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Abstract. An important class of exchange-traded derivatives are options on monthly cal-
endar swaps on commodity futures. They are structured as Average Price Options (APO)
on futures, with monthly averaging over the first nearby contract. In this paper we study the
relative value of these instruments to vanilla options on commodity futures, focusing on the
crude oil futures markets. We derive an analytical approximation for the implied volatility
of forward start APOs in the local volatility model, which takes into account the skew in
the futures markets. Using this result we perform an empirical study of the exchange-traded
options on monthly calendar swaps on crude oil futures, comparing the theoretical predic-
tion for the level and skew of the WTI monthly calendar swap options against market data.
The empirical study suggests that the options on monthly calendar swaps trade at a small
premium relative to other options on the underlying futures.

1. Introduction

Futures prices volatility is one of the most important features of the futures markets. An

accurate understanding of the futures price volatilities and their dynamics plays an important

role in the risk management of futures based strategies, in setting margin requirements and

for pricing derivatives on futures. Commodity markets are prone to significant price swings,

both in normal markets, and especially during financial crisis periods. An empirical study

of the volatility for several commodity futures has been presented by Clewlow et al (2000)

in [9].

There are two main measures of futures volatility: realized price volatilities (historical

volatility), and implied volatilities, implied from the prices of options on futures. Implied

volatilities are defined in terms of prices of European options on futures, and are used in

model building to calibrate models which are used also for pricing American options and

exotic derivatives on futures. For WTI crude oil futures, the implied volatilities have to be

determined from American option prices, which are the most commonly traded instruments

in these markets. Figure 1.1 shows a recent plot of the term structure of the implied volatil-

ities of WTI futures, determined from the prices of exchange-traded American options on

these futures (LO), produced by QuikStrike and available at www.cmegroup.com.

The most widely traded exotic options on commodity futures are the Average Price Op-

tions (APO), also known as Asian options. They are particularly popular in the energy
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Figure 1.1. The term structure of WTI futures and of their implied volatil-
ities determined from the American options (LO). The nearby option LOH1
expires on 17-Feb-21 (DTE 16). Market data as of 1-Feb-2021. (Source: Quik-
Strike)

futures markets, such as crude oil, heating oil, natural gas and power. The APOs are

path-dependent options as their payoff depends on the average of the contract prices over

a specified period, in contrast to the vanilla European and American options, for which the

payoff depends only on the contract price at exercise date.

The APOs are popular in practice for two main reasons:

• Their payoff reflects more closely the structuring of typical energy transactions, which

take place over a month via multiple deliveries. Such transactions are priced based

on average rather than on terminal price.

• APOs are generally cheaper than the European vanilla options with the same expiry

date, underlying and volatility, as the averaging has the effect of smoothing down

price spikes. This makes them more attractive as risk management instruments.

The APOs can be also used to imply volatilities, similar to the more commonly used

European and American volatilities. Industry practitioners use options on monthly calen-

dar swaps and approximate them with European options, in the calibration of the futures

volatility surface. For illustration we show in Figure 2.1 recent plots of the term structure of

the implied volatility of options on monthly calendar futures (AO), produced by QuikStrike

and available at cmegroup.com. These plots correspond to the same date 1-Feb-2021 as the

plots in Figure 1.1.

Comparing the volatilities implied from American options in Fig. 1.1 and from options on

calendar spreads in Fig. 2.1 they appear to have similar shapes. It is of interest to compare

more closely these two measures of volatilities implied by these instruments, and examine
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their relative value. In this paper we would like to compare the implied futures volatilities

determined from vanilla options and APOs.

Clearly, any analysis of this type is model dependent, as the relationship between these

volatilities is fixed, once the dynamics of the futures process is specified. We will make the

economical assumption that the futures price process follow a local volatility modification

of the Black model, and use a novel analytical prediction for the APO implied volatility

derived recently in [25]. This prediction expresses the APO implied volatility in terms of

the usual implied volatility, under the assumption that the futures price process follows the

local volatility model. We perform an empirical comparison of this theoretical result with

data. The results could shed further light on market mechanisms impacting APOs pricing,

such as relative market demand/offer for these instruments, and the use of the APOs for

risk management purposes.

The paper is organized as follows. Section 2 describes the mechanics of the exchange-

traded APOs, on the example of WTI crude oil AO options. Section 3 presents an analytical

approximation for the APO implied volatility assuming that the futures follow a stochastic

process described by the local volatility model. The special feature of exchange-traded APOs

of changing underlying during the averaging period is handled by introducing a special

basket approximation. In Section 4 we compare the theoretical results of Sec. 3 against the

empirical market implied volatilities of the exchange-traded APOs. We predict the ATM

volatility and skew of the APO volatility in terms of the implied volatility determined from

the American options markets. Section 5 presents a discussion of the results and summarizes

the conclusions of the study.

2. Exchange-traded Average Price Options on futures

We describe in this section the details of the payoff of the exchange traded Average Price

Options (APO) on futures, with monthly arithmetic price averaging. Several APO’s are

traded on the CME Group Exchange1 on WTI crude oil futures (AO), Brent Financial

(BT), Dated Brent (Platts) Financial and Dubai Crude Oil (Platts) Financial.

For definiteness we will describe them on the example of the options on WTI crude oil

futures, which are among the most liquid options listed on the CME Group Exchange.

The CME Group exchange lists Average Price Options, which are structured as European-

style options on the WTI Financial Futures contracts (CS), also known as Calendar Swap

Futures. The averaging style is arithmetic with daily frequency and the averaging period is

monthly, at the settlement price of the first nearby futures contract. An example showing

1www.cmegroup.com.
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Figure 2.1. Term structure of WTI monthly calendar swaps and of their
implied volatilities determined from the Average Price options (AO) prices.
The front option AOG1 expires on 26-Feb-21 (DTE 25). Market data as of
1-Feb-2021. (Source: QuikStrike)

Table 1. The first few Average Price Options AO on CS futures (monthly
calendar swap) and their underlying futures CL as traded on 22-May-2020.
The time averaging period [T1, T2] [months] is listed for each CS contract.

index AO option Underlying CL futures T1 T2
1 Jul-20 (Aug-20, Sep-20) 1-Jul-20 (11/4) 31-Jul-20 (21/4)
2 Aug-20 (Sep-20, Oct-20) 1-Aug-20 (21/4) 31-Aug-20 (31/4)
3 Sep-20 (Oct-20, Nov-20) 1-Sep-20 (31/4) 30-Sep-20 (41/4)
4 Oct-20 (Nov-20, Dec-20) 1-Oct-20 (41/4) 31-Oct-20 (51/4)

in detail the averaging is discussed in Appendix A.1. These options are called WTI Average

Price Options and are denoted AOF1 (Jan-21), AOG1 (Feb-21), AOH1(Mar-21), etc.

