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Abstract

We analyze the problem of constructing multiple mean-variance portfolios over in-
creasing investment horizons in continuous-time arbitrage-free stochastic interest rate
markets. The traditional one-period mean-variance optimization of Hansen and Richard
(1987) requires the replication of a risky payoff for each investment horizon. When many
maturities are considered, a large number of payoffs must be replicated, with an impact
on transaction costs. In this paper, we orthogonally decompose the whole processes
defined by asset returns to obtain a mean-variance frontier generated by the same two
securities across a multiplicity of horizons. Our risk-adjusted mean-variance frontier
rests on the martingale property of the returns discounted by the log-optimal portfolio
and features a time-consistency property. The outcome is that the replication of a sin-
gle risky payoff is required to implement such frontier at any investment horizon. As a
result, when transaction costs are taken into account, our risk-adjusted mean-variance
frontier may outperform the traditional mean-variance optimal strategies in terms of
Sharpe ratio. Realistic numerical examples show the improvements of our approach
in medium- or long-term cashflow management, when a sequence of target returns at
increasing investment horizons is considered.
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∗Università Bocconi, Milan (Italy), Department of Decision Sciences and IGIER:
simone.cerreia@unibocconi.it.
†Università Bocconi, Milan (Italy), Department of Finance and IGIER: fulvio.ortu@unibocconi.it.
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1 Motivations and main results

The mean-variance approach for asset returns first rigorously formalized by the seminal

work of Hansen and Richard (1987) is a cornerstone in the theory of portfolio allocation.

Nevertheless, the orthogonal decomposition of returns proposed therein allows the char-

acterization of the mean-variance frontier only at a single fixed time horizon T . Returns

that lie on the mean-variance frontier at T generally do not exhibit this desirable property

at any intermediate date t before T . Indeed, frontiers at different horizons are generated

by different securities: a risky security associated with the pricing kernel on the time win-

dow under consideration and a riskless asset. Moreover, relevant computational issues are

present: optimal portfolio weights are often unstable and sensitive to small changes in the

estimate of returns moments. The practical implementation can, then, lead to suboptimal

investments. See, e.g. Michaud (1989), Best and Grauer (1991) and DeMiguel, Garlappi,

and Uppal (2007).

These issues worsen in a multi-horizon allocation problem where a sequence of N matu-

rities, each associated with a target expected return, are considered. This kind of problem

is of utmost importance for insurance companies, pension funds and any financial inter-

mediary managing long-term multiple cashflows, such as annuities. We can consider, e.g.,

an investor that wants to meet N expected return targets at N subsequent horizons by

investing in N buy-and-hold portfolios which attain the targets with the minimum possible

variance each (the proper formalization is in Section 5). According to the standard mean-

variance approach, the investor should solve N different optimization problems that would

lead to N optimal portfolios requiring the replication of one different risky security each:

globally, the investor would need to replicate N risky assets. When transaction costs (in

particular, replication costs) are taken into account, the resulting portfolio allocation may

be inconvenient.

To tackle these issues, we propose a generalization of the traditional mean-variance

optimization by decomposing the whole return process of each traded security on the larger

time interval under consideration. We obtain a risk-adjusted mean-variance frontier which

is spanned by the same two securities (a risky one and a riskless one) at any time horizon.

This feature implies a drastic reduction of replication costs that can benefit multi-horizon

investment decisions. Considering again the multi-horizon problem above, according to

our risk-adjusted approach, the investor has to replicate only one risky security as all the

N built portfolios involve different units of the same assets. Comparing with the classical
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mean-variance approach, the loss in terms of standard deviation of risk-adjusted investment

strategies can be compensated by sizable savings on their implementation costs. Indeed,

after incorporating transaction costs in the analysis, risk-adjusted mean-variance portfolios

can display a higher Sharpe ratio than classical mean-variance portfolios. We illustrate

several examples in Section 5, in the contexts of fixed-income markets and life annuities.

To give a snapshot of our construction, we consider a continuous-time arbitrage-free

market with finite horizon T , stochastic interest rates and, possibly, a bunch of risky se-

curities. Pure discount bonds with any expiry are traded, too, as well as the log-optimal

portfolio (details in Subsection 2.1). All the results are presented in a conditional setting,

where we take into consideration two sources of randomness: prices of primary assets and

instantaneous rates.

In order to decompose asset returns, in Subsection 2.2 we construct the space HT
s of con-

ditional martingales obtained by discounting asset returns by the value of the log-optimal

portfolio. Specifically, HT
s is endowed with an inner product based on the conditional ex-

pectation of martingale terminal values. The overall structure is termed Hilbert module by

Cerreia-Vioglio, Maccheroni, and Marinacci (2017). Interestingly, no-arbitrage prices fea-

ture an inner product representation in HT
s , in agreement with the literature since Harrison

and Kreps (1979). After decomposing the module HT
s , in Corollary 3 we show that a return

process {uτ (s)}τ∈[s,T ], where each uτ (s) is the ratio of no-arbitrage prices πτ/πs, satisfies

the orthogonal decomposition

uτ (s) = gτ (s) + ωseτ (s) + nτ (s) ∀τ ∈ [s, T ]

in the spirit of Hansen and Richard (1987). Here g(s) is the so-called log-optimal return, e(s)

is the mean excess return, n(s) is an additional zero-price return and ωs is a random weight

measurable at time s. All returns in the decomposition are (conditionally) orthogonal, with

an orthogonality condition implied by the structure of HT
s . In addition, the associated

risk-adjusted mean-variance frontier in the period [s, T ] is made up of asset returns with

null n(s) (see Corollary 6). A Two-fund Separation Theorem holds (Theorem 9) and so

the frontier turns out to be spanned by g(s) and the return f(s) associated with a pure

discount T -bond. Importantly, it is possible to decompose returns also in any subperiod

[s, t] with t 6 T in an analogous way. Note that the use of the log-optimal portfolio and

the risk-neutral variance of asset returns shares some similarities with Martin and Wagner

(2019).

The main advantage of our decompositions is time consistency. Since we decompose

the process that defines returns over the longest horizon, restrictions on closer horizons

naturally obtain. Moreover, the orthogonality relations at different horizons ensure that a

time consistency property holds for our mean-variance returns: returns on the risk-adjusted

3



mean-variance frontier at time T are risk-adjusted mean-variance returns at date t, too

(Corollary 8). For example, a buy-and-hold one-year horizon risk-adjusted mean-variance

portfolio turns out to lie on the risk-adjusted mean-variance frontier also at the six-month

horizon. In fact, our risk-adjusted mean-variance frontiers are spanned by the same two

assets across a continuum of horizons, a crucial property for the practitioners. This feature is

absent in the classical treatment of mean-variance portfolio selection, where second moments

computed with respect to different information structures are usually incomparable.

Similarly to Cochrane (2014), we provide in Section 6 a microeconomic foundation of our

risk-adjusted mean-variance frontier by showing that our mean-variance returns are optimal

for a specific quadratic utility agent that solves a consumption-investment problem. In

agreement with our theory, the arising optimal portfolio turns out to be time-consistent with

respect to different investment horizon. Finally, the Appendix contains some complements

of the theory and additional simulations.

1.1 Additional related literature

As it is well-known, one-period mean-variance portfolio analysis has its roots in the seminal

works by Markowitz (1952), Tobin (1958) and Sharpe (1964) and the abstract formaliza-

tion is provided by Hansen and Richard (1987). The development in the last decades has

been huge and its summary goes beyond our scope. Interestingly, multi-period dynamic

extensions of mean-variance optimization have been proposed in the literature. Remark-

able examples are given by Li and Ng (2000), Zhou and Li (2000) and Leippold, Trojani,

and Vanini (2004) among the others. However, differently from our multi-horizon approach,

intermediate dates are only useful for rebalancing purposes, and no intermediate target is

considered.

Our risk-adjusted mean-variance frontier features a time consistency property that al-

lows to generate optimal returns via the same two securities across a sequence of investment

horizons. Time consistency of portfolio or consumption choices is an old issue of economic

theory. A first distinction between precommitment and consistent planning can be retrieved

in the seminal work by Strotz (1955). In addition, Mossin (1968) highlights the inconsis-

tency of multiperiod mean-variance analysis because the quadratic utility does not satisfy

the Bellman principle of optimality. These important issues are also discussed in Basak

and Chabakauri (2010) and Czichowsky (2013). Van Staden, Dang, and Forsyth (2018)

provide a detailed summary of the two literature streams – one related to precommittment,

the other to time consistency. The mean-variance theory proposed here is peculiar in this

respect. Indeed, it shares some aspects of both streams: our risk-adjusted mean-variance

frontier features time consistency and our application to multi-horizon portfolio allocation
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lies within the precommitment paradigm (the problem is solved ex ante and the investor

never changes the plan). The addressed problem is, in fact, peculiar and different from

the ones treated in the literature because we are considering multiple investment targets at

increasing horizons.

As we already mentioned, our mean-variance theory is designed in a conditional frame-

work. For a comparison between conditional and unconditional mean-variance optimization,

one can refer to Ferson and Siegel (2001), where mean-variance optimization problems in the

presence of conditioning information are discussed. It is also worth mentioning the parallel

literature stream about the use of conditional information for the mean-variance frontier

of stochastic discount factors. Starting from the celebrated dual result of Hansen and Ja-

gannathan (1991), conditional variance bounds on pricing kernels have been illustrated by

Bekaert and Liu (2004), Ferson and Siegel (2003) and Gallant, Hansen, and Tauchen (1990),

among the others. See, e.g. the review in Favero, Ortu, Tamoni, and Yang (2020).

