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1 Introduction

The long, continuing saga of derivatives losses by financial institutions, in the face of the best

efforts of regulators to prevent them, highlights the need for economists to develop better

techniques to deal with model uncertainty. We address this issue by proposing a methodology

to compute lower and upper bounds on prices of complex (potentially non-traded) securities

that is robust to misspecifications of the model of the underlying assets and cash-flows.

More specifically, we incorporate a concern for robustness to model uncertainty into the

“No Good Deals” methodology of Cochrane and Saá-Requejo [2000]. Their methodology

refines the lower and upper arbitrage bounds on securities prices by imposing a maximal

Sharpe ratio. We extend the intuition of Cochrane and Saá-Requejo [2000] and argue that

investors should incorporate a concern for model uncertainty in computing the maximal

Sharpe ratio. In our analysis, besides the maximal Sharpe ratio, one additional parameter

is needed to quantify the degree of aversion to model uncertainty. While an investor might

have an estimate of the distribution of future payoffs to financial assets, she recognizes that

her estimate may not be the true data-generating process. Thus, she considers a set of

alternative models, with her preference for robustness forcing her to choose the “worst-case”

model in computing the good deal bounds. In particular, we assume that her preferences

are based on those of Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio [2011].

Model uncertainty impacts the good deal bounds in three ways. First, the uncertainty

averse investor assigns higher marginal utility to states with lower payoffs (or higher losses).

Second, the good deal bounds are wider in the presence of model uncertainty than in its

absence. Intuitively, the lower (respectively, upper) bound on the price of the security is the

bid (ask) that an investor buying (selling) the security is willing to submit; in the presence

of model uncertainty, an uncertainty averse investor fears that the security is less (more)

valuable. Third, while the right to dynamically hedge is always a valuable one, we show how

model uncertainty reduces the benefit of dynamic hedging relative to static hedging.1

1See Carr, Ellis, and Gupta [1998] for a discussion of static hedging strategies for complex options.
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Building on Černý [2003], we solve for the good deal bounds in the presence of model

uncertainty. We show how the degree of aversion to model uncertainty may be estimated.

Illustrating with numerical examples, we show that greater model uncertainty can lead to

larger early exercise premia for American options, since, intuitively, exercising the option re-

moves model uncertainty. We also demonstrate how model uncertainty leads to economically

different outcomes than choosing a higher maximal Sharpe ratio.

The seminal contribution of Cochrane and Saá-Requejo [2000] is to refine the arbitrage

bounds by additionally requiring that the second moment of the pricing kernel is bounded

which, in view of Hansen and Jagannathan [1991], is the same as imposing a maximal Sharpe

ratio.2 The resulting good deal bounds both rule out arbitrage and rule out the possibility of

forming a portfolio of the complex security (termed the focus asset) and of a set of hedging

assets (termed basis assets) which has more than some given Sharpe ratio. Just as arbitrages

are ruled out for giving investors a free lunch, so very high Sharpe ratios are ruled out on

the grounds that, if allowed, a very high Sharpe ratio would represent such a good deal that

(Ross [1976]) it should not exist in equilibrium.3

Although the No Good Deals methodology provides a compelling and economically-

motivated way for investors to consider the impact of unhedgeable market risks on the

prices of complex securities, the recent history of financial institutions suggest that these

2Bernardo and Ledoit [2000] simultaneously developed an alternative framework for constructing good
deal bounds which uses gain-loss ratios rather than Sharpe ratios. Černý [2003] and Černý and Hodges
[2001] explain how the use of gain-loss ratios puts their framework into a rather different category compared
to the Sharpe ratio based framework and, for this reason, we don’t consider it further. Carr, Geman, and
Madan [2001] and Cherny and Madan [2009] also consider the problem of pricing and hedging derivatives in
incomplete markets (in the absence of model uncertainty), using metrics which could, broadly speaking, be
interpreted as a reward-for-risk, but, for similar reasons, their frameworks also fall outside the scope of our
paper. Hodges [2009] is a comprehensive review of follow-up papers. He points out that most of them are
highly mathematical and the economic intuition of Cochrane and Saá-Requejo [2000] and its potential use
as a practical tool for practitioners and regulators alike has been obscured.

3Hence, the No Good Deals methodology incorporates a partial equilibrium consideration into the pricing
of complex securities but, crucially, without having to specify the details of the equilibrium-formation mech-
anism or to give the precise specification of investors’ utility functions. The latter is especially pertinent
to the pricing and trading of complex securities where agents (typically employees of investment banks or
hedge funds) are rarely acting on their own account and hence personalised measures of preferences such as
a utility function (even if estimable) may be inappropriate.
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considerations are insufficient to incentivize market participants to be sufficiently conser-

vative in their valuations. Even before the global financial crisis of 2007–2009, there had

been a series of financial institutions (such as Bank of Tokyo/Mitsubishi in 1997, Nat-West

in 1997, Bankers Trust in 1998, Amaranth Advisors LLC in 2006) reporting large losses on

their (supposedly, hedged) positions in over-the-counter (OTC) derivatives. The losses have

continued after the crisis. For example, in April 2011, Reuters reported that Mitsubishi UFJ

Morgan Stanley Securities (a joint venture between a Japanese bank and Morgan Stanley)

had incurred losses of more than 1.75 billion dollars on its positions in complex derivatives.

Whilst the exact details of how these losses arose is still unclear, the Reuters report suggests

that the positions were incorrectly marked-to-market or suffered from gradual hedge-slippage

as the prices of hedging assets diverged from their model predictions.

The aftermath of the global financial crisis has intensified political and regulatory scrutiny

of OTC derivatives. Indeed the Basel Committee on Banking Supervision notes that: “Fail-

ure to capture major on– and off–balance sheet risks, as well as derivative related exposures,

was a key destabilising factor during the crisis”.

We describe an extension of good deal bounds to incorporate a concern for model uncer-

tainty. These could be used as fair reservation prices at which complex derivatives or illiquid

securities are marked-to-market - using the lower (respectively, upper) good deal bound for

long (short) positions. If an investor (or, more generally, a financial institution) would be

prepared to enter into any trade that is either an arbitrage or that is expected to deliver

more than a specified Sharpe ratio, then she will, in all likelihood, be prepared to trade a

complex security priced by the same criterion or by one expected to deliver an even larger

Sharpe ratio. Further, Sharpe ratios are simple and widely used so it is likely that there will

be other investors (or financial institutions) who would be prepared to trade on the same

terms and who would therefore be prepared to take the other side of the trade should the

first investor decide to liquidate her position. Hence the use of Sharpe ratios gives a market

(as opposed to an individualistic) perspective. This makes good deal bounds attractive can-
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didates as fair reservation prices. Incorporating a concern for model uncertainty adds further

economic realism and, in particular, recognizes the difficulty of evaluating the probability of

infrequent large adverse moves.

Literature Review

A rapidly growing literature studies the behavior of asset prices in the presence of model

uncertainty. The original insight of Gilboa and Schmeidler [1989] – that model uncertainty

can explain the Ellsberg [1961] paradox – has been extended by Hansen and Sargent [2001,

2008] and by Cerreia-Vioglio et al. [2011]. They, together with Hansen, Sargent, and Tallarini

[1999], Cagetti, Hansen, Sargent, and Williams [2002], Barillas, Hansen, and Sargent [2009],

Maenhout [2004], Garlappi, Uppal, and Wang [2007] and Uppal and Wang [2003] show that

investors have a fundamentally different aversion to model uncertainty than to market risk.

For example, Barillas et al. [2009] and Maenhout [2004] show that the classical equity

premium puzzle of Mehra and Prescott [1985] can be resolved by allowing investors to have

robust preferences over alternative models; Uppal and Wang [2003] show that model uncer-

tainty can also be used to explain the home-bias puzzle of Cooper and Kaplanis [1994] and

Huberman [2001]4. Furthermore, recent studies have demonstrated the importance of model

uncertainty in modeling the prices of complex securities. Liu, Pan, and Wang [2005] find

that aversion to model uncertainty plays an important role in explaining the skew in implied

volatilities among options on the S&P 500 stock index. Drechsler [2013] finds that concerns

for model misspecification explain the large premia in index options. Finally, Boyarchenko

[2012] argues that model uncertainty can explain the behavior of credit swap spreads (CDS)

on financial institutions during the recent financial crisis.

4Additional studies examining the implications of model uncertainty for asset pricing include Anderson,
Ghysels, and Juergens [2009], Bossaerts, Ghirardato, Guarnaschelli, and Zame [2010], Leippold, Trojani, and
Vanini [2008], Cao, Wang, and Zhang [2005], Boyle, Garlappi, Uppal, and Wang [2012], Cvitanic, Lazrak,
Martellini, and Zapatero [2011] and Trojani, Wiehenkamp, and Wrampelmeyer [2013].
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While the implications for asset pricing and portfolio choice under model uncertainty have

been extensively considered, incorporating model uncertainty into the pricing of contingent

claims has been less well-developed. Boyle, Feng, Tian, and Wang [2008] argue that, in

incomplete markets, the multiplicity of available pricing kernels naturally leads to a concern

for model misspecification. Instead of following the literature on robust preferences, however,

they choose the optimal pricing kernel to limit the variation in the price of a contingent

claim when the underlying asset’s payoff is slightly perturbed. The main advantage of this

approach is to construct perturbations that are based on the volatility of the basis asset,

which is the pertinent quantity in pricing options on the asset. This natural link comes

at a cost, however, with the Black and Scholes [1973] model used as the benchmark model.

Furthermore, they focus on standard European options and their continuous-time setup may

make extensions to path-dependent or American (early exercise) options non-trivial.

In contrast, our approach uses a discrete-time, discrete space (lattice) formulation. The

lattice approach simplifies the pricing of finite horizon options while emphasizing their illiquid

nature. Further, any continuous space stochastic process can be well approximated by a

discrete lattice, provided that the lattice has sufficient states. Finally, continuous trading

is not always possible in real markets; our discrete-time formulation naturally incorporates

these breaks in trading activity.

2 Good deal bounds without model uncertainty

We briefly review the No Good Deals methodology of Cochrane and Saá-Requejo [2000] (in

the absence of model uncertainty) and its subsequent extensions (Hodges [1998], Černý and

Hodges [2001] and Černý [2003]) to alternative utility function settings. This methodology

assumes that the distribution of future payoffs to financial assets or outcomes of economic

variables (such as interest-rates) is known; that is, the methodology specifies a reference

(real-world, data-generating) probability measure P over the possible states of the world.
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While the focus of this paper is to allow for uncertainty about the probability measure P,

in this section we ignore model uncertainty concerns and take P as given. We outline the

relationship between the No Good Deals methodology and expected utility maximization in

a way that will allow us to, more naturally, introduce model uncertainty in Section 3.

Consider pricing a complex security or contingent claim (or a portfolio of these), and

assume that this focus asset (in the terminology of Cochrane and Saá-Requejo [2000]) pays

c at time 1. In addition, assume that there are Nb basis assets, traded in an active, liquid

market. The basis assets pay x at time 1, with time 0 market prices given by p, where

p and x are Nb - dimensional vectors. Any pricing kernel m used to value the focus asset

must exactly price the basis assets, so that EP[mx] = p, and imply the absence of arbitrage

opportunities, so that m ≥ 0. Since we do not assume that markets are complete, there can

be multiple candidate pricing kernels that satisfy these conditions.

The innovation of Cochrane and Saá-Requejo [2000] is to restrict the set of candidate

pricing kernels by requiring that the second moment of a candidate pricing kernel is bounded,

which implies (see Hansen and Jagannathan [1991]) a maximal Sharpe ratio. The time 0

lower CNoMU and upper C
NoMU

good deal bounds on the focus asset satisfy

CNoMU = inf
m

{
EP[mc] such that EP[mx] = p,m ≥ 0,EP[m2] ≤ Γ

}
, (1)

with the infimum replaced by a supremum for C
NoMU

. Rearranging the solutions of Cochrane

and Saá-Requejo [2000], the good deal bounds can be expressed:

CNoMU = inf
C∈NA

{
C such that max

µ>0,v

{
2v
′
p− 2µC + EP[ŨTQ

(
µc− v

′
x
)

]
}
≤ Γ

}
, (2)

C
NoMU

= sup
C∈NA

{
C such that max

µ<0,v

{
2v
′
p− 2µC + EP[ŨTQ

(
µc− v

′
x
)

]
}
≤ Γ

}
, (3)

where NA denotes the set of C consistent with the absence of arbitrage. Further, ŨTQ (V ) ≡

− (max (−V, 0))2, µ is a scalar and v is a Nb - dimensional vector. The maximizations are
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made over choices of µ and v which play the role of positions taken in the focus asset and in

the basis assets. The restriction µ > 0 in (2) (respectively, µ < 0 in (3)) corresponds to taking

a long position (a short position of size |µ|), at time 0, at a price of CNoMU (respectively,

C
NoMU

) to solve for the lower (upper) good deal bound. Since ŨTQ (V ) is non-decreasing

and concave, so is 2v
′
p − 2µC + ŨTQ

(
µc− v

′
x
)
. Hence, it has the usual properties of a

utility function. More generally, 2v
′
p − 2µC + EP[ŨTQ

(
µc− v

′
x
)
] can be interpreted as

a reward-for-risk which has the convenient normalization that redundant assets (including

one having zero payoff) have zero reward-for-risk. The terms maxµ,v in (2) and (3) say that

the investor chooses µ and v so as to maximize her reward-for-risk. The good deal bounds

solve for the target level of reward-for-risk Γ, if it can be achieved; if it can’t, the good deal

bounds are the arbitrage bounds. Further, v has the interpretation of the optimal hedges

in the basis assets for µ units of the focus asset in seeking to achieve the target level of

reward-for-risk Γ. If the investor trades the focus asset at a price strictly inside the range(
CNoMU, C

NoMU
)

, she will not have a good deal.

An alternative link with utility functions comes from Černý [2003] who considers an

investor, without a concern for model uncertainty, endowed with wealth V0 who maximizes

her expected utility U (V ) over future wealth V . For5 truncated quadratic utility U (V ) =

−
(
max

(
V − V, 0

))2
, Černý [2003] shows that the bound on the second moment of the pricing

kernel implies a bound on the maximum achievable certainty equivalent CE and vice versa:

CE ≤ Λ⇐⇒ EP[m2] ≤ Γ, where Γ ≡

(
1

1− Λ/
(
V − V0

))2

, (4)

or Λ ≡
(
V − V0

) (
1− 1/

√
Γ
)

. This gives us a dual interpretation: No Good Deals can be

seen either as ruling out Sharpe ratios which are too high or as ruling out too high levels of

certainty equivalent (or expected utility) relative to V0 (or U (V0)). The second interpretation

will allow us to connect good deal bounds with model uncertainty.

5Černý [2003] also derives restrictions on the pricing kernel corresponding to exponential and CRRA
utility and shows that they are equivalent to bounds on maximal “generalized” Sharpe ratios.
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We conclude this section by summarizing the basic assumptions that we maintain through-

out the paper. We assume that there are S possible time 1 states of the world. We denote

the probability, under P, of attaining state s by πs, for each s = 1, . . . , S. We assume that

Assumption 1 (1) S, the number of possible states of the world at time 1, is finite,

(2) πs > 0, ∀s = 1, . . . , S, so that zero probability states have been pruned,

(3) the time 1 payoffs are finite in each state,

(4) there are no arbitrage opportunities amongst the basis assets, and

(5) redundant basis assets have been pruned.

3 Introducing model uncertainty

In this section, we introduce the notion of a model-uncertainty-induced preference functional

and, building on Černý [2003], derive the restrictions on pricing kernels equivalent to bounds

on certainty equivalents. For the rest of the paper, we assume

Assumption 2 (1) Utility U (V ) over wealth V is bounded above by a finite positive con-

stant6 which, without loss of generality, can be taken to be zero. Hence, U (V ) is non-

positive i.e. U (V ) ≤ 0, for all V . Further, for −∞ < V <∞, −∞ < U (V ) ≤ 0.

(2) U (V ) is non-decreasing, concave, continuous and differentiable. Furthermore,

limV→−∞ V/U (V ) = 0 and limV→∞ U
′
(V ) = 0.

For future use, we define CARA(U (V )) = −U ′′ (V ) /U
′
(V ) to be the coefficient of absolute

risk aversion of U (V ).

6This is satisfied by the three utility functions that we will be interested in: Quadratic, exponential and

CRRA: U (V ) = β V
1−γ

1−γ , for (the empirically relevant) γ > 1.
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3.1 The model-uncertainty-induced preference functional

We begin by describing the model uncertainty structure considered in this paper. As in the

previous section, denote by P the reference probability measure over the possible states of the

world. While the investor knows the model P to be the best estimate of the data-generating

measure given the information at her disposal, she recognizes that the model is estimated

from a finite data-set. Thus, she worries that the true model may be in a set of alternative

models that are difficult for her to reject empirically. The investor guards against model

uncertainty by considering portfolio allocations of basis assets that are robust across the set

of alternative models.

None of the existing approaches to modeling model uncertainty suit our purpose well.

Besides satisfying standard properties of ambiguity aversion, we wish to satisfy three addi-

tional criteria. First, we require preferences for which a theory of No Good Deals is tractable.

Second, like Maenhout [2004], we prefer a multiplicative adjustment to the utility function to

an additive form. Finally, we require a free parameter to be available controling the degree

of aversion to model uncertainty. After experimenting with a variety of formulations, our

approach is to introduce distortions ξ and a function F (ξ) and assume that the uncertainty

averse investor evaluates any prospect over future wealth V as:

J (V) ≡ inf
ξ∈Ξ

{
EP[F (ξ)U (V )]

}
, where

F (ξ) ≡ ξ (1− Ω log ξ) and Ξ = {ξ : EP[ξ] = 1, ξ > 0, F (ξ) ≥ 0}. (5)

Here, Ξ denotes the set of feasible distortions ξ. Similarly to Maenhout [2004], U (V ) is

multiplicatively scaled by F (ξ). The constraint F (ξ) ≥ 0 ensures that F (ξ)U (V ) is non-

decreasing in V . The constant Ω satisfies 1 ≤ Ω < ∞ and captures the degree of aversion

to model uncertainty. As Ω increases, the degree of aversion to model uncertainty increases,

and the investor considers a (weakly) larger set of alternative models. In the limit Ω → 1,

the investor only considers the reference model P, corresponding to the case of no model

9



uncertainty. In Section 5, we show how Ω may be estimated from historical time-series data.

Note that Ω captures both the presence of and the investor’s aversion to model uncertainty

- the latter being measured by what we term the Model Confidence Level (see Section 5 for

more details). A higher Model Confidence Level corresponds to the investor having a greater

aversion to model uncertainty which leads to a higher value of Ω.

