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1 Introduction

In this paper, I analyze time-series variation in expected returns for investing in stock market

variance, which are called variance discount rates. More specifically, I analyze variation in

variance discount rates in the S&P 500 variance swap market. I show that variation in variance

discount rates is important for the pricing of variance swaps, and I test whether prominent

asset pricing models are able to match the observed variation.

The volume in the market for variance has increased significantly over the past decades;

nevertheless, important properties of this market, like the time-variation in variance discount

rates, have received little attention in the literature. One important reason to invest in stock

market variance is that it can provide a hedge against stock market crashes. Moreover, risk

premia in this market are substantial,1 which shows that investors pay a premium to obtain

a positive exposure towards stock market variance.

Variation in variance discount rates is either driven by variation in preferences over variance

risk or by variation in the quantity of variance risk. Therefore, analyzing variance discount

rates offers important insights into preferences of investors over variance risk and into how

this risk varies over time. Moreover, in many prominent asset pricing models, variance risk is

a central component and the main driver of variation in the equity premium. In the models

considered in this paper,2 variance risk is driven by time-variation in consumption disasters

or time-variation in large and sudden movements in the agent’s investment opportunity set.

However, the literature has not settled on what the appropriate way is to incorporate variance

risk in an asset pricing model. Analyzing the variation of variance discount rates allows me to

contrast the empirical findings on variance discount rates with the predictions of these asset

pricing models. Therefore, this analysis offers important insights into how variance risk should

be incorporated in asset pricing models. In sum, my contribution to the literature is twofold.

First, I show that variation in variance discount rates is an important determinant of

variation in S&P 500 variance swap prices. Variance swaps are assets that pay their owner

the sum of daily squared stock market returns and, thus, give a direct exposure toward stock

market variance. Variance discount rates are defined as the expected returns on variance

swaps and equal the premium an investor pays to get exposure toward variance risk. I show

that variation in variance discount rates drives at least 6.9% of the variation in short-term

variance swaps, whereas it drives up to 76.0% of the variation for long-term variance swaps.

Therefore, I find strong evidence that the premium associated with hedging variance risk varies

over time. Furthermore, my results show that there is a predictable component in variance

1In the literature this phenomenon is referred to as the variance risk premium and documented in Bollerslev
et al. (2009), Kozhan et al. (2013), Dew-Becker et al. (2017), and Aı̈t-Sahalia et al. (2020).

2I study variance risk in the variable rare disaster model by Gabaix (2012), the time-varying disaster model
by Wachter (2013), and the long-run risk model by Drechsler and Yaron (2011).

2



risk, which drives variation in both short-term and long-term variance discount rates.

Second, I show that prominent asset pricing models have profoundly different predictions

regarding the pricing of variance risk and, in particular, regarding the variation in prices due

to variance discount rates. In the model by Gabaix (2012), all variation in variance swap

prices is attributed to variation in variance discount rates, both for short-term and long-term

variance swaps. On the other hand, in the model by Wachter (2013) (almost) none of the

variation in variance swap prices is attributed to variance discount rates, while the data shows

that variance discount rates are the main driver of long-term variance swaps. These results

follow from the fact that the model by Wachter (2013) predicts a strong persistence in stock

market variance, whereas the model by Gabaix (2012) predicts that, in absence of disasters,

stock market variance is constant. Finally, the model by Drechsler and Yaron (2011) matches

the empirical result that long-term variance swaps are mostly driven by variance discount

rates. However, when I use the calibration of Drechsler and Yaron (2011), the model predicts

substantially larger variation in short-term variance discount rates than empirically observed.

In sum, these models incorporate variance risk to capture empirical features of the equity

premium; however, the models fail to directly match empirically documented features with

respect to the pricing of variance risk.

I now explain the methodology to study variance discount rates in more detail. In order to

analyze variation in variance discount rates, I derive a log-linear pricing identity for variance

swaps in the spirit of the approach by Campbell and Shiller (1988) for equity. More specifically,

I show that the variance swap rate with T months to maturity vs
(T )
t approximately equals the

difference between expected stock market variance E
(T )
rv,t and variance discount rates E

(T )
vdr,t up

to maturity, as follows:

vs
(T )
t ≈ E

(T )
rv,t − E

(T )
vdr,t, (1)

where the full derivation and definitions are given in Section 2.2. Equation (1) offers a key

insight into the pricing of variance risk, as it shows that the variance swap rate is high, either

due to high stock market variance expectations or low variance discount rates. Moreover, this

identity for the variance swap rate is similar to the pricing identity of the price-dividend ratio,

which is presented in Campbell and Shiller (1988), where variance expectations take the role

of expected cash flows and variance discount rates replace stock market discount rates. In the

literature on stock market discount rates, it is standard to model discount rates or dividend

growth using a vector autoregression (VAR). I proceed accordingly and model stock market

variance with a VAR. Using the VAR, I can decompose variation in variance swap rates into

variation due to stock market variance expectations and variation due to variance discount

rates. I document the following stylized facts regarding short-term and long-term variance
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swap rates.

First, regarding short-term variance swaps, I document that variation in stock market

variance expectations accounts for, respectively, 123.5% and 87.0% of the total variation in

variance swap rates with one and three months to maturity, whereas variation in variance

discount rates accounts for 6.9% and 31.3% of the total variation.3 Additionally, I find that

stock market variance expectations and short-term variance discount rates are positively cor-

related. This finding is at odds with economic intuition, which suggests that the premium to

hedge variance risk increases, rather than decreases, during periods of elevated stock market

variance. However, the finding that variance discount rates and stock market variance expec-

tations are positively correlated is in line with the result in Cheng (2019), who finds that risk

premia in the market for variance tend to decrease during periods of elevated stock market

variance.4 Furthermore, I show that decompositions of short-term variance swap rates using

predictive regressions, which are independent of the VAR, yield very similar results.

Second, regarding long-term variance swaps, I document that variation in variance discount

rates accounts for, respectively, 60.6% and 76.0% of the total variation in 12-month and 18-

month variance swap rates, whereas variation in variance expectations accounts for 48.5% and

28.5% of the total variation. Hence, there is strong evidence for time-variation in variance

discount rates, and this variation accounts for a significant part of the total variation in

variance swap rates. In order for long-term variance discount rates to vary over time as

much as empirically documented, either variance risk should contain a persistent component

or preferences over variance risk need to vary over time and in a persistent way. Moreover,

the fact that short-term variance swaps mostly move due to variance expectations indicates

that stock market variance is highly time-varying and predictable. The result that variance

expectations drive only a small fraction of the variation in long-term variance swaps indicates,

however, that stock market variance is not very persistent. To show robustness of my results,

I show that the decomposition of long-term variance swaps, based on predictive regressions,

yields the same results as those based on the VAR.

After having established the stylized facts of the pricing of variance risk, I compare the

empirical findings to the predictions of prominent asset pricing models. The first model

considered in this paper is the consumption disaster model by Gabaix (2012). The model

builds on the framework of Rietz (1988) and Barro (2006) and adds that the size of the

disaster varies over time. I show that variation in variance swap rates in the model by Gabaix

3The sum of variation due to stock market variance expectations and variance discount rates does not equal
one, because these components turn out to be positively correlated.

4Lochstoer and Muir (2019) show that a model in which an agent has slow moving beliefs over stock market
volatility can reconcile the evidence of the negative correlation of stock market variance and the variance risk
premium. Slow moving volatility expectations lead the agent to initially underreact to volatility news followed
by a delayed overreaction.
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(2012) is solely driven by variation in variance discount rates. This result follows from the

fact that, in the absence of disasters, stock market variance is constant. However, during

periods of increased disaster size, the investor is willing to pay an even larger premium to

hold variance swaps, which drives up the variance swap rate.

The second model considered in this paper is the model by Wachter (2013), in which

variance risk is also driven by variation in consumption disaster risk. However, in the model

by Wachter (2013) the disaster intensity, rather than the disaster size, varies over time. I

show that in this model, (almost) all variation in variance swap rates is driven by variance

expectations rather than variance discount rates. In this model, stock market variance is,

even in the absence of consumption disasters, time-varying. This feature, which is not present

in the model by Gabaix (2012), results from the fact that the variance of the stock market

increases in the current level of the disaster intensity. Due to this time-variation in stock

market variance and its persistence, the variation in variance expectations is substantially

larger than the variation in variance discount rates and, thus, the main driver of variance

swap rates.

The third model considered in this paper is the model by Drechsler and Yaron (2011), who

extend the long-run risk framework of Bansal and Yaron (2004) by including jumps. In this

model, variance risk is driven by jumps in the investment opportunity set, rather than jumps

in the consumption process. These jumps appear in the stochastic process governing the

long-run mean consumption growth and in the process governing the variance of the model. I

show that, in line with the data, short-term variance swap rates are driven mostly by variance

expectations and long-term variance swap rates mostly by variance discount rates. However,

due to the relatively high frequency of the jumps in the model and the large variation in

intensity, short-term variance discount rates drive a much larger part of the variation in short-

term variance swaps than empirically observed. Therefore, I conclude from this analysis that

jumps in stock market variance are much less predictable over short horizons in the data than

in the model by Drechsler and Yaron (2011). Furthermore, stock market variance is more

persistent in the model by Drechsler and Yaron (2011) than in the data, and this follows from

the fact that the fraction of variation explained by variance expectations decreases less in the

maturity than empirically observed.

How do variance discount rates relate to stock market discount rates? To analyze this,

I decompose returns on variance swaps into news about future variance and news about

future variance discount rates and decompose stock market returns, following Campbell and

Vuolteenaho (2004), into news about future dividends and news about future stock market

discount rates. I find that the beta of a variance swap is negative, because the correlation

between variance swap returns and stock market returns is strongly negative. First, I show

that the stock market beta increases from −7.18 for short-term variance swaps to −2.21 for
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long-term variance swaps. Second, the low stock market beta is, both for short-term and long-

term variance swaps, mostly explained by the positive correlation between news about stock

market variance and news about stock market discount rates. This result indicates that during

periods of increased stock market variance, stock market discount rates are revised upward to

compensate for the increased risk of investing in the stock market. Third, I show that news

about short-term variance discount rates is positively correlated to news about stock market

discount rates, whereas news about long-term variance discount rates is negatively correlated

to news about stock market discount rates.

Overall, I contribute to three strands of the literature. First, I contribute to the literature

on the variance risk premium. Bollerslev et al. (2009), Kozhan et al. (2013), Dew-Becker

et al. (2017), and Aı̈t-Sahalia et al. (2020) show that this risk premium is, on average, sizable.

Moreover, Bollerslev et al. (2009) show that the variance risk premium predicts future stock

market returns, and Bollerslev and Todorov (2011) show that a substantial fraction of the

equity premium is compensation for variance risk. I show that there is sizable time-variation

in expected returns to invest in variance risk. Second, I contribute to the literature on how

to incorporate variance risk in an asset pricing model. Rietz (1988) and Barro (2006) propose

that the equity premium is a compensation for consumption disasters. Gabaix (2012) and

Wachter (2013) show how time-variation in consumption disaster risk is able to capture time-

variation in the equity premium. On the other hand, Drechsler and Yaron (2011) show

that the equity premium and variance risk premium is explained by a long-run risk model

that incorporates jumps in the investment opportunity set, rather than in the consumption

growth process. The decomposition of variance swap rates in this paper allows me to directly

test these mechanisms that drive variance risk in the models. Third I contribute to the

literature on discount rates in various financial markets of which the importance is stressed

in Cochrane (2011). Shiller (1981), Campbell and Shiller (1988), Campbell and Vuolteenaho

(2004), Cochrane (2008), and Campbell et al. (2018) analyze variation in stock market discount

rates. Variation in discount rates for bonds and corporate credits is analyzed in Fama and

Bliss (1987), Campbell and Ammer (1993), and Nozawa (2017). Johnson (2017) shows that

there is predictability in the market for variance swaps, which indicates that there is some

time variation in variance discount rates. I show that, indeed, variance discount rates vary

over time and drive a significant part of the variation in variance swap rates.

The remainder of this article is organized as follows. Section 2 shows the derivation of the

pricing identity for variance swap rates. Section 3 describes the data on variance swaps, reports

the stylized facts on variance swap returns, and reports the results of the decomposition.

Section 4 explains the predictions of several asset pricing models regarding the decomposition

of variance swap rates. Section 5 concludes.
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2 Methodology

In this section, I present the methodology to study the time-series variation of variance dis-

count rates in the S&P 500 variance swap market. A variance swap is a derivative security

that pays the holder of the contract the realized variance of the underlying up to maturity.

Variance swaps are used to manage market variance risk, and the variance discount rates

correspond to expected returns for holding a variance swap.

In the next subsection, I formalize the cash flows of a variance swap and will afterward

derive a log-linear pricing idenity for the variance swap rate in the spirit of the approach by

Campbell and Shiller (1988) for equity.

2.1 Variance swap contract

A variance swap pays its holder the realized variance of the underlying from the inception of

the contract up to maturity. At maturity, the holder of the contract pays the variance swap

rate in exchange for the realized variance of the underlying from inception up to maturity.

The payoff of a variance swap at maturity T -periods from origination time t is defined as

follows:

payofft+T =
T∑
i=1

RVt+i − V S(T )
t , (2)

where RVt+i is the realized variance over period t + i and V S
(T )
t is the variance swap rate

at time t for a variance swap with maturity T -periods to maturity. Note that a variance

swap can last for several periods, and, therefore, the total realized variance at the end of the

contract equals the sum of the realized variance over each period. The holder of the variance

swap receives the realized variance in exchange for a fixed rate at the end of the contract and,

therefore, hedges variance risk until maturity of the contract. Given a risk-neutral pricing

measure Q, the variance swap rate with T -periods to maturity at time t is given by the

following:

V S
(T )
t =

T∑
i=1

EQ
t

(
RVt+i

)
, (3)

where EQ
t denotes the expectation under the risk-neutral measure conditional on information

available at time t. Therefore, V S
(T )
t corresponds to the risk-neutral expectation of the sum

of realized variances from period t+ 1 until period t+ T .

Next, I define the gross return over period t to t+ 1 on a variance swap with T -periods to

7



maturity, as follows:

R
(T )
t+1 =

V S
(T−1)
t+1 +RVt+1

V S
(T )
t

. (4)

The gross return is defined as the investor holding a variance swap with T -periods to maturity

for one period and selling in the period afterward. She buys the variance swap for the current

variance swap rate V S
(T )
t , receives the next period’s realized variance RVt+1, and sells the

variance swap for the next period’s variance swap rate V S
(T−1)
t+1 . The definition of the return

in equation (4) corresponds to the return on a variance asset, which pays the realized variance

at the end of each period rather than at the end of the contract. Under the assumption of

no-arbitrage, the price of such an asset equals the variance swap rate discounted with the T -

period risk-free rate to time t, and the realized variance payment of such an asset is discounted

in a similar way. It is possible to show that the logarithm of the return defined in (4) equals

the log-return on this variance asset in excess of the risk-free rate. Moreover, it follows from

equation (4) that realized variance for returns on variance swaps is the equivalent to dividend

payments for returns on the stock market; that is, realized variance is the cash flow component

of a variance swap.