2 Framework and essentials

We describe the asset pricing framework and the essential tools for the intertemporal de-

composition of returns. We simultaneously introduce the notation of the paper.

2.1 Arbitrage-free market and numéraire changes

Fix T > 0 and consider a filtered probability space (Ω,F ,F, P ), where P is the physical

measure and the filtration F = {Ft}t∈[0,T ] satisfies the usual conditions. The adapted

process Y = {Yt}t∈[0,T ] represents the stochastic instantaneous rate. The money market

account has value e
∫ t
0 Yτdτ at any time t. Pure discount bonds with any possible maturity and

face value equal to 1 are traded. Additional risky securities, with adapted price processes,

can be present in the market, too. Moreover, we assume that the log-optimal portfolio (or

growth optimal portfolio) is traded in the market. This is the self-financing portfolio that

maximizes the expected utility on the terminal wealth (at time T ) of a log-utility investor

with initial wealth equal to 1 (see Chapter 20 of Björk, 2009).

If Xt is the price process of a traded security at time t, we obtain its relative price Zt

by discounting Xt with the money market account: Zt = e−
∫ t
0 YτdτXt. We assume that all

relative asset prices are semimartingales and there exists an equivalent martingale measure

Q (the risk-neutral measure). The market is, then, arbitrage-free. The Radon-Nikodym

derivative of Q with respect to P on FT is LT = dQ/dP and we define Lt = Et[LT ] and

Lt,T = LT /Lt at any time t ∈ [0, T ]. Here, Et denotes the conditional expectation with

respect to Ft under the measure P . As in Harrison and Kreps (1979), we assume that
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e−
∫ t
0 YτdτLt belongs to L2(Ft) for all t. We denote by M = {Mt}t∈[0,T ] the strictly positive

stochastic discount factor process associated with Q, i.e. Mt = e−
∫ t
0 YτdτLt. The related

pricing kernel in the time interval [t, T ] is Mt,T = MT /Mt. Importantly, the value of the

log-optimal portfolio at any time t ∈ [0, T ] is M−10,t . Moreover, the log-optimal portfolio

works as numéraire portfolio, meaning that prices discounted by the log-optimal portfolio

are martingales under P . See Long (1990) and Section 26.9 in Björk (2009).

We now consider a pure discount T -bond and we denote its no-arbitrage price at time t

by πt(1T ). The yield to maturity at time t is rTt = − log πt(1T )/(T − t) and rTT denotes the

a.s. (finite) limit of rTt when t approaches T . By using as numéraire πt(1T ), we construct

the forward measure with horizon T (or T -forward measure) and we denote it by F (see

Geman, El Karoui, and Rochet, 1995, for the theory of numéraire changes). This probability

measure is equivalent to Q and we denote its Radon-Nikodym derivative with respect to

P on FT by GT = dF/dP . Importantly, GT belongs to L2(FT ) because e−
∫ T
0 YτdτLT is

included in L2(FT ). Moreover, we set Gt = Et[GT ] for any t and we define Gt,T = GT /Gt.

See details in Appendix A.

Using the T -forward measure, the stochastic discount factor rewrites asMt = er
T
t (T−t)−rT0 TGt

and the pricing kernel in any time interval [s, t] with s 6 t 6 T becomes

Ms,t = er
T
t (T−t)−rTs (T−s)Gs,t.

In addition, any attainable FT -measurable payoff hT with finite EF [|hT |] has no-arbitrage

price at time t given by

πt (hT ) = Et [Mt,ThT ] = e−r
T
t (T−t)EFt [hT ] . (1)

2.2 The Hilbert modules H t
s and linear pricing functionals

We consider the filtered probability space (Ω,F ,F, P ). We fix an instant s ∈ [0, T ] and

develop some tools to deal with conditioning information in Fs. We start with considering

at any time t ∈ [s, T ] the conditional L1-space L1
s(Ft) = {f ∈ L0(Ft) : Es[|f |] ∈ L0(Fs)}.

Cerreia-Vioglio, Kupper, Maccheroni, Marinacci, and Vogelpoth (2016) show that L1
s(Ft)

is an L0-module with the multiplicative decomposition L1
s(Ft) = L0(Fs)L1(Ft).1

In our construction, we consider adapted processes that take values in L1
s(Ft). An

important role will be played by conditional (or generalized) martingales. We use this

terminology for processes ẑ defined in the time interval [s, t] with all the properties of

martingales except for integrability, which is replaced by the weaker condition Es[|ẑ(τ)|] ∈
1Clearly, L1

s(Ft) contains all functions f in L1(Ft): in this case Es[|f |] ∈ L1(Fs). In general, however, the
conditional expectation is defined for random variables that are merely in L0(Ft) as discussed, for instance,
in Chapter II, §7 of Shiryaev (1996).
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L0(Fs) for all τ ∈ [s, t]. See, for instance, Chapter VII, §1 of Shiryaev (1996).2 With this

property in mind, for any t ∈ [s, T ] we define the space

Ht
s =

{
conditional martingale ẑ : [s, t]→ L1

s (Ft) , Es
[
ẑ2t
]
∈ L0 (Fs)

}
,

Ht
s contains the price processes discounted by the log-optimal portfolio with the appropriate

square-integrability condition. Interestingly, Ht
s can be characterized in differential terms:

see Proposition 2.4 in Marinacci and Severino (2018) about weak time-derivatives and Sub-

section 2.4 in Severino (2021). For our construction the relation between Ht1
s and Ht2

s with

t1 6 t2 is crucial: if ẑ belongs to Ht2
s , then its restriction on [s, t1] belongs to Ht1

s . Indeed,

the conditional expectation of ẑ2t1 is always defined as an extended real random variable and

Es[ẑ2t1 ] 6 Es[ẑ2t2 ].

Fixed t ∈ [s, T ], Ht
s is a pre-Hilbert module on the algebra L0(Fs) when we define the

outer product · : L0(Fs) ×Ht
s → Ht

s and the L0-valued inner product 〈 , 〉ts : Ht
s ×Ht

s →
L0(Fs) respectively by

as · ẑ = asẑ, 〈ẑ, v̂〉ts = Es [ẑtv̂t] .

The inner product homogeneity with respect to Fs-measurable variables, i.e. 〈as · ẑ, v̂〉ts =

as 〈ẑ, v̂〉ts for any ẑ, v̂ in Ht
s and as in L0(Fs), is relevant for financial applications because it

allows for contingent strategies in portfolio theory. Moreover, the inner product structure

delivers a natural notion of orthogonality: two processes ẑ, v̂ in Ht
s are orthogonal when

〈ẑ, v̂〉ts = Es [ẑtv̂t] = 0.

Our inner product mimics the conditional structure of Hansen and Richard (1987) and

Gallant, Hansen, and Tauchen (1990), who employ a conditional asset pricing framework

under the physical measure. Here we will apply such an approach on the martingale pro-

cesses induced by discounted prices under risk neutrality.

Importantly, Ht
s is a selfdual pre-Hilbert module or, more simply, a Hilbert module. Self-

duality is the property that allows for an inner product representation of any L0-linear and

bounded functional on Ht
s (see Definition 2 in Cerreia-Vioglio, Maccheroni, and Marinacci,

2017).

Proposition 1 Ht
s is a selfdual pre-Hilbert module on L0(Fs).

Proof of Proposition 1. The algebra L0(Fs) is endowed with the pointwise sum and

product between random variables. The outer product · : L0(Fs)×Ht
s → Ht

s is well-defined

because, for any as ∈ L0(Fs) and ẑ ∈ Ht
s, asẑ belongs to Ht

s too.

Moreover, for each as, bs ∈ L0(Fs) and ẑ, v̂ ∈ Ht
s the following properties hold.

2For example, when the forward measure is employed, (conditional) martingales are provided by forward
prices for the settlement date t (see Section 9.6 in Musiela and Rutkowski, 2005).
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(1) as · (ẑ + v̂) = as · ẑ + as · v̂.

(2) (as + bs) · ẑ = as · ẑ + bs · ẑ.

(3) as · (bs · ẑ) = (asbs) · ẑ.

(4) If es denotes the Fs-measurable random variable equal to one, es · ẑ = ẑ.

These features make Ht
s a module over L0(Fs).

Now consider the inner product 〈 , 〉ts : Ht
s × Ht

s → L0(Fs). For all ẑ ∈ Ht
s, Es[ẑ2t ] ∈

L0
s(Fs). Therefore, by Footnote 3 in Hansen and Richard (1987), 〈ẑ, v̂〉ts = Es[ẑtv̂t] belongs

to L0(Fs).
In addition, for each as ∈ L0(Fs) and ẑ, v̂, ŵ ∈ Ht

s the following properties are satisfied.

(5) 〈ẑ, ẑ〉ts = Es[ẑ2t ] > 0 with equality if and only if ẑt = 0. This implies that, for any

τ ∈ [s, t], Eτ [ẑt] = ẑτ = 0. As a result, ẑ = 0.

(6) 〈ẑ, v̂〉ts = 〈v̂, ẑ〉ts.

(7) 〈ẑ + v̂, ŵ〉ts = 〈ẑ, ŵ〉ts + 〈v̂, ŵ〉ts.

(8) 〈as · ẑ, v̂〉ts = asEs[ẑtv̂t] = as〈ẑ, v̂〉ts.

As a result, Ht
s is a pre-Hilbert module.

