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Abstract 

In a dynamic investment and financing model, we account for differences between equity and corporate 

bond holders’ pricing of macroeconomic risk. In line with anecdotal and empirical evidence, we calibrate 

the bond investor’s price of risk to be unconditionally higher than the equity investor’s, as well as 

volatile and independent of the macroeconomy. Relative to a counterfactual scenario where both 

investors price risk identically, average market (book) leverage is 2.8 (3.3) percentage points lower, 

which reveals a new quantitatively significant channel to address the under-leverage puzzle. Also, in the 

scenario with heterogenous risk pricing, firms issue equity more frequently and invest less.  
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1. Introduction  

A well-known puzzle in the capital structure literature is that firms appear to have suboptimally low 

leverage ratios.1 Recent theoretical studies introduce aversion to macroeconomic risk to explain why 

leverage ratios appear to be low (Bhamra, Kuehn & Strebulaev, 2010; Chen, 2010). In these models, 

distress costs associated with corporate bond defaults are more likely to occur during economic 

downturns. Therefore, in the valuation of corporate bonds, macroeconomic risk aversion generates a 

premium for the extent to which distress costs correlate with the macroeconomy. This pushes the cost 

of debt higher, which results in lower optimal leverage.  

However, these models adopt a single representative investor framework, which constrains bond 

and equity investors to be identical in terms of how they price macroeconomic risk, whereas empirical 

and anecdotal evidence suggests that risk is priced differently across corporate bond and equity markets 

(e.g.: Titman, 2002; He & Xiong, 2013; Choi & Kim, 2016). Furthermore, the corporate finance literature 

emphasises the existence of conflicts between equity and corporate bond holders’ interests, which 

implicitly subsumes their heterogeneity. Therefore, it is only natural to ask: how does heterogeneity in 

investors’ pricing of risk affect corporate policy? More importantly, what is the quantitative impact on 

the optimal leverage choice? To answer these questions, we employ a dynamic financing and investment 

model and allow two different investors to price the risk in equity and corporate bonds separately. We 

show that heterogeneity in the two investors’ pricing of macroeconomic risk has a non-trivial effect on 

corporate policy, especially optimal leverage.   

Our two-investor framework follows logically from the implicit separation between equity and bond 

holders, as observed in the numerous studies that examine the agency costs of equity and bond holder 

conflicts.2  These conflicts arise as equity holders (or their appointed managers) choose to maximise the 

value of equity, whereas bond holders prefer firm value maximisation. In this context, equity holders 

                                                           
1 More specifically, the expected tax shield benefits of debt for the average US firm outweigh the expected distress 
costs (e.g. deadweight costs associated with bankruptcy proceedings or the fire sale of assets during liquidation),  
such that an increase in leverage could improve firm value. For example, Graham (2000) finds that the average 
US firm could double the total tax shields benefits and improve firm value by as much as 9.7%, if the firm were 
to increase leverage to the point where the marginal tax shield benefit equals the marginal cost of distress. 
2 See, for example: Childs, Mauer & Ott (2005); Titman & Tsyplakov (2007); Gamba, Aranda & Saretto (2015); 
Chen & Manso (2017). 
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execute corporate policy and take bond prices as given. On the other hand, bond investors price 

corporate bonds and take equity holders’ decision as given. There is no coordination to maximise firm 

value, as a single representative investor would.3 Therefore, our two-investor framework is more 

consistent with the conflicting objectives of equity and bond holders. More importantly, it allows us to 

consider differences in how risk is priced across equity and corporate bond markets when investors’ 

aversion to macroeconomic risk is heterogenous.  

In our framework, heterogeneity in aversion to macroeconomic risk means that, for each unit of 

equivalent risk, investors demand different expected rates of return. We thus implicitly relax the 

standard assumption that corporate bond and equity markets are integrated.4 The relaxation of this 

assumption is justified by ample empirical and anecdotal evidence and we consider two key dimensions 

that describe the lack of integration. First, there is evidence that risk premia in the corporate bond 

market are, on average, larger than in the equity market, as discussed by Titman (2002).5 Second, 

Titman also suggests that the difference in risk premia between the two markets varies through time. If 

the difference were constant, it would require strong co-movement in risk premia, which is not what 

Collin-Dufresne, Goldstein & Martin (2001) observe. Instead, they find that a significant proportion of 

the variation in credit spread changes in the corporate bond market is unrelated to the equity market.6    

For our baseline model, we adopt a partial equilibrium dynamic setup similar to Gomes & Schmid 

(2010), in which firms make investment, financing and default decisions. Our key distinguishing feature 

is that we have two separate investors for bonds and equity, each with a different level of risk aversion 

                                                           
3 In the literature on the costs of agency conflicts between equity and bond holders, firm value maximisation 
produces the first best outcome. Therefore, a single representative household with claims to both the equity and 
debt of a firm would not harm their interests by pursuing equity-only maximisation.   
4 For two markets to be integrated, an investor must earn the same expected return in each market for an 
equivalent amount of risk (Titman, 2002). This assumption implies that a single representative investor is sufficient 
to capture how risk is priced in both markets. However, if risk is priced differently in each market (i.e. they are 
not integrated), the use of a single representative investor is no longer valid. 
5 Titman (2002) references a 2001 working paper version of Huang & Huang (2012). He suggests that an equity 
risk premium of 15% is needed to justify the credit spread on BBB-rated bonds, whereas the observable equity 
risk premium is only 9%. There are other recent studies which are unable to reconcile risk premia in bond and 
equity markets, such as Choi & Kim (2016). 
6 Collin-Dufresne et al. (2001) allude that this is related to supply conditions specific to the corporate bond market. 
This is consistent with Titman's (2002) suggestion that capital supply conditions are a potential source of time 
variation in the degree of integration between equity and corporate bond markets.  
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with respect to aggregate macroeconomic risk, such that average risk premia can differ across equity 

and corporate bond markets. Furthermore, the bond holder’s risk aversion can vary independently of 

the aggregate state, which leads to time-varying divergence in risk premia between equity and corporate 

bond markets, consistent with Collin-Dufresne et al. (2001). We solve our model numerically and 

calibrate parameters such that our simulated cross-section of firms yields moments consistent with 

empirical observations. Importantly, the equity holder’s risk aversion is set to match the equity Sharpe 

ratio, which leaves the bond holder’s risk aversion process to be calibrated to match leverage dynamics.  

We find that the bond holder’s aversion to macroeconomic risk must be unconditionally higher, as 

well as volatile,7 in order to match the target moments and obtain lower optimal leverage.8 We perform 

counterfactual analysis to gauge the magnitude of the reduction in leverage. Relative to an economy 

with integrated markets, if the bond holder’s risk aversion is unconditionally three times that of the 

equity holder, average optimal market (book) leverage is 2.1 (2.4) percentage points lower.  Additionally, 

if we introduce variation in the bond holder’s risk aversion, average optimal market (book) leverage is 

reduced a further 0.7 (0.9) percentage points. In both instances, there is also a modest increase in the 

frequency of equity issuance. All these counterfactual results are consistent across multiple simulations.  

To understand the mechanism behind these results, note that firms are more likely to default on 

corporate bonds when the macroeconomy is weak. As the bond holders become more risk averse with 

respect to macroeconomic risk, they demand relatively more compensation for default risk. For each 

additional unit of debt, the marginal cost of borrowing rises at a significantly greater rate than the 

marginal tax shields benefits.  Therefore the optimal level of debt is lower. 

The decrease in optimal leverage is more pronounced in the weaker economic states. In these states, 

the increase in the bond investor’s price of risk matters more since financial distress risk is higher. When 

economic productivity is below its long-run mean, average optimal market (book) leverage is 3.0 (3.2) 

percentage points lower relative to the case where markets are integrated. When above the long-run 

                                                           
7 We calibrate the risk aversion of the bondholder to vary independently of the aggregate state. Therefore, while 
its unconditional mean is fixed at 150, there is 1.56% chance each period it will rise to 915 (worst possible outcome 
for the cost of debt) or fall to 11 (best possible outcome for the cost of debt). 
8 The effect of the unconditional level of risk aversion is more important. In Table 3, we show that the magnitude 
of the effect of variation in bond holder’s risk aversion is sensitive to the unconditional level of risk aversion.  
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aggregate productivity mean, average optimal market (book) leverage is 1.7 (2.4) percentage points 

lower9.  

We also find that investment does not necessarily decrease as the bond holder’s aversion to 

macroeconomic risk increases. In our model, equity issuance is costly and firms prefer to finance 

investment with debt to secure interest tax shields. All else equal, firms with a low debt capacity can 

only finance low levels of capital through borrowing. However, due to decreasing returns to scale, the 

marginal benefit of investment is higher for low levels of capital, such that it is worthwhile to incur 

equity issuance costs to fund further investment. Other firms with higher debt capacity (but still not 

enough to match the investment expenditure of the low debt capacity firms) will forego investment to 

avoid equity issuance costs. As the bond holder’s price of risk increases, debt capacity decreases. Some 

firms will now find it optimal to issue equity and will invest more than before. Others’ debt capacity 

will reduce to a point where debt finances less investment than before, but it is not optimal to issue 

equity to make up the shortfall in investment. In our counterfactual analysis, we observe that, when 

markets are integrated, firms expand their productive capacity in 6.4% of our firm-year observations. 

This drops to 5.7% when markets are not integrated, which suggests that the decrease in investment is 

the stronger effect.  

The paper is organised as follows. In section 2, we discuss related literature and our contribution. 

In section 3, we present a simple two-period model for intuition. The dynamic model follows in section 

4. We present results in section 5 and conclude in section 6. 

 

2. Related Literature 

To our knowledge, we are the first to examine the theoretical implications of heterogeneity in the pricing 

of macroeconomic risk for capital structure and gauge its potential to address the under-leverage puzzle. 

Our work is related to the literature which incorporates macroeconomic risk to model firms’ optimal 

financing decisions (Hackbarth, Miao, & Morellec, 2006; Bhamra et al., 2010; Chen, 2010). Our main 

                                                           
9 For brevity, we are reporting the combined the effects of a higher as well as volatile price of risk for the bond 
holder. Separated results are shown in Table 3. 
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contribution is that we account for the evidence that equity and corporate bond markets are not 

integrated, such that bond and equity investors can demand different return premia for macroeconomic 

risk.  With this feature we provide a new angle to study the under-leverage puzzle.  

We do note that our model has some shortcomings with respect to some concerns raised by Bhamra 

et al. (2010). They argue that optimal leverage at refinancing points in the model is not equivalent to 

observed leverage in the data, since firms rarely restructure their debt in the data10. Therefore, while 

their model generates aggregate market leverage of 28% at refinancing points, this figure increases to 

40% when they consider all their simulated data points11. With our one-period bond specification, firms 

are always at their refinancing points, hence we are unable to address their concern. Nevertheless, our 

key contribution is to gauge the differential effect of heterogeneous risk pricing on optimal leverage, 

rather than to match aggregate leverage.  

The independent variability in risk premia in the corporate bond market is a feature that is 

associated with dynamic market-specific supply conditions (Collin-Dufresne et al., 2001; Titman, 2002). 

Therefore, one can interpret our results as evidence that credit supply conditions have an impact on 

capital structure decisions. Hugonnier, Malamud & Morellec (2015) take the supply-side approach to 

theoretically examine the impact of credit market frictions on capital structure. Their approach differs 

from ours, in that they focus on individual firms’ access to credit. In their model, credit market access 

is random and firm-specific, while our credit supply shock is aggregate and directly reflected in the debt 

investors’ price of risk.  

Our work also has important implications for theoretical studies which examine agency conflicts 

between equity and bondholders (Childs, Mauer & Ott, 2005; Titman & Tsyplakov, 2007; Gamba, 

Aranda & Saretto, 2015; Chen & Manso, 2017). These studies focus on the consequences of equity 

holders’ pursuit of equity value maximisation, as opposed to firm value maximisation, which is preferable 

                                                           
10 Leary & Roberts (2005) suggest that restructuring costs prevent firms from refinancing frequently.  
11 In their model, firms are more financially healthy in good economic states when equity value rises and market 
leverage falls. They can thus more readily overcome refinancing costs and adjust their leverage upwards. In bad 
economic states, firms must wait for equity value to drift downwards more before it is optimal to refinance, such 
that observed market leverage increases more in bad states than in good states.  
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to bond holders.  Our framework has the capacity to assess these consequences in the context of an 

economy where equity and corporate bond markets are not integrated.  

Finally, we note that we take the evidence on equity and corporate bond market integration as 

given. Our motivation is primarily based on asset pricing studies which investigate the behaviour of 

prices in the corporate bond market relative to the equity market. Huang & Huang (2012) find that 

credit spreads appear too large relative to equity premia. Building on Collin-Dufresne et al. (2001), 

Kapadia & Pu (2012) confirm that co-movement between debt and equity markets is weak, which they 

attribute to frictions that limit arbitrage. Choi & Kim (2016) find that, for risk factors common to 

corporate bond and equity markets, return premia are higher in the bond market. Other evidence which 

suggests the two markets are segmented is centred around institutional frictions that limit capital 

mobility (He & Xiong, 2013; Bodnaruk & Rossi, 2016). At best, we provide some indirect evidence 

against market integration, given our counterfactual analysis shows that target moments are better 

matched when equity and corporate bond investors price risk differently.  