We can re-express (5) as J (V) = infξ∈Ξ{EP[ξU (V ) + Ωξ log ξ (−U (V ))]}, in which the

first term is expected utility (under a different measure) and the second has the form of

relative entropy scaled by U (V ). Despite some similarities between this and the formulations

of Hansen and Sargent [2008] and Maenhout [2004], our formulation falls outside theirs.

The next proposition shows, however, that our formulation possesses all the main desir-

able characteristics of uncertainty averse preferences:

Proposition 3 The model-uncertainty-induced preference functional7 J (V) defined by (5)

is a well-defined uncertainty averse preference functional which provides a weak ordering of

prospects with the following properties: (1) Monotonicity; (2) Convexity; (3) Risk Indepen-

dence; (4) Continuity; (5) Uniform Continuity; (6) Homotheticity; where all the properties

are defined as in Cerreia-Vioglio et al. [2011].

The next proposition considers further properties of J (V), focusing on the effects of the

degree of aversion to model uncertainty Ω.

Proposition 4 (1) J (V) ≡ infξ∈Ξ

{
EP[F (ξ)U (V )]

}
≤ EP[U (V )].

(2) In the special case of Ω = 1, ξs ≡ 1 in all states s = 1, . . . , S and the inequality in the

first part holds with equality: J (V) = EP[U (V )].

(3) As Ω increases above one, J (V) is non-increasing (and strictly decreasing except in

the degenerate case of U (V ) being constant across all states s).

7We describe it as a functional rather than as a function, and use the argument V, since J (V) depends
on the entire distribution of V and cannot be represented as the expectation of a new function of a scalar V .
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(4) As Ω increases, (a) the investor is more uncertainty averse in the sense described by

Cerreia-Vioglio et al. [2011] (their Proposition 6), and (b) the investor considers a

(weakly) larger set of alternative models.

(5) J (V) is non-positive, non-decreasing, concave and continuous.

Thus, intuitively, the uncertainty averse investor cannot do better than her expected utility

in the absence of model uncertainty. The second, third and fourth parts of the proposition

show that the case Ω = 1 corresponds to no aversion to model uncertainty, while the limit

Ω→∞ corresponds to total aversion to model uncertainty.

The next proposition solves for the infimum in (5). We use a subscript s to denote the

state s. For an arbitrary function fs, let mins {fs} and maxs {fs} denote the minimum and

maximum values of fs across the S possible states. Introduce

Ψ ≡ 1

Ω
− 1 (note Ψ ≤ 0), ξmax ≡ exp (1/Ω) and G (ξ) ≡ 1 + Ω (ξ − log ξ − 1) .

Proposition 5 Define βs to be the Lagrange multipliers on the constraints F (ξs) ≥ 0. In

the degenerate case that mins {−U (Vs)} = maxs {−U (Vs)} ≡ −Uc, say, then ξs ≡ 1, set

βs ≡ 0 and J (V) ≡ infξ∈Ξ

{
EP[F (ξ)U (V )]

}
= Uc. Otherwise,

βs =


0, if U (Vs) 6= 0 and

(
1 + η

U(Vs)

)
Ψ ≤ log ξmax;

ηΨ
(Ψ−log ξmax)

+ U (Vs) , otherwise;

(6)

ξs = exp

((
1 +

η

(U (Vs)− βs)

)
Ψ

)
, and (7)

J (V) ≡ inf
ξ∈Ξ

{
EP[F (ξ)U (V )]

}
= max

η

{
S∑
s=1

πs [G (ξs) (U (Vs)− βs)]

}
. (8)

Furthermore: 0 ≤ min
s
{−U (Vs)} ≤ η ≤ max

s
{−U (Vs)} , (9)

and for all s = 1, . . . , S: ξs ∈ [exp (Ψ) , ξmax]. (10)
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Figure 1: U (V ) and UMU (V ) ≡ G (ξ) (U (V )− β) as a function of outcomes of wealth V .

Notes: U (V ) (labeled NoMU) and UMU (V ) ≡ G (ξ) (U (V )− β) (labeled MU) (vertical axis) for a
range of outcomes of wealth V (plotted along the horizontal axis). UMU (V ) is shown for two different
(low and high) values of Ω (> 1), labeled MU Low Ω and MU High Ω respectively.

We refer to ξ given by (7), evaluated at the maximizing value η̂ of η in (8), as the worst-

case distortion. Since it depends on the reference measure P, the distribution of V and

U (V ), the model-uncertainty-induced preference functional J (V) is setting-specific.

In Figure 1, we plot, for a range of outcomes of wealth V , U (V ) and UMU (V ) ≡

G (ξ) (U (V )− β) (the term inside the square brackets in (8) - note that β, ξ and G (ξ)

depend on V and U (V ) through (6) and (7)) for two different (low and high) values of

Ω (> 1). Intuitively,8 the uncertainty averse investor assigns higher marginal utility to lower

utility outcomes. We also see that UMU (V ) has greater curvature than U (V ). Both these

statements are strengthened as Ω increases (cf Proposition 4).

We examine further economic properties of our model uncertainty structure in Appendix

D and focus here on the implications for No Good Deals.

8By convexity, G (ξs) ≥ 1 for any ξs. Hence, since βs ≥ 0, UMU (Vs) is less than or equal to U (Vs)
for all states s. For outcomes of Vs near the the middle of its distribution, U (Vs) ≈ −η̂, ξs ≈ 1 and
UMU (Vs) ≈ U (Vs). The amount by which UMU (Vs) is less than U (Vs) increases if ξs is further away from 1.
Higher outcomes of Vs result in U (Vs) being larger (i.e. less negative), ξs being larger, F (ξs) being smaller
and marginal utility being smaller. Conversely, lower outcomes of Vs result in marginal utility being greater -
captured by the steeper gradient of UMU (Vs) for lower Vs. In the special case that Ω = 1, UMU (V ) ≡ U (V ).
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3.2 Restriction on the pricing kernel under model uncertainty

We now use J (V) and the results of the previous sub-section to derive the restriction on the

pricing kernel in the presence of model uncertainty analogous to equation (4) in its absence.

We assume that the uncertainty averse investor, endowed with wealth V0 at time 0,

maximizes her preference functional J (V), at time 1, subject to the time 0 budget constraint

sup
V

{
inf
ξ∈Ξ

{
EP[F (ξ)U (V )]

}
such that EP[mV ] = V0

}
= inf

ξ∈Ξ

{
EP[F (ξ)U (V0 + CE)]

}
, or

sup
V

{
[J (V)] such that EP[mV ] = V0

}
= U (V0 + CE) , (11)

where CE denotes the certainty equivalent and where we have used the results of Proposition

5 in the second line. We solve for the certainty equivalent CE using the approach of Cox

and Huang [1989] and Černý [2003].

Proposition 6 (1) The first-order condition from (11) implies that the pricing kernel m

is proportional to F (ξ)U
′
(V ), with ξ the worst-case distortion.

(2) For the case of truncated quadratic utility, U (V ) = −β
(
max

(
V − V, 0

))2
, where β > 0

is the investor’s subjective discount factor and V is the bliss point (assumed to satisfy

V > V0 + CE), the certainty equivalent CE is

CE =
1

CARA (U (V0))

(
1− 1√

infξ∈Ξ

{
EP
[
m2

F (ξ)

]}), and furthermore (12)

CE ≤ Λ⇐⇒ inf
ξ∈Ξ

{
EP
[
m2

F (ξ)

]}
≤
(

1

1− CARA (U (V0)) Λ

)2

. (13)

Equation (13) is the analog to (4) and, hence, also to the Cochrane and Saá-Requejo [2000]

bound and, clearly, our bound collapses to theirs if ξ ≡ 1. Equation (13) focuses on truncated

quadratic utility - the cases of exponential and CRRA utility are in Appendix B.
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4 No Good Deals - No Bad Models

In this section, we define and solve for good deal bounds in the presence of model uncertainty,

which we term “No Good Deals - No Bad Models”. Their definition is a natural extension

of good deal bounds in the absence of model uncertainty.

Definition 7 In the presence of model uncertainty, the time 0 lower C and upper C good

deal bounds on the focus asset, paying c at time 1, solve

C = inf
C∈NA

{
C such that max

µ>0,v

{
2v
′
p− 2µC + inf

ξ∈Ξ

{
EP[F (ξ) ŨTQ

(
µc− v

′
x
)

]
}}
≤ Γ

}
,

C = sup
C∈NA

{
C such that max

µ<0,v

{
2v
′
p− 2µC + inf

ξ∈Ξ

{
EP[F (ξ) ŨTQ

(
µc− v

′
x
)

]
}}
≤ Γ

}
.

Definition 7 replaces ŨTQ, in equations (2) and (3), with F (ξ) ŨTQ in the definition of the

reward-for-risk and takes the infimum over the set of alternative models. In the presence of

model uncertainty, the good deal bounds both rule out arbitrage and rule out the possibility

of forming a portfolio of the focus asset and the basis assets which has a greater reward-

for-risk, computed under the worst-case model, than Γ. The following proposition provides

alternative characterizations (or equivalent definitions) of the good deal bounds.

Proposition 8 Equivalently to Definition 7, C and C solve

C = inf
m

{
EP[mc] such that EP[mx] = p,m ≥ 0, inf

ξ∈Ξ

{
EP
[
m2

F (ξ)

]}
≤ Γ

}
(14)

= inf
ξ∈Ξ

{
inf
m

{
EP[mc] such that EP[mx] = p,m ≥ 0,EP

[
m2

F (ξ)

]
≤ Γ

}}
, and (15)

C = sup
m

{
EP[mc] such that EP[mx] = p,m ≥ 0, inf

ξ∈Ξ

{
EP
[
m2

F (ξ)

]}
≤ Γ

}
(16)

= sup
ξ∈Ξ

{
sup
m

{
EP[mc] such that EP[mx] = p,m ≥ 0,EP

[
m2

F (ξ)

]
≤ Γ

}}
. (17)

The first two constraints in (14) to (17) are the same as for good deal bounds in the absence

of model uncertainty and enforce, respectively, that the candidate pricing kernel m prices
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the basis assets and absence of arbitrage opportunities. The third constraint in (14) and (16)

replaces the bound on the second moment of the pricing kernel in (4) by the bound in (13).

Equations (15) and (17) show that good deal bounds in the presence of model uncertainty

correspond to those of Cochrane and Saá-Requejo [2000] in its absence but computed under

the worst-case model. The latter equations are more convenient for computing numerical

solutions and simplify the analysis of good deal bounds in a multi-period setting (Section 6).

For (14) to (17) to have a solution, the target level of reward-for-risk Γ has to be large

enough to reprice the basis assets. This requires the assumption that Γ ≥ Γ?, where

Γ? = inf
ξ∈Ξ

{
inf
m

{
EP
[
m2

F (ξ)

]
such that EP[mx] = p,m ≥ 0

}}
. (18)

Similarly to Cochrane and Saá-Requejo [2000], we consider two different combinations of

slack and binding constraints in (15) and (17):

In case (1), the constraint EP
[
m2

F (ξ)

]
≤ Γ binds. The solution is in Proposition 9.

In case (2), the constraint EP
[
m2

F (ξ)

]
≤ Γ is slack. The solution is in Proposition 10.

To simplify the solutions, we introduce a binary variable 1L/U which takes the value 1

(respectively, −1) if we are computing the lower (upper) good deal bound C (respectively,

C). Let δ and ϕ be scalars and let w be a Nb - dimensional vector. We define the loss

function Zs
(
1L/U ,w, ϕ, δ

)
in state s as

Ys
(
1L/U ,w, ϕ, δ

)
≡ max[−1L/U

(
ϕcs −w

′
xs
)

δ
, 0], (19)

Zs
(
1L/U ,w, ϕ, δ

)
≡

(
Ys
(
1L/U ,w, ϕ, δ

))2
= −ŨTQ

(
1L/U

(ϕcs −w
′
xs)

δ

)
. (20)

4.1 Case (1): The constraint EP
[
m2

F (ξ)

]
≤ Γ binds

We solve for the good deal bounds C and C by forming the Lagrangian of the constrained

optimization problem in equations (15) and (17).
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Proposition 9 When EP
[
m2

F (ξ)

]
≤ Γ binds, the pricing kernel in state s is

ms = F (ξs)Ys
(
1L/U ,w, 1, δ

)
, where the worst-case distortion ξ and the Lagrange multipliers

βs on F (ξs) ≥ 0 are given in Proposition 5, with U (Vs) replaced by −Zs
(
1L/U ,w, 1, δ

)
. The

lower C and upper C good deal bounds solve

C = max
δ>0,w

{
w
′
p− 1

2
δΓ +

max
η

{
S∑
s=1

πs

[
−1

2
δG (ξs)

(
Zs
(
1L/U ,w, 1, δ

)
+ βs

)]}}
, (21)

C = min
δ>0,w

{
w
′
p +

1

2
δΓ +

min
η

{
S∑
s=1

πs

[
1

2
δG (ξs)

(
Zs
(
1L/U ,w, 1, δ

)
+ βs

)]}}
. (22)

Equivalently, with ŨTQ (V ) ≡ − (max (−V, 0))2, µ = 1L/U/δ and v = 1L/U w/δ,

C solves : max
µ>0,v

{
2v
′
p− 2µC + inf

ξ∈Ξ

{
EP
[
F (ξ) ŨTQ

(
µc− v

′
x
)]}}

= Γ, (23)

C solves : max
µ<0,v

{
2v
′
p− 2µC + inf

ξ∈Ξ

{
EP
[
F (ξ) ŨTQ

(
µc− v

′
x
)]}}

= Γ. (24)

Equations (21), (22) are solved numerically by choice of η and then by choice of δ > 0, w.

Consider first the pricing kernel m. The quantity Ys
(
1L/U ,w, 1, δ

)
is the Cochrane and

Saá-Requejo [2000] pricing kernel (in the absence of model uncertainty). In the special case

of Ω = 1 (which corresponds to no aversion to model uncertainty), ξs = 1 in each state,

the pricing kernel m reduces to the pricing kernel of Cochrane and Saá-Requejo [2000] and

the lower and upper good deal bounds (21) and (22) coincide with those of Cochrane and

Saá-Requejo [2000]. Similarly, when the loss function Zs
(
1L/U ,w, 1, δ

)
is independent of

the state s, ξs = 1 in each state and the solution again reduces to that of Cochrane and

Saá-Requejo [2000].
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In the more general case of Ω strictly greater than one (so that the investor exhibits aver-

sion to model uncertainty) and mins
{
Zs
(
1L/U ,w, 1, δ

)}
6= maxs

{
Zs
(
1L/U ,w, 1, δ

)}
(so that

the investor is not indifferent amongst the different states of the world), ξs decreases when

Zs
(
1L/U ,w, 1, δ

)
increases. Since F (ξs) is decreasing in ξs (in the range [exp (Ψ) , ξmax]), the

pricing kernel ms in state s increases as Zs
(
1L/U ,w, 1, δ

)
increases. Thus, the uncertainty

averse investor assigns higher marginal utility (i.e. higher than that in the absence of model

uncertainty) to states with larger losses. The maximization (respectively, minimization) over

δ > 0, w for the lower good deal bound C (upper good deal bound C) then has the effect of

minimizing the average weighted losses.

The Lagrange multipliers w on the constraints EP [mx] = p have the interpretation of

optimal hedges for the focus asset using the basis assets. This property allows us to interpret

Zs
(
1L/U ,w, 1, δ

)
as a (post-hedge) loss function.

4.2 Case (2): The constraint EP
[
m2

F (ξ)

]
≤ Γ is slack

When EP
[
m2

F (ξ)

]
≤ Γ is slack, the good deal bounds reduce to the arbitrage bounds (i.e. those

enforceable by sub- or super-replication). In particular, since the infimum (respectively,

supremum) over ξ for the lower (upper) good deal bound becomes irrelevant, we solve

C = CArb (1) ≡ inf
m

{
EP[mc] such that EP[mx] = p,m ≥ 0

}
, and

C = CArb (−1) ≡ sup
m

{
EP[mc] such that EP[mx] = p,m ≥ 0

}
, (25)

the solution of which can always be obtained numerically (see Cochrane and Saá-Requejo

[2000]), since it is a linear program. The respective arbitrage bound, denoted CArb

(
1L/U

)
,

is the good deal bound if the constraint EP
[
m2

F (ξ)

]
≤ Γ is slack. To check, we solve

inf
ξ∈Ξ

{
inf
m

{
EP
[
m2

F (ξ)

]
such that CArb

(
1L/U

)
= EP[mc], EP[mx] = p,m ≥ 0

}}
. (26)

17



If the solution to (26) is less than Γ, then CArb

(
1L/U

)
is the good deal bound. Otherwise,

the constraint binds and case (1) is the relevant one. The solution is summarized below,

with µ a scalar and v a Nb - dimensional vector.

Proposition 10 The pricing kernel in state s is ms = F (ξs)Ys (1, v, µ, 1), where the worst-

case distortion ξ and the Lagrange multipliers βs on F (ξs) ≥ 0 are given in Proposition 5,

with U (Vs) replaced by −Zs (1, v, µ, 1). The solution to (26) is

max
v,µ

{
2v
′
p− 2µCArb

(
1L/U

)
+ max

η

{
S∑
s=1

πs [−G (ξs) (Zs (1, v, µ, 1) + βs)]

}}
. (27)

Equivalently, C (respectively, C) equals the lower (upper) arbitrage bound CArb

(
1L/U

)
, if

max
µ,v

{
2v
′
p− 2µCArb

(
1L/U

)
+ inf

ξ∈Ξ

{
EP
[
F (ξ) ŨTQ

(
µc− v

′
x
)]}}

< Γ. (28)

Problem (27) is solved numerically by choice of η and then by choice of v, µ.

Unlike in Proposition 9, the Lagrange multipliers v on the constraints EP [mx] = p do not

have the interpretation of optimal hedges for the focus asset. Instead, the optimal hedges w

enforce the arbitrage bounds in (25) and can be computed explicitly by solving the dual to

the linear program. Specifically, w solves

max
w

w
′
p such that w

′
xs ≤ cs, for each state s, s = 1, . . . , S, (29)

for the lower bound (for the upper bound, replace max by min and ≤ by ≥).

