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Abstract

The Secured Overnight Funding Rate (SOFR) has become the main Risk�Free Rate benchmark
in US dollars, thus interest rate term structure models need to be updated to re�ect the key features
exhibited by the dynamics of SOFR and the forward rates implied by SOFR futures. Historically,
interest rate term structure modelling has been based on rates of substantially longer time to maturity
than overnight, but with SOFR the overnight rate now is the primary market observable. This means
that the empirical idiosyncrasies of the overnight rate cannot be ignored when constructing interest
rate models in a SOFR�based world.

As a rate re�ecting transactions in the Treasury overnight repurchase market, the dynamics of
SOFR are closely linked to the dynamics of the E�ective Federal Funds Rate (EFFR), which is the
interest rate most directly impacted by US monetary policy target rate decisions. Therefore, these
rates feature jumps at known times (Federal Open Market Committee meeting dates), and market
expectations of these jumps are re�ected in prices for futures written on these rates. On the other
hand, forward rates implied by Fed Funds and SOFR futures continue to evolve di�usively. We �nd that
incorporating these empirical features into an interest rate term structure model are key to accurately
�tting short-term instruments, in particular futures on one�month compounded SOFR. Informed by
this, we construct a tractable multifactor, stochastic volatility term structure model which incorporates
these features. Calibrating to prices for options on SOFR futures, we achieve a reasonable �t to the
market across available maturities and strikes in a single, consistent model. The model also provides
novel insights into SOFR term rate behaviour (and implied volatilities) within the SOFR term rate
accrual periods, as well as a credible model mechanism by which interest rate mean reversion arises
from monetary policy.

† The authors thank Leif Andersen and an anonymous referee for helpful comments on a previous version of this paper. The usual

disclaimers apply.
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1 Introduction

As the Secured Overnight Funding Rate (SOFR) is now the key Risk�Free Rate (RFR) benchmark in US
dollars, interest rate term structure models need to be updated to re�ect this. Historically, interest rate
term structure modelling has been based on rates of substantially longer time to maturity than overnight,
either directly as in the LIBOR Market Model,1 or indirectly, in the sense that even models based on the
continuously compounded short rate (i.e., with instantaneous maturity)2 are typically calibrated to term
rates of longer maturities, with any regard to a market overnight rate at best an afterthought. However,
with SOFR this situation is reversed: The overnight rate now is the primary market observable, and term
rates (i.e., interest rates for longer maturities) will be less readily available and therefore must be inferred
(for example from derivatives prices).

Thus the empirical idiosyncrasies of the overnight rate cannot be ignored when constructing interest
rate term structure models in a SOFR�based world, and more than longer term rates, these idiosyncrasies
are driven by monetary policy. Already by simple inspection one sees that models, in which the short
rate evolves as a di�usion, can no longer be justi�ed by empirical data. Instead, the primary driver of the
short rate is the piecewise �at behaviour of the Federal Open Market Committee (FOMC) policy target
rate. Concurrently, we observe that the forward rates associated with the policy target rate evolve in
a more di�usive manner. A model which reconciles these two features is the main contribution of this
paper.

The literature refers to jumps with deterministic jump times as stochastic discontinuities, see for
example Kim and Wright (2014), Keller-Ressel, Schmidt and Wardenga (2018), Fontana, Grbac, Gümbel
and Schmidt (2020). The nomenclature re�ects the treatment of discontinuities as extensions to an existing
continuous stochastic model. Our approach is distinctly di�erent in that the discontinuity is the basis
of our model for the short rate, while simultaneously the forward rates for maturities beyond the next
scheduled jump evolve as a continuous stochastic process.

Speci�c to SOFR, Heit�eld and Park (2019) model forward rates using a step function, assuming
that rates remain constant for all dates between FOMC meetings. This is a static approach for the
purposes of calibrating a piecewise �at term structure. Andersen and Bang (2020) provide a SOFR�
inspired general �spike� model to enable the extension of derivative pricing models to spikes in the short
rate. While spikes in SOFR have been frequently observed in the past, regulatory changes and measures
by the Federal Reserve have seen this phenomenon disappear since early 2020, thus our focus is exclusively
on short rate discontinuities at known times. Inspired by the transition to an overnight benchmark in
the United Kingdom, Backwell and Hayes (2022) propose and estimate a pure jump multicurve3 model
for British pound (GBP) LIBOR (London Interbank O�er Rate) and SONIA (Sterling Overnight Index
Average) overnight index swap (OIS) rates, coining the term �scheduled jumps� for jumps at known times.
However, for scheduled jumps in their model, the state variables impact the next jump only, and all
scheduled jumps in the short rate beyond the upcoming central bank meeting date have expectation zero.
By not following this �pure jump� approach, the model proposed in the present paper does not have
this restriction, and also can still be embedded in a standard Heath, Jarrow and Morton (1992) (HJM)
framework. We use indicator functions in the instantaneous forward rate volatilities to obtain piecewise
constant paths of the short rate, while maintaining di�usive dynamics of forward rates maturing beyond
the next central bank meeting date. Each factor is endowed with its own stochastic volatility and mean

1See Miltersen, Sandmann and Sondermann (1997), Brace, Gatarek and Musiela (1997) and Musiela and Rutkowski
(1997).

2Of these, Hull and White (1990) is the most prominent example.
3Backwell and Hayes (2022) explicitly take into account basis spreads between interest rate term structures referencing

di�erent payment frequencies, in a manner similar to Backwell, Macrina, Schlögl and Skovmand (2023). This is not necessary
in our present paper, since we consider futures (and options on futures) referencing SOFR only.
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reversion. One could label this a �Heston/Hull�White� dynamic. In the literature, �Heston/Hull�White�
usually refers to Heston (1993) stochastic volatility equity models with an interest rate driven by a Hull
and White (1990) model, see for example Grzelak, Oosterlie and Weeran (2008). In the present paper,
we instead consider a Markovian (in a small number of state variables), exponential a�ne interest term
structure term structure model, where the stochastic volatility follows a Heston�type dynamic, and which
in the one�factor, deterministic volatility case collapses back to a Hull/White model.

Several papers focus on adapting existing models to SOFR without considering discontinuities. These
include Mercurio (2018), who uses a deterministic SOFR�OIS spread with a short rate model for the OIS.
Lyashenko and Mercurio (2019) propose an extension to the LIBOR Market Model to accommodate the
in�arrears setting nature of term rates related to SOFR and overnight benchmark rates in general. Skov
and Skovmand (2021) show that a three�factor Gaussian arbitrage�free Nelson/Siegel model is well suited
for the SOFR futures market, but they do not include the time series of SOFR itself in their estimation.

The model presented in the present paper is motivated by the empirical behaviour of SOFR and
SOFR forward rates implied from futures, and we conduct a cross�sectional calibration to both futures
and options. The proposed model performs well in cross�sectional calibration due to having a su�cient
amount of variables which control various aspects of model behaviour. This allows the model to be
calibrated across di�erent maturities, underlying futures accrual periods and option strikes. This �exibility
in the context cross�sectional calibration is similar to prominent models deployed in practice: The SABR
model, introduced in Hagan, Kumar, Lesniewski and Woodward (2002), can be calibrated to implied
volatility convexity and skew across strikes, but generally requires a new calibration per option expiry
(and swap/forward rate tenor). Short rate models, such as Hull and White (1990), are usually calibrated
to only co-terminal swaptions chosen to match an underlying trade4 and a singular strike per swaption.
The lognormal LIBOR Market Model model (LMM) is well suited for simultaneously calibrating to at the
money swaptions across expiries and tenors. Most comparable in terms of ability to calibrate across expiry,
underlying tenor and strike are stochastic volatility extensions to the LMM, see for example Piterbarg
(2015) or Karlsson, Pilz and Schlögl (2017).

We also present an analysis of the model�implied behaviour of options in the accrual period. Interest
in this behaviour is mostly driven by the practicalities of adapting existing LIBOR�based modelling to
SOFR and therefore requires casting option behaviour in the accrual period to the behaviour of the
dynamics of partially set forward term rates. In this context, we �nd that under simplifying assumptions
our model is consistent with Lyashenko and Mercurio (2019). However, the model presented in this paper
handles the case of partially set forwards more naturally than that paper, and also provides more granular
insight into the decay characteristics of implied volatility within the accrual period.

Additionally, the proposed model reveals a connection between forward rate empirical behaviour and
short rate mean reversion. In the HJM framework, mean reversion is usually embedded a priori as a
decay function of forward rate volatilities. We include both a decay function and a piecewise constant
component5 in the HJM volatility function. However, remarkably we �nd that the piecewise component
derived directly from empirical data without any shape restrictions closely resembles the decay function
associated with mean reversion. We discuss the implication from this result in Section 5.

The rest of the paper is organised as follows. Section 2 examines the empirical behaviour of SOFR
and the e�ective Fed funds rate (EFFR), motivating the model proposed in this paper. Section 3 presents
the model for discontinuous short rates with continuous forward rates, including stochastic volatility. In
Section 4.1, the model is �tted to time series data of SOFR futures. The objective here is not to conduct
a full econometric study. Rather, we demonstrate that modelling jumps at known times substantially
improves upon traditional di�usive term structure models when applied to instruments referencing the

4For example call dates in a callable note.
5This is in order to achieve a piecewise constant forward rate structure corresponding to FOMC meeting dates.
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Figure 1: Empirical daily EFFR changes and the history of short rate models

new SOFR benchmark. The calibration of the stochastic volatility version of the model to cross�sectional
prices for options on SOFR futures is presented in Section 4.2, showing that the proposed model is a
viable alternative to existing models for the pricing and risk management of interest rate derivatives.
Further implications of our model approach, on the in�accrual�period behaviour of implied volatility for
options on one�month SOFR futures and on the connection between scheduled jump dynamics and mean
reversion, are discussed in Section 5. Section 6 concludes.

2 Empirical Motivation

2.1 Monetary Policy and Short Rate Models

Over the course of the last �ve years, signi�cant changes to the implementation of monetary policy have
had a dramatic impact on the EFFR, resulting in a substantial divergence between its empirical behaviour
and the dynamic assumptions of short rate models. The changes trace back to the 2008 �nancial crisis,
prior to which monetary policy was administered primarily by direct intervention in the Fed Funds market
to maintain the EFFR close to the target rate set by the FOMC. The approach relied on open market
operations by the Federal Reserve trading desk resulting in the EFFR gravitating around the target rate
with varying degrees of volatility.6

The �rst stochastic model of the short rate is attributed to Merton (1973), who employed a single�
dimension Brownian motion as the driver. At least on cursory visual inspection, the empirical data at the
time, see Figure 1, did not contradict the mathematically tractable Gaussian assumption of the model.
The next major development came from Vasicek (1977), adding mean reversion, a strong empirical feature
of rate dynamics. Modelling mean reversion also aligned with the notion of open market operations by
the Federal Reserve trading desk managing the rate around the monetary policy target. Cox, Ingersoll
and Ross (1985) (CIR) modi�ed the dynamics of the continuously compounded short rate by scaling the
volatility by the square root of the short rate, ensuring non-negativity of interest rates. The next milestone
in short rate modelling was an extension of the Vasicek model with time dependent drift by Hull and
White (1990), allowing the model to be �tted to an initial term structure of interest rates observed in

6See Hilton (2005) for an analysis of factors impacting EFFR volatility related to open market operations.
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Figure 2: Excess reserves balance history

the market � this was critical for use of the model to price interest rate derivatives. Heath et al. (1992)
developed the general framework into which all di�usion�based arbitrage�free interest rate term structure
models must �t.

Open market operations are carried out by the Federal Reserve trading desk, whose trading goal is to
maintain the EFFR near the target rate. This involves monitoring the market and counteracting trades
which move the EFFR away from target, in essence micro�managing market liquidity. The 2008 �nancial
crisis included a crisis in liquidity and the ability of the Federal Reserve's trading desk to maintain
the EFFR near the target rate signi�cantly deteriorated. The trading desk did not have the means to
counteract the dramatic drain in supply of desperately demanded capital.

This was acknowledged by the Federal Reserve7 as one of the factors considered when switching to
a target range, initially set between 0 and 25 basis points. The Federal Reserve's strategy in response
to the �nancial crisis centred around two key policies: near zero interest rates and quantitative easing.
The phases of quantitative easing became known as QE 1/2/3 and involved selling Treasury bonds and
purchases of various credit risky assets8 in a bid to boost liquidity and improve credit conditions. The
Federal Reserve's injection of liquidity resulted in an environment of elevated excess reserves. By historical
standards, the rise in excess reserves was extreme and without precedent. As can seen in Figure 2, it
increased from under $2 billion in September 2008 to $1 trillion by November 2009, before reaching a high
of over $2.5 trillion in October 2015.

In October 2008, the Federal Reserve began paying IOER (interest on excess reserves)9 to help control
the EFFR in response to increasing excess reserves. It was thought at the time that the IOER should
act as a lower bound for the EFFR, since no institutions should want to lend below this rate. As such,
e�ective from October 9 the IOER was set to 75 basis points, with the EFFR target rate at 150 basis
points. In the following days the EFFR was setting well below the target rate, including some days below
the IOER. On the October 23, to lift rates closer to target, IOER was increased to 110 basis points, in
response EFFR rates increased but were still setting below the IOER. Other adjustments were made in
November under the assumption of IOER acting as a lower bound, however with EFFR persisting to

7See Federal Open Market Committee (2000-2020) December 2008, page 9.
8Such as Agency Debt, Mortgage Backed Securities and Term Auction Facilities, see Binder (2010).
9See Federal Open Market Committee (2000-2020) October 2008, page 7.
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settle well below the IOER it became clear the assumption was incorrect.
In the FOMC immediately following the introduction of the IOER, it was noted that institutions not

eligible to receive it were willing to sell (lend) funds at rates below the IOER.10 However, it was not until
December 2008, where together with the introduction of the target range, the IOER was set at the target
range upper limit of 25 basis points in recognition that due to unique circumstances the IOER was acting
as an upper bound for the EFFR. The large surpluses in excess reserves eliminated demand for reserve
loans. Instead the Fed Funds rate was driven by Government Sponsored Institutions who do not earn
interest on reserve balances, lending their excess reserves at below the IOER to institutions who would
then earn the di�erence between the Fed Funds rate and the IOER. In e�ect, by paying the IOER in a
market �ooded with liquidity, the Federal Reserve became the borrower, rather than the lender, of last
resort.