 

3. Static Model 

3.1 Setup 

To illustrate the key mechanism of our dynamic model, we first present a simple two-period model with 

one equity and one bond investor. Suppose that, at time 0, the equity investor sets up a firm and can 

choose an amount of capital 𝐾𝐾 that generates the following payoff at time 1: 

Π(𝐾𝐾, 𝑥𝑥) = (1 − 𝜏𝜏)𝑒𝑒𝑥𝑥𝐾𝐾𝛼𝛼 (𝑆𝑆1) 

Here, 𝜏𝜏 is the corporate tax rate, 𝑥𝑥 ∼ 𝑁𝑁(0, 𝜎𝜎𝑥𝑥
2) is a productivity shock and 𝛼𝛼 determines the 

production function curvature. We assume 𝛼𝛼 < 1, such that there are decreasing returns to scale. Capital 

fully depreciates at time 1.  

The equity investor can finance the capital expenditure with a combination of her own money and 

debt. To obtain debt finance, she can issue a one-period bond of face value 𝐵𝐵, which promises a tax-
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deductible coupon payment 𝑐𝑐 at time 1. If the firm cannot meet its debt obligations, the equity holder 

defaults and receives zero payoff. Therefore, the equity holder’s claim is: 

𝑃𝑃𝑒𝑒(𝐾𝐾, 𝐵𝐵, 𝑥𝑥) = max{0,Π(𝐾𝐾, 𝑥𝑥) − (1 + 𝑐𝑐)𝐵𝐵 + 𝜏𝜏𝑐𝑐𝐵𝐵} (𝑆𝑆2) 

For any combination of 𝐾𝐾 and 𝐵𝐵, we define the default boundary value of 𝑥𝑥 as: 

𝑥𝑥∗: Π(𝐾𝐾, 𝑥𝑥∗) − (1 + 𝑐𝑐)𝐵𝐵 + 𝜏𝜏𝑐𝑐𝐵𝐵 = 0 (𝑆𝑆3)  

The bond investor’s payoff is contingent on the realised value of 𝑥𝑥 relative to 𝑥𝑥∗. If 𝑥𝑥 < 𝑥𝑥∗, the 

equity holder defaults and the bond investor receives a fraction (1 − 𝜉𝜉) of the after-tax operating profits 

Π(𝐾𝐾, 𝑥𝑥), where 𝜉𝜉 ∈ [0,1] represents the deadweight loss from the cost of bankruptcy proceedings. 

Otherwise, the bond investor receives the promised face value amount plus the coupon: 

𝑃𝑃𝑏𝑏(𝐾𝐾,𝐵𝐵, 𝑥𝑥) = (1 + 𝑐𝑐)𝐵𝐵𝟏𝟏𝑥𝑥≥𝑥𝑥∗ + (1 − 𝜉𝜉)Π(𝐾𝐾, 𝑥𝑥)𝟏𝟏𝑥𝑥<𝑥𝑥∗ (𝑆𝑆4) 

The equity holder chooses 𝐾𝐾 and 𝐵𝐵 to maximise the value of equity: 

𝑉𝑉𝑒𝑒 = max
K,B

{−𝐾𝐾 + 𝐵𝐵 + 𝐸𝐸[𝑀𝑀(𝑥𝑥)𝑃𝑃𝑒𝑒(𝐾𝐾, 𝐵𝐵, 𝑥𝑥)]} (𝑆𝑆5) 

For now, 𝑀𝑀(𝑥𝑥) is the pricing kernel of a representative investor sensitive to the firm’s productivity 

risk. Suppose we also use the representative investor’s pricing kernel to price the bond claim at par: 

𝐵𝐵 = 𝐸𝐸[𝑀𝑀(𝑥𝑥)𝑃𝑃𝑏𝑏(𝐾𝐾, 𝐵𝐵, 𝑥𝑥)] (𝑆𝑆6) 

For (S6) to hold, the coupon rate must be endogenous and satisfy: 

1 + 𝑐𝑐 = 1 − 𝐸𝐸[𝑀𝑀(𝑥𝑥)𝑅𝑅𝟏𝟏𝑥𝑥<𝑥𝑥∗ ]
𝐸𝐸[𝑀𝑀(𝑥𝑥)𝟏𝟏𝑥𝑥≥𝑥𝑥∗]

(𝑆𝑆7) 

Here 𝑅𝑅 is the proportion of face value recovered upon default i.e. 𝑅𝑅 = (1 − 𝜉𝜉)Π(𝐾𝐾, 𝑥𝑥)/𝐵𝐵. Note that 

𝑐𝑐 and 𝑥𝑥∗ are simultaneously determined for any given choice of 𝐾𝐾 and 𝐵𝐵. This reflects the fact that 𝑐𝑐 

affects the equity holders’ ability to meet the debt obligation, which in turn determines 𝑥𝑥∗. At the same 

time, 𝑥𝑥∗ determines the level of default risk for which the bond holder demands compensation via 𝑐𝑐. It 

can be shown that, so long as 𝑅𝑅 < (1 + 𝐸𝐸[𝑀𝑀(𝑥𝑥)]−1), 𝑐𝑐 is increasing in 𝑥𝑥∗. 
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When we substitute (S2), (S4) and (S6) into (S5), the equity maximisation problem can be 

expressed as follows: 

𝑉𝑉𝑒𝑒 = max
K,B

{−𝐾𝐾 + 𝐸𝐸[𝑀𝑀(𝑥𝑥)Π(𝐾𝐾,𝑥𝑥)] + 𝜏𝜏𝑐𝑐𝐵𝐵𝐸𝐸[𝑀𝑀(𝑥𝑥)𝟏𝟏𝑥𝑥≥𝑥𝑥∗] − 𝜉𝜉𝐸𝐸[𝑀𝑀(𝑥𝑥)Π(𝐾𝐾,𝑥𝑥)𝟏𝟏𝑥𝑥<𝑥𝑥∗]} (𝑆𝑆8) 

This can be broken down into three components: 

𝑉𝑉𝑒𝑒 = max
K,B

…  

−𝐾𝐾 + 𝐸𝐸[𝑀𝑀(𝑥𝑥)Π(𝐾𝐾, 𝑥𝑥)]   V1: Firm value maximisation 

+𝜏𝜏𝑐𝑐𝐵𝐵𝐸𝐸[𝑀𝑀(𝑥𝑥)𝟏𝟏𝑥𝑥≥𝑥𝑥∗ ]    V2: Tax shield benefits 

−𝜉𝜉𝐸𝐸[𝑀𝑀(𝑥𝑥)Π(𝐾𝐾, 𝑥𝑥)𝟏𝟏𝑥𝑥<𝑥𝑥∗ ]   V3: Deadweight loss from bankruptcy 

If there are no taxes (i.e. 𝜏𝜏 = 0) and no deadweight bankruptcy costs (i.e. 𝜉𝜉 = 0), then corporate 

structure is irrelevant and the optimisation depends only on 𝐾𝐾, as would be the case in a Modigliani & 

Miller (1958) framework. Given that in the real world corporations pay taxes and bankruptcy is costly, 

many studies have attempted to explain capital structure as a trade-off between tax benefits and distress 

costs, but with limited success (Graham, 2000).  Therefore, more recent models introduce a 

representative investor who is averse to aggregate risk (e.g.: Chen, 2010). In this simple framework, we 

capture this feature with the pricing kernel 𝑀𝑀(𝑥𝑥), which allocates more weight to payoffs when 𝑥𝑥 < 𝑥𝑥∗, 

such that distress costs become relatively larger on a risk-adjusted basis and optimal 𝐵𝐵 is lower.  

However, with a single representative investor, the price of risk for equity and bonds is the same 

which means that markets are implicitly integrated. In order to do away with this assumption, we 

specify a pricing kernel function similar to that of Berk, Green & Naik (1999), that allows heterogeneity 

in the pricing of risk: 

𝑀𝑀𝑖𝑖(𝑥𝑥) = exp�−𝑟𝑟𝑓𝑓 − 𝛾𝛾𝑖𝑖𝑥𝑥 − 1
2
𝛾𝛾𝑖𝑖

2𝜎𝜎𝑥𝑥
2� (𝑆𝑆9) 

Subscript 𝑖𝑖 differentiates the equity holder (𝑒𝑒) from the bond holder (𝑏𝑏). Both investors have the 

same intertemporal discount rate i.e. 𝐸𝐸[𝑀𝑀𝑖𝑖(𝑥𝑥)] = exp�−𝑟𝑟𝑓𝑓�, where 𝑟𝑟𝑓𝑓  is the risk-free rate. They differ 

in how they price risk factor 𝑥𝑥 via risk aversion parameter 𝛾𝛾𝑖𝑖.  
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For a given combination of 𝐾𝐾 and 𝐵𝐵, we discuss the impact of an increase in 𝛾𝛾𝑏𝑏 relative to the 

scenario where markets are integrated (i.e. 𝛾𝛾𝑏𝑏 = 𝛾𝛾𝑒𝑒): 

1. All else fixed, the bondholders demand a higher coupon rate  

2. The higher coupon rate reduces the firm’s ability to meet debt obligations such that 𝑥𝑥∗ increases 

3. The coupon rate further increases with 𝑥𝑥∗   

4. Adjustments in steps 2 and 3 repeat until the coupon rate is consistent with the new 𝑥𝑥∗ 

We denote the new coupon rate 𝑐𝑐𝑏𝑏 and the new default boundary 𝑥𝑥𝑏𝑏
∗ to differentiate them from 

their values under integrated markets. We now restate the breakdown of the equity value maximisation 

problem when 𝛾𝛾𝑏𝑏 > 𝛾𝛾𝑒𝑒: 

𝑉𝑉𝑒𝑒 = max
K,B

…  

−𝐾𝐾 + 𝐸𝐸[𝑀𝑀𝑒𝑒(𝑥𝑥)Π(𝐾𝐾, 𝑥𝑥)]   V1: Firm value maximisation 

+𝜏𝜏𝑐𝑐𝑏𝑏𝐵𝐵𝐸𝐸�𝑀𝑀𝑒𝑒(𝑥𝑥)𝟏𝟏𝑥𝑥≥𝑥𝑥𝑏𝑏
∗ �   V2: Tax shield benefits 

−𝜉𝜉𝐸𝐸�𝑀𝑀𝑏𝑏(𝑥𝑥)Π(𝐾𝐾, 𝑥𝑥)𝟏𝟏𝑥𝑥<𝑥𝑥𝑏𝑏
∗ �   V3: Deadweight loss from bankruptcy 

+(1 + 𝑐𝑐𝑏𝑏)𝐵𝐵𝐸𝐸�(𝑀𝑀𝑏𝑏(𝑥𝑥) − 𝑀𝑀𝑒𝑒(𝑥𝑥))𝟏𝟏𝑥𝑥≥𝑥𝑥𝑏𝑏
∗ � V4: Difference in valuation of repayment 

+𝐸𝐸�(𝑀𝑀𝑏𝑏(𝑥𝑥) − 𝑀𝑀𝑒𝑒(𝑥𝑥))Π(𝐾𝐾, 𝑥𝑥)𝟏𝟏𝑥𝑥<𝑥𝑥𝑏𝑏
∗ �  V5: Difference in valuation default payout 

This breakdown illustrates how corporate policy determinants change when bond holders price risk 

differently, namely when 𝛾𝛾𝑏𝑏 > 𝛾𝛾𝑒𝑒.12 Relative to the case where 𝛾𝛾𝑒𝑒 = 𝛾𝛾𝑏𝑏, we have, as noted before, a 

higher coupon rate 𝑐𝑐𝑏𝑏 and higher default boundary 𝑥𝑥𝑏𝑏
∗. The deadweight loss from bankruptcy is now 

priced from the perspective of the bond holder, which is also reflected in the higher coupon rate. Most 

important, there is a valuation wedge with respect to the contingent claims of the bond holder (i.e. 

components V4 and V5). A more risk averse bond holder attaches relatively less weight to scenarios 

where the principal is repaid and relatively more weight to the firm’s profit in the event of default.  

                                                           
12 We focus on this case because it consistent with evidence that risk premia are higher in the bond market. The 
𝛾𝛾𝑏𝑏 < 𝛾𝛾𝑒𝑒 case would simply have the opposite implications. 
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3.2 Analysis 

Since the two-period model is only designed for intuition, we solve it with arbitrary parameter values.13 

For our first analysis, we fix the choice of 𝐾𝐾 and focus on the choice of optimal 𝐵𝐵 under three scenarios: 

1. Risk neutrality i.e. 𝛾𝛾𝑏𝑏 = 𝛾𝛾𝑒𝑒 = 0 

2. Risk averse investors with integrated markets i.e. 𝛾𝛾𝑏𝑏 = 𝛾𝛾𝑒𝑒 > 0 

3. Investors price risk differently i.e. 𝛾𝛾𝑏𝑏 > 𝛾𝛾𝑒𝑒 (with the value of 𝛾𝛾𝑒𝑒 unchanged) 

In Figure 1, we show how the marginal benefit and cost curves of debt change under each scenario. 

