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Abstract

We study the lead-lag relationship between VIX futures and SPX futures on a sample

of transactions time-stamped down to the millisecond and collected over the period from

January 2013 to September 2020. To analyze the lead-lag relation, we consider estima-

tors of the cross-correlation function and cross-market activity. The leadership strength

is computed on a daily basis using various measures of lead-lag strength. The analysis

reveals large time-variation in the lead-lag relation. Under high volatility, the markets ex-

hibit stronger negative correlation and short-lived lead-lag with a tendency for VIX futures

to lead SPX futures. We consider a regression model in order to delve further into the

time-variation in the lead-lag relation. In particular, we find that the cross-market activity

explains a major part of the lead-lag relation and that days of high activity are associated

with a strengthened VIX futures lead over SPX futures. We argue in favor of the hypoth-

esis that hedging activities of VIX futures dealers are an important source of cross-market

activity and therefore hedging activities could be driving part of the VIX futures lead over

SPX futures.
*chba@econ.au.dk
†
thko@econ.au.dk



1 Introduction

The market for VIX futures has witnessed an impressive growth since the introduction of

the first VIX futures contract in 2004 on the Chicago Board of Options Exchange (CBOE) and

the VIX index itself has become a widely recognized yardstick of stock market risk. Since

their launch, VIX futures gained popularity as tools to hedge volatility exposure or diversify

portfolios (Whaley, 2009). In 2009, the first VIX exchange-traded fund hit the market and,

since then, investors have increasingly used products tied to VIX futures to speculate in future

volatility outlook (Bollen et al., 2017; Bhansali and Harris, 2018). Typically, major dealers

in financial markets take the other side of the VIX futures trade. Market makers and dealers

are subject to strict risk requirements and profit from their flow of transactions and not from

risk taking. In order to hedge their positions in volatility, dealers employ various options based

hedging strategies (Chang, 2017). These strategies entail that in order to maintain the hedge

after either a change in volatility or a change in their net position in volatility, the dealers have

to trade the underlying index. For instance, a new position in a VIX futures can be hedged with

a delta hedged position in a European option on the SPX index. Hence, trading in VIX futures

leads to subsequent trading in the underlying index, which in the context of VIX futures, is

typically carried out via SPX futures. Moreover, dealers tend to be in negative gamma positions

for two reasons: First, as providers of liquidity to SPX options demand they tend to be short

in SPX options (Baltussen et al., 2021). Second, dealers tend to be long VIX futures (Mixon

and Onur, 2019; Todorov, 2019), which are typically hedged using short positions in SPX

options. Hence, market makers run the risk of being part of the feedback cycle illustrated in

Figure 1: An increase in volatility due to increased demand in long VIX futures leads to a

decrease in SPX futures prices via the leverage effect. Being in a negative gamma position, the

dealers sell SPX futures in order to rebalance hedges. This puts additional price pressure on

SPX futures, which again translates into increasing VIX futures. Alternatively, dealers could

turn to a more approximate hedge utilizing the negative correlation between VIX futures and

SPX futures prices. Under this approach, a long position in VIX futures is simply hedged by a
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Figure 1: Feedback effect from initial long demand in VIX futures.

short position in SPX futures. In either case, the mechanisms of the hedging activities have the

potential to impact the lead-lag relation between VIX futures and SPX futures.

In this paper we study the lead-lag relation between VIX futures and SPX futures on a

sample of transactions time-stamped down to the millisecond and collected over the period

from January 2013 to September 2020. We find that the lead-lag relation is dynamic with the

VIX futures leading SPX futures on average terms. We study the determinants of the lead-lag

relation and find that the level of cross-market trading has a positive and significant impact on

the strength of the VIX futures lead over SPX futures. Since cross-market trading can arise

from hedging by VIX futures dealers, this indicates that VIX futures hedging influences the

lead-lag relationship.

VIX exchange-traded funds and notes (VIX ETP) drive a large part of the VIX futures

demand and their hedging strategy is subject to a positive feedback loop where increasing VIX

futures prices lead to even further hedging demand by issuers of VIX ETPs (Alexander and

Korovilas, 2013; Brøgger, 2021; Todorov, 2019). The market movements on February 5 2018,

where VIX ETPs played an important role for the extreme behavior of VIX futures prices, the

VIX index and the SPX index, serve as anecdotal evidence in support of this belief (Bank for

International Settlements, 2018; Augustin et al., 2021). If the net demand in the market for VIX

futures and the resulting SPX hedging demand leads to price pressures, the hedging strategy

would imply that, all else equal, the VIX futures price leads the SPX futures price relatively
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more in comparison to days where hedging does not affect prices.

The literature on lead-lag relations is mostly concerned with which markets first reflect new

information (where informed traders prefer to trade), and hedging can be a channel through

which information is transmitted to the market for the asset that is used as hedging instrument

(see e.g. Kaul et al. (2004); Hu (2014)). In the context of hedging VIX futures, this can occur

when the VIX futures trading is informed. However, the lead-lag relation is not necessarily the

result of informed trading. Rather it might illustrate the presence of spillovers from VIX fu-

tures market makers’ hedging to the stock market. Other papers have recognized that hedging

can affect lead-lag relations if market makers in one market trade in the other market to hedge,

such as option market makers performing delta-hedging (Easley et al., 1998; Chan et al., 2002;

Schlag and Stoll, 2005). Similarly, Kao et al. (2018) find that VIX option trading has a tem-

porary impact on changes in the VIX index and attribute this to the use of VIX options for

hedging by SPX option market makers.