To conclude this sub-section, we emphasize the intuition of the No Good Deals method-

ology. Interpreting Γ as the target level of reward-for-risk (a Sharpe ratio or certainty

equivalent), the No Good Deals - No Bad Models methodology computes lower and upper

good deal bounds which either: Case (1), achieve the target level of reward-for-risk under

the worst-case model, or; Case (2), are the arbitrage bounds CArb

(
1L/U

)
when the target
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level cannot be achieved. Analogously to (26) and (28), the minimum level Γ? (defined in

equation (18)) of the restriction on the pricing kernel has the dual representation

Γ? = max
v

{
2v
′
p + inf

ξ∈Ξ

{
EP
[
F (ξ) ŨTQ

(
−v

′
x
)]}}

, (30)

Γ? = max
v

{
2v
′
p + max

η

{
S∑
s=1

πs [−G (ξs) (Zs (1,v, 0, 1) + βs)]

}}
, (31)

where βs and ξs are defined as in (27) but replacing Zs (1,v, µ, 1) with Zs (1,v, 0, 1). Thus,

Γ? is the maximum reward-for-risk available under the worst-case model from trading in the

basis assets. The restriction Γ ≥ Γ? is then interpretable as the requirement that the target

level of reward-for-risk weakly exceeds that available from trading in the basis assets alone.

4.3 Model uncertainty versus reward-for-risk

In this sub-section, we show that model uncertainty leads to economically different outcomes

than higher target levels of reward-for-risk. We begin with the following proposition.

Proposition 11 (a) Good deal bounds in the presence of model uncertainty are never

narrower than those in its absence.

(b) As either Γ increases or Ω increases, the lower good deal bound C is non-increasing

and the upper good deal bound C is non-decreasing.

Property (a) is intuitive since ξs ≡ 1, for each s, is feasible in (14) to (17). Property (b)

shows that good deal bounds in the presence of model uncertainty weakly widen as the

target level of reward-for-risk Γ increases, similarly to the good deal bounds of Cochrane

and Saá-Requejo [2000]. We discuss further similarities in Appendix B.

Here, we focus upon the differences. We show that the the distance between good deal

bounds in the presence of model uncertainty and those in its absence weakly increases with

the dispersion and negative skewness of the loss function Z. Define H(Ẑ) ≡ G (ξ) Ẑ, where
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Ẑ ≡ Z +β. Note that Z can refer to either Zs
(
1L/U ,w, 1, δ

)
or Zs (1,v, µ, 1) and that G (ξ)

depends on Ẑ through ξ. Applying a Taylor expansion around Ẑ − EP[Ẑ] and using the

result EP[Ẑ] ≥ EP[Z] implies

EP
[
H
(
Ẑ
)]
− EP[Z] ≥ 1

2

S∑
s=1

πs

[(
Ẑ − EP[Ẑ]

)2

H
′′
(
Ẑ?
)]

, or (32)

EP
[
H
(
Ẑ
)]
− EP[Z] ≥ 1

2
VarP[Ẑ]H

′′
(
EP[Ẑ]

)
+

1

6

S∑
s=1

πs

[(
Ẑ − EP[Ẑ]

)3

H
′′′
(
Ẑ??
)]

,

for some Ẑ?, Ẑ??. It is straightforward to verify that H
′′
(
Ẑ
)
≥ 0 and H

′′′
(
Ẑ
)
≤ 0. Now

comparing with (21), (22) and (27), we see the sense in which a wide dispersion in Z increases

the distance between good deal bounds in the presence of model uncertainty and those in

its absence. In the latter case, good deal bounds depend only upon EP[Z
(
1L/U ,w, 1, δ

)
] (or

EP[Z (1,v, µ, 1)] in determining if EP
[
m2

F (ξ)

]
≤ Γ is slack), but in the former case, they depend

upon EP
[
H
(
Ẑ
)]

. Ceteris paribus, when Z has greater variance and/or more negative

skewness, EP
[
H
(
Ẑ
)]
− EP[Z] is weakly greater and hence so is the distance.

Although good deal bounds in the presence of model uncertainty weakly widen with

increases in both Γ and Ω (Proposition 11), we now show that increases in Ω lead to funda-

mentally different outcomes than increases in Γ.

Suppose there are three states with P probabilities (1/8, 1/2, 3/8). There is a single basis

asset with time 0 price equal to zero which pays (1,−0.8, 1) in the three states, at time 1. We

consider seven different focus assets, labeled A to G, with payoffs: A (1, 1, 1); B (0.75, 1.5, 0);

C (1, 1, 0); D (0, 0.2, 2); E (2, 0.1, 0); F (0, 0.1, 2); G (0.1, 2, 0).

For these simple payoffs, it is straightforward to show that the upper arbitrage bound

is infinite and the constraint EP
[
m2

F (ξ)

]
≤ Γ always binds. Hence, using equation (24), the

upper good deal bound, denoted C (J ,Γ,Ω), for each J = A, . . . , G, can be expressed9 as

9Equation (24) simplifies to maxδ>0,v

{
2C − δΓ + infξ∈Ξ

{
EP
[
F (ξ) ŨTQ (−c+ wx)

]}
/δ
}

= 0,

after setting µ = −1/δ, v = −w/δ and p = 0. The first-order condition for δ implies

− infξ∈Ξ

{
EP
[
F (ξ) ŨTQ (−c+ wx)

]}
= δ2Γ. Now solve for δ, substitute and simplify.
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Figure 2: Upper good deal bounds C (J , 1,Ω) for the seven focus assets J = A, . . . , G.

Notes: Upper good deal bounds C (J , 1,Ω) as a function of the degree of aversion to model uncertainty
Ω (with the target level of reward-for-risk Γ = 1). P probabilities of the three states are (1/8, 1/2, 3/8).

C (J ,Γ,Ω) =
√

Γ minw{
√
− infξ∈Ξ{EP[F (ξ) ŨTQ (−c+ wx)]} }, after simplifying. Hence,

C (J ,Γ,Ω) is linear in
√

Γ but, in sharp contrast, no such simple relationship holds for Ω.

In Figure 2, we plot C (J ,Γ,Ω), setting Γ = 1, for each focus asset J as a function of

Ω. As Ω increases, the upper good deal bounds increase (in line with Proposition 11), but

their sensitivity to changes in Ω varies significantly across the seven different focus assets.

Compare, for example, E, F and G. Although they have the same combinations of payoffs,

they receive them in different states. The upper good deal bound for E (which receives the

largest payoff in the least probable state) has much greater sensitivity to Ω than that for F ,

which, in turn, has greater sensitivity than that for G (which receives the largest payoff in

the most probable state). Overall, A is least sensitive to Ω. These results are in line with

the theoretical analysis above (in (32)) since E (respectively, A) has the payoff, and losses

after hedging with the basis asset, with the most (respectively, least) variance and skew.

We now show that higher levels of Γ do not achieve the same economic outcomes as

higher levels of Ω. We begin by finding, for focus asset F , the value of Γ that matches, in
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the absence of model uncertainty, the upper good deal bound for Γ = 1 and Ω = 4. This

requires Γ = 1.1193, since C (F, 1.1193, 1) = C (F, 1, 4) = 0.9342. Recomputing the upper

good deal bounds on E and G with these values of Γ and Ω, we find C (E, 1.1193, 1) = 0.6740

while C (E, 1, 4) = 0.8192 and C (G, 1.1193, 1) = 1.1804 while C (G, 1, 4) = 1.1233. Thus,

although we can match the upper good deal bound on one focus asset by increasing Γ, the

upper good deal bounds for other focus assets still deviate from those in the presence of

model uncertainty. Further, if we consider focus asset A, we see that, even for a single focus

asset, there is not a one-to-one mapping between good deal bounds computed for different

Γ and those computed for different Ω. For example, from Figure 2, C (A, 1, 1) = 0.9939.

Now increase Γ slightly to Γ = 1.0133: The upper good deal bound in the absence of model

uncertainty becomes C (A, 1.0133, 1) =
√

1.0133 0.9939 = 1.0005. Can one find a value of

Ω such that C (A, 1,Ω) = 1.0005? No - because no such Ω exists since, as is apparent from

Figure 2, C (A, 1,Ω) asymptotes at 1 and never reaches 1 for any finite Ω. In contrast,

by changing Γ, any finite, positive value of C (A,Γ, 1) whatsoever can be attained. Hence,

model uncertainty leads to fundamentally different economic outcomes.

5 Estimating Ω and the choice of Γ

In this section, we describe a procedure for estimating the degree of aversion to model

uncertainty Ω and discuss the choice of the target level of reward-for-risk Γ.

We choose Ω so that the maximum reward-for-risk achievable under the worst-case model,

from trading in the basis assets, is difficult to distinguish from the maximum reward-for-risk

achievable under the reference model P. Note that, while our methodology for the estimation

of Ω is similar in spirit to the detection error probability methodology of Hansen and Sar-

gent [2008], Anderson, Hansen, and Sargent [2003] and Maenhout [2004], their methodology

requires that the whole probability measure under the worst-case distortion is difficult to

distinguish from that under P. In contrast, our methodology requires that the worst-case
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model and the reference model P are difficult to distinguish only in terms of the maximum

reward-for-risk available. The latter is more appropriate in our setting since the good deal

bounds are defined (see Definition 7) in terms of reward-for-risk. We set the level of distin-

guishability by the Model Confidence Level. While acknowledging that some investors (or,

more generally, financial institutions) may exhibit more uncertainty aversion than others, we

choose Ω based on a Model Confidence Level10 in the region of 80%. We compute Ω from

a historical data-set of asset prices, making the parameter Ω context-specific, with different

data-sets or different basis assets leading to different estimates of Ω.

Similarly to Γ? in equations (18), (30) and (31), we define Γ?NoMU to be the maximum

reward-for-risk available from trading in the basis assets under the reference measure P:

Γ?NoMU ≡ max
v

{
2v
′
p +

S∑
s=1

πs [− (Zs (1,v, 0, 1))]

}

≡ 2v̂NoMU ′p +
S∑
s=1

πs
[
−
(
Zs
(
1, v̂NoMU, 0, 1

))]
, (33)

where v̂NoMU is the maximizing value of v in the first line. We compute v̂NoMU by solving

problem (33) using historical data11, setting the number of states S equal to the number of

available observations J and assigning equal probabilities to each state πs = 1/J . We boot-

strap12 the historical data, K times, by repeatedly sampling from the data with replacement.

Sampling with replacement means that sometimes we sample a given historical data point

10Hansen and Sargent [2008], Anderson et al. [2003] and Maenhout [2004] recommend detection error
probabilities of around 20% which, given the “opposite parameterization”, provides some support for our
choice of Model Confidence Level of around 100− 20% = 80%.

11Note that when solving (33), (34) and (35), we use returns (i.e. we divide each historically observed price

by its price at the preceding time point). Hence, Zs

(
1, v̂NoMU, 0, 1

)
now reflects “payoffs in return form”.

As an alternative, we could work with excess (i.e. over and above the risk-free rate) returns R which may be
better conditioned. The analogs of problems (33), (34) and (35) are easily obtained by comparison with (18)
and (31). In particular, the constraints EP[mx] = p are replaced by EP[mR] = 0 and EP[m] = 1/

(
1 +Rf

)
,

where Rf is the average one period risk-free rate. We need the extra condition on EP[m] to normalise m.
12If the returns are not iid or cannot satisfactorily be approximated as such, then, alternatively, we could

simulate returns using the reference model P.
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more than once and sometimes not at all. This is equivalent to using different probabilities

π
(k)
s , for each k = 1, . . . , K. For each bootstrapped sample, we compute

Γ?(k) ≡ 2v̂NoMU ′p +
S∑
s=1

π(k)
s

[
−
(
Zs
(
1, v̂NoMU, 0, 1

))]
. (34)

We sort the K values Γ?(k) into order and select the percentile, Γ?MCL say, corresponding to

the chosen Model Confidence Level. We then set Ω to be the value which solves

2v̂NoMU ′p + max
η

{
S∑
s=1

πs
[
−G (ξs)

(
Zs
(
1, v̂NoMU, 0, 1

)
+ βs

)]}
= Γ?MCL. (35)

Note that the left-hand side of (35) uses the probabilities from the original (non-bootstrapped)

historical sample and can be interpreted as the maximum reward-for-risk available under the

worst-case model from taking positions in the basis assets given by v̂NoMU (as opposed to the

optimal values in (31)). In words, Ω is chosen so that, conditional on maintaining the same13

positions v̂NoMU in the basis assets, the maximum reward-for-risk achievable under the worst-

case model is difficult to distinguish from the maximum reward-for-risk under the reference

model P. Thus, our methodology for estimating Ω amounts to using an economic definition

(maximum reward-for-risk) rather than a statistical definition (for example, detection error

probability) of “difficult to distinguish”.

We now turn our attention to choosing the target level of reward-for-risk Γ in the con-

straint EP
[
m2

F (ξ)

]
≤ Γ: There are different alternatives: (1) Choose Γ to be some margin

over (or some multiple ≥ 1 of) either (a) Γ?NoMU or (b) Γ? (with the former being more

conservative); (2) Choose Γ through the choice of an annualized Sharpe ratio hAnn.

13Keeping the same positions v̂NoMU in the basis assets is consistent with the premise (Section 3) that
the investor guards against model uncertainty by considering positions in the basis assets that are robust
across the set of alternative models. In this section, we are essentially solving the “inverse” problem, namely,
does the maximum reward-for-risk change significantly across the K bootstrapped samples? If so, then there
is a significant amount of model uncertainty, leading to a higher estimate of Ω; if not, there is less model
uncertainty, leading to a lower estimate of Ω.
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In our numerical examples in Section 7, we use the second alternative. Černý [2003]

shows that the certainty equivalent CE of any utility function U (V ) and its coefficient of

absolute risk aversion CARA (U (V0)) are linked, under Assumptions 1 and 2, to investment

opportunities, over a time period ∆t years, with a small per period Sharpe ratio hPerP, by:

CARA (U (V0)) CE ≈ 1

2
h 2

PerP =
1

2
h 2

Ann∆t. (36)

Hence, a bound CE ≤ Λ in equation (13) is approximately the same as a bound

EP
[
m2

F (ξ)

]
≤
(

1

1− (CARA (U (V0)) Λ)

)2

≈
(

1

1− 1
2
h 2

PerP

)2

≈ 1 + h 2
PerP = 1 + h 2

Ann∆t.

In our numerical examples, we (following Cochrane and Saá-Requejo [2000]) set

Γ = (1 + h2
Ann∆t) /

(
1 +Rf

)2
, where Rf is the one period risk-free rate. Cochrane and

Saá-Requejo [2000] use a value of hAnn equal to one, arguing that a value twice that of the

annualised Sharpe ratio on the S&P 500 (based on stylized data of an 8% excess return

and 16% volatility) is appropriate. However, we show in Appendix D.1 that, with a Model

Confidence Level of 80%, model uncertainty can account for half, possibly a little more,

of the excess return on equity markets. Hansen and Sargent [2008], Anderson et al. [2003]

and Maenhout [2004] come to broadly the same conclusion, within their model uncertainty

frameworks, using a detection error probability of 20%. This suggests that smaller values of

hAnn may be appropriate in the presence of model uncertainty - we choose various values of

hAnn (typically) around 0.5. There is some anecdotal support14 for this choice from senior

management within the banking industry, based on target returns on equity.

14In 2000, the then chairman of a leading global bank made a public statement saying that he wanted
its investment banking arm to achieve a 20% target return on equity (when risk-free rates were around 5%
and the volatility of its shares was around 30%) - which could be interpreted as implying he wanted it to
achieve an ex-post Sharpe ratio of (20− 5) /30 = 0.5. Choosing hAnn = 0.5 is then equivalent to seeking to
achieve his target, even under the worst-case model. Following the public statement, other leading banks
also adopted similar target returns on equity.
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6 Multiple time periods

The previous analysis considered a one period problem. In this section, we extend the results

to a multi-period setting, focusing on the two period case. There are three dates, indexed

by t = 0, 1, 2. At time t = 0, the investor takes a position in the focus asset, which pays c at

time t = 2. Time t = 1 is an intermediate rebalancing time, when the investor can adjust

her hedging portfolio in the basis assets and update her valuation of the focus asset. Denote

the time t = 0, 1 conditional expectation under the reference measure P by EP
t and the lower

and upper good deal bounds by Ct and Ct. Denote the time t = 1, 2 pricing kernel by mt

and distortion by ξt. The two period problem (for the lower good deal bound) is

C0 = inf
ξ1∈Ξ1,ξ2∈Ξ2

{
inf

m1,m2

{
EP

0 [m1m2c] such that EP
0 [m1p1] = p0,m1 ≥ 0,EP

0

[
m2

1

F (ξ1)

]
≤ Γ0,

EP
1 [m2x] = p1 ∀=1,m2 ≥ 0,EP

1

[
m2

2

F (ξ2)

]
≤ Γ1 ∀=1

}}
, (37)

where Ξt = {ξt : EP
t−1[ξt] = 1, ξt > 0, F (ξt) ≥ 0} and =1 is the information set at time t = 1.

Thus, the time 0 good deal bound imposes sequential constraints on the pricing kernels at

each date. Applying the Law of Iterated Expectations (see the detailed proof in Cochrane

and Saá-Requejo [2000]), we can rewrite (37) as two (sequential) one period problems

C1,s = inf
ξ2∈Ξ2

{
inf
m2

{
EP

1 [m2c] such that EP
1 [m2x] = p1,s,m2 ≥ 0,EP

1

[
m2

2

F (ξ2)

]
≤ Γ1

}}
,

C0 = inf
ξ1∈Ξ1

{
inf
m1

{
EP

0 [m1C1] such that EP
0 [m1p1] = p0,m1 ≥ 0,EP

0

[
m2

1

F (ξ1)

]
≤ Γ0

}}
, (38)

where (38) takes the solution to the time 1 problem as given. For C0, we solve (37) or (38)

with the infimum replaced by supremum. The separation of the non-sequential problem (37)

into two sequential problems is possible because the constraints on the pricing kernels and

distortions are applied sequentially and the former preclude arbitrage opportunities. Finally,

notice that we can easily extend our analysis to accommodate more than two periods.
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Consider now solving for the optimal hedges, denoted wt, at each time t = 0, 1 and

assume that the constraints EP
0

[
m2

1

F (ξ1)

]
≤ Γ0 and EP

1

[
m2

2

F (ξ2)

]
≤ Γ1 bind. After substituting in

(38) from first-order conditions and simplifying, we find

C1,s = max
w1,s

{
w
′

1,sp1,s − δ̂1,sΓ1

}
, and defining

R̂1,s ≡ w
′

0p1,s − C1,s = −min
w1,s

{(
w
′

1,s −w
′

0

)
p1,s − δ̂1,sΓ1

}
,

C0 = max
δ0>0,w0

{
w
′

0p0 −
1

2
δΓ0 + max

η0

{
S∑
s=1

πs

[
−1

2
δ0G (ξ1,s)

(
max[R̂1,s, 0]2

δ2
0

+ β1,s

)]}}
.