Plans for reversal of the post �nancial crisis expansionary policy were formally laid out at the FOMC
September 2014 meeting as the Policy Normalization Principles and Plans.11 The aim of the normalisation
strategy was to bring the EFFR back to normal levels and reduce the securities held by the Federal Reserve,
thereby unwinding the excess reserves held by banks. Prior to the �nancial crisis, controlling the supply
of reserves via open market operations was a key tool in controlling the Fed Funds rate. However, the
Federal Reserve has adopted the view that with banks using reserves for liquidity more than prior to the
crisis, it might be hard to predict demand for reserves and therefore open market operations would not be
e�ective at precisely controlling the EFFR.12 Instead, the new normal will constitute the Federal Reserve
keeping excess reserves just large enough to remain on the �at part of the demand curve, a prerequisite
condition for the use of the IOER to control the EFFR.

Thus the conditions in the Fed Funds market are dramatically di�erent to when short rate models
were �rst conceived. The �ood of liquidity in excess reserves, by construction aimed at removing any
supply�demand gradient, has removed most of the volatility from the short rate of interest, with changes
in the short rate being mainly driven by changes in the IOER, leading to jumps at known times (the
FOMC meeting dates). Forward rates implied by traded market instruments, however, continue to ex-
hibit volatility, as the evolution of market expectations of FOMC actions is priced into forward�looking
instruments such as Fed Fund futures.

2.2 Secured Overnight Funding Rate

Shortly following the well�publicised LIBOR manipulation scandals, the Financial Stability Board and
Financial Stability Oversight Council highlighted one of the key problems related to the reference rate to
be the decline in transactions underpinning LIBOR and the associated structural risks to the �nancial
system.13 As argued in Schrimpf and Sushko (2019), partly to blame for the decline in interbank term
lending are the in�ated excess reserves discussed in the previous section.14 In response, the Federal
Reserve convened the Alternative Reference Rates Committee (ARRC)15 to explore alternative reference
rates. In June 2017, the ARRC formally announced the Secured Overnight Financing Rate (SOFR) as the
replacement for LIBOR. A key criterion for the choice was the large volume of transactions behind SOFR,
translating to it being more representative of bank's funding costs and less susceptible to manipulation.
The calculation of SOFR is based on overnight repo transactions, which in 2017 averaged around $700b

10See Federal Open Market Committee (2000-2020) October 2008, page 2.
11See Federal Open Market Committee (2000-2020) September 2014, page 3.
12See Federal Open Market Committee (2000-2020) November 2018, page 3.
13See The Alternative Reference Rates Committee (2018), page 1.
14This suggests an interesting causal link between the �nancial crisis, the Federal Reserve response and the emergence of

SOFR by linking the decline in LIBOR transactions to excess reserves.
15See https://www.newyorkfed.org/arrc
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Figure 3: SOFR and FOMC target rate history

Figure 4: SOFR v FOMC target rate history May 2020 to August 2022

in daily transactions16 (compared to less than $1b for US dollar LIBOR).
O�cial SOFR �xings have been calculated as far back 2014 and can be seen in comparison to the

target rate in Figure 3. Three features stand out: To �rst order, SOFR appears to follow a stepwise
function, suggesting that similarly to EFFR the Fed Funds target rate plays an important role in the
SOFR dynamic. Another aspect is that SOFR is substantially more volatile than EFFR. A third feature
is the prominence of spikes, most of which, similarly to EFFR, occur on the last trading day of the month.
The end�of�month spikes are related to the measurement of dealers' balance sheet exposures at month�
end for regulatory purposes. This single snapshot approach incentivises the management of exposures
around reporting dates, which as explained in Schrimpf and Sushko (2019) has been resulting in increases

16For details see The Alternative Reference Rates Committee (2018), page 7.
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Figure 5: SOFR breakdown in vertical order (i) target rates (ii) SOFR-Target Rate spread (iii) variance contri-
bution

in the SOFR rate on end�of�month dates. All three components historically contributed substantially to
the observed daily variance of SOFR.17 However, a very large spike in SOFR in September 2019 motivated
the Federal Reserve to take action to e�ectively stabilise this rate. Since that time, as can be seen in
Figure 4, spikes are no longer a feature of SOFR. The variance in SOFR is now dominated by changes in
the policy target rate (around 99% of variance), with the remainder of the variance explained by a SOFR
to target rate spread, see Figure 5. Consequently, the present paper focuses on modelling the policy target
rate component.

2.3 Motivating stochastic volatility

Further motivation for the construction of our model are the empirical dynamics of the forward rate
states, extracted from the data assuming term structure which are piecewise �at between FOMC dates,
without any assumptions regarding the driving stochastic dynamics. Applying principal component anal-
ysis to obtain orthogonal factors, the time series of these factors clearly fail tests for normality. The
quantile/quantile (QQ) plots in Figure 6 compare the expected quantile values for a normal distribution
(red line) against the empirical value (blue dots). The dominant three PCA factors shown exhibit clear
leptokurtosis, with excess kurtosis of 63, 10 and 2, respectively. Stochastic volatility is a common and
parsimonious modelling choice to reproduce this feature.

One of the consequences of linking the model to FOMC dates is that some of the factor dynamics have
a direct economic interpretation. As explained in Gellert and Schlögl (2021), the �rst factor focuses the
dynamics on policy rate changes at the upcoming FOMC meeting, while the higher�order factors tend
to focus on FOMC meetings beyond the next one. Excess kurtosis is notably highest for the �rst factor,
suggesting a possible economic link between high leptokurtosis and the next FOMC meeting. This is in
line with evidence from interest rate options, which imply a higher stochastic volatility for shorter expiry
options. Anecdotally, interest rate market participants tend to focus on the next FOMC meeting date and
the Federal Reserve tends to focus on managing the expectations related to the next FOMC date. This
tends to make the expectations related to the next FOMC date most susceptible to news and changing
economic circumstances, which o�ers a possible explanation of the excess kurtosis term structure.

17For a more detailed analysis, see Gellert and Schlögl (2021).
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Figure 6: Empirical factor states quantile quantile plots

Another important aspect to consider is calibration to interest rate options. In general, calibration
to interest rate options requires some freedom to �t the skewness and convexity of implied volatilities
for a range of strikes. Interest rate options also tend to imply a term structure of volatility, skewness
and convexity for a range of expiries and forward terms. Embedding stochastic volatility into each factor
provides the ability to calibrate convexity and skewness18 in addition to volatility level, with some control
of the term structure of those features.

3 Modelling Short Rates with Discontinuities at Known Times

We have seen that the primary driver of EFFR and SOFR dynamics appears to be the changes in the Fed
target, which is piecewise �at between the FOMC meeting dates at which a policy change has occurred.
Most of the meetings are scheduled at least one year ahead of time with the exception of emergency
meetings.19

Forward target rates do not trade directly, but the nature of their dynamics can be deduced from
30-day Fed Fund futures which trade on the closely related EFFR. Figure 7 shows the historical target
rate and various forward rates implied from speci�c futures contracts. The point at which the forward
rates end and meet the target rate coincides with the expiry of the futures contracts.20 In contrast to
the target rate, the dynamics of target forward rates are more di�usive and do not jump at deterministic
dates. Jumps conceivably could occur on unexpected dates, re�ecting sudden large changes in market
sentiment, but in this paper we focus only on the di�usive aspect of forward rates. Furthermore, in the
present paper we restrict ourselves to working with the policy (i.e., target) rate component only � this
choice is supported by the results in the empirical analysis in Section 4 below.21

An interpretation of the forward rates deduced from futures is that they re�ect the expectations of

18Skewness is impacted by the correlation of stochastic volatility to forward rate changes.
19Since 2015 there have been 61 meetings (including 3 emergency meetings), of which 21 resulted in a target rate change
20Futures without an FOMC date in the reference month were chosen such that the target rate is expected to be �at over

the contract month and therefore the price of the futures re�ects the expected target rate for that month plus a spread
rather than re�ecting two �at periods before and after the FOMC date.

21Obviously, the empirical �t could be improved further by modelling a stochastic spread between SOFR and the policy
rate. However, this is not central to the present argument � see Gellert and Schlögl (2021) for such an extension to a
di�erent version of the model. That paper furthermore shows how to extend the model to cater for spikes in the short rate.
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Figure 7: Target rate and various forward rates implied by speci�c 30�day Fed Funds futures

prospective FOMC target rate changes. The di�usive dynamics of forward rates then re�ect the changes
in those expectations. From this perspective, the expectations corresponding to each scheduled FOMC
meeting are not independent of each other. In some circumstances, for example, a change in the overall
Federal Reserve monetary policy stance, they will be positively correlated. In other cases, where for
example the aggregated change to the target rate over some period of time is anticipated but the timing
is less certain, the expectations may be negatively correlated to each other as the expected timing but
not the net outcome evolves.

To recap, the target rate model is motivated by the following empirical features. The short rate
r(t) must be piecewise �at with respect to t. The forward rate with maturity T evolves di�usively with
respect to t until the FOMC meeting immediately preceding maturity T , re�ecting the expectations of
any FOMC policy target rate change. We construct a model which reconciles these features, re�ecting
both the discontinuous nature of the short rate and di�usively evolving forward rates. The model is
entirely driven by di�usions and can be cast directly in the Heath et al. (1992) (HJM) framework. While
a di�usion process can be associated with the target rate change for each scheduled meeting date, in
actual application these processes would be mapped to a smaller, more parsimonious number of factors
by principal component analysis.

3.1 Reconciling piecewise constant short rates with di�usive forward rates

This modelling aim is achieved within the HJM framework by specifying instantaneous forward rate
volatilities in terms of indicator functions based on the number of decision dates scheduled between the
current (�calendar�) time t and the forward rate maturity T . Starting point is the standard HJM result
for forward rate dynamics with N factors under the spot risk�neutral measure:

f(t, T ) = f(0, T ) +

N∑
j=1

t∫
0

σj(u, T )

T∫
u

σj(u, s)dsdu+

N∑
j=1

t∫
0

σj(s, T )dWj(s) (1)

10



De�ne σj(t, T ) as a piecewise constant function between FOMC meeting dates:

σj(t, T ) = σj

n∑
i=1

γi,j1(i ≤ At,T ) (2)

where n is the total number of meetings dates and At,T re�ects the number of meeting dates between t
and T :

At,T :=
∣∣{x1, ..., xm|t < xi ≤ T}

∣∣ (3)

σj and γi,j scale the volatility loading of each component of the driving (vector�valued) Brownian motion.
σj allows control of the overall level of variance and is the key variable used in calibration to option
prices. γi,j scales the volatility based on the number of FOMC meeting dates between t and T . It can
be empirically derived to re�ect the covariance structure between forward rates. Solving the stochastic
integral yields:

f(t, T )− f(0, T ) =
n∑
j=1

n∑
q=1

n∑
i=1

σ2
j γq,jγi,j

t∫
0

1(q ≤ Au,T )

T∫
u

1(i ≤ Au,s)dsdu

+

n∑
j=1

n∑
i=1

σjγi,j1(i ≤ A0,T )Wj(t ∧ xı̄(T ))

(4)

where ı̄(T ) = A0,T − i + 1. The solution reveals that the total variance is an increasing function of the
number of meeting dates between 0 and T , up to the minimum of t and the last meeting date before
T . This implies that the variance of the forward rate is zero if the forward date occurs prior to the next
meeting date.

3.2 Introducing stochastic volatility

We introduce stochastic volatility into the model in a way that is inspired by what can be called a
Heston/Hull�White (HHW) �quasi-Gaussian� model. This builds on the Gaussian Hull�White model by
adding a Heston�type stochastic volatility component. Start with a one�factor quasi-Gaussian model
(QG1) with the volatility function of instantaneous forward rates given by

σ(t, T ) = χ(t)φ(T ) (5)

where χ(t) is generally stochastic. Under the spot risk�neutral measure we can write the dynamics of the
instantaneous forward rates as

df(t, T ) = F (t, T )dt+ σ(t, T )dW (t) where F (t, T ) = σ(t, T )

T∫
t

σ(t, u)du (6)

=⇒ f(t, T )− f(0, T ) =

t∫
0

F (s, T )ds+ φ(T )

t∫
0

χ(s)dW (s) (7)

11



Then set T = t and di�erentiate with respect to t to express the spot rate r(t) in the form

r(t)− f(0, t) = x(t) =

t∫
0

F (s, t)ds+ φ(t)

t∫
0

χ(s)dW (s), x(0) = 0

dx(t) =
d

dt

{ t∫
0

F (s, t)ds

}
dt+ φ′(t)

t∫
0

χ(s)dW (s) + φ(t)χ(t)dW (t)

=
d

dt

[ t∫
0

F (s, t)ds

]
dt+

φ′(t)

φ(t)

[
x(t)−

t∫
0

F (s, t)ds

]
dt+ σ(t, t)dW (t)

(8)

De�ne

φ(T ) = exp

(
−

T∫
0

λ(v)dv

)
=⇒ φ′(t)

φ(t)
= −λ(t) (9)

χ(t) = σ(t)exp

( t∫
0

λ(v)dv

)
=⇒ σ(t, T ) = χ(t)φ(T ) = σ(t)exp

(
−

T∫
t

λ(v)dv

)
(10)

therefore

F (t, T ) = σ2(t)exp

(
−

T∫
t

λ(v)dv

) T∫
t

exp

(
−

u∫
t

λ(v)dv

)
du, F (t, t) = 0 (11)

Hence σ inherits the stochasticity of χ, σ(t, t) = σ(t) and the SDE changes to

dx(t) =

{
d

dt

[ t∫
0

F (s, t)ds

]
+ λ(t)

t∫
0

F (s, t)ds

}
dt− λ(t)x(t)dt+ σ(t)dW (t) (12)

in which the part of the drift term involving F (t, T ) simpli�es to

Φ(t) = F (t, t) +

t∫
0

∂

∂T
F (s, T )

∣∣∣∣
T=t

ds+ λ(t)

t∫
0

F (s, t)ds

=

t∫
0

σ2(s)exp

(
− 2

t∫
s

λ(v)dv

)
ds =

t∫
0

σ2(s, t)ds

(13)

The volatility σ(.) is made stochastic by incorporating a Heston process v(.) in it:

σ(t)→ σ(t)
√
v(t) (14)

which results in an a�ne system of stochastic di�erential equations, which can be expressed under the
spot risk�neutral measure as

dx(t) = [Φ(t)− λ(t)x(t)]dt+ σ(t)
√
v(t)dW (t), x(0) = 0

dΦ(t) = [σ2(t)v(t)− 2λ(t)Φ(t)]dt, Φ(0) = 0

dv(t) = θ(t)(1− v(t))dt+ α(t)
√
v(t)dU(t), v(0) = 1

(15)
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with

〈dW (.), dU(.)〉(t) = ρdt (16)

Bond price dynamics can be written as follows (see Appendix A for derivation):

B(t, T ) = exp

(
−
∫ T

t
f(t, u)du

)
=
B(0, T )

B(0, t)
exp

(
− Λ(t, T )y(t)− 1

2
Φ(t)Λ2(t, T )

)
(17)

where:

Λ(t, T ) =

∫ T

t
exp

(
−
∫ u

t
λ(v)dv

)
du (18)

Φ(t) =

∫ t

0
σ2(s)exp

(
− 2

∫ t

s
λ(v)dv

)
ds (19)

3.3 Piecewise constant short rates with di�usive forward rates under stochastic

volatility

Merging the modelling of Sections 3.1 and 3.2, assume now that each factor evolves with its own, inde-
pendent Heston�type stochastic volatility. That is, each factor in the model of Section 3.1 is extended
in the same manner as the single factor in Section 3.2. This model thus inherits the piecewise constant
short rates with di�usive forward rates, but with stochastic volatility dynamics.