Lead-lag relations generally reflect some degree of inefficiency of financial markets either

because all available information is not properly reflected in market prices across assets at any

given point in time, or if the market is not liquid enough to absorb trading due to (uninformed)

hedging activities. In either case, past price changes can be used to predict future price changes.

Other studies show that even for markets that are considered large and actively traded, one

market can lead the price changes of another market (Chen et al., 2016; Dao et al., 2018).

The paper is also related to the literature on the relation between lagged stock market re-

turns and volatility: Carr and Wu (2006) study the cross-correlation function for SPX index

returns and VIX index changes at a daily frequency and find marginal evidence of SPX re-

turns having some predictive power for VIX index changes. Similarly, Bollerslev et al. (2006)

find significant negative correlation between the absolute value of returns (volatility proxy) and

lagged returns both sampled at a five-minute frequency. At the same time, correlations be-

tween returns and lagged absolute returns are essentially zero. Frijns et al. (2016) examine the

lead-lag relation of VIX futures and the SPX index and find evidence that VIX futures lead

SPX with lagged VIX futures price changes having some predictive power over SPX returns
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computed over intervals of 15 seconds. In a regression ananlysis performed on daily data, Lee

et al. (2017) find some effect of the difference between VIX futures and the VIX index (the

VIX futures basis) on future returns on SPX futures.

The findings of Frijns et al. (2016) reveal that VIX futures lead the SPX index. While it

has also been shown that SPX futures lead the SPX index (Chu et al., 1999; Hasbrouck, 2003),

these findings leave it unclear to which extend VIX futures lead or lag SPX futures. There is

also evidence that VIX futures lead the VIX index (Shu and Zhang, 2012; Frijns et al., 2016;

Bollen et al., 2017; Chen and Tsai, 2017; Kao et al., 2018) and, by the construction of the VIX

index, then implicitly lead SPX options. Moreover, it has been shown by Chen et al. (2016) that

SPX futures provide greater contribution to price discovery than SPX options. Thus, both VIX

futures and SPX futures lead SPX options, but again the VIX futures and SPX futures lead-

lag relation cannot be inferred from these studies. While Lee et al. (2017) show that the VIX

futures basis has some predictable power for the SPX futures returns, though only at the daily

level, we analyze the lead-lag relation of VIX futures and SPX futures from high-frequency

data and furthermore examine its time-variation.

The remainder of the paper is structured as follows: Section 2 presents the data used for

the analysis. Next, we introduce the methodology to quantify the lead-lag relation in Section

3. Section 4 presents the results of the empirical analysis. Finally, Section 5 concludes.

2 Data

For the analysis we collect data over the period January 2013 to September 2020. Tick-by-

tick trade and quote data on E-mini S&P 500 futures (ES) and VIX futures (VX) are obtained

from the Tick Data database. Daily data on the Open Interest on VIX futures is retrieved from

the CBOE homepage together with daily closing prices on the VIX index and the SPX index.

For each sample date, the VIX futures contract used for the analysis is the one closest to an

expiry of 30 days and the SPX futures contract used is the one closest to expiry except when

time to expiry is less than six days where we shift to the next contract. We focus only on

4



Table 1: Descriptive statistic of VIX futures and SPX futures markets

VIX futures SPX futures

Trading volume

Mean 78,224 1,292,320
Median 68,311 1,199,596
Min 18,432 286,808
Max 386,637 3,983,301
Std. dev. 43,221 465,899

Dollar volume (in mm)

Mean 1,355 149,368
Median 1,113 136,824
Min 280 29,911
Max 10,365 567,136
Std. dev. 941 60,032

Open interest

Mean 178,900
Median 168,930
Min 65,527
Max 383,927
Std. dev. 57,069

Statistics are computed from daily observations over the sample period. For
each sample date, the VIX futures contract used is the one with an expiry closest
to 30 days. The SPX futures contract is the one closest to expiration except when
this is less than six days. Trading and dollar volume are obtained over the time
interval 9:30-16:15 EST.

trades during the regular trading hours of VIX futures, 9:30-16:15 EST. Any date where the

exchanges closed earlier is removed from the sample. Trades with a negative price is removed

while quotes are removed if bid price, ask price or bid-ask spread is negative. For the purpose of

computing the lead-lag measures of Section 3, trades sharing the same time-stamp are replaced

by a single trade with a price equal to the median price of the trades.

Table 1 shows trading and dollar volume for VIX futures and SPX futures as well as the

open interest of VIX futures over the sample period. Clearly, SPX futures are more heavily

traded than the VIX futures both when measured in terms of trading and dollar volume.

3 Lead-lag methodology

Many studies on lead-lag relations are concerned with assets that are closely linked together

such that a cointegrating relation of the prices can be assumed. In those settings, the informa-

tion share (Hasbrouck, 1995) or the common factor component weight approach (Gonzalo and

Granger, 1995) are often applied (see e.g. Chen and Tsai (2017); Chen et al. (2016)). How-

ever, it would be inappropriate to impose the assumption of cointegration when describing the
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relation between VIX futures and SPX futures, so instead the lead-lag relationship is analyzed

through the cross-correlation function and the cross-market activity (CMA) measure. In section

3.1 we describe how to obtain the cross-correlation function using the techniques of Hayashi

and Yoshida (2005); Hoffmann et al. (2013) and section 3.2 presents three different quantifi-

cations of the lead-lag relation based on the cross-correlation function. Finally, Section 3.3

presents the methodology behind the CMA measure of Dobrev and Schaumburg (2017).

