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1. Introduction

One of the most critical issues in current debates is the looming possibility of a sovereign

default in the euro area (EA). Regulators and policymakers fear that vulnerabilities in

the peripheral European countries – namely, Greece, Ireland, Italy, Portugal, and Spain

– could potentially spread to the rest of Europe. At the same time, European leaders

are wrestling with the prospect of the failure of systemically important banks and its

consequences on the European banking system. With the rise of the sovereign debt crisis,

the interdependence between sovereigns and banks has greatly intensified, causing fears of

negative feedback loops between the two systems. Against this backdrop, the need for

identifying the level of systemic risk becomes increasingly apparent. This paper addresses

the issue by utilizing a conditional measure of systemic risk to quantify the effects of

sovereign and bank default on the European sovereign and banking system.

Although there is no universal definition of systemic risk, a recurring theme throughout

the systemic risk literature is that true systemic events impact the entire financial system

(Billio, Getmansky, Lo, & Pelizzon, 2012). At its core, systemic risk is associated with

the risk that arises due to the interdependence between financial entities. From this

perspective, systemic events do not necessarily have to stem from a causal origin. For

example, Sandleris (2014) finds that sovereign defaults can affect the private sector

even if domestic agents do not hold any of the defaulted instruments. Morrison and

White (2013) show that systemic interbank crises could simply be a result of a common

regulation framework. Therefore, we construct a measure of systemic risk that reflects

the contribution of the interdependence of an entity to the overall systemic default risk of

the system. Our measure of systemic risk can be intuitively interpreted as the conditional

joint probability of default of an entity, given the (hypothetical) default of other entities

within the system. The advantage of using a conditional measure is that it not only

captures an entity’s individual default risk characteristics but also reflects the dynamics

of its joint default risk due to its interdependence with other entities.

There are two main features of our systemic risk measure. First, a major factor in our

measure is marginal probabilities of default, which are derived from bootstrapping credit

default swap (CDS) spreads. We use CDS contracts because they are forward looking

and they readily incorporate investors’ perceptions of default risk since CDS markets
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react instantly to changes in credit risk. Furthermore, systemic risk measures based

on CDS spreads are generally superior to those derived from interbank rates or equity

prices (Rodŕıguez-Moreno & Peña, 2013). Second, we ensure that our systemic risk

measure is applicable in a true multivariate setting consisting of both sovereigns and

banks. This is accomplished by using the consistent information multivariate density

optimization (CIMDO) methodology introduced by Segoviano (2006). Since joint default

risk is not traded, we explicitly derive a time-varying dependence structure in the form

of a multivariate probability distribution from which we estimate joint probabilities of

default. This approach allows us to study the full extent of systemic default risk, since it

grants us immense flexibility in the choice of conditioning.

Our focus on the European sovereign and banking system is not coincidental but is

motivated by the extensive interconnections between them. Until recently, there had

been no credit risk for sovereign debt in developed countries for many years. Prior to

the global financial crisis of 2007–2009, most European banking regulation focused on

individual banks and the risk on their balance sheets. This form of regulation turned out

to be flawed, since it ignores the systemic relation between the sovereign and banking

systems. For example, Gerali, Neri, Sessa, and Signoretti (2010) show that the largest

contribution to the contraction of EA economic activity in 2008 had been due to shocks

originating from the banking sector. The onset of the sovereign debt crisis saw the relation

between banks and sovereigns escalate to a new level. The Greek default in 2011 showed

that there is credit risk in holding sovereign debt. Among the bailout packages were

substantial write-offs of Greek debt in the books of private investors, most of which were

held by banks. As the sovereign debt crisis evolved, European banks were confronted with

liquidity dry-ups and stress in their capital positions. The European Banking Authority’s

(EBA) stress test results in 2011 revealed that banks in peripheral sovereigns were unlikely

to weather negative shocks to the sovereign system, given their sovereign debt exposure.

Overall, the combined effect of the vulnerability of certain sovereigns and the continued

stress in the banking system meant that the financial conditions of banks and sovereigns

had become increasingly intertwined.

The main findings of this paper can be summarized as follows. First, we show that our

measure of systemic risk is successful in quantifying the level of systemic risk of the

sovereign system. During the height of the sovereign debt crisis, the conditional joint
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probability of default of the sovereign system, given the default of core sovereigns such

as Germany, reached maximum values of 47% while the default of peripheral sovereigns

such as Italy and Spain produced lower values of 30%. We also show that peripheral

sovereigns are the least resilient to system-wide defaults, since their conditional joint

probabilities of default reached 100% during the sovereign debt crisis. In addition, we

document a significant amount of systemic risk spillover from peripheral sovereigns to

the core. Specifically, part of the increased systemic relation between the peripheral and

the core can be attributed to the increasing levels of systemic risk within the peripheral

sovereign system, while another part is due to the cascade effects between the peripheral

and the core.

Second, we find that the banks of certain sovereigns played unique roles during recent

periods. Of the EA banks, French banks contributed the most to the systemic risk of the

banking system, both jointly and individually, during the global financial crisis and the

sovereign debt crisis. However, banks in Italy and Spain were not far behind in terms

of systemic importance, since their systemic risk contributions increased rapidly during

the sovereign debt crisis. Banks in non-EA sovereigns, such as the United Kingdom

and Switzerland, were the most important in maintaining the stability of the European

banking system during the sovereign debt crisis. At the individual bank level, we show

that the biggest contributors to the systemic risk of the banking system often coincide

with the biggest banks in each sovereign. This result supports the ‘too-big-to-fail’ concern

from a macroprudential perspective.

Third, we show that in the combined sovereign and banking system, the evolution of our

systemic risk measure corresponds with major systemic events that occurred throughout

our sample period. In particular, we demonstrate that the systemic risk of the multivariate

system reached unprecedented levels during the sovereign debt crisis as the conditional

joint probability of default of the banking system, given the default of Germany, reached

historical highs of 32%. In decomposing systemic risk, we show that much of this

heightened increase in systemic risk is due to rapid increases in the default risk premium

and the sovereign risk premium coupled with a steady increase in physical probabilities of

default.

This paper is closely connected with two strands of the literature. The first strand focuses

on the measurement of systemic risk. Recent developments in this field include Acharya,
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Pedersen, Philippon, and Richardson (2010), Adrian and Brunnermeier (2011), Brownlees

and Engle (2012), Huang, Zhou, and Zhu (2009), López-Espinosa, Moreno, Rubia, and

Valderrama (2012), Girardi and Ergün (2013), and Puzanova and Düllmann (2013). A

comprehensive overview can be found in Bisias, Flood, Lo, and Valavanis (2012). The

common theme among these studies is the estimation of the magnitude of losses conditional

on the simultaneous distress of other institutions. Conceptually, our approach is related

to Acharya et al.’s (2010) marginal expected shortfall, Adrian and Brunnermeier’s (2011)

conditional value at risk, and Huang et al.’s (2009) distress insurance premium, where

the marginal expected shortfall can be interpreted as the average losses of a particular

institution when the returns on the entire market fall below a certain threshold, the

conditional value at risk measures the value at risk of the financial system conditional

on the distress of other institutions, and the distress insurance premium measures the

hypothetical insurance premium required to cover distressed losses in the banking system.

The main difference between these three measures and ours is that our measure of systemic

risk is not characterized in terms of losses but are conditional joint probabilities of default.

By using a probabilistic measure, our approach has several advantages over the aforemen-

tioned measures. Specifically, the preceding measures lack a forward-looking focus, since

they predominantly rely on historical stock market returns and firm-specific data. While

this approach may appear to capture systemic exposures, it only does so to the degree

that systemic losses are well represented in the historical data. Consequently, extremely

rare events that belong in the tail of the tail of market risks are unlikely to be captured.

To overcome this deficiency, we directly examine tail risk by using CDS spreads that

are extremely sensitive to an institution’s creditworthiness. Our procedure effectively

captures the default risk perceptions of market participants and ensures that future

distress expectations and systemic shocks are embedded in our systemic risk measure.

The previously mentioned measures also suffer from a restrictive definition of default; that

is, an institution is defined to be in default if its returns fall below a certain threshold.

When applied in a sovereign and banking context, this type of conditioning provides a

narrow perspective. Contrarily, one of the most important features of our conditional

measure of systemic risk is its flexibility in conditioning. Our procedure enables us to

investigate many aspects of systemic risk, including individual and combined systemic

default risk, intra-system systemic risk, and inter-system systemic risk.
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Another advantage of our approach is in our handling of sovereign default risk. Most

approaches in estimating sovereign credit risk rely on the basic premise of the structural

model (Merton, 1974). Papers that employ this technique include Bartram, Brown,

and Hund (2007), Gray, Merton, and Bodie (2007), and Lehar (2005). However, the

main drawback of these studies is the specification of an institution’s capital structure.

Structural models are overwhelmingly difficult to apply in a sovereign context because

explicit definitions of sovereign assets and liabilities are needed. Furthermore, inputs

under the structural model include the value of sovereign assets and the knowledge of

sovereign asset return distributions, neither of which are directly observable. We overcome

these shortcomings by applying the CIMDO methodology. In essence, we shift the focus

away from capital structure and directly view the sovereign and banking system as a joint

distribution of its constituent entities. To capture tail risk, the CIMDO methodology

adjusts the tail region of the underlying joint distribution so that it is always consistent with

empirical data. Consequently, our measure of systemic risk is applicable in a multivariate

setting because we circumvent the issue of having to define sovereign capital structure.

In addition, the CIMDO methodology naturally encompasses an updating process that

allows us to constantly revise our views on default risk by relying on changes in market

default risk perceptions. Thus, we are able to capture all interactions and co-movements

between every entity within the system at each point in time.

The second strand of literature related to our paper examines the systemic risk of sovereigns

and banks. Our paper is positioned at the intersection of these studies, that is, we are

particularly concerned with the systemic risk between sovereigns and banks. On the

sovereign side, recent research concentrates on the relationship between sovereign credit

risk and common global and financial market factors (see, e.g., Ang & Longstaff, 2013;

Bhanot, Burns, Hunter, & Williams, 2014; Caporin, Pelizzon, Ravazzolo, & Rigobon, 2013;

Gande & Parsley, 2007; Haidar, 2011; Longstaff, Pan, Pedersen, & Singleton, 2011; Pan &

Singleton, 2008). On the bank side, the extensive literature typically focuses on situations

in which multiple financial institutions fail as a result of a common shock. A broad

overview of the topic can be found in Allen, Babus, and Carletti (2009). Papers involving

both the sovereign and banking systems generally focus on the contagion between sovereign

and bank default risk rather than measuring the level of systemic risk between the two.

These papers are relatively scarce, since they only recently began to gain prominence
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during the sovereign debt crisis. The majority of studies in this area examine the contagion

between sovereigns and banks by using co-movements between financial variables, these

being CDS spreads most of the time (see, e.g., Acharya, Drechsler, & Schnabl, 2013;

Alter & Beyer, 2013; Alter & Schuler, 2012; Angeloni & Wolff, 2012; Bruyckere, Gerhardt,

Schepens, & Vennet, 2013; Ejsing & Lemke, 2011). A notable exception is a recent paper

by Correa, Lee, Sapriza, and Suarez (2014), who explicitly focus on the effect of sovereign

rating changes on banks and provide empirical evidence that sovereigns and domestic

banks are markedly interconnected through government guarantees. Our paper adds to

this literature by quantifying the level of systemic risk in the combined sovereign and

banking system and by tracking its evolution throughout the global financial crisis and

the sovereign debt crisis.

The remainder of the paper is organized as follows. Section 2 outlines the methodology

for constructing and estimating the conditional joint probability of default. Section 3

summarizes the data. Section 4 presents the empirical results and Section 5 concludes the

paper.

