 0.27 123 0.18 125 0.18 138 –0.06
Highly Speculative 44 0.33 44 0.18 45 0.09 45 –0.20
Junk 42 0.62 42 0.44 42 0.37 36 –0.08

High–Low 0.42 0.26 0.46 0.21
t-statistic [4.69] [2.79] [2.89] [0.88]
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Table 4: Asset Portfolios Univariately Sorted on Firm-Level Distress Risk

In this table, we present the nine-factor model alphas of portfolios of firms’ assets univariately sorted on firm-level distress
risk. We form the portfolios by sorting assets into portfolios according to the decile breakpoints of our firm-level distress risk
proxy at the end of month t − 1. We calculate a firm’s asset return as a value-weighted average of its common stock
return and its aggregate bond return. We either use the book values of equity and total liabilities (“book leverage asset
return”) or the market value of equity and the book value of total liabilities to compute the weights (“market leverage
asset return”). The aggregate bond return is a value-weighted average of the returns on all of the firm’s outstanding
bond issues, using notional amounts to calculate the weights. The firm-level distress risk proxy is Campbell et al.’s
(2008) hazard-model probability that a firm fails over the coming twelve months. We either value- or equally-weight the
portfolios and hold them over month t. We also form a spread portfolio long the highest distress risk decile and short the
lowest (“High–Low”). The table reports the time-series average of the cross-sectional averages of distress risk, the average
numbers of assets per portfolio, and the Bai et al. (2019) nine-factor alphas per portfolio. Average distress risk and the
alphas are in monthly percentage terms. See the caption of Table 2 for details on how we calculate the nine-factor model
alpha. Newey and West (1987)-adjusted t-statistics calculated using a twelve-month lag-length are in parentheses.

Value-Weighted Portfolios Equally-Weighted Portfolios

Book Lev. Market Lev. Book Lev. Market Lev.
Mean Mean Asset Return Asset Return Asset Return Asset Return
Dist. # 9 Factor 9 Factor 9 Factor 9 Factor

Decile Risk Firms Alpha Alpha Alpha Alpha

1 (L) 0.01 54 0.31 0.50 0.26 0.28
2 0.02 53 0.30 0.36 0.26 0.31
3 0.02 54 0.25 0.34 0.22 0.29
4 0.03 53 0.23 0.27 0.22 0.25
5 0.04 53 0.28 0.31 0.29 0.35
6 0.04 54 0.24 0.29 0.22 0.32
7 0.06 54 0.24 0.32 0.22 0.24
8 0.08 54 0.14 0.09 0.18 0.19
9 0.12 54 0.36 0.35 0.21 0.17
10 (H) 0.54 53 0.09 0.12 0.01 -0.01

High–Low –0.22 –0.38 –0.24 –0.28
t-statistic [–1.24] [–1.90] [–1.98] [–1.88]
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Table 5: Bond and Stock Portfolios Double-Sorted on Firm-Level Distress Risk and
Shareholder Advantage

In this table, we present the nine-factor model alphas of bond and stock portfolios double-sorted on firm-level distress
risk and shareholder advantage. We form the portfolios by first sorting bonds or stocks into portfolios according to the
tercile breakpoints of one of the shareholder advantage proxies at the end of month t − 1. Within each shareholder
advantage portfolio, we then sort them into portfolios according to the quartile breakpoints of our firm-level distress risk
proxy at the same time. The firm-level distress risk proxy is Campbell et al.’s (2008) hazard-model probability that a
firm fails over the coming twelve months. The shareholder advantage proxy is R&D intensity (Panel A), the sales-based
Herfindahl index (Panel B), and asset tangibility (Panel C), with a low R&D intensity, a high Herfindahl index, and a
low asset tangibility indicating strong shareholder advantage. R&D intensity is R&D expenses scaled by total assets.
The Herfindahl index is the sum over firms’ squared sales proportions within an industry. Asset tangibility is gross
PP&E scaled by total assets. In case of R&D intensity, we are only able to sort into two (median-based) shareholder
advantage portfolios since most firms have a zero R&D intensity. We either value- or equally-weight the portfolios and
hold them over month t. We calculate the bond weights using notional bond values outstanding and the stock weights
using market equity values. Within each shareholder advantage portfolio, we form a spread portfolio long the highest
distress risk portfolio and short the lowest (“High–Low”). The table shows the Bai et al. (2018) nine-factor alphas for
those double-sorted portfolios within the highest or lowest shareholder advantage portfolio. The alphas are in monthly
percentage terms. See the caption of Table 2 for details on how we calculate the nine-factor model alpha. Newey and
West (1987)-adjusted t-statistics calculated using a twelve-month lag-length are in parentheses.