3.1 Estimation of the cross-correlation function

Based on Hayashi and Yoshida (2005) (HY) and Hoffmann et al. (2013), the cross-correlation

for two assets, A and B, is estimated as

ρ̂HY (ϑ) =

∑
nA
i=1 ∑

nB
j=1 ∆tA

i
XA∆tB

j
XB1{

(tA
i−1,t

A
i ]∩(tB

j−1−ϑ ,tB
j −ϑ ]6= /0

}√
∑

nA
i=1

(
∆tA

i
XA
)2
√

∑
nB
j=1

(
∆tB

j
XB
)2

(1)

which we shall refer to as the HY estimator. Here ∆tk
i
Xk = Xk

tk
i
−Xk

tk
i−1

is the log-return of asset

k, i = 1, . . . ,nk meaning that the returns of (1) are computed between each single tick, tk
i , and

the product of two returns is included in the sum whenever the time intervals over which the

returns are realized is overlapping. Inspired by Dao et al. (2018), we use Figure 2 to illustrate

this. By focusing on the first two line segments, we ignore the possibility of shifting the time-

stamps so ϑ = 0. As an example, considering the three intervals of asset B, J1, J2 and J3.

J1 intersects with I2, J2 intersects with I2, while J3 intersects with I2, I3 and I4. Thus, the

contribution to the sum based on each of the three intervals is ∆tB
1
XB∆tA

2
XA, ∆tB

2
XB∆tA

2
XA and

∆tB
3
XB(∆tA

2
XA +∆tA

3
XA +∆tA

4
XA), respectively. Hence, it is possible that the same return can

contribute to the sum more than once as it will enter every time the interval intersects with one

of the intervals of the other asset. Note that when implementing (1), the returns over I1 will not

influence the correlation as the indicator function equals zero for intervals that do not intersect

with any of the intervals of the other asset.

Repeatedly adjusting the time-stamps of the second asset by an amount ϑ on some grid,
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Figure 2: Illustration of the time-stamp adjustment for the cross-correlation functions.

allows us to compute the cross-correlation function. The shift of the time-stamps is illustrated

in Figure 2. Note that only the time-stamps of one of the two assets is shifted while the other

remain fixed. The returns ∆tk
i
Xk for k = A,B are invariant to the shift of the time-stamps mean-

ing that only the indicator function changes as ϑ changes. Thus, it is the same returns that enter

(1) for each ϑ but they are multiplied and summed in different ways.

3.2 Lead-lag time, lead-lag correlation and lead-lag ratio

To measure the lead-lag relation between two assets, Hoffmann et al. (2013) define the lead-

lag time (LLT) as the value of ϑ that maximizes the absolute value of the cross-correlation

function, |ρ̂HY (ϑ) |, across all ϑ on some grid. If the absolute correlation is maximized at

a point ϑ 6= 0 then one asset is leading the other. Under certain assumptions, the point is a

consistent estimator of the true LLT (Hoffmann et al., 2013).

While LLT measures the amount of time by which one asset leads the other, knowledge of

the value of the cross-correlation function at the point corresponding to LLT is also informative

about the nature of the lead-lag relation. The value of the cross-correlation at this point is

referred to as the lead-lag correlation (LLC) (Dao et al., 2018).

Both LLT and LLC focus on a single point of the cross-correlation function. However, the

rest of the cross-correlation function also contains relevant information about the strength of

the lead-lag relation. The lead-lag ratio (LLR) of Huth and Abergel (2014) accounts exactly for
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Figure 3: Illustration of cross-correlation functions.

this by compressing the entire cross-correlation function into a single measure of the lead-lag

relation. Considering all the positive time-stamp adjustments (ϑ1, . . . ,ϑp), LLR is defined as

LLR =
∑

p
i=1 ρ̂2

HY (ϑi)

∑
p
j=1 ρ̂2

HY
(
−ϑ j

) (2)

The ratio captures the relative forecasting ability of one asset over the other. When LLR> 1

it means that the correlations at positive lags are overall larger than the correlations at negative

lags. Thus, the asset for which the time-stamps are kept fixed will lead the asset for which

the time-stamps are adjusted (asset A will lead asset B in Figure 2). The conclusion of the

leadership is the opposite if LLR < 1 where the asset with fixed time-stamps lags the other

(asset B leads asset A). Compared with LLT, LLR takes account of the overall predictive power

of the returns of one asset on the returns of the other asset by summarizing the squared cor-

relations over a specified interval. LLT is more sensitive as it reflects only one point of the

cross-correlation function. For instance, consider the two cases illustrated in Figure 3 where

LLT and LLC are the same but in the plot to the left, the cross-correlation function goes to zero

very quickly while in the plot to the right, the cross-correlation slowly decays to zero for values

of ϑ higher than LLT. Hence, the lead-lag relation to the left is much stronger than the one to

the right. However, LLT and LLC will be the same while only LLR will capture this difference

in the strength of the lead-lag relation. LLR could in fact lead to a different conclusion on the

lead-lag relation than LLT.
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A simulation study by Huth and Abergel (2014) shows that in the absence of any lead-lag

relation, the LLR obtained from the HY estimator is robust to differences in the relative trading

activity of the two assets. Large differences in the number of trades therefore does not falsely

introduce asymmetries in the cross-correlation function.