We now prove that Ht
s is selfdual. First, note that L0(Fs) is endowed with the Lévy

metric d(f, g) = E[min{|f − g|, 1}] for all f, g ∈ L0(Fs). As described in Cerreia-Vioglio,

Maccheroni, and Marinacci (2017), in a pre-Hilbert L0-module a metric, denoted by dH ,

is given by the composition of d with the L0-valued norm induced by the L0-valued inner

product. Hence, the dH distance between two processes u, v in Hs is

dH(ẑ, v̂) = d

(√
〈ẑ − v̂, ẑ − v̂〉ts, 0

)
= E

[
min

{√
Es
[
(ẑt − v̂t)2

]
, 1

}]
.

Since the selfduality of a pre-Hilbert L0-module is equivalent to the dH -completeness (see

Theorem 5 in Cerreia-Vioglio, Maccheroni, and Marinacci, 2017), we establish this property

in Ht
s. In addition, we observe that the metric dH actually involves just terminal values ẑt

and v̂t and so dH(ẑ, v̂) actually coincides with the distance between random variables ẑt, v̂t

belonging to the L0-module L2
s(Ft) = {f ∈ L0(Ft) : Es[f2] ∈ L0(Fs)}, which is complete:

see Theorem 7 in Cerreia-Vioglio, Kupper, Maccheroni, Marinacci, and Vogelpoth (2016).

This fact makes dH -completeness of Ht
s straightforward.
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Therefore, consider a Cauchy sequence {ẑ(n)}n∈N ⊂ Ht
s: for all ε > 0 there is Nε ∈ N

such that, for all n,m > Nε,

dH

(
ẑ(n), ẑ(m)

)
= E

[
min

{√
Es
[(
ẑ
(n)
t − ẑ(m)

t

)2]
, 1

}]
< ε.

Thus, we obtain a Cauchy sequence {ẑ(n)t }n∈N ⊂ L2
s(Ft), which is complete. As a result,

this sequence has limit ẑt ∈ L2
s(Ft). From ẑt we define the process ẑ = {ẑτ}τ∈[s,t] by setting

ẑτ = E[ẑt]. This process is a conditional martingale and belongs to Ht
s. To assess this fact,

we check that Es[|ẑτ |] ∈ L0(Fs) for all τ .

Since any |ẑτ | is non-negative, its conditional expectation is always defined as an ex-

tended real random variable. Moreover, the conditional Cauchy-Schwartz’ inequality guar-

antees that (Es[|ẑτ |])2 6 (Es[|ẑt|])2 6 Es[ẑ2t ], where the last quantity belongs to L0(Fs).
Consequently, Es[|ẑτ |] ∈ L0(Fs) for all τ ∈ [s, t]. We, then, determined a process ẑ ∈ Ht

s

such that

dH

(
ẑ(n), ẑ

)
= E

[
min

{√
Es
[(
ẑ
(n)
t − ẑt

)2]
, 1

}]
is arbitrarily small. Since ẑ(n) goes to ẑ in dH , Ht

s is dH -complete and so selfdual.

Selfduality provides an inner product representation of linear pricing functionals, a fact

which is consistent with the asset pricing literature: see Harrison and Kreps (1979), Ross

(1978) and Hansen and Richard (1987) among the others.

To elucidate this point, consider an Ft-measurable payoff ht with Es[M2
s,th

2
t ] in L0(Fs).

Consider, then, the process of prices discounted by the log-optimal portfolio, i.e. ĥ =

{ĥτ}τ∈[s,t] defined by ĥτ = Ms,τπτ (ht). Such process belongs to Ht
s and, in particular,

ĥs = πs(ht) = Es[Ms,tht]. Hence, the no-arbitrage price of eq. (1) induces the L0-valued

functional Πs : Ht
s → L0(Fs) such that

Πs : ĥ 7→ ĥs.

Πs is a positive, L0-linear bounded functional and, in line with the selfduality of Ht
s, it

is represented by the L0-valued inner product

Πs

(
ĥ
)

=
〈
ĝt(s), ĥ

〉t
s
, ĝtτ (s) = 1 ∀τ ∈ [s, t] (2)

for any ĥ ∈ Ht
s. The constant conditional martingale ĝt(s) clearly belongs to Ht

s. This

process will play a fundamental role in our decomposition of excess returns and its financial

meaning is related to the log-optimal portfolio, as we discuss in Subsection 3.2.
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3 Return decomposition

In this section we build the relation between asset returns and conditional martingales in

Ht
s with t ∈ [s, T ]. We orthogonally decompose any Ht

s by exploiting the L0-valued inner

product 〈 , 〉ts and, as a consequence, we retrieve a decomposition of returns. As illustrated

in Section 3.3 of Cerreia-Vioglio, Maccheroni, and Marinacci (2019), the decomposition of a

Hilbert module needs topological conditions in order to be well-defined. Nevertheless, in case

H is a selfdual L0-module and M is a finitely generated submodule, the decomposition H =

M⊕M⊥ is well-posed (here M⊥ denotes the orthogonal complement of M in H). This is the

case of our interest, because we deal with submodules generated by single return processes,

specifically g(s) and e(s) that we define in Subsections 3.2 and 3.3. Once the decomposition

of modules is established in Theorem 2, we determine in Corollary 3 a decomposition of

asset returns. Our result parallels Hansen and Richard (1987) decomposition but it exploits

a different orthogonality condition inspired by the martingale processes induced by asset

returns.

3.1 Return definition

Consider the time τ between s and T . In our theory, a return of a traded asset at time τ

is an Fτ -measurable random variable uτ (s) satisfying

Es [Ms,τuτ (s)] = 1 ∀τ ∈ [s, T ] and Es[M2
s,Tu

2
T ] ∈ L0(Fs). (3)

The related return process is the adapted process u(s) = {uτ (s)}τ∈[s,T ]. To be precise, when

dealing with t ∈ [s, T ], we will call return process in [s, t] the restriction of u(s) on the time

interval [s, t].

As an example, we can consider an attainable payoff hT at time T such that Es[M2
s,Th

2
T ] ∈

L0(Fs). At each τ ∈ [s, T ], the return is the ratio of no-arbitrage prices uτ (s) = πτ (hT )/πs(hT )

and the relations in (3) are fulfilled.

Importantly, by discounting returns by the values of the log-optimal portfolio, we obtain

a conditional martingale, that we denote by ûT (s), which belongs to HT
s . In particular,

ûT (s) satisfies

ûTτ (s) = Ms,τuτ (s) ∀τ ∈ [s, T ] and ûTs (s) = 1. (4)

Hence, asset returns are mapped into conditional martingales in HT
s . Moreover, return

processes define conditional martingales also in any time subinterval [s, t] with t 6 T .

Indeed, we define ût(s) in Ht
s as the restriction of ûT (s) on [s, t]:

ûtτ (s) = Ms,τuτ (s) ∀τ ∈ [s, t] and ûts(s) = 1. (5)

10



Example 1. Consider a zero-coupon bond with expiry T . In this case, by the relation in

(4), the return process and the associated conditional martingale in HT
s are

fτ (s) =
πτ (1T )

πs(1T )
, f̂Tτ (s) = Gs,τ ∀τ ∈ [s, T ]. (6)

Example 2. Suppose that Es[G4
T ] belongs to L0(Fs) and consider a payoff at T that

coincides with the pricing kernel Ms,T (see Subsection 2.1 for the definition of GT ). This

payoff is fundamental in the mean-variance decomposition of Hansen and Richard (1987).

By the previous relations, the related return process and the conditional martingale in HT
s

are given by

uτ (s) =
Eτ [Mτ,TMs,T ]

Es
[
M2
s,T

] =
Eτ
[
G2
T

]
Ms,τEs

[
G2
T

] , ûTτ (s) =
Eτ
[
G2
T

]
Es
[
G2
T

] ∀τ ∈ [s, T ].

3.2 The log-optimal return g(s)

Fix t ∈ [s, T ]. We define the submodule of Ht
s associated with zero-price payoffs (or excess

returns)

◦
Ht
s =

{
ι̂t(s) ∈ Ht

s : Es [Ms,tιt(s)] = 0
}

=
{
ι̂t(s) ∈ Ht

s : Es
[
ι̂tt(s)

]
= ι̂ts(s) = 0

}
=
{
ι̂t(s) ∈ Ht

s :
〈
ĝt(s), ι̂t(s)

〉t
s

= 0
}
,

where ι(s) and ι̂t(s) are linked by the relation in (5) and ĝt(s) is defined in eq. (2). Precisely,

the process ĝt(s) in Ht
s and the associated return process g(s) are respectively defined by

ĝtτ (s) = 1, gτ (s) =
1

Ms,τ
∀τ ∈ [s, t].

As expected, the process ĝt(s) is the one that permits the inner product representation of

pricing functionals described at the end of Subsection 2.2. Moreover, g(s) is the return

process of the log-optimal portfolio. Hence, we refer to g(s) as the log-optimal return.

In addition, the module Ht
s orthogonally decomposes as

Ht
s = spanL0

{
ĝt(s)

}
⊕
◦
Ht
s.

11



3.3 The mean excess return e(s)

Fix again t ∈ [s, T ]. From the definition of f̂T (s) in eq. (6), we consider the conditional mar-

tingale f̂ t(s) associated with the pure discount T -bond and we define êt(s) as the orthogonal

projection of f̂ t(s) on the submodule
◦
Ht
s, namely

êt(s) = proj ◦
Ht
s

f̂ t(s),

meaning that êts(s) = 0 and Es[(f̂ tt (s) − êtt(s))ι̂
t
t(s)] = 0 for all ι̂t(s) in

◦
Ht
s. Since the

orthogonal projection of f̂ t(s) on spanL0{ĝt(s)} is ĝt(s), we have f̂ t(s) = êt(s) + ĝt(s) so

that êtτ (s) = Gs,τ − 1 for all τ ∈ [s, t]. Moreover,
◦
Ht
s decomposes as

◦
Ht
s = spanL0

{
êt(s)

}
⊕
{
n̂t(s) ∈

◦
Ht
s : Es

[
êtt(s)n̂

t
t(s)
]

= 0
}

= spanL0

{
êt(s)

}
⊕
{
n̂t(s) ∈

◦
Ht
s : Es

[
Gs,tn̂

t
t(s)
]

= EFs
[
n̂tt(s)

]
= 0
}

from the definition of êt(s). Similarly to before, we define e(s) by

eτ (s) = fτ (s)− gτ (s) ∀τ ∈ [s, t], (7)

which embodies the meaning of mean excess return. Such return is attainable because the

log-optimal portfolio and the zero-coupon T -bond are traded.