This set�up provides ample �exibility to calibrate to the volatility term structure (since each factor
impacts di�erent aspects of the forward rate term structure), as well as option�implied volatility skew and
smile across di�erent expiries. The level of �exibility is regulated by the number of factors and degree of
time�dependence of the model parameters.

Starting point is again the standard HJM result for forward rate dynamics with N factors under the
spot risk�neutral measure:

f(t, T ) = f(0, T ) +

N∑
j=1

t∫
0

σj(u, T )

T∫
u

σj(u, s)dsdu+

N∑
j=1

t∫
0

σj(s, T )dWj(s) (20)

We de�ne the j-th component of the instantaneous forward rate volatility function as follows:

σj(t, T ) =

n∑
i=1

I{i≤A(t,T )}χj(t)φj(T )γi,j (21)

where

φj(T ) = exp

(
−
∫ T

0
λj(s)ds

)
(22)

and

χj(t) = σj(t)
√
vj(t)exp

(∫ t

0
λj(s)ds

)
(23)
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v(t) evolves with a Heston�type dynamic:

dv(t) = θ(t)(1− v(t))dt+ α(t)
√
v(t)dU(t), v(0) = 1 (24)

with

〈dWj(.), dUj(.)〉(t) = ρjdt (25)

and

〈dWi(.), dUj(.)〉(t) = 0, for i 6= j (26)

The bond price dynamics for a single factor22 can be written as (see Appendix A for derivation):

B(t, T ) = exp

(
−
∫ T

t
f(t, u)du

)
(27)

=
B(0, T )

B(0, t)
exp

(
−
η(t)−2∑
b=0

Λxη(T )−1
(xb+1, T )yη(T )−1(xb+1)− Λxη(T )−1

(t, T )yη(T )−1(t)

−
η(T )−2∑
k=η(t)

η(t)−2∑
b=0

Λxk(xb+1, xk+1)yk(xb+1)−
η(T )−2∑
k=η(t)

Λxk(t, xk+1)yk(t)

− 1

2

η(t)−2∑
b=0

η(T )−1−b∑
i=1

η(T )−1−b∑
j=1

γiγjΦ(xb, xb+1){Λ2(xb+1, T )− Λ2(xb+1, xη(T )−1)}

− 1

2

η(T )−η(t)∑
i=1

η(T )−η(t)∑
j=1

γiγjΦ(xη(t)−1, t){Λ2(t, T )− Λ2(t, xη(T )−1)}

−
η(T )−2∑
k=η(t)

1

2

η(t)−2∑
b=0

k−b∑
i=1

k−b∑
j=1

γiγjΦ(xb, xb+1){Λ2(xb+1, xk+1)− Λ2(xb+1, xk)}

−
η(T )−2∑
k=η(t)

1

2

(k−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t){Λ2(t, xk+1)− Λ2(t, xk)}
)

(28)

3.4 SOFR term rates

The transition of the key (US dollar) interest rate index from LIBOR to SOFR (with similar transitions
for many other curencies) imposes on the market a change from benchmark rates set for a longer term
(usually three months) to rates with an e�ective term of one business day. Transitioning to daily frequency
for derivative instruments would not be desirable for many reasons, including burdening the system with
a large increase in transaction volumes to settle daily �ows. Instead, the market is adopting an approach
where instruments are still de�ned with longer term rates, but those term rates are now calculated using
either a compounding or averaging of SOFR over the term. This is what is typically called �term SOFR.�23

22Since the model speci�cation results in driving factors which are mutually independent, the generalisation of this
expression to the multifactor case is straightforward, though notationally tedious.

23If one takes into account the �multicurve� phenomenon observed in interest rate markets, these �SOFR term rates� are
more akin to rates implied by overnight index swaps (OIS) than actual term rates such as LIBOR, see Alfeus, Grasselli and
Schlögl (2020) and Backwell et al. (2023). However, here we only consider instruments referencing SOFR, so this distinction
is not needed in the present paper.
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A LIBOR term would be de�ned by the start date Ti and an end date Tk of the period over which
it applies. A SOFR term for the corresponding dates is de�ned as a set of discrete dates {Ti, , , Tk} on
which SOFR is observed. The most common de�nition of term SOFR is based on compounding over the
term (usually 3m):

S(Ti, Tk) = τi,k

[ k∏
j=i

(1 + s(Tj)δj)− 1

]
(29)

where τi,k is the year fraction of the term length and s(t) is the SOFR observed set for Tj . δj is the year
fraction for the period between Tj and Tj+1, in order to account for days on which SOFR is not observed
(weekends and holidays). For the empirical results presented in this paper, we make the assumption that
the daily SOFR rate is approximated by the continuous short rate r(t).

3.5 Pricing Futures

De�ne a 3M SOFR futures contract F (Ti, Tk) with accrual period starting at Ti and ending at Tk, with
payo� measurable at Tk:

F (Ti, Tk) = 100

(
1− S(Ti, Tk)

)
(30)

where δi,k is the year fraction between Ti and Tk. Using the generic futures pricing theorem,
24 the time t

futures price F (t, Ti, Tk) is given by the expected value at t under spot risk�neutral measure, i.e.

F (t, Ti, Tk) = Eβ

[
F (Ti, Tk)|Ft

]
(31)

3.6 Pricing Options on Futures

Options on 3M SOFR futures exist for a variety of strikes and expiries. They are speci�ed with American�
style exercise, but we use them to approximate European�style implied volatilities, as is common in
practice. We do not address the impact of the American exercise in this paper, instead we use these
options to demonstrate the ability of the model to calibrate to a variety of strikes and expiries. The value
of a call option at time t, expiring at Te < Ti with strike K, on the futures contract, can be expressed as
the expected discounted payo� under the spot risk�neutral measure:

C(t, Te, F (Ti, Tk),K) = Eβ

[
1

β(Te)
(F (Ti, Tk)−K)+|Ft

]
(32)

3.7 Simulating the model

As an initial proof of concept, particularly the ability of the model to calibrate to options on SOFR
futures, we price options by Monte Carlo simulation.25 For the stochastic integral component in Equation
(20), we have:

t∫
0

σj(s, T )dWj(s) =
n∑
i=1

I{i≤A(t,T )}γi,jφj(T )

t∫
0

σj(s)
√
vj(s)exp

(∫ s

0
λj(q)dq

)
dWj(s) (33)

24See Cox, Ingersoll and Ross (1981).
25The HHW stochastic volatility dynamics assumed in our model would permit the derivation of semi-analytical option

pricing formulae using Fourier transform techniques, but we leave such derivations to future work.
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Setting constant parameters σj(s) = σj and λj(q) = λj :

t∫
0

σj(s)
√
vj(s)exp

(∫ s

0
λj(q)dq

)
dWj(s) = σj

t∫
0

√
vj(s)e

sλjdWj(s) (34)

The stochastic component is approximated as follows:

t∫
0

√
vj(s)e

sλjdWj(s) ≈
1

N

N∑
p=1

g(t) (35)

where

gj(t) =

t∫
0

√
vj(s)e

sλjdWj(s) (36)

calculated with Euler discretisation:

∆gj(s) =
√
vj(s)e

sλj∆Wj(s) (37)

where ∆Wj(s) ∼ N(0,
√

∆t), vj(s) = vj(s−∆t) + ∆vj(s) and:

∆vj(s) = θ(1− vj(s−∆t))∆t+ α
√
vj(s−∆t)∆Uj(s), vj(0) = 1 (38)

where ∆Uj(s) ∼ N(0,
√

∆t) and 〈∆Wj(.),∆Uj(.)〉(s) = ρj∆t

4 Applying the Model to Market Data

4.1 Comparison to a traditional di�usive model

Firstly, we seek to demonstrate the impact of modelling scheduled jumps on the quality of �t to time series
data, taking as a reference point the results of Skov and Skovmand (2021), who consider a three�factor
Gaussian arbitrage�free model based on Nelson/Siegel�type26 term structures. They estimate their model
on data for one�month and quarterly SOFR futures, and we will use these same instruments. The period
of observation also aligns with Skov and Skovmand (2021), beginning in June 2018 to capture the �rst
full month of trading, through to June 2021, thus consisting of 757 trading dates.

To sharpen the focus on the �scheduled jump� aspect of our model (and to make it more comparable
to Skov and Skovmand (2021)), we consider a version of our model without stochastic volatility.

4.1.1 Fitting the Gaussian version of the model to data

De�ne the observation period as a set of discrete dates (t0, ..., tn), corresponding to trading days for SOFR
futures. On each of the dates we observe a set of SOFR futures settlement prices consisting of 1m and 3m
futures, denoted as F 1

j (ta) and F
3
j (ta) respectively. The subscript j indicates the position of the contract

maturity, e.g. F 1
3 (ta) is the third maturing 1m contract from ta.

26See Nelson and Siegel (1987).
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Denote the corresponding model price as F̂ 1
j (t) and F̂ 3

j (t). Using the generic futures pricing theorem,
under the spot risk neutral measure we have:

F̂ 1
j (ta) = Eβ

[
F̂ 1
j (τ1

j (ta))
∣∣Fta] = 100− 100

D1
j (ta)

[
S1
j (ta) +G1

j (ta)

]
(39)

where τ1
j (ta) is the terminal date and D

1
j (ta) is the number of calendar dates in the reference period of

the contract. S1
j (ta) accounts for the accrued SOFR �xings if the contract is trading during the reference

period:

S1
j (ta) =

(t∗a−1)∧N1
j (ta)∑

i=n1
j (ta)

r(ti)di (40)

where t∗a is the index of time ta, n
1
j (ta) is the index of the �rst date in the reference period and N1

j (ta) is
the index of the last date in the reference period. di is the number of calendar days to which the rate at
time ti applies, in order to allow for accrual over non-trading dates. The upper limit for the sum re�ects
that SOFR is published the day following its reference date. G1

j (ta) represents the sum of the SOFR
forward rates relevant to the reference period:

G1
j (ta) = Eβ

[
G1
j (τ

1
j (ta))

∣∣Fta] =

N1
j (ta)∑

i=t∗a∨n1
j (ta)

Eβ

[
r(ti)

∣∣Fta]di (41)

where

Eβ

[
r(ti)

∣∣Fta] = Eβ

[
f(ta, tk) +

n∑
j=1

tk∫
ta

σPj (u, t)

tk∫
u

σPj (u, s)dsdu

+
n∑
j=1

tk∫
ta

σPj (s, tk)dW
P
j (s)

∣∣∣∣Fta] (42)

= f(ta, tk) +

n∑
j=1

tk∫
ta

σPj (u, t)

tk∫
u

σPj (u, s)dsdu (43)

The price of the quarterly SOFR futures is based on the compounding payo� de�ned for the contract:

F̂ 3
j (ta) = 100− 100

[
S3
j (ta)G3

j (ta)− 1

]
360

D3
j (ta)

(44)

S3
j (ta) accounts for the compounded SOFR �xings if the contract is trading during the reference period:

S3
j (ta) =

(t∗a−1)∧N3
j (ta)∏

i=n3
j (ta)

(
1 +

r(ti)di
360

)
(45)

17



G3
j (ta) represents the compounding of the SOFR forward rates relevant to the reference period. Strictly

speaking, we have

G3
j (ta) = Eβ

 N3
j (ta)∏

i=t∗a∨n3
j (ta)

(
1 + r(ti)

di
360

)∣∣∣∣∣∣∣Fta
 (46)

However, we make two approximations, which greatly simplify calculations, but turn out to have insub-
stantial numerical impact. Firstly, we set

G3
j (ta) ≈

N3
j (ta)∏

i=t∗a∨n3
j (ta)

(
1 + Eβ

[
r(ti)

∣∣Fta] di360

)
(47)

Furthermore, we ignore the convexity correction due to the distinction between expectations under the
spot and forward measures, and set

Eβ

[
r(ti)

∣∣Fta] ≈ f(ta, ti) (48)

In Appendix B, we compare the �calibrated prices� of the futures contracts used in our analysis, i.e.,
the prices calculated under the above approximating assumptions using the empirically �tted model
parameters, with the corresponding prices calculated without making these assumptions (using Monte
Carlo simulation). As Table 3 shows, the impact of the approximations (47) and (48) is negligible.

