
How Heterogeneity Drives the Yield, Correlation, and

Volatility of Oil and Stock

Pengda An and Tao Li∗

August 20, 2023

Abstract

We explore the effects of households’ heterogeneity on the crude oil, stock, and

bond markets in an equilibrium model. The asset prices, volatilities, and correla-

tions admit closed-form solutions. The key parts of all the asset yields can be ex-

plained by different weighted averages of the expected growth rates of goods or con-

sumption portions among households, and the time-varying movements of all these

voatilities and correlations can be well captured by differences between two certain

sorts of weight averages, and all these weights depend on households’ heterogeneous

beliefs and preferences. The model estimation shows excellent performance in fit-

ting three markets, including term structures of interest rates and crude oil futures,

volatilities, and the correlation between crude oil futures and stock. Our model can

explain many empirical regularities, including the time-varying correlation-volatility

of oil and stock, decreasing and convex volatility term structure of crude oil futures,

and the V-shaped relationship between the futures volatility and the slope of the

futures curve.
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1 Introduction

The crude oil market had experienced a massive boom and bust from 2004 to 2009.

Since 2008 the correlation between crude oil futures and S&P 500 stock index jumped up

sharply, while before that, the correlation mostly fluctuated around zero (see Figure 3).

These phenomena, along with similar patterns in other commodity futures, have raised

considerable interest in understanding the joint dynamics of commodity futures and stock

markets and the determinant factors for such dynamics.

Some empirical studies attribute the increased comovements of commodity futures and

stock markets to the financialization of commodities, referring to the influx of institutional

investors into the commodity futures markets, and others emphasize the role of specula-

tion.1 However, both interpretations may be driven by more primitive economic factors,

such as preferences and beliefs. This paper investigates how an equilibrium model with

heterogeneity in preferences and beliefs can generate the observed dynamics of the crude

oil futures and stock prices and other critical empirical regularities of term structures of

interest rates and crude oil futures prices and volatilities.

We adopt a pure-exchange equilibrium model with a commodity, crude oil, and a

generic consumption good. Households are heterogeneous in preferences (time, crude oil,

and consumption good) and beliefs about the growth rates of crude oil and the consump-

tion good supplies. All households observe the supplies with incomplete but symmetric

information; they learn different expected growth rates of the supplies based on their own

beliefs about how the expected growth rates evolve. When the households’ models of

the expected growth rates are different enough, they will never agree. Such households’

estimated growth rates of the fundamentals are generally different.

Households have both time and good additive logarithm utilities. Taking the generic

consumption good as the numeraire, the prices of stock, the claim to the stream of the

consumption good, crude oil, and bonds are the consumption-weighted households’ evalu-

1Tang and Xiong (2012) find that the growing index investment in commodity markets promotes the
comovement between indexed commodities and stocks. Prices of non-energy commodity futures have
shown to be increasingly correlated with oil prices, especially for those within the index group. Other
empirical studies, such as Silvennoinen and Thorp (2013) and Singleton (2013), also support this view.
However, several studies (Hamilton and Wu, 2015; Fattouh, Kilian and Mahadeva, 2013; Irwin and
Sanders, 2011) test the influence of speculation and weaken the explanatory power of financialization.
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ations. Households’ heterogeneity in beliefs makes the consumption distributions among

households stochastic. Thus, our equilibrium model generates stochastic volatilities and

correlation of stock and crude oil, which are functions of the differences in households’

estimated growth rates of the fundamentals, together with the consumption distributions.

To estimate, we try to fit asset prices, volatilities, and correlations with data in stock,

bond, and oil futures markets over time. In detail, the time-series include the dividend

yield of S&P 500 index, volatilities and correlation between the prices of 1-month oil

futures and S&P 500 index, the term structures of Treasury yields, convenience yields

of oil futures,2 and volatilities of oil futures, all covering six maturities, through 3 and 6

months, 1, 2, 3, 5 years. Compared with methods to match the moments between data

and model, our estimation provides estimated state variables that generate the time-

varying prices, volatilities, and correlation over time. The model performs very well in

fitting the data. It captures the key time-series features of its empirical counterparts.

Among the time-series that the model tries to match, most of the R2s are well-above

90% with an average of 97%. In addition to capturing the time-series properties of asset

prices, volatilities, and correlations, our model also sheds light on the term structures of

interest rates, oil convenience yields and their volatilities, and the relationship between

oil volatility and the slopes of the oil futures curve.

In our model, heterogeneity in beliefs and preferences generates fluctuation in wealth

and thus in relative consumption, amplifying the volatilities and correlations among stock,

bond, and oil futures and drives them variating over time. Without disagreement, both

volatilities and correlations are constant, and volatilities are much smaller than those

observed in the data. Disagreement leads to different investments and consumption, and

different preferences lead to different evaluations of investment opportunities. Since asset

prices are consumption-weighted individual evaluations, heterogeneous beliefs and relative

consumptions generate stochastic volatilities and correlations. For example, if a household

with higher evaluation gets wealthier and thus consumes more, it would cause extra asset

price variation due to the relative consumption changes.

2Because the model yields a closed-form solution of the forward price, we ignore the difference between
the futures and forward prices (see the support from Geman (2009)), and use the futures data in the
estimation.
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Convenience yield in our model positively depends on a weighted average of house-

holds’ oil expected growth rates. Because the weight is each household’s relative oil

consumption, we can use this weighted average as a proxy about how the market con-

cerns crude oil’s future availability. Higher future availability would decrease the time

value of the forward contract. This explanation echos that of Casassus, Liu and Tang

(2013), and they find that the convenience yield of a commodity depends on its relative

scarcity to other related commodities.

Moreover, we show how the slope of the term structure of convenience yields varies

over time. We find that the slope of the convenience yield curve approximately negatively

depends on the oil-consumption-weighted average of the beliefs about expected oil growth

rate, adjusted by the speed of mean reversion. Suppose the weighted growth rate is

relatively high, meaning that the near-future oil availability is higher than the long-run

mean level. The current high expected growth rate will fall over time because of the

mean-reverting property, so the convenience yield curve is decreasing with maturity in

this case. On the other hand, the weighted expected oil growth rate is relatively low, then

the term structure of convenience yields is upward-sloping.

Our model can also generate the Samuelson (1965) effect, that is, commodity futures

price typically exhibits a declining volatility term structure. In our model, disagreement

about oil growth is a major source of futures volatility. The Samuelson effect follows as

the disagreement tends to decline over time. Routledge, Seppi and Spatt (2000) develop

an equilibrium model and show that the Samuelson effect violation can happen in extreme

conditions like high inventory. The other two papers about the volatility term structure

are Hitzemann (2015) and Khan, Khokher and Simin (2017). Khan, Khokher and Simin

(2017) show that the negative slope of volatility term structure comes from the mean-

reverting of supply. However, we find that it is not enough to generate the time-varying

slopes of the futures volatility curve. Hitzemann (2015) explains that because the un-

certainty can be adjusted by inventory in the long run, the volatility is smaller in longer

maturities, but they only use the model to match the futures volatility within one-year

maturity. In contrast, we employ a full spectrum of futures maturities available and fit

the volatility term structure over time. For example, the conditional slope of the volatility
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curve depends on the degree of disagreement.

The previous discussions imply our model also generates the V-shape relationship

between the volatility futures prices and the slopes of the futures price curve since high

disagreement tends to generate steep futures price curves. This V-shape relation are

documented by Kogan, Livdan and Yaron (2009) and Carlson, Khokher and Titman

(2007). Because the futures price curve contains both term structures of yields and

convenience yields, we further study how the two term-structures contribute to the V-

shape relation. Our empirical study shows that the information in the bond market does

not play any role in explaining the V-shape relationship; meanwhile, the level and slope

of the convenience yield curve significantly determine the V-shape relationship, matching

the negative and positive sides of the V-shaped curve, respectively.

This paper adds to the literature on commodity price dynamics, especially about

crude oil. There are two main strands in the theoretical literature, and one builds on

the assumption of long-run risk (Ready, 2018; Hitzemann, 2015), the other is based

on affine factor models (Casassus and Collin-Dufresne, 2005; Chiang, Hughen and Sagi,

2015; Khan, Khokher and Simin, 2017; Heath, 2019). Concerning the characteristics of

the commodity market, Sockin and Xiong (2015) and Goldstein and Yang (2015) capture

the information friction, and Routledge, Seppi and Spatt (2000) and Khan, Khokher and

Simin (2017) build on inventory. Both Ready (2018) and Hitzemann (2015) focus on

macroeconomic shock and long-run risk. Besides, several other studies pay attention to

special constraints in production or trading in the commodity market, such as collateral

constraint (Tang and Zhu, 2016), adjustment cost (Carlson, Khokher and Titman, 2007),

limit to arbitrage (Acharya, Lochstoer and Ramadorai, 2013) and constraint in investment

(Kogan, Livdan and Yaron, 2009; Casassus, Collin-Dufresne and Routledge, 2018; Liu,

Qiu and Tang, 2011).