Table 1 lists some of the first few AO Average Options and the corresponding WTI Cal-

endar Swap futures (CS) which are their underlyings. See Fig. 2.1 for the term structure of

the CS futures and the implied volatilities of the AO options as of 1-Feb-21.

These options are fixed-strike forward start Asian options which pay at time T2 the amount

PayC = max(AT1,T2 −K, 0) (call options)(1)

PayP = max(K − AT1,T2 , 0) (put options)

where AT1,T2 = 1
n

∑n
i=1 Si is the daily average price of the underlying Si over the averaging

period [T1, T2]. Both call and put options are traded. The dates T1, T2 are the first and the

last day of the contract month, respectively. The asset price Si is the settlement price of the

nearby crude futures contract on day ti.
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3. Pricing of the exchange-traded Average Price Options on futures

Pricing options on futures requires that a stochastic model is specified for the dynamics

of the futures prices. Several types of models are used in the literature for this purpose.

Spot models describe the futures dynamics and the term structure of the futures curve as

following from the dynamics of the stochastic spot price and of the convenience yield. This

modeling approach is closer to economic fundamentals. Typical models of this type are the

Gabillon (1991) [16] and Schwartz (1997) [26] models. See also Gibson and Schwartz (1990)

[18] for an earlier version of such models.

For the purpose of pricing derivatives on futures, it is more convenient to adopt models

where the currently observed futures curve is an input to the model. In these models the

futures curve is treated as the underlying stochastic variable, with a specified dynamics.

This class of models are known as the Markov futures models, and are inspired by the HJM

models used for yield curve modeling. Examples of models of this type are the Cortazar

and Schwartz (1994) [11] model and the Clewlow and Strickland (1999) [7] model. Andersen

(2010) [1] gives an overview with aspects of practical use for derivatives pricing. Textbook

treatments are given by Clewlow, Strickland [8], Geman [17] and Eydeland [13].

In the simplest formulation a typical Markov futures model specifies the dynamics of the

futures prices Ft(T ) with delivery date T as a stochastic process in the risk-neutral measure

(2)
dFt(Ti)

Ft(Ti)
= α(Ti)[σse

−βs(Ti−t)dWs(t) + σ`e
−β`(Ti−t)dW`(t)]

where the short and long drivers dWs(t), dW`(t) are correlated with correlation ρ. The

Schwartz (1997) two-factor model [26] can be put into such a form, see the Appendix of [7].

This dynamics can be also obtained by a PCA analysis of the futures curve dynamics.

This model generates log-normal dynamics and thus cannot accommodate commodity

futures smiles. Smile effects can be taken into account either by adding stochastic volatility

as for example in the Eydeland, Geman (1998) model, similar to the Heston model, by

adding a regime switching model [1] or by introducing a local volatility model. See Section

2.5 in [1] for a discussion of local volatility modeling for commodity futures. The simplest

approximation of this type is a local volatility model modification of the classical Black

model for futures dynamics [5] in the risk-neutral measure

(3) dFt(Ti) = σ(t, Ti, Ft(Ti))Ft(Ti)dWt

where σ(t, Ti, F ) is a local volatility function, and the initial condition is given by the current

futures price F0(Ti) = F (Ti). This model reduces to the Black model [5] in the limit of

a constant local volatility σ(t, T, F ) = σ. Although the model (3) does not have mean

reversion and thus cannot be expected to describe satisfactorily the joint dynamics of the



6 DAN PIRJOL

futures contracts, it should be a good approximation for pricing derivatives on one or two

futures contracts, which is the case we consider here.

As discussed in the previous section, exchange traded APOs are fixed strike forward start

Asian options, with payoffs of the form (1). Several valuation approaches for forward start

Asian options have been proposed in the literature. Assuming that the underlying asset

follows a geometric Brownian motion dSt = σStdWt + (r − q)Stdt (Black-Scholes model),

an analytical approximation based on a Taylor expansion in maturity has been proposed by

Bouaziz, Briys and Crouhy (1994) [6]. Their result has been corrected by Tsao, Chang and

Lin (2003) [28] who identified a missing term in the result of [6]. Both these works consider

so-called floating-strike forward start Asian options, which are defined by a payoff at time

T2 of the form

(4) PayC−FS = max(κST2 − AT1,T2 , 0) , PayP−FS = max(AT1,T2 − κST2 , 0) .

This is different from the payoff of the exchange-traded APOs, see Eq. (1).

Vanmaele et al. (2006) [29] considered forward starting Asian options with discrete time

averaging under the Black-Scholes model, and derived precise upper and lower bounds on the

prices of these instruments. They considered the fixed-strike payoff required here. We com-

pared the analytical approach discussed below on their benchmark cases, see the discussion

below.

Both [28] and [29] assume a log-normal dynamics for the underlying futures, and thus

do not capture the skew effects in the APO pricing. We present next a simple analytical

approximation which captures both the level and the skew of the futures implied volatility.

3.1. Analytical approximation for the forward start APOs. Pricing of forward start

Asian option prices under the local volatility model (3) has been studied using a short

maturity (equivalently, small volatility) expansion in [25]. In order to make the presentation

self-contained we give a brief summary of this approach. Under risk-neutral valuation, option

prices are given by the discounted expectation of the payoff in the risk-neutral measure.

Explicitly, for call options

(5) C(K,T1, T2) = e−rT2E

[(
1

T2 − T1

∫ T2

T1

Stdt−K
)+
]
.

and for put options

(6) P (K,T1, T2) = e−rT2E

[(
K − 1

T2 − T1

∫ T2

T1

Stdt

)+
]
.

Reference [25] derived the leading asymptotics of these option prices in the limit T1, T2 → 0

at fixed ratio τ = T1/T2, under the assumption that the underlying asset St follows a local

volatility model. This asymptotics is most conveniently expressed in terms of the equivalent
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log-normal implied volatility, or equivalent Black-Scholes volatility of a forward start Asian

option. See Section 3.4 in [25] for more details. We give a brief summary of the relevant

results below.