Value-Weighted Portfolios Equally-Weighted Portfolios

Bonds Stocks Bonds Stocks
Shareholder Power Shareholder Power Shareholder Power Shareholder Power

Portfolio Strong Weak Strong Weak Strong Weak Strong Weak

Panel A: Shareholder Power Proxy = R&D Expenses

1 (L) 0.20 0.13 –0.09 0.02 0.26 0.19 –0.04 0.10
2 0.03 0.15 –0.10 0.04 0.15 0.22 0.07 0.18
3 –0.04 0.05 –0.18 0.21 –0.02 0.12 0.06 0.20
4 (H) –0.18 –0.39 –0.45 –0.18 –0.24 –0.38 –0.36 0.09

High–Low –0.38 –0.52 –0.35 –0.20 –0.50 –0.57 –0.33 –0.01
t-statistic [–2.76] [–2.53] [–1.08] [–0.63] [–3.06] [–2.45] [–1.18] [–0.03]

Panel B: Shareholder Power Proxy = Herfindahl Index

1 (L) 0.17 0.18 0.01 –0.31 0.24 0.20 0.03 –0.12
2 0.18 0.09 0.06 –0.10 0.25 0.20 0.06 0.03
3 –0.09 –0.05 0.02 –0.04 0.01 –0.11 0.04 0.15
4 (H) –0.25 –0.16 –0.62 –0.39 –0.22 –0.22 –0.31 –0.10

High–Low –0.42 –0.34 –0.62 –0.08 –0.46 –0.43 –0.34 0.02
t-statistic [–2.34] [–2.44] [–2.05] [–0.26] [–2.44] [–2.43] [–1.34] [0.08]
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Table 5 continued

Panel C: Shareholder Power Proxy = Asset Tangibility

1 (L) 0.17 0.18 –0.01 0.03 0.23 0.28 0.07 0.08
2 0.10 0.05 0.06 –0.06 0.15 0.18 0.14 0.03
3 0.06 –0.03 0.15 –0.08 0.14 –0.04 0.16 0.05
4 (H) –0.14 –0.30 –0.48 –0.30 –0.10 –0.27 –0.13 –0.34

High–Low –0.31 –0.48 –0.47 –0.34 –0.33 –0.55 –0.20 –0.42
t-statistic [–2.48] [–2.38] [–1.10] [–0.95] [–2.26] [–2.76] [–0.85] [–1.01]
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Table 6: Regressions on Distress Risk and Shareholder Advantage

This table shows the results from Fama and MacBeth (1973) cross-sectional regressions of one-month-ahead excess bond
returns (Panel A) and excess stock returns (Panel B) on our firm-level distress risk proxy, the shareholder advantage
proxies, interactions between the distress risk and the shareholder advantage proxies, and control variables. The firm-level
distress risk proxy is the natural log of Campbell et al.’s (2008) hazard-model probability that a firm fails over the coming
twelve months. The shareholder advantage proxies are based on R&D intensity, the sales-based Herfindahl index, and asset
tangibility. LowR&D is a dummy variable equal to one if R&D expenses scaled by total assets is below the third quartile
per month, else zero. HighHSI is a dummy variable equal to one if the Herfindahl index, the sum over firms’ squared sales
proportions within an industry, is above its median per month, elso zero. LowTangibility is a dummy variable if gross PP&E
scaled by total assets is below its median per month, else zero. In case of the bond return regressions, the control variables

are βMKTStock

, βSMB, βHML, βTERM , βDEF , βMOMStock

, βLIQ, βMKTBond

and βMOMBond

, years-to-maturity, the
natural log of bond amount outstanding, the most recent credit rating, and the lagged excess bond return. In case of the

stock return regressions, the control variables are βMKTStock

, βTERM , βDEF , βLIQ, βMKTBond

, βMOMBond

, the natural
log of market equity, the natural log of book-to-market ratio, and the past eleven-month return. Betas are estimated
using two-year rolling windows and are winsorized at the first and 99th percentiles. To keep the table concise, we do not
report the estimates on the control variables. Plain numbers are estimates, in monthly percentage terms. Newey and West
(1987)-adjusted t-statistics calculated using a twelve-month lag-length are in parentheses. The final row of each panel
further shows the average adjusted R2 obtained from each Fama and MacBeth (1973) regression.

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Bond Return Regressions

Distress –0.26 –0.23 –0.23 –0.27 –0.20 –0.23 –0.28 –0.24
[–3.23] [–2.91] [–2.05] [–3.15] [–2.41] [–2.92] [–2.89] [–1.54]

LowR&D 0.10 0.07 –0.02
[1.94] [0.09] [–0.03]

Distress × LowR&D 0.01 0.00
[0.07] [–0.01]

HighHSI –0.06 –0.80 –0.22
[–1.77] [–1.21] [–0.38]

Distress × HighHSI –0.10 –0.02
[–1.19] [–0.29]

LowTangibility –0.03 0.80 0.45
[–0.81] [1.15] [0.74]

Distress × LowTangibility 0.11 0.06
[1.25] [0.89]

Constant –1.40 –1.26 –1.26 –1.43 –0.87 –1.14 –1.46 –1.13
[–1.60] [–1.32] [–1.06] [–1.61] [–0.88] [–1.21] [–1.41] [–0.78]