Using (32), model uncertainty has a larger impact on the time 0 good deal bounds if there is

more dispersion in max[R̂1,s, 0]2. Consider the situation where δ̂1,sΓ1 is relatively insensitive

to the realization of the state s; then greater dispersion in max[R̂1,s, 0]2 corresponds to

greater dispersion in
(
w
′
1,s −w

′
0

)
p1,s. Conversely, the impact of model uncertainty is reduced

when
(
w
′
1,s −w

′
0

)
p1,s becomes less sensitive to the realization of the state s. In particular,(

w
′
1,s −w

′
0

)
p1,s is constant and independent of s when w1,s = w0 for all states s. The latter

corresponds to a static hedging strategy,15 which keeps the hedging portfolio constant across

time and state realizations.

More generally, compare two strategies for hedging the focus asset with the basis assets:

(1) A dynamic hedging strategy, with hedge rebalancing allowed at the intermediate time

t = 1; (2) A static hedging strategy, with the hedges chosen at time t = 0 maintained at time

t = 1. Clearly, an investor following the dynamic strategy can always choose to maintain the

position in the hedging portfolio at time t = 1, so dynamic hedging is always weakly better

than static hedging. However, model uncertainty may decrease the distance (and, hence,

the benefit to dynamic hedging) between the good deal bounds under dynamic and static

hedging. We now give a simple illustration of this.

Suppose there is a single basis asset whose price at time 0 is p0 = 0 and which can

move up, with probability 1/8, to a price of p1 = 1 at time 1 at which price it stays with

15Carr et al. [1998] is a comprehensive reference on static hedging strategies, with a number of examples.
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Figure 3: Dynamic hedging strategy for Ω = 1 and Ω = 8.
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Notes: The transition probabilities, under P, are in boxes. At each node, the price of the basis asset is
shown above the upper good deal bounds (labeled C, for Ω = 1, then Ω = 8) which are above the optimal
hedges in the basis asset (labeled w, for Ω = 1, then Ω = 8). As an example of how to read the figure,
0.9935 means that, at time 1, in the node when the price of the basis asset is −0.4, for Ω = 8, the upper
good deal bound is 0.9935 and the optimal hedge in the basis asset is 0.035.

probability 1 at time 2 or it can move down, with probability 7/8, to a price of p1 = −0.4

at time 1. In the latter case, it can move up to 1 with probability 3/7 or down to −0.8

with probability 4/7 at time 2. Hence, the basis asset pays x = 1 or x = −0.8, at time 2,

with (two step) probabilities 1/2 and 1/2 respectively. The focus asset pays 1 in all states

at time 2. We consider a static hedging strategy and a dynamic hedging strategy which

rebalances the hedge at time 1. We compute the upper good deal bounds with Γ = 1, for

Ω = 1 and Ω = 8. The static hedging strategy has the same solution as the one period

problem in Section 4.3 for focus asset A. For Ω = 1 (Ω = 8), the time 0 upper good deal

bound is 0.9939 (respectively, 0.9995) with optimal hedge 0.122 (respectively, 0.009). For

the dynamic hedging strategy, for Ω = 1 (Ω = 8), the time 0 upper good deal bound is

0.8400 (respectively, 0.9854). The dynamic hedging strategy is shown in Figure 3.

We acknowledge that this is a very simple example. Nonetheless, we see clearly that

the distance between the upper good deal bounds under dynamic and static hedging is

significantly decreased in the presence of model uncertainty. This is true even though,

conditional on p1 = 1, the focus asset is a redundant asset, the basis asset is risk-free and,
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hence, in this state there is no model uncertainty. Furthermore, the choice of the possible

values for p1 is essentially arbitrary in the sense that the same qualitative effect would be

observed for any other possible values for p1 (consistent with the absence of arbitrage).

7 Numerical examples

In this section, we consider numerical examples which illustrate the No Good Deals method-

ology and its wide applicability. The first example values options on a non-traded asset. The

second values a type of option traded in the fx markets. We have relegated a third example

to Appendix C for brevity. Finally, we also examine the time-series properties of Ω.

7.1 Options on non-traded asset

We now consider options written on a non-traded asset. This example is based on one

in Cochrane and Saá-Requejo [2000], which we modify to consider the impact of model

uncertainty. There is a traded asset, labeled 1, whose price is denoted by S, and a non-

traded asset, labeled 2, whose value is denoted by V . The option (focus asset) payoff is

max (V −K, 0) for a call (or, max (K − V, 0) for a put), where K is a fixed strike (for

simplicity, we assume that the payoff is paid in cash). We consider a European call with

K = 65, a European call with K = 55 and a European put with K = 65. The option

maturity is 2 years. The traded asset 1 is correlated (but not perfectly) with the non-traded

asset 2 and can be used to partially hedge the option.

We model the underlying dynamics as double trinomial (a pyramid rather than a triangle)

with steps one month apart (24 steps over 2 years). At each time-step t (t = 0, 1, . . . , 23) of

the trinomial tree, when the price of the traded asset 1 is St, the price can stay the same, go

up to St exp
(
λ1σ1

√
∆t
)

or down to St exp
(
−λ1σ1

√
∆t
)

, where λ1 =
√

(3/2), σ1 = 0.25 and

∆t = 2/24 (one month) is the time period corresponding to each step. When the value of the
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non-traded asset 2 is Vt, the value can change to: Vt exp
(
λ2σ2

√
∆t
(√

1− ρ2Z2 + ρZ1

))
for

Z1 = −1, 0, 1 and Z2 = −1, 0, 1 and where λ2 =
√

(3/2), σ2 = 0.28. The correlation between

log-changes in S and V is ρ. In the limit of small time-steps, this tree construction will

approximate S and V being jointly log-normal (but we will not be interested in this small

time-step limit - we regard these discrete-time dynamics as specifying the actual dynamics,

rather than of being an approximation to some continuous-time dynamics). We denote the

(continuously-compounded) excess return on asset 1 by µ1 and that on the non-traded asset

2 by µ2. The probabilities in the double trinomial tree are computed by requiring that they

sum to one and match each of the first two moments, under P, of S and V .

The (continuously-compounded) risk-free rate is 0.03. The traded asset 1 has an initial

price of asset 20 and pays a dividend yield of 2% (expressed as a continuous yield proportional

to its price) or 0.02. The initial value of the non-traded asset 2 is 60.

The investor can trade in the basis assets (traded asset 1 and a one period risk-free bond)

and rebalance her hedges every three months at the start of steps 0, 3, 6, 9, 12, 15, 18, 21

(not every step). There are two sources of incompleteness: The discrete-time hedging and

the fact that she can only hedge with a partially correlated traded asset.

In order to estimate the degree of aversion to model uncertainty Ω, we simulate a data-set

with 128 data points, setting µ1 = 0.03. Each data point represents the return on the traded

asset 1 over a period of three months consistent with the (one month) probabilities computed

in the lattice (as well as the (constant) return on a risk-free bond). Given the simulated

historical data-set, we use the bootstrap procedure of Section 5 to estimate Ω. We bootstrap

the data-set 65000 times, and, for a Model Confidence Level of 80%, we find Ω = 2.81.

Note that 128 data points (each representing quarterly returns) would, in practice, require

32 years of data. In Table 1, we report also the estimate of Ω for simulated data-sets with 8,

32 and 512 data points (the latter would require (an unrealistic) 128 years of data), keeping

the same lattice probabilities and the same Model Confidence Level of 80%. We see that as

the length of the simulated data-set decreases, the estimate of Ω increases, implying greater
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model uncertainty. In Table 2, we report the estimate of Ω with 128 data points but with

different Model Confidence Levels. As the Model Confidence Level is increased, implying

greater aversion to model uncertainty, the estimate of Ω increases.

In the second panel of Table 2, we also report, for comparison, estimates of Ω setting

µ1 = 0.08. We see that increasing µ1 to 0.08 (from 0.03) dramatically lowers the estimate of

Ω. More color is provided in the third panel, where, fixing the Model Confidence Level at

80%, we consider a range of values of µ1 - negative as well as positive. We see that when the

absolute value of µ1 increases, Ω decreases. Further, the estimate of Ω is almost symmetric

around the point µ1 = 0. This is intuitive, because the bootstrap procedure works by

considering the uncertainty in the reward-for-risk achievable by trading in the basis assets.

In this simple example, the latter depends upon the magnitude of µ1. The sign is largely

irrelevant in the sense that, if µ1 were to be multiplied by minus one, v̂NoMU, defined in

(33), would also be approximately multiplied by minus one (switching a long position to

short and vice versa), leaving the reward-for-risk largely unchanged. The small asymmetry

around µ1 = 0 is due to the small asymmetry in the return distribution of asset 1. Finally, in

the fourth panel, we consider different values of both µ1 and σ1. We see that if µ1/σ1 (which

is approximately the Sharpe ratio on asset 1) is kept constant, Ω hardly changes. However,

if σ1 is increased, holding µ1 constant, Ω increases. Hence, the degree of aversion to model

uncertainty Ω increases, if there is more model uncertainty (a shorter data-set or a lower

Sharpe ratio) or if the investor has greater aversion to it (a higher Model Confidence Level).

We turn now to computing the good deal bounds on the options on the non-traded asset

2. For illustration, we consider different values of Ω (16, 8, 4, 2, 1.75, 1.5, 1.25 and 1) which

span the values estimated in Tables 1 and 2. We set the excess return on asset 1 to be

µ1 = 0.03 and that on the non-traded asset 2 to be µ2 = 0.04. We set the correlation ρ to

be 0.80. We set the Sharpe ratio bound hAnn to 0.5. The results16 are in Table 3.

16We also report the risk-neutral price (meaning with the excess returns set to zero but computed with
the same placements of tree nodes) and the Black and Scholes [1973] price just for illustration. Neither of
these prices has a real financial meaning here since one cannot even trade the non-traded asset 2 (but the
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We see that as Ω is increased, the good deal bounds widen - in fact, changing Ω has quite

a large impact. For the call options, this may be partly due to the fact that the lower and

upper arbitrage bounds are very wide.17 Following Cochrane and Saá-Requejo [2000] (p85),

we see the width of the good deal bounds as being as much an advantage as a disadvantage.

It warns that hedging is poor and that valuation is very sensitive to assumptions about the

model and about the market prices of risk - things which standard risk-neutral valuation

techniques, and the financial insitutions which use them, usually ignore.

We now extend our analysis by considering American options which additionally give the

holder18 of the option the right to exercise at the same frequency as the hedge rebalancing (i.e.

every three months). We assume that the American option is exercised when the immediate

exercise value exceeds the continuation value of the lower good deal bound. The results are

in Table 4. Since the non-traded asset 2 does not pay dividends, the risk-neutral prices of

the American call options are the same as their European counterparts. Defining the early

exercise premium to be the value of the relevant American option minus that of its European

counterpart, the early exercise premia of the lower good deal bounds are substantial - even

for call options - and typically increase as Ω increases. For values of Ω ∈ {4, 8, 16}, it is

actually optimal to immediately exercise the options (call with K = 55 and put with K = 65)

which are initially in-the-money and, for these options, the early exercise premium increases

very significantly as Ω increases.

Intuitively, greater model uncertainty can lead to larger early exercise premia, since exer-

cising the option removes model uncertainty, providing the uncertainty averse investor with

an additional incentive to exercise early. Thus, model uncertainty gains extra significance in

the context of real options, since real options are often American in nature.

difference between the former and the latter would give an idea of the discretization error if there were to
be an interest in approximating joint geometric Brownian motion by the double trinomial tree).

17The lower arbitrage bound is zero while the upper is governed by the maximum value of V in the lattice.
18For simplicity, we consider only the lower good deal bounds C (the upper good deal bounds C (corre-

sponding to reservation prices for short positions) depend upon the exercise strategy of the option buyer).
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7.1.1 Sensitivity of the good deal bounds to ρ, hAnn, µ1 and µ2.

For further comparison, we now consider the sensitivity of the good deal bounds to ρ, hAnn,

µ1 and µ2. We focus on the good deal bounds on the European call with strike K = 65.

We now set the correlation ρ between log-changes in S and V to be 0.95. The results are

in Table 5. We see (comparing the first two lines of Tables 3 and 5) increasing ρ from 0.80

to 0.95 significantly tightens the good deal bounds. This is especially true for large values

of Ω. Keeping ρ equal to 0.95, we also compute the good deal bounds for smaller values of

the Sharpe ratio bound hAnn, namely 0.12 (for the case µ1 = 0.03, µ2 = 0.04) and 0.3156

(where we set µ1 = 0.08, µ2 = 0.09). Note that, in each case, the chosen value of hAnn is

such that Γ is only slightly greater than Γ?NoMU defined in (33). We see that lowering hAnn

tightens the good deal bounds (in line with Proposition 11). Again, this is especially true

for large values of Ω. Increasing µ1 and µ2 tightens the good deal bounds in the absence

of model uncertainty. However, Table 5 shows that, for large values of Ω, the story is more

complicated. For Ω = 16, 8, 4, the lower good deal bounds are rather lower for µ1 = 0.08,

µ2 = 0.09, hAnn = 0.5 than those for µ1 = 0.03, µ2 = 0.04, hAnn = 0.5. On the other hand,

from Table 2, the estimate of Ω, for a given Model Confidence Level, is much smaller for

µ1 = 0.08. Taking this into account implies that the good deal bounds are dramatically

narrower for µ1 = 0.08, µ2 = 0.09, hAnn = 0.5 than for µ1 = 0.03, µ2 = 0.04, hAnn = 0.5.

7.2 Fx options in the Heston [1993] stochastic volatility model

In this sub-section, we value a binary cash-or-nothing (BCON) option, a type of exotic option

written by many investment banks and popular in the foreign exchange (fx) markets. We

denote the spot fx rate, at time t, by St (quoted as the number of units of domestic currency

per unit of foreign currency). The option pays one unit of domestic currency at maturity

T if the spot fx rate ST is greater than or equal to the strike K and zero otherwise. In
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our examples, the domestic currency is USD, the foreign is STG and the maturity T is two

months. We assume that the dynamics of St, under P, are those of Heston [1993]:

dVt = κ (θ − Vt) dt+ ζ
√
VtdW

1
t , dSt/St = (rd − rf + Υ

√
Vt)dt+

√
Vt dW

2
t , (39)

where rd and rf are the domestic and foreign interest-rates, κ > 0, θ > 0, ζ ≥ 0 are constants

and W 1
t and W 2

t are independent19 P standard Brownian motions. The parameter Υ is a

constant and Υ
√
Vt is the excess return on the fx rate. Similarly to the online appendix of

Cochrane and Saá-Requejo [2000], we include the scaling by
√
Vt in order to have a constant

instantaneous Sharpe ratio. We use historical time-series data from Bloomberg for STGUSD

spanning the period from 2nd October 2003 until 12th September 2011 (2000 working days)

and estimate the parameters in (39) using the Maximum Likelihood method of Ait-Sahalia

and Kimmel [2007]. The results are: Υ = 0.3439, κ = 2.821, θ = 0.01315 and ζ = 0.164.

We build a multinomial lattice, with 45 time-steps (equivalent to one time-step per

working day for the two month option), which approximates the Heston [1993] dynamics

in (39). The details of the lattice construction are relegated to Appendix E.

We consider two different strategies for hedging the BCON option. In the first, we

dynamically hedge using two basis assets, namely, a one period domestic risk-free bond

and the spot fx rate, rebalancing every working day (i.e. on every step of the lattice). In

the second, we use a static hedging strategy, with hedges computed only at time 0, and

we use three basis assets, namely a domestic risk-free bond and vanilla call options of two

different strikes, denoted {K1, K2}, all with two month maturity. In each case, the domestic

(USD) risk-free bond is constructed synthetically from USD Libor quotes (obtained from

Bloomberg). Our aim is to compare the two different hedging20 strategies. Note that our

19We also considered allowing for a non-zero correlation ρ between the Brownian motions but found that,
for STGUSD, ρ was very close to zero and the maximum likelihood was not significantly improved.

20The rationale for the static hedging strategy is that the payoff 1ST≥K of the BCON option can be (Carr
et al. [1998]) approximately replicated by a long position 1/(2ε) in a call option with strike K− ε and a short
position 1/(2ε) in a call option with strike K + ε, for ε > 0. In the limit ε→ 0, the replication is exact, but
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analysis does not fall within the scope of the theoretical analysis in Section 6, because the

two different hedging strategies use different basis assets.

Corresponding to the two different hedging strategies, we consider two estimates of Ω.

The first uses, as basis assets, a domestic risk-free bond and the spot foreign exchange rate

with returns computed over a time period of one working day. The second uses, as basis

assets, a domestic risk-free bond and a synthetic variance swap, with two month matu-

rity, constructed from the market prices of options of different strikes (Britten-Jones and

Neuberger [2000], Carr and Wu [2009]), with non-overlapping returns over a period of two

months. Note that the second estimate of Ω does not use exactly the same basis assets

as the ones we use for static hedging but, in a Heston [1993] model, they capture broadly

the same risks and represent a pragmatic choice. We estimate Ω, with a Model Confidence

Level of 80%, using the bootstrap procedure described in Section 5 with the same historical

time-series data used to estimate the parameters in (39) and report the results in Table 6.

We compute the good deal bounds on the BCON option using market data from 12th

September 2011, the last day of the period used for the estimates of Ω. For ease of com-

parison, we scale the spot fx rate to 100. For the static hedging strategy, we consider

three different combinations of call option strikes: {K1 = 99.5, K2 = 100.5}, {99, 101} and

{98, 102}. The market prices of these call options are determined by parabolically interpo-

lating the implied Black and Scholes [1973] volatilities of options trading in the market with

strikes closest to K1 or K2 (obtained from Bloomberg) and then substituting the interpolated

volatility into the Black and Scholes [1973] formula. The strike K of the BCON option is

100. We use the estimated values of Ω in Table 6, as well as Ω ∈ {1, 2, 16} for comparison,

setting the Sharpe ratio bound hAnn to 0.5, and display the results in Table 7. We see that

hedging with call options of strikes {99.5, 100.5}, the static hedging strategy is much more

resilient to model uncertainty in that, as Ω is increased, the good deal bounds widen out

only slowly compared to how much they widen for dynamic hedging. On the other hand,

this is a limit only available in theory - in practice, options with strikes infinitesimally close together will
not trade in the market.
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for strikes {98, 102}, the picture is reversed. This shows that static hedging is more resilient

to the presence of model uncertainty but only if the static hedges are actually good hedges

in the first place. If the static hedges are poor hedges, resulting in wide good deal bounds

even in the absence of model uncertainty, then they may widen significantly further in its

presence. For the values of Ω estimated in Table 6, dynamic hedging is better, in the sense

of giving tighter good deal bounds, than static hedging with strikes {99, 101} or {98, 102}.

We asked traders at leading investment banks what bid-ask spread they would quote on

a BCON option, whose strike is around the current forward fx rate, on a major currency pair

if they were asked for a two-way price and the consensus was that it would be around 3 cents.