In the next subsection, I show that it is possible to write the variance swap rate as a

function of the expectation of future stock market variance and variance discount rates. The

derivation is analogous to the derivation of Campbell and Shiller (1988) for equity.

2.2 Pricing identity for the variance swap rate

I show in this subsection how to derive the log-linear pricing identity of equation (1). The goal

of this exercise is to write the current variance swap rate as a function of expected variance

and variance discount rates only.

The first step in deriving the log-linear pricing identity is to Taylor-expand the log-return

on the variance swap and obtain the following log-linear approximation:

r
(T )
t+1 ≈ k(T ) + ρ(T ) · vs(T−1)

t+1 +
[
1− ρ(T )

]
rvt+1 − vs(T )

t , (5)

where r
(T )
t+1 = log

(
R

(T )
t+1

)
, vs

(T−1)
t+1 = log

(
V S

(T−1)
t+1

)
, rvt+1 = log

(
RVt+1

)
, and vs

(T )
t = log

(
V S

(T )
t

)
.

In the following, unless stated otherwise, I refer to the logarithm of these variables as the re-

turn, variance swap rate, and realized variance. The interpretation of equation (5) is as

follows: The return on a variance swap is approximately equal to a linear function of the

next period’s variance swap rate vs
(T−1)
t+1 , realized variance in the next period rvt+1, and the

current variance swap rate vs
(T )
t . k(T ) is the approximation constant and ρ(T ) governs the

relative importance of the next period’s price and the next period’s realized variance in the

calculation of the return of the variance swap. These constants depend on the maturity T
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of the variance swap, because the one-period return on a long-term variance swap is mostly

driven by the next period’s variance swap rate rather than the one-period realized variance.

Intuitively, this indicates that ρ(T ) is closer to one for variance swaps with a large maturity.

I show in Section 3.3 that ρ(T ) can be estimated using a simple regression and, importantly,

that equation (5) approximates the return on a variance swap really well.

In order to write the current variance swap rate as a function of future realized variance

and future returns only, I substitute the next period’s variance swap rate with the following

equation:

vs
(T−i)
t+i ≈ k(T − i) + ρ(T − i) · vs(T−i−1)

t+i+1 +
[
1− ρ(T − i)

]
rvt+i+1 − r(T−i)

t+i+1,

where k(T − i) and ρ(T − i) are the log-linearization coefficients of a variance swap with T − i-
periods to maturity. Next, this equation allows me to substitute the future variance swap rate

vs
(T−i)
t+i in equation (5) and iterate forward up to the point that the current variance swap

rate depends on the one-month variance swap rate vs
(1)
t+T−1. The following holds regarding

the one-month variance swap rate: vs
(1)
t+T−1 = rvt+T − r(1)

t+T , which yields k(1) = ρ(1) = 0 such

that it holds with an equal sign. In the end, the future variance swap rate is substituted out

from equation (5) and I obtain the following:

vs
(T )
t ≈ K+

T∑
i=1

[
1−ρ(T−i+1)

]( i−1∏
j=1

ρ(T−j+1)
)
·rvt+i−

T∑
i=1

( i−1∏
j=1

ρ(T−j+1)
)
·r(T−i+1)
t+i , (6)

where K is a constant and a function of the constants k(T − i) and ρ(T − i) from the indi-

vidual log-linearizations. In the remainder of this paper, I will discard the constant K from

the pricing identity for simplicity and because the focus of this paper is on time-series vari-

ation. The intuition of equation (6) is as follows: A high current variance swap rate vs
(T )
t is

either due to high future realized variance rvt+i or low future returns on the variance swap

r
(T−i+1)
t+i . Equation (6) holds ex post, but the equation also holds in expectation conditional

on information at time t, as follows:

vs
(T )
t ≈ E

(T )
rv,t − E

(T )
vdr,t, (7)

where

E
(T )
rv,t = Et

T∑
i=1

[
1− ρ(T − i+ 1)

]( i−1∏
j=1

ρ(T − j + 1)
)
· rvt+i and (8)

E
(T )
vdr,t = Et

T∑
i=1

( i−1∏
j=1

ρ(T − j + 1)
)
· r(T−i+1)

t+i . (9)
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The intuition of equation (7) is similar to before: The current variance swap rate vs
(T )
t is

high either due to high expected realized variance E
(T )
rv or low expected variance discount

rates E
(T )
vdr . Campbell and Shiller (1988) show that the current price-dividend ratio increases

in dividend growth expectations and decreases in stock market discount rates. Therefore,

identity (7) for the variance swap rate is similar to the pricing identity of the price-dividend

ratio, where variance expectations take the role of expected cash flows and variance discount

rates replace stock market discount rates. There are two main differences between the identity

of equation (7) and the identity in Campbell and Shiller (1988), and these are due to the fact

that a variance swap is a finite cash flow, whereas equity is a perpetual cash flow. First,

variance discount rates in equation (9) depend on the maturity of the variance swap, which is

important because Dew-Becker et al. (2017) show that the term structure variance discount

rates is upward sloping. This indicates that expected returns on short-term variance swaps

are much lower than expected returns on long-term variance swaps. Second, in the derivation

of the pricing identity for equity, Campbell and Shiller (1988) assume the so-called no-bubble

condition. This assumption is not needed in case of a variance swap, because it is a finite cash

flow rather than a perpetual cash flow in the case of equity.

In Section 3, I take equation (7) to the data and decompose the variance swap rate into

variance expectations and variance discount rates for several maturities. This allows me

to show how much of the variation in variance swap rates is due to variance expectations

and variance discount rates. Furthermore, in the following subsection I derive an equation

to decompose realized returns on variance swaps into news about future variance and news

about future variance discount rates.

2.3 Variance swap return decomposition

From the log-linear pricing identity of equation (7), it is possible to derive an equation that

shows how returns on variance swaps are decomposed into news about future variance and

news about future variance discount rates. Similar to what Campbell and Vuolteenaho (2004)

do for equity, I calculate changes in expectation of identity (7), which yields the following:

r
(T )
t+1 − Etr(T )

t+1 ≈
(
Et+1 − Et

)[ T∑
i=1

(
1− ρ(T − i+ 1)

)( i−1∏
j=1

ρ(T − j + 1)
)
rvt+i

]

−
(
Et+1 − Et

)[ T∑
i=2

( i−1∏
j=1

ρ(T − j + 1)
)
r

(T−i+1)
t+i

]
= N

(T )
rv,t+1 −N

(T )
vdr,t+1. (10)

As previously, equation (10) indicates that unexpected returns on a variance swap with ma-

turity T are associated with news about future variance and news about variance discount
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rates. An increase in expected variance is associated with a positive return on the variance

swap, whereas an increase in variance discount rates is associated with a negative return on

the variance swap. The decomposition of returns on variance swaps, rather than variance

swap rates, helps to understand how quickly expectations over realized variance of discount

rates change over time. Furthermore, using this decomposition I analyze which part of the

variance swap return correlates with stock market returns.

In the next section, I first discuss the details of my data and afterward present the empirical

results regarding the decomposition of variance swap rates and variance swap returns.

3 Empirical results

In this section, I present the empirical results of the decomposition of variance swap rates

and variance swap returns. First, I describe my data on variance swaps and present some

sample statistics. Second, I show the results from the decomposition of variance swap rates

into variance expectations and variance discount rates. I decompose the variance swap rate

in two ways: using predictive regressions—which I call the simple decomposition—and using

the VAR. Third, I decompose returns on variance swaps into news about future variance and

news about variance discount rates and analyze how variance swap returns are related to stock

market returns.

3.1 Data

In this paper, I use data on S&P 500 options from January 1996 until June 2019 from Op-

tionMetrics. Using the methodology described in Kozhan et al. (2013) and discussed more

into details in Appendix A.1, I construct variance swaps with maturities ranging from one to

18 months. The maturity of 18 months to maturity is the longest for which I can calculate

a variance swap rate every month. I calculate variance swap rates at the end of each month

in the sample and interpolate the variance swap rates linearly, such that the maturity equals

T months. Note that interpolating variance swap rates linearly is equivalent to taking long

posititions in two variance swaps with maturity T1 and T2 such that the weighted average of

the maturities equals T .

I use the methodology of Kozhan et al. (2013), because these variance swaps are most

closely related to the variance swaps that are traded over-the-counter (OTC). In Appendix A.2,

I show that my data on variance swaps is highly similar to data from the OTC market, which

is analyzed in Dew-Becker et al. (2017).

In addition to the pricing information on variance swaps, I obtain data that is used in

the VAR. From the panel of variance swap rates, the first two principal components, pc
(1)
t
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and pc
(2)
t , are calculated. pc

(1)
t captures the level in the term structure of variance swap

rates, and pc
(2)
t captures the slope of the term structure of variance swap rates. Furthermore,

realized variance is defined as in Kozhan et al. (2013) and approximately equals the sum of

daily squared returns within a month. Finally, the default spread is obtained from the Federal

Reserve Bank of St. Louis and defined as the difference in yield on BAA and AAA credit-rated

corporate bonds.

3.2 Returns on variance swaps

In this subsection, I present sample statistics from the panel of variance swap returns. Note

that I also present sample statistics on the realized variance of the S&P 500, because realized

variance plays the role of the dividend payment in the calculation of the return. Moreover,

I calculate simple returns and log-returns in order to quantify its differences in the case of

variance swaps. The sample statistics of the realized variance and variance swap returns are

shown in Table 1.

Table 1: The table shows sample statistics of realized variance in Panel A, simple variance swap returns in
Panel B and log variance swap returns in Panel C. The sample statistics of monthly realized variance in Panel
A are scaled to represent the yearly standard deviation. The mean, standard deviation, yearly Sharpe ratio
and the 5%, 25%, 50%, 75% and 95% quantiles are presented.

Panel A: Realized variance

Maturity Mean SD SR 5% 25% Median 75% 95%

- 0.162 0.095 - 0.068 0.101 0.142 0.188 0.323

Panel B: Simple returns on variance swaps

18 -0.006 0.187 -0.106 -0.231 -0.123 -0.037 0.071 0.317

12 -0.013 0.227 -0.202 -0.269 -0.151 -0.056 0.081 0.346

6 -0.050 0.316 -0.544 -0.363 -0.232 -0.110 0.058 0.480

3 -0.098 0.447 -0.756 -0.477 -0.353 -0.204 0.002 0.581

1 -0.285 0.676 -1.458 -0.779 -0.630 -0.456 -0.193 0.838

Panel C: Log-returns on variance swaps

18 -0.021 0.167 - -0.262 -0.131 -0.037 0.069 0.275

12 -0.034 0.195 - -0.313 -0.164 -0.057 0.078 0.297

6 -0.090 0.264 - -0.451 -0.265 -0.117 0.057 0.392

3 -0.181 0.365 - -0.649 -0.435 -0.228 0.002 0.458

1 -0.572 0.640 - -1.508 -0.995 -0.608 -0.214 0.609

In Table 1, sample statistics of monthly realized variance on the S&P 500 and returns on
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variance swaps with different maturities ranging from one to 18 months are presented. Panel

A presents sample statistics of realized variance scaled to yearly standard deviation, Panel

B presents simple returns on variance swaps, and Panel C presents log-returns on variance

swaps. The mean monthly realized variance over the sample is equal to 16.2% p.a., with a

standard deviation of 9.5%. Furthermore, the distribution of monthly realized variance is

right-skewed, indicated by the quantiles of the distribution.

The first observation from Panel B of Table 1 is that, on average, returns on variance

swap returns are negative. This result is in line with a positive variance risk premium for the

market portfolio as in Bollerslev et al. (2009) and Drechsler and Yaron (2011). Economically,

a negative expected return on a variance swap indicates that if an investor wants to hedge

variance risk, she pays a risk premium. The premium the investor pays for holding a variance

swap is decreasing in the maturity of the variance swap. A variance swap with maturity

longer than one month has exposure toward realized variance in the next month and toward

expected variance for the remaining of the contract. Dew-Becker et al. (2017) show that

the premium for hedging realized variance the next month is much larger than for hedging

expected variance, and, therefore, the premium for holding a variance swap is decreasing in

the maturity. Moreover, returns on variance swaps are volatile, as seen in the third column

of Panel B in Table 1 and the volatility is decreasing in the maturity of the variance swap.

However, the yearly Sharpe ratio is strongly increasing in maturity, and the yearly Sharpe

ratio for investing in variance swaps with one month to maturity is very low (≈ −1.46), and

similar to what Dew-Becker et al. (2017) find. Furthermore, the distributions of variance swap

returns are right-skewed, indicated by the quantiles of the return distribution.

The sample average of the log-returns on variance swaps in Panel C of Table 1 are lower

than the sample average for simple returns in Panel B of Table 1. This is driven by the fact

that log-return distributions are less right-skewed than the simple return distributions and,

therefore, is the sample average lower. The distribution of one-month returns is affected the

most by the log-transformation. This result derives from the fact that the approximation of

log-returns is equal to simple returns is close if the volatility of the return is low.5

3.3 Simple decomposition of variance swap rates

As a starting point, I test the basic intuition from the pricing identity (7): The current

variance swap rate is high either due to high future variance or low future returns on the

variance swap. Therefore, the current variance swap rate should predict future stock market

variance, future returns on the variance swap, or both. In order to do this, I run predictive

regressions of future stock market variance and future returns on the variance swap, with the

5Note, log(1 + x) ≈ x for x close to zero.
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current variance swap rate as the predictor. The present value identity (6) holds ex post and,

therefore, the coefficients of the following predictive regressions decompose the variance swap

rate into variance expectations and variance discount rates, as follows:

yrv,t+T =
T∑
i=1

[
1− ρ(T − i+ 1)

]( i−1∏
j=1

ρ(T − j + 1)
)
· rvt+i = arv + brv · vs(T )

t + εrvt+T and (11)

yvdr,t+T =
T∑
i=1

( i−1∏
j=1

ρ(T − j + 1)
)
· r(T−i+1)

t+i = avdr + bvdr · vs(T )
t + εvdr

t+T , (12)

where rvt+i and r
(T−i+1)
t+i are the realized variance and return of a variance swap during period

t + i. The difference between the regression coefficients of equations (11) and (12) should be

approximately one, as follows:

1 ≈ brv − bvdr.

The regression coefficients indicate whether a high current variance swap rate predicts high

future stock market variance or low future returns. Therefore, economic intuition suggests

that brv > 0 and bvdr < 0. Moreover, if brv ≈ 1, it indicates that variation in the variance swap

rate is mostly driven by stock market variance expectations, whereas if bvdr ≈ −1, it indicates

that variation in the variance swap rate is mostly driven by variance discount rates. Due to

the fact that a variance swap is a finite cash flow, these regressions provide a powerful test

if the present value identity holds. This identity holds if I find that, indeed, the difference

between the regression coefficients is close to one. In case of a perpetual cash flow like equity,

the regressions (11) and 12 do not fully decompose the current price, because the future price

of the asset could be important.