3.4 Orthogonal decompositions of returns

The orthogonality in Ht
s implies an orthogonal decomposition of conditional martingales

and, in turns, of asset returns. To achieve this goal, we start from the decomposition of

conditional martingales.

Theorem 2 (Martingale decomposition) Given t ∈ [s, T ], ût(s) belongs to Ht
s and

ûts(s) = 1 if and only if there exist ωs ∈ L0(Fs) and n̂t(s) ∈
◦
Ht
s such that

Es
[
ĝtt(s)n̂

t
t(s)
]

= Es
[
êtt(s)n̂

t
t(s)
]

= EFs
[
n̂tt(s)

]
= 0

and

ût(s) = ĝt(s) + ωsê
t(s) + n̂t(s).

Proof of Theorem 2. We first show that

Es
[(
êtt(s)

)2]
= Es

[
Gs,tê

t
t(s)
]

= vars (Gs,t) .

12



Indeed, since êt(s) = proj ◦
Ht
s

f̂ t(s), for any ι̂t(s) ∈
◦
Ht
s, we have E[(f̂ tt (s) − êtt(s))ι̂t(s)] = 0.

Then, the first equality follows when ι̂t(s) = êt(s). As for the second one,

Es
[
Gs,tê

t
t(s)
]

= Es
[
G2
s,t −Gs,t

]
= Es

[
G2
s,t

]
− 1 =

Es
[
G2
t

]
G2
s

−
(
Es [Gt]

Gs

)2

=
vars (Gt)

G2
s

.

Now, let ût(s) be defined by the relation ût(s) = ĝt(s)+ωsê
t(s)+ n̂t(s) with ωs ∈ L0(Fs)

and n̂t(s) ∈
◦
Ht
s. The process ût(s) ∈ Ht

s because it is a linear combination of three processes

in Ht
s. Moreover, ûts(s) = ĝts(s) + ωsê

t
s(s) + n̂ts(s) = 1 + 0 + 0 = 1 since êt(s) and n̂t(s)

belong to
◦
Ht
s.

Conversely, consider any process ût(s) in Ht
s with ûts(s) = 1. Note that ût(s) − ĝt(s)

belongs to Ht
s and, in particular, to

◦
Ht
s because Es[ûtt(s) − ĝtt(s)] = 1 − 1 = 0. Define the

projection coefficient ωs ∈ L0(Fs) by

ωs =
Es
[(
ûtt(s)− ĝtt(s)

)
êtt(s)

]
Es
[
(êtt(s))

2
] =

Es
[
Gs,tû

t
t(s)
]
− 1

Es [Gs,têtt(s)]
=

Es
[
Gs,tû

t
t(s)
]
− 1

vars (Gs,t)
,

where last equalities are due to the definition of êt(s) and its properties. Define also the

process n̂t(s) = ût(s)− ĝt(s)−ωsêt(s), which belongs to
◦
HT
s because both ût(s)− ĝt(s) and

êt(s) are in
◦
HT
s . In addition,

Es
[
ĝtt(s)n̂

t
t(s)
]

= Es
[
ĝtt(s)û

t
t(s)
]
− Es

[(
ĝtt(s)

)2]− ωsEs [ĝtt(s)êtt(s)] = 1− 1− 0 = 0

because ĝt(s) and êt(s) belong to orthogonal submodules. Furthermore,

Es
[
êtt(s)n̂

t
t(s)
]

= Es
[
êtt(s)

(
ûtt(s)− ĝtt(s)

)]
− ωsEs

[(
êtt(s)

)2]
= 0

by the expression of ωs. By the definition of êt, Es[êtt(s)n̂tt(s)] = Es[Gs,tn̂tt(s)] = 0.

A straightforward application of Theorem 2 delivers an orthogonal decomposition of

asset returns in the time window [s, t].

Corollary 3 (Return decomposition) Let t ∈ [s, T ]. If u(s) is a return process in [s, t],

there exist ωs ∈ L0(Fs) and n̂t(s) ∈
◦
Ht
s such that

Es
[
M2
s,tgt(s)nt(s)

]
= Es

[
M2
s,tet(s)nt(s)

]
= EFs [Ms,tnt(s)] = Es [Ms,tnt(s)] = 0

with nτ (s) = n̂tτ (s)/Ms,τ for all τ ∈ [s, t] and

u(s) = g(s) + ωse(s) + n(s).
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Proof of Corollary 3. The return process u(s) in [s, t] can be associated with the

conditional martingale ût(s) ∈ Ht
s by the relation in (5). Then, the result follows directly

from Theorem 2. In addition, Es [Ms,tnt(s)] = 0 because n̂t(s) belongs to
◦
Ht
s.

The proof of Theorem 2 exploits the definition of the projection coefficient ωs in L0(Fs),
that turns out to be

ωs =
EFs [Ms,tut(s)]− 1

vars (Gs,t)
. (8)

Hence, ωs depends on the expected return discounted by the log-optimal portfolio under

the T -forward measure.

4 Risk-adjusted mean-variance returns

Following the standard mean-variance approach logic, we define risk-adjusted mean-variance

returns in our setting. Here we decompose the whole processes of returns discounted by the

log-optimal portfolio to obtain the time consistency property that we describe in Subsection

4.1. We, then, illustrate a useful Two-fund Separation Theorem.

Definition 4 Fixed t ∈ [s, T ], we say that a return process u(s) is on the risk-adjusted

mean-variance frontier (or it is a risk-adjusted mean-variance return) in [s, t] when it min-

imizes vars(Ms,tut(s)) for some given EFs [Ms,tut(s)] in L0(Fs). In that case, we say that

the conditional martingale in Ht
s associated to u(s) via the relation in (5) is a conditional

mean-variance martingale in [s, t]. Such conditional martingale minimizes vars(û
t
t(s)) for

the given EFs [ûtt(s)].

As already mentioned, the use of expected returns under the measure F comes from the

expression of portfolio weights in eq. (8). We begin with the characterization of conditional

mean-variance martingales.

Theorem 5 (Mean-variance martingales) Let t ∈ [s, T ]. Consider ût(s) ∈ Ht
s with

ûts(s) = 1 such that EFs [ûtt(s)] = ks for some ks ∈ L0(Fs). Among them, the conditional

martingale that minimizes vars(û
t
t(s)) is

ût(s) = ĝt(s) + ωsê
t(s) with ωs =

ks − 1

vars (Gs,t)
.

Proof of Theorem 5. Each conditional martingale ût(s) ∈ Ht
s with ûts(s) = 1 and

Es[ûtt(s)] = ks satisfies the decomposition provided by Theorem 2:

ût(s) = ĝt(s) + ωsê
t(s) + n̂t(s), ωs =

ks − 1

vars (Gs,t)
.
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Moreover, vars(û
t
t(s)) = Es[(ûtt(s))2]− (Es[ûtt(s)])2 = Es[(ûtt(s))2]− 1. We note that

Es
[(
ûtt(s)

)2]
= Es

[(
ĝtt(s) + ωsê

t
t(s) + n̂tt(s)

)2]
= Es

[(
ĝtt(s) + ωsê

t
t(s)
)2]

+ Es
[(
n̂tt(s)

)2]
+ 2Es

[(
ĝtt(s) + ωsê

t
t(s)
)
n̂tt(s)

]
.

By Theorem 2, Es
[(
ĝtt(s) + ωsê

t
t(s)
)
n̂tt(s)

]
= 0 and so

Es
[(
ûtt(s)

)2]
= Es

[(
ĝtt(s) + ωsê

t
t(s)
)2]

+ Es
[(
n̂tt(s)

)2]
> Es

[(
ĝtt(s) + ωsê

t
t(s)
)2]

.

Therefore, vars(û
t
t(s)) is minimized by the conditional martingale with n̂t(s) = 0.

From Theorem 5 we easily deduce the characterization of risk-adjusted mean-variance

returns in [s, t].

Corollary 6 (Risk-adjusted mean-variance returns) Let t ∈ [s, T ]. Consider return

processes u(s) in [s, t] such that EFs [Ms,tut(s)] = hs for some hs ∈ L0(Fs). Among them,

the return process that minimizes vars(Ms,tut(s)) is

u(s) = g(s) + ωse(s) with ωs =
hs − 1

vars (Gs,t)
.

Proof of Corollary 6. Consider the conditional martingales in Ht
s associated with returns

via the relation in (5). We have that EFs
[
ûtt(s)

]
= hs and vars(û

t
t(s)) = vars(Ms,tut(s)).

Hence, the claim is an immediate consequence of Theorem 5 with ks = hs.

As an example, consider the zero-coupon T -bond return process f(s) in [s, T ]. By eq.

(7), such return process satisfies f(s) = g(s) + e(s) and so, by Corollary 6, f(s) minimizes

the conditional variance of any Ms,TuT (s) with EFs [Ms,TuT (s)] = πs(1T )E[G2
s,T ].