2. Methodology

2.1. Deriving the Conditional Joint Probability of Default

The definition of systemic risk is not well defined throughout the literature and, as a result,

can be measured from a wide range of perspectives. We follow the view that systemic

risk can be quantified through probabilistic measures in both the sovereign and banking

systems (Radev, 2012). We begin by constructing the system’s marginal probability

of default (PoD). Assume there are n entities (or institutions) in the system and let

X1, X2, · · · , Xn denote the random variables corresponding to the natural logarithm of

assets of institution I1, I2, · · · , In, respectively. Reminiscent of the structural approach, we

define an institution to be in default if its logarithm of assets exceeds a certain threshold,
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which we denote XIi
d . The marginal probability of default is given by1

PoDIi = P
(
Xi ≥ XIi

d

)
=

∫ ∞
−∞
· · ·
∫ ∞
X

Ii
d

· · ·
∫ ∞
−∞

∫ ∞
−∞

p(x1, x2, · · · , xn)dx1dx2 · · · dxi · · · dxn

(1)

where p(x1, x2, · · · , xn) is the joint probability density function describing the n-dimensional

system.

The above definition gives the theoretical probability of default of institution Ii. However,

since the underlying asset structure of an institution evolves stochastically throughout

time, the default threshold will also change throughout time. Following Segoviano (2006),

we define the fixed time average default threshold of institution Ii as

XIi
d = Φ−1

(
1− PoDIi

)
(2)

where Φ−1 (·) denotes the standard inverse normal cumulative function and PoDIi is the

time average empirical probability of default of institution Ii, estimated by bootstrapping

CDS spreads. Since the default threshold is fixed, we vary the underlying probability

distribution throughout time so that each point in time is described by a unique density

function.

The next step is to calculate the joint probability of all entities simultaneously suffering

large losses. We define the joint probability of default (JPoD) of n entities as

JPoD{I1,I2,··· ,In} = P
(
X1 ≥ XI1

d , X2 ≥ XI2
d , · · · , Xn ≥ XIn

d

)
=

∫ ∞
XIn

d

· · ·
∫ ∞
X

I2
d

∫ ∞
X

I1
d

p(x1, x2, · · · , xn)dx1dx2 · · · dxn (3)

= JPoDsystem

By construction, JPoDsystem is an unconditional measure, since it does not explicitly

account for the negative spillover effects of default but, rather, reflects the system’s

fragility to default shocks.

We now combine the marginal probability of default and the joint probability of default

through Bayes’ theorem to produce the conditional joint probability of default (CoJPoD)

1For convenience, the default region is defined to be in the right tail of the density function.
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of the system given the default of institution Ik:

CoJPoD{I1,··· ,Ik−1,Ik+1,··· ,In}|Ik

= CoJPoD{system\Ik}|Ik

= P
(
X1 ≥ XI1

d , · · · , Xk−1 ≥ X
Ik−1

d , Xk+1 ≥ X
Ik+1

d , · · · , Xn ≥ XIn
d |Xk ≥ XIk

d

)
=
JPoD{I1,I2,··· ,In}

PoDIk

=
JPoDsystem

PoDIk

(4)

This expression shows that CoJPoD{system\Ik}|Ik is the default likelihood of the remaining

institutions within the system given the default of a particular institution. It can be

computed as the ratio of the system’s joint probability of default to the marginal probability

of default of a particular institution. We can interpret CoJPoD{system\Ik}|Ik as the

contribution of institution Ik’s default on the system’s overall systemic risk.

The term CoJPoD is a measure of systemic risk due to interdependence rather than

causality; this is an ideal property to have when attempting to quantify systemic risk.

For instance, the failure of a few entities may not be systemic, but the failure of a single

highly interconnected entity can be. In other words, the default of a group of entities

may not necessarily cause the rest of the system to default. However, if the default was

a result of a common factor, then the rest of the system will be more likely to default

due to the systemic nature of the initial shock. Therefore, in the absence of causality,

each individual entity’s default risk should co-vary with the rest of the system’s default

risk due to the underlying interdependent relations between the entities. The CoJPoD

measure captures this subtle aspect of systemic risk.

2.2. Estimating Marginal Probabilities of Default

The first ingredient of CoJPoD consists of deriving each entity’s marginal probability

of default. The structural approach is commonly used to model an institution’s default

risk. Under this approach, an institution’s asset value is assumed to evolve stochastically

over time and default is triggered by a drop in the institution’s asset value below a

certain threshold. However, the structural approach is inapplicable in a multivariate

context consisting of both banks and sovereigns, since asset returns and asset correlations
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are not observed; even if they were, the question still remains as to what constitutes

sovereign assets. To overcome this restriction, we follow Goodhart and Segoviano (2009),

whereby we do not take a stance on what default actually entails but, rather, rely on

market expectations of default to derive marginal probabilities of default. Specifically, we

extract empirical probabilities of default from CDS spreads by applying the bootstrapping

procedure outlined in Hull and White (2000). As a result, we circumvent the difficulty of

defining unobservable asset returns.2 There are four main advantages in using CDS spreads

to estimate probabilities of default. First, estimation of PoD values from CDS spreads is

not subject to the modelling of the distribution of asset values or the explicit estimation

of asset correlations. Second, CDS spreads provide timelier market-based valuations,

since CDS markets react to changes in default expectations in real time (Bruyckere et

al., 2013). Third, CDS spreads are forward looking, in the sense that they frequently

anticipate rating changes and closely track future fiscal deficits. Finally, CDS spreads are

less affected by liquidity and flight-to-safety issues when compared to Treasury bonds.

The bootstrapping procedure that we utilize requires three main inputs: CDS maturities,

discount rates, and recovery rates. We use daily CDS spreads with maturities of one to

five years and daily AAA EA sovereign bond yields with maturities of three months to five

years for the discount rates. As discussed below, the discount rates are treated as risk-free

rates, since the bootstrapped probabilities of default are risk-neutral measures.3 Following

prior literature, we set a constant recovery rate of 40% (Sturzenegger & Zettelmeyer,

2008). The bootstrapping procedure begins with an iterative process whereby we assume

a constant hazard rate function and build a probability curve using the CDS contract

with the shortest maturity (one year). From this, we extend the probability curve to

the CDS contract with the next longest maturity (two years), again assuming a constant

hazard rate function. We continue this process until we reach the CDS contract with

the longest maturity (five years). At each step of the recursive process, we ensure that

the no-arbitrage condition is satisfied by equating the premium leg with the payoff leg.4

2Note that we do not use Eq. (1) to compute marginal probabilities of default, since the underlying
asset processes are unobservable. However, as seen in Section 2.3, Eq. (1) is a constraint that must be
satisfied when solving for the underlying joint probability density function.

3The AAA EA sovereign bond yields are obtained from the European Central Bank’s (ECB) index of
AAA-rated sovereign bonds of the EA sovereigns. To ensure that the sovereign bond yields are appropriate
proxies for risk-free rates, we verify that none of the reference entities of the sovereign CDS contracts are
used in the construction of the index.

4A CDS contract has two legs: a premium leg and a payoff leg. The former is the premium that buyers
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Consequently, because the recovered term structure of hazard rates is arbitrage free, we

obtain risk-neutral probabilities of default. In other words, the probabilities of default not

only reflect physical probabilities of default but also contain information on any associated

risk premium components. We take full advantage of this property when examining

the decomposition of CoJPoD. We annualize the PoD values to align with the one-year

horizon of interest of policymakers.

2.3. Estimating the Multivariate Joint Distribution

The bootstrapped PoD values represent individual default risk perceptions. We now

implement a procedure that transforms these marginal probabilities of default into joint

probabilities of default by imposing a dynamic dependence structure between the individual

entities of the system. There are numerous approaches to modelling joint default risk

(see, e.g., Avesani, Pascual, & Li, 2006; Bams & Wielhouwer, 1999; Cai, Einmahl, Haan,

& Zhou, 2014; Lucas, Schwaab, & Zhang, 2014). However, most of them involve the

calibration of dependence structures that rely on the evolution of an institution’s capital

structure. In a true multivariate context consisting of banks and sovereigns, the value of

sovereign assets is not directly observable.

In comparison, the CIMDO methodology (Segoviano, 2006) recovers multivariate joint

distributions without taking any stance on the observability of sovereign assets. The key

improvements of the CIMDO procedure over traditional risk models is that it captures

both linear and non-linear distress dependencies between entities in the system and allows

for these to change throughout time, reflecting the fact that dependence differs during

tranquil times and periods of distress. The underlying idea of the CIMDO approach

is that any multivariate density that characterizes the stochastic behaviour of a group

of random variables can be broken into two subsets of information: (1) the marginal

distribution of each random variable and (2) the underlying dependence structure between

random variables. To recover the latter, instead of assuming parametric distributions to

fit available information, the CIMDO approach uses all available data to calibrate a non-

parametric distribution. Such an approach minimizes the possibility of misspecification

pay to insure themselves against possible defaults of the reference entity. The latter represents the payoff
to buyers in the case in which the reference entity defaults. The payoff equals the difference between the
face value of the reference entity and its recovered value. If the reference entity does not default over the
maturity of the CDS contract, the payoff is zero.
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and ensures that the resulting distribution is always consistent with empirical data.

We begin by specifying a prior (or ex ante) joint density function to describe the underlying

dependence structure between the entities within the system. We then update the prior

by inferring indirect and partial information from the bootstrapped PoD values. This

involves adjusting the probability mass in the tails of the prior density function such that

its tail probability is consistent with the marginal probabilities of default. We continue

this iterative process by updating the prior density function on a daily basis. The resulting

posterior (or ex post) density function exhibits fat tail properties and is dynamic by

construction. An important facet of this approach is that we do not have to explicitly

specify what constitutes sovereign assets or liabilities when quantifying sovereign default

risk. Since we effectively reverse-engineer the joint probability distribution describing

the system, we simply rely on the bootstrapped probabilities of default to proxy for

the system’s underlying asset process. As a result, when Eq. (4) is used to compute

conditional joint probabilities of default, each entity’s marginal probability of default acts

as a common denominator, allowing us to pool banks and sovereigns together to form a

single multivariate system.5 Section A.1 of the Appendix outlines the CIMDO procedure.

As Segoviano (2006) shows, using a multivariate standard normal distribution as the prior

distribution is sufficient to explain the behaviour in the default region of the posterior

distribution. Furthermore, the author demonstrates that the CIMDO methodology is

highly robust to various prior distributions and employing more complex prior distributions

such as the multivariate t-distribution or a mixture of normal distributions produces very

similar tail regions in the posterior distribution. Thus, we choose the multivariate normal

distribution as the prior distribution. Following Gorea and Radev (2014), we use a static

variance–covariance matrix by estimating the sample correlation coefficients between the

daily changes in the five-year CDS spreads of sovereign and bank CDS contracts.6 We

5We pool banks and sovereigns together based on their marginal probabilities of default and not
based on their CDS spreads. Indeed, treating banks and sovereign equally on the basis of their CDS
spreads is counterintuitive, since their reference entities are two different types of economic entities, public
and private. However, the unique setup of the CIMDO procedure allows us to form one multivariate
system consisting of both banks and sovereigns. To see this, assume that the system’s joint probability
distribution is unknown but each entity’s marginal probability of default is known. To recover the
underlying joint probability distribution of the system, the CIMDO procedure pools together each entity’s
marginal probability of default and utilizes the CIMDO copula to derive the underlying dependence
structure of the system, which is consistent with the marginal probabilities of default. As a result, allowing
banks and sovereigns to appear simultaneously in Eq. (4) based on marginal probabilities of default is
not problematic.

6The CIMDO methodology can use either a static or a dynamic variance–covariance matrix because
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use a correlation structure based on risk, that is, CDS spreads, rather than one based on

asset value, because the CIMDO procedure uses the marginal probabilities of default to

proxy for the underlying asset process of the system, which then automatically updates

the CIMDO copula whenever there are changes in individual probabilities of default.