3.3 Measuring cross-market activity

While the lead-lag measures of the above section are based on prices, we here present

another measure of the lead-lag relation based on Dobrev and Schaumburg (2017) which is

model-free and does not utilize prices. Instead the time-stamps of a well-defined activity, such

as trading, can be used to uncover the lead-lag relation. The idea is to identify all so-called

active time-stamps. Active time-stamps means that the activity, e.g. trading, takes place in both

markets at that time-stamp. The total number of time-stamps with simultaneous trading is then

summed over the trading day and shows how often both markets are active at the same time.

Assuming that ϑ = 0, this number can be obtained as

X raw
ϑ =

N−|ϑ |

∑
i=|ϑ |

1{market A active in period i}∩{market B active in period i+ϑ} (3)

where N is the total number of time-stamps. With data at millisecond frequency, this is the

total number of milliseconds over the trading day. The number of cross-active time-stamps can

be scaled by the total number of active time-stamps in the least traded market. This measures

cross-market activity as a proportion of the total activity.

X rel
ϑ =

X raw
ϑ

min
{

∑
N−|ϑ |
i=|ϑ | 1{market A active in period i},∑

N−|ϑ |
i=|ϑ | 1{market B active in period i+ϑ}

} (4)

In order to capture trading activity related only to cross-market trading, a further adjustment is

implemented to account for the simultaneous trading which would occur simply by random-

ness. This gives cross-market activity in excess of what we would expect by coincidence given
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Figure 4: Illustration of cross-market activity function.

that trading in the two markets occurs independently of each other.

Xϑ = X rel
ϑ −X rel

∞ (5)

where the adjustment term is defined as X rel
∞ = 1/(2(T2−T1))∑

T2
|ϑ |=T1+1 X rel

ϑ
for sufficiently

large T2 > T1. In addition to simultaneous trading where ϑ = 0, time-stamps are shifted forward

or backward in time when considering non-zero values of ϑ . For a set of different values of

ϑ , a full curve for the proportion of cross-market activity can be obtained. We illustrate this in

Figure 4 and denote the cross-market activity time (CMAT) as the value of the time-stamp shift

corresponding to the maximum of the curve, while the peak cross-market activity (PCMA) is

the value of the cross-market activity, Xϑ , at the point. The value of CMAT tells us by how

many milliseconds trades in one market lead trades in the other market.

4 Empirical analysis

In this section, we detail the empirical analysis of the paper. The first subsection presents

the overall lead-lag relationship between VIX and SPX futures. Next, Section 4.2 presents the

results of the cross-market activity analysis. In Section 4.3 we introduce the regression model

for the dynamics of the lead-lag relation and present the results of the regression.
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(a) ±60 seconds (b) ±2 seconds

Figure 5: Median cross-correlation functions.

4.1 The lead-lag relationship based on the cross-correlation function

In this section, we present the overall results based on the computed measures of the lead-

lag relation detailed in Section 3. For the computation of cross-correlations, we keep the time-

stamp of the SPX futures trades fixed and shift the time-stamps of the VIX futures trades. To

estimate the cross-correlation function, the grid of ϑ is chosen such that it is finer around zero

and less dense as we move away from zero. This is since we expect that the lead-lag time to

be small so we want to be able to capture variations in the correlation at a higher detail around

zero. Hence, the grid is chosen as

−60,−59.9,...,−1.1,−1,−0.99,...,−0.11,−0.1,−0.099,...,−0.001,0,0.001,...,0.099,0.1,0.11,...,0.99,1,1.1,...,59.9,60

where the numbers are in seconds and where the largest value (±60 seconds) reflect the maxi-

mum allowed lead-lag.

Figure 5 depicts the median of the cross-correlation. The peak of the function is around a lag

of zero and with the cross-correlation function close to zero for lags greater than approximately

20 seconds in absolute value. Zooming in on lags within 2 seconds, we observe a skewed shape

of the cross-correlation function with more weight on the left part of the curve. On average,

this translates into a LLR measure less than 1. Hence, on average VIX futures lead the SPX

futures.

Figure 6 depicts the time series of the three measures of lead-lag strength together with
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Figure 6: LLR, LLT, LLC and VIX and SPX index over the sample period. The shaded areas
represent the dates with a level of the VIX index belonging to the 60% upper quantile.



time series of the VIX index and the SPX index. The shaded areas of the chart represent the

dates with a volatility level belonging to the 60% upper quantile. Inspection of the upper panel

of Figure 6 confirms what Figure 5 indicates, namely that on most dates the VIX futures lead

the SPX futures (LLR less than one). We also notice some interesting features of the lead-lag

measures on dates of high volatility: First, LLR seems to be more stable and around a level

of approximately 0.8. Second, the lead-lag time is erratic when volatility is low while close

to zero in high volatility regimes. Third, the lead-lag correlation gets more pronounced when

volatility is high.

Table 2 reports descriptive statistics on the three lead-lag measures. Based on the observa-

tions connected to Figure 6, we also compute the statistics conditioned on the volatility being

in the upper quantile. Additionally, we split the sample into the period before and after the be-

ginning of the covid-19 crisis after February 20, 2020. In terms of the mean and median values,

the LLR measure is relative stable across all four samples. However, the variability in the LLR

measure is much lower conditioned on the volatility being high. Considering LLT, the picture

is more extreme. On the full sample, LLT varies in the interval [−60 seconds,60 seconds] but

with an average/median value of -0.63/-0.01 seconds. In comparison and on the high volatility

sample, LLT is much more concentrated around 0 with a minimum value of 2.90 seconds and a

maximum value equal to 0.66 seconds. Focusing on the two sub-periods defined by the onset of

the covid-19 crisis, it seems that the covid-19 period is associated with a much tighter lead-lag

time and with much lower variability in all the lead-lag measures. However, we note that with

respect to the LLT measure, the covid-19 period differs from the sample conditioned on a high

volatility level, where the measure based on the former sample is on average slightly positive

while slightly negative in the latter.