For each day in the observation period, assume forward rates are piecewise constant between FOMC
dates and solve:

f(ta) = arg min
f(ta)

O(ta) (49)

where f(ta) is the vector of forward rates f(ta, ti) which are piecewise constant between FOMC dates.
The objective function is de�ned as the sum of squared errors between the price given f(ta) and the
market price for monthly and quarterly futures:

O(ta) =
∑
j

(F̂ 1
j (ta)− F 1

j (ta))
2 +

∑
j

(F̂ 3
j (ta)− F 3

j (ta))
2 (50)

The vector f(ta) can instead be expressed as a step function:

f(ta, T ) = f0(ta) +
n∑
i=1

vi(ta)1(i ≤ Ata,T ) (51)

from which we can extract a vector of discrete forward rate levels (f0(ta), ..., fn(ta)), where:

fk(ta) = f0(ta) +
k∑
i=1

vi(ta) (52)

Changes in vi correspond to changes in FOMC policy rate change expectations. To obtain the empirical
dynamics, we need to extract the changes in vi. For any dates ta not immediately following an FOMC
meeting:

∆vi(ta) = vi(ta)− vi(ta−1), ta−1 /∈ {x0, ..., xn} (53)
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For dates following an FOMC meeting we need to consider the e�ect of rolling the FOMC meeting index:

∆vi(ta) = vi(ta)− vi+1(ta−1), ta−1 ∈ {x0, ..., xn} (54)

vn+1 is by de�nition not observed, therefore we truncate the estimate to n − 1 FOMC dates. De�ne a
matrix of ∆vi(ta) observations.

V =

∆v1(t1) . . . ∆vn−1(t1)
...

. . .

∆v1(tm) . . . ∆vn−1(tm)

 ∈ Rm×(n−1) (55)

The matrix V can be factorised using principal component decomposition:

S = V W (56)

where W ∈ R(n−1)×(n−1) is a matrix of column-wise eigenvectors of the matrix V TV . The eigenvectors
represent a new basis which factorises the matrix V into n − 1 independent factors. The matrix S ∈
R
m×(n−1) denotes the empirical states of the independent factors.
In order to estimate a reduced factor model, we truncate the matrices such that W ∗ = W [{1, ..., n−

1}, {1, ..., β}] ∈ R(n−1)×β and S∗ = S[{1, ...,m}, {1, ..., β}] ∈ Rm×β . The matrix V ∗ = S∗(W ∗)T repre-
sents changes in FOMC policy rate change expectations corresponding to the reduced factor truncation.
Let sj(ta) be the (a, j) element of matrix S∗ and let wi,j be the (i, j) element of matrix W . Then:

∆v∗i (ta) =

β∑
j=1

sj(ta)wi,j (57)

From this the truncated jump states can be obtained as follows:

v∗i (ta) = ∆v∗i (ta) +

{
v∗i (ta−1) , ta−1 /∈ {x0, ..., xn}
v∗i+1(ta−1) , ta−1 ∈ {x0, ..., xn}

(58)

where the initial state is obtained from the calibration, i.e. v∗i (t0) = vi(t0), therefore:

v∗i (ta) = vi(t0) +
a∑

a∗=1

∆v∗i∗(ta∗) = vi(t0) +
a∑

a∗=1

β∑
j=1

sj(ta∗)wi,j (59)

where i∗ = i+Ata∗ ,ta denotes the number of FOMC meetings between ta∗ and ta. Therefore the truncated
forward rates can be written as follows:

f∗(ta, T ) = f0(ta, T ) +

n∑
i=1

(
vi(t0) +

a∑
a∗=1

β∑
j=1

sj(ta∗)wi,j

)
1(i ≤ Ata,T )

= f0(ta, T ) +
n∑
i=1

(
vi(t0) +

a∑
a∗=1

β∑
j=1

sj(ta∗)wi,j

)
1(i ≤ Ata,T )

= f0(ta, T ) +
n∑
i=1

vi(t0)1(i ≤ Ata,T ) +
n∑
i=1

a∑
a∗=1

β∑
j=1

sj(ta∗)wi,j1(i ≤ Ata,T )

= f0(ta, T ) +
n∑
i=1

vi(t0)1(i ≤ Ata,T ) +

β∑
j=1

n∑
i=1

wi,j1(i ≤ Ata,T )
a∑

a∗=1

sj(ta∗)

(60)
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Taking the increment over time, for ta−1 /∈ {x0, ..., xn}:

∆f∗(ta, T ) = f∗(ta, T )− f∗(ta−1, T )

= f0(ta, T ) +
n∑
i=1

vi(t0)1(i ≤ Ata,T ) +

β∑
j=1

n∑
i=1

wi,j1(i ≤ Ata,T )
a∑

a∗=1

sj(ta∗)

− f0(ta−1, T )−
n∑
i=1

vi(t0)1(i ≤ Ata−1,T )−
β∑
j=1

n∑
i=1

wi,j1(i ≤ Ata−1,T )
a−1∑
a∗=1

sj(ta∗)

=

β∑
j=1

n∑
i=1

wi,j1(i ≤ Ata,T )

( a∑
a∗=1

sj(ta∗)−
a−1∑
a∗=1

sj(ta∗)

)

=

β∑
j=1

n∑
i=1

wi,j1(i ≤ Ata,T )sj(ta) (61)

The above equation connects the empirical results to the model as follows. First write the forward rates
without the drift component for a reduced factor model:27

f(t, T ) ≈ f(0, T ) +

β∑
j=1

n∑
i=1

σjλi,j1(i ≤ A0,T )Wj(t ∧ xı̄(T ))

= f(0, T ) +

β∑
j=1

n∑
i=1

λi,j1(i ≤ A0,T )σjWj(t ∧ xı̄(T ))

(62)

Taking the increment between ta−1 and ta in the case where Ata−1,ta = 0

∆f(ta, T ) = f(ta, T )− f(ta−1, T )

= f(0, T ) +

n∑
j=1

n∑
i=1

λi,j1(i ≤ A0,T )σjWj(ta ∧ xı̄(T ))

− f(0, T )−
n∑
j=1

n∑
i=1

λi,j1(i ≤ A0,T )σjWj(ta−1 ∧ xı̄(T ))

=
n∑
j=1

n∑
i=1

λi,j1(i ≤ A0,T )σj

(
Wj(ta ∧ xı̄(T ))−WP

j (ta−1 ∧ xı̄(T ))

)
(63)

Now:

Wj(ta ∧ xı̄(T ))−Wj(ta−1 ∧ xı̄(T )) =

{
Wj(ta)−Wj(ta−1) , ta−1 < xı̄(T )

0 , ta > xı̄(T )

(64)

Therefore:

Wj(ta ∧ xı̄(T ))−Wj(ta−1 ∧ xı̄(T )) = 1(i ≤ Ata,T )
(
Wj(ta)−Wj(ta−1)

)
(65)

27Ignoring the drift component is another approximating assumption of immaterial impact. Appendix C reports the size
of the drift under the �tted model parameters � this is clearly negligible, especially since what matters for the present
analysis is the increments in f(t, T ), i.e., ∆f(ta, T ) as considered below.
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Figure 8: Total RMSE for each given number of factors

Let ∆Wj(ta) = Wj(ta)−Wj(ta−1), we can write:

∆f(ta, T ) =

n∑
j=1

n∑
i=1

λi,j1(i ≤ Ata,T )σj∆Wj(ta) (66)

Comparing equations Eq.(61) and Eq.(66) we �nd the empirical results are connected to the model with
wi,j = λi,j and sj(ta) = σj∆Wj(ta).

4.1.2 Factor decomposition

Fitting the model to futures data as described above produces an empirical decomposition into the piece-
wise forward rate structures corresponding to the modelling approach proposed in this paper. The decom-
position informs a dimension reduction achieved by removing factors which do not signi�cantly impact
the estimated dynamics. In order to choose the appropriate number of factors, consider the total root
mean square error (RMSE) across all market instruments, i.e., de�ne the total RMSE as:

e(β) =

√√√√ m∑
a=1

O(ta)

m
(67)

where β is the number of factors used to obtain the forward rates from the calibration. Figure 8 suggests
that over the sample period factors 8 and above do not improve the model �t. The model construction
allows for inclusion of any number of factors, therefore below eight factors the number of factors becomes
a choice between modelling accuracy and parsimony.

The estimated λ vectors re�ect the empirical dynamics of policy rate expectations. Therefore they
o�er an interesting economic interpretation of the driving dynamics of forward rates, especially those with
short maturities. Figure 9 shows the λ vectors corresponding to the top three factors. The factors re�ect
the general level across the term structure (factor 1), the gradient (factor 2) and curvature (factor 3). The
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Figure 9: λ vectors for the �rst three factors

Figure 10: Forward rate level vectors for the �rst three factors

general shape of these vectors aligns with their parameterised counterparts in the Nelson/Siegel model
(see Nelson and Siegel (1987)).

The modelling setup proposed in this paper interprets forward rates as an accumulation of expected
policy rate changes. Therefore we can cast the decomposition weight vectors as factorised policy rate
change expectations, where the resulting λ vectors correspond directly to factors in the proposed model.
An interesting insight emerges regarding the dynamics of forward rates. As shown in Figure 9, the λ vector
corresponding to factor 1 is concentrated mostly on the �rst element, revealing that parallel changes in
the forward rate term structure are equivalent to changing expectations regarding the next FOMC policy
rate change.

Although these results are based on the short end of the term structure, this connection can be
conceptually extended to longer terms. Parallel changes have being long known to be the primary driver
of term structure dynamics, these results reveal that parallel forward curve changes are directly related
to changing expectations related to the �rst FOMC date. The connection between FOMC policy rate
expectations and parallel changes in the forward curve is a key insight stemming from this modelling
approach.
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Table 1: RMSE table for monthly(M) and quarterly(Q) contracts. RMSE is expressed in basis points

The second factor is similarly concentrated on the �rst element, but with a distinctive change in the
opposite direction for the remaining values. The magnitude of the �rst element is smaller than the sum
of the remaining values, which gives rise to an opposite change in the forward rates between the �rst and
last forward, with a smooth transition in between. For the forward curve this is a gradient change, which
is typical for the second factor in term structure dynamics in the literature. The interpretation is that this
captures dynamics where the expected aggregate changes (across all upcoming FOMC meeting dates) in
policy rates do not change, but the expected timing of those changes does. For example, the expectations
of a rate rise might increase for the next meeting, but the aggregate expected level does not change, so
the expectations of rate rises decrease for subsequent meetings. An equivalent interpretation is that the
second factor represents a negative correlation between the expectations related to the next policy rate
change with the remaining term structure. Again this is a key insight, connecting FOMC policy rate
change expectations with the behaviour of the second PCA factor for term structure changes.

The third factor, which appears as a curvature change in the forward rate term structure, is actually
quite similar to the second factor. It also represents a negative correlation involving the next policy rate
change. However, for the third factor this is focused mostly on the relationship to the second FOMC
meeting, rather than the entire remaining term structure. Speci�cally, this relates to the expected aggre-
gate outcome over the next two FOMC meetings remaining fairly constant, while allowing for uncertainty
regarding the timing of the change.

4.1.3 Model �t to futures prices

A notable feature of the RMSE shown in Figure 8 is that it does not converge to zero, meaning that even
a full factor model is not able to perfectly calibrate to futures prices. This is because we are only focusing
on the primary aspect, i.e., modelling jumps at FOMC meeting dates.28 From this perspective, consider
the RMSE for each futures:

exj (β) =

√∑
a(F̂

x
j (ta)− F xj (ta))2

m
(68)

Table 1 gives the RMSE for the seven one�month and �ve quarterly futures used by Skov and Skovmand
(2021) in the estimation of a traditional di�usive, three�factor Gaussian model, based on the same data
period as that paper. The Skov and Skovmand (2021) results are reproduced in the �nal row, while the
�rst three rows present the RMSEs for the one�, two� and three�factor versions of our Gaussian model,
respectively. Thus the most appropriate comparison to Skov and Skovmand (2021) is the three�factor
version of our model, demonstrating the impact of moving to a model with scheduled jumps on FOMC
meeting dates: There is a clear improvement in the RMSE for one�month futures at the near end of

28Modelling a di�usive residual spread and/or the possibility of SOFR (extensions which were considered in Gellert and
Schlögl (2021), for example) would introduce additional freedom to allow for a perfect �t.
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Figure 11: (LHS) Implied volatility for di�erent values of σ. (RHS) ATM implied volatility sensitivity across
contracts to changes in σ.

the term structure, while this improvement is absent for quarterly futures and the far end of the term
structure.29

4.2 Calibrating the stochastic volatility model

4.2.1 Factor Sensitivities

The �rst four moments of terminal distributions (for all relevant maturities) to a large part determine the
quality of �t in cross�sectional calibration of a term structure model to interest rate options. A terminal
(risk�neutral) distribution at a speci�c expiry can be characterised in terms of implied volatilities across
di�erent strikes. In this representation, the �rst moment corresponds to a horizontal shift in the implied
volatilities (across strikes), the second moment to a vertical shift (across all implied volatilities), the third
moment to a change in the slope of the implied volatility curve, and the fourth moment to a change in
the convexity. Using this characterisation, one can illustrate the �exibility of the model proposed in this
paper to control the moments of the distribution as well as their term structures across di�erent expiries.

Using a model calibration on the 10-June-2022 to the �rst four quarterly SOFR futures options,
including all available strikes, we study the sensitivity of implied volatilities to the model parameters.
Starting with σ, see Figure 11, it is apparent that changing this variable results in a parallel shift in the
implied volatilities, thereby controlling the second moment. The right�hand graph in Figure 11 shows how
di�erent factors impact di�erent expiries, with factor 1 focused on short�term expiries, while factors 2
and 3 increasingly focus on the longer expiries, providing calibration �exibility across the term structure.

The α parameter determines the level of stochastic volatility in the models, usually associated with the
fourth moment. As shown in Figure 12, changing the α parameter results in a change in convexity as well

29It is worth noting that using a di�erent modelling approach (directly modelling scheduled jumps as normally distributed
with a stochastically evolving mean) and conducting a full econometric estimation based on maximum likelihood in con-
junction with the Kalman �lter, Schlögl, Skov and Skovmand (2023) arrive at a similar conclusion.
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Figure 12: (LHS) Implied volatility for di�erent values of α. (RHS) Implied volatility convexity sensitivity across
contracts to changes in α.

as the level of volatilities. Control of just convexity, without changing at�the�money (ATM) volatilities,
is possible by combining o�setting changes in the σ parameter. The right�hand graph in Figure 12 shows
di�erent impacts on convexity from di�erent factors across expiries, enabling the model to calibrate to
stochastic volatility term structures.