In recent years, the interactions among different commodity market participants have

become one of the main factors to understand the commodity markets, especially the

debate about financialization. This paper belongs to the literature with heterogeneous

market participants. Our framework in the endowment economy is mostly close to Basak

and Pavlova (2016) and Baker and Routledge (2017). However, our model is different from
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theirs in several aspects. First, consumption in the model of Basak and Pavlova (2016)

only occurs at the end of the economy; ours includes intertemporal consumption. Second,

all investors have the same beliefs in their models, leading to relatively stable asset price

volatilities and correlations. As to the model implications, the correlations in the model

of Basak and Pavlova (2016) are always positive, which is at odds with the data, e.g., we

do see significant negative equity-commodity correlations as depicted in Figure 3. Last,

we rigorously estimate the model to fit time-series data and perform empirical studies

with the estimated model. In contrast, they both use numerical examples to illustrate

some unconditional qualitative implications of their models.

The rest of the paper is organized as follows. Section 2 discusses the model and

its solutions, and the estimation results are reported in Section 3. Section 4 discusses

empirical evidence and model implications, and Section 5 concludes.

2 Model

In this section, we present our model mainly based on the framework of Li (2007) and

Li and Muzere (2010).

2.1 Consumption Good and Commodity

We consider a continuous-time pure exchange economy as a complete market. There

are 2 goods: one is a generic good, e.g., a bundle of many varieties; the other commodity

is crude oil, denoted by δ and h respectively. The supplies of the 2 goods follow the form

below  dδ(t)/δ(t)

dh(t)/h(t)

 =

 µδ(t)

µh(t)

 dt+

 σ⊤
δ

σ⊤
h

 dB(t), (1)

where µδ(t), µh(t) are the mean growth rates or drifts and σδ, σh are constant volatility

vectors, which represent the fundamental risk, and B(t) is a 2-dimensional Brownian

motion defined on some suitable probability space. And we denote the vector µ(t) =

(µδ(t), µh(t))
⊤ and square matrix σ = (σδ, σh)

⊤.
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2.2 Preferences and Beliefs

There are N types of households in the economy. Household i has logarithmic prefer-

ences represented by ∫ ∞

0

e−ρit [log ci(t) + λi log si(t)] dt,

where ρi > 0 is the subjective discount rate, λi ⩾ 0 represents3 the heterogeneity in

consumption of crude oil, ci(t) represents household consumption of the generic good and

si represents the consumption of crude oil. So in preferences, households differ in two

dimensions, subjective discount rate ρ and consumption of commodities λ.

The N households differ not only in preferences but also in their beliefs about the

dynamics of the fundamentals. They all observe the supply δ(t) and h(t) continuously

and agree on the same dynamic pattern in equation (1), where the mean-reverting process

of expected growth rate µ(t) is unobservable. The key difference lies in that they disagree

on the covariance matrix in the dynamics of µ(t). So following standard filtering theory

(e.g., Liptser and Shiryaev, 2013, and see details in Appendix A.1), they learn from the

observed supply and update the dynamics of expected growth rates by

dµ̂i(t) = κi[αi − µ̂i(t)] dt+ Σ̂i dB̂i(t), (2)

based on their beliefs about the dynamic of µ, where we denote by µ̂i(t) = Ei
t [µ(t)] the

conditional expectation based on the information set of (δ, h)⊤, and αi is a two-dimensional

constant vector, and both κi and Σ̂i are two constant square matrices, and B̂i(t) is the

3 To avoid confusion, we explain the use of superscripts and subscripts as follows. There are five
dimensions, households, goods (assets), Brownian motion, maturity and time. The indexes, i and j, are
only used to indicate households, and δ, h for the generic good and the commodity in goods markets
respectively, and all capital letters including D, H, S, C for financial markets, respectively. Notice that
there are three dimensions, households, goods (assets) and Brownian motion, so if any of them appears
alone, we just write it in subscripts, such as µ̂i (household i’s expected growth rates of supply of both
goods) or σh (the transpose of the second row in σ, which is the volatility vector of crude oil). If there
are two dimensions in a variable, we prefer to set the number of household i as the subscript and the
symbol of good as the superscript in case of misunderstanding i as an exponent sign, except for when t is
included in expectation Ei

t[·], or variables in financial markets such µi
S , µ

i
H . For example, µ̂h

i is household
i’s expected growth rate of the supply of crude oil, and µ̂i

S is household i’s expected growth rate of stock
price. If dimension about Brownian motion is also included, we always put it into the subscript with a
comma as σδ = (σδ,1, σδ,2)

⊤.
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innovation process, such that the observed supply can also be interpreted as

 dδ(t)/δ(t)

dh(t)/h(t)

 = µ̂i(t) dt+ σ dB̂i(t). (3)

This equation shows immediately that

dB̂i(t)− dB̂j(t) = −σ−1 (µ̂i(t)− µ̂j(t)) dt. (4)

Due to the fact that µ is unobservable, households make their consumption and in-

vestment decision based on their filtered probability space as defined by equations (2) and

(3).

2.3 Assets and Commodity Markets

We use the generic consumption as the numeraire, or normalize the price of the generic

good to equal 1. The spot price of crude oil is R(t). In the financial markets, households

can trade a net-zero supply of bonds, stock that claims to the stream of the generic good,

and forward contracts written on crude oil.

The risk-free asset, P (t), evolves according to

dP (t)

P (t)
= r(t) dt,

where r(t) is the instantaneous interest rate, and stock price S(t), under household i’s

beliefs, evolves as4

dS(t) + δ(t) dt = S(t)µi
S(t) dt+ S(t)σS(t) · dB̂i(t),

and similarly, the market value of a forward contract of crude oil C(t) follows

dC(t) = C(t)µi
C(t) dt+ C(t)σC(t) · dB̂i(t),

4Note that the volatility does not vary across different probability measures in our context.
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where µi
S and µi

C are household i’s forecasts of the mean growth rates, and σS and σC are

the volatility vectors of stock and forward contract of crude oil, respectively.

Let µi
A(t) = (µi

S(t), µ
i
C(t))

⊤and σA(t) = (σS(t), σC(t))
⊤, then the following equation

must hold in equilibrium

dB̂i(t)− dB̂j(t) = −σ−1
A (t)

(
µi
A(t)− µj

A(t)
)
dt.

Then, combining this with equation (4) yields

σ−1
A (t)

(
µi
A(t)− µj

A(t)
)
= σ−1 (µ̂i(t)− µ̂j(t)) , (5)

and the price of risk is

θi(t) = σ−1
A (t)

(
µi
A(t)− r(t)1

)
,

therefore, equation (4) implies that

βij(t) ≡ θi(t)− θj(t) = σ−1 (µ̂i(t)− µ̂j(t)) , (6)

and

dB̂i(t)− dB̂j(t) = −βij(t) dt.

These relations must hold in equilibrium.

Given the price of risk, the state price density for household i is then given by

ξi(t) = exp

[
−
∫ t

0

(
r(a) +

1

2
∥θi(a)∥2

)
da−

∫ t

0

θi(a) · dB̂i(a)

]
.

Using equation (6), we have that the ratio of state price density between households is

given by
ξi(t)

ξj(t)
= exp

(
−1

2

∫ t

0

∥βij(a)∥2da−
∫ t

0

βij(a) · dB̂i(a)

)
. (7)

Because of the complete markets in our setup, the equilibrium stochastic discount factor

is unique, and ξi(t) and ξj(t) are merely different in two measures. Our another state

variable ηij(t) is also related with this ratio. Notice that it does not depend on any
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endogenous variables. This observation is very useful to construct the equilibrium.

2.4 Households Optimization

Households choose consumption plans subject to budget constraints to maximize ex-

pected utility. Such a problem is well understood in the literature. Essentially, the

optimization problem can be solved by the martingale approach as follows:

max
{ci(t), si(t)}∞0

Ei

[∫ ∞

0

e−ρit (log ci(t) + λi log si(t)) dt

]
,

subject to a static budget constraint

Ei

[∫ ∞

0

ξi(t) (ci(t) +R(t)si(t)) dt

]
≤ Wi(0),

where Wi(0) is the initial wealth of household i. The trading strategy that finances the

optimal consumption plans can then be found by

Wi(t) =
1

ξi(t)
Ei

t

[∫ ∞

t

ξi(a) (c
∗
i (a) +R(a)s∗i (a)) da

]
. (8)

The first-order conditions for household i are

e−ρit
1

ci(t)
= ψiξi(t), e−ρit

λi
si(t)

= ψiξi(t)R(t), (9)

where ψi is a constant. Substituting these conditions into wealth equation yields

Wi(t) =
1 + λi
ρi

e−ρit

ψiξi(t)
. (10)

Then, these conditions show the propensities of consumption are constant and given by

ci(t)

Wi(t)
=

ρi
1 + λi

and
R(t)si(t)

Wi(t)
=

ρiλi
1 + λi

(11)

for the generic consumption good and crude oil.