Therefore, the correct correlation structure to use when solving for the unknown posterior

distribution is one that is based on risk rather than on asset value.7

To solve for the posterior distribution, we utilize the generalized cross-entropy (GCE)

method (Botev & Kroese, 2011). Under this framework, our strategy translates to an

optimization procedure whereby we reconcile the inconsistencies in the prior distribution

such that it is as close as possible to the posterior distribution while satisfying the

appropriate moment consistency constraints. The moment consistency constraints refer

to restrictions of the form shown in Eq. (1), where we replace the theoretical probabilities

of default with the bootstrapped PoD values. Finally, we use the Knullback–Leibler

measure of cross-entropy to solve for the optimal posterior distribution. Section A.2 of the

Appendix provides the solution to the CIMDO procedure under the GCE method. Our

estimation procedure ensures that CoJPoD is updated in real time. Therefore, CoJPoD is

neither an ex ante nor an ex post measure of systemic risk but, rather, a contemporaneous

measure. As mentioned by Bisias et al. (2012), measuring systemic risk is not simply a

matter of obtaining early warning signals for impending dangers; crisis response is also an

important role for policymakers who are charged with systemic risk monitoring. Thus, the

usefulness of CoJPoD lies in its ability to help monitor the ongoing state of the system

and the identification of failing institutions and markets. Furthermore, since CoJPoD can

be updated on a daily basis, it can provide valuable real-time signals of fragility in an

emerging crisis.

the CIMDO copula avoids the imposition of constant correlation parameter assumptions. Thus, employing
a static variance–covariance matrix for our entire sample period does not detract from the dynamic and
time-varying nature of the posterior distribution. Nevertheless, to ensure robustness, we replicate all
analyses in the paper using a dynamic variance–covariance matrix. Specifically, we estimate a unique
variance–covariance matrix at each point in time using the one-year rolling period correlation coefficients
between the daily changes in the five-year CDS spreads of sovereign and bank CDS contracts. All of our
results are very similar to those for the static variance–covariance case. The results are available upon
request.

7Gapen, Gray, Lim, and Xiao (2008) measure sovereign correlation structure by using the correlation
coefficients between each sovereign’s estimated logarithms of asset values. The authors show that their
measure is highly correlated with the CDS spreads of the respective sovereigns; hence, their correlation
structure is unlikely to be different from ours.
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2.4. Decomposition of the Conditional Joint Probability of Default

The variable CoJPoD is a risk-neutral measure of systemic risk because its input, PoD, is

derived from an arbitrage-free model. Hence, we can decompose the systemic risk into

physical (or objective) probabilities of default and risk premium components. Exploring

these two elements simultaneously allows us to determine which component of CoJPoD is

the dominating factor throughout our sample period. Kim, Loretan, and Remolona (2010)

purport that, during periods of high volatility, the risk premium components tend to

dominate CDS spreads. Given that CDS spreads are the main ingredient for constructing

CoJPoD, our aim is to investigate how much of the variation in CoJPoD is determined by

changes in the pure credit quality of institutions and how much is induced by market risk

perceptions.

We use the distance to default (DTD) metric to proxy for physical probabilities of default.

In a banking context, the DTD measures how far away an institution is from default in

units of standard deviation. A large DTD value implies that the institution is far from

default and is deemed to have a low physical probability of default. Estimation of the

DTD requires knowing the market value of the assets and their volatility, both of which

are unobservable. Details on how the DTD is computed can be found in Crosbie and

Bohn (2003). The DTD measure bears a striking resemblance to the expected default

frequency statistic provided by Moody’s KMV. In fact, the DTD is a major component of

the expected default frequency, but the latter also uses other inputs, such as historical

default events, to transform the DTD into physical probabilities of default. We use the

DTD to proxy for physical default probabilities, since it is a metric based solely on an

institution’s balance sheet items and therefore represents its pure credit quality.

Following Black, Correa, Huang, and Zhou (2013), we examine three prevalent risk

premiums. First, we proxy for the default risk premium by computing the daily difference

between the yields of 10-year euro zone industrials rated BBB and those rated AA+/AA

(Chen, Collin-Dufresne, & Goldstein, 2009). Second, we proxy for the liquidity risk

premium by using the daily three-month euro LIBOR/OIS (or EURIBOR/EONIA) spread

(Brunnermeier, Crockett, Goodhart, Persaud, & Shin, 2009). Third, we proxy for the

sovereign risk premium by computing the daily difference between Germany’s 10-year

generic yield and the average of the Spanish and Italian 10-year generic yields weighted
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by their quarterly real gross domestic products (GDPs). An important caveat is that EA

governments and other international bodies often provide bailout packages and guarantees

for the European banking system; consequently, senior CDS spreads will be adjusted

downwards. Therefore, in our subsequent empirical analyses, marginal contributions from

physical probabilities of default and risk premiums should be interpreted as lower bounds

in the case of no government support.

3. Data

In July 2011, the EBA released the results of their stress tests for a broad range of

90 European banks from various countries around Europe, including Austria, Belgium,

Denmark, France, Germany, Greece, Ireland, Italy, Norway, the Netherlands, Portugal,

Spain, Sweden, and the United Kingdom. This group of banks and sovereigns forms the

starting point of our sample. We select banks and sovereigns based on strict liquidity

criteria to ensure that CDS spreads reflect meaningful information on bank and sovereign

credit risk. Specifically, each bank and sovereign must have informative CDS contracts

for maturities of one to five years for the period 1 January 2008 to 31 December 2013.

A CDS contract is informative during a certain quarter if at least 70% of its spread

changes are non-zero during the quarter. We do not include banks or sovereigns that

have non-informative CDS contracts. Our sovereign sample consists of all 14 sovereigns

used in the EBA stress test, which can be decomposed as follows. We include 10 EA

sovereigns, five of which are peripheral sovereigns (Greece, Ireland, Italy, Portugal, and

Spain) and the remaining are core sovereigns (Austria, Belgium, France, Germany, and

the Netherlands). We also include three European Union (EU) sovereigns (Denmark,

Sweden, and the United Kingdom), since their economies play a big role in the stability

of the EA. Finally, we include Norway, which is part of neither the EA nor the EU but is

closely associated with the EU through its membership in the European Economic Area.

Our bank sample consists of 40 banks out of the 90 used in the EBA stress test. We

include banks with informative CDS contracts from all 14 sovereigns, with the exception

of Norway, which does not have any banks with informative CDS contracts. In addition,

we include banks from Switzerland but do not use Switzerland in our sovereign sample

since its sovereign CDS contract is not informative enough for the majority of our sample
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period. Table 1 gives an overview of the banks and sovereigns used in our study.

Our sample period is from 1 January 2008 to 31 December 2013, allowing us to compare the

level of systemic risk from the 2008 global financial crisis through to the recent European

sovereign debt crisis. The beginning of the sample period is dictated by the availability of

informative CDS data for all sovereigns and banks in the study. To avoid any ambiguity

regarding the time period of these two crises, we follow Arghyrou and Kontonikas (2012)

and define the global financial crisis as the start of our sample period to February 2010

and the sovereign debt crisis from March 2010 to the end of our sample period. The

start date of the sovereign debt crisis coincides with the beginning of the European

authorities’ intervention in Greece. We use USD-denominated (EUR-denominated) senior

CDS contracts with maturities of one to five years for sovereigns (banks). Daily CDS

mid-rate spreads are obtained from CMA, Datastream. We prefer US dollar-denominated

CDS contracts for sovereigns, since they are less likely to be affected by European credit

events. Such contracts are also considerably more liquid than their EUR-denominated

counterparts. For comparability between sovereign and bank CDS contracts, we set the

euro as our base currency; thus, any CDS contracts denominated in US dollars will be

transformed into a euro equivalent by using the historical daily euro–US dollar exchange

rate obtained from Bloomberg.

With regards to our bootstrapping procedure, we proxy for discount rates by using the

daily AAA EA government bond yields with maturities of three months to five years,

obtained from the ECB’s Statistical Data Warehouse. As part of the CIMDO procedure,

we proxy for the sovereign correlation matrix by calculating sample correlation coefficients

based on daily changes in the five-year CDS spreads of the sovereigns in our sample.8

We choose a maturity of five years, since these CDS contracts are the most liquid and

most actively traded contracts on the market. The correlation structure of the sovereign

system is shown in Table 2. For the decomposition of systemic risk, the DTD data are

obtained from the website of the Risk Management Institute at the National University

of Singapore.9 The data used to construct the default risk premium, the liquidity risk

premium, and the sovereign risk premium are all obtained from Bloomberg.

8The correlation structure of the banking system and the combined sovereign and banking system
is calculated similarly. For the sake of brevity, we do not report the correlation structure because the
matrix is too large and does not convey any important information. However, the results are available
upon request.

9The data can be accessed at http://rmicri.org.
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4. Empirical Results

Our empirical analyses are organized as follows. First, we apply the methodology outlined

in Section 2 to examine the level of systemic risk in the European sovereign system. We

then investigate the systemic risk within the peripheral sovereigns and the systemic impact

of peripheral sovereigns on the core sovereigns. Next, we explore the systemic risk of

the European banking system and attempt to uncover the most systemically important

banks. We then combine the sovereign and banking systems and examine the evolution of

systemic risk in this multivariate system. Lastly, we study the decomposition of systemic

risk into physical probabilities of default and risk premium components.

4.1. Systemic Risk in the European Sovereign System

We begin by investigating the two key ingredients of the CoJPoD measure, PoD and

JPoD. Figure 1 presents the bootstrapped probabilities of default for the 14 sovereigns and

the joint probability of default for the sovereign system. The sovereign default risk was

virtually non-existent for all sovereigns at the beginning of our sample period, indicating

that market participants had strong confidence in the ability of European sovereigns to

finance their debt. All sovereigns experienced a peak in probabilities of default shortly

after the Lehman Brothers’ collapse in September 2008, but individual probabilities of

default gradually decreased throughout 2009. The beginning of the sovereign debt crisis

marked an upward trend in the probabilities of default of every sovereign. Peripheral

sovereigns were perceived by investors to be the most likely to default, with Ireland and

Portugal reaching probabilities of default of almost 20% in July 2011. At the extreme, the

probability of default of Greece reached a plateau of 59% towards the end of our sample

period due to a CDS credit event triggered for Greece in March 2012. On the other hand,

core sovereigns such as Germany and the Netherlands were highly unlikely to default

throughout the entire sample period. Similarly, Norway, Sweden, and the United Kingdom

were largely unaffected by the sovereign debt crisis. The dynamics of the joint probability

of default of the sovereign system is shown in the last panel of Fig. 1. During the global

financial crisis, the joint probability of default reached a peak of 0.6%, indicating that the

effects of the US financial crisis had rippled through to the European sovereign system.

This peak was almost tripled towards the end of 2011, when the joint probability of default
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of the sovereign system reached 1.7%. In summary, the time-varying dynamics of PoD

and JPoD show that the divergence in market expectations around individual sovereign

defaults may not only be due to the inability of individual sovereigns to service their debts,

but also be about the potential of the EA as a whole to support its members in need.

Figure 2 presents the conditional joint probability of default of the sovereign system given

the default of each sovereign in our sample. The title of each panel is the sovereign that

defaults. Compared to Fig. 1, the ordering is now reversed. Specifically, the conditional

joint probability of default of the sovereign system is the highest throughout the sample

period given the default of core sovereigns such as Germany and the Netherlands. The

disparity between the systemic impact of core sovereigns defaulting compared to peripheral

sovereigns defaulting is even more pronounced during the sovereign debt crisis. For example,

in November 2011, the CoJPoD value of the sovereign system reached 47% given the

default of Germany, whereas the default of the larger peripheral sovereigns, such as Italy

and Spain, produced CoJPoD values of only 30%. This finding is consistent with the

results obtained in Fig. 1. Market participants perceive core sovereigns to be the safest

sovereigns; thus, given their default, one would expect a dramatic increase in the joint

default risk of the remaining sovereigns. Similarly, investor confidence in peripheral

sovereigns is very low; thus, their default would have little influence on the joint default

risk of the sovereign system. Although these results confirm macroeconomic intuition, the

benefit of our approach is that we are able to quantify the level of systemic risk given a

sovereign default.