In each of the three panels, we observe that, for low levels of leverage, the marginal cost of debt is near 

zero, while that marginal tax shield of debt is positive. Once leverage is sufficiently high, debt becomes 

costlier and bond holders demand a higher coupon rate. Although the marginal interest tax shield rises 

with the coupon rate, the marginal cost of debt increases at a higher rate still. In panel II, we observe 

the effect of risk averse investors under integrated markets. Relative to panel I where the investors are 

risk neutral, the marginal cost curve is steeper, which results in lower optimal leverage.14  

In panel III of Figure 1, markets are no longer integrated and the bond holder is now more risk 

averse, hence the marginal cost curve is even steeper such that optimal leverage is lower relative to 

panel II. A noteworthy feature is that the marginal cost of debt is no longer purely determined by the 

risk of financial distress. Part of it is now attributed to the net effect of the wedge in the valuation of 

the bond holder’s claims (more specifically the combined effect of the partial derivatives of V4 and V5 

with respect to 𝐵𝐵). 

 [Figure 1] 

We next consider the sensitivity of the optimal choice for both 𝐾𝐾 and 𝐵𝐵 across different ratios of 

𝛾𝛾𝑏𝑏 to 𝛾𝛾𝑒𝑒. In the first panel of Figure 2, we observe that, as the bond holder becomes more risk averse, 

optimal 𝐵𝐵 falls, yet 𝐾𝐾 is largely unchanged. With the aid of panels II, III and IV, we can offer some 

                                                           
13 The model still needs to be solved numerically with discrete grids for 𝐵𝐵 and 𝐾𝐾, due to the complication that 
𝑥𝑥∗(𝐾𝐾, 𝐵𝐵) and 𝑐𝑐(𝐾𝐾, 𝐵𝐵) need to be simultaneously determined and a closed form solution is not possible. 
Nevertheless, relative to the dynamic model, we can use much finer grids and provide a richer intuition.  
14 This is a simplified illustration of the key leverage-reduction mechanism in models such as Chen's (2010). 
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insight. We show what happens to equity value, credit spreads15 and default probability16 as policies are 

optimally adjusted to accommodate the more risk averse bond holder. We compare this against the 

counterfactual scenario where the equity holder fails to adjust and instead maintains the same optimal 

policy as when 𝛾𝛾𝑏𝑏 = 𝛾𝛾𝑒𝑒. The key insights are as follows: 

o As the bond holder demands more compensation for the risk of distress, a lower debt level is 

required to reduce the firm’s default probability. 

o Credit spreads change very little when corporate policy is optimally adjusted. One might think 

credit spreads should fall with the lower risk of default. However, since the bond holder’s price 

of risk is increasing, a lower level of default risk does not necessarily imply a lower credit spread. 

o Equity value is protected when the equity holder adjusts optimal policy. However, it decreases 

in 𝛾𝛾𝑏𝑏 and is lower relative to where it was when 𝛾𝛾𝑏𝑏 = 𝛾𝛾𝑒𝑒. A lower optimal level of debt limits 

the amount of value the equity holder can extract from interest tax shields. 

o As there are no equity issuance cost frictions, the equity holder can simply replace the shortfall 

in debt finance with equity and thus maintain the same optimal investment policy. However, 

in the process, interest tax shield benefits are foregone. Less value can be created through the 

financing decision, while the investment decision is unchanged.  

[Figure 2] 

Given equity issuance is costly in reality, we next consider how this would impact the outcomes 

shown in Figure 2. We therefore repeat the analysis shown in Figure 2, but with the addition of fixed 

and linear costs of equity issuance (we use also this specification in the dynamic model). If 𝐾𝐾 > 𝐵𝐵, the 

firm must pay the fixed cost of equity issuance, as well as a cost proportional to (𝐾𝐾 − 𝐵𝐵). The outcome 

is illustrated in Figure 3. 

[Figure 3] 

As equity becomes relatively costly to issue, the firm prefers debt even more. Essentially, debt now 

has the added benefit in that it allows the firm to avoid equity issuance costs. In theory, this would be 

                                                           
15 Credit spreads are the difference between the endogenous coupon rate 𝑐𝑐(𝐾𝐾, 𝐵𝐵) and the riskless rate 𝑟𝑟𝑓𝑓 . 
16 Default probability is computed as Pr(𝑥𝑥 < 𝑥𝑥∗(𝐾𝐾, 𝐵𝐵)) i.e. the likelihood that 𝑥𝑥 will be below the default boundary. 
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reflected in an upward shift in debt’s marginal benefit curve in Figure 1. Nevertheless, the optimal level 

of debt still decreases as 𝛾𝛾𝑏𝑏/𝛾𝛾𝑒𝑒 rises. The extent to which debt capacity acts as a constraint on investment 

depends on the following considerations: 

o When the level of capital that can be financed with debt is already high, the marginal benefit 

of additional units of capital is lower, due to decreasing returns to scale. 

o The decision to issue equity to finance further investment depends on whether the additional 

units of capital can generate enough expected profit to justify the costs of equity issuance.17 

In the first panel of Figure 3, the optimal choice is to fully finance investment with debt when the 

ratio 𝛾𝛾𝑏𝑏/𝛾𝛾𝑒𝑒 is relatively low. Here, the optimal level of debt is higher and allows the firm to finance a 

relatively higher level of capital. The marginal benefit of additional capital is too low to incentivise the 

firm to raise equity for extra investment. Once the bond holder is sufficiently risk averse, the firm can 

only finance smaller amounts of capital with debt. Therefore, the firm issues equity to capture the higher 

marginal benefit of capital. Relative to Figure 2, we also observe that the firm incurs higher credit 

spreads, as debt now has an extra issuance-cost-saving benefit to trade off against the costs of distress 

risk i.e. the firm can tolerate a higher level of default probability, which leads to a higher coupon rate. 

Overall, the message from Figure 3 suggests that, if the bond holder’s price of risk is higher, the 

level of investment should decrease, so long as we account for the cost of equity issuance. However, 

before we move on to the dynamic model, we must cross one last bridge of intuition with regard to 

investment. The dynamic model will allow us to consider a heterogenous cross section of firms which, 

every period, will be faced with corporate decisions that are very similar in essence to the ones considered 

in the static model. Part of this heterogeneity will be reflected in differences in net worth i.e. the sum 

of current profits, assets and liabilities. We can capture this in the static model by adding net worth 

variable 𝐴𝐴 to the equity maximisation problem: 

𝑉𝑉𝑒𝑒 = max
K,B

{𝐴𝐴 − 𝐾𝐾 + 𝐵𝐵 + 𝐸𝐸[𝑀𝑀𝑒𝑒(𝑥𝑥)𝑃𝑃𝑒𝑒(𝐾𝐾, 𝐵𝐵, 𝑥𝑥)]} (𝑆𝑆10) 

                                                           
17 This is a simplified version of events, but it captures the essence of the trade-off. Further consideration must 
also be given to the fact that the coupon rate is decreasing in 𝐾𝐾. So as the firm invests more, there is also a  
decrease in the slope of the marginal cost curve of debt. However, this is not sufficient to offset the effect of the 
increase in 𝛾𝛾𝑏𝑏 on the marginal cost of debt. 
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We now consider how optimal corporate policies vary across different values of 𝐴𝐴 and we continue 

to assume that equity issuance incurs a fixed and proportional cost. We compare the case where markets 

are integrated (𝛾𝛾𝑏𝑏 = 𝛾𝛾𝑒𝑒) with the case where they are not (𝛾𝛾𝑏𝑏 > 𝛾𝛾𝑒𝑒). Figure 4 shows the comparative 

static results. 

[Figure 4] 

In the first panel of Figure 4, we observe that, conditional on 𝐴𝐴, optimal 𝐾𝐾 with integrated markets 

is not always higher. This pattern can be attributed to the financing decisions shown in panels II and 

III. For low levels of 𝐴𝐴, the firm is more reliant on external finance. With limited borrowing capacity, 

the level of capital that can be fully financed with debt is relatively low. Therefore, it is worthwhile to 

issue equity to capture the relatively higher marginal benefits of capital. However, as 𝐴𝐴 increases, the 

combined amount of 𝐴𝐴 and 𝐵𝐵 can fund a higher level of capital, such that it is no longer worthwhile to 

issue equity. Therefore, optimal 𝐾𝐾 sharply drops as the firm switches to debt as the only source of 

external finance. Eventually, as 𝐴𝐴 increases further, debt capacity no longer constrains optimal 

investment and the firm chooses a higher level of capital. When 𝛾𝛾𝑏𝑏 > 𝛾𝛾𝑒𝑒, it takes a higher level of 𝐴𝐴 for 

the firm to adopt a debt-only financing policy, since the amount it can borrow is limited by the steeper 

marginal cost curve of debt. Therefore, the firm uses equity financing over a greater range of 𝐴𝐴 and, for 

a subset of this region, it will invest more relative to the scenario where 𝛾𝛾𝑏𝑏 = 𝛾𝛾𝑒𝑒. 

 

4. Dynamic Model 

In this section, we present a partial equilibrium dynamic model in discrete time. Our framework shares 

many features with Gomes & Schmid (2010). 

4.1 Firms 

The economy consists of multiple firms, indexed by subscript 𝑗𝑗. At time 𝑡𝑡, a firm’s after-tax operating 

profits Π𝑗𝑗,𝑡𝑡 are given by: 

Π𝑗𝑗,𝑡𝑡 = (1 − 𝜏𝜏)�exp�𝑥𝑥𝑡𝑡 + 𝑧𝑧𝑗𝑗,𝑡𝑡�𝐾𝐾𝑗𝑗,𝑡𝑡
𝛼𝛼 − 𝑓𝑓� (𝐷𝐷1) 
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Parameter 𝜏𝜏 represents the corporate tax rate, 𝛼𝛼 is the capital share of output and 𝑓𝑓 represents 

fixed costs of production. As for the state variables, 𝐾𝐾𝑗𝑗,𝑡𝑡 is the firm’s current level of capital stock, 𝑥𝑥𝑡𝑡 

represents aggregate productivity and 𝑧𝑧𝑗𝑗,𝑡𝑡 represents firm-specific productivity. The productivity 

dynamics are modelled as follows: 

𝑥𝑥𝑡𝑡 = (1 − 𝜌𝜌𝑥𝑥)𝜇𝜇𝑥𝑥 + 𝜌𝜌𝑥𝑥𝑥𝑥𝑡𝑡−1 + 𝜎𝜎𝑥𝑥𝜀𝜀𝑡𝑡
𝑥𝑥 (𝐷𝐷2) 

𝑧𝑧𝑗𝑗,𝑡𝑡 = (1 − 𝜌𝜌𝑧𝑧)𝜇𝜇𝑧𝑧 + 𝜌𝜌𝑧𝑧𝑧𝑧𝑗𝑗,𝑡𝑡−1 + 𝜎𝜎𝑧𝑧𝜀𝜀𝑗𝑗,𝑡𝑡
𝑧𝑧 (𝐷𝐷3) 

The shocks 𝜀𝜀𝑡𝑡
𝑥𝑥 and 𝜀𝜀𝑗𝑗,𝑡𝑡

𝑧𝑧  are i.i.d. standard normal. Also ∀𝑗𝑗, corr�𝜀𝜀𝑡𝑡
𝑥𝑥, 𝜀𝜀𝑗𝑗,𝑡𝑡

𝑧𝑧 � = 0 and ∀𝑗𝑗 ≠ 𝑗𝑗′,

corr�𝜀𝜀𝑗𝑗′,𝑡𝑡
𝑧𝑧 , 𝜀𝜀𝑗𝑗,𝑡𝑡

𝑧𝑧 � = 0. Parameters 𝜇𝜇𝑥𝑥 and 𝜇𝜇𝑧𝑧 are the unconditional long-run means of each process, 𝜎𝜎𝑥𝑥 and 

𝜎𝜎𝑧𝑧 govern the conditional volatility, whereas 𝜌𝜌𝑥𝑥 and 𝜌𝜌𝑧𝑧 govern the degree of persistence. 

Every period 𝑡𝑡, firms choose the capital level for 𝑡𝑡 + 1. Investment 𝐼𝐼𝑗𝑗,𝑡𝑡  follows the standard capital 

accumulation equation: 

𝐼𝐼𝑗𝑗,𝑡𝑡 = 𝐾𝐾𝑗𝑗,𝑡𝑡+1 − (1 − 𝛿𝛿)𝐾𝐾𝑗𝑗,𝑡𝑡 (𝐷𝐷4) 

Here, 𝛿𝛿 is rate of depreciation. Following Gomes & Schmid (2010), we impose an investment 

irreversibility constraint i.e. 𝐼𝐼𝑗𝑗,𝑡𝑡 ≥ 0. 

