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1 Introduction

In this paper we extend the model of Gehricke and Zhang (2018), by including jumps
and letting the long-term mean of volatility be mean-reverting. This results in a better
fit to the VIX term structure and the VXX, the most actively traded VIX futures
exchange-traded note (ETN), compared with the nested models.! We calibrate to
the VIX term structure and then explore the fit of the model for the VXX. The
model also performs well for other short-term VIX futures exchange-traded products
(ETPs), which dominate the market, and could be extended for VIX futures ETP
option pricing.

VIX index exposure first became accessible to investors in 2004, when VIX futures
contracts were launched by the Chicago Board Options Exchange (CBOE), followed
in 2006 by VIX options. More recently, since 2009, VIX futures ETPs have been
heavily traded. The VXX was the first ETP tracking the short-term VIX futures
index (SPVXSTR), which represents the return on a portfolio of VIX futures that is
rebalanced to achieve an almost constant one-month maturity. Since 2009 the number
of other VIX futures ETPs has been rapidly growing, but with first mover advantage
the VXX has been the largest and most heavily traded VIX futures ETP throughout
this period. In this paper we model and fit the short-term VIX futures ETPs, while
calibrating to the VIX term structure.

In figure 1, we can see that the market capitalization has grown to around $4

Billion and the average daily dollar trading volume is around $ 2 billion. On some

!The first nested model is the Heston (1993) model, as used by Gehricke and Zhang (2018). The
second nested model is the floating # model, as presented in appendix A.6 equations (55), (56) and
(57). The last nested model is equivalent to the full model, as presented in equations (3), (4) and
(5), but where k = Ky = Kq.
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days the ETPs are traded so heavily that the dollar trading volume is several multiples
of the market capitalization, meaning the market can turn over several times in a day.

The long-exposure ETPs were initially marketed as diversification tools for equity
portfolios, due to the negative correlation between the VIX and the S&P 500; however,
several studies have shown that they are not useful for diversification (Alexander
et al., 2016; Deng, McCann, and Wang, 2012; Hancock, 2013). The reason why these
products are not good for diversification is due to their underperformance relative to
the VIX index, which is an empirical fact in contrast to the common misconception
that investing in the VXX is like investing in the VIX index. In October of 2017
Wells Fargo was ordered to pay remunerations of $3.4 million to investors because
they were advising them to invest in VIX futures ETPs as hedging tools (Banerii,
2017).

The under (out) performance of the short-term long- (short-) exposure VIX futures
ETPs is well documented in the literature, and can be seen in table 1. Alexander
and Korovilas (2013), Liu and Dash (2012) and Whaley (2013) suggest that the
usually contango (upward-sloping) VIX futures term structure is the driver of the
underperformance of the VXX. Gehricke and Zhang (2018) are the first to model the
VXXs price while accounting for the dynamic relationships between the SPX, VIX
index, VIX futures and the ETN price. They show that the underperformance of
the VXX relative to the VIX index is mainly due to the roll yield, which measures
the effect of rebalancing from the nearest to the second nearest futures contract. We
confirm this finding with our extended model. The roll yield will be negative (positive)
when the VIX futures term structure is in contango (backwardation). They show that

the negative roll yield is driven by the market price of variance risk, on aggregate.
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Their result is consistent with that of Eraker and Wu (2017), who show that the
underperformance of the SPVXSTR index is driven by the variance risk premium.
The market price of variance risk and the variance risk premium are two closely related
concepts, which Zhang and Huang (2010) show are almost proportional to each other.
Eraker and Wu (2017) show, in a consumption-based equilibrium setting, that the
underlying driver of the negative variance risk premium is investor risk aversion.

Recently, there have been several news releases (Jakab, 2018; Zuckermann and
Fletcher, 2018; Burger, 2018) on the sudden collapse of the XIV ETN, February
2018, which tracked the inverse performance of the SPVXSTR index. This event was
caused by a spike in the VIX which led to massive losses for the XIV, and even further
selling pressure compounded this effect, providing more evidence that the negative
returns to the SPVXSTR index (and ETPs which track it) in normal times are a
premium for the risk of a spike in volatility.

A feasible motivation for investors to trade these products is short-term hedging
against volatility spikes or speculation, which are both in line with the high trading
activity of these products. Another explanation could be the ease of access to this
market; any investors can easily invest in VIX futures ETPs, as they are traded on
stock exchanges. This is a dangerous setting, as these are highly complicated deriva-
tive instruments which are not yet fully understood by academics or practitioners,
let alone retail investors. The VIX futures ETP market is also a way that some mu-
tual funds, which are restricted from investing in traditional derivatives, can enter
volatility positions.

In this paper our focus is on developing a new model for the VXX, building on

the work of Gehricke and Zhang (2018), which accounts for the relationship between
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the S&P 500, the VIX term structure, VIX futures and the VXX. We calibrate our
model to the VIX term structure, which allows us to fit the VXX time series well. We
compare the fit of our model with two simpler nested models and that of Gehricke
and Zhang (2018), showing that our full model is better at fitting the short or full
VIX term structure. We provide two different formulas for modeling the VXX and
other short-term VIX futures ETPs, one idealistic (daily rebalanced with constant
maturity) and one realistic (continuously rebalanced with varying maturity) model.
We show that the realistic model outperforms the idealistic in fitting the VXX time
series.

We find that calibrating to the first three-points of the VIX term structure re-
sults in a better fit to the VXX time series, compared with calibrating to the full
VIX term structure. This is intuitive, as the VXX and other short-term VIX fu-
tures ETPs, represent exposure to short-term volatility and should not be affected by
market expectations on longer-term volatility. When we calibrate to the short VIX
term structure, the mean-reverting speed of the long-term mean level of the instan-
taneous variance kg is small, showing that the mean reversion characteristic does not
contribute much for modeling shorter-dated volatility, and its derivatives.

Our model can also be used to price other short term VIX futures ETPs. Short-
term VIX futures ETPs dominate the VIX futures ETP market, as shown in figure 1.
It shows that the short-term VIX futures ETPs consistently make up around 80% and
almost 100% of the VIX futures ETP market size and trading volume, respectively.

Several authors have studied the daily and intra-daily price discovery dynamics
between the VIX index and its futures (Shu and Zhang, 2012; Frijns, Tourani-Rad,

and Webb, 2016; among others) concluding that, at the intraday level, VIX futures
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lead the VIX index. Bordonado et al. (2017) indirectly show that VIX futures ETNs
lead VIX futures exchange-traded funds (ETFs). Bollen, O’Neill, and Whaley (2017)
show that the VXX leads the VIX futures in price discovery and that VIX futures lead
VIX options in price discovery. While, Gehricke and Zhang (2017) show that all of
the VIX futures ETNs lead the VIX futures and that no single ETN leads the others
consistently. Combining the results we could say that VIX futures ETNs lead VIX
futures, which in turn lead the VIX index. This further highlights the importance of
understanding and accurately pricing the VIX futures ETPs, as these products drive
the market for volatility trading.