Controls Yes Yes Yes Yes Yes Yes Yes Yes
Avg. R2 0.36 0.37 0.38 0.37 0.37 0.38 0.38 0.40
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Table 6 continued

Panel B: Stock Return Regressions

Distress –0.06 –0.05 0.19 –0.06 0.08 –0.06 –0.05 0.37
[–0.48] [–0.39] [1.48] [–0.47] [0.54] [–0.46] [–0.39] [2.51]

LowR&D –0.22 –2.65 –2.69
[–1.45] [–2.38] [–2.36]

Distress × LowR&D –0.30 –0.31
[–2.36] [–2.30]

HighHSI –0.18 –2.18 –2.22
[–1.20] [–2.10] [–2.24]

Distress × HighHSI –0.25 –0.26
[–2.11] [–2.25]

LowTangibility 0.05 –0.01 –0.36
[0.40] [–0.01] [–0.38]

Distress × LowTangibility 0.00 –0.04
[–0.02] [–0.38]

Constant 2.18 2.43 4.35 2.26 3.36 2.14 2.23 5.92
[1.15] [1.23] [2.29] [1.20] [1.62] [1.16] [1.23] [3.09]

Controls Yes Yes Yes Yes Yes Yes Yes Yes
Avg. R2 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.13
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Table 7: Stock and Bond Portfolios Double-Sorted on Firm-Level Distress Risk and
Disinvestment Option Value

In this table, we present the nine-factor model alphas of bond and stock portfolios double-sorted on firm-level distress
risk and disinvestment option value. We form the portfolios by first sorting bonds or stocks into portfolios according
to the tercile breakpoints of one of the disinvestment option value proxies at the end of month t− 1. Within each
disinvestment option value portfolio, we then sort them into portfolios according to the quartile breakpoints of
our firm-level distress risk proxy at the same time. The firm-level distress risk proxy is Campbell et al.’s (2008)
hazard-model probability that a firm fails over the coming twelve months. The disinvestment option value proxies are
operating profitability (Panel A) and capacity overhang (Panel B), with a lower operating profitability and a higher
capacity overhang signalling more valuable disinvestment options. Operating profitability is gross profits scaled by
total assets, while capacity overhang is an estimate of the difference between a firm’s installed productive capacity and
its optimal capacity derived using a stochastic frontier model. We either value- or equally-weight the portfolios and
hold them over month t. We calculate the bond weights using notional bond values outstanding and the stock weights
using market equity values. Within each disinvestment option value portfolio, we form a spread portfolio long the
highest distress risk portfolio and short the lowest (“High–Low”). The table shows the Bai et al. (2018) nine-factor
alphas for those double-sorted portfolios within the highest or lowest shareholder advantage portfolio. The alphas are
in monthly percentage terms. See the caption of Table 2 for details on how we calculate the nine-factor model alpha.
Newey and West (1987)-adjusted t-statistics calculated using a twelve-month lag-length are in parentheses.

Value-Weighted Portfolios Equally-Weighted Portfolios

Bonds Stocks Bonds Stocks
Divest. Option Divest. Option Divest. Option Divest. Option

Portfolio Low High Low High Low High Low High

Panel A: Divestment Option Proxy = Firm Profitability

1 (L) 0.17 0.22 0.07 –0.40 0.23 0.30 0.15 –0.10
2 0.13 –0.03 0.08 0.02 0.20 0.04 0.21 0.19
3 0.08 –0.12 0.15 –0.23 0.16 –0.09 0.24 –0.04
4 (H) –0.06 –0.35 –0.06 –0.63 –0.03 –0.38 0.32 –0.20

High–Low –0.24 –0.57 –0.13 –0.23 –0.26 –0.67 0.17 –0.10
t-statistic [–2.65] [–2.55] [–0.49] [–0.72] [–2.54] [–2.53] [0.78] [–0.33]

Panel B: Divestment Option Proxy = Capacity Overhang

1 (L) 0.18 0.18 0.08 –0.04 0.22 0.27 0.16 0.14
2 0.10 0.18 0.03 0.12 0.18 0.24 0.27 0.21
3 0.02 –0.02 0.12 0.25 0.12 0.06 0.28 0.28
4 (H) –0.06 –0.24 –0.30 –0.38 0.00 –0.28 0.08 –0.15

High–Low –0.25 –0.42 –0.38 –0.34 –0.22 –0.54 –0.07 –0.28
t-statistic [–3.04] [–2.38] [–1.10] [–1.05] [–2.96] [–2.78] [–0.31] [–0.81]
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Table 8: Regressions On Distress Risk and Disinvestment Option Value

This table shows the results from Fama and MacBeth (1973) cross-sectional regressions of one-month-ahead excess bond
returns (Panel A) and excess stock returns (Panel B) on our firm-level distress risk proxy, disinvestment option value
proxies, interactions between the distress risk and the disinvestment option value proxies, and control variables. The
firm-level distress risk proxy is the natural log of Campbell et al.’s (2008) hazard-model probability that a firm fails over
the coming twelve months. The disinvestment option value proxies are based on operating profitability and capacity
overhang, with a lower operating profitability and a higher capacity overhang signalling more valuable disinvestment
options. LowGrossProfits is a dummy variable equal to one if gross profits scaled by total assets is below its median per
month, else zero. HighOverhang is a dummy variable equal to one if capacity overhang, an estimate of the difference
between a firm’s installed productive capacity and its optimal capacity derived using a stochastic frontier model, is

above its median per month, else zero. In case of the bond return regressions, the control variables are βMKTStock