We see from Table 7 that the differences between the lower and upper good deal bounds are

around 3 cents for the dynamic hedging strategy and for the static hedging strategy with

strikes {99.5, 100.5} for the values of Ω estimated in Table 6. This gives us confidence that

our methodology is capable of generating valuations which are not only realistic from the

viewpoint of an economist but also from that of a trader.

7.3 Time-series properties of model uncertainty

In this sub-section, we investigate the time-series behavior of the degree of aversion to model

uncertainty Ω. We consider two asset markets: The spot market for gold and the S&P 500.

For each, we construct a quarterly time-series of real time estimates of Ω using observations

for the preceding 600 trading days with a Model Confidence Level of 80%. For gold, Ω

is estimated using a one day risk-free bond and a one day forward (using the convenience

yield implied from market quotes for one month forward contracts) as the basis assets. We

estimate two different versions of Ω for the S&P 500. The first version also uses a one day

risk-free bond and a one day forward as the basis assets. The second version adds the daily

return on a synthetic variance swap (approximated using VIX data) as a third basis asset.
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Figure 4: Time-series of estimates of Ω for gold.

Notes: Rolling 600 day estimates of the degree of aversion to model uncertainty Ω (left axis) and the
absolute value of the Sharpe ratio |SR| (right axis) for gold. The estimates of Ω span the period from
2000 to 2012. All data are from Bloomberg.

We plot the time-series of Ω estimates for gold and the S&P 500 in Figures 4 and 5,

respectively, together with the absolute value of the corresponding Sharpe ratio |SR| (com-

puted using the same 600 day rolling windows). While for gold, |SR| appears to be almost

perfectly negatively correlated with Ω, the relationship between |SR| and Ω for the S&P 500

is slightly less strong. In Table 8, we report the pairwise contemporaneous correlations be-

tween our estimates of Ω and |SR| and the spot price for the market in question, as well as

the correlations between Ω and some other indicators of market conditions. We find that,

while Ω for both gold and the S&P 500 exhibits significant contemporaneous correlation with

|SR|, the realized excess return, the spot price, the risk-free rate and the Libor rate, the sign

of the correlations differ. For example, Ω for gold is negatively correlated with the spot price

of gold, while that for the S&P 500 is positively correlated with the level of the S&P 500.

In Table 9, we regress changes in Ω on changes in indicators of market conditions. For

both gold and the S&P 500, increases in Ω coincide with decreases in |SR|. For the S&P 500,

increases in Ω coincide with decreases in realized volatility, the Libor rate, and the Baa-Aaa

credit spread, and increases in the Chicago Fed Financial Conditions Index. The latter im-

plies that increases in the degree of aversion to model uncertainty Ω coincide with worsening

conditions for the overall financial sector.
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Figure 5: Time-series of estimates of Ω for S&P 500.

Notes: Rolling 600 day estimates of the degree of aversion to model uncertainty Ω (left axis) and the
absolute value of the Sharpe ratio |SR| (right axis) for the S&P 500. “Ω S&P” refers to Ω estimated using
a one day risk-free bond and a one day forward as the basis assets; “Ω S&P/VIX” refers to Ω estimated
using a one day risk-free bond, a one day forward, and the daily return to a synthetic variance swap as
the basis assets. The estimates of Ω span the period from 1992 to 2012. All data are from Bloomberg.

8 Summary and conclusions

We describe a new and practical approach for incorporating a concern for robustness to

model uncertainty into the No Good Deals methodology of Cochrane and Saá-Requejo [2000].

We introduce the notion of a model-uncertainty-induced preference functional and show

how bounds on the certainty equivalent translate into bounds on the pricing kernel. The

uncertainty averse investor assigns higher probability to lower utility states. We demonstrate

how model uncertainty leads to economically different outcomes than higher target levels of

reward-for-risk (for example, higher Sharpe ratio bounds). We show how model uncertainty

reduces the benefit of dynamic hedging relative to static hedging (meaning, for example,

hedging an option by taking a static (“buy-and-hold”) position in other options (as opposed

to dynamic hedging with the underlying asset)). Illustrating our methodology with American

options, we show how greater model uncertainty can lead to larger early exercise premia, since

exercising the option removes model uncertainty, providing the uncertainty averse investor

with an additional incentive to exercise early.
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Table 1: Degree of aversion to model uncertainty Ω
Length of data-set 8 32 128 512

Value of Ω 7.67 4.08 2.81 2.11

Notes: Degree of aversion to model uncertainty Ω as a function of the number of simulated historical
quarterly observations (labeled Length of data-set). Note that, for example, 32 quarterly observations are
equivalent to 8 years of data. Ω is estimated using the procedure in Section 5, with 65000 bootstrapped
samples, setting the Model Confidence Level to 80%. The basis assets are the traded asset 1 and a
risk-free bond, with hedge rebalancing possible every quarter. The excess return on the traded asset 1 is
µ1 = 0.03 and its volatility is σ1 = 0.25.

Table 2: Degree of aversion to model uncertainty Ω
µ1 = 0.03

Model Confidence Level 75 80 85 90 95
Value of Ω 2.55 2.81 3.12 3.49 4.06

µ1 = 0.08
Model Confidence Level 75 80 85 90 95

Value of Ω 1.72 1.85 1.99 2.19 2.47

µ1 -0.09 -0.07 -0.05 -0.03 -0.01 0.01 0.03 0.05 0.07 0.09 0.11
Ω 1.90 2.07 2.35 2.94 5.60 5.50 2.81 2.23 1.95 1.78 1.69

µ1 0.018 0.030 0.042 0.048 0.080 0.112 0.080 0.080 0.080
σ1 0.15 0.25 0.35 0.15 0.25 0.35 0.15 0.25 0.35
µ1
σ1

0.120 0.120 0.120 0.320 0.320 0.320 0.533 0.320 0.229

Ω 2.84 2.81 2.80 1.86 1.85 1.84 1.63 1.85 2.07

Notes: Degree of aversion to model uncertainty Ω as a function of the Model Confidence Level and of
the excess return µ1 on the traded asset 1 and its volatility σ1. Ω is estimated using the procedure in
Section 5, with 65000 bootstrapped samples, with the number of historical observations set to 128 (which
is equivalent to 32 years of data). The basis assets are the traded asset 1 and a risk-free bond, with
hedge rebalancing possible every quarter. In the first panel, µ1 = 0.03, σ1 = 0.25; in the second panel,
µ1 = 0.08, σ1 = 0.25. In the third and fourth panels, the Model Confidence Level is set to 80%. In the
third panel, different values of µ1 are considered (keeping σ1 = 0.25). In the fourth panel, different values
of both µ1 and σ1 are considered and the ratio µ1/σ1 is also shown.
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Table 3: Good deal bounds on options on the non-traded asset 2
Ω 16 8 4 2 1.75 1.5 1.25 1 NoMU

Call, strike K = 65
C 0.000 0.058 0.738 2.601 3.051 3.560 4.092 4.445 4.445
C 69.974 47.643 31.606 21.580 20.275 19.035 17.983 17.471 17.471
Risk-neutral price (same tree) 8.937 BS 8.917

Call, strike K = 55
C 0.006 0.360 2.052 5.212 5.880 6.610 7.336 7.782 7.782
C 79.143 56.299 39.356 28.307 26.830 25.417 24.211 23.623 23.623
Risk-neutral price (same tree) 13.483 BS 13.463

Put, strike K = 65
C 0.001 0.188 1.422 3.738 4.196 4.674 5.117 5.350 5.350
C 33.503 27.507 21.406 16.466 15.753 15.068 14.495 14.229 14.229
Risk-neutral price (same tree) 10.151 BS 10.132

Notes: The lower C and upper C good deal bounds on 2 year European options on the non-traded asset
2 as a function of the degree of aversion to model uncertainty Ω. The correlation ρ is set to 0.80. The
excess return on asset 1 is µ1 = 0.03 and that on the non-traded asset 2 is µ2 = 0.04. The Sharpe ratio
bound is hAnn = 0.5. The basis assets are the traded asset 1 and a one period risk-free bond, with hedge
rebalancing possible every quarter. “BS” refers to the Black and Scholes [1973] price of the same option.
The case of no model uncertainty is labeled NoMU and is computed by setting ξ ≡ 1.

Table 4: Good deal bounds on American options on the non-traded asset 2
Ω 16 8 4 2 1.75 1.5 1.25 1 NoMU

Call, strike K = 65
C 0.000 0.234 1.295 3.153 3.555 4.006 4.481 4.809 4.809
Risk-neutral price (same tree) 8.937

Call, strike K = 55
C 5.000 5.000 5.000 6.927 7.360 7.844 8.355 8.695 8.695
Risk-neutral price (same tree) 13.483

Put, strike K = 65
C 5.000 5.000 5.000 6.162 6.475 6.803 7.114 7.284 7.284
Risk-neutral price (same tree) 10.671

Notes: The lower good deal bound C on 2 year American options on the non-traded asset 2 as a
function of the degree of aversion to model uncertainty Ω. The correlation ρ is set to 0.80. The excess
return on asset 1 is µ1 = 0.03 and that on the non-traded asset 2 is µ2 = 0.04. The Sharpe ratio bound
is hAnn = 0.5. The basis assets are the traded asset 1 and a one period risk-free bond, with hedge
rebalancing possible every quarter.
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Table 5: Good deal bounds on a European call option as a function of the excess returns µ1

and µ2 and the Sharpe ratio bound hAnn.

Ω 16 8 4 2 1.75 1.5 1.25 1 NoMU

µ1 = 0.03, µ2 = 0.04, hAnn = 0.5
C 0.126 0.902 2.559 4.646 5.023 5.423 5.814 6.066 6.066
C 33.266 25.639 19.602 15.356 14.759 14.179 13.676 13.430 13.430
µ1 = 0.03, µ2 = 0.04, hAnn = 0.12

C 5.115 6.454 7.572 8.542 8.722 8.930 9.168 9.372 9.372
C 14.763 12.866 11.492 10.420 10.234 10.027 9.795 9.596 9.596

µ1 = 0.08, µ2 = 0.09, hAnn = 0.5
C 0.111 0.848 2.472 4.611 5.032 5.506 6.017 6.377 6.377
C 32.900 25.255 19.138 14.630 13.957 13.277 12.666 12.350 12.350
µ1 = 0.08, µ2 = 0.09, hAnn = 0.3156
C 1.007 2.563 4.493 6.603 7.059 7.626 8.354 9.167 9.167
C 24.502 18.988 14.905 11.786 11.253 10.658 9.983 9.215 9.215

Notes: The lower C and upper C good deal bounds on a 2 year European call option, with strike
K = 65, on the non-traded asset 2 for different values of the degree of aversion to model uncertainty Ω.
The correlation ρ is set to 0.95. The basis assets are the traded asset 1 and a one period risk-free bond,
with hedge rebalancing possible every quarter. We consider different values of the excess return µ1 on
asset 1, the excess return µ2 on the non-traded asset 2 and of the Sharpe ratio bound hAnn. The case of
no model uncertainty is labeled NoMU and is computed by setting ξ ≡ 1.

Table 6: Estimates of Ω for STGUSD
Ω 1.16 1.96

Notes: The left-hand side estimate of Ω (1.16) uses as basis assets a USD risk-free bond and the spot
foreign exchange rate with returns computed over a time period of one working day. The right-hand side
estimate of Ω (1.96) uses as basis assets a USD risk-free bond and a synthetic variance swap constructed
from the market prices of options on STGUSD of different strikes with returns computed over a time
period of two months. We use historical time-series data for STGUSD spanning 2000 working days until
12th September 2011. The Model Confidence Level is set to 80% and 65000 bootstrapped samples are
used. The USD risk-free bond is constructed synthetically from USD Libor quotes. All data are from
Bloomberg.
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Table 7: Good deal bounds on a binary cash-or-nothing (BCON) option

Ω 1 1.16 / 1.96 2 16
Dynamic C 0.4761 0.4656 0.4546 0.3766

C 0.4899 0.5004 0.5115 0.5911
Static

K1 = 99.5, K2 = 100.5 C 0.4840 0.4793 0.4792 0.4614
C 0.4895 0.4944 0.4945 0.5114

K1 = 99, K2 = 101 C 0.4780 0.4617 0.4614 0.4070
C 0.4947 0.5114 0.5117 0.5609

K1 = 98, K2 = 102 C 0.4671 0.4261 0.4254 0.3063
C 0.5039 0.5459 0.5466 0.6484

Notes: The lower C and upper C good deal bounds on a 2 month BCON option, as a function of the
degree of aversion to model uncertainty Ω, computed using market data (from Bloomberg) for STGUSD
as of 12th September 2011. The Sharpe ratio bound is hAnn = 0.5. For the dynamic hedging strategy,
the basis assets are a USD risk-free bond and the spot foreign exchange rate, with rebalancing every
working day. For the static hedging strategy, the basis assets are a USD risk-free bond and and vanilla
call options of two different strikes, denoted K1 and K2. We consider different values of Ω. The column
labeled 1.16/1.96 means that the dynamic hedging strategy uses the value of Ω (1.16) estimated in Table 6
for the same basis assets and the same frequency of hedge rebalancing whiles the static hedging strategies
use the value of Ω (1.96) estimated in Table 6 using a USD risk-free bond and a synthetic variance swap.
The USD risk-free bond is constructed synthetically from USD Libor quotes (from Bloomberg).

Table 8: Contemporaneous pairwise correlations between Ω and risk indicators

Indicator S&P 500 Gold
S&P only S&P/VIX

|SR| -0.74 ∗∗∗ -0.32 ∗∗∗ -0.80 ∗∗∗

Realized Excess Return -0.23∗∗ -0.33 ∗∗∗ -0.80∗∗∗

Realized Volatility 0.03 0.43 ∗∗∗ -0.19
VIX -0.05 0.26∗∗ 0.14

Spot Price 0.20 ∗ 0.19 ∗ -0.49 ∗∗∗

Risk-free rate -0.27 ∗∗ -0.50 ∗∗∗ 0.34 ∗∗

Libor -0.28 ∗∗ -0.51 ∗∗∗ 0.27 ∗

Baa-Aaa 0.04 0.24 ∗∗ -0.06
TED 0.08 -0.01 -0.19

Fin. Cond. Index 0.10 0.26 ∗∗ -0.05

Notes: *** significant at 1%, ** significant at 5%, *significant at 10%. Pairwise correlations between
rolling 600 day estimates of the degree of aversion to model uncertainty Ω and risk indicators. Ω is
estimated using the procedure of Section 5 with a Model Confidence Level of 80%. For S&P 500, “S&P
only” refers to Ω estimated using a one day risk-free bond and a one day forward on the S&P 500 as
the basis assets; “S&P/VIX” refers to Ω estimated using additionally the daily return on a synthetic
variance swap as a third basis asset. The absolute value of the Sharpe ratio |SR| and the spot price are
market-specific. Fin. Cond. Index is the Federal Reserve Bank of Chicago Financial Conditions Index.
All data are from Bloomberg.
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Table 9: Model uncertainty and risk indicators

Indicator S&P 500 Gold
S&P only S&P/VIX

|SR| -3.31 -0.12 -3.15
[0.51]∗∗∗ [0.26] [1.16]∗∗

Realized Excess Return 0.04 -0.05 0.12
[0.02]∗ [0.04] [0.05]∗∗

Realized Volatility -0.11 -0.04 -0.12
[0.03]∗∗∗ [0.03] [0.07]∗

VIX 0.01 0.01 -0.04
[0.04] [0.02] [0.04]

Libor -0.94 0.06 0.49
[0.17]∗∗∗ [0.23] [0.53]

Baa-Aaa -1.34 -0.73 -0.39
[0.48]∗∗∗ [0.40]∗ [0.34]

TED -0.89 0.20 -1.08
[0.83] [0.47] [0.63]∗

Fin. Cond. Index 2.14 -0.24 1.24
[0.94]∗∗ [0.46] [1.02]

Risk-free rate 6.38 -1.61 -4.68
[1.87]∗∗∗ [2.27] [6.41]

Const. -0.06 0.07 -0.16
[0.13] [0.15] [0.13]

Adj. R2 0.765 0.232 0.451
N. obs 76 76 44

Notes: *** significant at 1%, ** significant at 5%, *significant at 10%. Newey-West standard errors
with 4-quarter truncation shown in brackets. Dependent and independent variables in 4-quarter changes.
Time-series dependence of rolling 600 day estimates of the degree of aversion to model uncertainty Ω on
risk indicators. Ω is estimated using the procedure of Section 5 with a Model Confidence Level of 80%.
For the spot market for gold, Ω is estimated using a one day risk-free bond and a one day forward as the
basis assets. For S&P 500, “S&P only” refers to Ω estimated using a one day risk-free bond and a one day
forward on the S&P 500 as the basis assets; “S&P/VIX” refers to Ω estimated using additionally the daily
return on a synthetic variance swap as a third basis asset. The absolute value of the Sharpe ratio |SR|
and the spot price are market-specific. TED is the spread between the interest-rate on interbank loans
and the risk-free rate. Fin. Cond. Index is the Federal Reserve Bank of Chicago Financial Conditions
Index. All data are from Bloomberg.
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A Proofs of propositions

Proofs of Propositions 3 and 4. See after the proof of Proposition 5.

Proof of Proposition 5.
Introducing Lagrange multipliers α, βs ≥ 0 and $s ≥ 0, for each state s, on the set of constraints
Ξ, the minimization in problem (5) becomes:

J (V) = max
$s≥0,βs≥0,α

{min
ξs
{
S∑
s=1

πs [F (ξs)U (Vs) + α(ξs − 1)− βsF (ξs)−$sξs]}}. (A.1)

The first-order condition from taking partial derivatives with respect to ξs in each state s implies:

α−$s = (βs − U (Vs)) Ω (Ψ− log ξs) . (A.2)

From (A.2), we can solve for ξs. If U (Vs) is the same in every state s and/or Ψ = 0, then the only
solution is $s = βs = 0, ξs = 1. Consider now opposing cases. We conjecture that the constraint
ξs > 0 is not binding which means one could set $s = 0 ∀s (we check this later). We need βs ≥ 0
and F (ξs) ≥ 0 for all s. If F (ξs) > 0, then βs = 0 and we can solve for ξs from (A.2), whereas if
F (ξs) = 0 (which, since ξs > 0, means ξs = ξmax), then βs > 0 but this implies that βs must be
such that (A.2) holds. This enables us to solve for ξs and βs as in the statement of the proposition,
in terms of which η ≡ α/ΩΨ = α/ (1− Ω) for Ψ < 0. (If Ψ = 0, then Ω = 1 and the maximization
over η is irrelevant). With these values of ξs, the constraint ξs > 0 is automatically satisfied and
hence $s ≡ 0 as conjectured.