Let ηji be the consumption ratios of the generic good between households j and i,
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that is

ηji(t) ≡ cj(t)

ci(t)
= e−(ρj−ρi)t

ψiξi(t)

ψjξj(t)

=
ψi

ψj

exp

[
−
∫ t

0

(
ρj − ρi +

1

2
∥βij(a)∥2

)
da−

∫ t

0

βij(a) · dB̂i(a)

]
. (12)

These consumption ratios, which only depend on exogenous variables, are the key state

variables to characterize the equilibrium. This equation also shows that e(ρj−ρi)tηji(t) is

a martingale under household i’s beliefs, that is

Ei
t

[
e(ρj−ρi)aηji(a)

]
= e(ρj−ρi)tηji(t), ∀a > t.

This martingale property is used in deriving stock and commodity prices.

These results directly show that households’ shares in both the generic consumption

good and crude oil are also exogenous, which are crucial in expressing the equilibrium

asset prices. Household j’s’ consumption weight in the generic good is

cj(t)∑
j cj(t)

=
ηji(t)∑
j ηji(t)

. (13)

and similarly, by equation (9), household j’s consumption weight in crude oil is

sj(t)∑
j sj(t)

=
λjηji(t)∑
j λjηji(t)

. (14)

From now on, we refer these two weights as generic consumption-weight and oil consumption-

weight, respectively.
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2.5 Equilibrium Prices and Volatility

Market clearing conditions5 are

N∑
i=1

ci(t) = δ(t),
N∑
i=1

si(t) = h(t),

and together with the first-order conditions in equation (9) and the definition of ηji, we

can find that the state price density for household i is

ξi(t) =
e−ρit

ψi

×
∑

j ηji(t)

δ(t)
, (15)

and the spot price of crude oil6

R(t) =
λη δ(t)

h(t)
. (16)

Also, the equilibrium interest rate (see Appendix A.2) is given by

r(t) =
(
ρ+ µδ

)
η
− ∥σδ∥2. (17)

Notice that
λjδ(t)

h(t)
and ρj + µ̂δ

j(t)− ∥σδ∥2

are the price of crude oil and interest rate, respectively, in a homogeneous economy in

which only household j exists. Given the consumption weights in equation (13), the price

of crude oil and interest rate in the heterogeneous economy are the consumption-weighted

homogeneous counterparts. The interest rate consists of intertemporal substitution, ρj

from the preference side and µ̂δ
j(t) from the supply side, and precautionary saving caused

by the risk from the supply side, ∥σδ∥2. However, compared with homogeneous economies,

5Storage of crude oil by households and firms only accounts for a small proportion. Data show that
Strategic Petroleum Reserve, which is the main storage of crude oil, is mostly stable, so we ignore the
storage for simplicity.

6We explain the symbol of weighted average for simplicity as follows. All pattern like f(Xa, Y )ω

represents
∑

j ωjf(X
a
j ,Yj)∑

j ωj
, and if η appears in the weight ω, it stands for ηji which varies with j given

a certain fixed i. For example, µλη =
∑

j λjηji(t)µ̂j(t)∑
j λjηji(t)

, and we always omit the t and hat symbol in any

learned variable X̂ for simplicity.
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household heterogeneity provides extra fluctuations to the oil price and interest rate be-

cause the consumption weights are stochastic, driving by heterogeneous beliefs as shown

by equation (12).

The stock price, claimed to the stream of the generic consumption good, is given by

(see Appendix A.3)

S(t) =
1

ξi(t)
Ei

t

[∫ ∞

t

ξi(a)δ(a) da

]
= (1/ρ)η · δ(t). (18)

The stock price is also the consumption-weighted average of the counterparts (δ/ρj) for

homogeneous economies. Without the heterogeneity in preferences, the price-to-dividend

ratio (S/δ), as well as the oil price to relative supply ratio (Rh/δ), becomes constant.

Thus, the disagreements drive these ratios stochastic and fluctuate between 1
maxj ρj

and

1
minj ρj

for the stock and minj λj and maxj λj for crude oil. These endogenous fluctuations

show that household heterogeneity provides extra volatilities for both stock and crude oil

prices.

The closed-form solutions of stock price S(t) and spot price R(t) enable us to compute

the price dynamics. Applying Itô lemma, the stock and commodity spot prices yields the

volatilities (see Appendix A.3)

σS(t) = σδ + σ−1
(
µη/ρ − µη

)
(19a)

σR(t) = σδ − σh + σ−1
(
µλη − µη

)
. (19b)

From these expressions, the variances and covariance of the instantaneous returns for the

stock and spot price of crude oil are then given by ∥σS(t)∥2, ∥σR(t)∥2, and σS(t) · σR(t),

respectively. If households have homogeneous beliefs, then both the volatilities of stock

and crude oil spot prices come from the fundamentals, but empirical results show that

the price volatilities of stock and crude oil are much higher than that of fundamentals.

The heterogeneity in preferences and beliefs can generate excessive volatilities. Based

on equation (19), the extra volatile components are derived from the different weighted

averages of the households’ heterogeneous beliefs between the consumption-weighted and
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the valuation-weighted. Furthermore, the heterogeneity in preferences and beliefs also

drives the correlation between stock and crude oil deviated from that implied by the

fundamentals. These volatilities and the correlation are evolving stochastically because

ηji and µj are stochastic.

2.6 Bond, Forward, and Volatilities

There are two kinds of consumption goods in the economy: the generic consumption

and crude oil. Naturally, there are two real bonds, and one pays 1 unit of the generic con-

sumption good; the other pays 1 unit of crude oil. As shown later, the term structures of

these two bonds fully characterize the term structure of the forward prices or convenience

yields of crude oil. Because we use the generic consumption as the numeraire, the price

of a zero-coupon bond that pays 1 unit of the generic consumption good or crude oil at

T is given by

P (t, T ) =
1

ξi(t)
Ei

t [ξi(T )] or Pc(t, T ) =
1

R(t)ξi(t)
Ei

t [ξi(T )R(T )] ,

respectively, where the price for crude oil bond is expressed in the units of crude oil.

Due to the affine structure of each household’s model (Duffie and Kan, 1996), the

prices of bond and forward price are (see Appendices A.4)

P (t, T ) = f δ,τη (t) (20a)

Pc(t, T ) = fh,τλη (t), (20b)

where, τ = T − t and for a = δ, h,

fa,τj (t) := F (τ, µ̂a
j (t)) = exp

[
− baj τ −

1− e−κa
j τ

κaj

(
µ̂a
j (t)− γaj (τ)

)]
(21)

and

baj = ρj + γaj (0)− ∥σa∥2, γaj (τ) = αa
j −

Σ̂a
j · σa
κaj

−
∥Σ̂a

j∥2

4κaj
2 ·
(
3− e−κa

j τ
)
.
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The bond price measured in the generic consumption (crude oil) is the generic (crude

oil) consumption-weighted average of that in the homogeneous economies, as F (T − t, µ̂δ
j)

(F (T − t, µ̂h
j )) is the bond price in a homogeneous economy with household j only. The

bond prices in any of the homogeneous economies form a one-factor Gaussian term struc-

ture of interest rates. However, the term structure of interest rates in the heterogeneous

economy is no longer admitted into the affine structure due to stochastic consumption

weights.

The forward price is determined by

1

ξi(t)
Ei

t {ξi(T )[R(T )−H(t, T )]} = 0,

that is, the forward contract worths zero at initiation. Therefore, the forward price is

given by

H(t, T ) =
R(t)

P (t, T )
· 1

R(t)ξi(t)
Ei

t [ξi(T )R(T )] = R(t) · Pc(t, T )

P (t, T )
. (22)

Thus, the forward price of crude oil is the price of a bond for receiving 1 unit of crude oil

measured in the generic consumption divided by the price of a bond for receiving 1 unit

the generic consumption. The impact of heterogeneity comes through the two bonds and

the spot crude price.

A direct calculation show the volatility vector of Treasury yield σy(t, T ) as (see Ap-

pendix A.5),

σy(t, T ) =
1

τ
σ−1
(
µη − µηfδ,τ

)
+

(
1− e−κδτ

κδτ
Σδ

)
ηfδ,τ

, (23)

and the forward price volatility vector σH(t, T ) as (see Appendix A.5),

σH(t, T ) = σδ−σh+σ−1
(
µληfh,τ

−µηfδ,τ

)
+

(
1− e−κδτ

κδ
Σδ

)
ηfδ,τ

−
(
1− e−κhτ

κh
Σh

)
ληfh,τ

,

(24)

where τ = T − t. Similar to the spot price, we can then compute the volatility of

crude forward price and its correlations with the stock price as ∥σH(t, T )∥ and σH(t, T ) ·

σS(t)/∥σH(t, T )∥/∥σS(t)∥. By the fact that F (0, ·) = 1, we have σH(t, t) = σR(t). In
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addition to the differences in beliefs, the forward price volatility also depends on the

volatilities of households’ learnings about the growth rates of the aggregate supplies.