As in the static model, firms can issue one period bonds valued at par. The face value outstanding 

is denoted 𝐵𝐵𝑗𝑗,𝑡𝑡 and the coupon rate is denoted 𝑐𝑐𝑗𝑗,𝑡𝑡. Net of interest tax shields, we can write a firm’s 

total debt commitment in period 𝑡𝑡 as: 

𝐵𝐵�𝑗𝑗,𝑡𝑡 = �1 + (1 − 𝜏𝜏)𝑐𝑐𝑗𝑗,𝑡𝑡�𝐵𝐵𝑗𝑗,𝑡𝑡 (𝐷𝐷5) 

The firm’s equity position is given by the variable 𝐸𝐸𝑗𝑗,𝑡𝑡: 

𝐸𝐸𝑗𝑗,𝑡𝑡 = Π𝑗𝑗,𝑡𝑡 + 𝜏𝜏𝛿𝛿𝐾𝐾𝑗𝑗,𝑡𝑡 − 𝐼𝐼𝑗𝑗,𝑡𝑡 + 𝐵𝐵𝑗𝑗,𝑡𝑡+1 − 𝐵𝐵�𝑗𝑗,𝑡𝑡 (𝐷𝐷6) 

Note that we account for the tax shields of depreciation through 𝜏𝜏𝛿𝛿𝐾𝐾𝑗𝑗,𝑡𝑡. 𝐸𝐸𝑗𝑗,𝑡𝑡 can be either positive 

or negative, but it cannot be both. A positive value signifies a dividend payment, while a negative value 

indicates the firm is issuing equity, which incurs the following cost: 

Λ�𝐸𝐸𝑗𝑗,𝑡𝑡� = �𝜆𝜆0 − 𝜆𝜆1𝐸𝐸𝑗𝑗,𝑡𝑡�𝟏𝟏𝐸𝐸𝑗𝑗,𝑡𝑡<0 (𝐷𝐷7) 



15 
 

Therefore, the final distribution to shareholders is given by: 

𝐷𝐷𝑗𝑗,𝑡𝑡 = 𝐸𝐸𝑗𝑗,𝑡𝑡 − Λ�𝐸𝐸𝑗𝑗,𝑡𝑡� (𝐷𝐷8) 

4.2 Investors 

As in the static framework, our key innovation is that we model two separate investors, one for bonds 

(𝑏𝑏) and one for equity (𝑒𝑒). The pricing kernel of each investor 𝑖𝑖 ∈ {𝑒𝑒, 𝑏𝑏} is given by: 

𝑀𝑀𝑡𝑡,𝑡𝑡+1
𝑖𝑖 = exp�−𝑟𝑟𝑡𝑡

𝑓𝑓 − Γ𝑖𝑖,𝑡𝑡𝜎𝜎𝑥𝑥𝜀𝜀𝑡𝑡+1
𝑥𝑥 − 1

2
Γ𝑖𝑖,𝑡𝑡

2 𝜎𝜎𝑥𝑥
2� (𝐷𝐷9) 

Relative to the static setting, the key difference is that the risk-free rate is now dynamic and Γ𝑖𝑖,𝑡𝑡 

may also be dynamic. Note that both investors have the same conditional risk-free rate i.e. ∀𝑖𝑖,

𝐸𝐸𝑡𝑡�𝑀𝑀𝑡𝑡,𝑡𝑡+1
𝑖𝑖 � = exp{−𝑟𝑟𝑡𝑡

𝑓𝑓}. We specify an exogenous parsimonious process whereby the risk-free rate is a 

function of the aggregate productivity state: 

𝑟𝑟𝑡𝑡
𝑓𝑓 = 𝑟𝑟0 + 𝑟𝑟1(𝑥𝑥𝑡𝑡 − 𝜇𝜇𝑥𝑥) (𝐷𝐷10) 

For the pricing of risk, we assume the equity holder has constant aversion to aggregate risk. On the 

other hand, the bondholder’s aversion to aggregate risk can vary independently of the aggregate state: 

Γ𝑒𝑒,𝑡𝑡 = 𝛾𝛾𝑒𝑒 (𝐷𝐷11) 

Γ𝑏𝑏,𝑡𝑡 = 𝛾𝛾𝑏𝑏 exp�−𝑤𝑤𝑡𝑡 − 1
2
𝜎𝜎𝑤𝑤

2 � (𝐷𝐷12) 

The pricing of risk in the bond market can vary for market-specific reasons, captured by the factor 

𝑤𝑤𝑡𝑡 ∼ 𝑁𝑁(0, 𝜎𝜎𝑤𝑤
2 ); 𝑤𝑤𝑡𝑡 is not serially correlated and is independent of both 𝑥𝑥𝑡𝑡 and 𝑧𝑧𝑗𝑗,𝑡𝑡. This reflects the 

observation of Collin-Dufresne et al. (2001) that credit spread changes appear to be driven by an 

aggregate market-specific factor. For 𝑤𝑤𝑡𝑡 > − 1
2 𝜎𝜎𝑤𝑤

2 , the term exp{−𝑤𝑤𝑡𝑡 − 1
2 𝜎𝜎𝑤𝑤

2 } is lower than 1, such that 

Γ𝑏𝑏,𝑡𝑡 < 𝛾𝛾𝑏𝑏. This scenario corresponds to a credit market boom. Conversely, if 𝑤𝑤𝑡𝑡 < − 1
2 𝜎𝜎𝑤𝑤

2 , then Γ𝑏𝑏,𝑡𝑡 >

𝛾𝛾𝑏𝑏, which corresponds to credit tightening. Note that 𝐸𝐸�Γ𝑏𝑏,𝑡𝑡� = 𝛾𝛾𝑏𝑏, so that we can conveniently observe 

the unconditional difference in risk aversion between the equity and bond investor. 

4.3 Valuation 
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4.3.1 Equity 

For firm 𝑗𝑗 at time 𝑡𝑡, the observable state space is defined as 𝑆𝑆𝑗𝑗,𝑡𝑡 = {𝐾𝐾𝑗𝑗,𝑡𝑡, 𝐵𝐵�𝑗𝑗,𝑡𝑡, 𝑥𝑥𝑡𝑡, 𝑤𝑤𝑡𝑡, 𝑧𝑧𝑗𝑗,𝑡𝑡}. Conditional 

on 𝑆𝑆𝑡𝑡, the equity holders’ goal is to choose {𝐾𝐾𝑗𝑗,𝑡𝑡+1,𝐵𝐵�𝑗𝑗,𝑡𝑡+1}, such that equity value 𝑉𝑉 �𝑆𝑆𝑗𝑗,𝑡𝑡� is maximised: 

𝑉𝑉 �𝑆𝑆𝑗𝑗,𝑡𝑡� = max �0, max
𝐾𝐾𝑗𝑗,𝑡𝑡+1,𝐵𝐵�𝑗𝑗,𝑡𝑡+1

�𝐷𝐷𝑗𝑗,𝑡𝑡 + 𝐸𝐸𝑡𝑡�𝑀𝑀𝑡𝑡,𝑡𝑡+1
𝑒𝑒 𝑉𝑉 �𝑆𝑆𝑗𝑗,𝑡𝑡+1��� � (𝐷𝐷13) 

The equity holders also have the option to default when the following conditions arise: 

1. ∀�𝐾𝐾𝑗𝑗,𝑡𝑡+1,𝐵𝐵�𝑗𝑗,𝑡𝑡+1�, 𝐷𝐷𝑗𝑗,𝑡𝑡 < 0 (necessary condition) 

For any choice of debt and capital, the firm requires external equity finance. 

2. ∀�𝐾𝐾𝑗𝑗,𝑡𝑡+1,𝐵𝐵�𝑗𝑗,𝑡𝑡+1�, |𝐷𝐷𝑗𝑗,𝑡𝑡| > 𝐸𝐸𝑡𝑡�𝑀𝑀𝑡𝑡,𝑡𝑡+1
𝑒𝑒 𝑉𝑉 �𝑆𝑆𝑗𝑗,𝑡𝑡+1�� (necessary and sufficient condition) 

For any choice of debt and capital, the amount of required equity issuance (inclusive of 

underwriter costs) exceeds the expected discounted continuation value of the firm.  

In the event of default, the equity holders receive a payoff of zero.  

4.3.2 Corporate Bonds 

Conditional upon the realisation of 𝑥𝑥𝑡𝑡+1,𝑤𝑤𝑡𝑡+1, 𝑧𝑧𝑗𝑗,𝑡𝑡+1, some choices of 𝐾𝐾𝑗𝑗,𝑡𝑡+1 and 𝐵𝐵�𝑗𝑗,𝑡𝑡+1 may lead to 

default in the next period. The role of the bond investor is to offer the equity holder a coupon rate 𝑐𝑐𝑗𝑗,𝑡𝑡+1 

for any combination of 𝐾𝐾𝑗𝑗,𝑡𝑡+1 and 𝐵𝐵�𝑗𝑗,𝑡𝑡+1, conditional on the current values of 𝑥𝑥𝑡𝑡, 𝑤𝑤𝑡𝑡, 𝑧𝑧𝑗𝑗,𝑡𝑡 21F

18. This coupon 

rate will determine how much debt the firm can raise today i.e. since 𝐵𝐵𝑗𝑗,𝑡𝑡+1 = 𝐵𝐵�𝑗𝑗,𝑡𝑡+1/(1 + (1 − 𝜏𝜏)𝑐𝑐𝑗𝑗,𝑡𝑡+1). 

As the coupon rate increases, there is a decrease in the amount of funds raised today per unit of total 

debt commitment tomorrow i.e. 𝐵𝐵𝑗𝑗,𝑡𝑡+1/𝐵𝐵�𝑗𝑗,𝑡𝑡+1 falls as 𝑐𝑐𝑗𝑗,𝑡𝑡+1 increases.  

As in the static model, the bond is priced at par and the following valuation must hold: 

𝐵𝐵𝑗𝑗,𝑡𝑡+1 = 𝐸𝐸𝑡𝑡�𝑀𝑀𝑡𝑡,𝑡𝑡+1
𝑏𝑏 ��1 + 𝑐𝑐𝑗𝑗,𝑡𝑡+1�𝐵𝐵𝑗𝑗,𝑡𝑡+1𝟏𝟏𝑉𝑉𝑗𝑗,𝑡𝑡+1>0 + 𝑅𝑅𝑗𝑗,𝑡𝑡+1𝟏𝟏𝑉𝑉𝑗𝑗,𝑡𝑡+1=0�� (𝐷𝐷14) 

In (D14) we have an indicator function for default states as well as a recovery function 𝑅𝑅𝑗𝑗,𝑡𝑡+1 for 

the payoff received by bond holders in the event of default: 

                                                           
18 The transition probabilities to any future 𝑥𝑥𝑡𝑡+1, 𝑧𝑧𝑗𝑗,𝑡𝑡+1 are conditional on the 𝑥𝑥𝑡𝑡, 𝑧𝑧𝑗𝑗,𝑡𝑡 observed today. The bond 
market specific factor 𝑤𝑤𝑡𝑡 affects the price of risk used to value the bond investor’s contingent claims.  
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𝑅𝑅𝑗𝑗,𝑡𝑡+1 = Π𝑗𝑗,𝑡𝑡+1 + 𝜏𝜏𝛿𝛿𝐾𝐾𝑗𝑗,𝑡𝑡+1 + 𝜉𝜉1(1 − 𝛿𝛿)𝐾𝐾𝑗𝑗,𝑡𝑡+1 − 𝜉𝜉0 (𝐷𝐷15) 

The parameters 𝜉𝜉0 and 𝜉𝜉1 represent the fixed and proportional deadweight costs of default. We also 

impose a constraint that 𝑅𝑅𝑗𝑗,𝑡𝑡+1 ≤ 𝐵𝐵𝑗𝑗,𝑡𝑡+1 i.e. bond holders cannot recover more than the amount 

outstanding.  

Finally, we rearrange (D14) and substitute 𝐵𝐵𝑗𝑗,𝑡𝑡+1 using (D5) to obtain the following coupon rate 

function: 

𝑐𝑐𝑗𝑗,𝑡𝑡+1 =
1 − 𝐸𝐸𝑡𝑡 �𝑀𝑀𝑡𝑡,𝑡𝑡+1

𝑏𝑏 �𝟏𝟏𝑉𝑉𝑗𝑗,𝑡𝑡+1>0 +
𝑅𝑅𝑗𝑗,𝑡𝑡+1

𝐵𝐵�𝑗𝑗,𝑡𝑡+1
𝟏𝟏𝑉𝑉𝑗𝑗,𝑡𝑡+1=0��

𝐸𝐸𝑡𝑡 �𝑀𝑀𝑡𝑡,𝑡𝑡+1
𝑏𝑏 �𝟏𝟏𝑉𝑉𝑗𝑗,𝑡𝑡+1>0 + (1 − 𝜏𝜏)

𝑅𝑅𝑗𝑗,𝑡𝑡+1

𝐵𝐵�𝑗𝑗,𝑡𝑡+1
𝟏𝟏𝑉𝑉𝑗𝑗,𝑡𝑡+1=0��

(𝐷𝐷16) 

Overall, this formulation highlights that the equity holder takes the coupon rate schedule as given. 

For any combination of 𝐾𝐾𝑗𝑗,𝑡𝑡+1 and 𝐵𝐵�𝑗𝑗,𝑡𝑡+1 and across any realisation of 𝑥𝑥𝑡𝑡+1,𝑤𝑤𝑡𝑡+1, 𝑧𝑧𝑗𝑗,𝑡𝑡+1, the bond holder 

has full information on the future default decision of the equity holder. Regardless of what 𝐾𝐾𝑗𝑗,𝑡𝑡+1 and 

𝐵𝐵�𝑗𝑗,𝑡𝑡+1 is chosen, (D14) ensures that bond holders will break even in expectation (on a risk-adjusted 

basis).  

4.4 First Order Conditions 

The derivation of first order conditions for 𝐾𝐾𝑗𝑗,𝑡𝑡+1 and 𝐵𝐵�𝑗𝑗,𝑡𝑡+1 is complicated by the existence of fixed 

equity issuance costs and investment irreversibility. We therefore adopt a simplified approach designed 

to provide the key intuition behind the marginal cost and benefit trade-off for debt and capital: 

1. We drop the firm and time subscripts such that, for example, 𝐾𝐾𝑗𝑗,𝑡𝑡+1 becomes 𝐾𝐾′ and 𝐾𝐾𝑗𝑗 

becomes 𝐾𝐾.  