,

βSMB, βHML, βTERM , βDEF , βMOMStock

, βLIQ, βMKTBond

and βMOMBond

, years-to-maturity, the natural log of
bond amount outstanding, the most recent credit rating, and the lagged excess bond return. In case of the stock return

regressions, the control variables are βMKTStock

, βTERM , βDEF , βLIQ, βMKTBond

, βMOMBond

, the natural log of
market equity, the natural log of book-to-market ratio, and the past eleven-month return. Betas are estimated using
two-year rolling windows and are winsorized at the first and 99th percentiles. To keep the table concise, we do not
report the estimates on the control variables. Plain numbers are estimates, in monthly percentage terms. Newey and
West (1987)-adjusted t-statistics calculated using a twelve-month lag-length are in parentheses. The final row of each
panel further shows the average adjusted R2 obtained from each Fama and MacBeth (1973) regression.

(1) (2) (3) (4) (5) (6)

Panel A: Bond Return Regressions

Distress –0.28 –0.28 –0.21 –0.28 –0.17 –0.10
[–3.47] [–3.36] [–3.16] [–3.52] [–3.66] [–2.22]

LowGrossProfits 0.05 –1.94 –1.82
[0.77] [–1.92] [–1.82]

Distress × LowGrossProfits –0.27 –0.25
[–2.08] [–1.96]

HighOverhang –0.01 –1.92 –1.17
[–0.18] [–1.95] [–2.01]

Distress × HighOverhang –0.17 –0.15
[–1.98] [–2.04]

Constant –1.57 –1.53 –1.09 –1.57 –0.79 –0.08
[–1.85] [–1.82] [–1.44] [–1.88] [–1.19] [–0.12]

Controls Yes Yes Yes Yes Yes Yes
Avg. R2 0.43 0.43 0.45 0.43 0.44 0.45
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Table 8 continued

Panel B: Stock Return Regressions

Distress –0.04 –0.03 0.10 –0.03 0.01 0.08
[–0.28] [–0.17] [0.80] [–0.22] [0.05] [0.80]

LowGrossProfits –0.22 –2.35 –2.33
[–1.68] [–2.11] [–2.22]

Distress × LowGrossProfits –0.27 –0.27
[–1.90] [–2.01]

HighOverhang –0.07 –0.56 0.09
[–0.81] [–0.54] [0.10]

Distress × HighOverhang –0.06 0.02
[–0.46] [0.19]

Constant 2.47 2.63 3.52 2.57 2.89 3.43
[1.21] [1.29] [1.99] [1.27] [1.62] [2.06]

Controls Yes Yes Yes Yes Yes Yes
Avg. R2 0.12 0.12 0.13 0.12 0.12 0.13
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Table 9: Stock Portfolios Univariate Sorted on Firm-Level Distress Risk (1981–2017)

In this table, we present the mean excess returns and alphas of stock portfolios univariately sorted on firm-level distress
risk over the extended sample period from 1981 to 2017. We form the portfolios by sorting stocks into portfolios according
to the decile breakpoints of our firm-level distress risk proxy at the end of month t− 1. The firm-level distress risk proxy
is Campbell et al.’s (2008) hazard-model probability that a firm fails over the coming twelve months. We either value-
(Panel A) or equally-weight the portfolios (Panel B) and hold them over month t. In case of the equally-weighted portfolios,
we exclude stocks with a market size below the first quartile at the end of month t− 1. We calculate the stock weights
using market equity values. We also form a spread portfolio long the highest distress risk decile and short the lowest
(“High–Low”). The table reports the time-series average of the cross-sectional averages of distress risk, the average numbers
of stocks per portfolio, and the average excess stock returns, Fama-French three-factor alphas, and five-factor model alphas
for each portfolio. Average distress risk, the average excess returns, and the alphas are in monthly percentage terms. We
obtain the alphas from regressing a portfolio’s return on the relevant factors and reporting the intercept from that regression.
The three factors are the excess stock market return (MKTStock), the size factor (SMB), and the value factor (HML). The
five factors add to the former the stock momentum factor (MOMStock) and the stock liquidity risk factor (LIQ). Newey
and West (1987)-adjusted t-statistics calculated using a twelve-month lag-length are given in parentheses.