Our paper is also related to the vast literature on volatility derivative pricing.
Many papers have studied different model settings for pricing VIX futures (Zhang
and Zhu, 2006; Zhang, Shu, and Brenner, 2010; Lu and Zhu, 2010; Dupoyet, Daigler,
and Chen, 2011; Zhu and Lian, 2012; Huskaj and Nossman, 2013). Lin (2007) derives
and studies the pricing performance of closed form VIX futures pricing formulas
under several different affine dynamics. Although Lin (2007) does not test the out-of-
sample pricing ability of our model, the study finds that out of the models tested the
stochastic volatility with jumps in the volatility (SVVJ) performs best for short-term
(< 60 days) VIX futures contracts, which is the model closest to ours. Developing
models for VIX options has also been the focus of several articles (Wang and Daigler,
2011; Chung, Tsai, Wang, and Weng, 2011; Cont and Kokholm, 2013; Lian and
Zhu, 2013; Bardgett, Gourier, and Leippold, 2014; Papanicolaou and Sircar, 2014).
Luo and Zhang (2012) study the VIX term structure; that is, they calculate different
maturity VIX indices and examine their properties. They also provide an affine model

for the VIX term structure with jumps in the stock price and a stochastic long-term
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mean of volatility. They calibrate their model using a similar calibration method to
that in our study. Bao, Li, and Gong (2012) price VXX options by assuming an
affine structure for the VXX and its volatility. This approach ignores the relationship
between the SPX, VIX term structure, VIX futures and the VXX. Our model can be
used to price VXX options; while accounting for these relationships.

The rest of this paper is organized as follows. Section 2 summarizes the method-
ology for calculating the short-term VIX futures index that the ETPs are tracking,
the SPVXSTR index. Then section 3 outlines the model set-up and derives formulas
for the VIX index, VIX futures, the VXX and other short-term VIX futures ETPs.
Next in section 4 we calibrate our model and nested models to the short and full VIX
term structure and compare their fit. In section 5 we examine the fit to the VXX
and other short-term VIX futures ETP time series, comparing the performance of the
short and full VIX term structure calibration and the discrete and idealistic model.

Finally, in section 6 we conclude.

2 VIX futures indices

The underlying indices of the short-term VIX futures ETPs are either the S&P 500
short-term VIX futures Total Return Index (SPVXSTR) or the S&P 500 short-term
VIX futures Excess Return Index (SPVXSER). The SPVXSTR index is calculated

as:
SPVXSTR, = SPVXSTR,_1(1+ CDR, + TBR,), (1)

and the SPVXSER index is the same but without the interest return on the underlying

futures position, TBR;. The contract daily return (CDR;) of the futures position is
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given by:
T Ty
w1y wo 1 Fy

CDR; = —1, 9
' wl,tlet/I;ll + U)27t,1F;;1;21 ( )

where FtTi is the current price of the i-th maturing VIX futures contract and w;; 4
is the weight of the position invested in the i-th maturing VIX futures contract the
preceding business day. The weights are calculated such that the futures position has

a maturity of one month, which fluctuates around 30 days.?

3 Model

3.1 Model dynamics

We extend the model of Gehricke and Zhang (2018), who use a Heston (1993) frame-
work, by adding a jump component in the instantaneous variance process and making
the long-term mean level of the instantaneous variance stochastic. For the ex-dividend
stock price and its variance, under the risk-neutral probability measure, we adopt the

following dynamics:

dS, = rSydt+/V,S,dBi, (3)
AV, = ky(0 — Vi)dt + oy/VidBay + ydN, — NE?[y]dt (4)
A, = rg(0 — 0,)dt + 09+/0:dBs,, (5)

where 6, is the effective long-term mean level of V;, which is the instantaneous variance

of the SPX.? Here, r is the risk free rate, 6, is the effective long-term mean level of

2For further details on the calculation of the weights and indices please see Gehricke and Zhang
(2018) and/or S&P Dow Jones Indices (2012).

3If jumps are included in the stock price process then V; can be seen as the instantaneous squared
VIX, as in Luo and Zhang (2012), and all following results are identical.
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Vi. ky and kg are the mean-reverting speeds of V; and 6,, respectively. The effective
long-term mean of 6, is given by #. The volatility of the variance is given by oy,
while oy measures the volatility of 6;. By, By, and Bs; are three standard Brownian
motions that describe the diffusive randomness in Sy, V; and 6,, respectively. The
Brownian motions By ; and By, are correlated by a constant correlation coefficient p,
while Bs; is independent of the other two. Also, dN; is a Poisson process with arrival
intensity A and jump size y. The jump size y can be any independently distributed
random variable.

The jump component allows more flexibility in the modeling of the density of the
instantaneous variance V;. Bardgett, Gourier, and Leippold (2014) find that mean-
reverting volatility and jumps in volatility are important in capturing volatility smiles
in both the SPX and VIX markets. Our jump term is compensated, which keeps the
VIX formula and estimation simple compared with models that do not compensate
the jump component (Luo and Zhang, 2012). Also, Lin (2007) shows that for VIX
futures with maturity of less than 60 days the SVVJ (stochastic volatility with jumps
in volatility) model outperforms the SV (stochastic volatility, i.e. Heston, 1993), SV.J
(stochastic volatility with jumps in the stock price) and SVJJ (stochastic volatility
with jumps in equity and volatility) models.

Our model differs from the standard SVVJ model as the long-term mean level
of the instantaneous variance 6, is stochastic and mean-reverting. Implementing a
stochastic #; allows for more realistic transient changes in the VIX and VIX futures
term structures (Zhang and Huang, 2010; Zhang, Shu, and Brenner, 2010; (Zhang,
Zhen, Sun, and Zhao, 2017)).

In order to derive formulas for the VIX index term structure and VIX futures
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prices, we will later need the first two central moments of V, and 6,, where s > t.

These are given in Lemma 1 below.