2. To account for irreversibility, capital only has continuation value in states where 𝐼𝐼′ ≥ 0. 

3. We assume that the equity cost function Λ(𝐸𝐸) is increasing in 𝐾𝐾′ and decreasing in 𝐵𝐵�′ (and 

vice versa for Λ(𝐸𝐸′)). 
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4. We denote the default state indicator variable as 𝟏𝟏𝑑𝑑 and the complementary19 solvent state 

indicator as 𝟏𝟏𝑠𝑠. For an increase in 𝐵𝐵�′ (𝐾𝐾′), the number of default states captured by 𝟏𝟏𝑑𝑑 increases 

(decreases). 

First, we consider how the coupon rate varies with the choice of debt and capital. It can be shown 

that: 

𝜕𝜕𝑐𝑐′

𝜕𝜕𝐵𝐵�′ 
> 0  and  𝜕𝜕𝑐𝑐′

𝜕𝜕𝐾𝐾′ < 0 

See Appendix A.1 for the proof. 

4.4.1 Capital F.O.C. 

With our simplifying assumptions, the marginal cost 𝑀𝑀𝐶𝐶𝐾𝐾 and marginal benefit 𝑀𝑀𝐵𝐵𝐾𝐾 functions for 

capital are given by: 

𝑀𝑀𝐶𝐶𝐾𝐾 = 1 + (1 − 𝜏𝜏) 𝜕𝜕𝑐𝑐′

𝜕𝜕𝐾𝐾′
𝐵𝐵�′

(1 + (1 − 𝜏𝜏)𝑐𝑐′)2 + 𝜕𝜕Λ(𝐸𝐸)
𝜕𝜕𝐾𝐾′  

𝑀𝑀𝐵𝐵𝐾𝐾 = 𝐸𝐸 �𝑀𝑀𝑒𝑒
′ ��(1 − 𝜏𝜏)𝑒𝑒𝑥𝑥′+𝑧𝑧′𝛼𝛼𝐾𝐾′𝛼𝛼−1 − (1 − 𝜏𝜏)𝛿𝛿 + 𝟏𝟏𝐼𝐼′≥0 − 𝜕𝜕Λ(𝐸𝐸′)

𝜕𝜕𝐾𝐾′ �𝟏𝟏𝑠𝑠 + 𝑉𝑉 (𝐾𝐾′) 𝜕𝜕𝟏𝟏𝑠𝑠
𝜕𝜕𝐾𝐾′

�� 

Our focus is to understand how changes in the bond holder’s price of risk are likely to affect these 

functions, relative to a scenario where the price of risk is the same for both investors. We therefore 

highlight the following components from the above conditions: 

o If the bond holder’s price of risk increases, the magnitude of 𝜕𝜕𝑐𝑐′

𝜕𝜕𝐾𝐾′ will be greater and marginal 

cost will be reduced. Higher 𝐾𝐾′ reduces default probability and improves the recovery amount. 

A more risk averse bond holder will place relatively more value to the reduction in risk and the 

improvement in recovery. At the same time, expected marginal benefit will increase since 𝟏𝟏𝑠𝑠 

increases in 𝐾𝐾′. 

o However, since 𝐵𝐵�′ and 𝐾𝐾′ are determined jointly, we must consider that 𝐵𝐵�′
(1+(1−𝜏𝜏)𝑐𝑐′)2 will also be 

affected as 𝐵𝐵�′ and 𝑐𝑐′ change with the bond holder’s price of risk. 

                                                           
19 𝟏𝟏𝑠𝑠 is complementary in the sense that, together, 𝟏𝟏𝑠𝑠 + 𝟏𝟏𝑑𝑑 encompass the entire state space.  
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o We also recall the intuition from Figure 4 with regard to equity issuance costs. The extent to 

which the firm is willing to incur the fixed component of Λ(𝐸𝐸) depends on the amount of 𝐾𝐾′ 

that can be financed with debt as well as with current net worth. As optimal 𝐵𝐵�′ changes with 

the bond holder’s price of risk, the change in optimal 𝐾𝐾′ is not always obvious. 

Our analysis of the first order condition for capital suggests that the effect of a change in Γ𝑏𝑏,𝑡𝑡 

relative to Γ𝑒𝑒,𝑡𝑡 on optimal 𝐾𝐾′ will likely still be state-dependent, as was the case in the static model 

with equity issuance costs.  

4.4.2 Debt F.O.C. 

We define: 

𝜁𝜁 = 1 + 𝑐𝑐′

1 + (1 − 𝜏𝜏)𝑐𝑐′  (𝐷𝐷17) 

If 𝑐𝑐′ > 0, then 𝜁𝜁 > 1 and 𝜕𝜕𝜕𝜕
𝜕𝜕𝑐𝑐′ > 0 (i.e. (1 − 𝜏𝜏) < 1 implies that numerator increases more than 

denominator for higher 𝑐𝑐′). Since 𝜕𝜕𝑐𝑐′

𝜕𝜕𝐵𝐵�′ > 0, it follows that 𝜕𝜕𝜕𝜕
𝜕𝜕𝐵𝐵�′ > 0. The variable 𝜁𝜁 is the ratio of the pre-

tax to the post-tax gross cost of borrowing and reflects the tax shield benefit of debt. It enables a more 

intuitive exposition of the marginal cost 𝑀𝑀𝐶𝐶𝐵𝐵� and marginal benefit 𝑀𝑀𝐵𝐵𝐵𝐵� functions for debt: 

𝑀𝑀𝐵𝐵𝐵𝐵� = 𝐸𝐸 �𝑀𝑀𝑏𝑏
′ �𝟏𝟏𝑠𝑠 + (𝜁𝜁 − 1)𝟏𝟏𝑠𝑠 + 𝐵𝐵�′𝟏𝟏𝑠𝑠

𝜕𝜕𝜁𝜁
𝜕𝜕𝐵𝐵�′

+ 𝜁𝜁𝐵𝐵�′ 𝜕𝜕𝟏𝟏𝑠𝑠

𝜕𝜕𝐵𝐵�′
 + 𝑅𝑅′ 𝜕𝜕𝟏𝟏𝑑𝑑

𝜕𝜕𝐵𝐵�′
�� − 𝜕𝜕Λ(𝐸𝐸)

𝜕𝜕𝐵𝐵�′
 

𝑀𝑀𝐶𝐶𝐵𝐵� = 𝐸𝐸 �𝑀𝑀𝑒𝑒
′ �𝟏𝟏𝑠𝑠 + 𝜕𝜕Λ(𝐸𝐸′)

𝜕𝜕𝐵𝐵�′
𝟏𝟏𝑠𝑠 − 𝑉𝑉 �𝐵𝐵�′� 𝜕𝜕𝟏𝟏𝑠𝑠

𝜕𝜕𝐵𝐵�′
�� 

The trade-off components are similar to those in the static model: 

o In the solvent states, one unit of debt is repaid. When the bond holder’s price of risk differs, we 

have a valuation wedge for this claim: 𝐸𝐸[(𝑀𝑀𝑏𝑏
′ − 𝑀𝑀𝑒𝑒

′)𝟏𝟏𝑠𝑠]. This wedge deepens when Γ𝑏𝑏,𝑡𝑡 rises 

relative to Γ𝑒𝑒,𝑡𝑡 and debt becomes costlier. 
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o The tax shields of the coupon payment are reflected in 𝐸𝐸�𝑀𝑀𝑏𝑏
′�(𝜁𝜁 − 1)𝟏𝟏𝑠𝑠 + 𝐵𝐵�′𝟏𝟏𝑠𝑠

𝜕𝜕𝜕𝜕
𝜕𝜕𝐵𝐵�′��.20 Since 

the decision variable is 𝐵𝐵�′, the bond holder offers the coupon schedule along this dimension. 

They are aware that the tax deductibility of interest eases the future debt burden for the firm 

and thus more debt outstanding 𝐵𝐵 can be raised per unit of 𝐵𝐵�′. A higher Γ𝑏𝑏,𝑡𝑡 increases the tax-

deductible coupon rate and 𝜕𝜕𝜕𝜕
𝜕𝜕𝐵𝐵�′, but decreases the risk-adjusted value of the tax-shields.  

o At the margin, an extra unit of 𝐵𝐵�′ trades away solvent states for default states, such that there 

are fewer states were bondholders are repaid in full and instead incur bankruptcy costs. With a 

higher Γ𝑏𝑏,𝑡𝑡, 𝐸𝐸�𝑀𝑀𝑏𝑏
′�𝜁𝜁𝐵𝐵�′ 𝜕𝜕𝟏𝟏𝑠𝑠

𝜕𝜕𝐵𝐵�′  + 𝑅𝑅′ 𝜕𝜕𝟏𝟏𝑑𝑑
𝜕𝜕𝐵𝐵�′

�� falls, which reflects rising costs of distress. 

o Debt does help lower equity issuance costs today. However, in the dynamic model, a high debt 

burden may need to be refinanced with equity, especially if credit conditions worsen in the 

subsequent period.  

Although these first order conditions offer some insight into the potential consequences of market 

segmentation on optimal corporate policy, they do not speak for the magnitude of the effects. For this 

latter goal, the dynamic model must be solved numerically, calibrated and analysed to quantify these 

effects.  

 
 

5. Results 

5.1 Calibration 

We use numerical techniques to solve the dynamic model on a monthly frequency and then use the 

optimal policy solutions to simulate a dynamic cross-section of firms. Our approach is very similar to 

that employed by Gomes & Schmid (2010) and we describe the procedure in the Appendix. For the 

most part, our parameter choices for the dynamic model are sourced directly from the literature. The 

rest are chosen such that our simulated cross-section of firm yields moments close to those observed in 

the data. We report our baseline parameter set in Table 1 and the sample moments in Table 2.  

                                                           
20 Note there is an effect from tax shields at the current coupon rate (𝜁𝜁 − 1)𝟏𝟏𝑠𝑠 as well as from the increase in the 
coupon rate due to 𝐵𝐵�′ i.e. 𝐵𝐵�′𝟏𝟏𝑠𝑠

𝜕𝜕𝜕𝜕
𝜕𝜕𝐵𝐵�′. 
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[Table 1] 

Most of our parameter values are consistent with those used by Gomes & Schmid (2010) and 

Garlappi & Yan (2011), given their dynamic models are closest to ours.21 As in both these studies, we 

set 𝛼𝛼 and 𝛿𝛿 as 0.65 and 0.01 respectively, which is standard in the literature. The same applies to the 

values we choose for aggregate productivity persistence 𝜌𝜌𝑥𝑥 and conditional volatility 𝜎𝜎𝑥𝑥. The long-run 

aggregate productivity mean 𝜇𝜇𝑥𝑥 is reported as -3.1 in Garlappi & Yan (2011) and it has a scaling effect 

on production output relative to capital. We adjust it slightly to -3.2 to bring the profitability ratio 

closer to the data. Firm-specific productivity parameters 𝜇𝜇𝑧𝑧, 𝜎𝜎𝑧𝑧, 𝜌𝜌𝑧𝑧 are the same as in Gomes & Schmid 

(2010). Fixed costs of production 𝑓𝑓 are set to 0.034 as in Garlappi & Yan (2011). 

For the corporate tax rate 𝜏𝜏 , we use an effective tax rate of 14% rather than the statutory rate, as 

done by Kuehn & Schmid (2014). The fixed cost of equity issuance 𝜆𝜆0 is set to 0.07, in between the 

value of 0.08 used by Garlappi & Yan (2011) and 0.06 used by Kuehn & Schmid (2014). We then adjust 

𝜆𝜆1 to match the equity issuance rate. For recovery function parameters, we set 𝜉𝜉0 to 0.1 as in Gomes & 

Schmid (2010), but set 𝜉𝜉1 to 0.70 instead of 0.75 to more closely match the default rate.  

For our investor parameters, we follow Zhang (2005) and set the stockholder’s unconditional risk 

aversion 𝛾𝛾𝑒𝑒 to 50. As Zhang (2005) shows, this value pins down the equity holder’s theoretical maximum 

Sharpe ratio, which can then be matched to the data.22 Our risk-free rate parameters, 𝑟𝑟0 and 𝑟𝑟1, are set 

to match the mean and volatility of the risk-free rate. However, we find that 𝑟𝑟1 also greatly affects 

equity volatility, hence we limit the magnitude of 𝑟𝑟1 to prevent the volatility of the equity premium 

from becoming unreasonably high.  

For our baseline set of parameters, 𝛾𝛾𝑏𝑏 and 𝜎𝜎𝑤𝑤 are set to 150 and 0.90 respectively. The goal is to 

match market leverage as closely as possible and, to a certain extent, book leverage. In the data, average 

book leverage is lower than average market leverage. This is driven by the fact that many high market-

                                                           
21 Note that Garlappi & Yan (2011) present their dynamic model in the Internet Appendix of their paper.  
22 In our case, the formula for the maximum Sharpe ratio simplifies to �exp{𝛾𝛾𝑒𝑒

2𝜎𝜎𝑥𝑥
2} − 1. Since Zhang (2005) uses 

the same value for 𝜎𝜎𝑥𝑥 as we do, he also obtains a value of 50 for 𝛾𝛾𝑒𝑒. Zhang (2005) also specifies a time-varying 
component in the equity holder’s risk premium, but we find it does not affect the value of the maximum Sharpe 
ratio. Rather, its purpose appears to be to control the dynamics of an endogenous risk-free rate, which is not 
applicable in our case.  
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to-book firms have very little or no leverage at all (Strebulaev & Yang, 2013). If firms with significant 

leverage have market-to-book closer to one, then the denominators of book and market leverage will be 

very similar. Therefore, average book and market leverage are very close in the data. Although our 

model generates relatively lower leverage for high market-to-book firms, we cannot achieve this to a 

sufficient degree to simultaneously match book leverage, market leverage and market-to-book. 