Mean Mean Mean FF3 5-Factor

Decile Distress Risk Number Stocks Excess Return Alpha Alpha

Panel A: Value-Weighted Distress Risk Portfolios

1 (Low Distress) 0.006 406 0.55 0.03 0.01

2 0.012 406 0.66 0.12 0.02

3 0.018 406 0.49 –0.01 –0.06

4 0.024 406 0.66 0.09 0.05

5 0.033 406 0.74 0.13 0.10

6 0.045 406 0.79 0.15 0.16

7 0.065 406 0.82 0.05 0.09

8 0.104 406 0.83 –0.01 0.12

9 0.199 406 0.34 –0.61 –0.42

10 (High Distress) 0.999 407 0.10 –1.05 –0.62

High–Low –0.45 –1.07 –0.64

t-statistic [–1.33] [–3.72] [–2.62]

Panel B: Equally-Weighted Distress Risk Portfolios

1 (Low Distress) 0.006 304 0.60 –0.05 –0.02

2 0.011 305 0.64 –0.03 –0.04

3 0.016 304 0.71 0.04 0.05

4 0.022 305 0.83 0.12 0.14

5 0.028 305 0.81 0.06 0.11

6 0.037 304 0.80 0.02 0.09

7 0.052 304 0.81 0.00 0.11

8 0.076 305 0.80 –0.07 0.07

9 0.132 304 0.67 –0.30 –0.09

10 (High Distress) 0.545 305 0.37 –0.76 –0.34

High–Low –0.24 –0.71 –0.32

t-statistic [–0.91] [–3.03] [–1.56]44



Table 10: Regressions On Distress Risk and Disinvestment Option Value (1981–2017)

This table shows the results from Fama and MacBeth (1973) cross-sectional regressions of one-month-ahead excess stock
returns on our firm-level distress risk proxy, disinvestment option value proxies, interactions between the distress risk
and the disinvestment option value proxies, and control variables, estimated over over the extended sample period from
1981 to 2017. The regressions exclude stocks with a market size below the first quartile at the end of month t− 1. The
firm-level distress risk proxy is the natural log of Campbell et al.’s (2008) hazard-model probability that a firm fails over
the coming twelve months. The disinvestment option value proxies are based on operating profitability and capacity
overhang, with a lower operating profitability and a higher capacity overhang signalling more valuable disinvestment
options. LowGrossProfits is a dummy variable equal to one if gross profits scaled by total assets is below its median per
month, else zero. HighOverhang is a dummy variable equal to one if capacity overhang, an estimate of the difference
between a firm’s installed productive capacity and its optimal capacity derived using a stochastic frontier model, is above

its median per month, else zero. The control variables are βMKTStock

, βLIQ, the natural logarithm of the market equity
value, the natural logarithm of book-to-market ratio and the past 11-month average monthly returns as control variables.
Betas are estimated using two-year rolling windows and are winsorized at the first and 99th percentiles. To keep the table
concise, we do not report the estimates on the control variables. Plain numbers are estimates, in monthly percentage
terms. Newey and West (1987)-adjusted t-statistics calculated using a twelve-month lag-length are in parentheses. The
final row of each panel further shows the average adjusted R2 obtained from each Fama and MacBeth (1973) regression.

(1) (2) (3) (4) (5) (7)

Distress 0.09 0.12 0.18 0.13 0.16 0.22
[1.43] [1.78] [2.75] [1.89] [2.45] [3.29]

LowGrossProfits –0.36 –1.28 –1.20
[–4.04] [–3.36] [–3.12]

Distress × LowGrossProfits –0.11 –0.11
[–2.43] [–2.36]

HighOverhang –0.33 –0.84 –0.52
[–3.40] [–2.46] [–1.50]

Distress × HighOverhang –0.06 –0.03
[–1.62] [–0.80]

Constant 1.30 1.58 2.08 1.60 1.93 2.44
[1.42] [1.72] [2.33] [1.72] [2.07] [2.67]

Controls Yes Yes Yes Yes Yes Yes
Avg. R2 0.05 0.06 0.06 0.06 0.06 0.06
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A Appendix: The Fan and Sundaresan (2000) Model

A.1 Valuing the Equity and Debt Claims

Using contingent claims analysis, Fan and Sundaresan (2000) show that the value of a firm’s levered

assets in their shareholder advantage model, υ(V ), is equal to:

υ(V ) =

 V + τc
r −

λ2
λ2−λ1

τc
r

(
V
ṼS

)λ1
if V > ṼS ,

V + −λ1
λ2−λ1

τc
r

(
V
ṼS

)λ2
if V ≤ ṼS ,

(A1)

where the optimal (endogenous) strategic default threshold ṼS is given by:

ṼS =
c(1− τ + ητ)

r

−λ1

1− λ1

1

1− ηα
, (A2)

and:

λ1 =

(
1

2
− r − δ

σ2

)
−

√(
1

2
− r − δ

σ2

)2

+
2r

σ2
< 0, (A3)

λ2 =

(
1

2
− r − δ

σ2

)
+

√(
1

2
− r − δ

σ2

)2

+
2r

σ2
> 1. (A4)

Conversely, they show that the value of equity, Ẽ(V ), is equal to:

Ẽ(V ) =

 V − c(1−τ)
r +

[
c(1−τ)

(1−λ1)r −
λ1(1−λ2)η

(λ2−λ1)(1−λ1)
τc
r

] (
V
ṼS

)λ1
if V > ṼS ,

θ∗υ(V ) if V ≤ ṼS ,
(A5)

where θ∗ is given in Equation (4) in the main text. Finally, the value of debt, D̃(V ), is the value of

the levered assets minus the value of equity, υ(V )− Ẽ(V ).