We now interchange the order of conditioning and calculate the conditional joint probability

of default of a particular sovereign given the default of the sovereign system excluding

that sovereign. This process will reveal the resilience of each sovereign to system-wide

sovereign defaults. Figure 3 presents the results. During the sovereign debt crisis, we

observe that peripheral sovereigns are the least resilient to the default of the sovereign

system. From late 2011 to the end of our sample period, Greece, Italy, Portugal, and

Spain, are guaranteed to default given the default of the sovereign system. In contrast, the

resilience of Ireland improves dramatically as its conditional joint probability of default

given the default of all other sovereigns decreases from 100% on November 2012 to 51%

by the end of our sample period. The weak resilience of peripheral countries during the

sovereign debt crisis is most likely a result of their dependence on other EA states for
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bailout funds. Therefore, if negative events occur in the rest of the sovereign system,

serious repercussions would follow for the peripheral sovereigns. On the other end of

the spectrum, Germany and the Netherlands are highly resilient to systemic default risk,

reinforcing the pivotal role that these two sovereigns play in maintaining the stability of

the EA. We also observe that Sweden and Norway are two of the sovereigns most resilient

to systemic default risk. This is expected because neither sovereign is part of the EA and

investors perceived the government bond markets of both sovereigns to be safe havens

during the sovereign debt crisis.

4.2. The Systemic Impact of Peripheral Sovereigns

In the preceding section, we show that the peripheral sovereigns were the least resilient to

systemic default risk. Recent literature provides evidence that peripheral sovereigns are

the main source of instability in the EA (see, e.g., Aizenman, Hutchison, & Jinjarak, 2013;

Arghyrou & Kontonikas, 2012; Beirne & Fratzscher, 2013; Black et al., 2013; De Santis,

2012; Gorea & Radev, 2014). Given the potential contagion between peripheral sovereigns

and the healthy core, we turn our attention to two special dimensions: the systemic risk

within the peripheral sovereigns and potential cascade effects between the peripheral and

the core.10

Within the peripheral sovereign system, we are especially concerned with the transmission

of systemic risk between the smaller sovereigns (Greece, Ireland, and Portugal) and the

larger economies (Italy and Spain). Figure 4 presents the conditional joint probability

of default of each peripheral sovereign given the default of other peripherals. There are

strong systemic spillover effects between Greece, Ireland, and Portugal. For example,

the CoJPoD value of Greece given the joint default of Ireland and Portugal reached 77%

towards the end of our sample period, which is even larger than its CoJPoD given the joint

default of Italy and Spain. Similarly, the CoJPoD value of Portugal given the joint default

of Greece and Ireland reached 62% by September 2013. Consistent with Ireland’s economic

recovery, the CoJPoD value of Ireland given the joint default of Greece and Portugal

remained relatively stable around 20% for the majority of 2013. Another observation

is the importance of the larger peripheral sovereigns in maintaining the stability of the

10Cascade effects refer to the degree of systemic impact on the sovereign system given the default of
different combinations of peripheral sovereigns.
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peripheral sovereign system. For instance, for much of the sovereign debt crisis, the

magnitude of CoJPoD for Ireland and Portugal given the joint default of Italy and Spain

is much larger than that given the joint default of all peripheral sovereigns. Specifically,

the CoJPoD values of Ireland and Portugal given the joint default of Italy and Spain

reached maximum values of 66% and 68%, respectively, on July 2011.

Another important theme in ongoing debates is whether a default in the smaller peripheral

sovereigns could migrate into Italy and Spain. On May 2010, the European Financial

Stability Facility (EFSF) was established to provide financial assistance to EA member

states experiencing financing difficulties. The facility had a lending capacity of 440 billion

euros that could be combined with loans up to 250 billion euros from the International

Monetary Fund (IMF). As of December 2013, Eurostat data reported the public debt of

Ireland and Portugal to be 203 billion euros and 214 billion euros, respectively. There-

fore, the financial distress of smaller peripheral sovereigns can be dissolved by financial

stabilization mechanisms. In contrast, the combined public debt of Italy and Spain far

exceeded the lending capabilities of the EFSF. Therefore, we focus specifically on the

ITA and SPA panels in Fig. 4. It can be seen that the CoJPoD value of Italy given the

default of Spain is consistently higher than that given the joint default of Greece, Ireland,

Portugal, and Spain. Similarly, the CoJPoD of Spain given the default of Italy is also

consistently greater than that given the joint default of Greece, Ireland, Portugal, and

Italy. At first glance, such an observation might seem counterintuitive: How is it that the

CoJPoD of Italy/Spain is lower given the default of four other sovereigns compared to

when given the default of a single sovereign? This result can be explained after closer

examination of the correlation structure of the sovereign system in Table 2. Specifically,

the correlation between Italy and Spain is 0.85, whereas the average correlation between

Italy and Greece, Ireland, Portugal, and Spain is much lower, at 0.53. As explained in

Section 2, CoJPoD is constructed on the basis of interconnection; thus, the default of a

highly interconnected sovereign (Italy/Spain) will cause a greater increase in CoJPoD. We

also observe very similar time variation in the CoJPoD of Italy given the joint default of

Ireland and Portugal compared to when given the default of all peripheral sovereigns. The

same observation goes for Spain. This result suggests that the transmission of systemic

risk to Italy and Spain due to negative shocks in Ireland and Portugal is just as potent as

negative shocks to the entire peripheral sovereign system.
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We now investigate potential cascade effects between the peripheral sovereigns and the

rest of the sovereign system. Figure 5 presents the conditional joint probability of default

of the rest of the sovereign system given the default of one, two, three, four, or all five

peripheral sovereigns. The most immediate observation is that there is a large amount of

core–peripheral divergence, in the sense that different combinations of peripheral sovereign

defaults have varying degrees of systemic impact on the rest of the sovereign system.

The first panel shows that the standalone defaults of Italy and Spain cause the most

instability to the sovereign system, with CoJPoD reaching maximum values of 30% and

32%, respectively, on December 2011. When two peripheral sovereigns jointly default

(second panel), Italy and Spain are again the most systemically important. However,

towards the end of the sample period, smaller peripheral sovereigns, such as Ireland

and Portugal, are just as systemically important, indicating that the smaller peripheral

sovereigns also have the potential to cause large cascade effects. The third and fourth

panels show that the default of Ireland, Italy, and Spain and the default of Ireland, Italy,

Portugal, and Spain, respectively, have the greatest destabilizing effects on the perceived

default vulnerability of the sovereign system. The high level of heterogeneity in the degree

of systemic impact when different peripheral sovereigns default implies that regulators

should take into account not only the size of peripheral sovereign defaults but also which

combinations of peripheral sovereigns default.

In summary, our results from Figs. 4 and 5 imply that the increased systemic relation

between the peripheral and the core has two main components. First, a default within the

peripheral sovereign system may serve as a precursor for subsequent peripheral sovereign

defaults, that is, intra-peripheral contagion. Furthermore, the transmission of systemic

risk within the peripheral sovereign system is bidirectional, that is, the default of large

peripheral sovereigns causes systemic spillover to the small peripheral sovereigns but the

default of small peripheral sovereigns could also have destabilizing effects on the large

peripheral sovereigns. Second, increased conditional probabilities of default within the

peripheral sovereign system signals an increased probability of future sovereign rescues,

ultimately to be funded by the healthy core sovereigns. Therefore, peripheral sovereign

defaults have the potential to cascade into the core sovereign system.
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4.3. Systemic Risk in the European Banking System

We now shift our attention from a pure sovereign perspective and investigate the systemic

risk of the European banking system. We attempt to uncover the most systemically

important banks and quantify their contribution to the systemic risk of the European

banking system. We first examine the systemic risk contributions of banks at the country

level and then at the individual bank level. Figure 6 presents the conditional joint

probability of default of the banking system given the joint default of all banks in the

sovereign listed in the title of each panel. During the global financial crisis, French and

German banks contributed the most to the systemic risk of the banking system. The

CoJPoD value of the banking system given the default of French and German banks

peaked at 25% and 23%, respectively. However, banks in the larger peripheral sovereigns,

such as Italy and Spain, were not far behind in terms of systemic importance, as the

CoJPoD of the banking system given the default of Italian and Spanish banks peaked at

values of 19% and 21%, respectively. Consistent with the notion that the stability of the

EA banking system also largely depends on the solvency of non-EA banks, we observe

that the CoJPoD of the banking system given the default of UK and Swiss banks grew to

18% and 23%, respectively, during the midst of the global financial crisis. Interestingly,

the CoJPoD of the banking system given the default of Portuguese banks peaked at 14%

shortly after the Lehman Brothers’ collapse in late 2008, which is almost identical to

the CoJPoD given the default of Austrian and Belgian banks, both of which attained a

maximum value of 13%. This observation highlights the systemic importance of banks in

smaller peripheral sovereigns.

The systemic risk contributions of banks in some European sovereigns changed dramatically

between the global financial crisis and the sovereign debt crisis. In particular, of the

peripheral sovereigns, the CoJPoD given the default of Italian and Spanish banks increased

the most during the sovereign debt crisis. The differences between the maximum CoJPoD

values during the global financial crisis and in the sovereign debt crisis are 6% and 7%

for Italian and Spanish banks, respectively. The increased importance of banks in these

countries could be due to their local risk concentration and their increased holdings of

sovereign debt. Within the core sovereigns, French banks continued to contribute the

most to the systemic risk of the banking system. The CoJPoD of the banking system
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given the default of French banks attained a maximum of 34% on November 2011, which

is almost 9% higher than the maximum CoJPoD value during the global financial crisis.

In comparison, the systemic risk contribution of German banks decreased considerably

during the sovereign debt crisis. Banks in Switzerland and the United Kingdom became

major players in the sovereign debt crisis as the CoJPoD of the banking system given the

default of UK and Swiss banks climbed to maximum values of 32% and 38%, respectively.

We now investigate the systemic risk contribution of banks at the individual bank level.

Table 3 presents the conditional joint probability of default of the banking system given

the default of individual banks on five dates: (i) 15 September 2008, the day Lehman

Brothers filed for bankruptcy; (ii) 10 March 2009, the date of the highest CoJPoD values

during the global financial crisis for the majority of panels in Fig. 6; (iii) 2 May 2010,

when Greece accepted the 110 billion euro EU–IMF loan package; (iv) 25 November 2011,

the date of the highest CoJPoD value during the sovereign debt crisis for the majority of

panels in Fig. 6; and (v) 19 December 2013, the date of the lowest CoJPoD value at the

end of our sample period for the majority of panels in Fig. 6. As a measure of bank size

during the sovereign debt crisis, the last two columns present the total assets and total

liabilities in 2011 of each bank in billions of euros.