We illustrate in Figure 7 kernel densities of the three measures of lead-lag strength com-

puted for the sample conditioned on the VIX index being above and below its upper quantile.

The figure confirms the findings reported in Table 2. The densities associated with LLT and

LLR measures are more peaked with the mass more concentrated around the mean of the dis-

tribution. Focusing on the third chart, we see that LLC gets more pronounced in high volatility

13



Table 2: Descriptive statistic of lead-lag measures.

Full sample VIX upper quantile Before covid-19 Covid-19
LLR LLT LLC LLR LLT LLC LLR LLT LLC LLR LLT LLC

Mean 0.84 -0.63 -0.09 0.78 -0.01 -0.19 0.84 -0.68 -0.07 0.82 0.01 -0.28

Median 0.80 -0.01 -0.06 0.77 0.00 -0.17 0.80 -0.02 -0.06 0.83 0.02 -0.27

Min 0.27 -59.70 -0.50 0.51 -2.90 -0.50 0.27 -59.70 -0.34 0.57 -0.59 -0.50

Max 2.27 58.70 0.03 1.16 0.66 -0.02 2.27 58.70 0.03 0.97 0.04 -0.05

Std. dev. 0.20 10.55 0.08 0.10 0.16 0.09 0.21 11.00 0.06 0.08 0.05 0.10

The covid-19 period covers all sample dates after February 20, 2020.

Figure 7: Kernel densities of lead-lag measures.

regimes in comparison to regimes with low VIX index values. Hence, the lead-lag relation is

strengthened (measured by LLC and LLR) but is short-lived during high volatility (measured

by LLT). A similar result is found in Buccheri et al. (2021), where the lead-lag correlation is

found to strengthen among stocks when volatilities are high, while being more erratic in low

volatility regimes. Other studies find that correlations at a daily frequency tend to increase be-

tween the VIX index and the SPX index when market movements are big (Cont and Kokholm,

2013; Todorov and Tauchen, 2011). In the context of high-frequency observations, Buccheri

et al. (2021); Zhang (2010); Dobrev and Schaumburg (2017) argue that the relation between

high-volatility and lead-lag relationships can be ascribed to high-frequency traders exploiting

statistical dependencies across markets appearing when the volatility is high. For the VIX

futures and SPX futures, this means that the stronger negative correlation in periods of high

volatility is possibly exploited by high-frequency traders reducing LLT to almost zero.
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4.2 Cross-market trading analysis

In this section, we quantify the cross-market activity presented in Section 3.3. For each sam-

ple date, Figure 8 plots the millisecond at which the cross-market activity peaks (CMAT) and

the value of cross-market activity at the peak (PCMA) together with the VIX and SPX index.

From the third panel showing PCMA, we see a clear connection with the level of the VIX index

as cross-market activity increases during periods of high VIX indicated by the shaded areas.

PCMA reaches its highest level at the beginning of the covid-19 pandemic. To the extend that

cross-market activity is driven by high-frequency trading, the relation between cross-market ac-

tivity and VIX is consistent with a feedback effect between volatility and high-frequency trad-

ing as described by Dobrev and Schaumburg (2017). Heightened levels of volatility attracts

more high-frequency trading and the increased presence of high-frequency traders generates

even higher levels of volatility. Comparing this with LLC in Figure 6, we see that they appear

be to negatively related, and a computation of the correlation between the two time series re-

veals a value of -0.84. This supports that high levels of high-frequency trading, strong negative

correlation and high volatility occurs simultaneously.

As shown in the first panel of Figure 8, CMAT fluctuates at a level of approximately 560

milliseconds during the first part of the sample and hereafter exhibit a clear shift to values

around zero. Possibly the break can be attributed to some technological change affecting la-

tencies or as a result of how trades are registered.1 The second panel zooms in on CMAT to

examine its fluctuations after the break. Except for a few dates, the series appear to be bounded

within the range of [-20,+30] milliseconds as indicated by the dotted lines. During sub-periods,

CMAT seems to be further bounded within even narrower ranges. For instance, the period from

mid-2019 to the end of the sample roughly contains no values outside [-5,+30] milliseconds.

There is also a tendency for the values to cluster around certain values such as -20, +20, +30

and values slight below and above zero as indicated by Figures 8 and 9. Possibly this reflects

the true lead-lag time or it may be the result of fluctuations in latencies over time. As indicated

by the shaded areas of Figure 8, CMAT does not show any clear pattern under periods of high

1Due to this observation, we exclude sample dates before August 26, 2013 in the remainder of the analysis.

15



16

Figure 8: CMAT (milliseconds at peak), PCMA (peak cross-market activity) and VIX and SPX
index over the sample period. The shaded areas represent the dates with a level of the VIX
index belonging to the 60% upper quantile.