Denote ΣLN(K,T1, T2) the equivalent log-normal implied volatility of a forward start Asian

option with strike K and averaging period [T1, T2]. This is defined as that volatility which

reproduces the price of the Asian option when substituted in the Black-Scholes formula for

an European option with maturity T2 on an underlying with forward price

(7) A(T1, T2) =
S0

(r − q)(T2 − T1)
(
e(r−q)T2 − e(r−q)T1

)
which is assumed to follow Black-Scholes dynamics with constant volatility ΣLN, and risk-

free rate and dividend yield r, q. In the model (3) Specializing to the dynamics (3) where

futures are martingales, we obtain A(T1, T2) = S0 by taking r − q → 0.

Considering for example a forward start Asian call option, its price can be written in

Black-Scholes form as

(8) C(K,T1, T2) = CBS(S0, K,ΣLN(K,T1, T2), T2)

with

CBS(S0, K,ΣLN, T ) = e−rT [A(T1, T2)N(d1)−KN(d2)](9)

d1,2 =
1

ΣLN

√
T

(
log

A

K
± 1

2
Σ2

LNT

)
.(10)

It is convenient to consider an expansion in log-strike x = log(K/S0). The first two terms

are the level and skew

(11) ΣLN(K,T1, T2) = ΣA(T1, T2) + xsA(T1, T2) +O(x2) .

A similar expansion can be written for the implied volatility of the European options on

futures

(12) ΣBS(K,T ) = σATM + xsE +O(x2)

The short maturity asymptotics of the option prices derived in [25] translates into an

exact result for the equivalent log-normal implied volatility of a forward start Asian option

in the limit T1,2 → 0 at fixed ratio τ = T1/T2. The precise statement is Proposition 3.17 in

[25], which expresses ΣLN in terms of a rate function Ifwd(K,S0, τ) given by the solution of

a variational problem in Theorem 2.2 of [25]. The rate function Ifwd(K,S0, τ) simplifies in

the particular case of the Black-Scholes model as in Theorem 3.7 of [25]. The Black-Scholes

model is analyzed in detail in [25] and the properties of the rate function for this case are

studied in various regimes of small and large strikes in Section 3 of [25].

We are interested here in the general case of the local volatility model. For this case the

rate function is given in Proposition 2.5 of [25] and is expressed as an extremal problem over
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a simpler rate function I(x,K) related to Asian options with averaging over [0, T ]. Here

we simplify this result further and put into a form which contains only market observable

quantities.

The following result gives a relation between the ATM level and skew of the equivalent

log-normal volatility of a forward start Asian option and the corresponding parameters of

the European implied volatility.

Proposition 3.1. Assume that the futures prices follow a local volatility model (3) where the

local volatility function σ(t, T, x) satisfies the technical conditions in Eq. (2.7) of [25]. Define

the volatility level ΣA and skew sA of a forward start Average Price Option with averaging

period [T1, T2] as in (11). In the short maturity limit, these parameters are related to the

corresponding parameters σATM, sE of the vanilla implied volatility for maturity T2, defined

as in (12), as

ΣA = σATM

√
1 + 2τ

3
(13)

sA =

√
1 + 2τ

3

{
1

10
σATM

(1− τ)2

(1 + 2τ)2
+

3

5
sE

2− 4τ + 17τ 2

(1 + 2τ)2

}
(14)

where τ = T1/T2 < 1 is the ratio between the start and end dates of the averaging period.

Proof. The proof is given in the Appendix. �

The relation (13) can be formulated equivalently as follows: the price of an ATM forward

start Asian option with averaging period [T1, T2] and payout at T2 is equal to the price of

an European option with volatility σATM and maturity T1 + 1
3
(T2 − T1). This follows from

writing this equation as σ2
ATM[T1 + 1

3
(T2− T1)] = Σ2

AT2. This reproduces a rule of thumb for

pricing forward start Asian options used by practitioners, which is thus seen to follow as an

exact asymptotic result in the short maturity limit.

The relation (14) extends this result to the skew of an ATM forward start Asian option.

This is seen to consist of one component proportional to the ATM vanilla implied volatility,

and a component proportional to the vanilla skew. In the Black-Scholes model the European

options skew vanishes sE = 0 and the result (14) reduces to

(15) ΣLN(K,S0, τ) = σATM

√
1 + 2τ

3

(
1 +

(1− τ)2

10(1 + 2τ)2
x+O(x2)

)
This reproduces the result quoted in Remark 3.15 in [25] in the Black-Scholes model.

Consider also the limiting case of an Asian option with averaging period [0, T ]. For this

case we have τ = 0 and the expression (14) reproduces the result in Remark 20 in [24] for



TERM STRUCTURE OF CALENDAR SWAP VOLATILITY AND SKEW 9

the level and skew of an Asian option with averaging starting at time zero

ΣATM |τ=0 =
1√
3
σATM(16)

sA|τ=0 =
1√
3

(
1

10
σATM +

6

5
sE

)
.(17)

Finally, in the τ → 1 limit the forward start Asian option approaches an European option.

The relations (14) reduce to the expected limiting values for this case

ΣATM |τ=1 = σATM , sA|τ=1 = sE .(18)

3.2. Basket approximation for two-futures averages. The result of the previous section

cannot be applied directly to exchange-traded APOs. Their payoffs are linked to the monthly

average of the nearby contract, which switches once during the averaging period. This feature

makes them in effect two-futures derivatives. Consider as an illustration the average price

option AO-Jul-20. This is a forward start Asian option, with averaging period [T1, T2] starting

on 1-Jul-20 and ending on 31-Jul-20. The averaging is performed over the settlement prices

of the CL-Aug-20 contract until 21-Jul-20, and over the settlement prices of the CL-Sep-20

contract for the remainder of the averaging period.

We propose to approximate the actual average over the first nearby contract AT1,T2 with the

time-average of a basket of the two futures contracts with uniform composition throughout

the averaging interval and weights proportional to the number of days each asset contributes

to the average.

We state this approximation in a more general way as follows.

Definition 3.1 (Basket approximation for two-futures APOs). Assume that S1,2(t) are mar-

tingales in the risk neutral measure, thus Si(0) = E[Si(t)] for any t > 0. Under the basket

approximation the underlying A of the APO is approximated with Ã, defined as below.