Substituting from (A.2) implies (A.1) can be re-written in the form of (8). Equation (8), with ξs
and βs substituted, can be solved numerically by choice of η. To see what values of η are possible,
note that since Ψ ≤ 0, for ξs ≥ 1, (Ψ− log ξs) cannot be strictly positive (and must be strictly
negative if Ψ < 0). Since EP[ξ] = 1, ξs must be greater than or equal to 1 in at least one of the
S possible states. Hence, α must be less than or equal to zero (this is implied by the expression
for ξs if 1 ≤ ξs < ξmax and by the expression for βs if ξs = ξmax). Hence, η ≥ 0. Actually, we can
strengthen this result. Since ξs must be less than or equal to one in at least one state, 1 + η/U (Vs)
must be greater than or equal to zero in at least one state. Hence, η must be less than or equal to
−U (Vs) for at least one state s - giving an upper bound. A similar argument gives a lower bound
and hence (10). The requirement that α ≤ 0, η ≥ 0 implies (from (A.2)) ξs ≥ exp (Ψ) which, since
F (ξs) ≥ 0, implies that ξs ≤ ξmax.

For future reference, note that F (ξs) is decreasing in ξs in the range [exp (Ψ) , ξmax], with a
minimum value of F (ξmax) = 0 and a maximum value of F (exp (Ψ)) = Ω exp (Ψ).

Proof of Proposition 3.
The proof is a direct consequence of Theorem 26 of Cerreia-Vioglio et al. [2011]. In order to invoke
this theorem, from which all the properties in the proposition would follow, we need to show that
the following property holds:

We can express J (V) in the form J (V) = infω∈N EP[ωU (V )]/c2 (ω) where U (V ) ≤ 0, ω is a
non-negative change of measure (so EP[ω] = 1) belonging to a set N and c2 (ω) is convex and lower
semicontinuous with minω∈N c2 (ω) = 1.

Our formulation is parameterized by ξ and takes the form:

J (V) ≡ inf
ξ∈Ξ

{
EP[F (ξ)U (V )]

}
= inf

ξ∈Ξ

{
EP
[(
F (ξ) /EP[F (ξ)]

)
U (V )

]
EP[F (ξ)]

}
.
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Thus, we need to show that we can parameterize our formulation in terms of ω ≡ F (ξ) /EP[F (ξ)]
and that c2 (ω) = 1/EP[F (ω)] with the requisite properties.

The definition of F (ξ) ≡ ξ (1− Ω log ξ) implies that, for ξ ∈ [exp (Ψ) , ξmax], it is non-negative,
concave and monotonic decreasing in ξ and that (by Jensen’s inequality) EP[F (ξ)] ≤ 1. The
inverse function ξ (F ) is well-defined (for F ∈ [0,Ω exp (Ψ)]), positive, concave and monotonic
decreasing in F . Feasible ω ∈ N are characterized: ω = F/EP[F ] subject to the restriction on F
that EP[ξ (F )] = 1. Consider now the convexity of c2 (ω) = 1/EP[F (ω)]. Notice first that there
is a one-to-one mapping between ω and ξ. For any given ω, F must be proportional to ω. The
constraint EP[ξ (F )] = 1 together with the monotonicity of ξ (F ) ensure that there is a unique
constant of proportionality, and ξ (F ) itself then completes the mapping. Given ωi = Fi/EP[Fi]
(with EP[ξ (Fi)] = 1), for i = 1, 2, for any θ ∈ (0, 1), we form:

ωθ ≡ θω1 + (1− θ)ω2 =
θEP[F2]F1 + (1− θ)EP[F1]F2

EP[F1]EP[F2]
.

Suppose we form the weighted average Gθ:

Gθ =
θEP[F2]F1 + (1− θ)EP[F1]F2

θEP[F2] + (1− θ)EP[F1]

= φF1 + (1− φ)F2, where 0 < φ ≡ θEP[F2]

θEP[F2] + (1− θ)EP[F1]
< 1.

We can write ωθ as ωθ = Fθ/EP[Fθ] (with EP[ξ (Fθ)] = 1) and Fθ = λGθ for some λ > 0. Then

EP[ξ (Gθ)] = EP[ξ (φF1 + (1− φ)F2)]

≥ φEP[ξ (F1)] + (1− φ)EP[ξ (F2)] (since ξ (F ) is concave)

= φ+ (1− φ) = 1.

In order to satisfy EP[ξ (Fθ)] = 1 we must therefore have λ ≥ 1 (since ξ (F ) is monotonic decreasing).
Finally, we calculate:

EP[Fθ] = EP[λGθ] ≥ EP[Gθ] = φEP[F1] + (1− φ)EP[F2]

=
EP[F1]EP[F2]

θEP[F2] + (1− θ)EP[F1]
, which rearranges as:

1

EP[Fθ]
≤ θ

EP[F1]
+

1− θ
EP[F2]

.

Thus, c2 (ω) = 1/EP[F (ω)] is convex in ω. It is finite and continuous (the latter by Rockafellar
[1970], Corollary 10.1.1), hence, a fortiori, also lower semicontinuous. Finally, minω∈N c2 (ω) = 1,
since EP[F (ω)] ≤ 1, with equality when ω = 1.

Proof21 of Proposition 4.
1: This is immediate from the definition of infimum, since ξs ≡ 1 is always feasible and F (1) = 1.
2: This follows since Ω = 1 implies ξs ≡ 1 in all states s by Proposition 5 and F (1) = 1.
3: The proof of the degenerate case is clear from Proposition 5. Examining (8), it is sufficient
to show that the expression in square brackets is decreasing in Ω for any fixed η. That expres-
sion is, after some algebra, UMU

1 (Ω) ≡ G (ξ)U (V ) for Ω < Ωcrit (corresponding to β = 0) and

21We are greatly indebted to Volker Bosserhoff for assistance in proving this proposition.
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UMU
2 (Ω) ≡ η (exp (1/Ω)− 1) (1− Ω) for Ω ≥ Ωcrit (corresponding to β > 0) where Ωcrit solves

exp
(
1/Ωcrit

)
= exp

(
(1 + (η/U))

((
1/Ωcrit

)
− 1
))

i.e. Ωcrit = 1/ (1 + U/η). One can easily confirm
that UMU

1

(
Ωcrit

)
= UMU

2

(
Ωcrit

)
i.e. that the expression in square brackets in (8) is continuous

across Ω = Ωcrit. So it is sufficient to show that (A) UMU
1 (Ω) is decreasing for 1 < Ω < Ωcrit and

(B) UMU
2 (Ω) is decreasing for Ω ≥ Ωcrit.

For case (A), we use the following lemma: For any b1 and b2 satisfying b2 < b1 < 0 and any a,
exp (ab2)−ab2−1 ≥ exp (ab1)−ab1−1, with equality only if a = 0. Consider Ωb > Ωs > 1 and define
Ψb ≡ (1/Ωb)−1, Ψs ≡ (1/Ωs)−1. The lemma implies exp (aΨb)−aΨb−1 ≥ exp (aΨs)−aΨs−1⇒
(1 + Ωb (exp (aΨb)− aΨb − 1))U ≤ (1 + Ωs (exp (aΨs)− aΨs − 1))U with equality only if a = 0.
Now set a = 1 + η/U and case A is proven.

Case (B) is proven by taking derivatives of UMU
2 (Ω).

4: (a): From Proposition 6 of Cerreia-Vioglio et al. [2011]. (b): In contrast to Hansen and Sargent
[2008], for example, the set of alternative models is governed, not by ξ, but by ω ∈ N defined
in the proof of Proposition 3. In the degenerate case of U (V ) being constant across all states s
or if Ω = 1, we have ξ ≡ 1, F (ξ) ≡ 1, ω ≡ F (ξ) /EP[F (ξ)] ≡ 1 and only the reference model
P is considered. Consider now opposing cases. The range of F (ξ) is [0,Ω exp (Ψ)]. The investor
considers a larger set of alternative models, as Ω increases, if the range of ω increases. This is
true if Ω exp (Ψ) /EP[F (ξ)] = Ω exp (Ψ) /

(
1− ΩEP[ξ log ξ]

)
increases, with increasing Ω. But the

derivative of this expression is Ω exp (Ψ)
(
Ω− EP[F (ξ)]

)
/
(
ΩEP[F (ξ)]2

)
which is always positive

since EP[F (ξ)] = 1− ΩEP[ξ log ξ] ≤ 1.
5: For any feasible ξ ∈ Ξ, EP[F (ξ)U (V )] is finite, non-positive, non-decreasing, concave and con-
tinuous (as the non-negative weighted sum of the same). Since this is true for any feasible ξ ∈ Ξ,
it is also true for the infimum and hence for J (V) (where we have also used Rockafellar [1970],
Corollary 10.1.1, for the proof of continuity).

Proof of Proposition 6.
For simplicity, within this proof, we interpret V0 as forward initial wealth and normalize EP[m] = 1
- but this is, essentially, without loss of generality. We can write the left-hand side of equation (11)
as supV

{
infξ∈Ξ

{
EP[F (ξ)U (V )]

}
such that EP[mV ] = V0

}
=

infξ∈Ξ

{
supV

{
EP[F (ξ)U (V )] such that EP[mV ] = V0

}}
, because the objective function is con-

cave in V , convex in ξ, continuous, and only takes finite values, both the domains of maximization
and minimization are closed and convex and the domain of minimization is bounded. So the con-
ditions of Rockafellar [1970], Corollary 37.3.2, are fulfilled which justifies the exchange of inf and
sup. Consider the inner sup, over V , for any feasible ξ ∈ Ξ. We introduce a Lagrange multiplier λ
and re-express it in the form: supV {EP[F (ξ)U (V ) − λ (mV − V0)]}. Differentiating with respect
to V gives the first order condition: F (ξ)U

′
(V ) = λm, or m ∝ F (ξ)U

′
(V ).

For the special case of U (V ) = −β
(
max

(
V − V, 0

))2
, we have 2F (ξ)β

(
V − V

)
= λm. The

constraint EP[mV ] = V0 then implies: V0 = EP[m]V − λ
2β
EP[ m

2

F (ξ) ]. Hence, solving for λ, we find

λ = 2β
(
V − V0

)
/EP[ m

2

F (ξ) ]. Substituting for V , supV {EP[F (ξ)U (V )]}, subject to the constraint

EP[mV ] = V0, is

sup
V
{EP[F (ξ)U (V )} = EP[−F (ξ)β

1

4

λ2

β
2

m2

(F (ξ))2 ] = −β
(
V − V0

)2
EP[ m

2

F (ξ) ]
, whence

inf
ξ∈Ξ

{
sup
V
{EP[F (ξ)U (V )}

}
= inf

ξ∈Ξ

{
−β
(
V − V0

)2
EP[ m

2

F (ξ) ]

}
= −β

(
V − V0

)2
infξ∈Ξ

{
EP[ m

2

F (ξ) ]
} . (A.3)
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Setting (A.3) equal to −β
(
V − (V0 + CE)

)2
, we solve for CE as in (12).

As a final observation, we note that the expression m ∝ F (ξ)U
′
(V ) implies that we should

read m2

F (ξ) , in (A.3) and in equations (12) to (18), with the formal convention 1/0 =∞ and 0/0 = 0.

Proof of Proposition 8. See after the proof of Proposition 10.

Proof of Proposition 9.
We focus on C (C is similar and omitted). Introducing Lagrange multipliers δ > 0, w (a Nb -
dimensional vector), α, βs ≥ 0 and $s ≥ 0, for each state s, we can re-express (15) as:

C = max
$s≥0,βs≥0,α

{min
ξs
{max
δ>0,w

{min
ms≥0

{
S∑
s=1

πs[mscs −w
′
(msxs − p) +

1

2
δ

(
m2
s

F (ξs)
− Γ

)
]}}

+
S∑
s=1

πs[
1

2
α (ξs − 1)− 1

2
δβsF (ξs)−

1

2
$sξs]}}. (A.4)

The first-order condition obtained by taking partial derivatives with respect to ms in each state s
and, if necessary, enforcing the condition ms ≥ 0 (we say if necessary because this constraint may
or may not bind) implies the expression for ms (we have anticipated the corresponding form for the
upper good deal bound and introduced 1L/U accordingly). Substituting for ms and interchanging
the orders of max and min (justified by Rockafellar [1970], Corollary 37.3.2), we get:

C = max
δ>0,w

{ max
$s≥0,βs≥0,α

{min
ξs
{w′p− 1

2
δΓ +

S∑
s=1

πs[−
1

2
δF (ξs)Zs

(
1L/U ,w, 1, δ

)
+

1

2
α (ξs − 1)− 1

2
δβsF (ξs)−

1

2
$sξs]}}}. (A.5)

The first-order condition from taking partial derivatives with respect to ξs in each state s implies:

α−$s = δ
(
Zs
(
1L/U ,w, 1, δ

)
+ βs

)
Ω (Ψ− log ξs) . (A.6)

The rest of the proof is similar to that of Proposition 5 - in fact, the solution can almost be
read off (identifying Zs

(
1L/U ,w, 1, δ

)
here with −U (V ) there). As in Proposition 5, $s = 0 and

we identify η ≡ α/ (δΩΨ).

Equation (23) (similarly, (24)) is derived by taking a step back to (A.5), removing the Lagrange
multipliers α, βs and $s and then rearranging.

Proof of Proposition 10.
Introducing Lagrange multipliers v (a Nb - dimensional vector), µ, α, βs ≥ 0 and $s ≥ 0, for each
state s, problem (26) is equivalent to:

max
$s≥0,βs≥0,α

{min
ξs
{max
µ,v
{min
ms≥0

{
S∑
s=1

πs[
m2
s

F (ξs)
+ 2µ

(
mscs − CArb

(
1L/U

))
− 2v

′
(msxs − p)]}}+

S∑
s=1

πs[α (ξs − 1)− βsF (ξs)−$sξs]}}. (A.7)

The rest of the proof is similar to that of Proposition 5 (identifying Zs (1,v, µ, 1) here with −U (V )
there) and Proposition 9. Again, $s = 0 and we identify η ≡ α/ (ΩΨ).
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Proof of Proposition 8.
Equations (14) and (15) are completely equivalent to each other (likewise (16) and (17)) since their
Lagrangian duals are identical. Hence, to prove the proposition, we show that Definition 7 implies
equations (15) and (17) and that (15) and (17) imply the equations for C and C in Definition 7.

Proof that Definition 7 implies equations (15) and (17):
We focus on C (C is similar and omitted) and consider two cases: Case (1) when the constraint

maxµ>0,v

{
2v
′
p− 2µC + infξ∈Ξ

{
EP[F (ξ) ŨTQ

(
µc− v

′
x
)

]
}}
≤ Γ binds and case (2) when the

constraint is slack. In case (1), we conjecture that the constraint C ∈ NA is not binding (we check
this later by showing that the pricing kernel is non-negative), then Definition 7 implies equations
(23) and (24). The first-order conditions from differentiating with respect to v and µ imply p =

EP[F (ξ) max
(
−
(
µc− v

′
x
)
, 0
)
x] and C = EP[F (ξ) max

(
−
(
µc− v

′
x
)
, 0
)
c] respectively. This

means we can write the pricing kernel as m = F (ξ) max
(
−
(
µc− v

′
x
)
, 0
)

. This is the same

as that in Proposition 9 and is clearly non-negative and therefore (by Cochrane [2005], chapter
4) implies the absence of arbitrage. This confirms that the constraint C ∈ NA is automatically
satisfied. It also shows that the constraints EP[mx] = p and m ≥ 0 in equation (15) are satisfied.
Reversing the logic of Proposition 9 shows equation (15) is satisfied. In case (2), C is the minimum
lower bound in the set NA i.e. C is the minimum lower bound consistent with the absence of
arbitrage and is therefore given by (25). Putting the two cases together implies (15) (and (17)).

Proof that equations (15) and (17) imply the equations for C and C in Definition 7:
By Propositions 9 and 10, equations (15) and (17) imply equations (23), (24) and (28). Note that
the maximization over µ in equation (28) can be replaced by one over µ1L/U > 0 because for the
lower bound for which 1L/U = 1 (respectively, upper bound for which 1L/U = −1), the constraint

CArb

(
1L/U

)
= EP[mc] could be weakened to CArb (1) ≥ EP[mc] implying µ > 0 (respectively,

weakened to CArb (−1) ≤ EP[mc] implying µ < 0), without loss of generality. Now rearranging
equations (23), (24) and (28) implies the equations for C and C in Definition 7.

Proof of Proposition 11.
Part (a): Note that ξs ≡ 1, for each state s, (corresponding to that which would obtain in the
absence of model uncertainty) is feasible (i.e. an element of the set Ξ). In view of (15) and (17),
the result now follows from the definition of infimum and supremum. Part (b): The statement

concerning Γ is obvious from (15) and (17) (since increasing Γ weakens the constraint on EP
[
m2

F (ξ)

]
)

while that concerning Ω is proven in the same way as part (3) of Proposition 4.
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Internet appendix

B Exponential and CRRA utility functions

In this appendix, we detail the analysis of good deal bounds for the cases of exponential and CRRA
utility functions (as opposed to the (truncated) quadratic utility function case).

The extension of Proposition 6 is stated in the following proposition whose proof follows Propo-
sition 6 and section 2 of Černý [2003].

Proposition B.1 (a) For the case of exponential utility, U (V ) = −β exp (−BV ), with constant
absolute risk aversion B > 0, the certainty equivalent CE is

CE =
1

CARA (U (V0))
inf
ξ∈Ξ

{
EP
[
m log

(
m

F (ξ)

)]}
, and furthermore

CE ≤ Λ⇐⇒ inf
ξ∈Ξ

{
EP
[
m log

(
m

F (ξ)

)]}
≤ CARA (U (V0)) Λ. (B.1)

(b) For the case of constant relative risk aversion (CRRA) utility with CRRA coefficient γ > 1,

U (V ) = β V
1−γ

1−γ , the certainty equivalent CE is

CE = V0

(
inf
ξ∈Ξ

{
EP

[
m

(
m

F (ξ)

)−1
γ

]}) γ
1−γ

− V0, and furthermore

CE ≤ Λ⇐⇒ inf
ξ∈Ξ

{
EP

[
m

(
m

F (ξ)

)−1
γ

]}
≤
(

1 + CARA(U (V0))
Λ

γ

) 1
γ
−1

. (B.2)

The constraint infξ∈Ξ

{
EP
[
m2

F (ξ)

]}
≤ Γ in equations (14) and (16) is replaced by

infξ∈Ξ

{
EP
[
m log

(
m
F (ξ)

)]}
≤ Γ or by infξ∈Ξ

{
EP
[
m
(

m
F (ξ)

)−1
γ

]}
≤ Γ.