The most immediate observation is that the biggest contributors to the systemic risk of

the banking system often coincide with the biggest banks in the sovereign. For example,

the CoJPoD of the banking system given the default of the biggest bank in Spain, Banco

Santander SA, was 32.5% on 25 November 2011. This value is much larger than CoJPoD

given the default of the smallest bank in Spain, Banco de Sabadell SA, which was only

19.5% on the same date. Interestingly, the systemic risk contribution of Banco Santander

SA is almost identical in magnitude to that of Deutsche Bank AG, which attained a

CoJPoD value of 32.2% on 25 November 2011. This result further reinforces the systemic

importance of banks in peripheral sovereigns. Another observation is that while Fig. 6

shows that the joint default of French banks contributed the most to the systemic risk

during the global financial crisis and the sovereign debt crisis, Table 3 shows that individual

defaults of French banks are just as systemically relevant. For example, the CoJPoD of

the banking system given the default of the largest French bank, BNP Paribas, was 29.3%

and 33.3% on 10 March 2009 and 25 November 2011, respectively. These two CoJPoD

values are significantly larger than almost all other CoJPoD values given the default of
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EA banks on the same two dates. Our results suggest that bank size and interdependence

are crucial factors in determining the systemic importance of individual banks, which is

in line with Tarashev, Borio, and Tsatsaronis (2009). Further corroborating the systemic

importance of non-EA banks, we see that the largest banks in the United Kingdom and

Switzerland all maintained very high CoJPoD values throughout the sovereign debt crisis.

Overall, our results support the actions taken by regulators and policymakers during the

sovereign debt crisis from several perspectives. First, regulators often allowed small banks

to fail. Our results indicate that small banks are generally less systemically important

to the banking system; hence such actions are justified. Second, the EU and IMF have

worked hard to bail out too-big-to-fail banks instead of letting them fail. Our results

support this course of action, since the default of large banks is associated with greater

systemic ramifications. Finally, our results support the policy implications of handling

too-big-to-fail banks by shrinking their size or breaking them up into smaller entities to

make them less systemically risky.

4.4. Evolution of Systemic Risk in the Combined European Sovereign and Banking System

Up until now, our focus has been on the sovereign system and banking system in isolation.

We now consider sovereigns and banks as entities of an entire system and examine the

evolution of systemic risk in this multivariate system. We choose sovereigns to be the

trigger of default and examine their systemic impact on the banking system. Figure 7

presents the conditional joint probability of default of the banking system given the default

of the sovereign in the title of each panel. The CoJPoD of the banking system given

the default of core sovereigns reached maximum values between 18% and 21% during

the global financial crisis, while CoJPoD given the default of larger peripheral sovereigns

such as Italy and Spain peaked at 17%. This result not only indicates that investors

perceived the systemic impact of core sovereigns and the large peripheral sovereigns to be

roughly the same, but also shows that the European banking system was prone to systemic

shocks originating from the United States. The onset of the sovereign debt crisis saw the

systemic risk rise dramatically. The CoJPoD of the banking system given the default

of Germany reached historical highs of 32% in late 2011. The systemic risk of Italy and

Spain were not far behind, with CoJPoD values of 25% and 27%, respectively. Such high

levels of bank default risk reflect the widespread panic and relentless unrest as European
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sovereigns adopted various austerity measures in an attempt to secure further bailout

packages to ward off the pending catastrophe. For a closer examination of CoJPoD, we

split its evolution into two periods. The first and second panels of Fig. 8 present the

time-varying dynamics of CoJPoD during the global financial crisis and the sovereign

debt crisis, respectively. We choose a core sovereign (Germany), a peripheral sovereign

(Italy), and a non-EA sovereign (United Kingdom) to be the triggers of default.

The systemic risk was lowest at the beginning of our sample period (first panel of Fig. 8)

but began to climb steadily as shocks from the United States echoed into the European

banking sector. The first peak occurred on 14 March 2008, when the Federal Reserve and

JP Morgan bailed out Bear Stearns. However, this episode was quickly defused due to

rapid interventions by the Federal Reserve. A small peak materialized on 7 July 2008,

when Fannie Mae and Freddie Mac plunged on capital concerns. Although these two

enterprises played a key role in the US housing market, the European banking system

seemed to be relatively unfazed. The first major systemic shock to the European banking

system occurred on 15 September 2008, when Lehman Brothers filed for bankruptcy. The

CoJPoD values of the banking system given the default of Germany, Italy, and the United

Kingdom were 14%, 12%, and 11%, respectively. A period of recovery followed, as the

G20 Summit vowed to boost growth and prevent future crises. However, this pledge was

short-lived, as the CoJPoD given the default of Germany peaked at 21% on 10 March

2009, coinciding with the Dow Jones Industrial Average slumping to an all-time low. This

result shows that the European banking system was adversely affected by the bearish

nature of the US market at that time. Major contributing factors included the widespread

lack of due diligence by market participants in the global financial markets and the advent

of increasingly complex financial products that were used to mask excessive leverage that

exploited vulnerabilities in the global financial system. Indeed, the significant rise in our

CoJPoD measure shows that European banks were not spared the after-effects of such

events. It was not until 2 April 2009, when the G20 set up the Financial Stability Board,

that global financial markets began to calm down. This outcome was largely due to the

adoption of policies intended to stimulate the economy, provide liquidity, enhance bank

regulation, and reinforce international cooperation. Following such actions, the level of

systemic risk began to decline, indicating a period of prolonged recovery.

The evolution of CoJPoD throughout the sovereign debt crisis was mostly a result of
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credit events spawned within the EA (second panel of Fig. 8) rather than external shocks

from the United States. The CoJPoD value increased sharply on 2 May 2010, when

Greece signed a loan package of 110 billion euros with the EU and IMF. The release of

the 2010 round of banking stress tests on 23 July 2010 revealed that banks were likely to

suffer losses on their sovereign debt exposures given a negative sovereign shock. Consistent

with the stress test results, the CoJPoD of the banking system given a sovereign default

maintained an upward trend. Positive news was released on 12 January 2011 related

to the expansion of the lending facilities of the EFSF and on 19 February 2011, when

the G20 decided to focus on global imbalances. The decrease in CoJPoD after these

announcements indicates that the proposed course of action was successful in reducing

the systemic risk. The release of the 2011 round of banking stress tests on 15 July 2011

marked a new period of heightened systemic risk in the EA. This round of stress test

results revealed that banks in peripheral sovereigns were unlikely to weather negative

sovereign shocks. The negative outlook was further reinforced at the G20 Summit on 14

October 2011, when concerns were raised regarding the possible financial contagion of a

Greek default spreading to core sovereigns and accelerating the fiscal distress of peripheral

sovereigns. The CoJPoD measure successfully captures this negative information as it

reached an all-time high on 30 November 2011. A series of events followed that aimed to

improve the liquidity of the banking system and prevent peripheral sovereign defaults.

These policy implementations had a profound effect on our CoJPoD measure, signalling a

period of continuous decline in systemic risk. To sum up, our findings indicate that major

events during the global financial crisis and the European sovereign debt crisis strongly

coincide with the inflection points in our CoJPoD measure.

4.5. Decomposition of Systemic Risk

As mentioned in Section 2.4, CoJPoD is a risk-neutral measure of systemic risk that

incorporates information not only on physical default risk but also on risk premium

components such as the liquidity risk premium, the default risk premium, and the

sovereign risk premium. Our aim is to decompose the systemic risk of the combined

sovereign and banking system and determine how much of its movement is induced by

changes in the physical default loss of banks and how much is steered by changes in

market sentiments (change in perceptions towards liquidity risk, default risk, and sovereign
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risk). To achieve this, we use the conditional joint probability of default of the sovereign

system given the joint default of all banks within a particular sovereign as our measure

of systemic risk. We choose banks to be the trigger of default because the DTD is a

measure of physical default risk for banks only. Thus, by conditioning on the default of

banks, we allow the systemic risk of the sovereign system to be influenced by the physical

probabilities of default of banks.

In Fig. 9, the solid line of each panel is the conditional joint probability of default of the

sovereign system given the joint default of all banks in the sovereign listed in the title of

the panel. The values of the conditional joint probability of default are given on the left

vertical axis in percent. The dotted line of each panel is the average DTD of all banks in

the sovereign listed in the title of the panel. The values of the DTD are given on the right

vertical axis.11 The most immediate observation for all panels is that from the beginning

of our sample to 10 March 2009 (the first major peak in the CoJPoD series during the

global financial crisis), CoJPoD and the DTD are moving in opposite directions. Since

a lower DTD means that a bank is closer to default, this negative relation between the

two series implies that increases in the systemic risk of the sovereign system were mostly

a result of the increased physical default risk of banks during the global financial crisis.

Consistent with the improving market conditions during the post-global financial crisis

recovery period to the beginning of the sovereign debt crisis, CoJPoD has a downward

trend while the DTD has an upward trend. This result implies that the decrease in

systemic risk can be attributed to the decreased probability of banks incurring actual

losses.

Since the beginning of the sovereign debt crisis, CoJPoD and the DTD maintain a very

strong negative relation in peripheral sovereigns such as Italy, Portugal, and Spain. In

contrast, CoJPoD and the DTD share a positive relation in core sovereigns such as Austria,

France, and Germany and in non-EA sovereigns such as Denmark, Sweden, Switzerland,

and the United Kingdom. These results suggest that the physical stress placed on banks in

peripheral sovereigns is the main contributor to the systemic risk of the sovereign system.

Indeed, the sovereign debt crisis is a crisis of European origin; thus, the pure credit quality

of banks in peripheral sovereigns is likely to be of much greater importance, given their

11The sample period is from 1 January 2008 to 1 July 2013 because DTD data are available only up to
1 July 2013.
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large exposures to sovereign debt. Furthermore, deterioration of the real economy placed

immense pressure on the European banking system, generating substantial downward

revisions in the credit quality of banks in peripheral sovereigns. On the other hand, the

physical condition of banks in non-peripheral sovereigns has been improving, as indicated

by increasing values of DTD. Therefore, for banks in non-peripheral sovereigns, the

systemic risk is primarily driven by risk premiums. The policy implications of this result

is that, during a crisis, the sizes of bailout packages of market-based solutions tend to

be considerably larger than is justified by an objective assessment of the default losses,

because of changes in market sentiments.

We now take the analysis a step further and use regression analysis to examine the impact

of physical default risk and risk premium components on the systemic risk of the sovereign

system. The dependent variable in our panel regression is the conditional joint probability

of default of the sovereign system given the joint default of all banks in a particular

sovereign (denoted CoJPoD for short). We include three state variables to control for

common risk factors. To control for market-wide credit risk, we include the European

iTraxx index (Itraxx ), which is an equally weighted index of the 125 most liquid CDS

series in the European market. A higher iTraxx index value signals a higher overall credit

risk in the economy; therefore, we expect a positive relation between the iTraxx index

and CoJPoD. The second variable we include is the 24-month Vstoxx volatility index

(Vstoxx ). The Vstoxx index reflects the market perceptions of short-term volatility in

Europe; therefore, increases in the Vstoxx index signify uncertainty regarding the strength

of economic fundamentals of European sovereigns. We predict a positive relation between

the Vstoxx index and CoJPoD. Lastly, we include the Europe Datastream Market Index

(Market) to control for market-wide business climate. We predict that improving economic

prospects, signalled by increases in the market index, should decrease CoJPoD. All three

variables are obtained from Datastream. Our main variables include the liquidity risk

premium (LRP), the default risk premium (DRP), the sovereign risk premium (SRP),

and the DTD (DTD). The specification can thus be written as follows:

CoJPoDi,t = α + β ·Risk Premiumt + γ ·DTDi,t + φ ·Xt + εi,t (5)

where Risk Premiumt is the vector of risk premium variables, DTDi,t is the average
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DTD of all banks in sovereign i, and Xt is the vector of control variables. In unreported

tests, we find that most of our variables are non-stationary, which will yield spurious

results when we run the regression in levels. To deal with this problem, we convert all

variables into arithmetic returns. We run the regression using monthly observations from

1 January 2008 to 28 June 2013, since this is the frequency and period for which we have

available DTD data.