Finally, note that at any risk-adjusted mean-variance return in [s, t] can be easily iden-

tified by its expectation under the physical measure. Indeed, if we fix Es [ut(s)] = h̃s, then

the weight ωs is univocally determined by

ωs =
h̃s − Es [gt(s)]

Es [et(s)]
=

h̃s − Es [gt(s)]

Es [ft(s)]− Es [gt(s)]
. (9)

4.1 Time consistency

A fundamental property of our approach to mean-variance portfolio analysis is time con-

sistency. Indeed, if a return process belongs to the risk-adjusted mean-variance frontier in

[s, T ], then it is also on the risk-adjusted mean-variance frontier in [s, t] for any t 6 T . This

feature is ultimately due to the fact that the decomposition of Theorem 2 involves the whole

process of the return discounted by the log-optimal portfolio in the time range [s, T ] and

so there is a mechanical overlap with the decompositions built at shorter horizons. There
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is, then, an interplay between such overlaps and the definitions of orthogonality at different

horizons.

We first deal with conditional mean-variance martingales. For simplicity, we express

the result by using the time indices t and T but it clearly holds for any t1, t2 ∈ [s, T ] with

t1 6 t2.

Proposition 7 (Mean-variance martingales time consistency) Let t ∈ [s, T ]. If ûT (s)

is a conditional mean-variance martingale in [s, T ], then ût(s) is a conditional mean-

variance martingale in [s, t].

Proof of Proposition 7. We show that, if ẑT (s) is a conditional mean-variance martingale

in [s, T ], then ẑt(s) is a conditional mean-variance martingale in [s, t].

Suppose that ẑT (s) minimizes vars(û
T
T (s)) among all conditional martingales in HT

s

with EFs [ûTT (s)] = ks for a given ks ∈ L0(Fs). By Theorems 2 and 5,

ẑT (s) = ĝT (s) + ωsê
T (s), ωs =

ks − 1

vars (Gs,T )

and Es[ĝTT (s)êTT (s)] = 0. The decomposition on [s, T ] induces a decomposition on [s, t] for the

conditional martingale ẑt(s) obtained by restricting ẑT (s) on [s, t]: ẑt(s) = ĝt(s) + ωsê
t(s).

Moreover, Es[ĝtt(s)êtt(s)] = 0 because
◦
Ht
s is orthogonal to spanL0{ĝt(s)} and so we retrieve

the orthogonal decomposition of ẑt(s) provided by Theorem 2 in the time window [s, t]. In

addition, ωs = (ks − 1)/vars(Gs,T ) = (hs − 1)/vars(Gs,t), where hs ∈ L0(Fs) is univocally

determined by ks. Then, Theorem 5 ensures that ẑt(s) minimizes vars(û
t
t(s)) among all

conditional martingales inHt
s such that EFs [ûtt(s)] = hs. In other words, ẑt(s) is a conditional

mean-variance martingale in [s, t].

We now establish the time consistency property of risk-adjusted mean-variance returns.

Corollary 8 (Risk-adjusted mean-variance returns time consistency) Let t ∈ [s, T ].

A risk-adjusted mean-variance return in [s, T ] is also a risk-adjusted mean-variance return

in [s, t].

Proof of Corollary 8. Suppose that the return process z(s) in [s, T ] minimizes vars(Ms,TuT (s))

among all return processes with EFs [Ms,TuT (s)] = ks for some given ks ∈ L0(Fs). By Corol-

laries 3 and 6,

z(s) = g(s) + ωse(s), ωs =
ks − 1

vars (Gs,T )
,

with Es[M2
s,T gT (s)eT (s)] = 0. The former decomposition holds algebraically at any time

in [s, t] and Es[M2
s,tgt(s)et(s)] = 0. Hence, by uniqueness of the decomposition, we obtain
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the same result that we get by decomposing z(s) in the time range [s, t] as prescribed

by Corollary 3. Furthermore, ωs = (ks − 1)/vars(Gs,T ) = (hs − 1)/vars(Gs,t), where

hs ∈ L0(Fs) is univocally determined by ks. By Corollary 6, this means that z(s) minimizes

vars(Ms,tut(s)) among all return processes with EFs [Ms,tut(s)] = hs. Hence z(s) is a risk-

adjusted mean-variance return in [s, t], too.

From the standpoint of interpretation, we can set s as today and consider portfolios

with maturity T of one year. Moreover, t may identify a six-month horizon from now. We

build our six-month and one-year horizon risk-adjusted mean-variance frontiers, based on

the information available today. Corollary 8 ensures that portfolios on the yearly frontier

are also on the six-month frontier. This feature is absent in classical mean-variance analysis.

In fact, the standard construction does not provide any relation between the decompositions

of returns at different horizons. On the contrary, the methodology that we propose relies

on the decomposition of the underlying martingale processes and so return representations

at different dates are interrelated. The practical benefit of our approach is that the arising

mean-variance frontiers are generated by the same two processes across a multiplicity of

horizons.

We finally state and prove a Two-fund Separation Theorem for our risk-adjusted mean-

variance frontiers. Theorem 9 establishes in our setting the celebrated result by Merton

(1972) and makes the implementation of the frontiers easier by replacing the mean excess

return e(s) with the return f(s) of the pure discount T -bond.

Theorem 9 (Two-fund Separation) Given t ∈ [s, T ], u(s) is a risk-adjusted mean-

variance return in [s, t] if and only if

u(s) = αsv(s) + (1− αs) z(s)

for some risk-adjusted mean-variance returns v(s), z(s) in [s, t] and αs ∈ L0(Fs). In par-

ticular,

u(s) = αsg(s) + (1− αs) f(s)

where αs = 1− ωs and ωs is obtained from Corollary 6.

Proof of Theorem 9. Suppose that u(s) is a risk-adjusted mean-variance return in [s, t].

Then, Corollary 6 guarantees that u(s) = g(s) + ωse(s) for some ωs ∈ L0 (Fs). Consider

another mean-variance return v(s) in [s, t] that decomposes as v(s) = g(s) + ω̃se(s) with ω̃s

different from zero in L0 (Fs). Hence, e(s) = (v(s)− g(s))/ω̃s and so

u(s) = g(s) +
ωs
ω̃s
v(s)− ωs

ω̃s
g(s) = αsv(s) + (1− αs) z(s),
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where αs = ωs/ω̃s and z(s) = g(s), which is on the risk-adjusted mean-variance frontier,

too.

Conversely, assume that a return process u(s) in [s, t] satisfies the decomposition u(s) =

αsv(s)+(1− αs) z(s) with v(s), z(s) risk-adjusted mean-variance returns in [s, t], i.e. v(s) =

g(s) + ω̃se(s) and z(s) = g(s) + w̄se(s) for some ω̃s, w̄s ∈ L0(Fs). It follows that

u(s) = αs (g(s) + ω̃se(s)) + (1− αs) (g(s) + w̄se(s)) = g(s) + (αsω̃s + (1− αs) w̄s) e(s)

and so, by Corollary 6, u(s) is on the risk-adjusted mean-variance frontier in [s, t].

By considering the return process f(s), we get u(s) = αsg(s) + (1− αs) f(s). Since

f(s) = g(s) + e(s), we immediately obtain that αs = 1− ωs.

In few words, g(s) and f(s) span the risk-adjusted mean-variance frontiers of asset

returns at any horizon under consideration.

Note that our mean-variance optimization does not directly employ expectation and

variance of asset returns u(s): we rather use EFs [Ms,tut(s)] and vars(Ms,tut(s)) to define

risk-adjusted mean-variance returns in [s, t]. This approach actually conceals a measure

change under which returns are evaluated. The whole theory can be rewritten by introducing

a collection of risk-adjusted measures {Qt}t∈[s,T ] equivalent to P , each associated with a

precise horizon t. Specifically, the Radon-Nikodym derivative of Qt with respect to P on Ft
is given by dQt/dP = G2

t /E[G2
t ]. The same risk-adjusted mean-variance frontier of Theorem

9 arises but the derivation is more complex than the one presented here: the measures Qt

affect the inner product, the orthogonality relations and so on.

5 Simulations: multi-horizon mean-variance optimization

To ease the notation and for the sake of interpretability, in this section we fix s = 0, we

omit the s subscript whenever possible and we denote return processes by u instead of u(s).

As sketched in Section 1, we consider a multi-horizon mean-variance portfolio problem

in the time interval [0, T ], where only buy-and-hold investment strategies set at time 0 are

allowed. Our investor may be thought as a manager or a company that aims at building

portfolios with target expected returns across a sequence of maturities t1, t2 . . . , tN with

0 < t1 < t2 < · · · < tN = T . Each of these portfolios must be optimal in terms of the mean-

variance criterion in its specific time horizon. The need to design such a term structure of

portfolios may come from multi-horizon hedging reasons due, e.g. to cashflow management

or medium-term production plans. The asset allocation across multiple horizons is decided

ex ante because of costly, or even forbidden, rebalancing. A detailed example in the context

of life annuities is provided in Subsection 5.3.
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Specifically, the investor builds a portfolio with return process

N∑
i=1

λ(i)u(i),

where each λ(i) ∈ R is the weight of the sub-portfolio i, i.e. the one with return process u(i),

in the overall portfolio. Each u(i) is properly a return process in [0, ti] and the position of

the sub-portfolio i is liquidated at time ti. Moreover, each u(i) solves

min var
(
u
(i)
ti

)
sub E

[
u
(i)
ti

]
= h(i)

with h(i) ∈ R given, for i = 1, . . . , N . The weights λ(i) are positive, they sum up to 1 and,

in case the overall portfolio is equally-weighted, λ(i) = 1/N for all i.