Similarly to the dual utility function ŨTQ(V ), define the dual utility functions ŨE (V ) ≡
− exp (−V − 1) and ŨCRRA (V ) ≡ −(max(−V, 0))1−γ/(γ(1 − 1/γ)1−γ) and similarly to (19) and
(20), define Y E

s

(
1L/U ,w, ϕ, δ

)
, ZEs

(
1L/U ,w, ϕ, δ

)
and Y CRRA

s

(
1L/U ,w, ϕ, δ

)
, ZCRRA

s

(
1L/U ,w, ϕ, δ

)
for exponential and CRRA utility, respectively, as

Y E
s

(
1L/U ,w, ϕ, δ

)
≡ exp

((
−1L/U

(ϕcs −w
′
xs)

δ

)
− 1

)
,

ZEs
(
1L/U ,w, ϕ, δ

)
≡ Y E

s

(
1L/U ,w, ϕ, δ

)
= −ŨE

(
1L/U

(ϕcs −w
′
xs)

δ

)
,

Y CRRA
s

(
1L/U ,w, ϕ, δ

)
≡ 1

(1− 1/γ)−γ

(
max

[
−1L/U

(ϕcs −w
′
xs)

δ
, 0

])−γ
,

ZCRRA
s

(
1L/U ,w, ϕ, δ

)
≡ −ŨCRRA

(
1L/U

(ϕcs −w
′
xs)

δ

)
.

52



Notice that ŨTQ, ŨE and ŨCRRA and the loss functions Z, ZE and ZCRRA inherit the structure
of the utility function used to derive the restriction on the pricing kernel while Y , Y E and Y CRRA

take the form of the first derivative of the respective dual utility function.

Definition 7, Propositions 9 and 10, and more specifically equations (21) to (35), hold in their
entirety provided: Y , Z and ŨTQ are replaced by Y E , ZE and ŨE or by Y CRRA, ZCRRA and
ŨCRRA, respectively and the factors 1/2 and 2 are replaced by 1.

So as examples, for exponential utility, the analogs of (21) and (33), respectively, read

C = max
δ>0,w

{
w
′
p− δΓ + max

η

{
S∑
s=1

πs
[
−δG (ξs)

(
ZEs
(
1L/U ,w, 1, δ

)
+ βs

)]}}
,

Γ?NoMU ≡ max
v

{
v
′
p +

S∑
s=1

πs
[
−
(
ZEs (1,v, 0, 1)

)]}
.

The latter means that the estimate of Ω and the choice of Γ also depend upon the choice of utility
function. In choosing Γ, the same alternatives are available but there is a particularly simple way
for the exponential utility case via the choice of an annualized exponential (Hodges [1998]) Sharpe
ratio hEAnn because then (36) holds exactly, for an arbitrary time period ∆t years - indeed Hodges
[1998] takes that to be the definition of hEAnn. Hence, we can set Γ = 1

2h
E 2
Ann∆t. Furthermore, for

normally distributed returns and in the limit of small time periods, Hodges [1998] and Černý [2003]
show that the exponential Sharpe ratio hEAnn and the (standard) Sharpe ratio hAnn coincide.

We now state some general properties of the good deal bounds, all of which are equally applicable
to good deal bounds constructed from restrictions on the pricing kernel in (13), (B.1) or (B.2).

For the following, let u denote an arbitrary Nb - dimensional vector.

Proposition B.2 Let λ be a non-negative constant. If the lower and upper good deal bounds for a
focus payoff c are C and C, respectively, with corresponding optimal hedges w and w, then the lower
and upper good deal bounds for a focus payoff λc + u

′
x are λC + u

′
p and λC + u

′
p, respectively,

with corresponding optimal hedges λw + u and λw + u.

Corollary B.3 Consider a focus payoff of the form u
′
x. Then the lower and upper good deal

bounds coincide and are both equal to u
′
p, and the optimal hedges are u.

Thus, the good deal bounds satisfy linearity with respect to adding portfolios of basis assets and
homogeneity with respect to positive multiples of the focus asset payoff. Furthermore, as shown in
Corollary B.3, redundant assets are priced exactly at their replication cost. Proposition B.4 shows
that the good deal bounds also satisfy dominance and portfolio diversification properties.

Proposition B.4 Consider two focus assets, A and B, with payoffs cA and cB, with lower and

upper good deal bounds CA, C
A

, CB and C
B

(computed using the same basis assets).

(1) If cAs ≤ cBs for each and every state s, then CA ≤ CB and C
A ≤ CB.

(2) Let λA and λB be non-negative constants. The lower CP and upper C
P

good deal bounds on

the payoff P ≡ λA cA + λB cB satisfy λACA + λB CB ≤ CP ≤ C
P ≤ λAC

A
+ λB C

B
.

These propositions are easily proven by substituting into (21), (22) and (27).
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Table C.1: Degree of aversion to model uncertainty
Length of data-set 20 40 100 200 500 1000 2000 4000 8000

Value of Ω 3.65 2.81 2.31 2.02 1.77 1.61 1.49 1.40 1.32

Notes: Degree of aversion to model uncertainty Ω as a function of the number of simulated historical
observations. Ω is estimated using the procedure in Section 5, with 65000 bootstrapped samples, setting
the Model Confidence Level to 80%. The basis assets are a risk-free and a defaultable bond.

Table C.2: Good deal bounds on Arrow-Debreu securities
Fgood

Ω 1 1.32 1.49 1.77 2.31 3.65 4 8
C 0.7364 0.7334 0.7308 0.7259 0.7162 0.6937 0.6882 0.6667?

C 0.7893 0.7917 0.7940 0.7986 0.8086 0.8331 0.8333? 0.8333?

Fpoor

Ω 1 1.32 1.49 1.77 2.31 3.65 4 8
C 0.0882 0.0832 0.0787 0.0694 0.0495 0.0000? 0.0000? 0.0000?

C 0.1939 0.1998 0.2050 0.2148 0.2343 0.2793 0.2903 0.3333?

Fdisaster

Ω 1 1.32 1.49 1.77 2.31 3.65 4 8
C 0.0697 0.0668 0.0642 0.0593 0.0495 0.0270 0.0215 0.0000?

C 0.1226 0.1251 0.1273 0.1319 0.1419 0.1664 0.1667? 0.1667?

Notes: The lower C and upper C good deal bounds as a function of Ω. ? means the good deal bound
equals the relevant arbitrage bound.

C Defaultable bond and Arrow-Debreu securities

In this appendix, we provide a further numerical example. Consider an economy with two basis
assets, a defaultable bond and a risk-free bond. At time 1, there are three possible states of the
world, labeled “good”, “poor” and “disaster”. The defaultable bond has a time 0 price of 1 and a
payoff at time 1 equal to 1.2, 0.6 and 0 in states “good”, “poor” and “disaster” respectively. The
“poor” and “disaster” states are states in which the issuer of the defaultable bond defaults and the
holder of the bond receives either 60% (partial recovery) or 0% (zero recovery) of the time 0 price.
The risk-free bond has a time 0 price of 1 and a payoff at time 1 equal to 1 in all three states.

To illustrate our theoretical analysis, we simulate a data-set with 2000 data points. The default-
able bond pays 1.2, 0.6 and 0 on 1700, 200 and 100 dates in the sample, respectively. Hence, the
probability, under P, of states “good”, “poor” and “disaster” occurring are set at 0.85, 0.1 and 0.05
respectively. Given the simulated historical data-set, we use the bootstrap procedure (with 65000
samples) of Section 5 to estimate Ω and, for a Model Confidence Level of 80%, we find Ω = 1.49.
In Table C.1, we report also the estimate of Ω for simulated data-sets with different numbers of
data points, keeping the same probabilities of the three states. We see that as the length of the
simulated data-set decreases, the estimate of Ω increases, implying greater model uncertainty.

We consider three Arrow-Debreu securities as the focus assets. In particular, Arrow-Debreu
security Fj , for j ∈ {good, poor, disaster} pays one dollar if state j is realized. Notice that Fdisaster

is a catastrophe insurance contract. It is straightforward to verify (or by solving (25)) that the
lower and upper arbitrage bounds for the three focus assets are 2/3, 5/6 (Fgood), 0, 1/3 (Fpoor) and

54



Table C.3: Optimal hedging portfolios for Fdisaster

Ω 1 1.25 1.5 1.75 2 4 8

C 0.0697 0.0678 0.0640 0.0596 0.0551 0.0215 0.0000?

w1 -1.1055 -1.0646 -0.9958 -0.9371 -0.8949 -0.8010 0
w2 1.8624 1.7992 1.6972 1.6168 1.5668 1.6011 0

C 0.1226 0.1242 0.1275 0.1316 0.1361 0.1667? 0.1667?

w1 -0.0483 -0.0730 -0.1070 -0.1302 -0.1454 -0.8333 -0.8333
w2 -0.5163 -0.4804 -0.4377 -0.4191 -0.4175 1 1

Ω 5 5.4 5.45 5.46 5.46125 5.4625 5.46375 5.465

C 0.00655 0.00088 0.00019 0.00005 0.00003 0.00001 0.00000? 0.00000?

w1 -0.7875 -0.7832 -0.7827 -0.7826 -0.7826 -0.7826 0.0000 0.0000
w2 1.6799 1.7133 1.7175 1.7184 1.7185 1.7186 0.0000 0.0000

Notes: The optimal hedging position in the risk-free (w1) and the defaultable (w2) bond for the lower
good deal bound C as a function of Ω. ? means the good deal bound equals the relevant arbitrage bound.

0, 1/6 (Fdisaster). We set the Sharpe ratio bound hAnn equal to 1/3. In Table C.2, we report the
lower C and upper C good deal bounds for different values of Ω. Note that Ω = 1 is the no model
uncertainty case. As Ω increases, the good deal bounds widen and the values of C and C get closer
to the lower and upper arbitrage bounds and, for Ω = 8, the good deal bounds equal the arbitrage
bounds.

Consider now the catastrophe insurance contract, Fdisaster, in detail. In Table C.3 (upper panel),
we report the lower C and upper C good deal bounds for different values of Ω, as well as the optimal
hedging positions (denoted w1 and w2 for the defaultable bond and risk-free bond respectively).

The constraint EP
[
m2

F (ξ)

]
≤ Γ is slack when Ω = 8 for the lower bound and when Ω ∈ {4, 8} for

the upper bound. For these values of Ω, the good deal bounds correspond to the arbitrage bounds.
The positions in the defaultable bond and risk-free bond respectively (computed from (29)) which
enforce the lower and upper arbitrage bounds are 0, 0 and −5/6, 1.22 We see that, as the value of
Ω changes, the optimal hedges w1 and w2 change significantly.

In Table C.3 (lower panel), we focus just on C and consider a wider range of values of Ω in

order to see where the boundary lies between when the constraint EP
[
m2

F (ξ)

]
≤ Γ binds and when

it is slack. We see that the boundary lies at a value of Ω ≈ 5.463. Notice that, since the nature
of the good deal bounds is discontinuous, the optimal hedges are discontinuous across the critical
value of Ω ≈ 5.463.

D Asset pricing puzzles

As remarked in Section 3, our principle motivation for developing a new model uncertainty frame-
work is in order to develop a theory of No Good Deals which is analytically tractable. This entails

22That is, the upper arbitrage bound 1/6 can be enforced by sellng 5/6 units of the defaultable bond and
buying one unit of the risk-free bond which costs, at time 0, a price of 1− 5/6 = 1/6 dollar while the lower
arbitrage bound is enforced by zero position in each basis asset.
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that our framework differs from, for example, those of Hansen and Sargent [2008] and Maenhout
[2004] in important ways. First, while entropy plays an important role in their frameworks, it has
no role in ours. Instead, our framework derives its economic intuition from Propositions 3, 4 and
5 and from Cerreia-Vioglio et al. [2011]. Second, the set of alternative models is governed, not by
ξ, as in Hansen and Sargent [2008] and Maenhout [2004], but by ω ∈ N defined in the proof of
Proposition 3. Besides allowing for an analytically tractable theory of No Good Deals, our frame-
work also has the possible advantage of not suffering from a so-called breakdown point (Hansen
and Sargent [2008], p32). Given the differences, a pertinent question is whether our framework,
similarly to those of Hansen and Sargent [2008] and Maenhout [2004], can explain well-known asset
pricing puzzles. In the remainder of this appendix, we answer this question in the affirmative. In
summary, our model uncertainty framework seems to lose little or nothing in comparison to those
of Hansen and Sargent [2008] and Maenhout [2004] whilst allowing for a theory of No Good Deals,
in the presence of model uncertainty, which is tractable and economically intuitive.

D.1 Equity premium puzzle

In this appendix, we show that our model uncertainty framework, whilst differing from those of
Hansen and Sargent [2008], Barillas et al. [2009] and Maenhout [2004], is like theirs, potentially
able to explain the equity premium puzzle of Mehra and Prescott [1985].

We consider two one period economies - in the first economy, the representative agent has
no model uncertainty (quantities are denoted with a superscript NoMU) and has CRRA utility

U(c) = β c
1−γ

1−γ , γ > 1, β > 0, and, in the second economy, the representative agent seeks robustness
against model uncertainty but is otherwise identical. Mean consumption growth is denoted by µc
and the volatility of consumption growth is denoted by σc. Consumption, at time t, is denoted ct,
for t = 0, 1. We make three possible distributional assumptions concerning consumption growth.

LN: In the first (labeled LN), we assume consumption has a log-normal distribution so that

consumption c1 at time 1 has the form c1 = c0 exp
((
µc − 1

2σ
2
c

)
∆t+ σc

√
∆t ε

)
for ε distributed

N(0, 1). We then simulate from this distribution.

3S: In the second (labeled 3S), we assume consumption c1 at time 1 can take on one of three

values: c0 exp
(
µc∆t+ λσc

√
∆t
)

, c0 exp (µc∆t) or c0 exp
(
µc∆t− λσc

√
∆t
)

, where λ =
√

(3/2).

We compute the probabilities of the three states occuring by requiring that they sum to 1 and
match the mean µc and volatility σc.

Hist: In the third (labeled Hist), we use the annual U.S. consumption data for the period 1891-
1998 (a time period spanning 108 years) from Campbell [2003]. We assume that log-changes in
consumption from time 0 to time 1 take one of the 108 values actually observed, with probability,
under P, of 1/108. The advantage of this approach is that the (negative) skewness and fat tails in
the Campbell [2003] data-set are automatically captured.

We set ∆t = 1 (i.e. consider a time period of one year). The one period risk-free returns are
denoted RNoMU

f and Rf . There is a stock, with volatility σS , whose price is assumed (counterfac-
tually - but similarly to Maenhout [2004]) to be perfectly correlated with consumption. Its time 0

price is normalised to 1 and at time 1 it has a price equal to (c1/c0)(σS/σc).

Standard results (Cochrane [2005]) imply that, for the first economy

ERNoMU ≡ EP[RNoMU]−RNoMU
f = −RNoMU

f Cov (m,R) and RNoMU
f =

1

EP[m]
, (D.1)
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Table D.1: Excess returns and risk-free rates for different values of γ and Ω.
LN γ Ω σ(m) σ(F (ξ)m) rNoMU

f rf rNoMU
e re

2 2 6.22 7.77 3.52 3.44 1.33 1.66
2 8 6.22 25.23 3.52 2.57 1.33 5.26
2 16 6.22 49.04 3.52 1.40 1.33 9.79
5 2 15.00 20.86 7.64 7.03 3.26 4.52
5 8 15.00 76.77 7.64 1.19 3.26 14.32

3S γ Ω σ(m) σ(F (ξ)m) rNoMU
f rf rNoMU

e re
2 2 6.20 7.75 3.52 3.44 1.32 1.65
2 8 6.20 25.19 3.52 2.57 1.32 5.23
2 16 6.20 49.79 3.52 1.36 1.32 9.97
5 2 14.81 20.65 7.65 7.04 3.25 4.49
5 8 14.81 81.71 7.65 0.63 3.25 15.74

Hist γ Ω σ(m) σ(F (ξ)m) rNoMU
f rf rNoMU

e re
2 2 6.33 7.91 3.52 3.44 1.30 1.62
2 8 6.33 25.55 3.52 2.57 1.30 5.10
2 16 6.33 49.56 3.52 1.40 1.30 9.50
5 2 15.79 21.70 7.60 6.99 3.25 4.47
5 8 15.79 77.95 7.60 1.23 3.25 13.85

Notes: β is set to 0.9975. The first panel is for LN (log-normal) (using 250,000 simulations), the second
for 3S and the third is for Hist (historical).

where m ≡ β U
′
(c1)

U ′ (c0)
= β

(
c1
c0

)−γ
denotes the pricing kernel. For the second economy,

ER ≡ EP[R]−Rf = −RfCov (F (ξ)m,R) and Rf =
1

EP[F (ξ)m]
, (D.2)

where we have used results in Sections 3 and 4 and where ξ is the worst-case distortion given by
(7) so that F (ξ)m is the pricing kernel under model uncertainty. We define rNoMU

f , rf , rNoMU
e

and re to be the continuously-compounded returns equivalent to RNoMU
f , Rf , ERNoMU and ER

respectively: For example, rf = log(Rf ), re = log (1 + ER).

We use the following U.S. consumption data for 1891-1998 from Campbell [2003]:

µc = 1.789%, σc = 3.218%, σS = 18.599%.

Using (D.1) and (D.2), we compute the standard deviations of m and F (ξ)m, denoted σ(m) and
σ(F (ξ)m), as well as rNoMU

f , rf , rNoMU
e and re, all expressed as percentages, for different values of

γ and Ω and display the results in Table D.1, where we set β = 0.9975.

We see that the presence of model uncertainty lowers the risk-free rate, increases the excess
return on the stock and increases the standard deviation of the pricing kernel (thus raising the
Hansen and Jagannathan [1991] bound) relative to its absence. Further, these conclusions are
very robust to the three different distributional assumptions. Note also that, while γ and Ω both,
loosely speaking, quantify the representative agent’s aversion to risk or uncertainty, their effect on
the risk-free rate is very different: Raising γ significantly increases the risk-free rate while raising
Ω significantly decreases it.
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Table D.2: Estimates of Ω for different Model Confidence Levels (MCL).
MCL 80 80 80 93 93 93 94 94 94

Distribution LN 3S Hist LN 3S Hist LN 3S Hist
Ω 6.23 6.38 6.26 9.63 9.58 9.70 10.05 10.14 10.13

Notes: Estimates of the degree of aversion to model uncertainty Ω for three different Model Confidence
Levels (labeled MCL) - namely 80%, 93% and 94% - for the three different distributional assumptions
(LN, 3S and Hist) on annual U.S. consumption growth for the period 1891-1998. The results for LN
(log-normal) use 250,000 simulations.