(19) A =
1

n

n∑
i=1

X(ti) , Ã :=
1

n

n∑
i=1

Y (ti)

where

(20) X(ti) =

{
S1(ti) , 1 ≤ i ≤ n1

S2(ti) , n1 + 1 ≤ i ≤ n1 + n2

and

(21) Y (ti) = w1S1(ti) + w2S2(ti) , w1,2 =
n1,2

n1 + n2

This approximation assumes that S1(t) is traded for the entire duration of the averaging

period. In practice the first nearby contract stops trading shortly after n1. For the purpose

of applying this approximation we will assume that both contracts are traded for the entire

averaging period.
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We note that the expectations of A, Ã are equal

(22) E[A] = E[Ã] = w1S1(0) + w2S2(0) .

This property follows immediately from the martingale property of the assets S1,2(t).

The equality (22) implies that the prices of two futures contracts which deliver A and Ã

at maturity are equal. In particular, the price of the CS contract is reproduced exactly in

terms of the prices of the futures contracts which contribute to the average

(23) Fi = w1F
(i)
1 + w2F

(i)
2

with i the CS contract month index, and F
(i)
1,2 are the current prices of the futures which

participate in the averaging process for the given month.

What is the error introduced by substituting A → Ã on option prices? We give next an

upper bound on the error of the basket approximation for option prices.

Proposition 3.2. Denote C(K,T ) = E[(A−K)+] and C̃(K,T ) = E[(Ã−K)+] the (undis-

counted) prices of Asian call options with payoffs linked to the averages A, Ã respectively.

The approximation error of using Ã instead of A when pricing Asian options is bounded

as

(24) |C̃(K,T )− C(K,T )| ≤ E|Z| ≤
√
V ar(Z)

where

(25) Z := Ã− A =
1

n

n∑
i=1

qi(S1(ti)− S2(ti))

with time-dependent weights

(26) qi =

{
−w2 , 1 ≤ i ≤ n1

+w1 , n1 + 1 ≤ n1 + n2

A similar result holds for put options. The random variable Z has zero mean E[Z] = 0.

Proof. We have

Ã− A =
1

n

n1∑
i=1

(
n1

n1 + n2

S1(ti)− S1(ti) +
n2

n1 + n2

S2(ti)

)
(27)

+
1

n

n1+n2∑
i=n1+1

(
n2

n1 + n2

S2(ti)− S2(ti) +
n1

n1 + n2

S1(ti)

)

=
1

n

n1∑
i=1

n2

n1 + n2

(S2(ti)− S1(ti)) +
1

n

n1+n2∑
i=n1+1

n2

n1 + n2

(S1(ti)− S2(ti))

which reproduces the result in (25).
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Furthermore, we have

|E[(Ã−K)+]− E[(A−K)+]| ≤ E[|(Ã−K)+ − (A−K)+|](28)

≤ E[|Ã− A|] = E[|Z|]

The second inequality in (24) follows by the Jensen’s inequality.

�

The L1 norm of Z is bounded from above as

(29) E|Z| ≤ 1

n

n∑
i=1

|qi||S1(ti)− S2(ti)| ≤
1

n

n∑
i=1

|S1(ti)− S2(ti)|

If both S1,2 are traded for the entire averaging period, this expectation can be expressed as

the sum of ATM call and put Asian options on the spread between the two assets (ATM

averaged straddle on spread)

(30) CATM(K = F, T ) + PATM(K = F, T ) =
1

n

n∑
i=1

E[|S1(ti)− S2(ti)|]

The basket approximation is amenable to analytical treatment since we have powerful

asymptotic methods for studying the distribution of a basket of assets. In the local volatility

model the short maturity asymptotics of baskets was studied by Avellaneda et al. [3], Henry-

Labordére [20] and and by Bayer and Laurence [4]. The latter authors derived also O(T )

corrections to the short maturity asymptotics, and demonstrated the good numerical perfor-

mance of the asymptotic formulas. Tail asymptotics of baskets of log-normally distributed

assets have been studied by Gulisashvili and Tankov [19].

We give a brief summary of the short maturity asymptotics for baskets, following [3] and

[4], and extract from their results an analytical result for the ATM skew of the basket implied

volatility for a basket of two assets following correlated local volatility models.

Define the basket of two assets B = w1S1 + w2S2. Assume that the two assets are

martingales and follow correlated local volatility models dSi(t)/Si(t) = σi(Si)dW
(i)
t with

corr(dW
(1)
t , dW

(2)
t ) = ρ.

Proposition 3.3. Denote σBS(z, T ) the implied volatility of options on the basket with strike

K and log-strike z = log(K/B(0)) with B0 = w1S1(0)+w2S2(0). The basket implied volatility

is expanded around the ATM point z = 0 as

(31) σ
(B)
BS (z, T ) = σB + sBz +O(z2) +O(T )

The parameters σB, sB can be expressed in terms of the basket components’ ATM implied

volatilities and skews σ1,2, s1,2, defined by expanding the implied volatilities of the two assets

as σ
(i)
BS(x) = σi + six+O(x2) with x = log(K/Si(0)).
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The leading order short maturity basket ATM implied volatility is

(32) σ2
B = p21σ

2
1 + p22σ

2
2 + 2ρp1p2σ1σ2

where pi = w1Si(0)/B(0).

The ATM skew of the basket implied volatility is

(33) sB(ρ) =
1

2σ3
B

(
κ0 + κ1ρ+ κ2ρ

2
)

where

κ0 = 2p31(σ
3
1s1) + p1p2

(
p1σ

2
1 − p2σ2

2

)2
+ 2p32(σ

3
2s2)(34)

κ1 = −2p1p2σ1σ2
{

(p1 − p2)[p1σ2
1 − p2σ2

2]− 2p1σ1s1 − 2p2σ2s2
}

(35)

κ2 = p1p2σ1σ2
{

(p1 − p2)2σ1σ2 + 2p2σ2s1 + 2p1σ1s2
}
.(36)

Proof. The ATM basket implied volatility (32) is obtained by taking the ATM point in

Eq. (18) of [3]. We extracted the result for the basket skew (33) from the results in Section

3.1 of [4] by expanding in the log-strike z = log(K/B0) and keeping only the terms of

O(z). �

Remark 3.1. i) The ATM skew (33) has the expected limiting behavior in the limit of a

single-asset basket: for example as p2 → 0 it approaches sB → s1 (the basket skew approaches

the skew of the component S1).

ii) In the limit when the two basket components satisfy the Black-Scholes equation s1,2 = 0,

the basket skew does not vanish in general. Assuming furthermore that the two components

have the same volatility σ1 = σ2 = σ, the basket skew becomes

(37) sB = σ
p1p2(p1 − p2)2

2(p21 + p22 + 2ρp1p2)3/2
(1− ρ)2 ,

which is in general non-zero and positive. The skew vanishes in the limit when the compo-

nents are perfectly correlated ρ = 1, and in the limit of equal-value baskets p1 = p2.