In order to compute yrv,t+T and yvdr,t+T , I need the log-linear approximation coefficients

ρ(T ). I estimate ρ(T ) using a simple regression, which follows from minimizing the squared

error of approximation (5). The results of this exercise are presented in Table 2.
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Table 2: This table shows the regression results of r
(T )
t+1 − rvt+1 + vs

(T )
t = k + ρ

(
vs

(T−1)
t+1 − rvt+1

)
+ ε

(T )
t+1, for

different maturities T . For each maturity, the log-linearization coefficient ρ(T ) is given as well as the R2 of
the regression.

Maturity 1 2 3 4 5 6 7 8 9

ρ(T ) 0 0.634 0.777 0.841 0.876 0.898 0.914 0.925 0.933

R2 100% 98.24% 99.28% 99.57% 99.70% 99.78% 99.82% 99.85% 99.88%

Maturity 10 11 12 13 14 15 16 17 18

ρ(T ) 0.940 0.945 0.950 0.954 0.958 0.961 0.963 0.965 0.967

R2 99.90% 99.91% 99.92% 99.94% 99.94% 99.95% 99.96% 99.96% 99.96%

As expected, the log-linearization coefficient ρ(T ) depends on the maturity of the variance

swap. ρ(T ) increases in maturity, which indicates that the next period’s variance swap rate is

relatively more important than the one-period realized variance for long-term variance swaps.

The second row in Table 2 shows that the log-linear approximation of the variance swap

returns is in fact a good approximation, as indicated by the large R2’s. The R2’s range from

98.24% to 99.96%, with an average of 99.7%.

The next step is to estimate the regression equations (11) and (12) which decompose the

variance swap rate into variance expectations and variance discount rates. Table 3 presents

the results.

Table 3: This table shows the results of the predictive regressions of equations (11) and (12), in which the
variance swap rate is the independent variable. t-statistics are represented in brackets and are computed using
Newey-West standard errors with number of lags equal to T .

Dependent variable: yrv,t+T yvdr,t+T

Maturity brv
(t-stat.)

R2 bvdr
(t-stat.)

R2

18
0.245 0.030 -0.728 0.205

(1.32) (-3.87)

12
0.558 0.142 -0.419 0.080

(3.70) (-2.65)

6
0.833 0.315 -0.168 0.017

(7.00) (-1.38)

3
0.957 0.432 -0.040 0.001

(11.50) (-0.46)

1
1.101 0.577 0.101 0.013

(19.52) (1.79)
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A positive brv indicates that a high variance swap rate predicts high future realized variance,

whereas a negative bvdr indicates that a high variance swap rates predicts low future returns on

the variance swap. The main result from Table 3 is that variation in short-term variance swaps

is mostly attributed to variation in realized variance, whereas variation in long-term variance

swaps is mostly attributed to variation in variance discount rates. Variation in variance swap

rates with maturity less than six months is for at least 83.3% attributed to variation in realized

variance and only 16.8% due to variation in variance discount rates. Moreover, these short-

term variance swap rates do not predict lower future variance discount rates with a coefficient

significantly different from zero. However, in Section 3.4, where the variance swap rate is

decomposed using a VAR, I show that short-term variance discount rates vary over time as

well. The finding of a postive bvdr indicates that a high one-month variance swap rate predicts

a high future return on the variance swap is at odds with economic intuition. However, the

finding could be in line with Cheng (2019), who shows that the variance risk premium tends

to decline during market turmoil. This finding is explained by falling hedging demand for

variance risk during periods when stock market risk rises.

I now turn to the predictive regressions for long-term variance swaps with maturity of 12

or 18 months. Variation in expected variance accounts for, respectively, 55.8% and 24.5% of

the total variation in variance swap rates with 12 or 18 months to maturity, whereas variance

discount rates account for 41.9% and 72.8% of the total variation. Long-term variance swap

rates predict future returns on the variance swaps negatively and with a coefficient significantly

different from zero. Furthermore, the 18-month variance swap rate does not predict future

realized variance over the lifetime of the contract with a coefficient significantly different from

zero. These findings indicate that long-term variance swap rates are mostly driven by variation

in variance discount rates.

The fact that brv − bvdr is, indeed, close to one for each maturity indicates that the varia-

tion in variance swap rates is effectively attributed to variation in variance expectations and

variance discount rates. The difference between the coefficients of the predictive regressions

lies between 0.973 and 1.001 for each of the considered maturities.

In the following subsection, I specify the VAR and present the results of the decomposition

of variance swap rates.

3.4 Decomposition of variance swap rates using a VAR

In this subsection, I show how the variance swap rate is decomposed using a VAR. This allows

me to estimate variance expectations and variance discount rates and analyze its time-series

variation.

The results of the simple decomposition in Table 3 show that short-term variance swap
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rates do no predict future returns on a variance swap with a coefficient significantly different

from zero. In the analysis using the VAR, I thoroughly investigate the variation in short-term

and long-term variance discount rates. I use the VAR to model variance expectations and

obtain variance discount rates as a latent variable from the log-linear pricing identity (7). It

is convenient to model stock market variance with a VAR, because this allows me to obtain

variance expectations for each period by iterating the VAR forward.

In the benchmark exercise, I focus on the following VAR with four state variables:

zt+1 = Bzt + εt+1 and (13)

zt =
(
rvt pc

(1)
t pc

(2)
t DEFt

)′
, (14)

where B ∈ R4×4 is a matrix with regressor coefficients and εt+1 ∈ R4×1 is a vector with errors.

The vector zt consists of the following variables: rvt is the log of realized variance, pc
(1)
t is the

first principal component of the panel of log variance swap rates with maturity from one to 18

months, pc
(2)
t is the second principal component of the panel of log variance swap rates, and

DEFt is the default spread defined as the yield difference between BAA and AAA credits.

For simplicity, and standard in the literature, all the variables included in zt are demeaned

such that the intercepts in the VAR are zero.

The first row in the VAR of equation (13) represents the predictive model for stock market

variance. In order to decompose the variance swap rates, I calculate variance expectations,

and, therefore, the remaining variables in the VAR are included based on its ability to predict

stock market variance. pc
(1)
t captures the level of the term structure of variance swap rates

and predicts future stock market variance well. The level of term strucutre of variance swap

rates is highly correlated (≈ 0.93) with the VIX index, which Drechsler and Yaron (2011)

show to be a good predictor of stock market variance. pc
(2)
t relates to the slope of the term

structure of variance swap rates, which is high during episodes of low stock market variance

and low during episodes of elevated variance and, therefore, able to predict variance. Finally,

the default spread DEFt is included in the VAR, which Campbell et al. (2018) show to predict

variation in long-term variance and a well-known business cycle indicator.

Based on the VAR model, monthly variance expectations for a variance swap with T -

months to maturity equals

E
(T )
rv,t = e′1

((
1− ρ(T )

)
B + · · ·+

(
1− ρ(1)

)
ρ(T )× · · · × ρ(2)BT

)
zt, (15)

where e1 ∈ R4×1 is a unit vector with the first element equal to one and the remaining

equal to zero. By the pricing identity (7), variance discount rates are a function of variance
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expectations from equation (15) and the current variance swap rate, as follows:

E
(T )
vdr,t = E

(T )
rv,t − vs

(T )
t . (16)

In this way, I obtain an ex ante estimate of variance expectations over the lifetime of the

variance swap and an estimate of the variance discount rates that price the variance swap. I use

the estimates to decompose variation in the variance swap rate to either variance expectations

of equation (15) or variance discount rates of equation (16). Before I show the results of this

decomposition, I present the estimation results of the VAR in Table 4.

Table 4: This table shows the estimated coefficients of the VAR of equation (13) with t-values in parentheses

in Panel A. All variables are normalized to have mean equal to zero, and pc
(1)
t and pc

(1)
t are additionally

standardized to have standard deviation equal to one. Panel B shows the correlation matrix of the residual
vector εt with the standard deviations on the diagonal. Sample period for the dependent variables is January
1996 – June 2019, with 282 monthly data points.

Panel A: Coefficients VAR model

rvt pc
(1)
t pc

(2)
t DEFt R2

rvt+1 0.056 0.514 -0.344 0.514 0.589

(t-stat.) (0.73) (7.43) (-7.13) (3.38)

pc
(1)
t+1 0.049 0.856 0.003 0.105 0.847

(t-stat.) (1.02) (20.00) (0.09) (1.11)

pc
(2)
t+1 -0.022 0.151 0.845 -0.022 0.745

(t-stat.) (-0.35) (2.70) (21.77) (-0.18)

DEFt+1 0.013 -0.010 -0.004 0.964 0.936

(t-stat.) (1.34) (-1.11) (-0.66) (48.81)

Panel B: Correlation/Std Matrix of Residuals.

corr/std rvt+1 pc
(1)
t+1 pc

(2)
t+1 DEFt+1

rvt+1 0.627 0.627 -0.484 0.354

pc
(1)
t+1 0.627 0.388 -0.598 0.372

pc
(2)
t+1 -0.484 -0.598 0.505 -0.154

DEFt+1 0.354 0.372 -0.154 0.082

The first row in Panel A of Table 4 presents the model for log realized variance each month.

In line with expectation, the level of the term structure of variance swap rates pc
(1)
t predicts

next month’s realized variance positively. This result is expected as variance swap rates rise

during episodes of evelvated stock market variance. The slope of the term structure of variance
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swap rates, pc
(2)
t , predicts next month’s realized variance negatively. This result is in line with

expectation due to the fact that the slope of the term structure is high during periods of low

stock market variance. Finally, DEFt predicts future realized variance positively and is in line

with Campbell et al. (2018). The R2 of 58.9% to predict next month’s variance indicates that

most variation is captured. This is an important validation of the results, given that the model

for the realized variance is used to calculate realized variance expectations. Furthermore, the

impulse response functions in Appendix A.3 show that pc
(1)
t and pc

(2)
t mostly capture variation

in short- to mid-term variance, whereas DEFt captures variation in long-term variance.

The remaining rows in Panel A of Table 4 summarize the dynamics of the explanatory

variables in the VAR. The level of the term structure of variance swap rates, pc
(1)
t , is approx-

imately an AR(1) process with an autoregressive coefficient of 0.86. The slope of the term

structure of variance swap rates, pc
(2)
t , has a similar persistence of 0.85 but is also predicted

with a positive coefficient by the level of the term structure of variance swap rates. Finally,

the default spread, DEFt, is more persistent with an autoregressive coefficient of 0.96. The

persistence of the variables indicates whether the variables capture variation in short- or long-

term variance and the implications are similar to the results of the impulse response functions,

as shown in Appendix A.3.

The estimates in Panel A of Table 4 are used to calculate variance expectations, using

equation (15), and variance discount rates, using equation (16). Variation in the variance

swap rate with T -months to maturity is attributed to variation in E
(T )
rv,t, E

(T )
vdr,t or correlation

between E
(T )
rv,t and E

(T )
vdr,t. This intuition follows from the following equation and is obtained if

I calculate the variance of the pricing identity (7) for the variance swap rate, as follows:

var
(
vs

(T )
t

)
≈ var

(
E

(T )
rv,t

)
+ var

(
E

(T )
vdr,t

)
− 2 · cov

(
E

(T )
rv,t, E

(T )
vdr,t

)
. (17)

The results of the variance decomposition of equation (17) using the VAR are presented in

Table 5.
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Table 5: This table shows the results of the variance decomposition of variance swap rates using equation (17).
Note that the (co)variances of the third, fourth, and fifth columns are scaled with the variance of the second
column such that the sum of the three (co)variances equals one. Standard errors are computed using the Delta
method.

T var
(
vs
) var(Erv)

var(vs)
var(Evdr)
var(vs)

−2·cov(Erv,Evdr)
var(vs)

(s.e.) (s.e.) (s.e.)

18 0.219
0.285 0.760 -0.045

(0.204) (0.294) (0.330)

12 0.231
0.485 0.606 -0.092

(0.245) (0.272) (0.352)

6 0.280
0.870 0.313 -0.182

(0.242) (0.154) (0.298)

3 0.350
1.128 0.147 -0.275

(0.189) (0.070) (0.219)

1 0.455
1.235 0.069 -0.304

(0.123) (0.027) (0.139)

The second column of Table 5 shows that the variation in variance swap rates decreases in

the maturity of the contract. In line with the results of the simple decomposition in Table 3,

most of the variation in short-term variance swaps, with at most six months to maturity, is

attributed to variance expectations and increases from 87.0% for six-month variance swaps

to 123.5% for one-month variance swaps. However, short-term variance discount rates also

drive a part of the total variation in short-term variance swap rates, which is significantly

different from zero. Variation in variance discount rates explains 6.9% of the total variation

in one-month variance swap rates to 31.3% of the variation in six-month variance swap rates.

Interestingly, the covariance between expected variance in the next month and the one-month

variance discount rate is significantly positive. This result indicates that the variance dis-

count rate increases, rather than decreases, during periods of elevated stock market variance.

The positive covariance between expected variance and the variance discount rate is in line

with Cheng (2019), who shows that the variance risk premium decreases during periods of

elevated stock market variance. The size of the covariance between expected realized variance

and variance discount rates decreases in the maturity of the variance swap and is no longer

significantly different from zero beyond a horizon of one month.

The variation in long-term variance swap rates with a maturity of 12 or 18 months is

mostly attributed to variance discount rates which drives, respectively, 60.6% or 76.0% of
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the total variation. Moreover, variation in variance expectations only drives 48.5% or 28.5%

of the total variation in 12-month or 18-month variance swap rates. Overall, the results

from the decomposition using the VAR of Table 5 are remarkably close to the results of

the simple decomposition of Table 3. The results from the simple decomposition are model-

free and, therefore, the similarity of the results suggests that the VAR is correctly specified.

Furthermore, I show in Appendix A.4 that if I do the decomposition using the predictive

regressions or the VAR using a quarterly frequency, the results are highly similar.

Up to this point, I have shown that variation in variance discount rates drives a significant

portion of the variation in variance swap rates. The next step is to analyze the time-series

variation in variance discount rates. In the next figure, I plot the decomposition of the one-

month variance swap rate and the decomposition of the 18-month variance swap rate.

Figure 1: The figure plots the decomposition of the variance swap rate (blue line) into variance expectations
(dotted line) and variance discount rates (dashed line) over the sample period. The left graph shows the
decomposition of the one-month variance swap rate, and the right graph the decomposition of the 18-month
variance swap rate. The variables are represented as yearly moving averages. The shaded area corresonds to
the NBER recessions.
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Figure 1 plots the decomposition of the variance swap rate (blue line) into variance ex-

pectations (dotted line) and variance discount rates (dashed line). The left graph shows the

demeaned variance swap rate with one month to maturity, and it is clearly visible that the

monthly variance swap rate closely follows expected stock market variance. Moreover, there is

a negative correlation visible between expected variance and the variance discount rate, which

indicates that the discount rate decreases when expected variance increases. As mentioned,

this is not in line with economic intuition, which would suggest that the cost to hedge variance

risk increases rather than decreases when expected variance increases.