[Table 2] 

Table 2 displays our target and simulated moments, along with an outline of our empirical sources. 

The simulated moments are based on variables generated by our model. The risk-free rate is given by 

exp�𝑟𝑟𝑡𝑡
𝑓𝑓� − 1 and the realised equity return for firm 𝑗𝑗 with respect to time 𝑡𝑡 is given by 𝑉𝑉𝑗𝑗,𝑡𝑡+1/(𝑉𝑉𝑗𝑗,𝑡𝑡 −

𝐷𝐷𝑗𝑗,𝑡𝑡). The equity premium is the difference of the two. The investment ratio is defined as 𝐼𝐼𝑗𝑗,𝑡𝑡/𝐾𝐾𝑗𝑗,𝑡𝑡, book 

leverage is 𝐵𝐵𝑗𝑗,𝑡𝑡/𝐾𝐾𝑗𝑗,𝑡𝑡, market leverage 𝐵𝐵𝑗𝑗,𝑡𝑡/(𝐵𝐵𝑗𝑗,𝑡𝑡 + 𝑉𝑉𝑗𝑗,𝑡𝑡) and market-to-book ratio (𝐵𝐵𝑗𝑗,𝑡𝑡 + 𝑉𝑉𝑗𝑗,𝑡𝑡)/𝐾𝐾𝑗𝑗,𝑡𝑡. The 

profitability ratio is given by Π𝑗𝑗,𝑡𝑡/𝐾𝐾𝑗𝑗,𝑡𝑡. Default rate is simply the frequency with which we observe 

default. All these are annualised to compare with the data. For the frequency of equity issuance, we 

group our monthly simulated observations into years and compute the fraction of years in which 𝐷𝐷𝑗𝑗,𝑡𝑡 <

0 for at least one of the months.23 

5.2 Counterfactual Analysis 

We conduct a counterfactual experiment to gauge the importance of parameters 𝛾𝛾𝑏𝑏 and 𝜎𝜎𝑤𝑤 and compile 

the results in Table 3. Parameters 𝛾𝛾𝑏𝑏 and 𝜎𝜎𝑤𝑤 differentiate how the bond holder prices risk relative to 

the equity holder. Therefore, our main counterfactual scenario is one where markets are integrated i.e. 

𝛾𝛾𝑏𝑏 = 𝛾𝛾𝑒𝑒 and 𝜎𝜎𝑤𝑤 = 0, such that ∀𝑡𝑡 Γ𝑏𝑏,𝑡𝑡 = Γ𝑒𝑒,𝑡𝑡.  This scenario corresponds to column IV of Table 3. We 

also consider the two interim steps which add up to our baseline model. First, in column II of Table 3, 

we increase 𝛾𝛾𝑏𝑏 to 150, while 𝜎𝜎𝑤𝑤 = 0. Second, in column III, we fix 𝛾𝛾𝑏𝑏 = 𝛾𝛾𝑒𝑒 = 50 and set 𝜎𝜎𝑤𝑤 = 0.9. In 

column I, we display the baseline model results where 𝛾𝛾𝑏𝑏 = 150 and 𝜎𝜎𝑤𝑤 = 0.9. All other parameters 

remain as shown in Table 1.  

To ensure our conclusions are robust, the simulated paths for {𝑥𝑥𝑡𝑡,𝑤𝑤𝑡𝑡, 𝑧𝑧𝑗𝑗,𝑡𝑡} are equivalent across all 

specifications. Furthermore, for every individual equivalent simulation, we take the difference between 

                                                           
23 We find this is consistent with how Hennessy & Whited (2007) define the variable in their study.  
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the moments generated by Model IV and Model I. 24 For each moment, we compute the standard 

deviation of the differences across all individual simulations. We then divide the overall difference by 

the standard deviation to create a t-stat as a measure of consistency. We also compute the frequency of 

simulations in which the single simulation difference is the same sign as the overall difference for all 

simulations.  

[Table 3] 

5.2.1 Optimal Leverage 

The most consistent counterfactual difference we observe in Table 3 is the change in book and market 

leverage. Relative to the baseline in column I, the integrated markets scenario in column IV generates 

market (book) leverage which is 2.8 (3.3) percentage points higher. This difference is positive in 100% 

of simulations and has a relatively high t-stat. Both 𝛾𝛾𝑏𝑏 and 𝜎𝜎𝑤𝑤 contribute to the change in optimal 

leverage, but the effect of 𝛾𝛾𝑏𝑏 is quantitatively stronger. 

The effect of 𝛾𝛾𝑏𝑏 largely follows the same logic as in the static model. For the same given level of 

default risk and policy choices, a higher 𝛾𝛾𝑏𝑏 increases the marginal cost of debt (relatively more than it 

increases tax shield benefits via a higher coupon rate). All else equal, optimal leverage is lower when 𝛾𝛾𝑏𝑏 

is higher. This effect is strongest during economic downturns (i.e. where 𝑥𝑥𝑡𝑡 < 𝜇𝜇𝑥𝑥), when default risk is 

higher. Conditional on 𝑥𝑥𝑡𝑡 < 𝜇𝜇𝑥𝑥, optimal market (book) leverage is 3.0 (3.2) percentage points lower in 

column I relative to column IV. However, when 𝑥𝑥𝑡𝑡 > 𝜇𝜇𝑥𝑥, average optimal market (book) leverage is 1.7 

(2.4) percentage points lower.  

To understand what drives the counterfactual leverage results conditional on 𝑥𝑥𝑡𝑡, first note that we 

generate counter-cyclical optimal book and market leverage, consistent with the recent empirical work 

                                                           
24 As described in the Appendix, for each model specification, we simulate the economy 500 times and take the 
average of the moments produced in each of these simulations. Within each model specification, each simulation 
generates a different stochastic shock path for {𝑥𝑥𝑡𝑡, 𝑤𝑤𝑡𝑡, 𝑧𝑧𝑗𝑗,𝑡𝑡}. Across model specifications, the stochastic shock paths 
are the same. For example, simulation 29 under Model IV uses the same stochastic shock path as simulation 29 
under Model I. Therefore, any changes in simulated moments are caused only by changes in optimal corporate 
policy. To continue our example, this means that the average market leverage ratio of simulation 29 under Model 
IV is comparable with the one of simulation 29 under Model I. We can thus obtain a series of differences in average 
market leverage between Models I and IV across all simulations (i.e. to compute t-stats or the proportion of 
differences with the same sign). 



24 
 

of Halling, Yu & Zechner (2016). In our model, this is primarily due to the counter-cyclicity of the risk-

free component of coupon rates, whereby marginal interest tax shields are higher in downturns. To reap 

these relatively larger tax shield benefits, firms choose higher leverage during downturns as they are 

willing to trade off against a higher probability of default. On the other hand, the leverage choices 

during upturns are associated with a lower risk of default.25 When there is more distress risk, the 

marginal cost of debt is more sensitive to 𝛾𝛾𝑏𝑏, hence 𝛾𝛾𝑏𝑏 affects optimal leverage most when 𝑥𝑥𝑡𝑡 < 𝜇𝜇𝑥𝑥.  

The primary purpose of 𝜎𝜎𝑤𝑤 is to govern the volatility of Γ𝑏𝑏,𝑡𝑡 (which depends on 𝑤𝑤𝑡𝑡). As Γ𝑏𝑏,𝑡𝑡 varies 

through time, the credit market will undergo periods of tightening supply, where Γ𝑏𝑏,𝑡𝑡 > 𝛾𝛾𝑏𝑏, and vice 

versa. As the marginal cost of debt is relatively high when Γ𝑏𝑏,𝑡𝑡 > 𝛾𝛾𝑏𝑏, firms choose relatively lower 

optimal leverage. However, this effect is offset by states where the cost of debt is relatively lower (i.e. 

Γ𝑏𝑏,𝑡𝑡 < 𝛾𝛾𝑏𝑏), which induces a higher optimal leverage choice. Overall, the magnitude of reduction in 

optimal leverage during bad credit market states seems to outweigh the increase in optimal leverage 

during good credit market states. Hence we observe a modest decrease in leverage when 𝜎𝜎𝑤𝑤 > 0. Another 

potential effect of 𝜎𝜎𝑤𝑤 is that it creates greater roll-over uncertainty. Although equity holders are risk-

neutral with respect to future realisations of 𝑤𝑤𝑡𝑡+1, if the effect of Γ𝑏𝑏,𝑡𝑡 is asymmetric as described above, 

the expected cost of refinancing debt will rise and result in lower optimal leverage.  

The magnitude of the effect of 𝜎𝜎𝑤𝑤 depends on 𝛾𝛾𝑏𝑏. As 𝛾𝛾𝑏𝑏 increases, the spread in Γ𝑏𝑏,𝑡𝑡 for good and 

bad credit market states widens, holding 𝜎𝜎𝑤𝑤 constant. For example, when 𝛾𝛾𝑏𝑏 = 50, there is a 1.56% 

chance on the downside that Γ𝑏𝑏,𝑡𝑡 = 305 and a 1.56% chance on the upside that Γ𝑏𝑏,𝑡𝑡 = 4. When 𝛾𝛾𝑏𝑏 =

150, for the same probability, Γ𝑏𝑏,𝑡𝑡 = 915 on the downside and Γ𝑏𝑏,𝑡𝑡 = 11 on the upside. This amplifies 

the asymmetric effect of 𝜎𝜎𝑤𝑤 on optimal leverage, whereby reductions in borrowing during bad credit 

market states are greater in magnitude relative to increases in borrowing during good credit market 

states.  

                                                           
25 Naturally, for the same level of leverage, default risk is higher during downturns, all else equal. This is due to 
the high auto-correlation of 𝑥𝑥𝑡𝑡, which means that profitability is persistently low and hence the expected discounted 
continuation value of equity is low (the latter also being reduced by a higher risk-free discount rate). However, 
firms are willing to bear more default risk during downturns because coupon rates are higher and they can secure 
more tax shield benefits.  
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Finally, we also note that both 𝛾𝛾𝑏𝑏 and 𝜎𝜎𝑤𝑤 have a modest, but consistent effect on equity issuance 

frequency. This suggests that some firms substitute towards equity financing as bond investors’ price of 

risk becomes higher and more uncertain.  

5.2.2 Investment 

Across columns I and IV in Table 3, we observe only modest changes in the investment ratio mean and 

volatility, mostly driven by the change in 𝛾𝛾𝑏𝑏. These aggregate results are quantitively weak because the 

investment rate equals the depreciation rate in the majority of our firm-year observation. This is due to 

the irreversible investment assumption, whereby firms are constrained to maintain to same capital level 

until they experience a sufficiently large positive stochastic shock26 to incentivise them to expand.  

Therefore, we focus on situations where firms invest to expand productive capacity (i.e. 𝐼𝐼𝑗𝑗,𝑡𝑡/𝐾𝐾𝑗𝑗,𝑡𝑡 >

𝛿𝛿) and ignore investment expenditure for depreciation purposes. We find that, when markets are 

integrated, firms expand their productive capacity in 6.4% of our simulated firm-year observations, with 

an average investment ratio of 51.3%.27 In our baseline specification in column I, the frequency of firm-

years in which firms increase productive capacity drops to 5.7%, with a slightly lower investment ratio 

of 50.7%. The reduction in the frequency of capacity expansion occurs in 97% of simulations, which 

suggests the effect is consistent.  

We recall from Figure 4 that there are conditions under which, despite the higher price of risk in 

the bond market, investment could be higher. Our results suggest that, in our simulated economies, the 

forces which cause investment to drop are stronger. However, these differences could also be driven by 

the replacement of defaulting firms with small unlevered firms. When 𝛾𝛾𝑏𝑏 = 50, bond holders’ required 

premium for distress risk is relatively lower and firms are willing to bear more default risk, which causes 

them to default more frequently. This also means that there is a higher entry frequency of small firms 

with growth options, such that we observe more instances of productive capacity expansion.  

                                                           
26 Specifically, firms need to experience a more favourable combination of {𝑥𝑥𝑡𝑡, 𝑤𝑤𝑡𝑡, 𝑧𝑧𝑗𝑗,𝑡𝑡} than they have ever had in 
their past. Therefore, firms that experience relatively favourable states of {𝑥𝑥𝑡𝑡, 𝑤𝑤𝑡𝑡, 𝑧𝑧𝑗𝑗,𝑡𝑡} in the burn-in period are 
relatively less likely to expand productive capacity in the simulated sample.  
27 This suggests that our model generates rare, but relatively, large bursts of investment activity. These dynamics 
are qualitatively similar to those found empirically (e.g. Cooper & Haltiwanger, 2006). 
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A more thorough analysis could help clarify the exact channel by which changes in 𝛾𝛾𝑏𝑏 and 𝜎𝜎𝑤𝑤 affect 

investment. It could be that the overall investment results are not all that different, in that firms reach 

the same end point in terms of productive capacity, but undertake different journeys to get there. For 

example, take two identical firms, facing the same {𝑥𝑥𝑡𝑡, 𝑤𝑤𝑡𝑡, 𝑧𝑧𝑗𝑗,𝑡𝑡}, but different 𝛾𝛾𝑏𝑏. The firm for which 𝛾𝛾𝑏𝑏 

is higher initially invests less, as it is constrained by its debt capacity and does not find it worthwhile 

to issue equity to invest as much as the other firm. However, at some point in the future, as {𝑥𝑥𝑡𝑡,𝑤𝑤𝑡𝑡, 𝑧𝑧𝑗𝑗,𝑡𝑡} 

become more favourable, both firms have the capacity to source sufficient external finance to reach the 

same level of capital.  