Remark 3.2. The ATM skew of the basket implied volatility simplifies greatly in the perfectly

correlated limit ρ = 1, and becomes

sB(ρ = 1) =
1

σB

(
p1σ1s1 + p2σ2s2 +

1

2
p1p2(σ1 − σ2)2

)
(38)

where σ1,2, s1,2 are the ATM volatilities and skews, respectively, of the two basket components.

The skew of a basket of two Black-Scholes components with different volatilities is always

positive, and increases with the difference between the volatilities of the components. When

applied to monthly calendar options, this implies that a term structure of the volatility (of

either sign) induces a positive contribution to the APO skew.
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4. Empirical analysis

In this section we apply the theoretical results of Sec. 3 for the ATM volatility and skew

of the exchange-traded Average Price Options on WTI crude oil futures, and compare the

results against empirical market data.

4.1. Market data. The tests will require two market data sets, which we describe briefly

below.

• Futures data (CL data): WTI futures settlement prices (CL) and their volatility data

(ATM vol and skew). The volatility data is extracted from American option (LO)

implied volatilities around the ATM point, at moneyness 97.5%, 100%, 102.5%

• Average Price Options data (AO data): settlement prices of monthly calendar swap

(CS) on crude oil futures and implied volatility of Average Price Options (AO) on

the CS calendar swaps.

The ATM implied volatilities of the basket components σ1,2 are directly available in the

market as the LO implied volatilities at 100% moneyness. The skews s1,2 are estimated

from the 102.5% and 97.5% moneyness volatility points (the moneyness is relative to the CS

futures price) as

(39) si =
σ102.5,i − σ97.5,i
log(102.5/97.5)

, i = 1, 2 .

Once the components’ implied volatility level and skew σ1,2, s1,2 are determined, we proceed

in two steps:

i) Compute the ATM level and skew of the equivalent basket consisting of the two futures

contributing to the monthly average. The basket has weights wi given by (21). The ATM

level and skew of the equivalent basket σB, sB are computed from Eqs. (32) and (33), re-

spectively. For simplicity we assume perfectly correlated nearby contracts ρ = 1 and use the

simpler result (38) for the basket skew.

ii) Use the parameters computed in step (i) as inputs for the computation of the Asian

implied volatility σB → σATM , sB → sE using Equations (13) and (14), respectively. In this

step we use the basket approximation of Sec. 3.2 to approximate the average over the nearby

futures contract prices with an average over an equivalent basket of the two futures.

A detailed example of the calculation is shown in Appendix A.2 for the AO-Jul-20 contract

as of 22-May-2020.

Using the underlying data we compute the predictions for the ATM volatility and skew

of the AO options, using the two-step process outlined at the end of the previous section:

i) compute the volatility σB and skew sB of the equivalent basket of futures for each APO
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Figure 4.1. The term structure of WTI futures and of their implied volatil-
ities determined from the American options (LO) (left) and of the Calendar
Swap futures (CS) and their implied volatilities determined from the Average
Price Options (AO) (right). Futures prices are shown as circles and volatilities
as triangles. Market data as of 15-Nov-2019.

using (32) and (33), ii) substitute these values into Eqs. (13) and (14) to obtain ΣA, sA.

These predictions are compared against the Average Price Options market data.

The empirical analysis was performed for two dates: 15-Nov-2019 and 22-May-2020. We

chose these dates because they represent typical snapshots of the crude oil markets before

and after the Covid-19 crisis. The term structure of the WTI futures prices and volatilities

on these dates are shown in Fig. 4.1 (15-Nov-19) and Fig. 4.2 (22-May-20), respectively.

4.2. Results. The results of the empirical analysis for WTI crude oil futures are shown in

Table 2 (15-Nov-2019) and Table 3 (22-May-2020).

Table 2. Predicted and observed ATM volatility and skew for the Average
Price Options (APO) on WTI crude futures. The last two columns show the
ATM level and skew of the equivalent basket of futures. Pricing date 15-Nov-
2019.

Contract APO vol ΣA APO skew sA Basket params
CS predict observed predict obs σB sB

Dec-20 22.16 29.53 -16.46 -40.59 29.73 -40.86
Jan-20 25.22 29.66 -22.55 -36.59 29.45 -37.28
Feb-20 26.92 29.81 -23.50 -31.99 29.92 -32.90
Mar-20 27.69 29.98 -23.07 -29.39 30.00 -29.69
Apr-20 28.09 30.05 -21.80 -26.79 29.97 -26.67
May-20 28.30 29.90 -21.47 -25.39 29.87 -25.39
Jun-20 28.32 29.69 -22.62 -25.79 29.67 -26.11
Jul-20 28.19 29.46 -23.14 -26.99 29.37 -26.24
Aug-20 27.94 28.95 -21.95 -25.39 28.97 -24.55
Sep-20 27.33 28.34 -22.46 -28.39 28.24 -24.83
Oct-20 27.00 27.85 -20.51 -25.19 27.82 -22.47
Nov-20 26.54 27.47 -17.64 -21.59 27.28 -19.18
Dec-20 25.97 26.92 -17.27 -24.59 26.64 -18.65



TERM STRUCTURE OF CALENDAR SWAP VOLATILITY AND SKEW 15

Table 3. Predicted and observed ATM volatility and skew for the Average
Price Options (APO) on WTI crude futures. The last two columns show the
ATM level and skew of the equivalent basket of futures. Date 22-May-2020.