The right graph of Figure 1 plots the decomposition of the 18-month variance swap rate

(blue line) into variance expectations (dotted line) and variance discount rates (dashed line).

Variance discount rates are a more important determinant of the 18-month variance swap
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rate than they are for the one-month variance swap rate. It follows from the graph that

variance discount rates were relatively high during the period following the financial crisis in

2008, whereas variance discount rates were relatively low during the period leading up to the

crisis. Moreover, the variation in the short-term variance discount rate (left graph) and the

variation in long-term variance discount rates (right graph) is correlated, which indicates that

there is a common component in the term structure of variance discount rates. In order to

investigate this further, I plot in the following figure the variance discount rates obtained from

the variance swap rates analyzed in the benchmark exercise.

Figure 2: The figure plots yearly moving averages of the variance discount rates obtained from the variance
swap rate with one month to maturity (solid grey line), three months to maturity (dotted black line), six
months to maturity (dash-dotted black line), 12 months to maturity (dashed black line), and 18 months to
maturity (solid black line). The grey area corresponds to NBER recessions.
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Figure 2 plots the variance discount rates obtained from the variance swap rate one month

to maturity (solid grey line), three months to maturity (dotted black line), six months to

maturity (dash-dotted black line), 12 months to maturity (dashed black line), and 18 months

to maturity (solid black line). The main result from Figure 2 is that the time-variation in term

structure of variance discount rates is correlated, such that short-term variance discount rates

move in the same direction as long-term variance discount rates do. Overall, the variation

in long-term variance discount rates is larger than variation in short-term discount rates.

Interestingly, during the financial crisis of 2008, short-term variance discount rates decreased,

whereas long-term variance discount rates increased. Therefore, only the price to hedge short-
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term variance risk decreased during the financial crisis. Finally, in the periods after the

dot-com bubble and after 2015, the size of the variation in short-term and long-term variance

discount rates is similar in magnitude. In the following, I show that the variation in variance

discount rates is large in economic magnitudes.

I show in Figure 2 that variance discount rates are correlated for each of the considered

maturities. In the following, I show that this time variation implies economically sizable

differences in the expected returns for investing in a variance swap contract. To show this, I

run the following regressions:

R
(T )
t+1 − 1 = µL + µH−L · 1(T )

vdr,t + εt+1, (18)

where, R
(T )
t+1 − 1 correspond to simple returns on a variance swap with T -months to maturity

and 1
(T )
vdr,t is an indicator function that equals one if E

(T )
vdr,t exceeds its median level over the

sample. Therefore, µL equals the average return on a variance swap during periods of low

variance discount rates and µH−L equals by how much the average return increases when

variance discount rates are high rather than low. Table 6 shows the results of regression (18).

Table 6: This table presents the estimates of regression equation (18). The second column indicates the
average simple return during periods of low variance discount rates, and the third column indicates how much
the average return increases during periods of high variance discount rates. t-statistics are represented in
parentheses.

Maturity
µL µH−L

(t-stat.) (t-stat.)

18
-0.043 0.074

(-2.75) (3.38)

12
-0.062 0.098

(-3.33) (3.71)

6
-0.105 0.112

(-4.01) (3.01)

3
-0.181 0.167

(-4.87) (3.18)

1
-0.367 0.166

(-6.48) (2.07)

There are two main takeaways from Table 6. First, during periods of low variance dis-

count rates, the expected return on a one-month variance swap equals -36.7% per month and
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increases to -4.3% per month for 18-month variance swaps. Therefore, during periods of low

variance discount rates—or periods during which hedging variance risk is expensive—expected

returns are negative and economically sizable. Second, expected returns on variance swaps

increase during periods of high variance discount rates. The expected return on a one-month

variance swap increases with 16.7% per month, and the expected return on a 18-month vari-

ance swap increases with 7.4% per month. I conclude that the variation in variance discount

rates is, both for short-term and long-term variance swaps, economically sizable. Interestingly,

the estimates indicate that expected return on a variance swap with a maturity beyond three

months is positive during periods of high variance discount rates. In the following, I present

evidence that, under the current VAR specification, variance expectations and variance dis-

count rates are obtained effectively.

I run the same predictive regressions of the future variance and future returns on the

variance swap as before, only I use variance expectations and variance discount rates as the

predictive variables. The regressions are specified as follows:

yrv,t+T = γ0,rv + γ1,rv · E(T )
rv,t + γ2,rv ·

(
− E(T )

vdr,t

)
+ urv

t+T and (19)

−yvdr,t+T = γ0,vdr + γ1,vdr · E(T )
rv,t + γ2,vdr ·

(
− E(T )

vdr,t

)
+ uvdr

t+T . (20)

If variance expectations and variance discount rates are obtained effectively, then variance

expectations E
(T )
rv,t should only predict future stock market variance and variance discount

rates E
(T )
vdr,t should only predict future returns on the variance swap. Moreover, the regressions

are specified such that I should find the following: γ1,rv = 1 and γ2,rv = 0 in the case of

regression equation (19) and γ1,vdr = 0 and γ2,vdr = 1 in the case of regression equation (20).

Table 7 presents the results.
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Table 7: This table presents the results of the predictive regressions of equations (19) and (20) in which the
expected realized variance and expected variance discount rates are the independent variables. t-statistics are
represented in parentheses and are computed using Newey-West standard errors with number of lags equal to
T .

Dependent variable: yrv,t+T −yvdr,t+T

Maturity
γ1,rv γ2,rv R2 γ1,vdr γ2,vdr R2

(t-stat.) (t-stat.) (t-stat.) (t-stat.)

18
0.943 -0.007 0.127 0.095 0.956 0.267

(3.61) (-0.03) (0.34) (4.06)

12
1.104 0.124 0.269 -0.089 0.822 0.191

(4.48) (0.58) (-0.34) (3.68)

6
1.016 0.178 0.399 -0.005 0.787 0.118

(7.92) (0.74) (-0.03) (3.13)

3
0.964 0.143 0.479 0.030 0.839 0.077

(13.56) (0.54) (0.45) (3.09)

1
1.043 0.346 0.592 -0.043 0.653 0.045

(17.82) (1.29) (-0.73) (2.63)

Table 7 shows the results of two regressions: a regression to predict future stock market

variance in the columns labeled yrv,t+T and a regression to predict future variance swap returns

in the columns labeled −yvdr,t+T . First, from the regression to predict future variance it

follows that, indeed, future variance is predicted by variance expectations and not predicted

by variance discount rates. Moreover, the regression coefficient of variance expectations γ1,rv

to predict future variance is close to, and not significantly different from, one for each maturity,

and this shows that the VAR is able to capture stock market variance beyond one month.

Finally, γ1,rv is not exactly equal to one for the regression with one month to maturity, because

variance discount rates are implied using the current variance swap rates, which contain

information that is not included in the VAR.

Second, from the regression to predict future returns on variance swaps, it follows that,

indeed, future returns are predicted by variance discount rates and not predicted by variance

expectations. The regression coefficient of variance discount rates to predict future returns

γ2,vdr are fairly close, and not significantly different from, one, and this indicates that variance

discount rates are able to predict future returns on the variance swap for each maturity. In

fact, as indicated by the increasing R2’s, returns on long-term variance swaps are predicted

more effectively by variance discount rates than returns on short-term variance swaps. Again,
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this is in line with the result that variation in long-term variance discount rates is larger than

variation in short-term variance discount rates.

In the following subsections, I decompose returns on variance swaps. This allows me to

study how quickly variance expectations and variance discount rates move over time and

analyze their correlation with stock market returns.

3.5 Decomposition of variance swap returns

In this subsection, I show how to decompose returns on variance swaps into news about future

expected variance and news about future variance discount rates using identity (10). This

analysis is similar to what Campbell and Vuolteenaho (2004) do for realized stock market

returns. The decomposition of returns on variance swaps, rather than variance swap rates,

helps to understand how quickly expectations over stock market variance and variance discount

rates change over time.

I show how to use the VAR of equation (13) to decompose returns on variance swaps using

identity (10). The left-hand side of identity (10) corresponds to realizations of variance swap

returns. In order to calculate return realizations using the VAR of equation (13), I assume

that all variation in variance swap rates is captured by the first two principal components of

the panel of variance swap rates. This two-factor assumption implies the following:

vs
(T )
t = β0(T ) + β1(T ) · pc(1)

t + β2(T ) · pc(2)
t . (21)

Simple regressions show that equation (21) captures between 99.1% and 99.8% of the variation,

with an average of 99.5% for all variance swap rates with one up to 18 months to maturity.

Therefore, the variation in variance swap rates is accurately captured by the first two principal

components. Under this assumption, realizations of variance swap returns are defined as

follows:

r
(T )
t+1 ≈ k(T ) + ρ(T ) · vs(T−1)

t+1 +
[
1− ρ(T )

]
rvt+1 − vs(T )

t

⇐⇒ r
(T )
t+1 − Etr(T )

t+1 ≈
(
Et+1 − Et

)[
ρ(T )vs

(T−1)
t+1 +

[
1− ρ(T )

]
rvt+1

]
= eL(T )′ · εt+1, (22)

where,

eL(T ) =
(

1− ρ(T ) ρ(T )β1(T − 1) ρ(T )β2(T − 1) 0
)′
.

It follows from the definition of eL(T ) that the return realization of a variance swap is a

linear combination of the realization toward stock market variance, the realization toward the
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first principal component and the realization toward the second principal component. Vector

eL(T ) depends on the maturity of the variance swap, because the relative importance of each

of the individual realizations toward the variables in the VAR depends on the maturity and is

captured by the constants ρ(T ), β1(T −1), and β2(T −1). In sum, the realizations of variance

swap returns follow from the two-factor assumption of equation (21) and from the assumption

that log-linear approxmation of the return holds with an equality. I show in Appendix A.5

that both assumptions indeed hold in the data and realizations of variance swap returns are

obtained effectively. In the following, I define news about stock market variance and news

future variance discount rates.

News about future stock market variance follows directly from the VAR and is defined as

follows:

N
(T )
rv,t+1 = e′1

((
1− ρ(T )

)
+ · · ·+

(
1− ρ(1)

)
ρ(T )× · · · × ρ(2)BT−1

)
εt+1. (23)

This definition is very similar to definition of E
(T )
rv,t; however, N

(T )
rv,t depends on the error term

rather than the current level of the state variables. The return identity (10) implies that

returns on variance swaps are fully explained by news about variance and news about variance

discount rates. Therefore, news about variance discount rates is defined in the following way:

N
(T )
vdr,t+1 = N

(T )
rv,t+1 − eL(T )′ · εt+1. (24)

I use news about stock market variance of equation (23) and news about variance discount

rates of equation (24) to decompose variation in returns on variance swaps. By calculating

the variance of identity (10), I obtain the following identity to decompose the variation in

returns, as follows:

var
(
r̄

(T )
t+1

)
≈ var

(
N

(T )
rv,t+1

)
+ var

(
N

(T )
vdr,t+1

)
− 2 · cov

(
N

(T )
rv,t+1, N

(T )
vdr,t+1

)
, (25)

where r̄
(T )
t+1 := eL(T )′ · εt+1 is the return realization of a variance swap with maturity T at

time t + 1. Equation (25) implies that variation in variance swap returns is attributed to

news about variance, news about variance discount rates, or the covariance between the two.

Table 8 presents the results of this decomposition.
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Table 8: This table shows the results of the variance decomposition of variance swap rates using equation (25).
Note that the (co)variances of the third, fourth, and fifth columns are scaled with the variance of the second
column such that the sum of the three (co)variances equals one. Standard errors are computed using the Delta
method.

T var(r̄)

var(Nrv)
var(r̄)

var(Nvdr)
var(r̄)

−2cov(Nrv,Nvdr)
var(r̄)

(s.e.) (s.e.) (s.e.)

18 0.023
0.630 0.674 -0.304

(0.274) (0.274) (0.415)

12 0.032
0.966 0.414 -0.380

(0.325) (0.192) (0.420)

6 0.063
1.224 0.123 -0.346

(0.246) (0.063) (0.286)

3 0.115
1.217 0.033 -0.250

(0.124) (0.017) (0.138)

1 0.393
1.000 0.000 0.000

(-) (-) (-)

The first observation of Table 8 is that the variance of variance swap returns is strongly

decreasing in the maturity of the variance swap and equals 39.3% for a variance swap with one

month to maturity and equal to 2.3% for a variance swap with 18 months to maturity. The

return on a one-month variance swap is solely driven by news about stock market variance,

because the variance swap matures in the next periods and, therefore, is independent of

variance discount rates by definition. Variation in returns on short-term variance swaps is

driven by news about stock market variance and drives, respectively, 122.4% and 121.7% of

the total variation in variance swap returns with six and three months to maturity. This result

indicates that variance expectations change more quickly over time than variance discount

rates do. However, even variation in short-term variance swap returns is driven by news

about variance discount rates with a coefficient significantly different from zero and accounts

for 12.3% of the variation in six-month variance swap returns and 3.3% of the variation in

three-month variance swap returns.

Variation in returns of long-term variance swaps is also largely driven by news about

variance and drives 96.6% of the total variation in 12-month variance swap returns and 63.0%

of the total variation in 18-month variance swap returns. However, variation in long-term

variance swap rates is driven by a larger fraction due to news about variance discount rates

and drives 67.4% of the total variation in 18-month variance swap returns and 41.4% of
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the total variation in 12-month variance swap returns. Interestingly, the covariance between

news about stock market variance and news about variance discount rates is positive for each

maturity and indicates that hedging variance risk becomes less expensive if expected stock

market variance increases.

In Appendix A.5, I show that the results of obtaining the realizations to variance swap

return using equation (22) or by including the variance swap return r
(T )
t+1 as an additional state

variable in the VAR yield very similar results. If r
(T )
t+1 is an additional state variable in the

VAR, realizations toward variance swap returns are obtained directly from the VAR. In the

following subsection, I analyze the correlation between returns on variance swaps and stock

market returns. This allows me to decompose the stock market beta of variance swaps.

3.6 Decomposition of stock market returns

In this subsection, I decompose stock market returns into news about dividends and news

about stock market discount rates, following Campbell and Vuolteenaho (2004). A salient

feature in the data of stock market returns is the strong negative correlation between stock

market variance and stock market returns, which is also known as the leverage effect. There-

fore, variance swaps have a negative stock market beta and I analyze the drivers of this

negative beta.

In a derivation analogous to Section 2, Campbell and Vuolteenaho (2004) derive an identity

to decompose realizations of stock market returns, as follows:

rt+1 − Etrt+1 ≈
(
Et+1 − Et

)[ ∞∑
i=0

ρi∆dt+1+i

]
−
(
Et+1 − Et

)[ ∞∑
i=1

ρirt+1+i

]
= Ncf,t+1 −Ndr,t+1, (26)

where rt+1 is the stock market return, ∆dt+1 dividend growth, and ρ the log-linearization

coefficient. The stock market is a perpetual cash flow, and, therefore, is ρ is constant. The

intuition of identity (26) is as follows: Large stock market returns are driven by news about

high dividends or news about low stock market discount rates. In order to decompose the

realizations to stock market returns, I follow Campbell and Vuolteenaho (2004) and model

discount rates using a VAR.