5.2.3 Other Results 

With a higher unconditional price of risk in the bond market, the default rate does not necessarily rise. 

In fact, it is lower in 95% of simulations when we compare columns I and IV. This aligns with the 

behaviour of firms in the static model, whereby a rise in 𝛾𝛾𝑏𝑏 incentivises firms to use less debt to lower 

the risk of distress. This also explains why observed credit spreads do not necessarily rise with 𝛾𝛾𝑏𝑏. 

Relative to column IV, credit spreads are lower in 99.2% of simulations. Another notable result is that 

changes in optimal leverage affect the volatility of equity returns which, in turn, affects the levered 

equity premium. 

5.3 Sensitivity Analysis 

We turn our attention to how results vary across different values of 𝛾𝛾𝑏𝑏 and 𝜎𝜎𝑤𝑤. We show the outcome 

in Table 4. For 𝛾𝛾𝑏𝑏, the direction of sensitivity appears to be consistent with the insights from Table 3 

across all key moments. For 𝜎𝜎𝑤𝑤, the magnitude of sensitivity is significantly weaker as we increase 𝜎𝜎𝑤𝑤 

from 0.90 to 1.35. The purpose of 𝜎𝜎𝑤𝑤 is to make Γ𝑏𝑏,𝑡𝑡 more volatile and simultaneously fix its 

unconditional mean to 𝛾𝛾𝑏𝑏, but Γ𝑏𝑏,𝑡𝑡 cannot drop below 0.28 As 𝜎𝜎𝑤𝑤 increases, the values of Γ𝑏𝑏,𝑡𝑡 in the 

lower tail of the distribution of 𝑤𝑤𝑡𝑡 becomes more extreme, whereas for the remainder of the distribution, 

Γ𝑏𝑏,𝑡𝑡 starts to approach 0. This indicates that, beyond a certain threshold for 𝜎𝜎𝑤𝑤, firms’ decisions are, on 

average, unaffected by the distribution of credit market shocks. It would be beneficial to conduct a more 

                                                           
28 Note that Γ𝑏𝑏,𝑡𝑡 = 𝛾𝛾𝑏𝑏 exp{−𝑤𝑤𝑡𝑡 − 1

2 𝜎𝜎𝑤𝑤
2 }. We set 𝛾𝛾𝑏𝑏 > 0,  hence ∀𝑤𝑤𝑡𝑡, Γ𝑏𝑏,𝑡𝑡 > 0 since exp{−𝑤𝑤𝑡𝑡 − 1

2 𝜎𝜎𝑤𝑤
2 } > 0. 
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thorough analysis of the conditional effects of 𝑤𝑤𝑡𝑡 on corporate policy to identify the precise channels by 

which we observe the diminishing effect of 𝜎𝜎𝑤𝑤.  

 [Table 4] 

Finally, Table 4 suggests that a similar set of benchmark results can be obtained if we were to set 

𝛾𝛾𝑏𝑏 = 200 and 𝜎𝜎𝑤𝑤 = 0. However, it is important to consider that, after a certain point, the unconditional 

risk aversion for the bondholder can seem unreasonably high. Our calibrated value of 150 is already 

quite high, but it is nevertheless an improvement. A natural extension would be to carefully consider 

credit spread dynamics to pin down the values for 𝛾𝛾𝑏𝑏 and 𝜎𝜎𝑤𝑤. However, our current model is not designed 

to address credit spreads, given one-month bonds do not capture the multi-period nature of default risk 

which is priced in more realistic long-term bonds (i.e. we only predict an annual credit spread of 7 basis 

point with our baseline model). Despite said limitations, our model still delivers important insights about 

corporate policy when bond and equity holders price risk differently.  

 
 

6. Conclusion 

Although equity and corporate bond holders are implicitly separated by agency conflicts throughout 

much of the corporate finance literature, little consideration has been given to how firms’ policies, 

particularly the leverage choice, are affected by heterogeneity in investors’ pricing of risk. The standard 

assumption is that risk is priced the same way in equity and corporate bond markets, despite evidence 

that suggests otherwise (Titman, 2002). Therefore, to address the under-leverage puzzle, we relax this 

assumption and construct a two-investor framework in which we embed key differences in the pricing of 

risk between equity and bond holders.  

First, we incorporate evidence that bond investors’ price of risk is higher relative to equity investors 

and show that it has a first order effect on optimal leverage. Not only does relatively higher bond holder 

risk aversion increase the risk-adjusted cost of financial distress, it also adds a new friction related to a 

wedge in the valuation of the bond holder’s contingent claims. This latter effect further steepens the 

marginal cost curve of debt and thus drives optimal leverage even lower. Second, optimal leverage 
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further decreases due to fluctuations in bond investors’ price of risk, which arise independently of 

macroeconomic factors.  

This study offers a new interesting angle to explore in the context of equity and bond holder conflicts 

of interest. So far, much of the literature focuses on the notion that equity holders maximise equity 

value, as opposed to firm value which is preferable for bond holders. We show that, beyond disagreement 

over the appropriate objective function of the firm, frictions can arise simply due to differences in the 

pricing of risk.  
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Appendix 

A.1 First order conditions for the coupon rate 

We first consider the partial derivative of the coupon rate with respect to 𝐵𝐵�: 

𝑐𝑐 =
𝐵𝐵� − 𝐸𝐸�𝑀𝑀�𝐵𝐵�𝟏𝟏𝑠𝑠 + 𝑅𝑅𝟏𝟏𝑑𝑑��
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Therefore we just need to prove that: 

𝐸𝐸 �𝑀𝑀 �(1 + 𝑐𝑐)𝐵𝐵� 𝜕𝜕𝟏𝟏𝑠𝑠

𝜕𝜕𝐵𝐵�
+ (1 + (1 − 𝜏𝜏)𝑐𝑐)𝑅𝑅 𝜕𝜕𝟏𝟏𝑑𝑑

𝜕𝜕𝐵𝐵�
�� < 0 

As we increase 𝐵𝐵� the amount of potential solvent states decrease i.e. 𝜕𝜕𝟏𝟏𝑠𝑠
𝜕𝜕𝐵𝐵�

< 0 and vice versa i.e. 𝜕𝜕𝟏𝟏𝑑𝑑
𝜕𝜕𝐵𝐵�

> 0. 

Since the number of total states 𝟏𝟏𝑠𝑠 + 𝟏𝟏𝑑𝑑 is fixed, it follows that: 

�𝜕𝜕𝟏𝟏𝑠𝑠

𝜕𝜕𝐵𝐵�
� = �𝜕𝜕𝟏𝟏𝑑𝑑

𝜕𝜕𝐵𝐵�
� 

Thus, to prove that 𝜕𝜕𝑐𝑐
𝜕𝜕𝐵𝐵�

> 0, all we have left is to impose that: 

(1 + 𝑐𝑐)𝐵𝐵� > (1 + (1 − 𝜏𝜏)𝑐𝑐)𝑅𝑅 ⇔ (1 + 𝑐𝑐)𝐵𝐵 > 𝑅𝑅 
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Essentially, the total amount recovered in default must not exceed the total principal and interest owed 
to debtholders. We impose a stronger condition that 𝑅𝑅 ≤ 𝐵𝐵. 

We now consider the partial derivative of the coupon rate with respect to 𝐾𝐾: 

𝑐𝑐 =
𝐵𝐵� − 𝐸𝐸�𝑀𝑀�𝐵𝐵�𝟏𝟏𝑠𝑠 + 𝑅𝑅(𝐾𝐾)𝟏𝟏𝑑𝑑��

𝐸𝐸�𝑀𝑀�𝐵𝐵�𝟏𝟏𝑠𝑠 + (1 − 𝜏𝜏)𝑅𝑅(𝐾𝐾)𝟏𝟏𝑑𝑑��
= 𝑔𝑔(𝐾𝐾)

ℎ(𝐾𝐾)
 

𝜕𝜕𝑐𝑐
𝜕𝜕𝐾𝐾

= 1
ℎ(𝐾𝐾)

�−𝐸𝐸 �𝑀𝑀 �𝐵𝐵� 𝜕𝜕𝟏𝟏𝑠𝑠
𝜕𝜕𝐾𝐾

+ 𝑅𝑅(𝐾𝐾) 𝜕𝜕𝟏𝟏𝑑𝑑
𝜕𝜕𝐾𝐾

+ 𝑅𝑅′(𝐾𝐾)𝟏𝟏𝑑𝑑��

− 𝑐𝑐𝐸𝐸 �𝑀𝑀 �𝐵𝐵� 𝜕𝜕𝟏𝟏𝑠𝑠
𝜕𝜕𝐾𝐾

+ (1 − 𝜏𝜏)�𝑅𝑅(𝐾𝐾) 𝜕𝜕𝟏𝟏𝑑𝑑
𝜕𝜕𝐾𝐾

+ 𝑅𝑅′(𝐾𝐾)𝟏𝟏𝑑𝑑���� 

Assuming that ℎ(𝐾𝐾) > 0, 

𝜕𝜕𝑐𝑐
𝜕𝜕𝐾𝐾

< 0 ⇔ (1 + 𝑐𝑐)𝐸𝐸 �𝑀𝑀𝐵𝐵� 𝜕𝜕𝟏𝟏𝑠𝑠
𝜕𝜕𝐾𝐾

� + (1 + (1 − 𝜏𝜏)𝑐𝑐)𝐸𝐸 �𝑀𝑀 �𝑅𝑅(𝐾𝐾)𝜕𝜕𝟏𝟏𝑑𝑑
𝜕𝜕𝐾𝐾

+ 𝑅𝑅′(𝐾𝐾)𝟏𝟏𝑑𝑑�� > 0 

Since 𝑅𝑅′(𝐾𝐾) > 0, we can infer that (1 + (1 − 𝜏𝜏)𝑐𝑐)[𝑀𝑀𝑅𝑅′(𝐾𝐾)𝟏𝟏𝑑𝑑] > 0. Similar to before, we are left with: 

𝐸𝐸 �𝑀𝑀 �𝐵𝐵�(1 + 𝑐𝑐) 𝜕𝜕𝟏𝟏𝑠𝑠
𝜕𝜕𝐾𝐾

+ (1 + (1 − 𝜏𝜏)𝑐𝑐)𝑅𝑅 𝜕𝜕𝟏𝟏𝑑𝑑
𝜕𝜕𝐾𝐾

�� > 0 

The key difference is that 𝜕𝜕𝟏𝟏𝑠𝑠
𝜕𝜕𝐾𝐾 > 0 and 𝜕𝜕𝟏𝟏𝑑𝑑

𝜕𝜕𝐾𝐾 < 0, so in the end we still require: 

(1 + 𝑐𝑐)𝐵𝐵� > (1 + (1 − 𝜏𝜏)𝑐𝑐)𝑅𝑅 ⇔ (1 + 𝑐𝑐)𝐵𝐵 > 𝑅𝑅 

 

A.2 Dynamic Model: Numerical Solution Method 

We first discretise the state space 𝑆𝑆𝑗𝑗,𝑡𝑡 = {𝐾𝐾𝑗𝑗,𝑡𝑡,𝐵𝐵�𝑗𝑗,𝑡𝑡, 𝑥𝑥𝑡𝑡, 𝑤𝑤𝑡𝑡, 𝑧𝑧𝑗𝑗,𝑡𝑡}. Given the persistent nature of 𝑥𝑥𝑡𝑡 and 

𝑧𝑧𝑗𝑗,𝑡𝑡, we use the Rouwenhorst (1995) method to generate a 7-state discrete transition matrix for each 

variable. We also discretise 𝑤𝑤𝑡𝑡 with 7 states.  The grid for 𝐾𝐾𝑗𝑗,𝑡𝑡 is set up such that the ratio between 

each point is equal. We find that 𝐾𝐾𝑗𝑗,𝑡𝑡 ∈ [1,20] is an appropriate range for our parameter set. We define 

a new state variable 𝐿𝐿𝑗𝑗,𝑡𝑡 = 𝐵𝐵�𝑗𝑗,𝑡𝑡/𝐾𝐾𝑗𝑗,𝑡𝑡.29 We create and equispaced grid for 𝐿𝐿𝑗𝑗,𝑡𝑡 within the range [0,1]. 