3 Model Estimation

To investigate how well the model can explain the data and what insights the model

can provide, we estimate a version of the model that consists of three households.7 We

use the S&P 500 stock index as the stock that claims to the generic consumption good,

and crude oil futures as the model’s forward contracts.8

3.1 Data

In the estimation, we try to match three blocks of data with their counterparts in the

model. The first block consists of four time-series from the stock and crude oil futures

markets, including dividend yield of S&P 500 stock index, annual rolling volatility of

returns of the S&P 500 index, front-month futures of crude oil, and the annual rolling

correlation between the two series. The second block consists of twelve time-series yields,

include Treasury yields and convenience yields of crude oil futures, covering six maturities,

3 and 6 months, 1, 2, 3, and 5 years for both yields. The third block consists of futures

price volatility of crude oil across the same six maturities as for the yields. We get

the Treasury yields from Federal Reserve Economic Data, and the S&P 500 index data

from CRSP. The futures prices for the NYMEX light sweet crude oil contract (CL) are

downloaded from Bloomberg. All the realized volatilities and correlation are calculated in

one-year rolling. Because the oil data starts from April 1983, our time range starts from

March 1984 to December 2019, and we ignore the missing data of long-maturity futures

in early period. All data are annualized at a monthly frequency. To fix the parameter α

and σ, we get the data of annual oil including lease condensate production from EIA as

7Our experiments seem to suggest that a model with two households is not flexible enough to capture
the essential features presented in the data.

8The forward and futures prices should be different in our model, but futures price does not admit
any analytical solution, so we use forward price instead to match the futures price in the data. Also see
Geman (2009) for related empirical evidence.

15



the oil production, and also calculate the annual dividend based on CRSP. Details to set

α and σ will be discussed in next subsection.

3.2 Parameter

The estimated model contains 3 households and 2 assets including S&P 500 stock index

and crude oil futures, denoted as δ and h, respectively. We summarize the model param-

eters and state variables in Table 1. There are 6 types and totally 25 numbers of constant

parameters,9 α, κi, Σ̂i, λ, ρ, σ, in which α and σ are fixed and the other 20 parameters are

obtained by estimation. Here α, κi and Σ̂i are parameters from households’ learnings the

dynamics of the fundamentals and λ, ρ, σ are parameters from households’ preferences.

There are also two sets of state variables, the ratios of the generic consumptions ηji(t)

and the updated growth rates of the fundamentals µ̂i(t). We assume all households agree

on that the long term mean level of consumption and oil supply, equal to the observed

sample means, so we fix αδ = 0.0580 and αh = 0.0094. Given the annual dividend and oil

production data, we fix the volatility matrix as the Cholesky decomposition of the two

time-series’ covariance matrix, in which σδ,1 = 0.0733, σδ,2 = 0.0107, and σh,2 = 0.0618.

3.3 Methodology

One challenge of estimating the heterogeneous belief model is that there is more than

one probability measure, and estimations using different measures lead to different results.

One Brownian motion under one’s belief is not a Brownian motion any more under another

household’s beliefs. Another feature is that the household-specific state variables are

highly correlated with each other. All state variables jointly determine the equilibrium

prices, so the household-specific state variables must be estimated simultaneously with

the implied dynamics. Given these two points, we build our estimation by minimizing the

sum of the squares of the distance between data and model results and maximizing the

joint transition likelihood of households’ filtered growth rates. The joint transition follows

9Σ̂i and σ are assumed to be triangle matrices. The consumption portion of crude oil λ in utility
is just a relative value, so λ1 is set to be 1, and given the freedom of other two, it can still provide
heterogeneity.
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Table 1: List of parameters

demension pattern

constant parameters

αi 2 αi =

(
αδ
i

αh
i

)

κi 2 κi =

[
κδi 0

0 κhi

]

Σ̂i 2× 2 Σ̂i ≜

[
(Σ̂δ

i )
⊤

(Σ̂h
i )

⊤

]
=

[
Σ̂δ

i,1 Σ̂δ
i,2

0 Σ̂h
i,2

]

λ 3× 1 (1, λ2, λ3)
⊤

ρ 3× 1 (ρ1, ρ2, ρ3)
⊤

σ 2× 2 σ ≜

[
σ⊤
δ

σ⊤
h

]
=

[
σδ,1 σδ,2

0 σh,2

]
time-series

η(t) 3× T

 η13(t)

η23(t)

1


µ̂i(t) 2× T

(
µ̂δ
i (t)

µ̂h
i (t)

)
, i = 1, 2, 3

a normal distribution, and we use the means under each household’s probability measure

implied by equations (3) and (4) to compute the likelihood. Note that the variance-

covariance of the joint transition of the estimated growth rates is measure independent.

3.4 Estimation Results and Model Performance

Table 2 reports the estimated parameters and Figure 1 and 2 show the state variables.

Table 3 shows the statistics of these state variables. In detail, the estimation indicates that

household 2 is relatively pessimistic in the consumption supply, also with lower speed of

the fluctuation of the growth rates (κδ and κh). While household 3 is relatively optimistic,

in line with the smallest λ and the highest ρ, and it is reasonable to explain this agent as

17



the speculator, who is most impatient and not want to hold physical crude oil because λ3

is nearly zero.

Table 2: Estimation result of parameters

parameter estimate (SE) parameter estimate (SE)

αδ
1 0.0580 () αh

1 0.0094 ()

αδ
2 0.0580 () αh

2 0.0094 ()

αδ
3 0.0580 () αh

3 0.0094 ()

κδ
1 0.5839 (0.0009) κh

1 1.9885 (0.0317)

κδ
2 0.0729 (0.0004) κh

2 0.4046 (0.0009)

κδ
3 0.0667 (0.0003) κh

3 0.8122 (0.1217)

Σ̂δ
1,1 0.0459 (0.0000) Σ̂δ

2,1 0.0151 (0.0000)

Σ̂δ
1,2 -0.0449 (0.0000) Σ̂δ

2,2 -0.0016 (0.0000)

Σ̂h
1,2 -0.2158 (0.0059) Σ̂h

2,2 -0.1121 (0.0002)

Σ̂δ
3,1 -0.0262 (0.0000) σδ,1 0.0733 -

Σ̂δ
3,2 0.0089 (0.0000) σδ,2 0.0107 -

Σ̂h
3,2 0.1135 (0.0205) σh,2 0.0618 -

λ1 1 - ρ1 0.0050 (0.0000)

λ2 12.9912 (0.0447) ρ2 0.0263 (0.0000)

λ3 0.0619 (0.0018) ρ3 0.1581 (0.0000)

Table 3: Statistics of state variables

µ̂δ
1 µ̂δ

2 µ̂δ
3 µ̂h

1 µ̂h
2 µ̂h

3 η13 η23

Mean -0.0311 -0.0404 -0.0516 0.1063 0.0399 0.0672 0.3432 1.2739

Median -0.0402 -0.0416 -0.0465 0.0745 0.0331 0.0606 0.3745 0.9842

Std. 0.0685 0.0342 0.0336 0.1918 0.1254 0.1208 0.2120 0.9480

Figures 3, 4, and 5 depict the model-implied time-series to their counterparts in the

data, and the time series in each figure match each block explained in Appendix B.1. Table

3 shows the statistics of the estimated state variables and Table 4 shows the analysis of

errors between the model and the data. The three figures and the analysis of errors show
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Figure 1: Households’ expected growth rates µ̂j. This figure plots the three households’ expected
growth rates of the supply of consumption µ̂δ

j and crude oil µ̂h
j .
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Figure 2: Consumption ratios of generic good between households. This figure plots the
consumption ratios of generic good between households, η13 and η23.
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Table 4: Analysis of the pricing errors. This table shows the analysis of the error between data and
model results. The time-series in Panel A (Figure 3), Panel B and C (Figure 4), and Panel D (Figure 5)
correspond the three blocks explained in Appendix B.1. Notice that in Panel C, 1-month futures yield
fluctuates from -50 to 50 nearly. R-square = 1−

∑
T (yt − ŷt)

2/
∑

T y2t , RMSE =
√∑

T (yt − ŷt)2/T , and
here yt, ŷt, as well as RMSE are in the unit of percentage.