Lemma 1. The risk-neutral first and second central moments of 6, and V; can be

derived as:
EQ[0,) = e (0, 4 (1 — e o4, (6)
Qr(g QN2 — 50 (yras—t) _ g-2m(s
ER((0, = BRI = Zt(emroet — o)
Ko
-
o050
+207(1 — 9emro(s=t) 4 gm2mo(s0) (7)
2%9
EtQ[‘/s] = e kv (s t)‘/;g + —(6 ro(s—t) _ € wv (s t))et
Ry — Kg
p(1m et L (ot _ om0 ) (5)
Ry — Rg
Q Q 2 _
ES(Vs— B V)] = X+Y. o
where
X = Ky op [(efme(sft) — e~ 2rg(s—1) B 2emrolem0 (1 —emrvem) | emnolemt) — 67’;\/(87”) t
(ky — Kg)? Ko RV 2rv o
((1 3 67’{9(57,5))2 201 — 87(H97NV)<57t>) 2(8759(579 — e*(w*fcv)(sfﬁ)
_ +
2k Ro + RV "
_ o—2ry(s—1) —ro(s—t)e=2ry (s=t)\
1 — e—2nv _ere e—2rV )0:| (10)
2Ky 2Ky — Ko
0'2 )\
y = 2V (e—w<s_t> _ e—znv(S—t)>Vt +-— (1 - 3—2*‘V<S‘”)Et[y21
s 2Ky
kyo? (emre(s=t) _gmry(s=t)  gmky(s=t) _ g=2ky (s—1)
+ ( ; ) t
Ky — K¢ 2Ky — Ko "V
— e—kv(s—1))2 —kg(s—t) _ g—ry(s—t) —rv(s—t) _em2rv (s—) T
+U‘2/((1 =Ry ) - Ky |:€ 0 e kv e \% e v :|>9 (11)
2Ky Ky — Kg 2ky — ke "

The proofs for the moments of 0, and V; can be found in appendiz A.1 and A.2,

respectively.

Remark 1. The coefficients in front of 6, § in equation (6) can only take on values

between 0 and 1 for any value of s between 0 and co. The sum of the coefficients is
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equal to 1. Therefore we can say that EtQ [0,] is a weighted average of 6, and 6, where

the two coefficients mentioned are the weights.

Remark 2. The coefficients in front of V;, §; and § in equation (8) can only take on
values between 0 and 1 for any value of s between 0 and co. The sum of the three
coefficients is equal to 1. Therefore we can say that EtQ [V5] is a weighted average of

Vi, 0, and 6, where the three coefficients mentioned are the weights.

3.2 VIX term structure

The VIX index measures the markets expectation of 30-day implied volatility. How-
ever, the VIX methodology can be applied to essentially any maturity, and the CBOE
has recently started to report several S&P 500 implied volatility indices with different
maturities. From the CBOE website we can get implied volatility time series for any
maturity index.

Carr and Wu (2009) show that the VIX index is equivalent to the 30-day variance
swap rate which is equal to the risk-neutral conditional expectation of variance over
the next 30 days, when the stock price is modeled without jumps. Therefore the VIX

squared with any maturity, 7}, is given by:

x 2
VIxX) ol1 [T AL
( - ) ; [ [ vas| = [ mRwas (12)

where 7; is the time to maturity in years. We can interchange the expectation and

integral (justified by Tonelli’s theorem) to get the second equality. Using lemma 1 we

get the following proposition.

Proposition 1. The VIX index, under our model dynamics, is given by:

VIX,

mO:VAW+B@+u—A—Bﬂ (13)
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where

1 —e™fvm

RvTo
B Ky (1l —e "0m) (1 —e VM)
KkeTo(ky — Kg)  To(ky — Kg)

and 19 = 30/365 can be replaced by any maturity in order to model the VIX term
structure.

The proof for this proposition is provided in appendiz A.S.

Remark 3. The coefficients in front of V;, 6, and # in equation (13) can again only
take on values between 0 and 1 for any value of s between 0 and oo and the sum of
the three coefficients is equal to 1. Therefore we can say that the VIX index (VIX
term structure) is the square root of a weighted average of V;, #, and , where the

three coefficients mentioned are the weights.

3.3 VIX futures

Now that we have a formula for the VIX index, equation (13), we can derive a VIX
futures price formula. The VIX futures price is given by the conditional risk-neutral

expectation of the VIX index at the futures contract’s maturity 7"

Fr VIX
= BP( (14)
100 100

Plugging in our formula for the VIX index from proposition 1 we get:

N

FT

s = E?KAVT+BQT+<1—A—B)9‘>] (15)

Lemma 2. The risk-neutral conditional expectation of the VIX squared, or a VIX
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12
squared futures price, is given by:
VIXr\® _
EF K 100T) ] = AEP[Vy|+ BEP[6r)+ (1 — A— B)o
= Alev Ty 4 kv (7o (T=0) _ g=rv(T-0))g,
Ry — Rg
(1= emviry RV (e7ro @) _ o=rv(T=0)) )
Ry — Rg
+B [e*‘e(T% +(1 - e*”ve(Tt))é} +(1-A-DB)
=CV,+ Db+ (1—C — D), (16)

where

— Ae "V (T—t)

Y

Ry

D = A (e—no(T—t) _e—nv(T—t)) | Be—ro(T—t).

Ky — Ko

To approximate the expectation of the non-linear VIX equation, equation (15),
we follow a similar methodology as Zhang, Shu, and Brenner (2010). We expand
the square root form equation (15) using the two variable Taylor expansion near the

points EZ[Vy] and E?[07], which results in proposition 2 below.

Proposition 2. The VIX futures price can be approrimated by:

1 3
o A\ 2 1 \ "2 9
o0 = (CVt + Db+ (1-C — D)@) -3 (C’V} +D0+(1—-C— D)e) A (X|S_T + Y\S_T)
1 _ 2
8<CVt+D0t+(1CD)0> B?
2 20
% [UaGt (e—mg(T—t) _ e—2n9(T—t)) + 0 <1 _9ero(T—t) 4 e—%ﬂT%))} (17)
Ko 2Ky

where T is the maturity of the VIX futures contract.*

The proof for this proposition is given in the appendiz A.J.

4An analytical formula for the VIX futures price can be found by using the technique developed
by Duffie, Pan, and Singleton (2000) for affine jump diffusion models. A comparative stude between
our approximate formula and the analytical formula is left for further research.
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As in Gehricke and Zhang (2018) we can further approximate the short-term,
up to 60 days maturity, VIX futures price by removing the convexity adjustments
in equation (17). This is justified as they do not have much impact at such short
maturities. Therefore the short-term VIX futures price can be approximated by:®

FF

3.4 Idealistic model

We term one model the idealistic model and another the realistic model, and examine
the fit of each one. The idealistic model is presented here where the maturity of the
SPVXSTR is assumed to be a constant 30 days and its futures position is rebalanced
daily. However, the weighted average maturity of the SPVXSTR’s underlying futures
position actually fluctuates between 27 and 37 calendar days. The index is also
rebalanced daily rather than continuously. The realistic model takes these factors into
account by using the short-term VIX futures pricing formula, equation (18), in the
SPVXSTR methodology with the fluctuating time to maturity and daily rebalancing.
The realistic model will be presented in section 3.5.

We now derive a model for pricing the VXX and other short-term VIX futures
ETPs assuming the underlying futures position rebalances continuously. To do this

we first take the natural logarithm of equation (18):

1 RO L) CV,+ DO, +(1—C — D)d (19)
"\100) = 2"\M" ¢

5Please note that the jump parameters have dropped out in our formula for the short-term VIX
futures and the VXX models. For long-term VIX futures and the mid-term VIX futures ETPs the
jump parameters could play an important role. Our setup with jump diffusion allows for these more
general cases. The formulas for these will be presented in future research.
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Using Ito’s lemma we can model the change in log short-term VIX futures price

(continuous return) as:

Oln FT 10%In FT
dinF' = ——tg — t(dV;)?