For comparison with Table D.1, Campbell [2003] gives historical values for the U.S. for the
period 1891-1998 of rf = 2.020% and re = 7.169% - the latter being the excess return on the U.S.
equity market. We compute numerically the values of γ and Ω which match these historical values
(since the values in Table D.1 are quite close, we focus on the 3S case for simplicity) - now setting
β = 1 - and obtain

γ = 2.15, and Ω = 9.85. (D.3)

We observe that the value of the risk aversion parameter γ is not implausibly high - indeed
it is well within the range of 1 to 5 which is usually (Barillas et al. [2009], Maenhout [2004] or
chapter 21, Cochrane [2005]) considered reasonable. But what about the value of Ω? To estimate
Ω, we simulate consumption data consistent with the parameters in equation (D.3) for a time
period spanning 108 years, for each of the three distributional assumptions (LN, 3S and Hist). We
estimate Ω for three different Model Confidence Levels (labeled MCL) - namely 80%, 93% and 94%
- using the bootstrap procedure23 described in Section 5. The results are in Table D.2.

We see that the value of Ω = 9.85 in equation (D.3) estimated to match the historical values of
rf = 2.020% and re = 7.169% is consistent with Model Confidence Levels in the region of 93% or
94%. These Model Confidence Levels are high but not implausible and are, in fact, very close to
those reported in Barillas et al. [2009] (who find detection error probabilities of around 5%).

We recompute the quantities in Table D.1 with the values of Ω (6.23 for LN, 6.38 for 3S, 6.26
for Hist) corresponding to Model Confidence Levels of 80% as well as the value of Ω in equation
(D.3), setting β = 1 and γ = 2.15, and report the results in Table D.3.

We see that Model Confidence Levels of 80% allow us to approximately triple the Hansen and
Jagannathan [1991] bound σ(m)/EP[m] applicable in the absence of model uncertainty and takes
σ(F (ξ)m)/EP[F (ξ)m] to around two-thirds of the value required to match the historical excess
return of 7.169%. Hence, we find that, similarly to Barillas et al. [2009] and Maenhout [2004], model
uncertainty can potentially explain the equity premium puzzle of Mehra and Prescott [1985] - at
least in part and possibly in whole - without increasing the risk-free rate and without implausibly
high values of risk aversion γ.

The mechanism through which σ(F (ξ)m) is increased is displayed in Figure D.1. We use the
Hist distributional assumption and plot the consumption values (labeled c) after one year, scaled

23More precisely, there are no basis assets in this problem so the procedure can be simplified. Using
similar notation to (34) and (35), the procedure is as follows: For each bootstrapped sample, k = 1, . . . ,K,

we compute Γ?(k) ≡
∑S
s=1 π

(k)
s [U (c1,s)]. We sort the K values Γ?(k) into order and select the percentile,

Γ?MCL say, corresponding to the chosen Model Confidence Level. We then set Ω to be the value which solves

maxη

{∑S
s=1 πs [G (ξs) (U (c1,s)− βs)]

}
= Γ?MCL.
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Table D.3: Excess returns and risk-free rates for different values of Ω.

LN γ Ω σ(m) σ(F (ξ)m) rNoMU
f rf rNoMU

e re
2.15 6.23 6.70 22.42 3.50 2.68 1.43 4.69
2.15 9.85 6.70 35.09 3.50 2.02 1.43 7.20

3S γ Ω σ(m) σ(F (ξ)m) rNoMU
f rf rNoMU

e re
2.15 6.38 6.68 22.88 3.50 2.65 1.43 4.76
2.15 9.85 6.68 35.07 3.50 2.02 1.43 7.17

Hist γ Ω σ(m) σ(F (ξ)m) rNoMU
f rf rNoMU

e re
2.15 6.26 6.83 22.79 3.50 2.67 1.40 4.57
2.15 9.85 6.83 35.53 3.50 2.02 1.40 6.99

Notes: β is set to 1. The first panel is for LN (log-normal) (using 250,000 simulations), the second for
3S and the third is for Hist (historical).

to start at one, in increasing order. Thus, the left-hand most value corresponds to the more than
9% fall in U.S. consumption in 1932. We also display the pricing kernel for each of the 108 states
for the cases of {γ = 2.15,Ω = 1}, {γ = 5,Ω = 1} and {γ = 2.15,Ω = 6.26} and in addition, for the
final case, the value of F (ξ), corresponding to the worst-case distortion. We see that, for γ = 2.15,
introducing model uncertainty by increasing Ω from 1 to 6.26, significantly increases the pricing
kernel in the state corresponding to 1932. In fact, the price of an Arrow-Debreu security which
pays 100 dollars in that state (which could be interpreted as a catastrophe insurance contract or
as, roughly speaking, a credit derivative paying a fixed amount in the event of widespread defaults)
is increased from 100 × (1/108) × 1.2171 = 1.127 to 100 × (1/108) × 1.7894 = 1.657 dollars - an
increase of nearly 50%. The increase is much more than that which occurs by raising γ from 2.15
to 5, with Ω = 1. The large increase in the price of the Arrow-Debreu security or catastrophe
insurance contract, under model uncertainty, brings sharply into focus the losses suffered during
the 2008 financial crisis by, for example, AIG - who, in effect, were selling such contracts.

D.2 Variance and skewness risk premia

In this appendix, we build upon the analysis in Appendix D.1 and show that our model uncertainty
framework is potentially able to explain variance and skewness risk premia in equity index options.
Drechsler [2013] shows that model uncertainty can potentially explain variance risk premia but
doesn’t consider skewness risk premia. Kozhan, Neuberger, and Schneider [2011] show empirically
that variance risk premia and skew risk premia derive from exposure to the same underlying risk
factor in the sense that strategies designed to exploit one of the risk premia but to hedge out the
other make zero excess returns. Both Drechsler [2013] (using a model uncertainty framework very
similar to that of Hansen and Sargent [2008] - see also Liu et al. [2005]) and Kozhan et al. [2011]
(who do not consider model uncertainty) develop equilibrium models, with Epstein and Zin [1989]
preferences, which result in equity index or stock prices having dynamics which incorporate both
jumps and stochastic volatility correlated with stock prices. In this appendix, we show that our
model uncertainty framework is also potentially able to explain variance and skewness risk premia.
However, our analysis differs significantly from that of Drechsler [2013] and Kozhan et al. [2011] in
that (a) we do not need jumps or stochastic volatility in stock price dynamics, (b) we use CRRA
(power) utility and (c) we work in a discrete-time one period economy.
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Figure D.1: Pricing kernels under the Hist distributional assumption for different γ and Ω.

Notes: Pricing kernels under the Hist distributional assumption for different values of γ and Ω. For the
case {γ = 2.15,Ω = 6.26}, F (ξ), corresponding to the worst-case distortion, is also shown. The quantity
labeled c is U.S. consumption after one year, scaled to start at one, in increasing order for the period
1891-1998.

Our economic framework is identical to that in Appendix D.1. We consider two distibutional
assumptions, namely LN and Hist, for consumption growth. We use the value of γ estimated in
(D.3) and values of Ω corresponding to no model uncertainty, an 80% Model Confidence Level (6.23
for LN and 6.26 for Hist) and that in (D.3) (matching the Campbell [2003] data-set). We set β = 1.

We price stock options with a wide range of strikes and use these prices to compute the implied
log-contract variance and the implied entropy-contract variance using the methodology of Carr and
Wu [2009], Kozhan et al. [2011] and Britten-Jones and Neuberger [2000]. Kozhan et al. [2011] show
that the implied entropy-contract variance minus the implied log-contract variance is, essentially, a
model-independent measure of the slope of the implied volatility skew and hence a measure of the
implied risk-neutral skew.

The difference between implied log-contract variance IV and realised variance RV is the vari-
ance risk premium and Carr and Wu [2009], Kozhan et al. [2011] and Neuberger [2012] show
empirically that it is negative for equity index options. We consider two different measures of
the variance risk premium. The first is

√
IV −

√
RV while the second is LVRP ≡ log(IV/RV )

and expresses, in continuously-compounded form, the excess return to holding a variance swap
and receiving realised variance and paying implied. We use the annual data (since the Campbell
[2003] data-set is annual), for S&P 500 options spanning the time period from December 1997 to
September 2009, in Table 4 of Neuberger [2012] for comparison. The square root of the sample
mean realised variance reported in his Table 4 is

√
0.0475 ≈ 21.79%. We cannot hope to match

that since the stock volatility in the Campbell [2003] data-set is σS = 18.599% i.e. rather lower. So
we use

√
RV = 21.79% for the Neuberger [2012] data and

√
RV = 18.599% for our variance risk

premia calculations. Finally, we compute the skewness risk premium (labeled Skew rp) using the
methodology of Kozhan et al. [2011] and Neuberger [2012]. Our results are in Table D.4 where we
also report the Neuberger [2012] data for comparison.
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Table D.4: Comparisons of the variance risk premium, the skewness risk premium and the
slope of the implied volatility skew (labeled Slope) with Neuberger [2012].

LN Hist
Neuberger Ω 1 6.23 9.85 Ω 1 6.26 9.85√

IV −
√
RV % -1.66 -0.86 -1.13 -0.48 -0.49 -1.44 -1.37

LVRP % -14.66 -9.02 -11.78 -5.08 -5.24 -14.91 -14.26
Slope % -1.09 -0.23 -0.41 -0.47 -0.40 -0.70 -0.83

Skew rp % 0.34 0.21 0.39 0.45 0.33 0.63 0.76

Notes: γ = 2.15, β = 1. The results for LN (log-normal) use 250,000 simulations.

We see that, compared with the case Ω = 1, increasing Ω above 1 increases the variance risk
premium

√
IV −

√
RV , the log variance risk premium LVRP, the skewness risk premium and

the implied risk-neutral skew. In the absence of model uncertainty, the variance risk premium√
IV −

√
RV is around a quarter to a half that observed historically while the slope of the implied

volatility skew is around a fifth to a third of that observed historically. A value of Ω corresponding
to an 80% Model Confidence Level, increases

√
IV −

√
RV and LVRP to almost the levels observed

historically in Neuberger [2012] and approximately doubles the slope of the implied volatility skew.
The Hist distributional assumption is closer to the Neuberger [2012] historical values than LN.
Both distributional assumptions result in a skewness risk premium that is of the correct sign and
order of magnitude.

Thus, we see that our model uncertainty framework is potentially able to explain variance and
skewness risk premia in equity index options. We acknowledge, however, that Carr and Wu [2009],
Kozhan et al. [2011] and Neuberger [2012] show that there is an appreciable amount of time-series
variation in these risk premia which, of course, we are not able to match with our very simple
consumption dynamics. Nevertheless, using the same parameters which explain approximately
two-thirds of the equity premium puzzle, we can also explain approximately two-thirds of the slope
of the implied volatility skew and nearly all of the variance and skewness risk premia.

D.3 Limited participation in equity markets

In this appendix, we show that our model uncertainty framework, whilst differing from that of
Maenhout [2004], is like his (see also Cao et al. [2005]), potentially able to explain limited partic-
ipation in equity markets i.e. why investors, in practice, hold smaller portfolio fractions in risky
assets than classical (Merton [1971]) portfolio theory would suggest is optimal.

We consider a one period economy with a single risky asset and a one period risk-free bond.
The investor solves problem (11) in order to choose what fraction of her initial wealth 1 she should
invest in the risky asset. Matching the Campbell [2003] data-set used in Appendix D.1, we assume
that the risky asset has expected excess return re = 7.169%, volatility σS = 18.599% and that the
risk-free rate rf = 2.020%.

For illustration, we make two assumptions about the investor’s utility function U (V ): (I)
exponential with absolute risk aversion B for B ∈ {1, 2, 5} and (II) CRRA with CRRA coefficient
γ ∈ {2, 2.15, 5} (the middle value 2.15 being that estimated in equation (D.3)).

In order to establish appropriate values of Ω, we simulate risky asset returns consistent with
re = 7.169% and σS = 18.599% for a time period spanning 108 years. Similarly to Appendix D.1,
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Table D.5: Exponential utility: Fraction of investor’s initial wealth 1 invested in the risky
asset as a function of Ω and B.

LN 3S
Ω 1 1.86 5 9 1 2.08 5 9 re/Bσ

2
S

B
1 2.01 1.39 0.44 0.23 1.67 1.16 0.44 0.23 2.07
2 1.00 0.70 0.22 0.11 0.84 0.58 0.22 0.11 1.04
5 0.40 0.28 0.09 0.05 0.33 0.23 0.09 0.05 0.41

Notes: Exponential utility U (V ) = −β exp(−BV ).

Table D.6: CRRA utility: Fraction of investor’s initial wealth 1 invested in the risky asset
as a function of Ω and γ.

Ω 1 1.50 1.75 2.00 2.50 5 9
γ
2 0.85 0.79 0.75 0.70 0.61 0.35 0.20

2.15 0.79 0.73 0.69 0.64 0.56 0.31 0.18
5 0.34 0.31 0.28 0.26 0.21 0.11 0.06

Notes: CRRA utility U (V ) = β V
1−γ

1−γ .

we make two possible distributional assumptions about the price of the risky asset. In the first
(labeled LN), we assume it has a log-normal distribution, and in the second (labeled 3S), we assume
it can, starting at S0, take on one of the three values S0 exp(λσS

√
∆t), S0 or S0 exp(−λσS

√
∆t),

where λ =
√

(3/2) and ∆t = 1, with probabilities which match re and σS and sum to 1. We
then use the bootstrap procedure described in Section 5, with a Model Confidence Level of 80%,
to estimate Ω. We find, for the exponential case, values of Ω of 1.86 for LN and 2.08 for 3S. This
leads us to consider values of Ω ∈ {1, 1.86, 2.08, 5, 9} for the exponential case. For the CRRA utility
case, for brevity, we focus on the 3S distributional assumption and simply choose a range of values
of Ω. The results are reported in Tables D.5 and D.6. In Table D.5, we also, for comparison,
report the fraction of initial wealth given by re/Bσ

2
S which is applicable (p154, Cochrane [2005])

for exponential utility under the assumption of normally distributed risky asset returns.

Fractions of initial wealth greater than 1 indicate that the investor takes a leveraged position
in the risky asset financed by selling short the one period risk-free bond. We see that increasing
values of Ω leads to a smaller position in the risky asset and hence a correspondingly larger (or less
negative) position in the risk-free bond. These results are in line with those in Maenhout [2004]
and Uppal and Wang [2003] and are, of course, consistent with model uncertainty increasing the
investor’s effective risk aversion. For the exponential case, we see that a Model Confidence Level of
80% leads to estimates for Ω (1.86 and 2.08) which reduce the fraction of initial wealth invested in
the risky asset to about 70% of that in the absence of model uncertainty (corresponding to Ω = 1).

E The Heston [1993] lattice construction

In this appendix, we detail the construction of the Heston [1993] lattice. The lattice is a pyramid
with one dimension capturing the evolution of the instantaneous variance Vt and the other capturing
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the evolution of the fx rate St. It is essentially septanomial in each dimension (except on the edges of
the pyramid in the Vt dimension) which gives more degrees of freedom to approximate a continuous-
time stochastic volatility process compared with, say, trinomial branching. We denote by V0 the
time 0 instantaneous variance and by ∆t the time in years corresponding to one working day.

At each time-step t (t = 0, 1, . . . , 44) of the lattice, at node j, when the instantaneous variance
is Vt,j , the instantaneous variance can essentially change to Vt,j +λ1ζ

√
V0∆tZ1

t,j , for Z1
t,j an integer

satisfying −3 ≤ Z1
t,j ≤ 3 and λ1 =

√
(3/2)/2. However, the lattice is also pruned in the Vt

dimension, which means that the lattice is not grown further if Vt would either go below zero
or above 2V0. Hence, Z1

t,j is restricted to the range [Z1
t,min, Z

1
t,max] where −3 ≤ Z1

t,min ≤ 0, 0 ≤
Z1
t,max ≤ 3. The probabilities, under P, of transitions in the Vt dimension solve the linear program:

minπ
(
Z1
t,k = 0

)
such that

{
for each k = Z1

t,min, . . . , Z
1
t,max, π

(
Z1
t,k

)
≥ 0.005 and

Z1
t,max∑

k=Z1
t,min

π
(
Z1
t,k

)
= 1,

Z1
t,max∑

k=Z1
t,min

π(Z1
t,k)
(
Vt,j + λ1ζ

√
V0∆tZ1

t,k

)
= θ + (Vt,j − θ) e−κ∆t,

Z1
t,max∑

k=Z1
t,min

π
(
Z1
t,k

) (
Vt,j + λ1ζ

√
V0∆tZ1

t,k −
(
θ + (Vt,j − θ)e−κ∆t

))2
= ζ2V 2

t,j∆t
}
.

At each time-step t, at node ` in the spot dimension, when the the spot fx rate is St,`, it
can change to St,` exp(λ2

√
V0∆tZ2

t,k), for Z2
t,k an integer (indexing the 7 branching possibilities)

taking the values −3, . . . , 3 and λ2 =
√

(3/2)/2. The probabilities, under P, of transitions in the
St dimension solve the linear program:

minπ
(
Z2
t,k = 0

)
such that

{
for each k = −3, . . . , 3, π

(
Z2
t,k

)
≥ 0.005 and

3∑
k=−3

π
(
Z2
t,k

)
= 1,

3∑
k=−3

π
(
Z2
t,k

)
St,` exp

(
λ2

√
V0∆tZ2

t,k

)
= St,` e

(rd−rf+Υ
√
Vt,j)∆t,

3∑
k=−3

π
(
Z2
t,k

) (
λ2

√
V0∆tZ2

t,k

)2
= V 2

t,j∆t+

(
(rd − rf + Υ

√
Vt,j −

1

2
Vt,j)∆t

)2 }
.

The probabilities sum to one and match the conditional expectation and variance of Vt,j or the

conditional expectation of St,` and second moment of logSt,`. The objectives, minπ
(
Z1
t,k = 0

)
and minπ

(
Z2
t,k = 0

)
, are somewhat arbitrary choices and say that the linear programs minimise

the “stay-the-same” probabilities. The conditions π
(
Z1
t,k

)
≥ 0.005, π

(
Z2
t,k

)
≥ 0.005 force all the

probabilities to be strictly positive but the choice of 0.005 is, again, essentially arbitrary.

To see that this lattice can accurately approximate a Heston [1993] process, we compute the
risk-neutral price of the BCON option (meaning with Υ set to zero and the same values of κ, θ
and ζ and the same placements of lattice nodes) and get a price of 0.48296. The price of the same
option computed using the Fourier method of Heston [1993] is 0.48298 - a negligible difference.
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