Contract APO vol ΣA APO skew sA Basket params
CS predict observed predict obs σB sB

Jul-20 49.72 56.19 -25.37 -35.59 59.27 -45.10
Aug-20 46.86 50.41 -24.83 -37.59 52.56 -35.88
Sep-20 43.87 47.01 -23.97 -32.19 47.77 -31.39
Oct-20 42.30 44.55 -22.47 -30.79 45.27 -27.79
Nov-20 41.50 43.71 -22.20 -30.19 43.91 -26.45
Dec-20 40.76 43.17 -25.98 -28.99 42.77 -30.15
Jan-21 40.68 43.27 -26.34 -28.39 42.43 -29.99
Feb-21 40.41 42.65 -23.96 -27.19 41.96 -26.88
Mar-21 39.44 41.69 -21.53 -25.19 40.79 -23.87
Apr-21 39.05 40.92 -21.79 -22.99 40.26 -23.92
May-21 38.26 40.12 -20.27 -21.80 39.35 -22.07
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Figure 4.2. Left: term structure of WTI futures prices (circles) and of their
implied volatilities (triangles) of the American options (LO); right: same for
the Calendar Swap futures prices (CS) (circles) and their implied volatilities
determined from the Average Price Options (AO) (triangles). Market data as
of 22-May-2020.

The results in Tables 2 and 3 show that the APOs with monthly averaging are underpriced

compared to the theoretical predictions. This is apparent in the lower values for the predicted

APO volatilities ΣA compared with the observed volatilities. Interestingly, they are priced

closer to European basket options on the two futures participating in the averaging. This

follows from the close values of the observed ΣA and predicted basket ATM volatility σB.

This may reflect market usage of the options on monthly calendar swap as indicators of

volatility at the end of the averaging period, similar to an European option.

A similar result is obtained for the Asian skew sA: the observed value is smaller (in absolute

value) than the theoretical prediction. However in all cases it is closer to the skew sB of

a basket European option on the equivalent basket of futures. Again this is indicative of
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market participants pricing the exchange traded APOs as basket options on the two futures

contributing to the average.

5. Conclusions and discussion

In this paper we study the pricing of exchange-traded Average Price Options on futures.

These options are fixed-strike forward start Asian options with monthly averaging period

over the nearby contract. The nearby contract changes during the averaging period, which

renders these options two-futures derivatives. Our treatment takes into account this technical

complication by introducing a basket approximation: the exchange-traded APO is approx-

imated with a forward-start Asian option on a basket of the two futures, weighted by the

number of days they contribute to the average. We give an upper bound on the error of the

basket approximation in terms of the prices of calendar spread options.

We propose an analytical approximation for the volatility level and skew of exchange-

traded Average Price Options on futures, which becomes exact in the short maturity/volatility

limit. The inputs to this approximation are the market data on vanilla options on futures

contracts underlying the APO.

The results of Section 3.2 can be used also for general Asian options on baskets of futures.

These are popular products traded in the OTC markets. The analytical approximation

presented here could be used to obtain an approximation of the APO implied volatility for

such an Asian basket option around the ATM point.

We presented an empirical analysis of the relation between APOs and American options

volatilities on the case of the crude oil West Texas Intermediate (WTI) futures, which are

among the most liquidly traded commodity futures.

The results of the empirical analysis suggest that the options on monthly calendar swaps

generally trade at a premium relative to the American options on futures, although this

premium decreased somewhat for the second date considered (May 2020). We estimated

this premium as the difference between the observed market implied APO volatility and the

theoretical prediction from the American options on futures. A similar difference appears

in the skew of the APOs: the market implied skew is smaller (in absolute value) than the

theoretically predicted skew.

We considered several possible explanations for these differences:

i) The results of Proposition 3.1 assume continuous time averaging, while the actual av-

eraging is performed only over the business days of the contract month. Furthermore, the

averaging times are irregular due to the weekend gaps.

In Appendix B we tested the impact of the discrete averaging by comparing the prediction

(13) with the results of a MC simulation of forward start Asian options with daily averaging
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with one month averaging periods. The impact of the continuous time averaging assumption

is less than 1-2% in all cases.

ii) The assumption of perfectly correlated nearby contracts ρ = 1. This is expected to

be a good approximation as the correlations of consecutive futures contracts are close to

100%. As mentioned this assumption gives an upper bound on the prices. The impact of

this approximation is estimated in Appendix B using the results of Proposition 3.3. Varying

the correlation ρ in the range 0.7-1.0 decreases the predicted APO volatility by less than 1%.

iii) The impact of the basket approximation, which accounts for the nearby futures switch

during the averaging month. Under this approximation the APO is treated as a forward

start basket Asian option, with weights proportional to the number of days each of the two

futures contributes to the monthly average. The impact of this approximation is bounded

in Proposition 3.2. In Appendix B we estimated the impact of this approximation in the

Black model, where the futures follow correlated geometric Brownian motions. The impact

on the APO volatility was found to be small for perfectly correlated contracts ρ = 1 (less

than 1%), and somewhat larger as the correlation decreases.

We observe surprisingly good agreement of the observed APO volatility and skew with

the corresponding parameters of an European basket option on a basket of the futures

contributing to the average, and paying at the end of the APO contract month. This

suggests that market participants effectively price the exchange-traded APOs as European

options on a basket of the two contributing nearby futures.

Finally there is the possibility of a structural explanation, which could be related to the

use of the APOs for risk management purposes. Any asymmetry in demand for APO calls

vs puts would impact the skew of these options. For example, higher buy demand for calls

would have a positive contribution to the skew. We plan to pursue further research along

this direction.
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Appendix A. Appendix: Details of the analysis

A.1. Details of averaging for the exchange traded APOs. Consider for definiteness

the Average Price option AO Jul-20. The underlying of this option is the Monthly Calendar

Swap futures contract CS Jul-20. This contract is settled at maturity (31-Jul-20) in the

amount of the arithmetic average of the front CL contract on each trading day of the month

of July 2020.

During July 2020 the front WTI contract is one of the two futures:

• CL Aug-20: trades from 1-Jul-20 until 21-Jul-20, for a total of 14 trading days

(3-Jul-20 is a holiday).

• CL Sep-20: trades all month long. However this is the front contract only from

22-Jul-20 until 31-Jul-20, for a total of 8 trading days.

At any time prior to the start of the averaging period t < T1, the price of the CS contract

is related to the prices of the two contributing CL contracts, as

(40) CSJul−20 =
14

22
· CLAug−20 +

8

22
· CLSep−20 .