The VAR is similar to before; only Campbell and Vuolteenaho (2004) estimate the model

with an intercept and use the following state variables:

zt =
(
rt TYt PEt V St

)′
, (27)

where TYt is the term yield spread, PEt is the log price earning ratio, and V St is the small-
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stock value spread. The model is estimated on a monthly sample from January 1929 to

December 2018. Table 9 presents the estimation results.

Table 9: This table shows the coefficients of the VAR of equation (13) with state variables of equation (27),
and a vector with intercepts c. The t-values of the coefficients are denoted in parentheses, sample period for
the dependent variables is January 1929 – December 2018, with 1080 monthly data points.

Coefficients VAR model

c rt TYt PEt V St R2

rt+1 0.064 0.101 0.004 -0.015 -0.012 0.025

(t-stat.) (3.59) (3.35) (2.06) (-3.26) (-2.27)

TYt+1 -0.026 0.067 0.938 -0.004 0.053 0.897

(t-stat.) (-0.29) (0.44) (90.28) (-0.16) (2.04)

PEt+1 0.025 0.511 0.001 0.992 -0.003 0.991

(t-stat.) (2.10) (25.07) (0.76) (320.99) (-0.83)

V St+1 0.019 0.011 0.000 -0.001 0.989 0.979

(t-stat.) (1.14) (0.40) (0.14) (-0.12) (203.71)

The estimates of the VAR model in Table 9 are very similar to the estimates reported

in Campbell and Vuolteenaho (2004). This is expected, because I extend the original sample

by 17 years. Using the estimates of Table 9 and ρ = 0.951/12, as in Campbell and Vuolteenaho

(2004), news about dividends Ncf,t+1 and news about stock market discount rates Ndr,t+1 are

defined as follows:

Ncf,t+1 =
(
e′1 + e′1ρB

(
I − ρB

)−1
)
εt+1 and (28)

Ndr,t+1 = e′1ρB
(
I − ρB

)−1
εt+1. (29)

Over the sample period January 1996 until December 2018, I estimate N
(T )
rv,t+1, N

(T )
vdr,t+1, Ncf,t+1,

and Ndr,t+1. In Figure 3, I plot each standardized news term over the sample period from stock

market returns and returns on a 12-month variance swap. Furthermore, Table 10 presents the

correlation coefficients of the variables over the sample period.
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Figure 3: The figure plots yearly moving averages of N
(12)
rv,t , N

(12)
vdr,t, Ncf,t and Ndr,t over the sample period from

January 1996 – December 2018. Each of the news terms is standardized with its standard deviation. The
shaded area corresponds to the NBER recessions.
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Table 10: This table represent the estimated correlation matrix of N
(12)
rv,t , N

(12)
vdr,t, Ncf,t, and Ndr,t over the

sample period from January 1996 – December 2018.

Correlation Matrix

N
(12)
rv,t N

(12)
vdr,t Ncf,t Ndr,t

N
(12)
rv,t 1.000 0.302 -0.166 0.566

N
(12)
vdr,t 0.302 1.000 0.021 -0.069

Ncf,t -0.166 0.021 1.000 0.266

Ndr,t 0.566 -0.069 0.266 1.000

The first graph of Figure 3 plots news about variance, the second graph plots news about

variance discount rates, the third graph plots news about dividends, and the fourth graph
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plots news about stock market discount rates. The first and fourth graphs show that during

episodes of large stock market variance, stock market discount rates tend to increase. This

result is supported by the evidence in the correlation matrix of Table 10, which shows that

the correlation coefficient between news about variance and news about stock market discount

rates is positive.

A salient feature of stock market returns is the negative correlation between realized returns

and realized stock market variance, and, therefore, returns on variance swaps and stock market

returns are negatively correlated. Therefore, the stock market beta of variance swaps is also

negative. Using the decomposition of variance swap returns and stock market returns, I

analyze which parts of the variance swap return and stock market return drive the low stock

market beta. I define the stock market beta for variance swaps in the following way:

Nrv,t+1 −Nvdr,t+1 = α + βM
(
Ncf,t+1 −Ndr,t+1

)
+ ut+1. (30)

The stock market beta βM of a variance swap is decomposed into four covariances, all divided

by var
(
Ncf,t+1 −Ndr,t+1

)
, as follows:

βM =
cov
(
Nrv,t+1, Ncf,t+1

)
var
(
Ncf,t+1 −Ndr,t+1

) +
cov
(
Nrv,t+1,−Ndr,t+1

)
var
(
Ncf,t+1 −Ndr,t+1

) +
cov
(
−Nvdr,t+1, Ncf,t+1

)
var
(
Ncf,t+1 −Ndr,t+1

)
+

cov
(
Nvdr,t+1, Ndr,t+1

)
var
(
Ncf,t+1 −Ndr,t+1

) = βrv,cf + βrv,dr + βvdr,cf + βvdr,dr.

Therefore, I decompose βM into four covariances: the covariance between news about variance

and news about dividends, the covariance between news about variance and news about stock

market discount rates, the covariance between news about variance discount rates and news

about dividends, and the covariance between news about variance discount rates and news

about stock market discount rates. Table 11 presents the result of this decomposition.
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Table 11: This table shows the results of βM , estimated using regression equation (30) in the second column for
several maturities. The remaining columns show how this βM is decomposed into covariance between realized
variance and dividends βrv,cf, realized variance and market discount rates βrv,dr, variance discount rates and
dividends βvdr,cf and variance discount rates, and stock market discount rates βvdr,dr.

T
βM βrv,cf βrv,dr βvdr,cf βvdr,dr

(t-stat.) (t-stat.) (t-stat.) (t-stat.) (t-stat.)

18
-2.210 -0.230 -1.446 -0.072 -0.462

(-14.02) (-2.35) (-9.01) (-0.74) (-1.75)

12
-2.759 -0.352 -2.200 -0.029 -0.178

(-15.89) (-2.42) (-9.79) (-0.34) (-0.75)

6
-4.004 -0.562 -3.656 0.017 0.196

(-16.71) (-2.36) (-10.29) (0.28) (1.16)

3
-5.237 -0.639 -4.996 0.031 0.366

(-15.78) (-2.00) (-10.13) (0.72) (3.47)

1
-7.183 0.097 -7.281 0.000 0.000

(-9.79) (0.20) (-7.76) (-) (-)

First, Table 11 shows that βM increases in the maturity of the variance swap and increases

from −7.18 for a variance swap with one month to maturity to −2.21 for a variance swap

with 18 months to maturity. Second, this negative βM is mostly attributed for each maturity

to βrv,dr and corresponds to the correlation between news about variance and news about

stock market discount rates. This result indicates that during periods of large stock market

variance, stock market discount rates are revised upward to compensate for the increased risk

of investing in the stock market. Third, the βM of variance swaps with a maturity beyond one

month is driven with a coefficient significantly different from zero by βrv,cf and corresponds to

the negative correlation between news about variance and news about dividends. This result

shows that during episodes of increased stock market variance, dividends expectations are

revised downward. Finally, the sign of the correlation between news about variance discount

rates and news about stock market discount rates changes from positive for short-term variance

discount rates to negative for long-term variance discount rates.

In the next section, I discuss the implications of several prominent asset pricing models with

respect to the pricing of variance risk. In particular, I show the results of the decomposition

of variance swap rates in each of the considered models.
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4 Variance risk in asset pricing models

In this section, I discuss the predictions of several prominent asset pricing models with respect

to the pricing of variance risk. I discuss the implications of the following three models: the

variable rare disaster model by Gabaix (2012), the time-varying rare disaster model by Wachter

(2013), and the long-run risk model by Drechsler and Yaron (2011). These models are able

to match some empirical results on the pricing of variance risk. Dew-Becker et al. (2017)

show that the model by Gabaix (2012) matches the empirical results on the term structure

of risk premia of variance risk, Seo and Wachter (2019) show that the model by Wachter

(2013) matches the implied volatility slope on S&P 500 options, and the model by Drechsler

and Yaron (2011) is designed to match the empirical results on the variance risk premium by

Bollerslev et al. (2009).

I show that the models considered in this paper have profoundly different predictions

regarding the decomposition variance swap rates. The model by Gabaix (2012) predicts that

all variation in variance swap rates is attributed to variation in variance discount rates. On

the other hand, the model by Wachter (2013) predicts that (almost) all variation in variance

swap rates is attributed to variance expectations rather than variance discount rates. This

difference follows from the fact that stock market variance is very persistent in the model

by Wachter (2013), and this feature is not present in the model by Gabaix (2012). The model

by Drechsler and Yaron (2011) predicts that, in line with the data, short-term variance swaps

are mostly driven by variance expectations, whereas long-term variance swaps are mostly

driven by variance discount rates. However, variation in short-term variance swaps is in the

model by Drechsler and Yaron (2011), driven by a larger fraction due to variance discount

rates than empirically observed. This results from the fact that the variation in variance risk

in the model by Drechsler and Yaron (2011) is large and too predictable.

In the following subsections I briefly discuss the details of each of the models and provide

insights into the drivers of variance risk. Furthermore, in Subsection 4.4 the results of the

asset pricing models are discussed.

4.1 Variable disaster risk and CRRA preferences

The first model I consider is the variable rare disaster model of Gabaix (2012). I use the

following specification from Dew-Becker et al. (2017):

∆ct+1 = µc + σcεc,t+1 + Jc,t+1,

Lt+1 =
(
1− ρL

)
L̄+ ρLLt + σLεL,t+1 and

∆dt+1 = ησcεc,t+1 − Lt · 1Jc,t 6=0,

34



where εc,t+1, εL,t+1 ∼ N(0, 1) and Jc,t+1 is the jump process (rare disaster). The state variable

Lt captures the exposure of the dividend process toward the rare disaster, and this exposure

varies over time. During times when Lt is large, the stock market is affected more by con-

sumption disasters than when Lt is low. The rare disaster process is modeled as a compound

Poisson process and is defined as follows:

Jt =
Nt∑
i=1

ξi,t, where Nt ∼ Poisson(λt) and ξi,t ∼ N
(
µd, σd

)
. (31)

Note that in the model by Gabaix (2012) λt = λ; that is the jump intensity does not vary over

time. The representative agent in the model has power utility preferences with risk aversion

parameter γ, which yields the following stochastic discount factor:

Mt+1 = δ
(Ct+1

Ct

)−γ
,

where δ is the utility discount rate. I use the calibration from Dew-Becker et al. (2017), which

is calibrated to match the risk premium on one-month variance swaps, and is given in Table 21

of Appendix B.1.

In order to obtain an equation for the realized stock market variance, I use the following

log-linear stock market return approximation:

rm,t+1 ≈ κ0 + κ1pdt+1 − pdt + ∆dt+1, (32)

where κ0, κ1 are log-linearization constants and I use the follow approximation: pdt ≈ z0+z1Lt.

The stock market return is then driven by two Gaussian shocks
(
εc,t+1 and εL,t+1

)
and a jump

shock
(
Lt · 1Jc,t 6=0

)
. I follow Dew-Becker et al. (2017), who assume that, in the absence of a

disaster, the shocks to consumption and the variable disaster have a deterministic variance.

In the case of a disaster occurring, Dew-Becker et al. (2017) assume that the largest daily

decline in the value of the stock market is F%. Under these assumptions, realized variance

over the next period equals the following:

RVt+1 = κ2
1z

2
1σ

2
L + η2σ2

c + F · Lt1Jc,t 6=0, (33)

where the first two summands correspond to the variance from the consumption process and

variable rare disaster process, and the last summand is the realized variance from the jump

process.

Equation (33) offers a first insight into the drivers of variance risk in the model by Gabaix

(2012). Realized variance depends on whether the consumption disaster hits the economy.
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Given that the consumption disaster is a (very) undersirable outcome of the agent, she is

willing to pay a large price to hedge this risk. Furthermore, it follows from equation (33) that

the disaster size Lt drives variation in expected stock market variance.

The variance swap rate at time t with T months to maturity is computed as the sum of

risk-neutral realized variances of equation (33), as follows:

V S
(T )
t =

T∑
t=1

EQ
t

(
RVt+i

)
= T · v0 + v1

T∑
i=i

Et
(
Lt+i−1

)
, (34)

where v0 = κ2
1z

2
1σ

2
L + η2σ2

c is the diffusive variance and v1 = F · EQ
(
1Jc 6=0

)
. These equations

show that the size of the disaster Lt also drives the risk premium embedded in the variance

swap rate.

In Subsection 4.4 the stylized facts regarding variance swap rates and the variation of

variance swap rates in the model by Gabaix (2012) are discussed. In the following subsection,

I briefly discuss the details of the model by Wachter (2013).

4.2 Time-varying disaster risk and Epstein-Zin preferences

In this subsection, I discuss a discrete version of the model by Wachter (2013). Similar

to Gabaix (2012), the consumption disaster risk varies over time. However, in the model

by Wachter (2013), the disaster intensity, rather than the disaster size, varies over time.

Furthermore, the agent in the model has preferences as in Epstein and Zin (1989), rather

than CRRA preferences.

Consumption and dividend growth in the model are given by

∆ct+1 = µc + σcεc,t+1 + Jt+1 and

∆dt+1 = η∆ct+1,

where εc ∼ N(0, 1) and Jt is a compound-Poisson as in equation (31) of the model by Gabaix

(2012). However, in this model the intensity of the consumption disaster is time-varying and

follows the following square-root process:

λt+1 = φλt + (1− φ)µλ + σλ
√
λtελ,t+1,

where ελ,t ∼ N(0, 1). The investor has Epstein-Zin utility with elasticity of intertemporal

substitution (EIS) equal to one and, therefore, is the log-utility given by

vt = (1− β)ct +
β

1− α
logEt exp

(
vt+1(1− α)

)
,
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where β is the utility discount rate and γ = 1−α is the risk aversion parameter. The calibration

of the model is from Dew-Becker et al. (2017) and is given in Table 21 of Appendix B.2.

An equation for the realized variance in the model by Wachter (2013) follows from the

log-linear market return which is given by

rm,t+1 ≈ κ0 + κ1pdt+1 − pdt + ∆dt+1,

where κ0, κ1 are log-linearization constants for the log-market return and pdt is the log price-

dividend ratio and is approximately linear in the state variable: pdt ≈ z0 + z1λt. Under these

assumptions, realized variance in this model given by

RVt+1 = η2σ2
c + κ2

1z
2
1σ

2
λλt − FηJt+1, (35)

where the first two summands correspond the variances of the diffusive shocks εc,t+1 and ελ,t+1

and the last summand corresponds to the realized variance from the consumption disaster.

Equation 35 offers a first insight into the pricing of variance risk in the model by Wachter

(2013). The first summand of equation (33) is constant over time; however, the second sum-

mand scales with the level of the intensity of the consumption disaster. This results from the

fact that the disaster intensity follows a square-root process, which indicates that future vari-

ance of the disaster intensity scales with the current level of the disaster intensity. Therefore,

even in the absence of consumption disasters, stock market variance is time-varying in this

model. This result is different from the model by Gabaix (2012) in which the variance of the

stock market only varies if a disaster hits the economy. The third summand of equation (35)

corresponds to the stock market variance that follows from the disaster process.