A: dividend, volatility and correlation

time-series R-square RMSE (in %)

S&P 500 dividend yield 0.9971 0.1350

volatility of S&P 500 0.9780 2.6215

volatility of 1-month oil futures 0.9825 4.8953

correlation of S&P 500 and 1-month oil futures 0.9920 2.1835

volatility of 3-month zero-coupon bond yield 0.9700 0.1539

correlation of S&P 500 and 3-month bond yield 0.9639 2.8368

B: bond yields C: oil convenience yields

time-series R-square RMSE (in %) time-series R-square RMSE (in %)

3 month 0.9607 0.8902 3 month 0.9036 4.5545

6 month 0.9734 0.7594 6 month 0.9418 3.4879

1 year 0.9838 0.6116 1 year 0.9404 3.0286

2 year 0.9908 0.4918 2 year 0.9250 2.5157

3 year 0.9894 0.5428 3 year 0.9608 1.2689

5 year 0.9824 0.7335 5 year 0.9204 1.3156

D: volatility of bond yields E: volatility of oil futures

time-series R-square RMSE (in %) time-series R-square RMSE (in %)

3 month 0.9700 0.1539 3 month 0.9362 0.2503

6 month 0.9916 0.0759 6 month 0.8716 0.3355

1 year 0.9829 0.1086 1 year 0.8336 0.3658

2 year 0.9864 0.1109 2 year 0.9932 2.5532

3 year 0.9884 0.1072 3 year 0.9812 3.8170

5 year 0.9821 0.1379 5 year 0.9703 4.3695

time-series R-square RMSE (in %)

total 0.9731 2.3796
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that the model with heterogeneous in beliefs and preferences indeed greatly captures the

time-series variations in crude oil futures, stock, and bond markets in the past thirty

years. Figure 3 depicts the time-series of the dividend yields of the S&P 500 index,

volatilities of S&P 500 index, and crude oil futures, the correlation between the two, for

the model-implied and observed in the data. As shown by equation (18), the dividend yield

depends on households’ heterogeneous time preferences (subjective discount rates) and

the generic consumption ratios. The consumption ratios vary over time due to households’

different investment portfolios that are caused by heterogeneous beliefs. Thus, dividend

yield fluctuates with the consumption ratios. Since the volatilities of these consumption

ratios ηs are the differences in beliefs βs, dramatic changes of the dividend yields tend to

accompany with dramatic changes of heterogeneous beliefs.

Moreover, equation (19) shows that volatilities of stock and crude futures prices di-

rectly depend on the differences in beliefs, so this is why the rapid fluctuations of dividend

yield and volatilities of stock and crude futures prices happened coincidently, especially in

two periods, around 1987 and 2009. The figure also indicates that the model can match

the correlation between the S&P stock index and the crude oil futures. We delay further

discussions about the comovement of stock and crude oil markets in Section 4.1.

Figure 4 shows that the model fits the term structures of Treasury yields and the

convenience yields of the crude oil futures very well for the whole sample period, with

maturities across 3 and 6 months and 1, 2, 3, and 5 years. As discussed previously, by

equations (20a) and (22), bond prices are the consumption-weighted average of that in

homogeneous economies for both the generic consumption good and the crude oil. The

dynamics of households’ expected growth rates of the fundamentals are one set of the key

determinants for the bond yields and the convenience yields. Recall that the convenience

yields are exactly the yields of bonds that pay 1 unit of the crude oil.

21



85 90 95 00 05 10 15 20

0

1%

2%

3%

4%

5%
S&P 500 dividend yield

85 90 95 00 05 10 15 20

0

0.5

Volatility of S&P 500

85 90 95 00 05 10 15 20

0

0.5

Volatility of 1-month futures of crude oil

85 90 95 00 05 10 15 20

-0.5

0

0.5

1
Correlation of S&P 500 and 1-month futures of crude oil

85 90 95 00 05 10 15 20

0

0.01

0.02

Volatility of 3-month zero-coupon yield

85 90 95 00 05 10 15 20

-0.4

-0.2

0

0.2

Correlation of S&P 500 and 3-month zero-coupon yield

model data

Figure 3: Equity and crude futures markets. This figure plots model-implied results and corre-
sponding data of four time-series, including the dividend yield of the S&P 500 stock index, volatilities of
the S&P 500 index, and the crude oil price respectively, and their correlation. The front-month crude oil
futures is used here. The frequency is monthly, and both volatilities and correlation are annual-rolling
estimates based on daily returns.
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4 Empirical Implications

In this section, we investigate further the empirical implications of our model and

compare them with empirical evidence. First, we discuss further the volatility-correlation

in oil and stock markets. Second, we present how the level and slope of the term structure

of the convenience yield of crude oil vary over different periods. Finally, we investigate

the property of the term structure of futures prices and show the V-shaped relationship

between the volatility and the slope of futures prices.

4.1 Oil Futures and Stock Markets

Figure 3 shows that our model can generate the correlation and volatilities of oil futures

and stock observed in the data. Based on the closed-form solution in equation (19), the

volatilities of assets are decomposed into the constant component from the endowment

process and the time-varying component driven by the disagreements, which play a crucial

role in the time-varying movement of volatilities and correlation between assets.

household 1

household 2

household 3

85 90 95 00 05 10 15 20

0

0.2

0.4

0.6

0.8

1

Figure 6: Households’ proportion of the consumption of generic good. This figure shows the
each household’s proportion of the consumption of generic good.

To figure out the movement of the disagreement among households in detail, Figure

6 shows each household’s proportion of the consumption of the generic good. These

two together provide the heterogeneity in the system. According to equation (19), if

there is no heterogeneity, the volatility in the financial market would just come from the

volatility of fundamental σ, which is constant. The disagreement among households plays

a crucial role in driving the time-varying volatilities of the stock and crude oil futures,
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much higher than the volatility of fundamental. Notice that in Figure 1, the disagreement

on the expected growth rates of crude oil is relatively smaller than that of generic good;

however, because the volatility of the oil supply ∥σh∥ is smaller than the volatility of the

generic good’s supply ∥σδ∥, even a small difference between µ̂h
j can be magnified by σ−1.

Figure 3 has already shown that our model can capture the time-varying volatilities

and correlation between stock and oil markets very well. Comparing Figure 3 with Figure

1, interestingly, we can also find that the heterogeneity captures several famous moments

during the past decades, such as the Black Monday shock in 1987, Kuwait’s Iraqi invasion

around 1990, and the financial crisis in 2009.

4.2 Convenience Yields

Equation (22) indicates that the convenience yield for the crude forward is the yield-

to-maturity of the crude oil bond Pc(t, T ), which is defined as, for τ = T − t,

yc(τ) = − logPc(t, T )

τ

≈ (ρ+ µh)λη − ∥σh∥2 +
τ

2
·
(
κh(αh − µh)− Σh · σh

)
λη

− τ 2

4
· (∥Σh∥2)λη.

(25)

The last expression is the second-order approximation of the convenience yields when τ

is small, showing that the slope of the convenience yield curve is the oil consumption

weighted average of that in homogeneous economies (see Appendix A.6). Figure 4 shows

that the convenience yield is very volatile, and the approximated convenience yield in

equation (25) reveals that the oil consumption-weighted average of the expected growth

rates of oil ∑
j

λjηji(t)∑
j λjηji(t)

µ̂h
j (t) (26)

is the determinant factor of the time-varying convenience yield. Actually this average

expected growth rate represents the market’s expectation of future availability of crude

oil. Suppose that this market’s expectation of growth is higher in a period, the future

supply of oil may become more abundant and thus less valuable. In this case, we would

observe high convenience yields and lower futures prices. Similarly, we would expect low
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convenience yields and high futures prices if the market’s expectation of future growth is

low.

85 90 95 00 05 10 15 20

-0.2

-0.1
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Figure 7: Slope of convenience yield curve. This figure plots the model and data slopes of conve-
nience yield curve, both calculated as the difference between the 6-month and 3-year convenience yields,
slopeyc

(t) = yc(t, t+ 1/2)− yc(t, t+ 1/4).

Table 5: Slope of convenience yield curve. This table shows two regression results. The first
regression checks the model and data slopes of convenience yield curve, both calculated as the difference
between the 6-month and 3-year convenience yields, slopeyc

(t) = yc(t, t+1/2)−yc(t, t+1/4). The second
regression is between the slope of convenience yield curve in data and the implied indicator of the slope
of convenience yield curve based on equation (25).

Estimate t-stat R2

A. slopeyc(t) = β0 + β1 ŝlopeyc(t) + ϵt 0.753

β0 0.0262 10.8

β1 1.7649 26.04

B. slopeyc(t) = β0 −
∑

j λjηji(t)κ
h
j µ̂

h
j (t)∑

j λjηji(t)
· β1 + ϵt 0.615

β0 0.0302 10

β1 1.9072 18.89

The slope of convenience yield curve is also very volatile, and Figure 7 shows both the
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model and data slopes of the convenience yield curve, calculated as the difference between

3-year and 6-month convenience yields. The approximation in equation (25) shows that

the time-varying component of the slope of the convenience yield curve is10

−
∑
j

λjηji(t)∑
j λjηji(t)

κhj µ̂
h
j (t) (27)

This expression is the oil-consumption-weighted average of speeds of mean reversion be-

cause −κhj µ̂h
j (t) represents the time-varying speed of mean reversion in household j’s

learning dynamics. This market’s speed of mean reversion is the dominant determinant

of the time-varying slope of the convenience yield curve. It is highly correlated with the

market’s expectation of growth given by equation (26). Thus, we should expect the con-

venience yield curve is steep upward if the short-term convenience yields are low, and

vice versa. Table 5 reports the results of two regressions. The first regression is between

the data and model slopes of the convenience yield curve. The second one examines how

the model’s weighted average speed of mean reversion can explain the convenience yield

curve slope in the data. Both regressions show very significant results, verifying that the

estimated model captures the time-varying slopes of the convenience yield curve well.