Figure 9: Comparison of LLT and CMAT. The subsamples are based on the level of the VIX
index. The red line is a 45-degree line meaning that when points are above (below) the line,
LLT indicates a greater (smaller) lead of the VIX futures compared to CMAT. The values of
both LLT and CMAT are shown in milliseconds.

volatility. This contrasts with the LLT measure which exhibits a clear dependence on the VIX

index as illustrated in Figure 6. The difference is also highlighted in Figure 9 where the range

of LLT is significantly narrowed when conditioning on high VIX while the same does not occur

for CMAT which continues to span the same range of values. The overweight of points above

the 45-degree line indicates that on a given sample date CMAT is generally higher than LLT.

4.3 The dynamics of the lead-lag relationship

In order to understand the drivers of the lead-lag relationship, we run a regression where we

choose each of the three measures of the lead-lag relation, LLR, LLT, and LLC as the dependent

variable. Section 4.3.1 introduces the model and present the argumentation for inclusion of the

independent variables. Next, Section 4.3.2 presents the results of the regressions.
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4.3.1 Regression model

Letting LLMt denote the chosen measure of the lead-lag relation, the regression model is

LLMt = β0 +β1PCMA+
t +β2PCMA−t +β3V IXt +β4VV IXt +β5SPX+

t +β6SPX−t + γ ·CT Rt + εt ,

(6)

The γ coefficient is 3-dimensional reflecting the fact that we include three control variables.

Below we present in detail the variables considered in the regression (6):

• Peak cross-market trading activity, PCMAt : The trading activity in the two markets obvi-

ously could have some impact on the lead-lag relationship. In particular, trading activity

which emerge from trading strategies involving both markets should matter. If price

movements of VIX futures and SPX futures are sufficiently negatively correlated, high-

frequency traders may employ trading strategies akin to statistical arbitrage. Trading in

the two markets may also be linked if market makers hedge their VIX futures exposure

using SPX futures. That is, after having provided liquidity in the VIX futures market,

market makers trade in the SPX futures markets. To proxy the part of the trading activity

which is related to these type of activities, we use the cross-market activity measure in-

troduced by Dobrev and Schaumburg (2017) and detailed in Section 3.3. For each sample

date, our measure of cross-market activity is the peak of the cross-market activity curve

and we denote the location of the peak at time-t the cross-market activity time CMATt .

When CMATt < 0 the maximum cross-market activity is associated with trades in VIX

futures followed by trades in SPX futures and vice versa when CMATt > 0. The impact

of a high level of cross-market activity on the lead-lag relationship can potentially de-

pend on the sign of CMATt . Hence, to take into account this possible asymmetry, we

include two variables associated with cross-market activity in the regression (6), namely,

PCMA+
t = PCMAt1CMATt>0 and PCMA−t = PCMAt1CMATt≤0.

On days where VIX futures hedging is the main source for cross-market activity, we

expect that CMATt < 0 and that higher cross-market activity strengthens the lead of the
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VIX futures, i.e. it has a negative impact on LLR. We also expect that the hedging activ-

ities would introduce additional negative correlation between returns as buying (selling)

in the VIX futures market is accompanied by selling (buying) in the SPX futures mar-

ket. Hence, we should expect to see stronger negative correlation on days of sizable VIX

futures hedging activities. When CMATt > 0 the cross-market trading can to a lesser

extent be attributed to VIX futures hedging activities of dealers. Instead a high level of

cross-market trading can be an indicator of significant amount of high-frequency traders

present in the two markets.

• The VIX index, V IXt : There are at least two reasons why the VIX index should be in-

cluded as regressor. First, there is mixed evidence on whether informed trading occurs

at the index level. Pan and Poteshman (2006) do not find evidence that index option

trading is informative about future changes in the index while Li et al. (2017) find that

informed SPX option trading take place during the financial crisis. Informed trading can

arise due to better information processing skills or different views about the same pub-

licly available information which may be more common during volatile periods (Ciner

and Karagozoglu, 2008). If informed trading is present at the index level and increases

with the amount of volatility then informed traders preferring to trade VIX (SPX) futures

means that higher VIX will negatively (positively) impact LLR and LLT. The preferences

of informed traders to trade in the two markets may be influenced by the type of the in-

formation, i.e. whether it is directional or volatility information.2 Second, a short SPX

futures position provide a hedge against stock market crashes and with a negative corre-

lation between the SPX and VIX index, so does a long VIX futures position (Moran and

Dash, 2007; Szado, 2009; Hilal et al., 2011). Thus, high volatility or uncertainty could

create SPX futures selling pressure and VIX futures buying pressure. Whether investors

prefer to hedge with one of the futures contracts under high volatility will be revealed by

the sign of the coefficient on VIX. With investors’ increasing demand for protection at

2Volatility information can be exploited using both SPX options (with delta-hedging) and VIX futures. How-
ever, studies showing that VIX futures now lead the VIX index (Frijns et al., 2016; Bollen et al., 2017) indicate
that informed trading is more common in the VIX futures market than the SPX option market.
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times of high VIX, we then expect that LLC decreases in response to an increase in VIX.

Finally, inspection of Figure 6 indicates a clear pattern related to the volatility: Under

high volatility, LLR is slightly below one while more erratic in periods of low volatility.

The LLT measure is generally close to zero under high volatility but otherwise extremely

erratic. Moreover, LLC tend to be stronger and more negative in high volatility regimes.

Similarly, Chen et al. (2016) show a dependence on volatility as the relative informative-

ness of SPX futures and SPY is reversed under high volatility. To account for all this, we

also include the level of the VIX index in the set of regressors.

• The volatility of the VIX futures, VV IXt : The VVIX index provides a market based

measure of the expected volatility over the next calendar month of a VIX futures contract

with one month to maturity (CBOE, 2012). Hence, along the lines of the previous bullet

point, we also find it relevant to include the VVIX in the analysis.