Variance swap rates are computed as the risk-neutral expectation of the sum of realized

variances of equation (35) of period t+ 1 until t+ T , as follows:

V S
(T )
t =

T∑
t=1

EQ
t

(
RVt+i

)
= T · v0 + v1

T∑
i=1

EQ(λt+i−1), (36)

where v0 = η2σ2
c and v1 = κ2

1z
2
1σ

2
λ−Fη exp

(
−αµd+ 1

2
ασ2

d

)
(µd−ασ2

d). Due to the Epstein-Zin

preferences of the agent, the risk-neutral dynamics of the disaster intensity are different from

the real-world dynamics in the sense that states with low lifetime utility, which correspond

to states with high disaster intensity, receive a larger risk-neutral probability. This yields

the agent a premium for instruments that offer protection against states in which disaster

intensity is high, and this feature is not present in a model with CRRA preferences.

In Subsection 4.4 the stylized facts regarding the pricing of variance risk of the model

by Wachter (2013) are discussed. In the following subsection, I briefly discuss the details of
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the model by Drechsler and Yaron (2011).

4.3 Long-run risk

In this subsection, I discuss the long-run risk model by Drechsler and Yaron (2011). This

model is a generalization of the long-run risk model by Bansal and Yaron (2004) in order to

incorporate stylized facts regarding the variance risk premium. The model is generalized in the

sense that the long-run mean consumption growth and the stochastic volatility incorporate

jump shocks. Moreover, the long-run mean of the stochastic volatility process varies over

time. The agent in the model has Epstein-Zin preferences, as is standard in long-run risk

models. An important difference between the long-run risk model and the previously discussed

consumption disaster models is that there are no consumption disasters in the long-run risk

model. However, the state variables, which govern the future consumption growth rate and

future consumption volatility, are exposed to jump risk.

Drechsler and Yaron (2011) specify the state vector of the economy as a VAR with Gaussian

and jump shocks, as follows:

Yt+1 =



∆ct+1

xt+1

σ̄2
t+1

σ2
t+1

∆dt+1


= µ+ FYt +Gtzt+1 + Jt+1, (37)

where, µ is a vector with the means of each state variable, F is specified as follows:

F =



0 1 0 0 0

0 ρx 0 0 0

0 0 ρσ̄ 0 0

0 0 (1− ρ̃σ) ρσ 0

0 φ 0 0 0


, (38)

GtG
′
t is the variance-covariance matrix, zt+1 ∼ N(0, I) is a vector of Gaussian shocks, and Jt+1

is a vector of jump shocks. Jumps are compound-Poisson as in equation (31) with intensity λt,

which can vary over time, similar to the model by Wachter (2013). Drechsler and Yaron (2011)

consider a specification with jumps in xt and σ2
t , where Jx,t is compound normal distributed

and Jσ,t is compound gamma distributed.

The first and last element of Yt are the consumption and dividend growth, respectively.

These processes have a time-varying mean, which is driven by the persistent process xt, the
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second element of Yt. The third element of Yt is the long-run mean σ̄2
t of the stochastic

volatility process σ2
t , the fourth element of Yt.

The variance-covariance matrix, GtG
′
t, which governs the stochastic volatility of the model,

and the jump intensity, λt, are affine in the state variable σ2
t :

GtG
′
t = h+Hσσ

2
t and

λt = l0 + l1σ
2
t ,

and, therefore, all variation in either the jump intensity or stochastic volatility is driven by

σ2
t .

The representative agent in the model has Epstein-Zin utility for which the stochastic

discount factor is given by

mt+1 = θ log δ − θ

ψ
∆ct+1 + (θ − 1)rc,t+1,

where θ = 1−γ
1− 1

ψ

, δ is the utility discount rate, γ is the risk aversion, ψ is the EIS, and rc,t+1,

the return on wealth. Drechsler and Yaron (2011) solve a log-linear version of the model and

use pdt+1 ≈ A0,m + A′mYt+1, which says that the log price-dividend ratio is linear in the state

variables. Under these conditions is the log-linearized market return, written as follows:

rm,t+1 = r0 +
(
B′rF − A′m

)
+B′rGtzt+1 +B′rJt+1, (39)

where A0,m, A′m, r0 and B′r are given in equations (8) and (9) of Drechsler and Yaron (2011).

Realized variance during period t+ 1 is equal to

RVt+1 = B′rhBr +B′rHσσ
2
tBr +B′rJt+1J

′
t+1Br. (40)

The assumption underlying this realized variance equation is that the Gaussian shocks zt+1

occur diffusively during period t+ 1, while jumps happen on a single day.

Equation (40) offers a first insight into the pricing of variance risk in the model by Drechsler

and Yaron (2011). The first summand corresponds to the constant variance coming from the

Gaussian shocks in the model. The second summand corresponds to the stochastic variance

coming from the Gaussian shocks for which the variance is governed by the state variable

σ2
t . Finally, the third summand corresponds to the realized variance coming from the jump

realizations in the state variables xt and σ2
t . Similar to the model by Wachter (2013) is time-

variation in the realized variance coming from stochastic variance of Gaussian shocks and from

the jump shocks.

The variance swap rate at time t with maturity T is computed as the risk-neutral expec-
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tation of the realized variance of equation (40), as follows:

V S
(T )
t =

T∑
t=1

EQ
t

(
RVt+i

)
= T · v0 + v1

T∑
t=1

EQ
t

(
σ2
t+i−1

)
,

where,

v0 = B′rhBr and v1 = B′rHσBr + l1 ·B′rΨQBr.

In the last equation, ΨQ is a matrix that has the risk-neutral variance of the disaster realization

on the diagonal and corresponds to equation (21) of Drechsler and Yaron (2011). In order to

derive these equations, I used l0,x = l0,σ = 0 and l1,x = l1,σ from the calibration of Drechsler

and Yaron (2011). The full calibration of the model is from Drechsler and Yaron (2011) and

presented in Table 5 of their paper.

In the following subsection, I present the predictions of the previously discussed asset

pricing models with respect to the pricing of variance risk in combination with what I found

in data.

4.4 Results from asset pricing models

In this subsection, I compare the results regarding the pricing of variance risk in the data to

the predictions of the previously discussed asset pricing models. In each of the models the

following stylized facts are calculated: the expected returns on variance swaps, the standard

deviation of variance swap returns, variance of the variance swap rates, and how this variation

is attributed to realized variance expectations and variance discount rates. These results from

the models are obtained from a simulation study.6 Furthermore, in Appendices B.1—B.3 I

show that the decomposition of variance swap rates is stable across the simulation sets.

In the following, I show the results from the decomposition of variance swap rates in each of

the considered models. I focus on the results from the simple decomposition in Subsection 3.3

and run the analogous predictive regressions in each of the models. Figure 4 plots the results.

6For each model, 1,000 independent simulation sets of a time-series with 1,000 data points are obtained. On
the basis of these simulation sets, each of the considered statistics is calculated.
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Figure 4: The left (right) figure plots how much of the variation in variance swap rates is driven by variance
expectations (variance discount rates) in the data (solid line), the model by Gabaix (2012) (dashed line), the
model by Wachter (2013) (dash-dotted line), and the model by Drechsler and Yaron (2011) (dotted line). The
grey area corresponds to a 95% confidence interval. The results are plotted for variance swap rates with 1,
3, 6, 12, and 18 months to maturity. The y-axis corresponds to how much of the variation is attributed to
variance expectations or variance discount rates in percentages.
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Figure 4 plots how much of the variation in variance swap rates is attributed to variance

expectations (variance discount rates) in the left (right) graph. I show the results from the

data (solid line) as well as the predictions of the models. In the model by Gabaix (2012)

(dashed line), (almost) none of the variation in variance swap rates is driven by variation

in realized variance expectations. Instead, variance discount rates drive all the variation in

variance swap rates, as indicated by the right graph of Figure 4. The time-variation in the

disaster size only affects the realized variance, conditional on a disaster hitting the economy.

Given that this probability is low (1% p.a.), expected stock market variance only increases

marginally when the disaster size increases. However, given that this consumption disaster

is highly undesirable for the investor, variance discount rates adjust accordingly when the

disaster size increases. In order to match the observed variation in short-term variance swap

rates, the model has to incorporate some form of stochastic volatility.

The model by Wachter (2013) (dash-dotted line) predicts the exact opposite: (Almost)

all of the variation in variance swap rates is driven by variation in realized variance expec-

tations. This result is driven by the heteroskedastic nature of the disaster intensity process;

that is high levels of the disaster intensity scale future variance of the disaster intensity up-

ward. Therefore, stock market variance varies, even in the absence of disasters, over time.

At the same time, high levels of the disaster intensity correspond to low variance discount

rates; however, variation in variance discount rates drives a much smaller fraction in the total

variation in variance swap rates, as seen in the right graph of Figure 4. Even if realizations

in which the consumption disaster hits the economy are excluded, the variation in 18-month
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variance swap rates due to variance discount rates only increases to 6%. Therefore, even in

the absence of consumption disasters, the model by Wachter (2013) is not able to match the

data. Overall, the results from the decomposition in the model by Wachter (2013) show that

stock market variance is too persistent in this model, which is driven by the persistence of the

disaster intensity.

In the model by Drechsler and Yaron (2011) (dotted line), and in line with the data, most

of the variation in short-term variance swap rates is driven by realized variance expectations,

whereas long-term variance swap rates are driven mostly by variance discount rates. However,

the right graph of Figure 4 shows that the fraction explained by variance discount rates is

considerably larger in the model by Drechsler and Yaron (2011) than observed in the data.

In the data the variation due to variance discount rates of the one-month variance swap

rate is close to zero (even negative), whereas in the model by Drechsler and Yaron (2011),

variance discount rate variation accounts for 36% of the variation in one-month variance swap

rates. The variation in short-term variance discount rates is considerably larger in the model

by Drechsler and Yaron (2011), because variation in variance risk is sizable and it varies in a

predictable way. At the same time, the model is not able to capture the empirical result that

the attribution of the variation in variance swap rates due to variance expectations strongly

decreases in maturity. This result indicates that stock market variance is more persistent in

the model than empirically observed, which is driven by the persistence of the state variables

that govern the variance in the model (σ̄t and σt).

In the following, I show the results of the total variation of variance swap rates in the data

and in the considered asset pricing models. Figure 5 plots the results.
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Figure 5: The figure plots the term structure of the variance of variance swap rates in the data (solid line),
the model by Gabaix (2012) (dashed line), the model by Wachter (2013) (dash-dotted line), and the model
by Drechsler and Yaron (2011) (dotted line). The grey area corresponds to a 95% confidence interval. The
variance of variance swap rates with 1, 3, 6, 12, and 18 months to maturity. The y-axis corresponds to monthly
volatility.
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Figure 5 plots the term structure of the variance of variance swap rates in the data (solid

line) and in each of the asset pricing models. The model by Gabaix (2012) (dashed line)

predicts a flat term structure of the variance of variance swap rates, and its level is much lower

than empirically observed. All variation in the model by Gabaix (2012) is driven by variation

in the disaster size, and therefore, the variance of the stock market is only affected conditional

on the disaster hitting the economy. Given that this probability is low (1% p.a.), variance

swap rates only move marginally due to variation in stock market variance expectations. Due

to the CRRA preferences in the model, the agent invests myopically such that she does not

price shocks that affect the investment opportunity set, and, therefore, the term structure of

the variance of variance swaps rates is flat. Furthermore, in the model by Gabaix (2012) all

variation in variance swap rates is driven by variance discount rates, and, therefore, it follows

that the size of the variation due to variance discount rates is relatively small.

The model by Wachter (2013) (dash-dotted line) overstates the empirically observed vari-

ation in variance swap rates. One of the reasons is that the disaster intensity process is very

persistent, and, therefore, the unconditional variance of the disaster intensity is large, which

drives most of the variation in variance swap rates. Another reason is that the process of the

disaster intensity is heteroskedastic such that it scales with the level of the disaster intensity.
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This effect yields that, if the current disaster intensity is high, future variance of the disaster

intensity is high. Together, the large persistence and heteroskedastic nature of the disaster

intensity make variance swap rates too volatile compared to the data.

The model by Drechsler and Yaron (2011) (dotted line) is best able to match the data on

the term structure of variance of variance swap rates. Especially for long-term variance swap

rates, the model by Drechsler and Yaron (2011) matches the data surprisingly well. However,

the model generates slightly less variation in short-term variance swap rates than observed

empirically. This result indicates that the variation in stock market variance is larger in the

data than in the model by Drechsler and Yaron (2011).

In the following, I analyze the predictions of the models with respect to the expected

return on variance swaps and volatility of variance swap returns. Figure 6 plots the results.

Figure 6: The left (right) graph plots the term structure of expected returns (return volatility) on variance
swaps in the data (solid line), the model by Gabaix (2012) (dashed line), the model by Wachter (2013) (dash-
dotted line), and the model by Drechsler and Yaron (2011) (dotted line). The grey area corresponds to a 95%
confidence interval. The results are shown for variance swaps with 1, 3, 6, 12, and 18 months to maturity.
The y-axis corresponds to monthly returns.
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Figure 6 shows the term structure of expected returns (return volatility) on variance swaps

in the left (right) graph. I show the results from the data (solid line) as well as the predictions

of the models. In the left graph, I show that the model by Gabaix (2012) (dashed line) is able

to match the strongly upward sloping term structure of expected returns on variance swaps

found in the data. Overall, the expected returns in the model are only slightly lower compared

to the data, and this could be resolved by adjusting the calibration, for example, decrease the

average disaster size. The fact that the model by Gabaix (2012) is able to capture the term

structure risk premia on the pricing of variance risk is in line with the findings of Dew-Becker

et al. (2017). In the right graph, I show that the model by Gabaix (2012) (dashed line)

predicts a stronger downward sloping term structure of return volatility on variance swaps

than empirically observed. The model predicts a larger return volatility on variance swaps
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with one month to maturity and a lower return volatility for variance swaps with maturity

beyond one month. A potential reason for this pattern is the fact that, conditional on a

disaster not hitting the economy, the model by Gabaix (2012) does not have time-varying

stock market volatility. Furthermore, an explanation for the large one-month return volatility

is the severity of the consumption disaster (−30%) in the current calibration, which makes

the return on the one-month variance swap, and thus the return volatility, (extremely) large,

if a disaster hits the economy.