4.3 Term Structures of Volatilities

First, let us focus on the term structure of the volatility of Treasury yields. As Figure

8 shows, our model also generates the hump-shaped term structure of volatility in the

Treasury yields in the data. According to equation (23), if there is no heterogeneity in

beliefs, the remaining component is 1−e
−κδjτ

κδ
jτ

Σ̂δ
j , which is always decreasing with maturity.

So it is the component related to the heterogeneity that plays the key role in the hump

shape of the term structure of the volatility of Treasury yields.

Based on equation (24), we also get the instantaneous forward volatility, and Figure 5

shows it matches the data very well unconditionally. Thus, our model matches the term

structure of futures volatility not only conditionally but also unconditionally. Indeed, the

10The other time-varying component is related to γh
j (τ), driving the time-varying the consumption

weights. However, this component is much less varying because γh
j (τ) does not vary much across houde-

holds.
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Figure 8: Term structure of the volatility of treasury yield. This figure plots the volatilities
of Treasury yield across maturity (years). Notice that 10, 20, and 30-year volatilities are out-of-sample
result.

model generates declining term structures of futures volatilities, known as the Samuelson

(1965) effect, and also, our model matches the convex shape of this term structure. In

Figure 9, (a) shows the annualized standard deviation of historical futures prices across

maturities, and (b) shows the average of the instantaneous volatilities of futures prices

across maturities based on the estimation.

If there is no heterogeneity in beliefs, then βs are zero; thus, the futures volatility

resonates with the result in Casassus and Collin-Dufresne (2005). However, this setup does

not generate enough variations in futures prices to explain the volatility term structure

observed in the data. So heterogeneity in beliefs plays a pivotal role in generating the

excess time-varying volatility beyond economic fundamentals. To further examine how

heterogeneity in beliefs drives the time-varying slopes of the volatility term structure, we

use the consumption-weighted dispersion of beliefs to measure the degree of disagreement

among households as follows.

dispersion(µ̂a(t)) =
∑
j

ωj(a)ηji(t)
[
µ̂a
j (t)−mean(µ̂a(t))

]2
ωj(a)ηji(t)

, (28)

where

mean(µ̂a(t)) =
∑
j

ωj(a)ηji(t)µ̂
a
j (t)

ωj(a)ηji(t)
, ωj(δ) = 1 and ωj(h) = λj.
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Figure 9: Term structure of crude oil futures volatility. This figure plots the crude oil futures
volatility across maturity (years) calculated in two ways. (a) shows the annualized standard deviation
of historical futures price across maturities, and (b) shows the mean of the instantaneous volatilities of
futures price, both across maturities, 3 and 6 month, and 1, 2, 3 and 5 year.

We can also offer some intuitions on what drives the time-varying slopes of volatility

term structure over time. Figure 10 shows that the slope of the volatility term structure

depends on the level of the volatility, so based on the closed-form solution of volatility,

higher decreasing of the slope of volatility term structure happens when the dispersion

of the heterogeneous beliefs is high. And if we build a proxy of disagreement between

households as the sum of the two corresponding consumption-weighted dispersions of the

three households’ estimated expected growth rates of the two goods in each time, Table

6 shows that, if focusing on the maturity, the curve of the oil volatility is decreasing as

the effect of the disagreement about expected growth rates declines in long run, and if

focusing on different periods, a steeper curve corresponds to a higher disagreement.

4.4 V-shape Relationship

Both Kogan, Livdan and Yaron (2009) and Carlson, Khokher and Titman (2007)

present that there exists a V-shape relationship between the volatility of futures prices

and the slope of the futures price curve. Following local weighted average regression
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Figure 10: Slope of futures volatilities and disagreement across time. This figure plots our
estimated disagreement between households and the slope of futures volatilities across time in data,
together with volatilities of 3-month and 6-month futures. The calculation of dispersion follows equation
(28). slope is the difference between the volatilities of 3-month and 6-month futures, slope∥σH∥(t) =
∥σH(t, t+ 1/2)∥ − ∥σH(t, t+ 1/4)∥. Notice that volatility term structure is mostly downward sloping, so
−slope∥σH∥ is plotted in the figure.

Table 6: Regressions between volatility term structure and the dispersion. This table shows
two groups of regression. The first six columns show six regressions, in which each is between the futures
volatility given a certain maturity and the estimated dispersions, ∥σH(t,t+τ)∥ = α+β1 ·dispersion(µ̂δ(t))+
β2 · dispersion(µ̂h(t)) + ϵ(t). And the last column shows the regression between the slope of futures
volatility and the estimated dispersions, slope∥σH∥(t) = α+β1 ·dispersion(µ̂δ(t))+β2 ·dispersion(µ̂h(t))+
ϵ(t). Here the dispersion(µ̂) is calculated following equation (28). Slope is the difference between the
volatilities of 3-month and 6-month futures, slope∥σH∥(t) = ∥σH(t, t + 1/2)∥ − ∥σH(t, t + 1/4)∥. All
estimated coefficients are followed with t-Statistic below.

Volatility slope∥σH∥

3-month 6-month 1-year 2-year 3-year 5-year

α 0.16 0.14 0.12 0.11 0.08 0.1 -0.019

29.05 29.27 23.38 24.76 13.04 13.74 -11.58

β1 6.46 6.14 6.02 4.82 5.58 4.68 -0.32

18.01 19.54 17.70 15.57 12.54 9.89 -3.01

β2 9.03 7.51 6.05 6.26 2.49 1.97 -1.52

9.22 8.74 6.59 7.59 2.09 1.55 -5.32

in Kogan, Livdan and Yaron (2009), Figure 11 shows that the model can also provide

a consistent result in this regard. Actually, the results in Table 6 and Figure 10 have

already provides the explanation. On the one hand, the effect of heterogeneity on oil
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volatility declines with maturity, so the futures prices are much dispersed in short term.

On the other hand, the descending slope of volatility curve positively depends on the

heterogeneity. So steeper price curve corresponds to higher futures volatilities, linked by

the time-varying disagreement among households.

We choose four maturities in Figure 11 and all present the V-shape relationship.

Given that the futures volatility is highly attributed to households’ heterogeneity, this

result indicates that the degree of heterogeneity is higher when futures prices are in either

extreme backwardation or contango. Following the setup in Kogan, Livdan and Yaron

(2009) and Carlson, Khokher and Titman (2007), the slope of the futures price curve is

calculated as

slopeH = ln

[
H(t, t+ τ2)

H(t, t+ τ1)

]
= [y(τ2)− yc(τ2)]τ2 − [y(τ1)− yc(τ1)]τ1

= − ln

[
P (t, t+ τ2)

P (t, t+ τ1)

]
− yc(τ1)(τ2 − τ1)− [yc(τ2)− yc(τ1)]τ2

= −slopeP − levelyc(τ2 − τ1)− slopeycτ2.

(29)

This decomposition of the slope of futures price curve help identify what is the underlying

determinant factor to generate the V-shape relationship. Table 7 provides the rusults of

regressions of futures price volatility on each component in equation (29). The results

in Table 7 show that the information in bond market is not consistent to explain the

V-shape relationship while the level and slope of the term structure of convenience yield

significantly determine the V-shape relationship, matching the negative and positive sides

respectively. Given the discussion in section 4.2, we can also find that the implied indicator∑
j λjηji(t)κ

h
j µ̂

h
j (t)∑

j λjηji(t)
is consistent in the explanation of both the convenience yield curve and the

V-shape relationship between the slope of futures price curve and the futures volatility.
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Figure 11: V-shape of volatility of futures prices to slope of futures price curve. Futures
volatility is plotted as a function of the slope of the futures price curve. Four maturities are picked and
all of them are out of sample. Both data and model are calculated by receptive field weighted regression
following Kogan, Livdan and Yaron (2009). See the caption to Table 7 for a detailed description of the
slope.
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Table 7: Regressions between volatility of futures price and the slope of futures price curve.
This table shows the regression between volatility of futures price and the slope of futures price curve.
To test the V-shape, the second regression separates the slope into positive and negative as two parts.

4 maturities are picked, matching with Figure 11. In regression A, the slopeH(t) = ln
[

H(t,t+0.5)
H(t,t+0.25)

]
is

calculated by picking 6-month and 3-month futures. Given equation (29), the independent variables in
regressions B, C, and D are based on the three decomposed components, slope of Treasury bond price
slopeP , level of the term structure of convenience yield levelyc

, and the slope of the term structure of
convenience yield slopeyc

respectively, followed with model output. The model output of slopeP and
levelyc

is directly calculated by closed-form solution, and the model output of slopeyc
is based on the

implied indicator of the slope of convenience yield curve, discussed in section 4.2. All estimated coefficients
are followed with t-Statistic below.