This equation expresses the averaging rule for the CS contract, in terms of the nearby CL

contract on each day during the averaging month. Substituting the CL settlement prices

gives 14
22
× 33.65 + 8

22
× 34.14 = 33.83 which agrees with the price of the Jul-20 CS contract.

Data was sourced from Bloomberg and all prices are settlement prices. The Bloomberg

codes of the relevant instruments are shown in Table 4.

Table 4. Bloomberg codes for the crude oil futures and the monthly average
price options on these futures.

Instrument Bloomberg code Exchange symbol

WTI futures CLA Comdty CL

WTI APOs G9A Comdty AO

A.2. Details of the empirical analysis. We give in this Appendix a sample computation

of the level and skew of the APO volatility, implied from the corresponding parameters

obtained from American options on futures. Table 5 shows the details of computation for

the AO-Jul-20 contract as of 22-May-2020.

Appendix B. Error analysis

Time discretization error. Real world APOs have daily averaging over business days.

We study here the accuracy of approximating the discrete time averaging with continuous

time averaging, assuming that the underlying asset follows the Black-Scholes model.
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Table 5. Sample computation of the averaged volatilities and skews, and
their use for the prediction of the APO volatility level and skew. Weights
w1 = 14

22
, w2 = 8

22
. The averaging period is [T1, T2] with T1 = 1.25, T2 = 2.25

months, and thus τ = T1/T2 = 0.556. Market data as of 22-May-2020.

Implied volatility (LO) Basket equivalent
CL Price 97.50% 100.00% 102.50% sE Month B0 σB sB

Aug-20 33.65 63.26 61.95 60.81 -49.0 Jul-20 33.83 59.17 -44.73
Sep-20 34.14 55.67 54.65 53.78 -37.80

APO volatility (AO)
CS Price 97.50% 100.00% 102.50% sA (obs)

Jul-20 33.83 57.17 56.19 55.39 -35.59

APO vol ΣA APO skew sA
(sA)σ (sA)s sA

CS predict obs predict obs

Jul-20 49.64 56.19 0.22 -25.59 -25.37 -35.59

Consider the test case of a forward start Asian option with T2 = 120 days, T2 − T1 = 30

days and strike K = {90, 100, 110} on an asset with S0 = 100, r = 0.0, σ = {0.2, 0.4}. The

number of averaging time steps is taken as m = {30, 60, 90}.
The results of pricing the APOs by MC simulation with NMC = 106 paths are shown in

Table 6. The last row gives the result from the asymptotic expansion described in Sec. 3.1.

This was obtained from Eq. (8) with a linear approximation for the log-normal equivalent

volatility ΣLN = ΣA + sAx. For the case considered here τ = T1/T2 = 3/4 = 0.75 we have

ΣA = σ
√

5/6. We note good convergence to the continuous time limit, and the difference

between the asymptotic result and the price with daily averaging m = 30 is below 1-2% in

all cases.

Table 6. Comparing the discrete time arithmetic option MC simulation with
the continuous time approximation based on the short maturity expansion.
The MC used NMC = 106 paths, and the errors are in units of 10−4.

σ = 0.2 σ = 0.4
m K = 90 K = 100 K = 110 K = 90 K = 100 K = 110

30 10.8178(93) 4.1826(65) 1.0874(34) 13.9084(170) 8.3530(139) 4.6600(106)
60 10.8125(93) 4.1781(65) 1.0858(34) 13.8972(170) 8.3456(139) 4.6548(106)
90 10.8138(93) 4.1741(65) 1.0828(33) 13.8938(170) 8.3362(139) 4.6441(106)

∞ 10.8163 4.1744 1.0811 13.8973 8.3374 4.6427

Impact of the correlation assumption ρ = 1. The empirical analysis assumed that

the consecutive futures contributing to the averaging over a given contract month are per-

fectly correlated ρ = 1. The impact of this assumption can be estimated in the basket
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approximation, using the explicit results for the basket ATM volatility and skew given in

Proposition 3.3.

We estimate numerically the impact of varying the correlation for the Jul-20 APO consid-

ered in detail in Section A.2. The parameters of this option are T2 = 2.25 months, S1(0) =

33.65, S2(0) = 34.14, weights w1 = 14
22
, w2 = 8

22
and volatilities σ1 = 61.95%, σ2 = 54.65%.

Under the basket approximation the underlying of the option is the basket of two CL futures

Aug-20 and Sep-20 with forward price FCS = w1S1(0) + w2S2(0) = 33.83.

We would like to study the sensitivity of the basket parameters σB, sB and the Asian

volatility parameters ΣA, sA as the correlation ρ between the Aug-20 and Sep-20 WTI con-

tracts is varied between 0 and 1. Table 7 gives the results for these parameters following

from Propositions 3.3 and 3.1.

The volatility parameters ΣA, σB increase with the correlation and reach maximal values

at ρ = 1. The perfectly correlated case ρ = 1 corresponds to a basket of co-monotonic assets.

This agrees with the result of [29] that for baskets with positive weights, the co-monotonic

joint distribution gives an upper bound on the basket price.

A similar dependence is observed for the skews sB, sA which increase (in absolute value)

with ρ.

Impact of the basket approximation. In the basket approximation, the switch of

the nearby futures contract during the averaging period is approximated by averaging over

a basket of the two contributing futures, with weights proportional to the number of days

they contribute to the monthly average. The impact of this approximation on APO prices

is bounded by (24) as

(41) ∆C ≤
√
V ar(Z2) ,

Table 7. The impact of changing the correlation ρ between the Aug-20 and
Sep-20 CL futures contracts on the parameters of the exchange traded Jul-20
APO.

ρ σB sB ΣA sA
0.0 44.05 -35.72 36.96 -20.12
0.1 45.80 -36.65 38.43 -20.64
0.2 47.48 -37.60 39.84 -21.17
0.3 49.11 -38.55 41.21 -21.71
0.4 50.69 -39.51 42.53 -22.25
0.5 52.22 -40.46 43.81 -22.78
0.6 53.70 -41.41 45.06 -23.31
0.7 55.15 -42.34 46.27 -23.84
0.8 56.55 -43.27 47.45 -24.36
0.9 57.93 -44.19 48.61 -24.88
1.0 59.27 -45.10 49.73 -25.39
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with Z the random variable defined in (25).