19%In FF 2ln FP In FT

10°In K 0" In F; thth—i-an h

T o0 avié, ot

dln FF
00,

do,

(d6,)* + dt. (20)

where the partial derivatives are given in appendix A.5.

The SPVXSTR index is rebalanced daily to maintain a VIX futures position
with one-month maturity. The contract daily return (CDR;) of the SPVXSTR’s
underlying VIX futures position can therefore be modeled as the log return of the

short-term VIX futures price, equation (20), with a maturity of 30 days, given by:

dln FF 19%In F¥
CDR, = dIn FT = L - ¢ dv;)?
t B T=t+419 oVi |r=t+r ¢t 2 OV T:t+m( 2

In £ 10%2In FF

Oln F; t _8 n2 h (d6,)?
89t T=t+10 2 8(9t T=t+T19

9% n FtT Oln FT

dv,do ! dt. (21

Vil Nr=tiry " * ot |T=t+m (21)

The SPVXSTR return, as shown in equation (1), consists of the CDR; and a risk-
free return earned on the notional of the underlying VIX futures position. The VXX
return is equal to the SPVXSTR return less an investor fee, accounting for this and

plugging in the partial derivatives leads to the VXX model in proposition 3 below.

Proposition 3. We can model the log return of the VXX as follows:

dnVXX, = CDR,+ (r, —0.0089) dt

= dIn F/™™ + RY;dt + (r; — 0.0089) dt, (22)
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where
i 10, 1C? 1D, 1 D? 1C,,D,
din F{* = 5706“4 - ZE_;)(dW>2 +3 EO doy — 1 E20 (d;)* — 5 OEQ ©dV,db;,

RY _ EEVCTO‘/I‘/ + G’T(]Ht - (’%VCTO + GT())G_

t 2 E )
CTO - C‘TZ#FTQ’
DTO - D|T:t+7'0’
ETO - CTOV;S + -DToet + (1 - CTO - DT0)9_7
GTO = _ kv (Alige_“"m _ K;VCTO> + kyBe "0,

Ry — Rg

where 1 is the risk free return, the investor fee is 0.89% per annum, F{™™ is the price
of the constant 30-day-to-maturity VIX futures contract and RY; is the roll yield of

the VIX futures position underlying the SPVXSTR index.b

Our model for the VXX return presented in proposition 3, confirms the finding of
Gehricke and Zhang (2018) that the underperformance of the VXX, relative to the
constant 30-day-to-maturity VIX futures price and the closely related VIX index, is
driven by the VXX’s roll yield. The difference here is the expressions for the roll yield
and the 30-day-to-maturity VIX futures price.

The short-term VIX futures ETFs will try to match the leveraged daily return of
the SPVXSTR, i.e. two times leveraged SPVXSTR for the UVXY, by holding a daily
rebalanced replicating portfolio of VIX futures, swaps and money market instruments,
where as the ETNs just promise to pay the final indicative value at maturity or upon

early redemption.” The effect of this is that both types of ETPs should track their

SEmpirically the 30-day-to-maturity VIX futures price can be calculated by linear interpolation,
as in Zhang, Shu and Brenner (2010) and Gehricke and Zhang (2018).

"An ETN is a non-securitized debt obligation, like a zero coupon bond, that has a indicative
value based on the value of some underlying benchmark and contract specifications.
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indicative values fairly well.® Therefore if we can model one of the short-term ETPs,
we can model them all.
Any non-dynamic VIX futures ETP that tracks either total return or excess return

of the short-term VIX futures index can be modeled by:

dInETP,; = L; CDR,+ (ry — fee)dt

= Li(dln FiHm 4 RYtdt) + (ry — feey)dt (23)

where ET'P;; is the price of ETP i at time ¢, fee; is its investor fee (expense ratio)
and L; is its leverage.

In figure 1 we can see that the short-term VIX futures ETPs make up about 80%
of the total VIX futures ETP market capitalization and almost 100% of the total
daily dollar trading volume, and have done so historically. Therefore our model is

useful for the most important part of the VIX futures ETP market.”

3.5 Realistic model

Our model in the previous section and that of Gehricke and Zhang (2018) assume that
the underlying futures position of the SPVXSTR is rebalanced continuously and that
the weighted maturity resultant from the rebalancing is always 30 days. Gehricke
and Zhang (2018) show that using continuous rebalancing to approximate the daily
rebalancing only has a small impact on the time series of the SPVXSTR index.
However, the authors also show that the weighted maturity of the index can fluctuate

between 27 and 37 days. These two effects combined could lead to substantial errors

8 Although, Gehricke and Zhang (2017) show that they do not track their indicative values per-
fectly, especially at the intraday level.

9To model the longer term VIX futures ETPs we would not recommend removing the convexity
adjustment for the VIX futures formula, as in equation (18), but our methodology can be followed
using the full approximation to arrive at a VIX futures ETP model
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when comparing the calibrated model implied and market VXX price time series.
To account for these effects we model the VXX discretely, as shown in proposition 4

below.

Proposition 4. We can model the VXX discretely by using the model implied nearest

and second nearest VIX futures time series, as follows:

Fl o+ (1—w)F? —0.
VXX, = VXXt1< wT mp,t ( ) zjr:zpt + ry —0 0089>, (24)
F 1pt 1 + (1 w)F;erLp,t 1 365

where w is the weight in the nearest maturity VIX futures contract at time t, calculated
using the SPVXSTR methodology. FTlpt and FIszt are the model implied VIX futures

prices using the short-term VIX futures formula, equation (18).

Again, we can extend this model for any short-term (non-dynamic) VIX futures
ETP by accounting for the difference in fees and leverage as follows:

T
‘Fzmpt—i_(l )‘Fzmpt _1 _'_T’t_—fee (25)
Fll o+ (1 —w)F,: 365 )

imp,t—1

ETP,, = ETP,,_, (1 + L {

4 Calibration

4.1 Method

We estimate model parameters using the daily term structure of the VIX index. The
VIX term structure data are obtained from the CBOE. Every day we use all option
expirations available, each representing a different maturity VIX index, for a daily
sample from November 24, 2010 to June 22, 2017.1° We need to estimate the xy, K¢

and 6 structural parameters as well as the daily V; and 0, parameters. To do this

10We call the different maturity implied volatility calculated using the VIX methodology, different
maturity VIX indices throughout this paper.
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we modify the efficient two-step iterative estimation of Christoffersen et al. (2009),
also used by Luo and Zhang (2012) and Zhang, Zhen, Sun, and Zhao (2017), among
others.

Since we have three structural parameters the two step procedure runs into some
non-convergence issues, therefore we estimate the f parameter as the mean of the
daily 0;, estimated from the floating # model.!! Our calibration procedure is then as
follows:

Step one: We set our 0 equal to the mean of the daily 6, values from the floating
6 model calibration.