• SPX return, SPXt : Ren et al. (2019) suggest that the lead-lag relation between index op-

tions and the index is reversed when the index is not stable or up-trending. Lee et al.

(2017) show how the predictability of the VIX futures basis on SPX futures returns

changes across the SPX return distribution. These results indicate the SPX return could

influence the lead-lag relation. We want to allow for the sensitivity of the lead-lag rela-

tion to the SPX return to depend on whether returns are positive or negative. Hence, we

include two variables in the regression: One collecting all the positive movements in the

SPX index, SPX+
t , and a second consisting of all the negative movements, SPX−t .

• Control variables: We control for the time to expiration of the VIX futures and SPX

futures contracts used to compute the lead-lag measure. Moreover, Frino et al. (2000)

show that the leadership of the futures on a stock index relative to the stock index is

strengthened around the time of the macroeconomic announcements and Chen and Tsai

(2017) find that VIX futures lead the VIX index more on the days of the release. Based

on the possible variations in the lead-lag relationship around these announcements, we

also include a dummy variable equal to one on the days of U.S. macroeconomic news

20



release. The announcement dates are the dates of release of information on Consumer

Price Index, Producer Price Index, Employment Situation or Gross Domestic Product

and are obtained from Archival Federal Reserve Economic Data (ALFRED).

4.3.2 Regression results

In this section we run the regression specified in equation (6) and Table 3 reports the results

of the regressions with each of the lead-lag measures as the dependent variable. In the discus-

sion we mainly focus on the LLR measure of the lead-lag relation and the regression containing

the full set of independent variables (column 5).

All the coefficients on the cross-market activity variables are significant and suggests that

cross-trading in the two markets strengthen the lead of the VIX futures. When CMATt < 0

the peak of the cross-market activity reflects that VIX futures trading is followed by SPX fu-

tures trading. We take this as an indication that VIX futures hedging activities are driving the

strengthening of the VIX futures lead on these days. The coefficients on the level of cross-

market trading conditioned on CMATt > 0 is less intuitive. A CMATt > 0 means that the peak

of the cross-market activity corresponds to SPX futures trading followed by VIX futures trad-

ing. This is an indication of SPX futures leading VIX futures. However, when the cross-market

activity increases we observe a negative impact on LLR meaning that the VIX futures lead

is strenghtened (or the SPX futures lead is weakened). Figure 10 depicts the average cross-

correlation function conditioned on CMATt > 0 and the PCMAt being in the lower and upper

quartile, respectively. Notice, when cross-market activity increases, the cross-correlation func-

tion shifts downwards and becomes more skewed to the left. In particular the change in skew is

reflected in a decrease in the LLR measure. Hence, even in the case when cross-market activity

is high and driven by SPX futures trades followed by VIX futures trading, the VIX futures

returns are more informative about future SPX futures returns in comparison to the reverse

direction.

Consistent with the pattern observed in Figure 6, column 2 shows that the VIX index has a

negative impact on LLR. This indicates that during periods of high VIX, prices tend to move
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Figure 10: Average cross-correlation function for subsamples of positive CMAT-days. Quar-
tiles of PCMA is found for the subsample where CMAT is positive. The average is taken over
the cross-correlation function for the subsample where PCMA is above (below) the respective
quartiles and where CMAT is positive. The two figures are identical except for the finer scale
on the right figure.

first in the VIX futures market. However, column 5 reveals that once the other variables are

included the effect of the level of the VIX index changes and is less significant. Similar obser-

vations can be connected to the level of the VVIX index.

We now turn the attention to the coefficients on the SPX returns. A positive (negative)

change in the value of the SPX index is typically associated with a negative (positive) change

in the level of the VIX. When the regression does not contain the cross-market activity variables

(column 4), we see that both negative and positive SPX returns strengthen the VIX futures lead

and are significant at the 1% level. Hence, when large returns in absolute value materialize,

the VIX futures lead SPX futures more. When the rest of the regressors are taken into account

(column 5), coefficients stay qualitatively the same.

The regression for LLT is less appealing to interpret. A quick glance at Figure 6 reveals

that LLT is fluctuating wildly around zero during low volatility periods, while being close to

zero when volatility is high. This can explain why the R-squared is close to zero across all the

LLT regressions.
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Table 3: Coefficients of the regression in equation (6).

LLR LLT LLC
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Constant
0.923∗∗∗ 0.873∗∗∗ 0.949∗∗∗ 0.845∗∗∗ 0.913∗∗∗ -2.923∗∗∗ -2.735∗∗∗ -4.281∗∗ -1.787∗ -3.669∗ 0.029∗∗∗ 0.053∗∗∗ 0.226∗∗∗ -0.075∗∗∗ 0.098∗∗∗

(45.586) (36.739) (26.350) (42.781) (26.421) (-2.664) (-2.678) (-2.552) (-1.888) (-1.723) (3.554) (2.775) (9.589) (-6.190) (8.473)

PCMA+
t

-1.589∗∗∗ -1.816∗∗∗ 38.562∗∗∗ 33.571∗∗ -4.359∗∗∗ -2.454∗∗∗

(-5.981) (-5.684) (2.656) (2.172) (-20.390) (-12.159)

PCMA−t
-3.818∗∗∗ -3.988∗∗∗ 36.303∗∗ 31.442∗ -3.568∗∗∗ -2.215∗∗∗

(-12.207) (-11.891) (2.185) (1.851) (-27.378) (-12.283)