The unique solution to this optimization problem is achieved by sub-portfolios on the

classical mean-variance frontier of Hansen and Richard (1987): at each date ti

u
(i)
ti

=
M0,ti

E
[
M2

0,ti

] + w̃(i)

1− e−r
ti
0 (ti−0) M0,ti

E
[
M2

0,ti

]
 , w̃(i) ∈ R.

By employing the return of zero-coupon bonds with expiry ti, the Two-fund Separation

Theorem permits to rewrite the classical mean-variance frontier in [0, ti] as

u
(i)
ti

= α̃(i) M0,ti

E
[
M2

0,ti

] +
(

1− α̃(i)
)
fti

with α̃(i) = 1− π0(1ti)w̃(i).3

For each horizon ti, the initial implementation of the sub-portfolio delivering the return

process u(i) in [0, ti] requires the replication, by self-financing portfolio strategies, of the

payoff at ti that coincides with the pricing kernel M0,ti . Considering the whole sequence of

maturities in the problem, N payoffs need to be replicated in order to implement the mean-

variance optimal asset allocation. Depending on the severity of market incompleteness, the

optimal solution may require costly approximations or may even be unattainable.

Hereby, we propose an alternative strategy by exploiting our risk-adjusted mean-variance

frontier. Although theoretically suboptimal, our frontier requires the replication of a single

payoff at T (the one of log-optimal portfolio), whatever the number N of horizons involved.

3Indeed, such pure discount bonds belong to the frontier since

fti =
M0,ti

E
[
M2

0,ti

] +
1

πs (1ti)

(
1− e−r

ti
0 (ti−0) M0,ti

E
[
M2

0,ti

]) .
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When asset replication is costly or difficult, this feature constitutes a sizable advantage, that

may compensate the loss of mean-variance optimality with respect to the classical solution.

From Corollary 6, for any i = 1, . . . , N , we consider a sub-portfolio with return process

v(i) = g + ω(i)e,

where ω(i) is chosen so that the conditional expectation of v
(i)
ti

meets the target h(i) as in

eq. (9). By Theorem 9, we build our sub-portfolios by exploiting the return process g of

the log-optimal portfolio and the return process f of the zero-coupon T -bond. These two

financial instruments are employed for any intermediate horizon ti, as a consequence of time

consistency. We finally compare the performance of the two families of sub-portfolios with

returns u(i) and v(i), respectively, by considering the transaction costs and their impact on

the Sharpe ratios.

Specifically, we assume that transaction costs are present in the market and, similarly

to Irle and Sass (2006), they are composed by trading and replication costs.

Trading costs are constant for every asset unit and apply to both short and long po-

sitions. Their total amount is proportional to traded volumes. In our simulations, the

implementation of each classical mean-variance sub-portfolio i generates the trading costs

c(|α̃(i)|+ |1− α̃(i)|) with c > 0. The analogous expression with α(i) = 1− ω(i) delivers the

trading costs of the risk-adjusted mean-variance return v(i).

As for the replication costs, we assume that the design of the replication strategies for

gT and M0,ti/E[M2
0,ti

] at any horizon ti entails a positive fixed cost C for any (possibly lin-

early independent) security. Therefore, the implementation of each classical mean-variance

sub-portfolio i requires the additional expenditure of C. On the contrary, if we proportion-

ally spread the replication cost of gT across the horizons t1, . . . , tN , each time-consistent

sub-portfolio i needs to bear the cost λ(i)C. As a result, each mean-variance optimal

sub-portfolio i and each risk-adjusted mean-variance sub-portfolio i have commissions, re-

spectively,

C + c
(∣∣∣α̃(i)

∣∣∣+
∣∣∣1− α̃(i)

∣∣∣) and λ(i)C + c
(∣∣∣α(i)

∣∣∣+
∣∣∣1− α(i)

∣∣∣) . (10)

Accordingly, the overall portfolios have commissions:

CN + c
N∑
i=1

λ(i)
(∣∣∣α̃(i)

∣∣∣+
∣∣∣1− α̃(i)

∣∣∣) and C + c
N∑
i=1

λ(i)
(∣∣∣α(i)

∣∣∣+
∣∣∣1− α(i)

∣∣∣) .
In terms of risk/return trade-off, at any horizon ti we consider a modified Sharpe ratio

given by the difference of the Sharpe ratio and the ratio between transaction costs (as
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percentage of the initial capital) and standard deviation. In this way, the expected return

of each sub-portfolio i is reduced by the proper commissions of eq. (10):

modified Sharpe ratio = Sharpe ratio− transaction costs

standard deviation
.

The modified Sharpe ratio can be negative even if the Sharpe ratio is positive. Interestingly,

the modified Sharpe ratios can reverse the relations between the Sharpe ratios of the classical

and the risk-adjusted mean-variance optimal strategies, making the risk-adjusted approach

valuable. This happens in the simulations of Subsections 5.2 and 5.3. Subsection 5.1

describes the market in which we set such simulations.

5.1 Reference market

As in Appendix B of Brigo and Mercurio (2006), we assume that short-term rates move as

in Vasicek (1977) model in the time interval [0, T ] with positive parameters k, θ, σ. Then,

we consider a stock price X that follows a geometric Brownian motion with volatility η >

0, correlated with interest rates shocks. The instantaneous correlation between the two

underlying Wiener processes is φ. We orthogonalize the two sources of randomness and

consider, without loss of generality, the dynamics dXt = XtYt dt+ ηXt

[
φdWQ

t +
√

1− φ2dZQt
]

dYt = k (θ − Yt) dt+ σdWQ
t ,

where WQ and ZQ are independent Wiener processes. A money market account with

dynamics dBt = YtBtdt is also present. A more general model with two risky stocks is

illustrated in Appendix B.

Yields to maturity are affine, i.e. rTt (T − t) = −A(t, T ) +B(t, T )Yt, with

A(t, T ) =

(
θ − σ2

2k2

)
(B(t, T )− T + t)− σ2

4k
B2(t, T )

and B(t, T ) = (1 − e−k(T−t))/k. The pure discount T -bond price at time t is function of t

and Yt, obtained from Itô’s formula. Hence, beyond the money market account, the assets

that generate the market are dXt = XtYt dt+ ηXt

[
φdWQ

t +
√

1− φ2dZQt
]

dπt (1T ) = πt (1T )Ytdt− πt (1T )B(t, T )σdWQ
t .

(11)

At the same time, under the physical measure,{
dXt = Xtµ

X
t dt+ ηXt

[
φdWP

t +
√

1− φ2dZPt
]

dπt (1T ) = πt (1T )µPt dt− πt (1T )B(t, T )σdWP
t ,
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where µX and µP are adapted processes. They are related to the drifts under Q via the

bivariate process of market price of risk [νW , νZ ]′ such that[
dWQ

t

dZQt

]
=

[
νWt

νZt

]
dt+

[
dWP

t

dZPt

]
.

Specifically, [
ηφ η

√
1− φ2

−B(t, T )σ 0

][
νWt

νZt

]
=

[
µXt − Yt
µPt − Yt

]
so that

νWt = − µ
P
t − Yt

B(t, T )σ
, νZt =

µXt − Yt − ηφνWt
η
√

1− φ2
. (12)

At any t ∈ [0, T ], the Radon-Nikodym derivative of Q with respect to P on Ft is

Lt = e
− 1

2

∫ t
0

[
(νWτ )

2
+(νZτ )

2
]
dτ−

∫ t
0 ν

W
τ dWP

τ −
∫ t
0 ν

Z
τ dZ

P
τ

and we assume that the Novikov condition is satisfied, that is E[e
1
2

∫ T
0 [(νWt )2+(νZt )2]dt] is finite.

Moreover, we postulate that µPt = (1− ξB(t, T )σ)Yt for some ξ > 0 so that νWt = ξYt, in

line with the usual approach of Vasicek short-term rates. Finally, the dynamics of the

pricing kernel are given by

dM0,t = −YtM0,tdt− νWt M0,tdW
P
t − νZt M0,tdZ

P
t .

The parameters that we use in the simulations of the interest rate process are k = 1,

θ = 0.05 and σ = 0.01 with initial value Y0 = 0.02, on a monthly time grid. Moreover, we

set η = 0.1 and φ = 0.1, and we assume that the drift of the stock price under the physical

measure is µXt = Yt + 0.05.

5.2 A six-horizon mean-variance optimization

In this set of simulations, we consider an equally-weighted portfolio over six horizons: N = 6

and λ(i) = 1/N for all i = 1, . . . , 6. We employ a monthly time grid and horizons t1, . . . , t6

associated with six subsequent semesters. We set the target means equal to h(i) = 1.06 for

i = 1, . . . , 6. In other words, we are assuming that the investor wants to obtain a 6% flat

return at the end of each of six subsequent semesters by investing in 6 equally weighted

buy-and-hold sub-portfolios built at time 0. The cashflows obtained at the end of each

semester from the liquidation of the related sub-portfolio are not re-invested.