2 Months 4 Months 6 Months 8 Months

Data Model Data Model Data Model Data Model

A. ∥σH(t,t+τ)∥ = ατ + β1,τ (slopeH(t))
+ + β2,τ (slopeH(t))

− + ϵτ (t)

β1,τ 0.13 0.11 0.12 0.11 0.11 0.11 0.093 0.11

6.3 4.5 6.4 4.4 6.4 4.3 5.9 4.3

β2,τ -0.044 -0.03 -0.024 -0.027 -0.015 -0.024 -0.0045 -0.011

-2.4 -1.3 -1.5 -1.2 -1 -1.1 -0.32 -0.5

B. ∥σH(t,t+τ)∥ = ατ + β1,τ (slopeP (t))
+ + β2,τ (slopeP (t))

− + ϵτ (t)

β1,τ -0.39 -0.3 -0.28 -0.25 -0.2 -0.18 0.057 0.014

-4.2 -3.4 -3.4 -3.1 -2.5 -2.5 0.63 0.18

β2,τ -0.036 0.025 -0.21 -0.1 -0.27 -0.15 -0.39 -0.23

-0.33 0.26 -2.1 -1.2 -3 -1.8 -4.3 -2.9

C. ∥σH(t,t+τ)∥ = ατ + β1,τ (levelyc(t))
+ + β2,τ (levelyc(t))

− + ϵτ (t)

β1,τ 0.0036 0.0074 0.00037 0.0034 -0.00011 0.0025 -0.00037 0.0017

0.88 1.5 0.1 0.79 -0.032 0.62 -0.12 0.45

β2,τ -0.027 -0.036 -0.026 -0.034 -0.025 -0.033 -0.023 -0.029

-6.2 -6.6 -6.7 -7.1 -6.9 -7.2 -6.7 -6.8

D. ∥σH(t,t+τ)∥ = ατ + β1,τ (slopeyc(t))
+ + β2,τ (slopeyc(t))

− + ϵτ (t)

β1,τ 0.049 0.11 0.04 0.11 0.035 0.1 0.031 0.089

3 5.5 2.7 6 2.5 6.1 2.4 5.7

β2,τ -0.032 -0.02 -0.022 -0.0082 -0.019 -0.0045 -0.012 -0.0013

-1.6 -1.4 -1.2 -0.63 -1.1 -0.37 -0.76 -0.11
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5 Conclusion

We proposed an equilibrium model with heterogeneous households in terms of pref-

erences and beliefs about fundamentals to understand the joint dynamics of stock and

crude oil futures. The model admits closed-form solutions to the stock price, crude fu-

tures, and their volatilities and correlation, and the crucial driving forces behind these

market quantities are the heterogeneous beliefs and their direct implication on the wealth

distribution among the households. These explicit solutions enable us to take the model

to the market data, including Treasury bonds, stock, and crude oil futures.

We estimate the model with Treasury bonds, S&P 500 stock index, crude oil futures,

the correlation between the latter two, and volatilities of S&P 500 index and crude oil

futures prices. The model fits these time-series very well with one set of parameters. Thus,

it offers explanations and rationals for the observed empirical phenomena, including the

time-varying price volatilities, the correlation between stock and crude futures, and the

term structure of the convenience yields of the crude futures. Furthermore, the estimated

model also generates other empirical regularities regarding the convenience yields of the

crude oil futures and relations between the slope of the term structure and the volatilities

of the crude oil futures prices.

Even though we focus on the stock and crude oil markets in this paper, the model

can be easily extended to include other commodities. The correlation dynamics among

multiple commodities and between stock and commodities can be studied and understood

in an equilibrium framework.
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Appendix A Model

A.1 Learning of Expected Growth Rates

The learning of expected growth rates follows the standard filtering theory. Denote

by X(t) =
(
log δ(t), log h(t)

)⊤
the observable vector of fundamentals, and by Λ2 =(

∥σδ∥2, ∥σh∥2
)⊤

the vector of volatilities. Then the dynamics of the fundamentals, equa-

tion (1), can be rewritten, by Itô’s Lemma, as the first equation of the followings

dX(t) =
(
µ(t)− 1

2
Λ2
)
dt+ σ dB(t), (30a)

dµ(t) = κi
(
αi − µ(t)

)
dt+ σ̃i dB̃i(t). (30b)

The last equation describes household i’s beliefs about the dynamics of µ, where α is a

two-dimensional constant vector, and both κi and σ̃i are two constant square matrices,

and B̃i(t) is a two-dimensional Brownian motion, independent of B(t).

We assume that the expected growth rates, µ, are not observable. Thus, given this

linear system of equation (30), household i optimally estimate the growth rate µ(t) by

following the standard Optimal Linear Nonstationary Filtering (Liptser and Shiryaev,

2013, Theorem 10.3 in Chapter 10). The optimal estimate of the expected growth rate

µ̂i(t) = Ei
[
µ(t)|FX

t

]
satisfies

dµ̂i(t) = κi[αi − µ̂i(t)] dt+ Σi(t)(σσ
⊤)−1σ dB̂i(t) (31)

where

dB̂i(t) = σ−1

[
dX(t)−

(
µ̂i(t)−

1

2
Λ2
)
dt

]
= σ−1

[(dδ(t)
δ(t)

,
dh(t)

h(t)

)⊤ − µ̂i(t)dt

]
, (32)

and B̂i(t), known as innovation process in filtering theory, is a two-dimensional Brownian

motion, containing the same information as the process X(t). The variance-covariance of

the best estimate Σi(t) = Ei [
(
µ(t)− µ̂i(t)

)(
µ(t)− µ̂i(t)

)⊤|F∆
t ] is a symmetric nonnegative
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definite matrix, satisfying the matrix Riccati differential equation

dΣi(t)

dt
= −κiΣi(t)− Σi(t)(κi)

⊤ + σ̃iσ̃
⊤
i − Σi(t)(σσ

⊤)−1Σi(t).

Given any initial value of Σi(0), the solution to this Riccati equation, Σi(t), always con-

verges to its steady state Σi when dΣi/dt = 0. Thus, the steady state variance Σi is the

solution to the algebraic Riccati equation −κΣi −Σi(κ)
⊤ + σ̃iσ̃

⊤
i −Σi(σσ

⊤)−1Σ⊤
i = 0. At

steady state, equation (31) is simplified as

dµ̂i(t) = κi[αi − µ̂i(t)] dt+ Σ̂i dB̂i(t), (33)

where matrix Σ̂i = Σi(σσ
⊤)−1σ is a constant matrix. For simplicity, we assume either the

system reaches its steady state or starts with the initial value of Σi, thus, Σi(t) does not

vary over time. Also, instead of specifying σ̃i and solving the algebraic Riccati equation,

we directly treate Σ̂i as parameters in this paper. Thus, household i makes consumption

and investment decisions based on her filtered probability space implied by equations

(32) and (33), denoted by (Ω, {FX
t },Pi). Notice that these two equations correspond to

equations (3) and (2), respectively, in Section 2 of the main text.

A.2 Interest Rate and Price of Risk

Based on the model, we can get

dδ(t)

δ(t)
= µ̂δ

i (t)dt+ σδ · dB̂i(t)

dξi(t)

ξi(t)
= −r(t)dt− θi(t) · dB̂i(t)

dηji(t)

ηji(t)
= −(ρj − ρi)dt− βij(t) · dB̂i(t).
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Then applying Itô’s Lemma to the equilibrium state price density given by equation (15)

under Pi, we can find that

dξi(t)

ξi(t)
= −ρidt+

d
∑

j ηji∑
j ηji

− dδ

δ
−
(
d
∑

j ηji∑
j ηji

)⊤

· dδ
δ

+

(
dδ

δ

)⊤

· dδ
δ

= −ρidt+
(
ρidt−

∑
j ηjiρj∑
j ηji

dt−
∑

j ηjiβij∑
j ηji

dB̂i

)
−
(
µ̂δ
idt+ σδdB̂i

)
+

∑
j ηjiβ

⊤
ijσδ∑

j ηji
dt+ ∥σδ∥2dt

= −
(∑

j ηjiρj∑
j ηji

−
∑

j ηjiβ
⊤
ijσδ∑

j ηji
+ µ̂δ

i − ∥σδ∥2
)
dt−

(
σδ +

∑
j ηjiβij∑
j ηji

)
dB̂i

≡ −r(t)dt− θi(t)dB̂i.

So matching the diffusion terms, we obtain the price of risk

θi(t) = σδ +

∑
j ηji(t)βij(t)∑

j ηji(t)
, with βii(t) = 0.

Matching the drift terms, we find the equilibrium interest rate

r(t) =

∑
j ηjiρj∑
j ηji

−
∑

j ηjiβ
⊤
ijσδ∑

j ηji
+ µ̂δ

i − ∥σδ∥2

=

∑
j ηjiρj∑
j ηji

−
∑

j ηji(µ̂
δ
i − µ̂δ

j)∑
j ηji

+ µ̂δ
i − ∥σδ∥2

=

∑
j ηji(t)[ρj + µ̂δ

j(t)]∑
j ηji(t)

− ∥σδ∥2.