Table 4 presents the results of the panel regression. Columns (1) to (3) include the risk

premium variables individually, while column (4) includes the DTD individually. Column

(5) uses all variables. Columns (6) and (7) use banks from peripheral and non-peripheral

sovereigns, respectively. All columns employ sovereign fixed effects. We note that all three

state variables have the expected signs and are significant across all columns. This result

shows that the three state variables are successful in capturing sources of commonality

and so we can be confident that the loadings on the risk premium variables and the

DTD reflect the decomposition of systemic risk over and above what can be explained by

fundamental factors. In columns (2) and (3), the coefficients of the default risk premium

and the sovereign risk premium are both positive and highly significant, indicating that

changes in market risk perceptions play an important role in driving the variation in the

systemic risk of the sovereign system. Surprisingly, the coefficient of the liquidity risk

premium is negative (column (1)), although marginally significant. The DTD has the

expected negative coefficient (column (4)); however, its weak significance indicates that

the effect of physical probabilities of default on the systemic risk of the full sample of

sovereigns is not so clear-cut.

The multivariate joint regression in column (5) of Table 4 further reinforces the importance

of risk premium components in driving up systemic risk as the coefficients of the default

risk premium and sovereign risk premium continue to be positive and highly significant.

Unexpectedly, the loading on the liquidity risk premium remains negative and actually

increases in significance. One possible explanation for this result is the implementation

of policies that were aimed at injecting liquidity into the banking system and relieving

the financing troubles of European banks, for example, the Federal Reserve’s dollar

liquidity swap with the ECB in November 2011 and the ECB’s long-term refinancing

operations in December 2011. During the sovereign debt crisis, these interventions were

not just a one-time occurrence; rather, market interventions became the new normal.
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Thus, in this self-validating cycle of rescue packages, liquidity dry-ups could be a signal of

market intervention that subsequently decreases the systemic risk. Finally, the DTD is

still negatively related to the systemic risk of the sovereign system; however, it is only

significant at the 10% level, suggesting that physical default risk has confounding effects

on banks in peripheral and non-peripheral sovereigns. Consistent with the observation in

Fig. 9, that the negative association between the DTD and the CoJPoD is stronger for

banks in peripheral sovereigns, when we restrict our sample of banks to only those in the

peripheral sovereigns, the coefficient of the DTD variable increases in significance while

the sovereign risk premium decreases in significance (column (6)). This result supports

the notion that physical probabilities of default play a larger role in determining the level

of systemic risk for banks in peripheral sovereigns. In contrast, Fig. 9 also appears to

suggest that it is mainly the risk premium components that induce increases in systemic

risk for banks in non-peripheral sovereigns. We can confirm this observation, since column

(7) shows that when we restrict our sample of banks to those in non-peripheral sovereigns,

the DTD variable becomes insignificant while the sovereign risk premium increases in

significance.

5. Conclusion

This paper uses the conditional joint probability of default to study the systemic risk of

the European sovereign and banking system during the global financial crisis and the

sovereign debt crisis. Although there is a significant amount of literature on sovereign

and bank credit risk in isolation, there has been relatively little work in attempting to

quantify the level of systemic risk between the two. This paper contributes to the topic

by incorporating individual default risk characteristics combined with joint default risk

dynamics to create a probabilistic measure of systemic risk that is applicable in a true

multivariate setting. In addition, we fully exploit the conditional flexibility in the systemic

risk measure by first investigating the level of systemic risk in the sovereign and banking

system separately and then in the combined sovereign and banking system.

Our initial results are consistent with macroeconomic intuition. Specifically, we show that

the conditional joint probability of default of the sovereign system given the default of core

sovereigns, such as Germany and the Netherlands, is much higher than the conditional
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joint probability of default given the default of peripheral sovereigns, such as Italy and

Spain. The advantage of our approach is that we are able to track the level of systemic

risk in terms of probability. In particular, during the height of the sovereign debt crisis,

the conditional joint probability of default of the sovereign system given the default of

Germany reached a maximum of 47%, while the default of Italy and Spain only produced

values of 30%. Interchanging the order of conditioning, we are able to reveal important

information regarding the resilience of sovereigns to system-wide default. We show that

all five peripheral sovereigns are the least resilient to sovereign system default, with the

exception of Ireland, whose resilience improves dramatically towards the end of our sample

period. Our results also confirm the importance of Germany and the Netherlands as core

sovereigns in maintaining the stability of the EA.

Shifting our focus to the systemic impact of peripheral sovereigns, our results are in line

with recent developments in the systemic risk literature. We show that the increased

systemic activity between the peripheral sovereigns and the healthy core can be broken

down into two components. First, we point out the large degree of systemic risk spillover

within the peripheral sovereign system. Our results indicate that intra-peripheral systemic

risk is bidirectional, that is, the default of larger peripheral sovereigns such as Italy

and Spain poses severe systemic consequences for the smaller peripheral sovereigns such

as Ireland and Portugal. However, negative shocks to small peripheral sovereigns can

also cause a systemic collapse of large peripheral sovereigns. The second component is

the potential for systemic risk to cascade from peripheral sovereigns to core sovereigns.

In particular, we document great heterogeneity in the degree of systemic impact when

different combinations of peripheral sovereigns default. Policy-wise, these results highlight

the need to decrease the interdependence between the peripheral and the core during crisis

periods. Furthermore, given the occurrence of peripheral sovereign defaults, regulators

should take into account not only the size of the default, but also which combination of

sovereigns defaulted.

Applying our measure of systemic risk in the European banking system unveils some

notable results. We show that, of the EA banks, French banks contributed the most to

the systemic risk of the banking system during both the global financial crisis and the

sovereign debt crisis. However, banks in the larger peripheral sovereigns, such as Italy

and Spain were not far behind in terms of systemic importance. In fact, the systemic

30



risk contributions of these banks increased the most during the sovereign debt crisis. Our

results also indicate that the stability of the banking system is largely attributable to the

solvency of non-EA banks in the United Kingdom and Switzerland. Indeed, during the

sovereign debt crisis, banks in these sovereigns would have been the highest contributors

to the systemic risk of the banking system had they defaulted. Examining systemic risk

at the individual bank level reveals that the biggest contributors to the systemic risk of

the banking system often coincide with the biggest banks in the sovereign. Thus, our

results lend support to the course of action taken by regulators and policymakers during

the sovereign debt crisis in dealing with too-big-to-fail banks and preventing their failure.

Merging the sovereign and banking system into one multivariate system and using

sovereigns as the trigger of default, we show that the evolution of the conditional joint

probability of default of the banking system coincides with major events throughout

our sample period. Although systemic risk was generally quite tame during the global

financial crisis, it peaked shortly after the Lehman Brothers’ collapse as the conditional

joint probability of default of the banking system given the default of core sovereigns

reached values of around 21%. However, the onset of the sovereign debt crisis saw systemic

risk increase to unprecedented levels, with the conditional joint probability of default given

the default of Germany reaching historical highs of 32%. To determine the driving forces

of systemic risk, we condition on the default of banks and examine the decomposition

of the systemic risk of the sovereign system. Our results indicate that the default risk

premium and the sovereign risk premium played a major role in driving the variation

in systemic risk. In addition, we show that the physical probability of default is also a

significant component of systemic risk, especially for banks in peripheral sovereigns.
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A. Proofs

A.1. Framework for the Consistent Information Multivariate Density Optimization

(CIMDO) Methodology

Assume there are n entities in the system where X1, X2, · · · , Xn denote the random

variables corresponding to the natural logarithm of assets of institution I1, I2, · · · , In,

respectively. Define the Knullback-Leibler objective function as:

C(p, q) =

∫ ∫
· · ·
∫
p(x1, x2, · · · , xn) ln

[
p(x1, x2, · · · , xn)

q(x1, x2, · · · , xn)

]
dx1 · · · dxn−1dxn (A.1)

where q(x1, x2, · · · , xn) ∈ Rn is the prior distribution and p(x1, x2, · · · , xn) ∈ Rn is the

posterior distribution.

We minimize the functional in Eq. (A.1) with respect to p subject to the following moment

consistency constraints:12

∫ ∫
· · ·
∫
p(x1, x2, · · · , xn)χ

[X
I1
d ,∞)

dx1 · · · dxn−1dxn = PoDI1∫ ∫
· · ·
∫
p(x1, x2, · · · , xn)χ

[X
I2
d ,∞)

dx1 · · · dxn−1dxn = PoDI2

...∫ ∫
· · ·
∫
p(x1, x2, · · · , xn)χ[XIn

d ,∞)dx1 · · · dxn−1dxn = PoDIn∫ ∫
· · ·
∫
p(x1, x2, · · · , xn)dx1 · · · dxn−1dxn = 1

where PoDI1 , PoDI2 , · · · , PoDIn correspond to the bootstrapped probabilities of default

of institution I1, I2, · · · , In, respectively. For i = 1, 2, · · · , n, define χ
[X

Ii
d ,∞)

as:

χ
[X

Ii
d ,∞)

=

1 if Xi ≥ XIi
d

0 if Xi < XIi
d

12Note that we do not include the positivity constraint, p(x1, x2, · · · , xn) ≥ 0, since we explicitly assume
the prior is a non-negative function.
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The corresponding Lagrangian is defined as:

L(p, q) =

∫ ∫
· · ·
∫
p(x1, x2, · · · , xn) ln(p(x1, x2, · · · , xn))dx1 · · · dxn−1dxn

−
∫ ∫

· · ·
∫
p(x1, x2, · · · , xn) ln(q(x1, x2, · · · , xn))dx1 · · · dxn−1dxn

+ λ1

[∫ ∫
· · ·
∫
p(x1, x2, · · · , xn)χ

[X
I1
d ,∞)

dx1 · · · dxn−1dxn − PoDI1

]
+ λ2

[∫ ∫
· · ·
∫
p(x1, x2, · · · , xn)χ

[X
I2
d ,∞)

dx1 · · · dxn−1dxn − PoDI2

]
+ · · ·

+ λn

[∫ ∫
· · ·
∫
p(x1, x2, · · · , xn)χ[XIn

d ,∞)dx1 · · · dxn−1dxn − PoDIn

]
+ µ

[∫ ∫
· · ·
∫
p(x1, x2, · · · , xn)dx1 · · · dxn−1dxn − 1

]

where λi for i = 1, 2, · · · , n denotes the Lagrange multipliers for the n moment consistency

constraints and µ is the Lagrange multiplier for the unity constraint.

The optimal solution to the multivariate CIMDO posterior distribution is given by:

̂p(x1, x2, · · · , xn) = q(x1, x2, · · · , xn) exp

{
−

[
1 + µ̂+

n∑
i=1

λ̂iχ[X
Ii
d ,∞)

]}
(A.2)

where λ̂1, λ̂2, · · · , µ̂ denote the consistent estimators of λ1, λ2, · · · , µ, respectively.

33



A.2. The GCE Method

In order to dynamically update the posterior distribution, we need to solve for the Lagrange

multipliers in Eq. (A.2) on a daily basis. We provide a solution to solve for consistent

estimators of the Lagrange multipliers by using the GCE method. Under the cross-entropy

postulate, we minimize the Csiszár measure of cross-entropy between the prior q and the

posterior p as follows:

min
p∈P

D(p→ q) =

∫
ζ

q(x)ψ

(
p(x)

q(x)

)
dx (A.3)

where x = [x1, x2, · · · , xn]T ∈ ζ ⊂ Rn and P =

{
p :

∫
p(x)dx = 1, p(x) ≥ 0, ∀ x ∈ ζ

}
.

Additionally, ψ is a function that satisfies:

1. ψ : R+ → R is a continuous twice-differentiable function.

2. ψ(1) = 0

3. ψ′′(x) > 0 ∀ x ∈ R+. This is called the convexity assumption.

The minimization in Eq. (A.3) is subject to the generalized moment constraint set, Ω:

Ep[Ki(X)] =

∫
ζ

p(x)Ki(x)dx = κ̂i, for i = 1, 2, · · · , n (A.4)

where Ki is a set of suitably chosen functions and κ̂i is some estimated quantity that

describes the behaviour of the system.