We simulate both the classical and the risk-adjusted multi-period portfolios described

above. We, then, repeat the exercise by employing, in total, 30 different seeds for the initial

Gaussian random sampling to obtain a sample of averages and standard deviations of each
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Figure 1: Red (resp. blue) lines, bars and boxes refer to the classical (resp. risk-adjusted) mean-
variance solution for the problem of Subsection 5.2. Standard deviations, Sharpe ratios and modified
Sharpe ratios are scaled by the weights λ(i) for all i = 1, . . . , 6. 90% confidence intervals for these
variables are represented. The top-right panel represents the transaction costs of the risk-adjusted
portfolio (blue for replication costs, light blue for trading costs) and of the classical mean-variance
portfolio (red for replication costs, light red for trading costs). Medium panels contain the box-
and-whisker plot at 25th and 75th percentiles and the bar plot of loadings |α(i)| and |α̃(i)| at all
horizons.
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sub-portfolio i with return process u(i) or v(i) and horizon ti, for i = 1, . . . , 6. Sharpe ratios

are computed by using as reference risk-free securities pure discount bonds at increasing

maturities. Results are summarized in Figure 5.2, where standard deviations, Sharpe ratios

and modified Sharpe ratios are scaled by the weights λ(i). Every simulated sub-portfolio

matches perfectly the target means h(i) at the proper horizon for i = 1, . . . , 6. As predicted

by the theory, classical mean-variance sub-portfolios display lower standard deviations than

our risk-adjusted strategies, whose advantage relies on a parsimonious implementation.

In our simulations the loadings of the risk-adjusted sub-portfolios are smaller than the

ones of the classical mean-variance strategies, requiring to buy or sell fewer assets. We

visualize this fact in the medium panels of Figure 5.2, where we plot the absolute values

of α(i) and α̃(i) at each horizon ti. The graphs depict the units of risky assets - i.e. the

ones associated with gT and M0,ti/E[M2
0,ti

] respectively - contained in each sub-portfolio.

The exposure to the risky securities is higher at horizons near in time. However, at any

horizon, the loadings in the risk-adjusted sub-portfolios are lower than the ones in the

classical sub-portfolios (with slightly lower dispersion). Consequently, the implementation

of the portfolio with return processes v(i) involves narrower long (or short) positions, both

in g and in f , a valuable feature in case of short-selling constraints.

The medium panels of Figure 5.2 give also an idea of the magnitude of the transaction

costs of both portfolios that we summarize in the top-right panel by setting c = $0.005

and C = $0.015. Under this assumption, by considering an initial investment of $100, total

transaction costs roughly amount to $10 if the investor builds the portfolios according to

the standard mean-variance frontier, and to $2 if the investor exploits our risk-adjusted

mean-variance frontier.

The commission shrinkage of the risk-adjusted approach impacts the risk/return trade-

off between the two strategies, as we can see in the bottom panels of Figure 5.2. Indeed, after

including the transaction costs, the modified Sharpe ratio indicates that the risk-adjusted

solution is the best performing. The excess standard deviation of the risk-adjusted portfolio

is fully compensated by its reduced transaction costs (in particular, replication costs), as

captured by the modified Sharpe ratio.

5.3 A life annuity application

Still in the market of Subsection 5.1, we compare the risk-adjusted and the classical mean-

variance approaches in the context of a life annuity.

Consider a life annuity payed with a lump sum at date 0 by a cohort of subscribers (see

e.g. Chapter 5 in Bower, Gerber, Hickman, Jones, and Nesbitt, 1997). The annuity provides

yearly payments to each subscriber until the subscriber dies. The insurance company invests
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Figure 2: Red (resp. blue) lines, bars and boxes refer to the classical (resp. risk-adjusted) mean-
variance solution for the life-annuity problem. Standard deviations, Sharpe ratios and modified
Sharpe ratios are scaled by the weights λ(i) for all i = 1, . . . , 20. 90% confidence intervals for these
variables are represented. The top-right panel represents the transaction costs of the risk-adjusted
portfolio (blue for replication costs, light blue for trading costs) and of the classical mean-variance
portfolio (red for replication costs, light red for trading costs).
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the received capital in N sub-portfolios with increasing horizons that allow to meet the

future payments. For example, we can assume that each sub-portfolio has target return

h(i) = 1.05 for i = 1, . . . , N with N = 20 years.

The random variable time-until-death captures the difference between the insured’s age

at death and the age at subscription. It gives an idea of the potential length of the life

annuity. We suppose that the cumulative distribution of time-until-death is P(ti) = 1−e−γt3i
defined on the years ti = i for i = 1, 2, . . . , 20. This specification ensures a unimodal

distribution with a peak at around ten years if we set γ = 0.001. Importantly, the weight

of each sub-portfolio i depends on the proportion of survivors at the horizon-year ti, i.e.

λ(i) =
1− P (ti)∑20

i=1 (1− P (ti))
.

If the company aims at reducing the risk of each sub-portfolio, it can consider a (classical or

risk-adjusted) mean-variance approach for each return process u(i) satisfying E[u
(i)
ti

] = 1.05

for i = 1, . . . , 20.

Similarly to Subsection 5.2, we scale standard deviations, Sharpe ratios and modified

Sharpe ratios in the two approaches by the weights λ(i) for i = 1, . . . , 20. In so doing, we

account for the amount of surviving subscribers at each horizon. As to transaction costs,

we set c = $0.003 and C = $0.006. Results are summarized in Figure 5.3.

In the top-left panel of the figure, the excess standard deviation of risk-adjusted sub-

portfolios is more evident at intermediate horizons and vanishes when maturities approach

20 years, in agreement with the scaling induced by the time-until-death. The top-right

panel highlights the difference in transaction costs between the two frontiers. The conve-

nience of the risk-adjusted approach comes from the replication of one risky payoff instead

of the N = 20 payoffs required by the classical mean-variance optimal strategies. The com-

mission shrinkage affects the portfolio performance, as we can note from the Sharpe ratios

and the modified Sharpe ratios in the bottom panels. Without considering the transaction

costs, the standard mean-variance approach outperforms the optimal risk-adjusted strat-

egy. Nevertheless, the introduction of the commissions reverses the conclusion: the classical

mean-variance optimal portfolio turns out to have a lower (and sometimes negative) modi-

fied Sharpe ratio. This effect is mostly due to the number of payments in the life annuity

contract, which requires the replication of many risky securities.

6 Mean-variance frontier and optimal consumption-investment

We provide a microeconomic foundation of the risk-adjusted mean-variance frontier of re-

turns described by Corollary 6. Similarly to Cochrane (2014) we show that optimal invest-

ments from date s to date T produce return processes that lie on our mean-variance frontier.
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In particular, such returns turn out to be a linear combination of the return processes g(s)

and f(s) in agreement with Theorem 9. Moreover, an analogue of time consistency property

of risk-adjusted mean-variance returns can be retrieved in optimal investment policies.

6.1 Optimal consumption-investment problem

We consider the optimization problem of an agent that decides a consumption policy c =

{cτ}τ∈[s,T ]. The agent is endowed with a positive initial wealth ws in L0(Fs) and receives an

exogenous income stream i = {iτ}τ∈[s,T ]. The agent invests the initial wealth by selecting a

payoff stream (or wealth profile) with value w = {wτ}τ∈[s,T ] and, at any instant τ , the agent

consumes cτ = iτ + wτ . All processes are adapted. To make the investment affordable, ws

is required to satisfy the budget constraint

ws = Es
[∫ T

s
Ms,τwτdτ

]
.

The agent has an instantaneous quadratic utility

U (cτ ) = −1

2
(bτ −Ms,τ cτ )2 ,

where the process b = {bτ}τ∈[s,T ] defines a time-varying adapted bliss point. Moreover, the

investor deflates the consumption cτ by exploiting the pricing kernel Ms,τ . This attitude

reflects the use of returns discounted by the log-optimal portfolio in Sections 3 and 4. The

intertemporal consumption-investment optimization problem to solve is

max
c

Es
[∫ T

s
U (cτ ) dτ

]
sub ws = Es

[∫ T

s
Ms,τwτdτ

]
, cτ = iτ + wτ .

The related reduced form is

max
w

Es
[∫ T

s
U (iτ + wτ ) dτ

]
sub ws = Es

[∫ T

s
Ms,τwτdτ

]
. (13)

Proposition 10 If in Problem (13) the income stream is null and the bliss point is

bτ =
βsπτ (1T )

T − s
Ms,τ ∀τ ∈ [s, T ]

with βs ∈ L0(Fs), then the optimal payoff stream w∗ defines the risk-adjusted mean-variance

return in [s, T ] given by

(T − s)w∗

ws
=
βsπs (1T )

ws
f(s) +

(
1− βsπs (1T )

ws

)
g(s).
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Proof of Proposition 10. The Lagrangian function is

L = Es
[∫ T

s
(U (iτ + wτ )− λsMs,τwτ ) dτ

]
+ λsws

with ws ∈ L0(Fs). Note that L is a function of λs and wτ (ω) for all times τ ∈ [s, T ]

and states ω ∈ Ω. The first-order condition implies that (at any time and in any state)

U ′ (iτ + wτ )− λsMs,τ = 0. Therefore,

wτ =
(
U ′
)−1

(λsMs,τ )− iτ =
bτ
Ms,τ

− λs
Ms,τ

− iτ =
bτ
Ms,τ

− λsgτ (s)− iτ ,

thanks to the quadratic utility. The constraint over ws delivers

ws = Es
[∫ T

s
Ms,τ

(
bτ
Ms,τ

− iτ
)
dτ

]
− λsEs

[∫ T

s
Ms,τgτ (s)dτ

]
= Es

[∫ T

s
Ms,τ

(
bτ
Ms,τ

− iτ
)
dτ

]
− λs(T − s)

and so

λs =
1

T − s
Es
[∫ T

s
Ms,τ

(
bτ
Ms,τ

− iτ
)
dτ

]
− ws
T − s

.