Step two: We obtain the time series of {V}, 6,} for t = 1,2, ... T for a given param-
eter set {ky, kg, 0}, by solving T minimizations of the daily sums of squared errors

as follows:
V,,0,} = min VIXET™™ _yrxMnz oy =12 .T, 26
t,T; t,;
i=1

where VI Xt%KT is the market value of the 7; maturity VIX index and VI X%f is the
implied 7; maturity VIX index value using our model, equation (13), on day ¢. Here,
n; is the number of maturities on day ¢ and T is the total number of days in the
sample.
Step three: We estimate the parameter set {ky, Ky}, using the daily ‘A/t, ét, esti-
mated from step two, by minimizing the total SSE as:
T
{Kv, Ko} =min > Y " (VIXMKT —vVIXM?, (27)

t,7;
t=1 i=1

Steps two and three are then repeated until there is no further significant decrease

in the error.

"The floating # model dynamics and VIX term structure formula are outlined in appendix A.6.
This model is calibrated using only steps two and three of the calibration procedure.
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When calibrating any of the nested models (Heston (1993), floating 6 or k = Ky =
kg models) step one is not necessary. When calibrating the Heston (1993) model we
estimate x and 6 in step two and only estimate the daily V; in step three. We calibrate
k in step two and the daily V; and 6; in step three for the floating § model. For the
Kk = Ky = kg nested model x and 6 are estimated in step two and the daily V; and 6,

are estimated in step three.

4.2 Results

We first verify our calibration procedure by estimating the parameters of the Heston
(1993) and floating # models over a sub sample, which is equivalent to the sample
used by Zhang, Zhen, Sun, and Zhao (2017). This allows us to verify our calibration
method. Table 2 shows the results of their calibration, panel A, and ours, panel
B. From the table we can see that our estimation is virtually identical to theirs.
The slight difference could be explained by a difference in software or optimization
algorithms used.

The main calibration results are presented in table 3. In panel A we present the
results of calibrating the floating 0, kK = Ky = kg and full models using the full VIX
term structure. The results using only the first two and first three maturities of the
VIX term structure are presented in panels B and C, respectively. We can see in the
table that the full model is able to fit the VIX term structure the best for any of the
samples, as it has the lowest RMSE.

Table 3 also shows that when we are using either of the short VIX term-structure
samples, kg, for the full model, is essentially zero. However, when using the full

VIX term structure kg is 0.2406. From this evidence we can conclude that the mean
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reversion of 6, is less important when modeling only the short VIX term structure,
but is more important when we want to model the full VIX term structure.

Interestingly, no matter which model is used the mean daily V; and 6, are quite
close, apart from the mean 6, for the kK = Ky = Ky using the full VIX term structure.
In figure 2 we present the daily time series of V; and 6, for the full model using the
two short and the full VIX term structure. We can see in the charts that most of
the time 6, is above V;; this is because the VIX term structure is usually in contango
(upward sloping). However, there are days in the sample where V; spikes and is above
0;; these are the days where the VIX term structure is in backwardation (downward
sloping). On the days where the VIX term structure is in backwardation there was
likely some event/news causing short-term implied volatility to increase drastically,
while the longer-term implied volatility does not change as much. When volatility
spikes, the market seems to expect it to decrease again at some point in the future.

The Heston (1993) model used by Gehricke and Zhang (2018) to model the VXX,
fits the VIX term structure the worst compared with the other models. This is because
the long-term mean level of the instantaneous variance, 6, is constant making it less
flexible in modeling anomalies, such as days where the VIX term structure is in
backwardation. Our model fits the VIX term structure well whether it is in contango
or backwardation because of the flexibility of #; being time varying.

Figure 3 shows the daily mean squared error (MSE) of the full model calibration
using the full and two short VIX term structure samples. We can see that the MSE
for the shorter VIX term structures is usually lower, but especially so when volatility
(Vi) goes very high. This is likely due to the model only needing to fit two or three-

points of the VIX term structure by optimizing the two daily parameters. However,
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even with this flexibility the model did not fit the VIX spike, which was caused by
the credit rating downgrade of the U.S. government in August 2011, very well. The
calibration using the shorter VIX term structure samples is also better on and around
this event. We can see in the figure that on most days the model is able to fit the
VIX term structure well. It can be expected to have larger mean errors when trying

to fit more points of the term structure using the same model.

5 Model fit

In this section we focus on how well our VIX term structure calibrated model can
fit the VXX time series. We compare the fit of the calibrated model using either
the continuous or discrete VXX model and calibrating to either the full, two-point
or three-point short VIX term structure samples. We find that using the realistic
model and calibrating to the three-point VIX term structure is best for modeling the
VXX. Finally, we show that our model is also good for fitting the time series of other
short-term VIX futures ETPs.

5.1 VXX model fit

We now estimate the model implied VXX time series using the VIX term structure
calibrated parameters {ry, kg, 0, V;, 0}, which are estimated as reported in section
4.2. To measure the model fit we estimate the RMSE in the levels and returns
between the implied and market VXX time series. We also examine the fit of the first
two moments of the returns of the VXX, the correlation between model implied and
market VXX returns and by graphing the implied and market time series.

From table 4 and figure 4 we can see that the realistic model outperforms the
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idealistic model in fitting the VXX time series. The table shows that the VXX level
RMSE for the realistic model is 416.93, 150.68 and 99.11 compared with 739.69, 722.88
and 664.65 for the idealistic model using the full, two-point short and three-point
short VIX term structure samples, respectively. We can observe a similar pattern
looking at the VXX return RMSE, where the realistic models is 2.42%, 5.16% and
2.72% compared with 2.52%, 5.77% and 2.72% for the idealistic model, using the
full, two-point short and three-point short VIX term structure samples, respectively.
We also show that the mean VXX return implied by the model is a lot closer to the
market value when using the realistic model, whether we use the full or short VIX
term structure calibration. The standard deviation of the implied VXX returns is
barely different between the two models for the full VIX term structure calibration,
but when we use the shorter VIX term structure calibrations the realistic model’s
value is much closer. Turning to figure 4 we can see that clearly the realistic model
fits the VXX price time series far better than the idealistic model, whether we use
the shorter or full VIX term structure for calibrations.

Both table 4 and figure 4 also show that the three-point short VIX term structure
calibration is superior for fitting the VXX time series. We can see in figure 4 that
the implied VXX fits the market VXX best when using the realistic model calibrated
to the three-point VIX term structure. Turning to the table we can see that the
level RMSE for the realistic model is much lower when we use the three-point short
(99.11) rather than the two-point short (150.68) or full (416.93) VIX term structure
calibration. The correlation of market and model implied returns is also higher for the
realistic model, when calibrating to the shorter term structures, and almost identical

when calibrating to the full VIX term structure.
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The return RMSE is lowest for the full VIX term structure calibration (2.42%),
but is almost as good for the three-point VIX term structure calibration (2.72%),
while the two-point VIX term structure calibration (5.16%) is much worse. Turning
to the return correlations we can see that the three-point calibration outperforms the
other two. Calibrating to the first three-points of the VIX term structure seems best,
which can also be observed in figure 4.