The ρ parameter determines the correlation between stochastic volatility and the forward rates. As
can be seen in Figure 13, changing the ρ parameter results in a gradient change in implied volatilities,
corresponding to a change in the third moment. Similarly to the other parameters, the impact on implied
volatility skewness varies for di�erent factors across expiries, allowing the model be calibrated to di�erent
correlation term structures.

λ and θ are two variables associated with mean reversion. The λ parameter controls mean reversion
of the forward rates while the θ parameter controls the mean reversion of the stochastic volatility. From
an implied volatility perspective, as shown in Figure 14, the mean reversion parameters work in reverse
to their corresponding volatility parameters. The λ parameters o�set the impact from σ and result in
a parallel change in implied volatility with the opposite sign to the change in the parameter. The θ
parameter reverses the α parameter and therefore results in both a level and convexity change in the
implied volatilities.

Thus, the model proposed has the �exibility to attempt simultaneous calibration to option�implied
volatilities across both strikes and expiries. Additional �exibility for calibration comes from the ability to
de�ne the parameters as functions of time.

4.2.2 Cross�sectional �t to options on SOFR futures

In practical applications, in particular derivative pricing and risk management, the ability to calibrate
to cross�sectional (i.e., market prices at a single point in time, as opposed to time series) option data is
an important feature of interest rate models. Although it violates the model assumptions, it is standard
practice in industry to recalibrate interest rate models on a daily basis to liquidly traded instruments.
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Figure 13: (LHS) Implied volatility for di�erent values of ρ. (RHS) Implied volatility skew sensitivity across
contracts to changes in ρ.

Figure 14: Varying lambda and theta.

Options on SOFR futures have been one of the �rst SOFR�related option instruments to trade since the
inception of the new benchmark. These are also the only SOFR�related options traded directly on an
exchange, meaning that the price information is widely available.

At the time of writing, most of the market liquidity in options on SOFR futures is concentrated on the
front four options on three�month SOFR futures. Arguably, shorter expiry interest rate options are the
most di�cult to �t, due to steep and highly variable term structures in implied volatilities and implied
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Figure 15: Calibration with constant parameters. Graphs show Bachelier implied volatilities, where market
implied volatilities are in black and model implied volatilities are in red.

kurtosis, as is evident in the data set used for this section. This makes calibration to these options a good
proof of concept in this respect.

For the calibration, we take the γ parameters from the estimation performed in Section 4.1. The
remaining parameters σ, α, λ, θ and ρ are calibrated to option prices. In the calibration, σ controls the
general level of volatility, and the mean reversion parameter λ gives some control of volatility levels across
expiries. α controls the level of kurtosis, and the stochastic volatility mean reversion parameter α gives
some control of kurtosis across expiries. The correlation parameter ρ controls the implied volatility skew.

Each of the model calibration parameters can be de�ned as a function of time. Combined with the
ability to choose the number of HJM factors, this provides signi�cant �exibility in the model for calibration.
We begin by performing the calibration with the parameters constant across time before adding time
dependent parameters. The results are presented as a comparison of normal (i.e., �Bachelier�) volatilities
implied from the bid/o�er prices taken from settlement price information on the 10-June-2022, with the
5% con�dence interval for the calibrated model price based on simulation results.

The calibration results shown in Figure 15 show that the model can be �tted to general volatility levels,
skew and convexity, though insu�ciently to match market�implied volatilities exactly. An important
feature of market�implied volatilities is the sharply declining convexity as a function of expiry. Another
feature is the term structure in skew slightly declining as a function of expiry. As can be seen in Table
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Figure 16: Calibration with time dependent parameters. Graphs show Bachelier implied volatilities, where market
implied volatilities are in black and model implied volatilities are in red.

2, with constant parameters the calibration focuses on α0, which is the stochastic volatility parameter
associated with the �rst factor. This understates the convexity on the �rst expiry and overstates for the
longest expiry, thus e�ectively freezing factor 2 and 3 stochastic volatility (α1, α2) at zero. These results
suggest the introduction of time dependent stochastic volatility parameters.

We de�ne stochastic volatility parameters as a function of t, piecewise constant between the option
expiry dates. As shown in Figure 16, this change provides enough �exibility across di�erent expiries to
result in a substantial improvement in model �t. With the added time dependence, the �rst stochastic
volatility parameter α0 has increased for short expiries and decreased for longer expiries, as opposed to
the results obtained with constant parameters.

This example demonstrates the �exibility of the model. Based on the calibration with constant
parameters, we were able to make an informed choice with respect to which parameters could be made
time dependent to bene�t the calibration. We only had to change three of the �fteen available parameters
to achieve a much better calibration results, albeit for a limited set of calibration instruments. This same
approach could be repeated for a larger set of calibration instruments, making other parameters time
dependent or increasing the number the factors if required.
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parameters σ1 σ2 σ3 λ1 λ2 λ3 α1 α2 α3 ρ1 ρ2 ρ3 θ1 θ2 θ3

constant 0.0081 0.006 0.0041 0.01 0 0.16 1.57 0.82 0 -0.2 0 0 0 0 0

time dependent 0.00663 0.00587 0.00447 0.02 0.004 0.35 [3.142, 1.35, 3.2, 0.86] [0.76, 0.66, 0.6, 0.22] [3.0, 0.6, 0.5, 4.1] -0.14 -0.025 -0.83 0.1 0 11.0

Table 2: Calibrated model parameters.

5 Further implications of the model

5.1 Implied volatility behaviour during the accrual period

A prevalent approach in the LIBOR to SOFR transition, as re�ected in literature (see Lyashenko and
Mercurio (2019)), is the adaptation of existing LIBOR�based modelling to SOFR. A highly practical
problem stemming from this approach is the behaviour of options in the accrual period of the SOFR term
rate, i.e. for term forwards S(Ti, Tk) at time Ti < t ≤ Tk. This occurs when the expiry of the option is
set past the beginning of the accrual period.

Examples of impacted options are in�arrears SOFR caps and exchange�traded options on 1M SOFR
futures.30 Existing LIBOR�based pricing models require an arti�cially induced decay of the �SOFR term
rate� volatility within its accrual period, because as this rate accrues, its value because more and more
known. To achieve this e�ect, Lyashenko and Mercurio (2019) suggest having volatility linearly decay
during the accrual period.

In contrast, the model proposed in this paper handles the case of partially set compounded or averaged
SOFR naturally, and also provides an alternative insight into the decay characteristics of implied volatility
within the accrual period. As shown in Figure 17, setting a constant volatility level σ and removing the
indicator functions in the HJM volatility function results in a linearly decaying implied volatility. This
is consistent with the ad hoc assumption in Lyashenko and Mercurio (2019), but here it results directly
from model behaviour.

However, a di�erent behaviour of implied volatility appears when forward rate volatility is driven by
FOMC meetings and therefore there is zero volatility between the last FOMC meeting within the accrual
period and the end of the accrual period. As shown in Figure 17, this results in an accelerating decay in
implied volatility, hitting zero at the �nal meeting date prior to the end of the accrual period. Note that
this analysis does ignore volatility of the SOFR to policy target rate spread, but this is a second�order
e�ect. Spread volatility contributes relatively little to the variance of SOFR, suggesting the qualitative
implication on the accrual period behaviour of option�implied volatility is likely to be accurate � a
prediction of the model which can be veri�ed once options on 1M SOFR futures become su�ciently liquid
in the market.

5.2 Mean reversion vs. policy rate expectations

Mean reversion is embedded in the model in the de�nition of forward rate volatilities σj(t, T ), which can
be rewritten as follows:

σj(t, T ) = σj(t)
√
vj(t)exp

(
−
∫ T

t
λj(s)ds

) n∑
i=1

I{i≤A(t,T )}γi,j (69)

On the one hand, mean reversion is re�ected in the term exp

(
−
∫ T
t λj(s)ds

)
, resulting in the volatility

of instantaneous forward rates decaying as a function of time to maturity (T − t). On the other hand, the

30Options on 3M futures expire prior to the accrual period, hence are not impacted by behaviour during the accrual
period.
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Figure 17: Accrual period term volatility comparison

γi,j vector scales the volatility function based on the number of FOMC meetings between t and T and as
such has an inherent dependence on T − t. Therefore, for a given λj(s) function, it is possible to de�ne
γi,j such that:

n∑
i=1

I{i≤A(t,T )}γi,j ≈ exp

(
−
∫ T

t
λj(s)ds

)
(70)

That is, it is possible to set λj = 0 and mimic mean reverting dynamics with the appropriate choice of
γi,j . In Section 4.1, the γi,j were derived by PCA of forward rate states implied from SOFR futures. The
�rst factor, i.e for j = 1, explains a large proportion (around 80%) of the forward state variance. It has
a clear economic interpretation of focusing forward rate dynamics on the changing expectations related
to the change in policy rate at the FOMC date immediately following t. This in itself is an intuitively
agreeable insight: forward rate dynamics are largely driven by changing expectations of the next move in
the policy rate. Furthermore, when γi,j has the opposite sign between γ1,1 and γi,1 for i > 1, this mimics
mean reverting behaviour in the sense that the market expects a policy rate hike to be followed by a drop
and vice versa. Inspection of the empirically derived γi,j vector for j = 1 reveals that it is now possible
to choose λj(s) such that:

exp

(
−
∫ T

t
λj(s)ds

)
≈

n∑
i=1

I{i≤A(t,T )}γi,j (71)

by setting:

λj(s) =

{
0.9, s− t < 0.5

0.08, otherwise
(72)

which results in the comparison shown in Figure 18, demonstrating it how it is possible to obtain the
behaviour implied by the (PCA�derived) γ from an appropriate choice of λj(s). It is clear that most of
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Figure 18: Comparison of exp

(
−
∫ T

t
λj(s)ds

)
(red) and

∑n
i=1 I{i≤A(t,T )}γi,j(black)

the di�erence stems from the continuous and piecewise de�nitions, but both approaches are very similar
in terms of embedding mean reversion dynamics. Thus, the model re�ects an implicit connection between
forward rate dynamics driven by expectations of policy rate changes and mean reverting behaviour of the
short rate.

6 Conclusion

Having observed that empirically the short rate (EFFR or SOFR) follows dynamics determined primarily
by jumps at known times, but forward rates follow primarily di�usive dynamics, we have constructed a
model which reconciles these two (naively contradictory) observations. Such a model is needed because,
with the transition away from the LIBOR benchmark, �xed income instruments referencing SOFR are
becoming increasingly important. In addition, the actions of the Federal Reserve in response to the 2008
�nancial crisis over the last decade have removed much of the daily volatility from the EFFR, long thought
of as the best empirical proxy for the short rate. This reduction in volatility has revealed an underlying
structure of short rates consisting of discontinuities directly related to FOMC policy target rate changes,
which is also re�ected in the empirical dynamics of SOFR. For the steps in the target rate modelled in
this fashion, a possible economic interpretation is that there is a fundamental �shadow� rate of interest
evolving di�usively. Only the central bank observes this shadow rate (perhaps imperfectly), and at known
dates updates the central bank target rate to match this shadow rate.

Fitting a model based on scheduled jumps to a history of SOFR futures prices has revealed a con-
nection between interest rate mean reversion and FOMC policy rate expectations: It turns out that the
volatility component modelling jump behaviour at FOMC meeting dates mimics instantaneous forward
rate volatility decaying in time to maturity and therefore has a similar e�ect as traditional mean reversion
in the model. This reveals a direct connection between the evolution of FOMC policy rate expectations
re�ected in SOFR futures prices and traditional modelling of mean reverting interest rate dynamics: The
primary driver of SOFR futures prices are changes in expectations related to the next FOMC meeting,
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which in turn tends to be negatively correlated with changes in expectations for subsequent meetings,
creating variance decay as a function of time to maturity. Historically, the Federal Reserve in managing
economic cycles acts to mean revert interest rates. The market expects the Federal Reserve to continue
to act this way, and using our modelling set�up this expectation is actually detectable in the evolution of
SOFR futures prices.

In the context of cross�sectional calibration, stochastic volatility allows the model to �t skewness and
convexity across strikes, a prominent feature in interest rate option prices. We demonstrated this on
options on SOFR futures. The model also could be adapted to other calibration instruments, such as caps
and swaptions.

Appendix A Bond price derivation

A.1 Single dimensional case

De�ne the following:

σ(t, T ) = χ(t)φ(T ) (73)

φ(T ) = exp

(
−
∫ T

0
λ(v)dv

)
(74)

χ(t) = σ(t)exp

(∫ t

0
λ(v)dv

)
(75)

Λ(t, T ) =

∫ T

t
exp

(
−
∫ u

t
λ(v)dv

)
du (76)

Φ(t) =

∫ t

0
σ2(s)exp

(
− 2

∫ t

s
λ(v)dv

)
ds (77)
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HJM result:

f(t, T ) = f(0, T ) +

∫ t

0
σ(s, T )

∫ T

s
σ(s, u)duds+

∫ t

0
σ(s, T )dW (s)

= f(0, T ) +

∫ t

0
χ(s)φ(T )

∫ T

s
χ(s)φ(u)duds+

∫ t

0
χ(s)φ(T )dW (s)

= f(0, T ) +

∫ t

0
σ(s)exp

(∫ s

0
λ(v)dv

)
exp

(
−
∫ T

0
λ(v)dv

)
×
∫ T

s
σ(s)exp

(∫ s

0
λ(v)dv

)
exp

(
−
∫ u

0
λ(v)dv

)
duds

+

∫ t

0
σ(s)exp

(∫ s

0
λ(v)dv

)
exp

(
−
∫ T

0
λ(v)dv

)
dW (s)

= f(0, T ) +

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)∫ T

s
exp

(
−
∫ u

s
λ(v)dv

)
duds

+

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)

= f(0, T ) +

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λ(s, T )ds+

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)
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let y(t) =
∫ t

0 σ
2(s)exp

(
−
∫ t
s λ(v)dv

)
Λ(s, t)ds+ exp

(∫ T
t λ(v)dv

)∫ t
0 σ(s)exp

(
−
∫ T
s λ(v)dv

)
dW (s) sub-

stitute
∫ t

0 σ(s)exp

(
−
∫ T
s λ(v)dv

)
dW (s) =

y(t)−
∫ t
0 σ

2(s)exp

(
−
∫ t
s λ(v)dv

)
Λ(s,t)ds

exp

( ∫ T
t λ(v)dv

)

f(t, T ) = f(0, T ) +

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λ(s, T )ds+

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)