As a result,

wτ =
bτ
Ms,τ

− iτ −
(

1

T − s
Es
[∫ T

s
Ms,τ

(
bτ
Ms,τ

− iτ
)
dτ

]
− ws
T − s

)
gτ (s)

and we denote it by w∗τ . Under the assumptions about income and bliss points,

w∗τ =
βsπτ (1T )

T − s
−
(

1

(T − s)2
Es
[∫ T

s
e−r

T
τ (T−τ)Ms,τβsdτ

]
− ws
T − s

)
gτ (s)

=
βsπs (1T )

T − s
πτ (1T )

πs (1T )
−
(

βs
(T − s)2

πs (1T )Es
[∫ T

s
Gs,τdτ

]
− ws
T − s

)
gτ (s)

=
βsπs (1T )

T − s
fτ (s)−

(
βsπs (1T )

T − s
− ws
T − s

)
gτ (s).

Consequently, the optimal payoff stream w∗ is associated with the return process defined,

for all τ ∈ [s, T ], by

(T − s)w∗τ
ws

=
βsπs (1T )

ws
fτ (s)−

(
βsπs (1T )

ws
− 1

)
gτ (s),

which lies on the risk-adjusted mean-variance frontier in [s, T ] by Theorem 9.

28



6.2 Time consistency of optimal cashflows

Inspired by the time consistency of the risk-adjusted mean-variance frontier shown in

Corollary 8, we investigate whether a similar feature is kept in the optimal consumption-

investment problem. Specifically, once Problem (13) is solved by a payoff stream w∗ =

{w∗τ}τ∈[s,T ] on the time interval [s, T ], we assess whether the restriction of w∗ is also opti-

mal on the subperiod [s, t] with t 6 T . In particular, we consider the problem

max
w

Es
[∫ t

s
U (iτ + wτ ) dτ

]
sub w̃s = Es

[∫ t

s
Ms,τwτdτ

]
, (14)

where w̃s is a given initial wealth in L0(Fs).

Proposition 11 Under the assumptions of Proposition 10, if w∗ solves Problem (13) with

initial wealth ws, then it also solves Problem (14) with initial wealth

w̃s =
t− s
T − s

ws.

Proof of Proposition 11. Following the same steps as in the proof of Proposition 10,

the Lagrange multiplier is

λs =
1

t− s
Es
[∫ t

s
Ms,τ

(
bτ
Ms,τ

− iτ
)
dτ

]
− w̃s
t− s

.

Therefore, for any τ ∈ [s, t], the optimal payoff stream is

w∗τ =
βsπτ (1T )

T − s
−
(

1

(T − s)(t− s)
Es
[∫ T

s
e−r

T
τ (T−τ)Ms,τβsdτ

]
− w̃s
t− s

)
gτ (s)

=
βsπs (1T )

T − s
πτ (1T )

πs (1T )
−
(

βs
(T − s)(t− s)

πs (1T )Es
[∫ T

s
Gs,τdτ

]
− w̃s
t− s

)
gτ (s)

=
βsπs (1T )

T − s
fτ (s)−

(
βsπs (1T )

T − s
− ws
T − s

)
gτ (s).

and it coincides with the one prescribed by Proposition 10.

The risk-adjusted mean-variance return which is optimal on the investment period [s, T ]

is still optimal on the subperiod [s, t] for the same investor with a smaller initial endowment.

The intuition behind the lower initial wealth is that the fraction (t − s)/(T − s) of ws is

employed to obtain the cashflow w∗ on [s, t]. The remaining portion, namely (T−t)/(T−s),
is left for the last subinterval [t, T ]. The nonlinear dependence of the optimal return from

the initial endowment is actually a well-known issue for quadratic investment problems.

See, for instance, Mossin (1968).
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An analogous reasoning to Proposition 11 shows that w∗ is optimal also on the terminal

subperiod [t, T ], according to

max
w

Es
[∫ T

t
U (iτ + wτ ) dτ

]
sub ŵs = Es

[∫ T

t
Ms,τwτdτ

]
, (15)

where w̃s belongs to L0(Fs). Indeed, the following result holds.

Corollary 12 Under the assumptions of Proposition 10, if w∗ solves Problem (13) with

initial wealth ws, then it also solves Problem (15) with

ŵs =
T − t
T − s

ws.

Although Problem (15) involves the time window [t, T ], the conditional expectation in

the objective function and in the budget constraint is taken at the previous date s. The

pricing kernel is based on s as well. Accordingly, ŵs is Fs-measurable and it represents the

portion of initial wealth assigned to the final subperiod. The time consistency property of

w∗ that we show requires, in fact, the same information set. This approach is in line with

precommitment in the language of Strotz (1955).

In general, if the decision were contingent at time t, a more profitable optimal investment

would arise in the final time period. Hence, our construction is consistent with a rational

inattention approach, as described in Sims (2003) or Abel, Eberly, and Panageas (2013).

Indeed, one can assume that our investor makes a decision at time s for the whole period

[s, T ] because of a limited ability to process the incoming information at time t. In other

words, observing the portfolio value at t may be costly and transaction costs may discourage

changes in the investment policy.

7 Conclusions

We obtain a conditional orthogonal decomposition of asset return processes in the spirit of

Hansen and Richard (1987) by employing the series of returns discounted by the log-optimal

portfolio. The associated risk-adjusted mean-variance frontier features an important time

consistency property, with practical advantages for multi-period portfolio optimization in

terms of replication costs. The whole construction lies within the linear pricing paradigm

and it is consistent with the consumption-investment plan of an agent that maximizes a

quadratic utility.

Introducing further specific dynamics of interest rates, beyond Vasicek model, may

constitute an interesting avenue for future research. Such dynamics may convey special

shapes of the mean-variance frontier that could improve the applicability of our construction

in specific contexts.
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A Forward measure and numéraire changes

The T -forward measure F is constructed by employing as numéraire the no-arbitrage price
of a zero-coupon T -bond. F is equivalent to the risk-neutral measure Q and its Radon-
Nikodym derivative with respect to Q on FT is

JT =
dF

dQ
=

e−
∫ T
0 Yτdτ

E
[
LT e

−
∫ T
0 Yτdτ

] = er
T
0 T−

∫ T
0 Yτdτ .

See Theorem 1 and Example 2 in Geman, El Karoui, and Rochet (1995). Moreover,

Jt = Et [Lt,TJT ] = er
T
0 T−rTt (T−t)−

∫ t
0 Yτdτ ∀t ∈ [0, T ]

and we set Jt,T = JT /Jt. The Radon-Nikodym derivative of F with respect to P on FT is
GT = dF/dP = JTLT , which belongs to L2(FT ). From Jt = Et[Lt,TJT ], we have

Gt = Et [GT ] = Et [LTJT ] = LtJt ∀t ∈ [0, T ]

and we define Gt,T = GT /Gt.

B Additional simulations: reference market with two stocks

We provide a generalization of the reference market of Subsection 5.1 by allowing for two
risky stocks. We, then, repeat the simulations of Subsection 5.2 with 6 horizons. General-
izations with a higher number of assets can be developed in a similar way.

In the system of equations (11) under the measure Q, we consider an additional Wiener
process V Q, independent of WQ and ZQ and a novel stock price St with volatility κ > 0.
The parameter ψ provides the instantaneous correlation between the new stock and the
zero-coupon T -bond, while χ gives the instantaneous correlation with the old stock:

dSt = StYt dt+ κSt

[
ψdWQ

t + χ−φψ√
1−φ2

dZQt +
√

1− ψ2 − (χ−φψ)2
1−ψ2 dV Q

t

]
dXt = XtYt dt+ ηXt

[
φdWQ

t +
√

1− φ2dZQt
]

dπt (1T ) = πt (1T )Ytdt− πt (1T )B(t, T )σdWQ
t .

The orthogonal shocks dWQ
t , dZQt and dV Q

t come from the Cholesky factorization of the
3× 3 correlation matrix of the original Brownian motions.

The market price of risk is the multivariate process [νW , νZ , νV ]′ with the first two
entries as in eq. (12) and

νVt =
µSt − Yt − κψνWt −

χ−φψ√
1−φ2

κνZt

κ
√

φ2−2φψχ+ψ2+χ2−1
φ2−1

,
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where µS is the adapted drift process of dSt/St under the physical measure. The Radon-
Nikodym derivative of Q with respect to P , the Novikov condition and the pricing kernel
dynamics are modified to accommodate the extra component in the market price of risk.
The other assumptions and the parameter choices of Subsection 5.1 are kept. In addition,
we set κ = 0.15, ψ = 0.1, χ = −0.3 and µSt = Yt + 0.08.

We, then, repeat the six-semester mean-variance optimization of Subsection 5.2 with
the constants c = $0.002 for trading costs and C = $0.02 for replication costs. Results are
displayed in Figure B, where we represent (scaled) standard deviations, (scaled) Sharpe ra-
tios and (scaled) modified Sharpe ratios across horizons, transaction costs and units of risky
assets in each sub-portfolio, where risky assets coincide with the log-optimal portfolio (in
the risk-adjusted approach) and the portfolio replicating the pricing kernel (in the classical
frontier). As the modified Sharpe ratio shows, in this simulation the risk-adjusted approach
outperforms the standard mean-variance optimization when replication and trading costs
are taken into account.
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Figure 3: Red (resp. blue) lines, bars and boxes refer to the classical (resp. risk-adjusted) mean-
variance solution for the problem of Appendix B. Standard deviations, Sharpe ratios and modified
Sharpe ratios are scaled by the weights λ(i) for all i = 1, . . . , 6. 90% confidence intervals for these
variables are represented. The top-right panel represents the transaction costs of the risk-adjusted
portfolio (blue for replication costs, light blue for trading costs) and of the classical mean-variance
portfolio (red for replication costs, light red for trading costs). Medium panels contain the box-
and-whisker plot at 25th and 75th percentiles and the bar plot of loadings |α(i)| and |α̃(i)| at all
horizons.
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