We will estimate this bound in the Black model where the futures prices S1,2(t) are corre-

lated geometric Brownian motions. Using discrete time averaging, the variance of Z can be

computed in closed form with the result

(42) V ar(Z) =
1

n2

n∑
i=1

q2iM
(1)
i +

2

n2

n∑
1=i<j

qiqjM
(2)
ij

where

M
(1)
i := E[(S1(ti)− S2(ti))

2](43)

= S2
1(0)eσ

2
1ti − 2S1(0)S2(0)eρσ1σ2ti + S2

2(0)eσ
2
2ti

M
(2)
ij |i<j := E[(S1(ti)− S2(ti))(S1(tj)− S2(tj))](44)

= S2
1(0)eσ

2
1ti − 2S1(0)S2(0)eρσ1σ2ti + S2

2(0)eσ
2
2ti

The APO price impact can be translated into an impact on the APO volatility which is

given to a good approximation by

(45) ∆C = FCS∆ΣA

√
T2
2π

We show in Table 8 numerical results for the upper bound on the APO volatility ∆ΣA for

several maturities, corresponding to the pricing date 22-May-2020. These results are obtained

with daily averaging. These results suggest that the impact of the basket approximation is

minimal in the perfectly correlated case ρ = 1 and increases as the two futures become

less correlated. Also, the impact decreases with the maturity of the APO. In the perfectly

correlated case ρ = 1 the impact is less than 1% for all maturities.

Table 8. Upper bound on the impact of the basket approximation of the
APO vol ∆ΣA (in %) estimated in the Black model using equation (45) for
several values of the correlation parameter ρ. Pricing date 22-May-2020.

APO month ρ = 1.0 ρ = 0.95 ρ = 0.9

Jul-20 0.93 2.60 3.56
Aug-20 0.64 1.94 2.66
Sep-20 0.29 1.49 2.08
Oct-20 0.09 1.27 1.78
Nov-20 0.10 1.14 1.60
Dec-20 0.03 1.04 1.46
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Appendix C. Proof of Proposition 3.1

The starting point is Proposition 2.5 in [25] which we reproduce here for convenience

of reference. This expresses the rate function Ifwd(S0, K, τ) as the solution of an extremal

problem.

Proposition C.1 (Prop. 2.5 in [25]). Assuming that the asset price St follows the local

volatility model

(46)
dSt
St

= σ(St)dWt + (r − q)dt ,

the rate function of the forward start Asian option is given by the extremum problem

(47) Ifwd(S0, K, τ) = inf
c∈R

(
1

2
c2τ +

1

1− τ
I(S0e

F−1(cτ), K)

)
where I(x,K) is given by the variational problem

(48) I(x,K) = inf
ϕ∈A(K/x,0)

{
1

2

∫ 1

0

(
ϕ′(u)

σ(S0eϕ(u))

)2

du

}
and F (x) is defined by

(49) F (x) =

∫ x

0

dz

σ(S0ez)
.

The solution of the variational problem for I(S0, K) was given as an expansion in log-

strike log(K/S0) in Proposition 14 in [24]. The function F−1(z) appearing in (49) is denoted

as Y (z) in the statement of Proposition 14 in [24] and its expansion is given in equation (38)

of [24] which we reproduce below

(50) F−1(z) = z +
b2
b21
z2 +

b3
b31
z3 +O(z4) .

The first three coefficients b1,2,3 are given in (44)-(46) of the same paper. They are expressed

in terms of σ(S0) and its derivatives.

Using this result we obtain the following expansion of the rate function for forward start

Asian options in the local volatility model.

Proposition C.2. The first two terms in the series expansion of the rate function Ifwd(S0, K, τ)

given by Proposition 2.5 in [25] in powers of log-strike x = log(K/S0) are

Ifwd(S0, K, τ) =
1

σ2(S0)

{
3

2

x2

1 + 2τ
(51)

+

[
− 3

10

(1− τ)2

(1 + 2τ)3
− 9

10
S0
σ′(S0)

σ(S0)

2− 4τ + 17τ 2

(1 + 2τ)3

]
x3 +O(x4)

}
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Proof. The proof is based on expanding the minimizer c in the extremal problem (47) in

powers of log-strike x = log(K/S0). Denote the function to be minimized as

(52) Λ(c) :=
1

2
c2τ +

1

1− τ
I(S0e

F−1(cτ), K)

The rate function I(x,K) is expressed as a series expansion in log(K/x) in equation (37) of

[24]. Using this result we have

(53) I(z,K) =
1

σ(S0)2

{
3

2

(
log

K

S0

− F−1(z)

)2

+O

(
log

K

S0

− F−1(z)

)3
}
.

Consider first the ATM point x = 0. The function to be minimized has the form Λ(c) ∼
c2 +O(c3) which has an infimum at c = 0. Thus we seek the solution as an expansion of the

form

c = f1x+ f2x
2 +O(x3)

The extremal condition Λ′(c) = 0 gives a sequence of equations for the coefficients fi. The

first coefficient is f1 = 3
1+2τ

. Substituting the result back into the extremal problem (47)

gives the expansion (51) of the rate function in powers of log-strike x. �

For practical application to pricing forward start Asian options, it is convenient to express

the rate function Ifwd(S0, K, τ) as an equivalent log-normal volatility ΣLN(S0, K, τ). We

obtain the result

ΣLN(S0, K, τ) =
x√

2Ifwd(S0, K, τ)
= σ(S0)

√
1 + 2τ

3
(54)

×
{

1 +

[
1

10

(1− τ)2

(1 + 2τ)2
+

3

10
S0
σ′(S0)

σ(S0)

2− 4τ + 17τ 2

(1 + 2τ)2

]
x+O(x2)

}
In the Black-Scholes model where σ(S) is a constant, this reduces to the simpler result in

Remark 3.15 of [25].

The local volatility σ(S) is not a market observable. Its ATM value and skew are related

to the corresponding quantities of the European implied volatility as

(55) σATM = σ(S0) , sE =
1

2
S0σ

′(S0) .

The ATM level and skew of the log-normal equivalent volatility of the Asian options are

defined as

(56) ΣA = ΣLN(S0, S0, τ) , sA = S0
d

dK
ΣLN(S0, K, τ)|K=S0

They can be read off as the coefficients in the expansion (54). Substituting σ(S0) and σ′(S0)

from (55) gives the result 13) and (14), which completes the proof of the stated result.
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