= f(0, T ) + exp

(
−
∫ T

t
λ(v)dv

)
y(t) +

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λ(s, T )ds

− exp

(
−
∫ T

t
λ(v)dv

)∫ t

0
σ2(s)exp

(
−
∫ t

s
λ(v)dv

)
Λ(s, t)ds

= f(0, T ) + exp

(
−
∫ T

t
λ(v)dv

)
y(t) + exp

(
−
∫ T

t
λ(v)dv

)
×
∫ t

0
σ2(s)

{
exp

(∫ T

t
λ(v)dv

)
exp

(
−
∫ T

s
λ(v)dv

)
Λ(s, T )− exp

(
−
∫ t

s
λ(v)dv

)
Λ(s, t)

}
ds

= f(0, T ) + exp

(
−
∫ T

t
λ(v)dv

)
y(t) + exp

(
−
∫ T

t
λ(v)dv

)
×
∫ t

0
σ2(s)exp

(
−
∫ t

s
λ(v)dv

){
Λ(s, T )− Λ(s, t)

}
ds

= f(0, T ) + exp

(
−
∫ T

t
λ(v)dv

)
y(t)

+ Λ(t, T )exp

(
−
∫ T

t
λ(v)dv

)∫ t

0
σ2(s)exp

(
− 2

∫ t

s
λ(v)dv

)
ds

= f(0, T ) + exp

(
−
∫ T

t
λ(v)dv

)
y(t) + Φ(t)Λ(t, T )exp

(
−
∫ T

t
λ(v)dv

)
therefore:∫ T

t
f(t, u)du =

∫ T

t

(
f(0, u) + exp

(
−
∫ u

t
λ(v)dv

)
y(t) + Φj(t)Λ(t, u)exp

(
−
∫ u

t
λ(v)dv

))
du

=

∫ T

t
f(0, u)du+ y(t)

∫ T

t
exp

(
−
∫ u

t
λ(v)dv

)
du+ Φ(t)

∫ T

t
Λ(t, u)exp

(
−
∫ u

t
λ(v)dv

)
du

=

∫ T

t
f(0, u)du+ Λ(t, T )y(t) + Φ(t)

∫ T

t
Λ(t, u)dΛ(t, u)

=

∫ T

t
f(0, u)du+ Λ(t, T )y(t) +

1

2
Φ(t)Λ2(t, T )

Therefore, the bond price is given by

B(t, T ) = exp

(
−
∫ T

t
f(t, u)du

)
=
B(0, T )

B(0, t)
exp

(
− Λ(t, T )y(t)− 1

2
Φ(t)Λ2(t, T )

)
(78)
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A.2 Single dimensional case with piecewise continuous short rate

De�ne the following:

σ(t, T ) =

n∑
i=1

I{i≤A(t,T )}χ(t)φ(T )γi (79)

φ(T ) = exp

(
−
∫ T

0
λ(v)dv

)
(80)

χ(t) = σ(t)exp

(∫ t

0
λ(v)dv

)
(81)

Λ(t, T ) =

∫ T

t
exp

(
−
∫ u

t
λ(v)dv

)
du (82)

Λa(t, T ) =

∫ T

a
exp

(
−
∫ u

t
λ(v)dv

)
du (83)

Φ(t) =

∫ t

0
σ2(s)exp

(
− 2

∫ t

s
λ(v)dv

)
ds (84)

A.2.1 trivial case t < T < x1

HJM result:

f(t, T ) = f(0, T ) +

∫ t

0
σ(s, T )

∫ T

t
σ(s, u)duds+

∫ t

0
σ(s, T )dW (s) = f(0, T ) (85)

∫ T

t
f(t, u)du =

∫ T

t
f(0, u)du (86)

Therefore, the bond price is given by

B(t, T ) = exp

(
−
∫ T

t
f(t, u)du

)
=
B(0, T )

B(0, t)
(87)

A.2.2 basic case t < x1 < T < x2

∫ T

t
f(t, u)du =

∫ x1

t
f(t, u)du+

∫ T

x1

f(t, u)du (88)

=

∫ x1

t
f(0, u)du+

∫ T

x1

f(t, u)du (89)
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To solve
∫ T
x1
f(t, u)du, restrict T ∈ [x1, x2] and t < x1, HJM result:

f(t, T ) = f(0, T ) +

∫ t

0
σ(s, T )

∫ T

s
σ(s, u)duds+

∫ t

0
σ(s, T )dW (s)

= f(0, T ) +

∫ t

0

n∑
i=1

I{i≤A(s,T )}χ(s)φ(T )γi

∫ T

s

n∑
j=1

I{j≤A(s,u)}χ(s)φ(u)γjduds

+

∫ t

0

n∑
i=1

I{i≤A(s,T )}χ(s)φ(T )γidW (s)

= f(0, T ) +

∫ t

0
χ(s)φ(T )γ1

∫ T

s
I{s<x1}I{u>x1}χ(s)φ(u)γ1duds+

∫ t

0
χ(s)φ(T )γ1dW (s)

= f(0, T ) + γ2
1

∫ t

0
χ(s)φ(T )I{s<x1}

∫ T

s
I{u>x1}χ(s)φ(u)duds+ γ1

∫ t

0
χ(s)φ(T )dW (s)

= f(0, T ) + γ2
1

∫ t

0
χ(s)φ(T )

∫ T

s
I{u>x1}χ(s)φ(u)duds+ γ1

∫ t

0
χ(s)φ(T )dW (s)

= f(0, T ) + γ2
1

∫ t

0
χ(s)φ(T )

∫ T

x1

χ(s)φ(u)duds+ γ1

∫ t

0
χ(s)φ(T )dW (s)

= f(0, T ) + γ2
1

∫ t

0
σ(s)exp

(∫ s

0
λ(v)dv

)
exp

(
−
∫ T

0
λ(v)dv

)
×
∫ T

x1

σ(s)exp

(∫ s

0
λ(v)dv

)
exp

(
−
∫ u

0
λ(v)dv

)
duds

+ γ1

∫ t

0
σ(s)exp

(∫ s

0
λ(v)dv

)
exp

(
−
∫ T

0
λ(v)dv

)
dW (s)

= f(0, T ) + γ2
1

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)∫ T

x1

exp

(
−
∫ u

s
λ(v)dv

)
duds

+ γ1

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)

= f(0, T ) + γ2
1

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λx1(s, T )ds+ γ1

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)

let

y(t) = γ2
1

∫ t

0
σ2(s)exp

(
−
∫ t

s
λ(v)dv

)
Λx1(s, t)ds+ exp

(∫ T

t
λ(v)dv

)
γ1

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)

(90)

substitute

γ1

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s) =

y(t)− γ2
1

∫ t
0 σ

2(s)exp

(
−
∫ t
s λ(v)dv

)
Λx1(s, t)ds

exp

(∫ T
t λ(v)dv

)
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f(t, T ) = f(0, T ) + γ2
1

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λx1(s, T )ds+ γ1

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)

= f(0, T ) + exp

(
−
∫ T

t
λ(v)dv

)
y(t) + γ2

1

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λx1(s, T )ds

− γ2
1exp

(
−
∫ T

t
λ(v)dv

)∫ t

0
σ2(s)exp

(
−
∫ t

s
λ(v)dv

)
Λx1(s, t)ds

= f(0, T ) + exp

(
−
∫ T

t
λ(v)dv

)
y(t) + γ2

1exp

(
−
∫ T

t
λ(v)dv

)
×
∫ t

0
σ2(s)

{
exp

(∫ T

t
λ(v)dv

)
exp

(
−
∫ T

s
λ(v)dv

)
Λx1(s, T )− exp

(
−
∫ t

s
λ(v)dv

)
Λx1(s, t)

}
ds

= f(0, T ) + exp

(
−
∫ T

t
λ(v)dv

)
y(t) + γ2

1exp

(
−
∫ T

t
λ(v)dv

)
×
∫ t

0
σ2(s)exp

(
−
∫ t

s
λ(v)dv

){
Λx1(s, T )− Λx1(s, t)

}
ds

= f(0, T ) + exp

(
−
∫ T

t
λ(v)dv

)
y(t) + γ2

1Λ(t, T )exp

(
−
∫ T

t
λ(v)dv

)∫ t

0
σ2(s)exp

(
− 2

∫ t

s
λ(v)dv

)
ds

= f(0, T ) + exp

(
−
∫ T

t
λ(v)dv

)
y(t) + γ2

1Φ(t)Λ(t, T )exp

(
−
∫ T

t
λ(v)dv

)
therefore:∫ T

x1

f(t, u)du =

∫ T

x1

(
f(0, u) + exp

(
−
∫ u

t
λ(v)dv

)
y(t) + γ2

1Φ(t)Λ(t, u)exp

(
−
∫ u

t
λ(v)dv

))
du

=

∫ T

x1

f(0, u)du+ y(t)

∫ T

x1

exp

(
−
∫ u

t
λ(v)dv

)
du+ γ2

1Φ(t)

∫ T

x1

Λ(t, u)exp

(
−
∫ u

t
λ(v)dv

)
du

=

∫ T

x1

f(0, u)du+ Λx1(t, T )y(t) + γ2
1Φ(t)

∫ T

x1

Λ(t, u)dΛ(t, u)

=

∫ T

x1

f(0, u)du+ Λx1(t, T )y(t) +
1

2
γ2

1Φ(t){Λ2(t, T )− Λ2(t, x1)}

therefore:∫ x1

t
f(t, u)du+

∫ T

x1

f(t, u)du =

∫ T

t
f(0, u)du+ Λx1(t, T )y(t) +

1

2
γ2

1Φ(t){Λ2(t, T )− Λ2(t, x1)}

Therefore, the bond price is given by

B(t, T ) = exp

(
−
∫ T

t
f(t, u)du

)
=
B(0, T )

B(0, t)
exp

(
− Λx1(t, T )y(t)− 1

2
γ2

1Φ(t){Λ2(t, T )− Λ2(t, x1)}
)
(91)
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A.2.3 more general case t < x1 < T

In general we will need
∫ T
xa
f(t, u)du where T < xa+1, therefore restrict T ∈ [xa, xa+1] and t < x1, HJM

result:

f(t, T ) = f(0, T ) +

∫ t

0
σ(s, T )

∫ T

s
σ(s, u)duds+

∫ t

0
σ(s, T )dW (s)

= f(0, T ) +

∫ t

0

n∑
i=1

I{i≤A(s,T )}χ(s)φ(T )γi

∫ T

s

n∑
j=1

I{j≤A(s,u)}χ(s)φ(u)γjduds

+

∫ t

0

n∑
i=1

I{i≤A(s,T )}χ(s)φ(T )γidW (s)

= f(0, T ) +

∫ t

0
χ(s)φ(T )

a∑
i=1

γi

∫ T

s

n∑
j=1

I{j≤A(s,u)}χ(s)φ(u)γjduds+

∫ t

0
χ(s)φ(T )

a∑
i=1

γidW (s)

Now ∫ T

s

n∑
j=1

I{j≤A(s,u)}χ(s)φ(u)γjdu = χ(s)

n∑
j=1

γj

∫ T

s
I{j≤A(s,u)}φ(u)du (92)

∫ T

s
I{j≤A(s,u)}φ(u)du =

∫ x1

s
I{j≤A(s,u)}φ(u)du+

a−1∑
k=1

∫ xk+1

xk

I{j≤A(s,u)}φ(u)du+

∫ T

xa

I{j≤A(s,u)}φ(u)du

=

a−1∑
k=1

∫ xk+1

xk

I{j≤A(s,u)}φ(u)du+

∫ T

xa

I{j≤A(s,u)}φ(u)du

Therefore:

n∑
j=1

γj

∫ T

s
I{j≤A(s,u)}φ(u)du =

n∑
j=1

γj

a−1∑
k=1

∫ xk+1

xk

I{j≤A(s,u)}φ(u)du+
n∑
j=1

γj

∫ T

xa

I{j≤A(s,u)}φ(u)du

=
a−1∑
j=1

γj

∫ xa

xj

φ(u)du+

a∑
j=1

γj

∫ T

xa

φ(u)du

=
a−1∑
j=1

γj

∫ T

xj

φ(u)du+ γa

∫ T

xa

φ(u)du

=

a∑
j=1

γj

∫ T

xj

φ(u)du
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Therefore:

f(t, T ) = f(0, T ) +

∫ t

0
χ(s)φ(T )

a∑
i=1

γi

∫ T

s

n∑
j=1

I{j≤A(s,u)}χ(s)φ(u)γjduds+

∫ t

0
χ(s)φ(T )

a∑
i=1

γidW (s)

= f(0, T ) +

∫ t

0
χ(s)φ(T )

a∑
i=1

γiχ(s)

a∑
j=1

γj

∫ T

xj

φ(u)duds+

∫ t

0
χ(s)φ(T )

a∑
i=1

γidW (s)

= f(0, T ) +

a∑
i=1

a∑
j=1

γiγj

∫ t

0
χ(s)φ(T )

∫ T

xj

χ(s)φ(u)duds+

a∑
i=1

γi

∫ t

0
χ(s)φ(T )dW (s)

= f(0, T ) +
a∑
i=1

a∑
j=1

γiγj

∫ t

0
σ(s)exp

(∫ s

0
λ(v)dv

)
exp

(
−
∫ T

0
λ(v)dv

)

×
∫ T

xj

σ(s)exp

(∫ s

0
λ(v)dv

)
exp

(
−
∫ u

0
λ(v)dv

)
duds

+

a∑
i=1

γi

∫ t

0
σ(s)exp

(∫ s

0
λ(v)dv

)
exp

(
−
∫ T

0
λ(v)dv

)
dW (s)

= f(0, T ) +
a∑
i=1

a∑
j=1

γiγj

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)∫ T

xj

exp

(
−
∫ u

s
λ(v)dv

)
duds

+

a∑
i=1

γi

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)

= f(0, T ) +

a∑
i=1

a∑
j=1

γiγj

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λxj (s, T )ds

+

a∑
i=1

γi

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)

Let

ya(t) =
a∑
i=1

a∑
j=1

γiγj

∫ t

0
σ2(s)exp

(
−
∫ t

s
λ(v)dv

)
Λxj (s, t)ds

+ exp

(∫ T

t
λ(v)dv

) a∑
i=1

γi

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)