Overall, the best fit for our model to the VXX time series is achieved by using
the realistic VXX model and calibrating the parameters to the three-point short VIX

term structure.

5.2 Short-term VIX futures ETPs model fit

We now briefly analyze the ability of our model to fit other short-term VIX futures
ETPs. We examine the fit of the realistic model using either the shorter or full VIX
term structure calibrations. The other short-term VIX futures ETPs we try to model
are the five most liquid, after the VXX, namely the XIV, SVXY, UVXY, TVIX and
VIXY (in order of market size).

Figures 5, 6 and 7 show the model fit to the other ETPs using the two-point,
three-point and full VIX term structure calibration, respectively. From the figures
we can see that the two-point VIX term structure calibration works fairly well for
fitting the long-exposure ETPs, namely UVXY, TVIX and VIXY. However, neither
the two-point nor full VIX term structure calibration allows our realistic model to
fit the short-exposure ETPs, namely XIV and SVXY, very well. When the model is
calibrated using the three-point VIX term structure it fits the short-term ETPs far

better, as can see in figure 7.
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The more volatile the underlying index the less likely a leveraged ETF is to achieve
its target leverage that day, and it will often be over or under exposed. So, if the
SVXY fails to achieve its target leverage of negative one it is to be expected that
the model can not fit it perfectly. Surprisingly, the model seems to fit the UVXY,
double-leverage, ETF quite well optically. The model fits the leveraged ETNs, XIV
and TVIX, well as they do not have this replication problem. ETNs should track their
target exposure much closer, since they do not have to replicate a leveraged version
of the underlying VIX futures position of the SPVXSTR. Gehricke and Zhang (2017)
show that the VIX futures ETNs also do not track their indicative values perfectly
and are often priced inconsistently to each other, so some error in modeling these is
to be expected.

Overall we can say that our realistic VIX futures ETP model is useful in modeling
any short-term VIX futures ETPs, which make up most of the market capitalization

and trading of all VIX futures ETPs.

6 Conclusions

In this paper we have created a new model for the VXX, which accounts for the
relationship between the S&P 500, VIX index, VIX futures and the VXX. Our model
builds on the work of Gehricke and Zhang (2018) by including jumps in the instan-
taneous variance (V;) and making the long-run mean level of V; a stochastic mean-
reverting process. We derive simple analytical formula for the VIX term structure,
VIX futures prices, short-term (less than 60 days) VIX futures prices, the VXX and
any other short-term VIX futures ETPs (which make up most of the market size and
activity). Our derived VXX model confirms the finding of Gehricke and Zhang (2018)
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that, theoretically, the roll yield is the main driver of the under-performance of the
VXX relative to the VIX index.

We calibrate our theoretical model to the full VIX term structure as well as the first
two and first three-points. We find that our model fits the VIX term structure better
than the nested models, no matter which calibration sample we use. Namely, the
nested models are the model of Gehricke and Zhang (2018), its floating 6 equivalent
and our model with Ky = kg = k. We find that the mean reversion feature of the
models contributes very little when fitting the shorter VIX term structures, but is
more important when fitting the full VIX term structure.

We provide a realistic and idealistic model for the VXX and show that the realistic
model outperforms in fitting the VXX time series, no matter whether we calibrate
to the shorter or full VIX term structure. We find that our model performs best for
fitting the levels and returns of the VXX when calibrating only to the first three-points
of the VIX term structure. This is likely because longer term market expectations of
volatility are irrelevant to the short-term ETP prices and using the first two-points
misses some relevant market information.

Lastly, we show that our model fits other short-term VIX futures ETP time series
well, but fails to fit the SVXY ETF time series. This may be explained by the
difficulty for ETFs to achieve the target leverage over a holding period of more than
one day and/or by market frictions in the VIX futures ETP market, which has become
a topic of interest for other researchers (e.g. Fernandez-Perez et al. 2018)

Our model could be extended to the mid-term VIX futures ETPs, in which case we
recommend not removing the convexity adjustment in the VIX futures price formula.

Our model for the VXX could be used to price options written on the VXX and other
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short-term VIX futures ETPs. It may also be useful for short-term forecasts of VXX

and other short-term VIX futures ETP prices.
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Appendix
A.1 Central moments of 6,

In this section we derive the first and second central moments of 6;. Let us start with

the first moment, to do this we define a function f(6;) = e"'6,, then we get:

df(0,) = d(e"'0,) = krge™'0,dt + rge™ (0 — 0,)dt + e”gtag\/éTtngjt

= kele™tdt + "oy \/Q—tdB?),t- (28)
Taking the integral of both sides of equation (28) from ¢ to s we get:
efosfh, — erolg, = /199_/ e"du + 09/ e/ 0,dBs,,
t ¢

€050, — e, = 05 — et 4 09/ e/ 0,dBs,
t

0, = 0+ (6, — et 1 g / e "=\ /0, dBs,,.  (29)

t
Then taking the expectation of equation (29), conditional on the information at

t, we get the first central moment of 6, as:
ER10] =0+ (0, — O)e "ot (30)

Using the definition of the second central moment of §; and plugging in equations

(29) and (30) we get:
EtQ[(QS . EtQ[esDQ] _ EtQ{(Q__’_ (Qt . é)e—me(s—t) +0.0/ G_HG(S_u)\/ZdB?,,u
—0 — (6, — e)e-“@@—t)) }
s 2
= EV Ko—g / e—@(S—“)\/Eng’u) ] (31)
t
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then using Ito’s isometry and bringing the expectation inside the integral we get:
ERI(6 - EQB)P) = of [ e B du 32
t
and substituting in E°[6,], from equation (6) with s = u, we get:

B9, 017 = of( [ e (00— B )

t

s s s
_ o_g ( / 672,'{9 (s—u) Odu + / el{gu72ﬁgs+ﬁgt0tdu . / eﬁgu2n95+nat6du>
t t t

2 20
- Ueet (e—ng(s—t) . e—2n9(s—t)> + U_8<1 . Qe*fﬂe(sft) + e*?lﬁg(S*t))

Ko 2Kg
(33)

A.2 Central moments of V,

To find the risk-neutral expectation of instantaneous variance (E?[Vs]) we need to
first derive a function for the future instantaneous variance V,. The dynamics of V

can be rewritten as:
dVy = ky(0, — Vy)dt + dM, (34)
where
dM, = oA/ Vid By, + ydN, — NEP[y]dt, (35)

which is a martingale in the risk-neutral measure.