In the left graph of Figure 6, I show that the model by Wachter (2013) (dash-dotted line)

is not able to capture the (extreme) low expected returns on short-term variance swaps, and,

therefore, it cannot match the empirical term structure of expected returns. The main reason

is that the mean consumption disaster in the calibration by Wachter (2013) (−15%) is much

smaller than in the calibration by Gabaix (2012) (−30%). In the calibration by Wachter

(2013), the mean disaster intensity is increased; however the left graph of Figure 6 shows that

increasing the mean disaster size has a much larger effect on the expected returns of variance

swaps. Interestingly, the expected returns for long-term variance swaps are quite similar to the

data in the model by Wachter (2013). In the right graph, I show that the model by Wachter

(2013) (dash-dotted line) predicts a larger return volatility on one-month variance swaps than

empirically observed. Again, this result indicates that the mean of the consumption disaster

is too extreme (−15%) or the frequency too large (3.55% p.a.). However, from the left graph

it follows that this model cannot match the expected return on one-month variance swaps.

A potential solution is to increase the size of the consumption disaster. This will, indeed,

attenuate the mispricing in terms of expected returns on short-term variance swaps; however,

at the same time the return volatility on short-term variance swaps will increase and thus

exacerbate the discrepancy between the data and the model. Beyond a maturity of one

month, the model by Wachter (2013) predicts only slightly lower return volatility compared

to the data.

I show in the left graph of Figure 6, that the model by Drechsler and Yaron (2011) (dotted

line) is not able to capture the strong upward sloping term structure of expected returns, and,

in particular, the model does not predict the (extreme) low expected returns for short-term

variance swaps. Moreover, the model has the opposite prediction for long-term variance swaps,

as the expected returns are lower than empirically observed. Therefore, simply increasing the

agent’s risk aversion will alleviate the mispricing at short horizons, as the expected return

will decrease; however, it will exacerbate the mispricing at long horizons. The reason for this

mispricing at the short horizon is that jumps in the long-run risk are not sufficiently severe

to capture the empirically observed risk premium. In the right graph of Figure 6, I show that

the model by Drechsler and Yaron (2011) (dotted line) predicts a larger return volatility than

empirically observed, both for short-term and long-term variance swaps. This results from
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the fact that in order for this model to generate a variance risk premium, the jumps in the

volatility process σ2
t and long-run consumption mean xt have to be sufficiently frequent and

large. If the jumps appear in either of these state variables, volatility of the stock market spikes

and results in a large return volatility for short-term variance swaps. The return volatility for

long-term variance swaps is also large and this is driven by the persistence and volatility of

the long-term volatility σ̄t and volatillity σt processes.

5 Conclusion

I show that variance discount rates vary over time, which indicates that during some peri-

ods investors worry more about variance risk than during others. Moreover, the variation in

variance discount rates drives a significant part of the variation in prices in the market for

variance and, in particular, for longer horizons. Short-term variance swap rates are driven by

variation in variance expectations, whereas long-term variance swap rates are mostly driven

by variation in variance discount rates. Interestingly, prominent asset pricing models in which

variance risk drives variation in the equity premium have profoundly different predictions

regarding the decomposition of variance swap rates. The disaster model by Gabaix (2012)

predicts that all variation in variance swap rates is attributed to variation in variance discount

rates. On the other hand, the disaster model by Wachter (2013) predicts that all variation

is attributed to variance expectations, and this is driven by the fact that this model incorpo-

rates a strong persistence in stock market variance. This feature is not present in the model

by Gabaix (2012). The long-run risk model by Drechsler and Yaron (2011) predicts, in line

with the data, that most of the variation in short-term variance swaps is driven by variance

expectations, whereas most of the variation in long-term variance swaps is driven by variance

discount rates. However, due to the large variation in short-term disaster risk, short-term vari-

ance discount rates move more of the variation in short-term variance swaps than empirically

observed.

In sum, this paper presents new key stylized facts about the market for variance risk. I

show that these stylized facts pose a challenge for state-of-the-art asset pricing models, and

augmenting the asset pricing models to better describe the pricing of variance risk is thus an

interesting avenue for future research.
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A Appendix: Additional empirical results

A.1 Variance swaps in Kozhan et al. (2013).

The realized variance of a variance swap entered at time t with maturity T is caluclated in

the following way:

RV
(T )
t =

T∑
j=1

[
2
(
ert+j − 1− rt+j

)]
, (41)

where rt+j is daily log return realized on day t + j. Note that equation (41) is similar to the

sum of squared daily returns as r2 ≈ 2
(
er − 1− r

)
. The variance swap rate is defined as the

the risk-neutral expectation of the realized variance specified in equation (41). Kozhan et al.

(2013) show how to calculate the variance swap rate with maturity T at time t from option

prices, as follows:

V S
(T )
t =

2

B
(T )
t

[∫ F
(T )
t

0

P
(T )
t (K)

K2
dK +

∫ ∞
F

(T )
t

C
(T )
t (K)

K2
dK

]
, (42)

where B
(T )
t is the risk-free bond price at time t with maturity T , F

(T )
t is the forward price at

time t with maturity T and P
(T )
t (K) and C

(T )
t (K) are prices of European put and call options

at time t with maturity T and strike price K.

Kozhan et al. (2013) show how to approximate equation (42) using a finite number of

available put and call options. Given the set of available option prices P
(T )
t (Ki) and C

(T )
t (Ki)

for 0 ≤ i ≤ N where prices are mid points from bid and ask quotes, Kozhan et al. (2013)

compute variance swap rates as follows. Define the following function:

∆I(Ki) =


Ki+1−Ki−1

2
, for 0 ≤ i ≤ N (with K−1 := 2K0 −K1, KN+1 := 2KN −KN−1)

0, otherwise.

Then the variance swap rate is computed as follows:

V S
(T )
t ≈ 2

∑
Ki≤F

(T )
t

P
(T )
t (Ki)

B
(T )
t K2

i

∆I(Ki) + 2
∑

Ki>F
(T )
t

C
(T )
t (Ki)

B
(T )
t K2

i

∆I(Ki). (43)

Options on the S&P 500 expire every month on the third Friday. Using linear interpolation,

I calculate variance swap rates that expire on the last trading day of each month. The linear

interpolation works in the following way: Variance swap rates with maturity T1 < T and

T2 > T are calculated by equation (43); then the variance swap rate with maturity T is
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constructed as follows:

V S
(T )
t = αV S

(T1)
t + (1− α)V S

(T2)
t ,

where T = αT1 + (1−α)T2. With the data from OptionMetrics I calculate a panel of variance

swap rates with one month up to 18 months to maturity.

A.2 Compare synthetic variance swaps to OTC variance swaps

In this section, I compare the data on synthetic variance swaps that are obtained from option

pricing to the data on variance swaps from the OTC market. The data on variance swaps

from the OTC market is from Dew-Becker et al. (2017). Their sample covers the period from

December 1995 to September 2013 and variance swap rates up to a maturity of 12 months.

During the period from January 1996 to September 2013, I observe a synthetic variance swap

rate obtained using my methodology and a variance swap rate from the actual OTC data. I

plot these rates in following graphs for one, three, six, and 12 months to maturity, which are

the maturities of my benchmark analysis.
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Figure 7: This figure plots the synthetic variance swap rate and OTC swap rate from Dew-Becker et al. (2017)
for four maturities. The top-left graph plots the one-month swap rate, the top-right graph plots the three-
month swap rate, the bottom-left graph plots the six-month swap rate, and the bottom-right graph plots the
12-month swap rate.
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Overall, Figure 7 provides strong evidence that the synthetic variance swap rate is very

similar to the swap rate in the OTC market. This indicates that the option market and the

variance swap market are integrated markets and contain the same information regarding the

pricing of variance risk. Notable differences include the difference in the one-month swap rate

during the financial crisis and the difference in the 12-month swap rates during the first years

of my sample. Furthermore, the average correlations between synthetic and OTC swap rate

of the four maturities equals 0.991.

A.3 Impulse response functions of the VAR

In this subsection, I show the impulse response function of stock market variance in response

to a change of each of the other variables in the VAR of equation (13). The impulse responses

are presented in Figure 8.
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Figure 8: This figure plots the monthly impulse response functions of stock market variance in response to a
change of the variables in the VAR. The scale of the y-axis is in standard deviation of stock market variance,
where each of the variables increases by one standard deviation at time 0. The top-left graph plots the
responses to a change in rv, the top-right graph plots the responses to a change in pc(1), the bottom-left graph
plots the responses to a change in pc(2), and the bottom-right graph plots the responses to a change in DEF .
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Figure 8 plots the impulse response functions of stock market variance for a horizon up

to 36 months. The top-left graph shows that there is very little persistence in stock market

variance, if the current level increases. The top-right graph shows that an increase in pc(1)

increases future stock market variance up to 10 months forward. The bottom-left graph

shows that an increase in pc(2) decreases future stock market variance and the shock is more

persistent than a shock in pc(1). Finally, the bottom-right graph shows that shocks towards

DEF are the most persistent and, therefore, affect long-term stock market variance.

A.4 VAR using quarterly data

In this subsection, I estimate the VAR based on data with a quarterly rather than monthly

frequency. I do this to alleviate concerns that the estimates based on monthly frequency over-
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state the persistence of the variables and, therefore, create a bias in the variance expectations.

The VAR is used to calculate quarterly stock market variance expectations and for this reason

the variance swap rate with three months to maturity is the shortest maturity considered in

this exercise. Table 12 presents the estimation results.

Table 12: This table shows the estimated coefficients of the VAR of equation (13) with t-values in parentheses.

All variables are normalized to have mean equal to zero, and pc
(1)
t and pc

(1)
t are additionally standardized to

have standard deviation equal to one. The sample period for the dependent variables is March 1996 to June
2019, with 94 quarterly data points.

Coefficients VAR model

rvt pc
(1)
t pc

(2)
t DEFt R2

rvt+1 -0.031 0.468 -0.267 0.448 0.459

(t-stat.) (-0.17) (3.07) (-3.28) (1.66)

pc
(1)
t+1 -0.013 0.750 0.003 0.104 0.585

(t-stat.) (-0.07) (5.02) (0.04) (0.40)

pc
(2)
t+1 -0.108 0.294 0.696 0.140 0.619

(t-stat.) (-0.60) (1.99) (8.82) (0.54)

DEFt+1 0.024 -0.025 -0.007 0.847 0.709

(t-stat.) (0.46) (-0.59) (-0.33) (11.50)

Overall, the estimation results based on quarterly frequency are very similar to the results

based on monthly frequency. Variance expectations and variance discount rates are calculated

using these estimates and by adjusting equations (15) and (16) accordingly. Table 13 presents

the results.

Table 13: This table shows the results of the variance decomposition of variance swap rates using equation (17),
based on the VAR estimated on quarterly data. Note that the (co)variances of the third, fourth, and fifth
columns are scaled with the variance of the second column such that the sum of the three (co)variances equals
one.

T var
(
vs
) var(Erv)

var(vs)
var(Evdr)
var(vs)

−2·cov(Erv,Evdr)
var(vs)

18 0.220 0.218 0.665 0.117

12 0.227 0.434 0.505 0.060

6 0.274 0.824 0.206 -0.030

3 0.348 1.021 0.085 -0.107

The results of the decomposition of variance swap rates in Table 12 are remarkably close

to the results of Table 5. Therefore, my results are robust whether the frequency of the VAR
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is monthly or quarterly. Finally, I also decompose the variance swap rate using the predictive

regressions of equations (11) and (12). Table 14 presents the results.

Table 14: This table shows the results of the predictive regressions of equations (11) and (12) in which
the variance swap rate is the independent variable. The frequency of the data is quarterly. t-statistics are
represented in parentheses and are computed using Newey-West standard errors with number of lags equal to
1
3 · T .

Dependent variable: yrv,t+T yvdr,t+T

Maturity brv
(t-stat.)

R2 bvdr
(t-stat.)

R2

18
0.240 0.029 -0.741 0.218

(1.21) (-3.76)

12
0.540 0.129 -0.452 0.092

(3.32) (-2.71)

6
0.836 0.303 -0.162 0.016

(5.48) (-1.04)

3
0.964 0.417 -0.036 0.001

(8.05) (-0.30)

The similarity between the results of Table 3 and Table 14 indicate that the results of

predictive regressions are robust to decreasing the frequency to the quarterly level.

A.5 VAR with five variables

In this section, I show that adding the variance swap return to the VAR yields very similar

results, as in Section 3.5. The VAR of equation (13) is estimated using the following state

variables:

zt =
(
r

(T )
t rvt pc

(1)
t pc

(2)
t DEFt

)′
,

where r
(T )
t are the returns on a variance swap with T -periods to maturity. Therefore, to

decompose the returns of different maturities using identity (10), the VAR has to be re-

estimated for each maturity. In this appendix, I show the estimation results of the VAR with

returns on 12-month variance swaps r
(12)
t and the results of the decomposition. The estimation

results of the VAR are in Table 15.
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Table 15: This table shows the estimated coefficients of the VAR of equation (13) with t-values in parentheses.

All variables are normalized to have the mean equal to zero, and pc
(1)
t and pc

(1)
t are additionally standardized

to have the standard deviation equal to one. The sample period for the dependent variables is January 1996
to June 2019, with 282 monthly data points.

Coefficients VAR model

r
(12)
t rvt pc

(1)
t pc

(2)
t DEFt R2

r
(12)
t+1 0.018 0.017 -0.043 -0.047 0.064 0.085

(0.26) (0.71) (-2.02) (-3.13) (1.42)

rvt+1 0.357 0.029 0.511 -0.308 0.523 0.594

(1.53) (0.38) (7.24) (-6.15) (3.49)

pc
(1)
t+1 -0.039 0.037 0.863 -0.002 0.106 0.848

(-0.27) (0.76) (19.76) (-0.07) (1.13)

pc
(2)
t+1 0.260 -0.016 0.133 0.869 -0.017 0.746

(1.39) (-0.25) (2.34) (21.64) (-0.14)

DEFt+1 0.092 0.008 -0.012 0.002 0.967 0.938

(3.06) (0.78) (-1.28) (0.36) (46.63)

The inclusion of r
(12)
t into the VAR does not alter the models of the four other variables

much. Only r
(12)
t positively predicts the default spread in the next period. Low returns on

12-month variance swaps are predicted by a large level of the term structure of variance swap

rates pc
(1)
t and a large slope of the term structure of variance swap rates pc

(2)
t .

Using the estimates of this VAR, N̄
(T )
rv,t is obtained, as follows:

N̄
(T )
rv,t = e′2

((
1− ρ(T )

)
+ · · ·+

(
1− ρ(1)

)
ρ(T )× · · · × ρ(2)BT−1

)
εt,

where e2 is vector of zeros and the second element a one (as rvt is the second element in zt).

Furthermore, N̄
(T )
vdr,t is using this VAR obtained in the following way:

N̄
(T )
vdr,t = N̄

(T )
rv,t − e′1 · εt.

The results of the decomposition of variance swap returns are shown in Table 16.
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Table 16: This table shows the results of the variance decomposition of variance swap rates using equation (25).
Note that the (co)variances of the third, fourth, and fifth columns are scaled with the variance of the second
column such that the sum of the three (co)variances equals one. Standard errors are computed using the Delta
method.