Substitute

a∑
i=1

γi

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s) =

ya(t)−
∑a

i=1

∑a
j=1 γiγj

∫ t
0 σ

2(s)exp

(
−
∫ t
s λ(v)dv

)
Λxj (s, t)ds

exp

(∫ T
t λ(v)dv

)
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f(t, T ) = f(0, T ) +
a∑
i=1

a∑
j=1

γiγj

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λxj (s, T )ds

+

a∑
i=1

γi

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)

= f(0, T ) + exp

(
−
∫ T

t
λ(v)dv

)
ya(t) +

a∑
i=1

a∑
j=1

γiγj

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λxj (s, T )ds

−
a∑
i=1

a∑
j=1

γiγjexp

(
−
∫ T

t
λ(v)dv

)∫ t

0
σ2(s)exp

(
−
∫ t

s
λ(v)dv

)
Λxj (s, t)ds

= f(0, T ) + exp

(
−
∫ T

t
λ(v)dv

)
y(t) +

a∑
i=1

a∑
j=1

γiγjexp

(
−
∫ T

t
λ(v)dv

)

×
∫ t

0
σ2(s)

{
exp

(∫ T

t
λ(v)dv

)
exp

(
−
∫ T

s
λ(v)dv

)
Λxj (s, T )− exp

(
−
∫ t

s
λ(v)dv

)
Λxj (s, t)

}
ds

= f(0, T ) + exp

(
−
∫ T

t
λ(v)dv

)
ya(t) +

a∑
i=1

a∑
j=1

γiγjexp

(
−
∫ T

t
λ(v)dv

)

×
∫ t

0
σ2(s)exp

(
−
∫ t

s
λ(v)dv

){
Λxj (s, T )− Λxj (s, t)

}
ds

= f(0, T ) + exp

(
−
∫ T

t
λ(v)dv

)
ya(t)

+
a∑
i=1

a∑
j=1

γiγjΛ(t, T )exp

(
−
∫ T

t
λ(v)dv

)∫ t

0
σ2(s)exp

(
− 2

∫ t

s
λ(v)dv

)
ds

= f(0, T ) + exp

(
−
∫ T

t
λ(v)dv

)
ya(t) +

a∑
i=1

a∑
j=1

γiγjΦ(t)Λ(t, T )exp

(
−
∫ T

t
λ(v)dv

)
Therefore:∫ T

xa

f(t, u)du =

∫ T

xa

(
f(0, u) + exp

(
−
∫ u

t
λ(v)dv

)
ya(t) +

a∑
i=1

a∑
j=1

γiγjΦ(t)Λ(t, u)exp

(
−
∫ u

t
λ(v)dv

))
du

=

∫ T

xa

f(0, u)du+ ya(t)

∫ T

xa

exp

(
−
∫ u

t
λ(v)dv

)
du

+

a∑
i=1

a∑
j=1

γiγjΦ(t)

∫ T

xa

Λ(t, u)exp

(
−
∫ u

t
λ(v)dv

)
du

=

∫ T

xa

f(0, u)du+ Λxa(t, T )ya(t) +

a∑
i=1

a∑
j=1

γiγjΦ(t)

∫ T

xa

Λ(t, u)dΛ(t, u)

=

∫ T

xa

f(0, u)du+ Λxa(t, T )ya(t) +
1

2

a∑
i=1

a∑
j=1

γiγjΦ(t){Λ2(t, T )− Λ2(t, xa)}
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De�ne η(t) = min{k|xk > t}, now:

∫ T

t
f(t, u)du =

∫ xη(t)

t
f(t, u)du+

∫ T

xη(T )−1

f(t, u)du+

η(T )−2∑
k=η(t)

∫ xk+1

xk

f(t, u)du

=

∫ T

t
f(0, u)du+ Λxη(T )−1

(t, T )yxη(T )−1
(t)

+
1

2

xη(T )−1∑
i=1

xη(T )−1∑
j=1

γiγjΦ(t){Λ2(t, T )− Λ2(t, xη(T )−1)}

+

η(T )−2∑
k=η(t)

(
Λxk(t, xk+1)yk(t) +

1

2

k∑
i=1

k∑
j=1

γiγjΦ(t){Λ2(t, xk+1)− Λ2(t, xk)}
)

Therefore, the bond price is given by

B(t, T ) = exp

(
−
∫ T

t
f(t, u)du

)
=
B(0, T )

B(0, t)
exp

(
Λxη(T )−1

(t, T )yxη(T )−1
(t) +

1

2

xη(T )−1∑
i=1

xη(T )−1∑
j=1

γiγjΦ(t){Λ2(t, T )− Λ2(t, xη(T )−1)}

+

η(T )−2∑
k=η(t)

(
Λxk(t, xk+1)yk(t) +

1

2

k∑
i=1

k∑
j=1

γiγjΦ(t){Λ2(t, xk+1)− Λ2(t, xk)}
))

A.2.4 general case t < T

In general we will need
∫ T
xa
f(t, u)du where T < xa+1, therefore restrict T ∈ [xa, xa+1] and t < T . De�ne

η(t) = min{b|xb ≥ t}, now HJM result:

f(t, T ) = f(0, T ) +

∫ t

0
σ(s, T )

∫ T

s
σ(s, u)duds+

∫ t

0
σ(s, T )dW (s)

= f(0, T ) +

∫ t

xη(t)−1

σ(s, T )

∫ T

s
σ(s, u)duds+

η(t)−2∑
b=0

∫ xb+1

xb

σ(s, T )

∫ T

s
σ(s, u)duds

+

∫ t

xη(t)−1

σ(s, T )dW (s) +

η(t)−2∑
b=0

∫ xb+1

xb

σ(s, T )dW (s) (93)
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Therefore, in general we need to solve
∫ t
xb
σ(s, T )

∫ T
s σ(s, u)duds and

∫ t
xb
σ(s, T )dW (s) where t ∈ [xb, xb+1].

Now: ∫ t

xb

σ(s, T )dW (s) =

∫ t

xb

n∑
i=1

I{i≤A(s,T )}χ(s)φ(T )γidW (s)

=

∫ t

xb

χ(s)φ(T )
a−b∑
i=1

γidW (s)

=
a−b∑
i=1

γi

∫ t

xb

σ(s)exp

(∫ s

0
λ(v)dv

)
exp

(
−
∫ T

0
λ(v)dv

)
dW (s)

=
a−b∑
i=1

γi

∫ t

xb

σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)

Also: ∫ t

xb

σ(s, T )

∫ T

s
σ(s, u)duds =

∫ t

xb

n∑
i=1

I{i≤A(s,T )}χ(s)φ(T )γi

∫ T

s

n∑
j=1

I{j≤A(s,u)}χ(s)φ(u)γjduds

=

∫ t

xb

χ(s)φ(T )
a−b∑
i=1

γi

∫ T

s

n∑
j=1

I{j≤A(s,u)}χ(s)φ(u)γjduds

=

∫ t

xb

χ(s)φ(T )
a−b∑
i=1

γiχ(s)
n∑
j=1

γj

∫ T

s
I{j≤A(s,u)}φ(u)duds

Now, implicitly with s ∈ [xb, t]:∫ T

s
I{j≤A(s,u)}φ(u)du =

∫ x1

s
I{j≤A(s,u)}φ(u)du+

a−1∑
k=1

∫ xk+1

xk

I{j≤A(s,u)}φ(u)du+

∫ T

xa

I{j≤A(s,u)}φ(u)du

=
a−1∑
k=b+1

∫ xk+1

xk

I{j≤A(s,u)}φ(u)du+

∫ T

xa

I{j≤A(s,u)}φ(u)du

Therefore:

n∑
j=1

γj

∫ T

s
I{j≤A(s,u)}φ(u)du =

n∑
j=1

γj

a−1∑
k=b+1

∫ xk+1

xk

I{j≤A(s,u)}φ(u)du+
n∑
j=1

γj

∫ T

xa

I{j≤A(s,u)}φ(u)du

=
a−b−1∑
j=1

γj

∫ xa

xb+j

φ(u)du+
a−b∑
j=1

γj

∫ T

xa

φ(u)du

=

a−b−1∑
j=1

γj

∫ T

xb+j

φ(u)du+ γa−b

∫ T

xa

φ(u)du

=
a−b∑
j=1

γj

∫ T

xb+j

φ(u)du
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Therefore: ∫ t

xb

σ(s, T )

∫ T

s
σ(s, u)duds =

∫ t

xb

χ(s)φ(T )
a−b∑
i=1

γiχ(s)
n∑
j=1

γj

∫ T

s
I{j≤A(s,u)}φ(u)duds

=

∫ t

xb

χ(s)φ(T )
a−b∑
i=1

γi

a−b∑
j=1

γj

∫ T

xb+j

χ(s)φ(u)duds

=
a−b∑
i=1

a−b∑
j=1

γiγj

∫ t

xb

χ(s)φ(T )

∫ T

xb+j

χ(s)φ(u)duds

=
a−b∑
i=1

a−b∑
j=1

γiγj

∫ t

xb

σ(s)exp

(∫ s

0
λ(v)dv

)
exp

(
−
∫ T

0
λ(v)dv

)

×
∫ T

xb+j

σ(s)exp

(∫ s

0
λ(v)dv

)
exp

(
−
∫ u

0
λ(v)dv

)
duds

=

a−b∑
i=1

a−b∑
j=1

γiγj

∫ t

xb

σ2(s)exp

(
−
∫ T

s
λ(v)dv

)∫ T

xb+j

exp

(
−
∫ u

s
λ(v)dv

)
duds

=

a−b∑
i=1

a−b∑
j=1

γiγj

∫ t

xb

σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λxb+j (s, T )ds

Rewrite (93):

f(t, T ) = f(0, T ) +

∫ t

0
σ(s, T )

∫ T

s
σ(s, u)duds+

∫ t

0
σ(s, T )dW (s)

= f(0, T ) +

η(t)−2∑
b=0

{∫ xb+1

xb

σ(s, T )

∫ T

s
σ(s, u)duds+

∫ xb+1

xb

σ(s, T )dW (s)

}

+

∫ t

xη(t)−1

σ(s, T )

∫ T

s
σ(s, u)duds+

∫ t

xη(t)−1

σ(s, T )dW (s)

= f(0, T ) +

η(t)−2∑
b=0

{ a−b∑
i=1

a−b∑
j=1

γiγj

∫ xb+1

xb

σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λxb+j (s, T )ds

+
a−b∑
i=1

γi

∫ xb+1

xb

σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)

}

+

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγj

∫ t

xη(t)−1

σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λx(η(t)−1+j)

(s, T )ds

+

a−η(t)+1∑
i=1

γi

∫ t

xη(t)−1

σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)
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Let

ya(t) =

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγj

∫ t

xη(t)−1

σ2(s)exp

(
−
∫ t

s
λ(v)dv

)
Λx(η(t)−1+j)

(s, t)ds

+ exp

(∫ T

t
λ(v)dv

) a−η(t)+1∑
i=1

γi

∫ t

xη(t)−1

σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)

Substitute

a−η(t)+1∑
i=1

γi

∫ t

xη(t)−1

σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)

=

ya(t)−
∑(a−η(t)+1)

i=1

∑(a−η(t)+1)
j=1 γiγj

∫ t
xη(t)−1

σ2(s)exp

(
−
∫ t
s λ(v)dv

)
Λx(η(t)−1+j)

(s, t)ds

exp

(∫ T
t λ(v)dv

)
De�ne

Φ(u, t) =

∫ t

u
σ2(s)exp

(
− 2

∫ t

s
λ(v)dv

)
ds (94)

Therefore

a−b∑
i=1

a−b∑
j=1

γiγj

∫ xb+1

xb

σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λxb+j (s, T )ds+

a−b∑
i=1

γi

∫ xb+1

xb

σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)

= exp

(
−
∫ T

xb+1

λ(v)dv

)
ya(xb+1) +

a−b∑
i=1

a−b∑
j=1

γiγj

∫ xb+1

xb

σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λxb+j (s, T )ds

−
a−b∑
i=1

a−b∑
j=1

γiγjexp

(
−
∫ T

xb+1

λ(v)dv

)∫ xb+1

xb

σ2(s)exp

(
−
∫ xb+1

s
λ(v)dv

)
Λxb+j (s, xb+1)ds

= exp

(
−
∫ T

xb+1

λ(v)dv

)
ya(xb+1) +

a−b∑
i=1

a−b∑
j=1

{
γiγjexp

(
−
∫ T

xb+1

λ(v)dv

)

×
[ ∫ xb+1

xb

σ2(s)

{
exp

(∫ T

xb+1

λ(v)dv

)
exp

(
−
∫ T

s
λ(v)dv

)
Λxb+j (s, T )

− exp

(
−
∫ xb+1

s
λ(v)dv

)
Λxb+j (s, xb+1)

}
ds

]}
= exp

(
−
∫ T

xb+1

λ(v)dv

)
ya(xb+1) +

a−b∑
i=1

a−b∑
j=1

γiγjΛ(xb+1, T )exp

(
−
∫ T

xb+1

λ(v)dv

)

×
∫ xb+1

xb

σ2(s)exp

(
− 2

∫ xb+1

s
λ(v)dv

)
ds

= exp

(
−
∫ T

xb+1

λ(v)dv

)
ya(xb+1) +

a−b∑
i=1

a−b∑
j=1

γiγjΦ(xb, xb+1)Λ(xb+1, T )exp

(
−
∫ T

xb+1

λ(v)dv

)
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and

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγj

∫ t

xη(t)−1

σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λx(η(t)−1+j)

(s, T )ds

+

a−η(t)+1∑
i=1

γi

∫ t

xη(t)+1

σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)

= exp

(
−
∫ T

t
λ(v)dv

)
ya(t) +

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγj

∫ t

xη(t)−1

σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λx(η(t)−1+j)

(s, T )ds

−
(a−η(t)+1)∑

i=1

(a−η(t)+1)∑
j=1

γiγjexp

(
−
∫ T

t
λ(v)dv

)∫ t

xη(t)−1

σ2(s)exp

(
−
∫ t

s
λ(v)dv

)
Λx(η(t)−1+j)