A.2 Deriving the Expected Equity Value

Garlappi et al. (2008) show that the time-0 expectation of the equity value at time t, E0(Ẽ(Vt)), is:

E0(Ẽ(Vt)) = ηαV0e
(µ−δ)tN

(
h(t)− σ

√
t
)
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− η
λ1

λ2 − λ1

τc

r

(
V0

ṼS

)λ2
eλ2(γ−λ2)tN

(
h(t)− λ2σ

√
t
)

+ V0e
(µ−δ)tN

(
−h(t) + σ

√
t
)
− c(1− τ)

r
N (−h(t))

+

[
c(1− τ)

(1− λ1)r
− λ1(1− λ2)η

(λ2 − λ1)(1− λ1)

τc

r

](
V

ṼS

)λ1
× eλ1(γ−λ1)tN

(
−h(t) + λ1σ

√
t
)
, (A6)

where γ = µ− δ− 1
2σ

2, h(t) = ln(ṼS/V0)−γt
σ
√
t

, and N(.) is the cumulative standard normal distribution.

They further show that the probability of the unlevered asset value V hitting the strategic default

threshold ṼS over the period from t = 0 to T (“strategic default risk”), Pr(0,T ] is:

Pr(0,T ] = N

(
ln(ṼS)− ln(V0)− γT

σ
√
T

)
+ e

2γ(ln(ṼS)−ln(V0))

σ2 N

(
ln(ṼS)− ln(V0) + γT

σ
√
T

)
. (A7)

A.3 Deriving the Expected Debt Value

In this section, we apply the methods used in Garlappi et al. (2008) to derive the time 0 expectation

of the debt value at time t, E0(Ẽ(Vt)). Given that D̃(V ) = υ(V )− Ẽ(V ), we can easily achieve that

goal by deriving the time 0 expectation of the levered asset value at time t, E0(υ(Vt)). Under the

assumptions in Section 4.1, the unlevered asset value at time t can be written as:

Vt = V0e
(µ−δ− 1

2
σ2)t+σ(Bt−B0), (A8)

which is log-normally distributed. Again defining γ = µ−δ− 1
2σ

2, the location and scale parameters of

the natural log of Vt are E[lnVt] = lnV0 + γt and Var[lnVt] = σ2t, respectively.

Consider the integral
∫ a

0 V
b
t p(Vt)dVt, where a and b are constants and p(Vt) is the probability

density function of the log-normal variable Vt. Plugging in for p(Vt), we obtain:

∫ a

0
V b
t p(Vt)dVt =

∫ a

0
V b
t

1√
2πσ2tVt

e
− 1

2

(
lnVt−(lnV0+γt)

σ
√
t

)2

dVt. (A9)
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Using the change of variable Xt = lnVt−lnV0−γt
σ
√
t

, we can rewrite the right-hand side as:

∫ ln(a/V0)−γt
σ
√
t

−∞
eb(lnV0+γt+σ

√
tXt) 1√

2π
e−

1
2
X2
t dXt (A10)

= V b
0 e

bγt

∫ ln(a/V0)−γt
σ
√
t

−∞

1√
2π
e−

1
2
X2
t +bσ

√
tXt− 1

2
b2σ2t+ 1

2
b2σ2tdXt (A11)

= V b
0 e

bγt+ 1
2
b2σ2t

∫ ln(a/V0)−γt
σ
√
t

−∞

1√
2π
e−

1
2

(X2
t−2bσ

√
tXt+b2σ2t)dXt (A12)

= V b
0 e

bγt+ 1
2
b2σ2t

∫ ln(a/V0)−γt
σ
√
t

−∞

1√
2π
e−

1
2

(Xt−bσ
√
t)2dXt. (A13)

Using the change of variable Yt = Xt − bσ
√
t, we can write:

V b
0 e

bγt+ 1
2
b2σ2t

∫ ln(a/V0)−γt
σ
√
t

−bσ
√
t

−∞

1√
2π
e−

1
2
Y 2
t dYt (A14)

= V b
0 e

bγt+ 1
2
b2σ2tN

(
ln(a/V0)− γt

σ
√
t

− bσ
√
t

)
. (A15)

Following the same steps, we can, conversely, also show that:

∫ ∞
a

V b
t p(Vt)dVt = V b

0 e
bγt+ 1

2
b2σ2tN

(
− ln(a/V0)− γt

σ
√
t

+ bσ
√
t

)
. (A16)

Using Equation (A5), we can write the expected levered asset value, E0(υ(Vt)), as:

E0(υ(Vt)) =

∫ ∞
0

Vtp(Vt)dVt +

∫ ∞
ṼS

τc

r
p(Vt)dVt −

∫ ∞
ṼS

λ2

λ2 − λ1

τc

r

(
Vt

ṼS

)λ1
p(Vt)dVt

+

∫ ṼS

0

−λ1

λ2 − λ1

τc

r
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ṼS

)λ2
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=

∫ ∞
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Vtp(Vt)dVt +
τc

r

∫ ∞
ṼS

p(Vt)dVt −
λ2

λ2 − λ1

τc

r

(
1

ṼS

)λ1 ∫ ∞
ṼS

Vt
λ1p(Vt)dVt

+
−λ1

λ2 − λ1

τc

r

(
1

ṼS

)λ2 ∫ ṼS

0
V λ2
t p(Vt)dVt. (A17)

Using Equations (A15) and (A16), we finally have:

E0(υ(Vt)) = V0e
(µ−δ)t +

τc

r
N (−h(t))
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− λ2

λ2 − λ1
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r

(
V0

ṼS

)λ1
eλ1(γ+ 1

2
λ1σ2)tN

(
−h(t) + λ1σ
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where we again use h(t) = ln(ṼS/V0)−γt
σ
√
t

to simplify the notation.

B Appendix: A Real Options Model with Disinvestment

B.1 Valuing the Operating Assets of the Firm

We use contingent claims analysis to value the incremental production options owned by the firm

described in Section 5.1.1. Using K ∈ {0; K̄) to number the incremental options, incremental option

K produces a cash flow of θ − c1 − c2K − f per time unit when switched on to produce output and

a payoff of −f per time unit when switched off. Denoting the value of incremental option K by

∆V (θ;K) and assuming that there is a traded asset whose value perfectly replicates variations in

the price θ, it is well known that the value of incremental option K has to satisfy:

1

2
σ2θ2∂

2∆V (θ;K)

∂θ2
+ (r − δ)θ∂∆V (θ;K)

∂θ
− r∆V (θ;K) + π(θ,K) = 0, (B1)

where π(θ,K) is the cash flow produced by the option.

In the θ-region in which the firm uses the incremental option to produce output (i.e., in which

π(θ,K) = θ − c1 − c2K − f), the value of the option takes on the general form:

∆V (θ,K) = AOθ
β1 +BOθ

β2 +
θ

δ
− c1 + c2K + f

r
, (B2)

where AO and BO are free parameters, and:

β1 =
1

2
− (r − δ)/σ2 +

√[
(r − δ)/σ2 − 1

2

]2

+ 2r/σ2 > 1, (B3)
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β2 =
1

2
− (r − δ)/σ2 −

√[
(r − δ)/σ2 − 1

2

]2

+ 2r/σ2 < 0. (B4)

Given that limθ→+∞∆V (θ,K) needs to be θ
δ −

c1+c2K+f
r , it is obvious that AO = 0. Conversely, in

the region in which the firm does not use the incremental option to produce output (i.e., in which

π(θ,K) = −f), the value of the option takes on the general form:

∆V (θ,K) = AIθ
β1 +BIθ

β2 +−f
r
, (B5)

where AI and BI are free parameters. Finally, in the region in which the firm instantaneously

sells the option (i.e., when θ drops below the disinvestment threshold θD, which is another free

parameter), the value of the incremental option is equal to the disinvestment price s.

To find the values of the free parameters BO, AI , BI , and θD, we ensure that the three regions

value-match and smooth-paste into one another. In particular, we ensure that:

BO(θP )β2 +
(θP )

δ
− c1 + c2K + f

r
= AI(θ

P )β1 +BI(θ
P )β2 − f

r
, (B6)

BOβ2(θP )β2−1 +
1

δ
= AIβ1(θP )β1−1 +BIβ2(θP )β2−1, (B7)

AI(θ
D)β1 +BI(θ

D)β2 − f

r
= s, (B8)

AIβ1(θD)β1−1 +BIβ2(θD)β2−1 = 0, (B9)

where θD = c1+c2K is the price θ at which the firm switches on the incremental option. Equation (B6)

ensures that at θP the value of the used option is identical to the value of the idle option, while

Equation (B7) ensures that, at that price, the two option values do so with identical partial derivatives

(i.e., smoothly). Conversely, Equation (B8) ensures that at the price at which the firm disinvests off

the incremental option, θD, the value of the option is identical to the disinvestment price, while

Equation (B9) ensures that, at that price, the option value has a zero partial derivative.
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Solving for BO, AI , BI , and θD, we obtain:

pD =

rδ(β1 − β2)(s+ f
r )(c1 + c2K)β1−1

(r − β2(r − δ))
(

1− β1
β2

)
 1

β1

, (B10)

AI =
s+ f

r

(pD)β1
(

1− β1
β2

) , (B11)

BI =
s+ f

r

(pD)β2
(

1− β2
β1

) , (B12)

BO = AI(c1 + c2K)β1−β2 −
(
r − δ
rδ

)
(c1 + c2K)1−β2 +BI . (B13)

Having valued the incremental options, total firm value, V (θ, K̄), is now:

V (θ, K̄) =

∫ K̄

0
∆V (θ,K)dK, (B14)

and the expected instantaneous excess asset return of the firm, E[RA]− r, is:

E[RA]− r =
∂V (θ, K̄)

∂θ
× θ

V (θ, K̄)
× (µ− r), (B15)

as shown in, for example, Cox and Rubinstein (1985) or Carlson et al. (2004).