Maturity var
(
e′1εt
)

var
(
N̄

(T )
rv,t

)
var
(
N̄

(T )
vdr,t

)
-2cov

(
N̄

(T )
rv,t , N̄

(T )
vdr,t

)
18 0.026

0.593 0.542 -0.134

(0.265) (0.224) (0.348)

12 0.035
0.893 0.369 -0.262

(0.307) (0.165) (0.379)

6 0.064
1.172 0.152 -0.324

(0.236) (0.068) (0.276)

3 0.123
1.151 0.037 -0.188

(0.147) (0.014) (0.156)

1 0.378 1.000 0.000 0.000

Note that the decomposition of the variance swap returns with 12 months to maturity is

obtained using the estimates of the VAR of Table 15. To decompose the returns on variance

swaps with T months to maturity, the VAR is re-estimated with r
(T )
t as a state variable.

Overall, the results of Table 16 are very similar to the results of the decomposition using only

four state variables represented in Table 8.

Furthermore, each of the decomposition objects in identity 10 are directly compared using

the methodology with five variables in the VAR and the method with only four variables. The

results of the comparison are represented in the next table.

Table 17: This table shows the results of the comparison between the method in which the variance swap
return is modeled directly in the VAR and the method in which the realization is obtain using equation (22).

e′1εt, N̄
(T )
rv,t , and N̄

(T )
vdr,t correspond to the variables obtained using the VAR with five variables. eL(T )′εt, N

(T )
rv,t ,

and N
(T )
vdr,t correspond to the variables obtained using the VAR with four variables.

Maturity corr
(
e′1εt, eL(T )′εt

)
corr

(
N̄

(T )
rv,t , N

(T )
rv,t

)
corr

(
N̄

(T )
vdr,t, N

(T )
vdr,t

)
18 0.963 0.998 0.940

12 0.981 0.998 0.952

6 0.986 0.999 0.917

3 0.990 0.999 0.767

1 0.987 0.987 -

The correlations in Table 17 are all very high except for the correlation of the revised
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discount rate expectations of variance swap returns with a maturity of three months. However,

the variance of this object is very small, and, therefore, a tiny deviation yields large changes

in correlation as indicated by the large correlations in the other columns.

B Appendix asset pricing models

In the following subsections, I discuss more results from the models considered in this paper.

In Section 4, I discuss the implications of the models based on 1,000 independent simulation

sets with a time-series of 1,000 data points. In the following, I analyze the variation in the

variance decomposition of variance swap rates across the independent simulation sets to assess

the stability of the results from the model.

B.1 Variable disaster risk and CRRA preferences

The calibration of the model by Gabaix (2012) is from Dew-Becker et al. (2017) and given in

the following table.

Table 18: Calibration of the model by Gabaix (2012).

Parameter Value Parameter Value

µc 0.01/12 σc 0.02/
√

12

µd −0.3 σd 0.15

L̄ − log(0.5) σL 0.04

ρL 0.871/12 η 5

β 0.961/12 γ 7

λ 0.01
12

Note that in the calibration of Dew-Becker et al. (2017) the risk-aversion is raised to 7 in

order to match the Sharpe ratio on one-month variance swaps.

In the following, I present more details of the results from the simulation study for the

model by Gabaix (2012). First, I present sample statistics of realized variance and variance

discount rates in the model. The results of this simulation study are represented in the

following table.
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Table 19: This table presents sample statistics of the realized variance and variance discount rates in the
model by Gabaix (2012). The mean, standard deviation and Sharpe Ratio of the 18-, 12-, 6-, 3-, and 1-month
simple variance discount rates are presented. The second column consists of the empirical result, and the
third, fourth, and fifth columns represent the 5%, 50%, and 95% quantile of the simulation study, respectively.

Statistic Data Model

Est. 5% 50% 95%

Realized variance

E
(
RV
)

0.162 0.115 0.116 0.117

σ
(
RV
)

0.095 0.000 0.021 0.043

Variance discount rates

E
(
r(18)

)
-0.006 -0.024 -0.021 -0.017

σ
(
r(18)

)
0.187 0.021 0.056 0.109

SR
(
r(18)

)
-0.106 -4.091 -1.278 -0.572

E
(
r(12)

)
-0.013 -0.037 -0.032 -0.025

σ
(
r(12)

)
0.227 0.021 0.080 0.161

SR
(
r(12)

)
-0.202 -5.976 -1.326 -0.578

E
(
r(6)
)

-0.050 -0.075 -0.063 -0.050

σ
(
r(6)
)

0.316 0.023 0.155 0.319

SR
(
r(6)
)

-0.544 -11.028 -1.362 -0.584

E
(
r(3)
)

-0.098 -0.150 -0.127 -0.099

σ
(
r(3)
)

0.447 0.028 0.308 0.636

SR
(
r(3)
)

-0.756 -17.644 -1.370 -0.585

E
(
r(1)
)

-0.285 -0.451 -0.380 -0.296

σ
(
r(1)
)

0.676 0.068 0.926 1.905

SR
(
r(1)
)

-1.458 -22.305 -1.366 -0.585

Table 19 confirms the finding of Figure 6 that the model by Gabaix (2012) is able to

capture the strongly increasing term structure of expected variance swap returns documented

in the data. Moreover, Table 19 shows that the volatility of variance swap returns varies a lot

across simulation sets, and this results from the fact that the probability of a disaster is small

(1% p.a.). If no disasters occur in a simulation set, the volatility of variance swap returns is

very low. Finally, I conclude from Table 19 that the model by Gabaix (2012) is not able to

capture the dynamics of empirical stock market volatility.

In the following, I decompose variance swap rates in the model by Gabaix (2012) for each
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simulation set seperately. Table 20 presents the results.

Table 20: This table presents the results of the simple variance decomposition of variance swap rates in the
data and in the model by Gabaix (2012). The results of the data are from Table 3, with standard errors in
parentheses. The regression coefficients of the model are estimated for each simulation set, and the mean and
standard deviation of the regression coefficients are represented in the table.

Maturity Data Model

brv bvdr brv bvdr

18
0.245 -0.728 0.002 -0.985

(0.185) (0.188) (0.028) (0.125)

12
0.558 -0.419 0.002 -0.989

(0.151) (0.158) (0.028) (0.101)

6
0.833 -0.168 0.002 -0.994

(0.119) (0.122) (0.028) (0.069)

3
0.957 -0.040 0.002 -0.997

(0.083) (0.086) (0.027) (0.047)

1
1.101 0.101 0.002 -0.998

(0.056) (0.056) (0.027) (0.027)

Table 20 shows that the result of Figure 4 is stable across the simulation sets. In particular,

short-term variance swap rates are solely driven by variance discount rates, and this number

is very similar across simulations, and, therefore, it is strong evidence that the model is not

in line with the data.

In the following subsection, I discuss the results for the model by Wachter (2013).

B.2 Time-varying disaster risk and Epstein-Zin preferences

In this subsection, the calibration of the model is given as well as some details from the

simulation study. The calibration of the model is given in Table 21.
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Table 21: This table shows the calibration of the model by Wachter (2013).

Parameter Value Parameter Value

µc 0.0252/12 σc 0.02/
√

12

µd −0.15 σd 0.10

µλ 0.0355/12 σλ 0.067/12

φ exp(−0.08/12) β exp(−0.012/12)

η 2.6 γ 4.9 = 1− α

Note that in the calibration of Dew-Becker et al. (2017) the risk-aversion is raised to 4.9

in order to match the Sharpe ratio on one-month variance swaps as closely as possible.

In the following, I present more details of the results from the simulation study for the

model by Wachter (2013). First, I present sample statistics of realized variance and variance

discount rates in the model. The results of this simulation study are represented in the

following table.
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Table 22: This table presents sample statistics of the realized variance and variance discount rates in the
model by Wachter (2013). The mean, standard deviation, and Sharpe ratio of the 18-, 12-, 6-, 3-, and 1-month
simple variance discount rates are presented. The second column consists of the empirical result, and the
third, fourth, and fifth columns represent the 5%, 50%, and 95% quantile of the simulation study, respectively.

Statistic Data Model

Est. 5% 50% 95%

Realized variance

E
(
RV
)

0.162 0.094 0.123 0.168

σ
(
RV
)

0.095 0.028 0.048 0.073

Variance discount rates

E
(
r(18)

)
-0.006 -0.015 -0.010 -0.005

σ
(
r(18)

)
0.187 0.080 0.101 0.179

SR
(
r(18)

)
-0.106 -0.556 -0.357 -0.097

E
(
r(12)

)
-0.013 -0.019 -0.014 -0.005

σ
(
r(12)

)
0.227 0.084 0.118 0.256

SR
(
r(12)

)
-0.202 -0.721 -0.412 -0.075

E
(
r(6)
)

-0.050 -0.032 -0.024 -0.007

σ
(
r(6)
)

0.316 0.086 0.183 0.502

SR
(
r(6)
)

-0.544 -1.284 -0.464 -0.048

E
(
r(3)
)

-0.098 -0.060 -0.045 -0.009

σ
(
r(3)
)

0.447 0.074 0.338 1.008

SR
(
r(3)
)

-0.756 -2.674 -0.459 -0.031

E
(
r(1)
)

-0.285 -0.173 -0.127 -0.018

σ
(
r(1)
)

0.676 0.045 0.993 3.058

SR
(
r(1)
)

-1.458 -12.294 -0.442 -0.019

Table 22 confirms the finding of Figure 6 that the model by Wachter (2013) is not able to

capture the strongly increasing term structure of expected variance swap returns documented

in the data. Moreover, Table 22 shows that also in the model by Wachter (2013) the volatility

of variance swap returns varies a lot across simulation sets, and this results from the fact

that the probability of a disaster is, on average, small (3.55% p.a.). If no disasters occur in

a simulation set, the volatility of variance swap returns is very low. Finally, I conclude from

Table 19 that the model by Wachter (2013) does a better job than the model by Gabaix (2012)

of capturing the empirical dynamics of stock market volatility.
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In the following, I decompose variance swap rates in the model by Wachter (2013) for each

simulation set separately. Table 23 presents the results.

Table 23: This table presents the results of the simple variance decomposition of variance swap rates in the
data and in the model by Wachter (2013). The results of the data are from Table 3, with standard errors in
parentheses. The regression coefficients of the model are estimated for each simulation set, and the mean of
the regression coefficients is represented in the table with the standard deviation in parentheses.

Maturity Data Model

brv bvdr brv bvdr

18
0.245 -0.728 0.973 -0.037

(0.185) (0.188) (0.040) (0.040)

12
0.558 -0.419 0.963 -0.033

(0.151) (0.158) (0.029) (0.032)

6
0.833 -0.168 0.954 -0.033

(0.119) (0.122) (0.021) (0.024)

3
0.957 -0.040 0.950 -0.039

(0.083) (0.086) (0.019) (0.020)

1
1.101 0.101 0.948 -0.052

(0.056) (0.056) (0.018) (0.018)

Table 23 confirms the finding of Figure 4 that variance swap rates are driven by variance

expectations in the model by Wachter (2013). Moreover, this result is very stable across the

simulation sets, as indicated by the low standard deviation of brv. Therefore, this is strong

evidence that the model is not in line with the data because my analysis shows that long-term

variance swaps are mostly driven by variance discount rates.

In the following subsection, I discuss the results for the model by Drechsler and Yaron

(2011).

B.3 Long-run risk

The calibration is from Table 5 of the paper by Drechsler and Yaron (2011), and I use the

calibration in which jump shocks in the xt process follow a compound-Poisson in combination

with a normal distribution.

In the following, I present more details of the results from the simulation study for the

model by Drechsler and Yaron (2011).7 First, I present sample statistics of realized variance

7I thank Friedrich Lorenz for sharing the codes to solve the model.
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and variance discount rates in the model. The results of this simulation study are represented

in the following table.

Table 24: This table presents sample statistics of the realized variance and variance discount rates in the
model by Drechsler and Yaron (2011). The mean, standard deviation, and Sharpe ratio of the 18-, 12-, 6-, 3-,
and 1-month simple variance swap returns are presented. The second column consists of the empirical result,
and the third, fourth, and fifth columns represent the 5%, 50%, and 95% quantile of the simulation study,
respectively.

Statistic Data Model

Est. 5% 50% 95%

Realized variance

E
(
RV
)

0.162 0.157 0.169 0.187

σ
(
RV
)

0.095 0.051 0.087 0.134

Variance discount rates

E
(
r(18)

)
-0.006 -0.036 -0.026 -0.014

σ
(
r(18)

)
0.187 0.191 0.276 0.387

SR
(
r(18)

)
-0.106 -0.654 -0.333 -0.128

E
(
r(12)

)
-0.013 -0.045 -0.032 -0.015

σ
(
r(12)

)
0.227 0.232 0.343 0.488

SR
(
r(12)

)
-0.202 -0.659 -0.326 -0.109

E
(
r(6)
)

-0.050 -0.063 -0.043 -0.017

σ
(
r(6)
)

0.316 0.304 0.477 0.734

SR
(
r(6)
)

-0.544 -0.686 -0.314 -0.084

E
(
r(3)
)

-0.098 -0.089 -0.060 -0.020

σ
(
r(3)
)

0.447 0.394 0.671 1.144

SR
(
r(3)
)

-0.756 -0.736 -0.309 -0.064

E
(
r(1)
)

-0.285 -0.176 -0.116 -0.027

σ
(
r(1)
)

0.676 0.708 1.352 2.697

SR
(
r(1)
)

-1.458 -0.820 -0.292 -0.036

Table 24 confirms the finding of Figure 6 that the model by Drechsler and Yaron (2011) is

not able to capture the strongly increasing term structure of expected variance swap returns

documented in the data. Moreover, it shows that the model predicts, for each maturity,

a volatility of variance swap returns, which is larger than observed empirically. Finally, I

conclude from Table 19 that the model by Drechsler and Yaron (2011) does a good job of
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capturing the empirical dynamics of stock market volatility.

In the following, I decompose variance swap rates in the model by Drechsler and Yaron

(2011) for each simulation set separately. Table 25 presents the results.

Table 25: This table presents the results of the simple variance decomposition of variance swap rates in the
data and in the model by Drechsler and Yaron (2011). The results of the data are from Table 3, with standard
errors in parentheses. The regression coefficients of the model are estimated for each simulation set and the
mean of the regression coefficients are represented in the table with the standard deviation in parentheses.

Maturity Data Model

brv bvdr brv bvdr

18
0.245 -0.728 0.349 -0.560

(0.185) (0.188) (0.105) (0.108)

12
0.558 -0.419 0.412 -0.502

(0.151) (0.158) (0.105) (0.107)

6
0.833 -0.168 0.506 -0.418

(0.119) (0.122) (0.097) (0.098)

3
0.957 -0.040 0.567 -0.379

(0.083) (0.086) (0.087) (0.086)

1
1.101 0.101 0.615 -0.385

(0.056) (0.056) (0.075) (0.075)

Table 25 confirms the finding of Figure 4 that short-term variance swap rates are driven by

variance expectations and long-term variance swap rates by variance discount rates. Moreover,

this result is stable across the simulation sets, as indicated by the low standard deviations of brv

and bvdr. Therefore, this is strong evidence that the model predicts a variation in short-term

variance discount rates, which is substantially larger than observed empirically.
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