Let f(V;) = "'V, then we get:

df(‘/t) = d(eﬁvt‘/t) — Rveﬂvtv;dt + eﬁvtliv(@t o ‘/t)dt + emvtht

= "VkyOidt + e"VidM,. (36)
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Integrating both sides from ¢ to s gives and solving for s we get:

S S
eIV, — e’“’tVt:/ e“V“nvﬁudu—l—/ e"V*dM,,
t t

V, = Vie v 4 / e~ 0, du + / e~ g, (37)
t t
We can then take the conditional risk-neutral expectation of Vi, which yields:
EPV)] = Vel 4 / e~y BR6,|du (38)
t

We then substitute E?[f,], from equation (6) with s = u, into the expected future

instantaneous variance, equation (38), which results in:

EPIV)] = Vi G0y / kve "CT[0 4 (0, — B)e V] du
t

— %e—nv(s—t) + 9_<1 o e—mv(s—t)) + Ry (97& o Q_) (e—ﬁjg(s—t) . e—nv(s_t))
Ry — Rg
Ry

Ry — Rg

+(1— efnv(sft) . Ky (efng(sft) . efnv(sft)) 9_
Ry — K¢

— e—f'iv(s—t)v;t + (e—ng(s—t) o e—nv(s—t))gt
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We can get the second central moment of V; by ... | resulting in:

s s 2
| et nte, - Bl )y + [ ew<su>dMu)]
L\ Jt t
r s y s 2
HVUG/ e—nv(s—y)/ e rey—u) /HUng,uder/ e_"‘V(S_“)dMu) }
L t t t

r s s s 2
= E (KV@/ / e—ﬁv(s—y)e—ne(y—u)dmdB&u+/ e_”V(S_“)dMu> ]
L t u t

s s 2
Fvoe / (6_“9(5_“) — G_HV(s_u)mdBS,u +/ G_HV(s_u)dMu> :|
L t t
- S 2
Ry Og / (e—ng(s—u) o e—’iV(S_u)mng u) :|
t
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where

s 2
X = E ﬂ/ (efne(sfu) . efnv(sfu))\/%ngu
(kv — ko) Js 7

2 9
Ky Og

2 9
Ry Og

(FGV — Ko

)2 / <€7ﬁ9(57u) . efmv(sfu))QEt[eu]du
t

) / (e—ng(s—u) . e—HV(S—U))2(§ + (015 . é)e—ng(u—t))du

(KV—HGQ t

_ K0} ° —2kg(s—u) (] DN — ko (u—t)
= m[/te 0+ (6, —0O)e )du
-2 /8 e rolswemrvs=u) (g 4 (g, — f)e D) dy
t
+/S “2rv(s=u) (g 4 (9, — 9_)6_”9(“_t))du}
K202 [( tfne (s=0) _ g=2ma(s=t)  Qe—rals—t)(] _ gV (1))
(ky — Kg)? Ko Ky
oro(s—t) _ pmry(s—1) 1 — o—rols—1))2
* 2Ky — Kg )9t+ (( 2Ky )
_2(1 — e*(”o*/ﬁv)(sft)) N 2(6*'69(8*15) _ e*(ﬂefﬂv)(sft))
Ko + Ky Ky

_l’_ —
2Ky 2Ky — Ko

1— G*QNV(S*t) efmg(sft) e~ 26V (s—t) ) 9_:|

31
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and

s 2
Y = EtK / e”V(S“)dMu)]
t

= / e o BRIV, ](dBau)? + / e 2= BQy?| Adu
t t

_ /S 6—2/4‘/ (s—u)o_%/e—an(u—t)‘/tdu
t

+/ 672nv(sfu)o_‘2/ ’%Vet (efng(uft) . efnv(uft))du
t kv — kg

_|_/ e—QHV(s—u)O_‘Q/e(l . e—nv(u—t) _ Ry (e—ng(u—t) . e—nv(u—t)>>du
¢ Kv — Ko

A

+% (1 . 6—2nv(s—t)) Et[yz]

2
_ U_V (env(st) . €2nv(st)) V;g

Kv
/ﬁlva%/ e—/{g(s—t) _ e—HV(S—t) e—nv(s—t) _ e—QHV(S—t)
+ - 6,
Ky — Kg 2Ky — Kg Ky
N ) (1 _ e*ﬁv(sft))Z Ky 67!{9(377&) _ efnv(sft) efm/(sft) _ e*?li\/(S*i) é
O-V - -
2:‘4&\/ Ry — Rg 2/1\/ — Kg Ry

+i (1 _ e—2nv(s—t)> Ei[y?] (42)

2Iiv
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A.3 VIX index proof

The VIX squared index is equal to the risk-neutral conditional expectation of the

variance over the next 30 days, using this and lemma 1 we get:

VIX;\? 1t
- - EQV.]d
(100) 7 J, ¢ (Valds

1 t+70
_ _|:V2/ e—nv(u—t)du
t

To

t+710 t+70

+ il 0, (/ e oy — / e_“V(“_t)du)

Ry — Kg t t

_ t+710 t+710
+ 9(/ du — / e~ vty

t t
t4T7 t+7

_ Ry (/ 0 e—ng(u—t)du o / ’ e—m/(u—t)du) >:|

Ky — Rg \ Ji ¢

= AV,+ Bb;+(1—A— B)b, (43)
where
4 = 1 — e rvo
Ry To
B — ky(l—e ™)  (1—e ™)

koTo(ky — Kg)  To(kv — Kg)

Then taking the square root gives us the VIX formula presented in proposition 1.

A.4 VIX futures approximate formula

We expand the the square root form equation (15) (VIX formula) using the two

variable Taylor expansion near the points EZ[Vy] and EZ[f7], which results in:

f(Vr,0r) = a0 +a1(Ve — E2[Vr]) + as(0r — EP[07))
+as(Ve = BR(V))? + Sau(0r — B20]

+as(Ve — EZ[Va])(6r — Ef (7)), (44)
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where
of
— 1(v,0)| ,
a0 u )V=E§?[VT], 0=EC[67)] = oV lv= ECVy), 0=ER[07]
2 00 lv=E2vy), 0=ER[07] ' HGIVE V=EQVy], =E0r]
. P
4 002 lv=g2vy), 0=ER[67] ' T Vo V=ERVy], 0=ER 0]

f(v,0) :(AV+BH+Q—A—BW>.

NI

Plugging the partial differentials into equation (44) we get:

VIX
100

P [

1

—( g9
+2< t (1
1
(] (5
1 1%
_§<E’f2 (1
(5

)]

xeoho

00

)
7l
).
)
).

27

[

VIX

1m>T)WMW—EﬂWD

EP[07])

3 ([
B(6r —
A (Vp — B2 [Ve])?
B2(67 —

E7[61))?