V IXt
-0.003∗∗∗ 0.002∗ 0.065∗∗ 0.021 -0.010∗∗∗ -0.006∗∗∗

(-2.833) (1.827) (2.303) (0.351) (-8.806) (-7.827)

VV IXt
-0.001∗∗∗ -0.000 0.029∗∗ 0.008 -0.004∗∗∗ -0.000∗∗

(-3.929) (-0.122) (2.327) (0.324) (-14.380) (-2.175)

SPX+
t

-2.316∗∗∗ -2.017∗∗∗ -4.481 -47.360∗ -4.180∗∗∗ 1.221∗∗∗

(-3.240) (-4.010) (-0.244) (-1.879) (-10.801) (5.759)

SPX−t
2.263∗∗∗ 1.023∗∗∗ -37.075∗∗ 19.464 5.207∗∗∗ -1.542∗∗∗

(3.646) (2.790) (-2.232) (1.380) (6.696) (-4.067)

News announcement
-0.001 -0.001 -0.001 0.001 0.000 -0.096 -0.086 -0.087 -0.108 -0.068 -0.000 -0.002 -0.002 0.003 -0.002

(-0.113) (-0.074) (-0.081) (0.099) (0.009) (-0.171) (-0.153) (-0.155) (-0.193) (-0.122) (-0.035) (-0.796) (-0.485) (0.724) (-1.281)

Time to expirationV X -0.001∗ -0.000 -0.000 -0.000 -0.001∗ 0.030 0.024 0.020 0.023 0.029 -0.000 0.000∗∗∗ 0.001∗∗∗ 0.001∗ -0.000
(-1.726) (-0.592) (-0.295) (-0.475) (-1.686) (1.398) (1.097) (0.941) (1.064) (1.401) (-1.302) (2.587) (3.569) (1.779) (-0.009)

Time to expirationES -0.000 -0.000 -0.000 -0.000 -0.000 0.006 0.005 0.004 0.006 0.006 -0.000 0.000 0.000 -0.000 -0.000
(-0.541) (-0.242) (-0.063) (-0.295) (-0.567) (0.613) (0.470) (0.416) (0.562) (0.594) (-1.528) (0.774) (1.089) (-0.228) (-0.298)

Adj. R2 0.086 0.009 0.012 0.009 0.088 0.002 0.001 0.001 -0.001 0.000 0.724 0.720 0.541 0.254 0.865
Obs. 1772 1772 1772 1772 1772 1772 1772 1772 1772 1772 1772 1772 1772 1772 1772

Newey-West t-statistics are in parenthesis. ∗∗∗, ∗∗, ∗ indicates 1%, 5% and 10% significance, respectively. Due to the break in CMAT shown in Figure 8, we exclude the first part of the sample making August 26, 2013 the first sample date.



The LLC measure is different from the other two measures as it does not say anything about

which asset is the leader. Instead it measures the value of the cross-correlation at the peak

located at LLT (see Figure 3). However, if we focus on the regression of column 15 we observe

some interesting features: First, when the cross-market trading activity increases, the negative

correlation between VIX futures and SPX futures gets more pronounced. Second, LLC has a

negative relation to the level of the VIX index which confirms the relation between LLC and

VIX from Figure 6. Third, when only including the SPX returns in the regression (column 14),

we see that the correlation gets more negative when returns are high in absolute value.

Overall, we note that across all the regressions with LLR and LLC as the dependent variable,

cross-market activity is the variable that provides the largest contribution to R-squared. This

indicates its importance for the lead-lag relation. If hedging activity is captured by cross-market

activity, this supports the role of hedging by VIX futures dealers in driving the lead-lag relation

between VIX futures and SPX futures.

5 Conclusion

We study the lead-lag relationship between VIX futures and SPX futures on a high-frequency

sample of transactions over the period from January 2013 to September 2020. To analyze the

lead-lag relation, we consider the HY estimator of the cross-correlation function. The leader-

ship strength is computed on a daily basis using three different measures of lead-lag strength.

Namely, the lead-lag ratio, the lead-lag time, and the lead-lag correlation. The analysis reveals

large time-variation in the lead-lag relation. Under high volatility, the markets exhibit stronger

negative correlation and short-lived lead-lag with a tendency for VIX futures to lead SPX fu-

tures. We consider a regression model in order to delve further into the time-variation in the

lead-lag relation. In particular, we find that the cross-market activity explains a major part of

the lead-lag relation and that days of high activity are associated with a strengthened VIX fu-

tures lead over SPX futures. We argue in favor of the hypothesis that hedging activities of VIX

futures dealers are an important source of cross-market activity and therefore hedging activities

could be driving part of the VIX futures lead over SPX futures.

When the leadership of the VIX futures is partly explained by hedging activities of dealers,
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this may be due to two different mechanisms: If VIX futures trading is informative then the

lead of the VIX futures, means that the hedging activities of VIX futures market makers help

transmit information from VIX futures to SPX futures markets, i.e. information flows from one

derivatives/futures market to another. On the other hand, if VIX futures trading is uninformative,

which is not unlikely under the presence of large rebalancing trades by issuers of VIX ETPs,

then the leadership of the VIX futures means that hedging activities reflect a potential systemic

risk through its adverse effect on the index futures market at times of large-scaled SPX futures

selling by VIX futures market makers. We leave it for future research to analyze the importance

of these two mechanisms.
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