The convexity assumption on ψ allows us to invoke the theory of duality and in particular,

the Strong Duality Theorem (see, e.g., Borwein & Lewis, 1991; Decarreau, Hilhorst,

Lemarechal, & Navaza, 1992). We define the Primal Problem to be:

min
p

D(p→ q)

subject to :

∫
p(x)Ki(x)dx = κ̂i, i = 1, 2, · · · , n∫

p(x)dx = 1
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The corresponding Lagrangian is given by:

L(p : λ, λ0) =

∫ [
q(x)ψ

(
p(x)

q(x)

)
− p(x)

n∑
i=0

λiKi(x)︸ ︷︷ ︸
Define K0(·)=1

]
dx +

n∑
i=0

λiκ̂i︸ ︷︷ ︸
Define κ̂0=1

(A.5)

where λ = [λ1, λ2, · · · , λn]T and λ0 denotes the set of positive Lagrange multipliers for Ω.

Under the Strong Duality Theorem, we have the following equivalence:

min
p∈P
{D(p→ q)}︸ ︷︷ ︸

Primal Problem

= max
λ,λ0

{
inf
p∈P

L(p : λ, λ0)

}
︸ ︷︷ ︸

Dual Problem

(A.6)

The equivalent Dual Problem is given by:

max
λ,λ0

{
inf
p∈P

L(p : λ, λ0)

}
subject to : λ ≥ 0

(A.7)

Under the convexity assumption, the function ψ′(x) has a unique inverse over the positive

reals. Thus,

p(x) = q(x)ψ
′−1

(
n∑
i=0

λiKi(x)

)
(A.8)

Substituting Eq. (A.8) into Eq. (A.5) yields:

L∗(λ, λ0) = inf
p∈P

L(p : λ, λ0)

= Eq

[
ψ

(
ψ
′−1

(
n∑
i=0

λiKi(X)

))]
−

n∑
j=0

{
λjEq

[
Kj(X)ψ

′−1

(
n∑
i=0

λiKi(X)

)]}
+

n∑
i=0

λiκ̂i

Define Ψ′(x) = ψ
′−1(x), the simplest form of the Dual Problem is:

max
λ,λ0

L∗(λ, λ0) =
n∑
i=0

λiκ̂i − Eq

[
Ψ

(
n∑
i=0

λiKi(X)

)]
(A.9)
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The Gradient of L∗ with respect to λj is defined as:

∂L∗

∂λj
= −Eq

[
Kj(X)Ψ′

(
n∑
i=0

λiKi(X)

)]
+ κ̂j for j = 0, 1, · · · , n (A.10)

Consistent estimators for λ, λ0 can be obtained by solving ∇λ,λ0L
∗ = 0:

Eq

[
Ψ′

(
n∑
i=0

λiKi(X)

)]
= 1 (A.11)

Eq

[
K1(X)Ψ′

(
n∑
i=0

λiKi(X)

)]
= κ̂1 (A.12)

...

Eq

[
Kn(X)Ψ′

(
n∑
i=0

λiKi(X)

)]
= κ̂n (A.13)

In general, we can rarely calculate the expectations in the above system of equations

analytically, thus in practice, we numerically solve their stochastic counterparts:

1

n

n∑
k=1

[
Kj(xk)Ψ

′

(
n∑
i=0

λiKi(xk)

)]
= κ̂j where {Xk}nk=1 ∼ q and j = 0, 1, · · · , n

(A.14)

The solution to this set of equations provides a set of consistent estimators for the Lagrange

multipliers λ̂ = [λ̂1, λ̂2, · · · , λ̂n]T and λ̂0.

To apply the GCE in the CIMDO framework, first define ψ(x) = x ln(x) as the Knullback-

Leibler divergence, so that:

1. ψ′(x) = ln(x) + 1

2. ψ
′−1(x) = Ψ′(x) = Ψ(x) = exp(x− 1)

Under this measure, the Csiszár cross-entropy distance is defined as:

D(p→ q) =

∫
ζ

q(x) ln

(
p(x)

q(x)

)
dx

where x ∈ ζ ⊂ Rn, p(x) ∈ Rn is the posterior distribution and q(x) ∈ Rn is the prior

distribution.
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Our constraint set Ω is the set Ep [Ki(X)] = κ̂i for i = 0, 1, · · · , n where κ̂0 = 1 and

K0(·) = 1. We define {Ki(x)}ni=0 = {χi(x)}ni=0 where χi(x) is an indicator function which

takes on the value of unity if xi satisfies some condition and zero otherwise. Therefore,

our constraint set becomes:

Ep [χi(X)] = κ̂i for i = 0, 1, · · · , n (A.15)

The Primal Problem is defined as:

min
p
D(p→ q) =

∫
ζ

q(x) ln

(
p(x)

q(x)

)
dx

subject to Ep [χi(X)] = κ̂i for i = 0, 1, · · · , n

The solution to the Primal Problem using Eq. (A.8) is given by:

p(x) = q(x) exp

[
n∑
i=0

λiχi(x)− 1

]
(A.16)

To see the equivalence between Eq. (A.16) and the CIMDO posterior distribution given

by Eq. (A.2), define the Lagrange multipliers to be inherently negative and denote λ0 as

µ, this yields the following equivalent expression:

p̂(x) = q(x) exp

{
−

[
1 + µ̂+

n∑
i=1

λ̂iχi(x)

]}
(A.17)

We use Eq. (A.9) to solve for the Lagrange multipliers:

max
λ,λ0

{
n∑
i=0

λiPoDIi − Eq

[
exp

(
n∑
i=0

λiχi (X)− 1

)]}
(A.18)

where PoDI0 = 1 and χ0 (·) = 1.
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To maximize Eq. (A.18), we solve the following system of equations:

Eq

[
exp

(
n∑
i=0

λiχi (X)− 1

)]
= 1 (A.19)

Eq

[
χ1 (X) exp

(
n∑
i=0

λiχi (X)− 1

)]
= PoDI1 (A.20)

...

Eq

[
χn (X) exp

(
n∑
i=0

λiχi (X)− 1

)]
= PoDIn (A.21)

We numerically solve the above system of equations using Eq. (A.14) thereby obtaining a

set of consistent estimators for the Lagrange multipliers µ̂, λ̂1, · · · , λ̂n.
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B. Figures

Figure 1: Sovereign probabilities of default and joint probability of default of
the sovereign system
Each panel (with the exception of the last one) presents the five-year annualized bootstrapped probabilities
of default for each of the 14 sovereigns listed in Table 1. USD-denominated CDS spreads of maturities
one to five years are used to derive the probabilities of default. The last panel (titled JPoD) presents the
joint probability of default of the sovereign system. The correlation matrix used to construct the joint
probability of default is given in Table 2. The sample period for all panels is from 1 January 2008 to 31
December 2013. The unit of measurement for the vertical axis is %.
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Figure 2: Conditional joint probability of default of the sovereign system, given
the default of a particular sovereign
Each panel presents the conditional joint probability of default of the sovereign system, given the default
of each of the 14 sovereigns listed in Table 1. The title of each panel is the sovereign that defaults. The
correlation matrix used to construct the conditional joint probability of default is given in Table 2. The
sample period for all panels is from 1 January 2008 to 31 December 2013. The unit of measurement for
the vertical axis is %.
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Figure 3: Conditional joint probability of default of a particular sovereign,
given the default of the sovereign system excluding that sovereign
Each panel presents the conditional joint probability of default of each of the 14 sovereigns listed in
Table 1, given the default of the sovereign system excluding the sovereign in the title of the panel. The
correlation matrix used to construct the conditional joint probability of default is given in Table 2. The
sample period for all panels is from 1 January 2008 to 31 December 2013. The unit of measurement for
the vertical axis is %.
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Figure 4: Conditional joint probability of default of a particular peripheral
sovereign, given the default of other peripheral sovereigns
Each panel presents the conditional joint probability of default of each of the five peripheral sovereigns
(Greece, Ireland, Italy, Portugal, and Spain), given the default of the sovereigns listed in the legend. The
correlation matrix used to construct the conditional joint probability of default is given in Table 2. The
sample period for all panels is from 1 January 2008 to 31 December 2013. The unit of measurement for
the vertical axis is %.
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Figure 5: Conditional joint probability of default of the sovereign system, given
the default of peripheral sovereigns
Each panel presents the conditional joint probability of default of the remaining sovereigns in the sovereign
system, given the default of the peripheral sovereigns listed in the legend. The correlation matrix used to
construct the conditional joint probability of default is given in Table 2. The sample period for all panels
is from 1 January 2008 to 31 December 2013. The unit of measurement for the vertical axis is %.
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Figure 6: Conditional joint probability of default of the banking system, given
the joint default of all banks in a particular sovereign
Each panel presents the conditional joint probability of default of the banking system, given the joint
default of all banks in the sovereign listed in the title of the panel. The banks and their home country
are listed in Table 1. The sample period for all panels is from 1 January 2008 to 31 December 2013. The
unit of measurement for the vertical axis is %.
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Figure 7: Conditional joint probability of default of the banking system, given
the default of a particular sovereign
Each panel presents the conditional joint probability of default of the banking system, given the default
of each of the 14 sovereigns listed in Table 1. The title of each panel is the sovereign that defaults. The
sample period for all panels is from 1 January 2008 to 31 December 2013. The unit of measurement for
the vertical axis is %.
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Figure 8: Conditional joint probability of default of the banking system, given
the default of a particular sovereign during the global financial crisis and the
sovereign debt crisis
The first panel presents the conditional joint probability of default of the banking system, given the
default of the sovereigns listed in the legend during the global financial crisis. The second panel presents
the conditional joint probability of default of the banking system, given the default of the sovereigns listed
in the legend during the sovereign debt crisis. The sample period for the first panel is from 1 January
2008 to 28 February 2010. The sample period for the second panel is from 1 March 2010 to 31 December
2013. The unit of measurement for the vertical axis is %. Major events are denoted by dashed vertical
lines and a brief description is provided.
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(1) 14 March 2008: JP Morgan and the Federal Reserve bail out Bear Stearns.

(2) 7 July 2008: Freddie Mac, Fannie Mae plunge on capital concerns.

(3) 15 September 2008: Lehman Brothers file biggest bankruptcy after suitors balk.

(4) 15 November 2008: G20 Summit seeks to boost growth and prevent crises.

(5) 10 March 2009: US stock market hits bottom as measured by the Dow Jones
Industrial Average.

(6) 2 April 2009: G20 to set up Financial Stability Board.

(7) 2 May 2010: The EA countries and the IMF agree on a e110 billion loan package to
Greece.

(8) 23 July 2010: The Committee of European Banking Supervisors publishes the results
of the banking stress tests.

(9) 12 January 2011: News regarding the expansion of the European Financial Stability
Facility dissipated into the financial markets.

(10) 19 February 2011: G20 to focus on imbalances.

(11) 15 July 2011: The European Banking Authority publishes the results of the 2011
round of banking stress tests.

(12) 14 October 2011: G20 pledges to preserve financial stability.

(13) 30 November 2011: The Federal Reserve coordinates global effort with other central
banks to lower prices on dollar liquidity swaps.

(14) 21 December 2011: The ECB implemented the first 3-year long-term refinancing
operation, offering loans at low interest rates.

(15) 21 February 2012: Eurogroup agrees on second financial aid package for Greece.

(16) 20 July 2012: Eurogroup grants financial assistance to Spain’s banking sector.