AB(Vr — E2[Vi))(0r — EZ[07)),

(45)

We then take the expectation of f(Vr,60r) and substitute in the second central
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moments of Vi and 07, from lemma 1 where s =T, to get:

EQ[f (Ve 07)] = (EQK‘Z(I)())()QD

()] oo

3

(=) ) =

97
y lOeet (eng(Tt) i e2n9(Tt)) + O-LH <1 . 267ﬁ9(T7t) + €2n9(Tt)>:| ’
Rg 2ff0

then substituting in EtQ [(%)2} from lemma 16 gives us proposition 2.

A.5 Partial derivatives for change in log short-term VIX fu-
tures

The partial derivative of the short-term VIX futures price with respect to ¢ in equation

(20) is derived as:

OlnFl 195V, + 920, — (52 + 92)0

_ 47
ot 2(JV;+D0t+(1—O—D)0’ (47)
where
oC
E = /{VC' (48)

— = <A/{ e~re(T=t) _ li\/O) + rgBereT0), (49)
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The other partial derivatives in equation (20) are derived as:

dln ET 1 C
oV, 20V, + Db, +(1-C—D)
0*In Ff B 1 C?
OVZ  2(CV,+ Db+ (1-C — D))’
dln EFT 1 D
96,  2CV,+DO,+(1—-C—D)
PmFr 1 D?
00f  2(CV,+ Db+ (1-C — D))
PmF’ 1 CD
Vb 2(CV; + DO, + (1 - C — D)b)’

A.6 Floating # model dynamics and VIX formula

Under the floating € model the risk-neutral dynamics are given by:

dSt = ,LLStdt + \/VtstdBl,ta
dV; = k(0; — V;)dt + oy\/V;dBay,

d0, = dBy,

which results in the following VIX term structure formula:

VIX 1 [t
0 Jt

7

where:

(1 —e"m)

RT;

G:

36

(59)

where 7; = T;/365 and T; is the days to maturity of any maturity VIX index in the

term structure.
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Table 1: Summary statistics of the daily returns for the SPX, VIX, VXX
and XIV. This table is an extended and updated version of the table found in
Gehricke and Zhang (2018), with a longer sample size and a short exposure VIX
futures ETP, the XIV, included. The table shows the summary statistics and cor-
relations of the SPX, VIX, VXX and XIV returns from the 30 January 2009 (XIV
was not launched until 29 November 2010) to the 24 April 2017. Here, rp represents
estimates using discrete daily returns and r¢ represents estimates using continuously
compounded daily returns. The annualised standard deviation is calculated by mul-
tiplying the standard deviation by v/252. The Holding Period Return (HPR) is the
return from the first day to the last day of the sample. The Compound Annual
Growth Rate (CAGR) is the constant yearly growth rate that would lead to the cor-
responding H PR, it is calculated by CAGR = (HPR+ 1)% —1, where T is the length
of the sample in years.

SPX VIX VXX XIV

D rc D rc D el D rc
Mean 0.06% 0.05% 0.20% —0.07%  —0.29% —0.36% 0.21% 0.13%
o 1.06% 1.06% 7.49% 7.25% 3.89% 3.85% 4.02% 4.11%
Annualized o 16.82% 16.83%  118.96%  115.05% 61.80% 61.14% 63.79% 65.18%
Skewness -0.14 -0.25 1.28 0.69 0.89 0.64 —-0.94 —-1.26
Excess Kurtosis 4.83 4.83 5.74 3.65 3.36 2.64 3.64 5.17
HPR 187.47% —75.83% —99.94% 666.56%
CAGR 13.70% —15.86% —59.65% 37.55%
Correlations rp ro

SPX VIX VXX X1V SPX VIX VXX XIV
SPX 1 1
VIX —0.7655 1 —0.7700 1
VXX —0.8015 0.8847 1 —0.8039 0.8833 1

X1V 0.8267  —0.8799  —0.9967 1 0.8263  —0.8764  —0.9924 1
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Table 2: Calibrated parameters over the sample of Zhang, Zhen, Sun, and
Zhao (2017) This table shows the calibrated parameters to the Heston (1993) and
the floating 6 models over the sample period of Zhang, Zhen, Sun, and Zhao (2017).
Panel A shows the parameters as estimated by Zhang, Zhen, Sun, and Zhao (2017)

and Panel B shows our estimation of the parameters over the same sample.

K 0 Vi Std(V;) 0; Std (;) VIX TS RMSE
Panel A: Zhang, Zhen, Sun, and Zhao (2017) calibration
Heston 0.28 0.1651 0.0342 0.0264 — — 1.3531
Floating §  1.91 - 0.0299 0.0289 0.0729 0.0253 0.5473
Panel B: Our calibration
Heston 0.28 0.1653 0.0345 0.0266 — — 1.3616
Floating §  1.91 — 0.0301 0.0291 0.0732 0.0254 0.5499
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Table 4: Model implied VXX and market VXX This table shows some summary
statistics of the performance of our calibrated model in fitting the VXX time series.
The model is calibrated using either the full, first two points or first three points of
the VIX term structure. Then either the idealistic or realistic model is used to imply
a VXX time series, which can be compared to the market VXX time series, presented
in the first column. RMSE is the root mean squared error, which can be computed
for the errors between the model implied and market VXX prices.

Full VIX term structure

First two VIX term structure

First three VIX term structure

Market | Idealistic Realistic Idealistic Realistic Idealistic Realistic
Ky 2.097 12.046 7.886
Ko 0.241 0.000 0.000
0 0.068 0.041 0.045
VIX TS Level RMSE 0.515 0.157 0.273
VXX Level RMSE 739.69 416.93 722.88 150.68 664.65 99.11
VXX Return RMSE 2.52% 2.42% 5.77% 5.16% 3.12% 2.72%
VXX mean Return -0.32% | -0.94% -0.42% -1.02% -0.25% -0.81% -0.39%
VXX Return std. dev.| 3.97% | 4.96% 5.01% 6.91% 6.33% 5.05% 4.87T%
Return correlation 1.00 0.89 0.88 0.56 0.58 0.79 0.83
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Figure 1: Market share by maturity target This figure has four panels. The
top left panel shows the total market capitalization of all the VIX futures ETPs
grouped by their target maturity. The bottom left panel shows the daily proportion
of total market capitalization for each group. The top right Panel shows the five day
moving average of the daily dollar trading volume for each group. The last panel
(bottom right) shows the five day moving average of the daily proportion of dollar
trading volume for each group. ST represents the ETPs that track the short-term
VIX futures indices, MT represents the ETPs that track the mid-term VIX futures
indices, WEEK represents ETPs that provide exposure to shorter term VIX futures
(weekly futures) and dynamic/hybrid represents those ETPs that are not linearly

tracking one of the indices.
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Figure 2: Daily V; and 6; - full model This figure shows the daily estimates of
V; and 6; from calibrating the full model using the full, first two points or first three
points of the VIX term structure, in order.
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Figure 3: Daily MSE This figure shows the daily estimates of the MSE from
calibrating the full model using the full, first two and first three-points of the VIX
term structure, in order.
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