The solution algorithm closely resembles that of Gomes & Schmid (2010). We start with a relatively 

coarse grid for 𝐾𝐾𝑗𝑗,𝑡𝑡 and 𝐿𝐿𝑗𝑗,𝑡𝑡 of 25 and 15 points respectively then perform the following steps: 

1. We guess a starting point for the coupon schedule matrix 𝑐𝑐(𝐾𝐾𝑗𝑗,𝑡𝑡+1,𝐿𝐿𝑗𝑗,𝑡𝑡+1, 𝑥𝑥𝑡𝑡, 𝑤𝑤𝑡𝑡, 𝑧𝑧𝑗𝑗,𝑡𝑡) 

                                                           
29 This way, the debt choice grid is reasonably fine for both low and high 𝐾𝐾𝑗𝑗,𝑡𝑡 firms. 
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2. We use the coupon matrix to solve the equity maximisation problem (D13), which determines 

the default policy matrix of the equity holder 

3. We then incorporate the default policy matrix to compute 𝑐𝑐(𝐾𝐾𝑗𝑗,𝑡𝑡+1, 𝐿𝐿𝑗𝑗,𝑡𝑡+1, 𝑥𝑥𝑡𝑡, 𝑤𝑤𝑡𝑡, 𝑧𝑧𝑗𝑗,𝑡𝑡) again 

4. We use the updated coupon matrix to solve equity maximisation problem (D13) and check if 

the default policy matrix has changed. If the magnitude of the change is outside our tolerance 

level, we repeat steps 3 and 4 until the convergence criteria is met.  

Once a solution is found we interpolate 𝑐𝑐(𝐾𝐾𝑗𝑗,𝑡𝑡+1, 𝐿𝐿𝑗𝑗,𝑡𝑡+1, 𝑥𝑥𝑡𝑡, 𝑤𝑤𝑡𝑡, 𝑧𝑧𝑗𝑗,𝑡𝑡) and 𝑉𝑉 (𝑆𝑆𝑗𝑗,𝑡𝑡) over a finer grid for 

𝐾𝐾𝑗𝑗,𝑡𝑡 and 𝐿𝐿𝑗𝑗,𝑡𝑡 of 65 and 35 points respectively and repeat steps 1-4, albeit with more relaxed convergence 

criteria to ensure computational feasibility (results are robust if we apply more stringent convergence 

criteria or increase grid size). 

 
A.3 Dynamic Model: Simulation 

We use the optimal policy matrices from our numerical optimisation routine to simulate a dynamic 

cross-section of firms. The discrete transition matrices for 𝑥𝑥𝑡𝑡,𝑤𝑤𝑡𝑡, 𝑧𝑧𝑗𝑗,𝑡𝑡 determine the path of our stochastic 

state variables. We note the following key features of our simulation: 

o We initialise 5000 firms at 𝐾𝐾𝑗𝑗,𝑡𝑡 = 1 and uniformly sample their starting leverage from the grid 

of 𝐿𝐿𝑗𝑗,𝑡𝑡+1. 

o The firms make investment, financing and default decisions for a total of 1920 months of which 

the first 1200 months are discarded. This leaves a sample period of 720 months (60 years). 

o Every time a firm defaults, it is replaced with an unlevered firm for which 𝐾𝐾𝑗𝑗,𝑡𝑡 = 1, as is done 

in Kuehn & Schmid (2014). 

o The simulation is repeated 500 times. We use a set ‘seed’ to: (i) ensure results can be easily 

replicated and (ii) to ensure that we can make robust counterfactual experiments. For the latter 

point, note that parameter changes results in changes in firms’ optimal policies. Therefore, when 

we run simulations for a new parameter set, we want to ensure that the initial cross-section and 

the transition path for 𝑥𝑥𝑡𝑡,𝑤𝑤𝑡𝑡, 𝑧𝑧𝑗𝑗,𝑡𝑡 remains unchanged, such that different parameter sets are 

comparable.    
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Figure 1. We plot the marginal cost and benefit of debt across different available choices of book 
leverage. The intersection represents the optimal book leverage ratio 𝐵𝐵∗/𝐾𝐾 under each scenario. In each 
panel, the faded dashed lines represent the cost/benefit curves from the other two panels. 
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Figure 2. We plot variables of interest across different ratios of 𝛾𝛾𝑏𝑏 to 𝛾𝛾𝑒𝑒. In panel I, we plot the optimal 
capital (𝐾𝐾) and debt (𝐵𝐵) choice of the firm. In panels II, III and IV we plot equity value, credit spreads 
and default probability respectively. In each of these three panels, the solid line shows the value 
associated with the optimal policies in the first panel. As a counterfactual, the dashed lines show what 
the value would be if the firm continues to pursue policies of 𝐾𝐾 and 𝐵𝐵 that are optimal when 𝛾𝛾𝑏𝑏 = 𝛾𝛾𝑒𝑒. 
In panel II, we add a dotted line which represents the maximum value of equity attained when 𝛾𝛾𝑏𝑏 = 𝛾𝛾𝑒𝑒. 
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Figure 3. Refer to the description of Figure 2. Here we repeat the analysis shown in Figure 2, except 
that equity issuance is now costly.  
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Figure 4. We plot optimal policy for 𝐾𝐾 (panel I) and 𝐵𝐵 (panel II) against different initial levels of net 
worth 𝐴𝐴. We compare the scenario where markets are integrated (𝛾𝛾𝑏𝑏 = 𝛾𝛾𝑒𝑒) to a scenario where they are 
not (𝛾𝛾𝑏𝑏 > 𝛾𝛾𝑒𝑒). Panel III shows the cumulative fraction of each finance source relative to total capital 
expenditure. 𝐴𝐴/𝐾𝐾 is the contribution of net worth, while (𝐴𝐴 + 𝐵𝐵)/𝐾𝐾 shows the incremental contribution 
of debt finance. Although not explicitly plotted, 1 − (𝐴𝐴 + 𝐵𝐵)/𝐾𝐾 is the contribution of equity issuance. 
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Table 1. Parameter Choices 

Most of our parameters are sourced from a range of studies with similar dynamic frameworks, which 
include Gomes & Schmid (2010), Garlappi & Yan (2011) and Kuehn & Schmid (2014). The remainder 
of parameters are calibrated to match target moments. We discuss our parameter choices in more detail 
in section 5.1.  

 

Parameter Symbol Value 

Risk free rate constant 𝑟𝑟0 0.0012 
Risk free rate exposure to aggregate state 𝑟𝑟1 -0.3850 
Equity holder unconditional risk aversion 𝛾𝛾𝑒𝑒 50.0000 
Bond holder unconditional risk aversion 𝛾𝛾𝑏𝑏 150.0000 
Variability of bond holder risk aversion 𝜎𝜎𝑤𝑤 0.9000 
Long-run aggregate productivity mean 𝜇𝜇𝑥𝑥 -3.2000 
Conditional aggregate productivity volatility 𝜎𝜎𝑥𝑥 0.0023 
Aggregate productivity persistence 𝜌𝜌𝑥𝑥 0.9830 
Long-run firm-specific productivity mean 𝜇𝜇𝑧𝑧 0.0000 
Conditional firm-specific productivity volatility 𝜎𝜎𝑧𝑧 0.1500 
Firm-specific productivity persistence 𝜌𝜌𝑧𝑧 0.9200 
Production function curvature 𝛼𝛼 0.6500 
Capital depreciation rate 𝛿𝛿 0.0100 
Fixed costs of production 𝑓𝑓 0.0340 
Corporate tax rate 𝜏𝜏 0.1400 
Fixed cost of equity issuance 𝜆𝜆0 0.0700 
Proportional cost of equity issuance 𝜆𝜆1 0.0500 
Fixed bankruptcy deadweight cost 𝜉𝜉0 0.1000 
Proportion of capital recovered upon default 𝜉𝜉1 0.7000 
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Table 2. Sample Moments  

We present the benchmark moments for our calibration and compare the moments generated from our 
model with those in the data. The risk-free rate and equity premium data moments are sourced from 
Barro (2006). Investment ratio moments are from Gomes (2001). Book leverage, market leverage and 
market-to-book are from Lemmon, Roberts & Zender (2008). The profitability ratio is from DeAngelo, 
DeAngelo & Whited (2011). Equity issuance frequency is from Hennessy & Whited (2007) and the one-
year default rate is from Moody’s Investors Service (Ou, Chiu & Metz, 2011). All moments are 
annualised.  

 

Target Moment Data Model 

Risk-free rate mean 0.014 0.014 
Risk-free rate volatility 0.021 0.015 
Equity premium mean 0.076 0.084 
Equity premium volatility 0.175 0.220 
Investment ratio mean 0.145 0.143 
Investment ratio volatility 0.139 0.141 
Book leverage mean 0.270 0.301 
Market leverage mean 0.280 0.279 
Market-to-book mean 1.590 1.211 
Profitability ratio 0.192 0.203 
Equity Issuance Frequency 0.175 0.165 
Default Rate 0.011 0.009 
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Table 3. Counterfactual Analysis 

We present the results of our counterfactual analysis across four different model specifications. Column 
I corresponds with our baseline model, while column IV corresponds with an integrated markets scenario 
where 𝛾𝛾𝑏𝑏 = 𝛾𝛾𝑒𝑒 and 𝜎𝜎𝑤𝑤 = 0. Columns II and III show the results as we change 𝛾𝛾𝑏𝑏 and 𝜎𝜎𝑤𝑤 one at a time. 
For this analysis, we also measure the frequency of firm-years in which firms expand productive capacity 
(i.e. 𝐼𝐼𝑗𝑗,𝑡𝑡/𝐾𝐾𝑗𝑗,𝑡𝑡 > 𝛿𝛿) and compute the average investment ratio for these firms (which we denote as the 
mean productive capacity increase ratio). We also add measure for average book and market leverage 
conditional on the aggregate state. Economic expansions are when 𝑥𝑥 > 𝜇𝜇𝑥𝑥 and contractions when 𝑥𝑥 <
𝜇𝜇𝑥𝑥. We also report the value-weighted average of observed credit spreads. The t-stat column is simply 
the overall difference in the moment between IV and I, divided by the standard deviation of the 
difference across simulations. The ‘freq.’ column counts the fraction of simulations in which the difference 
between the moments of IV and I are the same sign as the overall difference. 

 

 𝛾𝛾𝑏𝑏 150 150 50 50   
 𝜎𝜎𝑤𝑤 0.9 0.0 0.9 0.0 IV - I 

 I II III IV t-stat freq. 

Equity premium mean 0.084 0.085 0.088 0.089 1.063 0.972 
Equity premium volatility 0.220 0.222 0.231 0.233 0.651 0.992 
Investment ratio mean 0.143 0.144 0.146 0.146 1.542 0.984 
Investment ratio volatility 0.141 0.143 0.154 0.155 1.542 0.974 
Productive capacity increase frequency 0.057 0.057 0.064 0.064 1.484 0.968 
Mean productive capacity increase ratio 0.507 0.511 0.509 0.513 0.339 0.688 
Book leverage mean 0.301 0.310 0.331 0.334 4.318 1.000 
Book leverage (𝑥𝑥 < 𝜇𝜇𝑥𝑥) 0.396 0.404 0.425 0.428 3.983 0.998 
Book leverage (𝑥𝑥 > 𝜇𝜇𝑥𝑥) 0.203 0.209 0.225 0.227 2.689 0.998 
M arket leverage mean 0.279 0.286 0.304 0.307 3.927 1.000 
Market leverage (𝑥𝑥 < 𝜇𝜇𝑥𝑥) 0.421 0.428 0.449 0.451 3.056 0.998 
Market leverage (𝑥𝑥 > 𝜇𝜇𝑥𝑥) 0.147 0.151 0.163 0.164 2.789 0.998 
Equity Issuance Frequency 0.165 0.162 0.159 0.158 -2.118 0.992 
Default Rate 0.009 0.009 0.010 0.010 1.126 0.948 
Credit Spread (bp) 6.985 6.390 9.365 9.847 1.629 0.992 
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Table 4. Sensitivity Analysis 

We conduct sensitivity tests with respect to 𝛾𝛾𝑏𝑏 and 𝜎𝜎𝑤𝑤. We first fix 𝜎𝜎𝑤𝑤 to 0 and show the results across 
different values of 𝛾𝛾𝑏𝑏. We then fix 𝛾𝛾𝑏𝑏 and show the results across different values of 𝜎𝜎𝑤𝑤. 

 

 Sensitivity to 𝛾𝛾𝑏𝑏 Sensitivity to 𝜎𝜎𝑤𝑤 
 𝛾𝛾𝑏𝑏 100 150 200 150 150 150 
 𝜎𝜎𝑤𝑤 0.0 0.0 0.0 0.45 0.90 1.35 

Equity premium mean 0.086 0.085 0.084 0.085 0.084 0.084 
Equity premium volatility 0.225 0.222 0.220 0.221 0.220 0.220 
Investment ratio mean 0.145 0.144 0.143 0.143 0.143 0.144 
Investment ratio volatility 0.147 0.143 0.142 0.143 0.141 0.142 
Book leverage mean 0.319 0.310 0.300 0.306 0.301 0.301 
Book leverage (𝑥𝑥 < 𝜇𝜇𝑥𝑥) 0.412 0.404 0.393 0.401 0.396 0.396 
Book leverage (𝑥𝑥 > 𝜇𝜇𝑥𝑥) 0.216 0.209 0.205 0.207 0.203 0.202 
M arket leverage mean 0.294 0.286 0.278 0.283 0.279 0.279 
Market leverage (𝑥𝑥 < 𝜇𝜇𝑥𝑥) 0.436 0.428 0.419 0.426 0.421 0.421 
Market leverage (𝑥𝑥 > 𝜇𝜇𝑥𝑥) 0.156 0.151 0.148 0.149 0.147 0.147 
Equity Issuance Frequency 0.160 0.162 0.162 0.163 0.165 0.165 
Default Rate 0.010 0.009 0.009 0.009 0.009 0.009 
Credit Spread (bp) 6.524 6.390 6.555 6.400 6.985 7.472 

 

 