C Appendix: Measuring Capacity Overhang

Aretz and Pope (2018) use a stochastic frontier model to estimate the difference between a firm’s

installed production capacity and the capacity level setting the marginal benefit of additional capacity

equal to its marginal cost (“optimal capacity”). As they show, real options models often imply that

installed capacity cannot fall below optimal capacity, implying that the difference between the two

capacity levels is truncated from below at zero. Given that, stochastic frontier models are an appealing

method to estimate the difference. Intuitively speaking, such models decompose a variable (in this case:
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installed capacity) into a component capturing the minimum value the variable can take on (optimal

capacity) and a positively-signed residual component (“capacity overhang”). More specifically, we can

write a stochastic frontier model decomposing a firm’s installed capacity as:

ln(K̄i,t) = αk + β′Xi,t + vi,t + ui,t = αk + β′Xi,t + εi,t, (C1)

where K̄i,t is installed capacity, αk + β′Xi,t + vi,t optimal capacity, ui,t capacity overhang, and

εi,t ≡ vi,t + ui,t. Optimal capacity is modeled as a linear function of industry fixed effects, αk, optimal

capacity determinants contained in the vector Xi,t, and a normally distributed residual vi,t, with mean

zero and variance σ2
v . Conversely, capacity overhang, ui,t, is a normally-distributed residual truncated

from below at zero. The mean of the normally-distributed variable, γ ′Zi,t, is modeled as a linear function

of capacity overhang determinants contained in the vector Zi,t, while its variance is σ2
u. Finally, β and

γ are parameter vectors. The parameter vectors and variance parameters are estimated recursively

using maximum likelihood techniques. The first estimation window is July 1963 to December 1971,

and the end of the estimation window is rolled forward on an annual basis until December 2017.

Having estimated the parameters, the estimates obtained from the window ending with year t− 1

are combined with the values of the optimal capacity determinants and capacity overhang determinants

for year t. We then define µ∗i,t =
εi,tσ

2
u+γ′Zi,tσ2

v

σ2
u+σ2

v
and σ∗i,t = σuσv/

√
σ2
u + σ2

v . We finally calculate firm

i’s capacity overhang at time t as the conditional expectation of the capacity overhang residual:

ûi,t = E[ui,t|εi,t,Zi,t] = µ∗i,t + σ∗i,t

(
n(−µ∗i,t/σ∗i,t)
N(µ∗i,t/σ

∗
i,t)

)
, (C2)

where n(.) and N(.) are the standard normal-density and -cumulative density, respectively.

Aretz and Pope (2018) use the log of the sum of gross property, plant, and equipment and intangible

assets (intan or intanq) to measure installed capacity.14 As optimal capacity determinants, they use:

• Sales: Log of sales over the prior four fiscal quarters (sale or saleq).

• COGS: Log of COGS over the prior four fiscal quarters (cogs or cogsq).

• SG&A: Log of SGA costs over the prior four quarters (xsga or xsgaq).

14The terms in parentheses are the database (CRSP or Compustat) mnemonics.
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• Volatility: Log of the volatility of daily returns (ret) over the prior twelve months.

• Market beta: Sum of slope coefficients from a stock-level regression of excess stock returns (ret)

on current, one-day lagged, and the sum of two-, three-, and four-day lagged excess market

returns, where the regression is run using daily data over the prior twelve months (see Lewellen

and Nagel (2006) for more details about the market beta estimation methodology).

• Risk-free rate: Three-month Treasury bill rate (see Kenneth French’s website).

As capacity overhang determinants, they use:

• Recent sales decline: Percentage decrease in sales (sale or saleq) over the most recent four

fiscal quarters; the variable is set to zero if the decrease is negative.

• More distant sales decline: Percentage decrease in sales (sale or saleq) from a stock’s historical

maximum of sales, measured twelve months ago, to its sales twelve months ago; the variable is

set to zero if the decrease is negative.

• Loss dummy: Dummy set equal to one if a firm ran a loss (negative ni or niq) over the prior

four fiscal quarters; otherwise, the variable is set to zero.

To improve timeliness, Aretz and Pope (2018) use the most recent quarterly estimate of installed

capacity whenever quarterly accounting data are available. Else they use the most recent estimate from

annual accounting data. With the same objective, they use four-quarter trailing sums of accounting flow

variables (e.g., sales, COGS, and SG&E) whenever quarterly accounting data are available. Else they

use annual accounting data. In line with Campbell et al. (2008), they assume that quarterly accounting

data are released with a two-month reporting gap, while annual accounting data are released with a

three-month reporting gap. They use stock market data from CRSP, accounting data from Compustat,

and data on the market return and risk-free rate from Kenneth French’s website.
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