(s, t)ds

= exp

(
−
∫ T

t
λ(v)dv

)
ya(t) +

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

{
γiγjexp

(
−
∫ T

t
λ(v)dv

)

×
[ ∫ t

xη(t)−1

σ2(s)

{
exp

(∫ T

t
λ(v)dv

)
exp

(
−
∫ T

s
λ(v)dv

)
Λx(η(t)−1+j)

(s, T )

− exp

(
−
∫ t

s
λ(v)dv

)
Λx(η(t)−1+j)

(s, t)

}
ds

]}

= exp

(
−
∫ T

t
λ(v)dv

)
ya(t) +

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΛ(t, T )exp

(
−
∫ T

t
λ(v)dv

)

×
∫ t

xη(t)−1

σ2(s)exp

(
− 2

∫ t

s
λ(v)dv

)
ds

= exp

(
−
∫ T

t
λ(v)dv

)
ya(t) +

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t)Λ(t, T )exp

(
−
∫ T

t
λ(v)dv

)
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Therefore:

f(t, T ) = f(0, T ) +

η(t)−2∑
b=0

{ a−b∑
i=1

a−b∑
j=1

γiγj

∫ xb+1

xb

σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λxb+j (s, T )ds

+

a−b∑
i=1

γi

∫ xb+1

xb

σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)

}

+

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγj

∫ t

xη(t)−1

σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λx(η(t)−1+j)

(s, T )ds

+

a−η(t)+1∑
i=1

γi

∫ t

xη(t)−1

σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)

= f(0, T ) +

η(t)−2∑
b=0

{
exp

(
−
∫ T

xb+1

λ(v)dv

)
ya(xb+1)

+
a−b∑
i=1

a−b∑
j=1

γiγjΦ(xb, xb+1)Λ(xb+1, T )exp

(
−
∫ T

xb+1

λ(v)dv

)}

+ exp

(
−
∫ T

t
λ(v)dv

)
ya(t) +

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t)Λ(t, T )exp

(
−
∫ T

t
λ(v)dv

)

= f(0, T ) +

η(t)−2∑
b=0

exp

(
−
∫ T

xb+1

λ(v)dv

)
ya(xb+1) + exp

(
−
∫ T

t
λ(v)dv

)
ya(t)

+

η(t)−2∑
b=0

a−b∑
i=1

a−b∑
j=1

γiγjΦ(xb, xb+1)Λ(xb+1, T )exp

(
−
∫ T

xb+1

λ(v)dv

)

+

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t)Λ(t, T )exp

(
−
∫ T

t
λ(v)dv

)
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Therefore:∫ T

xa

f(t, u)du =

∫ T

xa

(
f(0, u) +

η(t)−2∑
b=0

exp

(
−
∫ u

xb+1

λ(v)dv

)
ya(xb+1) + exp

(
−
∫ u

t
λ(v)dv

)
ya(t)

+

η(t)−2∑
b=0

a−b∑
i=1

a−b∑
j=1

γiγjΦ(xb, xb+1)Λ(xb+1, u)exp

(
−
∫ u

xb+1

λ(v)dv

)

+

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t)Λ(t, u)exp

(
−
∫ u

t
λ(v)dv

))
du

=

∫ T

xa

f(0, u)du+

η(t)−2∑
b=0

ya(xb+1)

∫ T

xa

exp

(
−
∫ u

xb+1

λ(v)dv

)
du+ ya(t)

∫ T

xa

exp

(
−
∫ u

t
λ(v)dv

)
du

+

η(t)−2∑
b=0

a−b∑
i=1

a−b∑
j=1

γiγjΦ(xb, xb+1)

∫ T

xa

Λ(xb+1, u)exp

(
−
∫ u

xb+1

λ(v)dv

)
du

+

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t)

∫ T

xa

Λ(t, u)exp

(
−
∫ u

t
λ(v)dv

)
du

=

∫ T

xa

f(0, u)du+

η(t)−2∑
b=0

Λxa(xb+1, T )ya(xb+1) + Λxa(t, T )ya(t)

+

η(t)−2∑
b=0

a−b∑
i=1

a−b∑
j=1

γiγjΦ(xb, xb+1)

∫ T

xa

Λ(xb+1, u)dΛ(xb+1, u)

+

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t)

∫ T

xa

Λ(t, u)dΛ(t, u)

=

∫ T

xa

f(0, u)du+

η(t)−2∑
b=0

Λxa(xb+1, T )ya(xb+1) + Λxa(t, T )ya(t)

+
1

2

η(t)−2∑
b=0

a−b∑
i=1

a−b∑
j=1

γiγjΦ(xb, xb+1){Λ2(xb+1, T )− Λ2(xb+1, xa)}

+
1

2

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t){Λ2(t, T )− Λ2(t, xa)}
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Now ∫ T

t
f(t, u)du =

∫ xη(t)

t
f(t, u)du+

∫ T

xη(T )−1

f(t, u)du+

η(T )−2∑
k=η(t)

∫ xk+1

xk

f(t, u)du

=

∫ T

t
f(0, u)du+

η(t)−2∑
b=0

Λxη(T )−1
(xb+1, T )yη(T )−1(xb+1) + Λxη(T )−1

(t, T )yη(T )−1(t)

+
1

2

η(t)−2∑
b=0

η(T )−1−b∑
i=1

η(T )−1−b∑
j=1

γiγjΦ(xb, xb+1){Λ2(xb+1, T )− Λ2(xb+1, xη(T )−1)}

+
1

2

η(T )−η(t)∑
i=1

η(T )−η(t)∑
j=1

γiγjΦ(xη(t)−1, t){Λ2(t, T )− Λ2(t, xη(T )−1)}

+

η(T )−2∑
k=η(t)

[ η(t)−2∑
b=0

Λxk(xb+1, xk+1)yk(xb+1) + Λxk(t, xk+1)yk(t)

+
1

2

η(t)−2∑
b=0

k−b∑
i=1

k−b∑
j=1

γiγjΦ(xb, xb+1){Λ2(xb+1, xk+1)− Λ2(xb+1, xk)}

+
1

2

(k−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t){Λ2(t, xk+1)− Λ2(t, xk)}
]

=

∫ T

t
f(0, u)du

+

η(t)−2∑
b=0

Λxη(T )−1
(xb+1, T )yη(T )−1(xb+1)

+ Λxη(T )−1
(t, T )yη(T )−1(t)

+

η(T )−2∑
k=η(t)

η(t)−2∑
b=0

Λxk(xb+1, xk+1)yk(xb+1)

+

η(T )−2∑
k=η(t)

Λxk(t, xk+1)yk(t)

+
1

2

η(t)−2∑
b=0

η(T )−1−b∑
i=1

η(T )−1−b∑
j=1

γiγjΦ(xb, xb+1){Λ2(xb+1, T )− Λ2(xb+1, xη(T )−1)}

+
1

2

η(T )−η(t)∑
i=1

η(T )−η(t)∑
j=1

γiγjΦ(xη(t)−1, t){Λ2(t, T )− Λ2(t, xη(T )−1)}

+

η(T )−2∑
k=η(t)

1

2

η(t)−2∑
b=0

k−b∑
i=1

k−b∑
j=1

γiγjΦ(xb, xb+1){Λ2(xb+1, xk+1)− Λ2(xb+1, xk)}

+

η(T )−2∑
k=η(t)

1

2

(k−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t){Λ2(t, xk+1)− Λ2(t, xk)}
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Therefore, the bond price is given by

B(t, T ) = exp

(
−
∫ T

t
f(t, u)du

)

=
B(0, T )

B(0, t)
exp

(
−
η(t)−2∑
b=0

Λxη(T )−1
(xb+1, T )yη(T )−1(xb+1)

− Λxη(T )−1
(t, T )yη(T )−1(t)

−
η(T )−2∑
k=η(t)

η(t)−2∑
b=0

Λxk(xb+1, xk+1)yk(xb+1)

−
η(T )−2∑
k=η(t)

Λxk(t, xk+1)yk(t)

− 1

2

η(t)−2∑
b=0

η(T )−1−b∑
i=1

η(T )−1−b∑
j=1

γiγjΦ(xb, xb+1){Λ2(xb+1, T )− Λ2(xb+1, xη(T )−1)}

− 1

2

η(T )−η(t)∑
i=1

η(T )−η(t)∑
j=1

γiγjΦ(xη(t)−1, t){Λ2(t, T )− Λ2(t, xη(T )−1)}

−
η(T )−2∑
k=η(t)

1

2

η(t)−2∑
b=0

k−b∑
i=1

k−b∑
j=1

γiγjΦ(xb, xb+1){Λ2(xb+1, xk+1)− Λ2(xb+1, xk)}

−
η(T )−2∑
k=η(t)

1

2

(k−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t){Λ2(t, xk+1)− Λ2(t, xk)}
)
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Appendix B The impact of the futures price approximations in the

Gaussian case

Futures market start end Price with MC price 95% ci (2m paths) Di�. (bp)
price approx.

SLV20 (Oct '20) 99.9200 1/10/2020 31/10/2020 99.9220 99.9220 99.9220 99.9220 0.0000
SLX20 (Nov '20) 99.9250 1/11/2020 30/11/2020 99.9295 99.9296 99.9294 99.9297 0.0085
SLZ20 (Dec '20) 99.9250 1/12/2020 31/12/2020 99.9242 99.9241 99.9238 99.9243 -0.0133
SLF21 (Jan '21) 99.9150 1/01/2021 31/01/2021 99.9198 99.9199 99.9197 99.9202 0.0124
SLG21 (Feb '21) 99.9300 1/02/2021 28/02/2021 99.9320 99.9320 99.9316 99.9324 0.0000
SLH21 (Mar '21) 99.9350 1/03/2021 31/03/2021 99.9356 99.9352 99.9348 99.9356 -0.0373
SLJ21 (Apr '21) 99.9350 1/04/2021 30/04/2021 99.9393 99.9392 99.9388 99.9397 -0.0101
SLK21 (May '21) 99.9350 1/05/2021 31/05/2021 99.9300 99.9299 99.9294 99.9304 -0.0078
SLM21 (Jun '21) 99.9350 1/06/2021 30/06/2021 99.9347 99.9337 99.9331 99.9342 -0.0986
SLN21 (Jul '21) 99.9400 1/07/2021 31/07/2021 99.9400 99.9398 99.9391 99.9404 -0.0248
SLQ21 (Aug '21) 99.9450 1/08/2021 31/08/2021 99.9400 99.9392 99.9386 99.9399 -0.0778
SLU21 (Sep '21) 99.9400 1/09/2021 30/09/2021 99.9400 99.9397 99.9390 99.9404 -0.0301
SLV21 (Oct '21) 99.9400 1/10/2021 31/10/2021 99.9400 99.9389 99.9382 99.9397 -0.1067

Futures market start end Price with MC price 95% ci (2m paths) Di�. (bp)
price approx.

SQU20 (Sep '20) 99.9275 16/09/2020 15/12/2020 99.9252 99.9253 99.9252 99.9254 0.0049
SQZ20 (Dec '20) 99.9300 16/12/2020 16/03/2021 99.9255 99.9251 99.9248 99.9255 -0.0367
SQH21 (Mar '21) 99.9350 17/03/2021 15/06/2021 99.9346 99.9344 99.9339 99.9348 -0.0280
SQM21 (Jun '21) 99.9350 16/06/2021 21/09/2021 99.9399 99.9390 99.9384 99.9397 -0.0857
SQU21 (Sep '21) 99.9350 15/09/2021 21/12/2021 99.9400 99.9380 99.9372 99.9388 -0.1991
SQZ21 (Dec '21) 99.9450 15/12/2021 15/03/2022 99.9500 99.9468 99.9459 99.9477 -0.3142
SQH22 (Mar '22) 99.9750 16/03/2022 21/06/2022 99.9704 99.9665 99.9655 99.9675 -0.3932
SQM22 (Jun '22) 99.9650 15/06/2022 20/09/2022 99.9700 99.9647 99.9636 99.9658 -0.5277

Table 3: Approximate vs. exact futures prices based on market conditions in September 2020.

This table compares three sets of futures prices, using the empirically �tted model parameters:

1. Market prices observed in September 2020,

2. the �calibrated prices� of the futures contracts used in our analysis, i.e., the prices calculated under
the approximations (47) and (48),

3. and the corresponding prices calculated without making these assumptions (using Monte Carlo
simulation).

As the �nal column of the table shows, the impact of the approximations (47) and (48) is negligible, i.e.,
the di�erence between the prices calculated under these approximations and the Monte Carlo estimate of
the exact model price is well less than one basis point in all cases.
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Figure 19: average daily drift adjustment for t = 3 (black) and t = 1.5 (red)

Appendix C The impact of the risk�neutral HJM drift term

In this section we use the results obtained using the calibration results, Eq. (61) and Eq. (66) to calculate
the drift component of the Gaussian version of the model as shown in Eq. (4). We demonstrate that
including the drift would have a negligible impact on the state estimates as well as the RMSE results.

The �rst step is to estimate σj from the realised variance of the factor states shown in Fig. ??. The
estimated σj is then used to calculate the drift component in Eq. (61) for various values of t and T in a
three�factor model.

The results focus on the time periods for the data used in this paper (t = 3 and T = 2) as well as
Skov and Skovmand (2021) (t = 1.5 and T = 2). The average daily drift adjustment is shown in Fig.
19 as a function of the distance between t and T measured in the number of FOMC meetings. The drift
adjustment at most amounts to less than 0.01 basis points per day. This is well below the 0.25 basis
point minimum tick bid/ask spread of the futures. If the estimated states were adjusted for the drift, this
amount would have a negligible impact on the daily increments shown in Fig. 19 and therefore would not
change the σj estimate.

The drift adjustment term structure at the end of each observation period is shown in Fig. 20.
Unsurprisingly, the risk�neutral drift term structure is piecewise constant in T . The term structure does
suggest that over time the drift adjustment accumulates to a signi�cant amount, enough to impact the
RMSE results. However, although there is some gradient in the sections between FOMC meetings, the
shape of the term structure is dominated by the increases on FOMC meeting dates. Therefore the daily
adjustments, which as argued would not impact the state estimates, would remove most of the accumulated
drift leaving only the negligible gradient in between FOMC meetings.
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Figure 20: drift termstructure for t = 3(black) and t = 1.5
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