(17) 4 February 2013: Statement by European Commission and ECB on second review of
financial assistance programme for Spain.
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Figure 9: Conditional joint probability of default of the sovereign system, given
the joint default of all banks in a particular sovereign and the average DTD
The solid line of each panel is the conditional joint probability of default of the sovereign system, given
the joint default of all banks in the sovereign listed in the title of the panel. The values of the conditional
joint probability of default are given on the left vertical axis in %. The dotted line of each panel is the
average DTD of all banks in the sovereign listed in the title of the panel. The values of the DTD are
given on the right vertical axis. The sample period is from 1 January 2008 to 1 July 2013.
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C. Tables

Table 1: List of sovereigns and banks
This table presents the 14 sovereigns and 40 banks used in our analyses. Next to each sovereign is its
abbreviated name in parentheses. The home country for each bank is also reported. We do not include
Switzerland as a sovereign because its sovereign CDS contract is not informative enough for the majority
of our sample period. For the same reason, we do not include any banks from Norway.

Sovereigns Banks

Bank Country Bank Country

Austria (AUT) Erste Group Bank AG Austria Intesa Sanpaolo SpA Italy
Belgium (BEL) Raiffeisen Bank Austria Mediobanca SpA Italy
Denmark (DEN) Dexia SA Belgium UniCredit SpA Italy
France (FRA) KBC Groep NV Belgium Banco Comercial Portugues SA Portugal
Germany (GER) Danske Bank A/S Denmark Espirito Santo Financial Group Portugal
Greece (GRE) BNP Paribas France Banco Bilbao Vizcaya Spain
Ireland (IRE) Credit Agricole SA France Banco de Sabadell SA Spain
Italy (ITA) Natixis France Banco Santander SA Spain
Norway (NOR) Société Générale France Nordea Bank Sweden
Portugal (POR) Commerzbank AG Germany Skandinaviska Enskilda Banken Sweden
Spain (SPA) Deutsche Bank AG Germany Svenska Handelsbanken AB Sweden
Sweden (SWE) IKB Bank Germany Swedbank AB Sweden
Netherlands (NL) Alpha Bank Greece Credit Suisse Group Switzerland
United Kingdom (UK) Allied Irish Banks PLC Ireland UBS SG Switzerland

Irish Life and Permanent Ireland ING Groep NV Netherlands
Bank of Ireland Ireland SNS Bank Netherlands Netherlands
Banca Italease Italy Barclays PLC United Kingdom

Banca Monte dei Paschi di Siena Italy HBOS PLC United Kingdom
Banca Popolare di Milano Italy Lloyds Banking Group United Kingdom

Banco Popolare SC Italy Standard Chartered United Kingdom
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Table 2: Sovereign correlation matrix
This table presents the correlation matrix between the 14 sovereigns. The correlation coefficients between
any two sovereigns are based on daily changes in the five-year CDS spreads of the respective sovereigns.
The abbreviations of the sovereigns are listed in Table 1. All CDS contracts are denominated in US
dollars and the sample period is from 1 January 2008 to 31 December 2013.

AUT BEL DEN FRA GER GRE IRE ITA NOR POR SPA SWE NL UK

AUT 1.00 0.68 0.68 0.68 0.66 0.09 0.48 0.56 0.46 0.38 0.55 0.64 0.72 0.65
BEL 1.00 0.60 0.78 0.67 0.16 0.58 0.72 0.39 0.53 0.73 0.45 0.66 0.56
DEN 1.00 0.61 0.62 0.12 0.45 0.54 0.46 0.37 0.51 0.66 0.66 0.58
FRA 1.00 0.72 0.16 0.51 0.70 0.42 0.48 0.69 0.46 0.65 0.53
GER 1.00 0.11 0.47 0.58 0.45 0.44 0.59 0.54 0.67 0.59
GRE 1.00 0.12 0.13 0.08 0.12 0.16 0.07 0.11 0.06
IRE 1.00 0.56 0.33 0.65 0.61 0.37 0.46 0.46
ITA 1.00 0.35 0.57 0.85 0.38 0.56 0.48
NOR 1.00 0.25 0.35 0.47 0.47 0.42
POR 1.00 0.61 0.25 0.35 0.36
SPA 1.00 0.38 0.55 0.49
SWE 1.00 0.62 0.57
NL 1.00 0.65
UK 1.00
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Table 3: Conditional joint probability of default of the banking system given
the default of individual banks on specific dates
This table presents the conditional joint probability of default of the banking system given the default of
each bank in the first column. We also report the home country of each bank in the second column. The
third to seventh columns give the values of the conditional joint probability of default on five specific
dates. The eighth and ninth columns give the total assets and total liabilities, respectively, of each bank
in 2011, in billions of euros.

Bank Country Conditional joint probability of default Total
assets

Total
liabilities

15 Sept
2008

10 Mar
2009

2 May
2010

25 Nov
2011

19 Dec
2013

Erste Group Bank AG AUT 0.084 0.133 0.094 0.201 0.091 209.30 194.12
Raiffeisen Bank AUT 0.094 0.121 0.080 0.256 0.097 146.63 135.69

Dexia SA BEL 0.052 0.111 0.059 0.154 0.060 412.05 412.37
KBC Groep NV BEL 0.145 0.140 0.123 0.256 0.134 282.94 266.17

Danske Bank A/S DEN 0.071 0.118 0.071 0.191 0.075 342.26 329.68
BNP Paribas FRA 0.230 0.293 0.209 0.333 0.208 1955.94 1870.31

Credit Agricole SA FRA 0.156 0.286 0.151 0.330 0.162 1718.51 1669.22
Natixis FRA 0.108 0.119 0.146 0.404 0.164 504.50 487.11

Société Générale FRA 0.168 0.285 0.167 0.278 0.166 1176.79 1125.68
Commerzbank AG GER 0.182 0.335 0.180 0.277 0.153 657.61 630.23
Deutsche Bank AG GER 0.182 0.262 0.146 0.322 0.204 2155.37 2100.71

IKB Bank GER 0.038 0.052 0.055 0.202 0.051 31.25 30.27
Alpha Bank GRE 0.034 0.060 0.031 0.096 0.035 57.68 56.25

Allied Irish Banks
PLC

IRE 0.040 0.062 0.037 0.124 0.019 132.96 118.50

Irish Life and
Permanent

IRE 0.038 0.071 0.039 0.097 0.090 71.85 68.34

Bank of Ireland IRE 0.035 0.061 0.040 0.109 0.092 153.50 143.25
Banca Italease ITA 0.030 0.043 0.081 0.336 0.105 10.53 8.89

Banca Monte dei
Paschi di Siena

ITA 0.117 0.261 0.115 0.205 0.068 234.03 223.05

Banca Popolare di
Milano

ITA 0.166 0.232 0.132 0.224 0.079 51.22 47.16

Banco Popolare SC ITA 0.110 0.119 0.090 0.157 0.084 130.86 121.44
Intesa Sanpaolo SpA ITA 0.158 0.242 0.131 0.230 0.162 626.90 579.14

Mediobanca SpA ITA 0.152 0.242 0.129 0.259 0.152 74.80 67.77
UniCredit SpA ITA 0.133 0.162 0.116 0.336 0.164 914.11 859.31

Banco Comercial
Portugues SA

POR 0.097 0.147 0.078 0.148 0.075 91.92 87.54

Espirito Santo
Financial Group

POR 0.076 0.126 0.075 0.198 0.092 79.53 73.54

Banco Bilbao Vizcaya SPA 0.185 0.251 0.154 0.321 0.164 597.69 552.44
Banco de Sabadell SA SPA 0.067 0.120 0.085 0.195 0.103 100.44 93.60
Banco Santander SA SPA 0.178 0.249 0.169 0.325 0.163 1251.53 1162.77

Nordea Bank SWE 0.108 0.193 0.097 0.243 0.110 716.20 688.06
Skandinaviska

Enskilda Banken
SWE 0.077 0.112 0.073 0.192 0.078 264.76 252.09

Svenska
Handelsbanken AB

SWE 0.118 0.196 0.112 0.285 0.112 275.42 263.22

Swedbank AB SWE 0.058 0.090 0.070 0.195 0.071 208.39 196.62
Credit Suisse Group SWI 0.210 0.265 0.209 0.405 0.186 861.83 819.14

UBS SG SWI 0.151 0.194 0.159 0.351 0.196 1163.96 1120.48
ING Groep NV NL 0.083 0.199 0.114 0.259 0.174 1270.56 1223.33

SNS Bank Netherlands NL 0.128 0.072 0.056 0.165 0.039 128.21 123.64
Barclays PLC UK 0.119 0.185 0.167 0.317 0.142 1560.52 1495.32
HBOS PLC UK 0.065 0.209 0.115 0.317 0.217 568.00 540.36

Lloyds Banking Group UK 0.166 0.207 0.117 0.228 0.156 966.05 919.46
Standard Chartered UK 0.201 0.126 0.219 0.417 0.116 385.26 358.62
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Table 4: Decomposition of systemic risk
This table presents the decomposition of systemic risk according to the panel regression specification in
Eq. (5). The dependent variable for all seven columns is the conditional joint probability of default of the
sovereign system given the joint default of all banks in a particular sovereign. The variable LRP is the
liquidity risk premium calculated by using the daily three-month euro LIBOR/OIS (or EURIBOR/EONIA)
spread; DRP is the default risk premium calculated by using the daily difference between the yields of
10-year euro zone industrials rated BBB and those rated AA+/AA; SRP is the sovereign risk premium
calculated by using the daily difference between Germany’s 10-year generic yield with the average of the
Spanish and Italian 10-year generic yields weighted by their quarterly real GDPs; DTD is the average
DTD of all banks within a particular sovereign; Itraxx is the European iTraxx index; Market is the EU
stock market index; and Vstoxx is the Vstoxx volatility index. Columns (1) to (5) use the full sample of 40
banks from 14 sovereigns. Columns (6) and (7) use banks from peripheral and non-peripheral sovereigns,
respectively. The sample period consists of monthly observations from 1 January 2008 to 28 June 2013.
All columns use sovereign fixed effects; t-statistics are shown in parentheses; and the superscripts *, **,
and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

(1) (2) (3) (4) (5) (6) (7)

Sovereign subsample

Peripheral Non-peripheral

Constant 0.043∗∗ 0.042∗∗ 0.040∗∗ 0.043∗∗ 0.038∗∗ 0.033∗ 0.036∗

(2.31) (2.30) (2.15) (2.30) (2.14) (1.86) (1.96)
LRP −0.016∗ −0.031∗∗∗ −0.036∗∗ −0.028∗∗

(−1.67) (−3.17) (−2.25) (−2.28)
DRP 0.220∗∗∗ 0.274∗∗∗ 0.226∗∗∗ 0.298∗∗∗

(6.15) (7.42) (3.76) (6.36)
SRP 0.085∗∗ 0.195∗∗∗ 0.141∗∗ 0.220∗∗∗

(2.15) (4.75) (2.10) (4.21)
DTD −0.002∗ −0.003∗ −0.004∗∗ 0.002

(−1.68) (−1.77) (−2.50) (0.63)
Itraxx 0.211∗∗∗ 0.157∗∗∗ 0.214∗∗∗ 0.219∗∗∗ 0.113∗∗∗ 0.140∗∗ 0.099∗

(5.08) (3.77) (5.19) (5.32) (2.70) (2.05) (1.87)
Market −1.362∗∗∗ −1.107∗∗∗ −1.268∗∗∗ −1.338∗∗∗ −0.938∗∗∗ −0.962∗∗∗ −0.934∗∗∗

(−12.90) (−10.12) (−11.60) (−12.8) (−8.09) (−5.09) (−6.36)
Vstoxx 0.191∗∗∗ 0.173∗∗∗ 0.161∗∗∗ 0.179∗∗∗ 0.156∗∗∗ 0.185∗∗∗ 0.144∗∗∗

(5.51) (5.21) (4.64) (5.28) (4.57) (3.32) (3.31)

Sovereign fixed effects Yes Yes Yes Yes Yes Yes Yes
Observations 924 924 924 924 924 330 594

Adjusted R2 0.531 0.549 0.532 0.531 0.562 0.567 0.559
Number of banks 40 40 40 40 40 16 24
Number of sovereigns 14 14 14 14 14 5 9
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