Notice that here we use the result based on

σβij(t) = µ̂i(t)− µ̂j(t),

and the first row indicates

σ⊤
δ βij(t) = µ̂δ

i (t)− µ̂δ
j(t).
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A.3 Stock and Crude Oil Spot Prices and Volatilities

Given e(ρj−ρi)tηji(t) is a martingale under household i’s beliefs, that is

Ei
t

[
e(ρj−ρi)sηji(s)

]
= e(ρj−ρi)tηji(t), ∀s > t,

and given equation (15), the price of stock claimed to the stream of generic consumption

good is

S(t) =
1

ξi(t)
Ei

t

[∫ ∞

t

ξi(s)δ(s) ds

]
= eρit

δ(t)∑
j ηji(t)

Ei
t

[∫ ∞

t

e−ρis
∑
j

ηji(s) ds

]

= eρit
δ(t)∑
j ηji(t)

∑
j

Ei
t

[∫ ∞

t

e−ρis−(ρj−ρi)s · e(ρj−ρi)sηji(s) ds

]
= eρit

δ(t)∑
j ηji(t)

∑
j

e(ρj−ρi)tηji(t)

∫ ∞

t

e−ρjs ds

=

∑
j
ηji(t)

ρj∑
j ηji(t)

δ(t).

Apply Itô’s Lemma to S(t) and put every other item with dt into “Drift”,

dS(t)

S(t)
=

d
∑

j
ηji(t)

ρj∑
j
ηji(t)

ρj

−
d
∑

j ηji(t)∑
j ηji(t)

+
dδ(t)

δ(t)
+ Drifti · dt

=

∑
j
ηji(t)

ρj
· dηji

ηji∑
j
ηji(t)

ρj

−
∑

j ηji(t) ·
dηji
ηji∑

j ηji(t)
+

dδ(t)

δ(t)
+ Drifti · dt,

=

∑j
ηji(t)

ρj
βij(t)∑

j
ηji(t)

ρj

−
∑

j ηji(t)βij(t)∑
j ηji(t)

+ σδ

⊤

dB̂i(t) + Drift · dt.

So the volatility vector of stock price is given by equation (19a).

Similarly, given the spot price of crude oil by equation (16), the volatility vector of

spot price is given by equation (19b).
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A.4 Bond and Forward Prices

By Girsanov Theorem (Karatzas and Shreve, 1991), the relation dB̂j(t) = dB̂i(t) +

βij(t)dt implies

dPj

dPi

= exp

(
−1

2

∫ t

0

∥βij(a)∥2da−
∫ t

0

βij(a) · dB̂i(a)

)
=

ξi(t)

ξj(t)
=
ψj

ψi

e(ρj−ρi)tηji(t).

Thus, ξi(t)
ξj(t)

and e(ρj−ρi)tηji(t) serve as the Randon-Nikodym derivative process of the prob-

ability measure Pj with respect to Pi. Given the closed-form solution of ξi(t) in equation

(15), and the property of e(ρj−ρi)tηji(t),

P (t, T ) =
1

ξi(t)
Ei

t [ξi(T )]

=
1∑

j ηji(t)
Ei

t

[
e−ρi(T−t)δ(t)δ−1(T )

∑
j

ηji(T )

]

=
1∑

j ηji(t)

∑
j

ηji(t)Ei
t

[
e−ρj(T−t)δ(t)δ−1(T ) · e(ρj−ρi)(T−t)ηji(T )

ηji(t)

]
=

1∑
j ηji(t)

∑
j

ηji(t)Ej
t

[
e−ρj(T−t)δ(t)δ−1(T )

]

=

∑
j ηji(t)E

j
t

[
exp
{
−
∫ T

t

(
ρj + µ̂δ

j(s)− 1
2
∥σδ∥2

)
ds−

∫ T

t
σδ · dB̂j(s)

}]
∑

j ηji(t)
.

Given the spot price of crude oil in equation (16), the state price in equation (15), and

the dynamics of the supply of crude oil given by

dh(t)

h(t)
= µ̂h

i (t) dt+ σh · dB̂i(t),
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the price of real bond denomited by crude oil is

Pc(t, T ) =
1

R(t)ξi(t)
Ei

t [ξi(T )R(T )]

= Ei
t

[
e−ρiT

e−ρit
· h(t)
h(T )

·
∑

j λjηji(T )∑
j λjηji(t)

]

=

∑
j λjEi

t

[
e−ρi(T−t) h(t)h−1(T ) · ηji(T )

]∑
j λjηji(t)

=

∑
j λjηji(t)Ei

t

[
e−ρj(T−t) h(t)h−1(T ) · e(ρj−ρi)(T−t) ηji(T )

ηji(t)

]
∑

j λjηji(t)

=

∑
j λjηji(t)E

j
t

[
e−ρj(T−t) · h(t)h−1(T )

]∑
j λjηji(t)

=

∑
j λjηji(t)E

j
t

[
exp
{
−
∫ T

t

(
ρj + µ̂h

j (s)− 1
2
∥σh∥2

)
ds−

∫ T

t
σh · dB̂j(s)

}]
∑

j λjηji(t)
.

The results above show that solving the prices of both bonds comes to solve

F (T − t, µ̂a
j (t)) = Ej

t

[
exp
{
−
∫ T

t

(
ρj + µ̂a

j (s)−
1

2
∥σa∥2

)
ds−

∫ T

t

σa · dB̂j(s)
}]

for a = δ, h.

Picking out the dynamics of µ̂a
j from vector µ̂j in equation (2), we have

dµ̂a
j (t) = κaj

[
αa
j − µ̂a

j (t)
]
dt+ Σ̂a

j · dB̂j(t). (34)

This stochastic differential equation admits an explicit solution as

µ̂a
j (s) = αa

j − e−κa
j (s−t)

(
αa
j − µ̂a

j (t)
)
+

∫ s

t

e−κa
j (s−u)Σ̂a

j · dB̂j(u)

for any s ⩾ t ⩾ 0. Therefore,

Z =

∫ T

t

µ̂a
j (s)ds+

∫ T

t

σa · dB̂j(s) = (T − t)αa
j −

1− e−κa
j (T−t)

κaj
·
(
αa
j − µ̂a

j (t)
)

+

∫ T

t

{∫ s

t

e−κa
j (s−u)Σ̂a

j · dB̂j(u)

}
ds+

∫ T

t

σa · dB̂j(s).
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By changing the order of integration, we have

∫ T

t

{∫ s

t

e−κa
j (s−u)Σ̂a

j · dB̂j(u)

}
ds+

∫ T

t

σa · dB̂j(s)

=

∫ T

t

{∫ T

u

e−κa
j (s−u)ds

}
Σ̂a

j · dB̂j(u) +

∫ T

t

σa · dB̂j(u)

=

∫ T

t

{
1− e−κa

j (T−u)

κaj
Σ̂a

j + σa

}
· dB̂j(u),

and thus, Z is normally distributed with mean

µZ = (T − t)αa
j −

1− e−κa
j (T−t)

κaj
·
(
αa
j − µ̂a

j (t)
)

and variance

VZ =

∫ T

t

∥∥∥∥∥1− e−κa
j (T−u)

κaj
Σ̂a

j + σa

∥∥∥∥∥
2

du

=
∥Σ̂a

j∥2

(κaj )
2

[
(T − t)− 2 · 1− e−κa

j (T−t)

κaj
+

1− e−2κa
j (T−t)

2κaj

]

+
2Σ̂a

j · σa
κaj

[
T − t− 1− e−κa

j (T−t)

κaj

]
+ ∥σa∥2(T − t).

Therefore, for τ = T − t,

F (τ, µ̂a
j (t)) = Ej

t

[
exp
{
−
(
ρj +

1

2
∥σa∥2

)
τ − Z

}]
= exp

[
−
(
ρj +

1

2
∥σa∥2

)
τ − µZ +

1

2
VZ

]
.

Substituting µZ and VZ yields equation (21), and hence bond prices given in (20).

A.5 Volatilities of Treasury Yield and Forward Price

For simplicity, denote

fa,τj (t) = F (τ, µ̂a
j (t)),
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in which τ = T − t, asset a = δ, h, and

fa,τωη (t) =

∑
ωj(a)ηji(t)f

a,τ
j (t)∑

ωj(a)ηji(t)
,

where

ω(a) =

 (1, 1, · · · , 1)⊤N if a = δ

(λ1, λ2, · · · , λN)⊤ if a = h

.

Then the bond price is

P (t, T ) = f δ,τη (t)

and the forward price is

H(t, T ) = R(t) ·
fh,τλη (t)

f δ,τη (t)
.

We can also take differentiation on H(t, T ) from both sides and put every other item with

dt into “Drift”,

dH

H
=

dR

R
+

dfh,τλη

fh,τλη

− df δ,τη

f δ,τη

+Drift · dt.

The volatility of H(t, T ) only comes from the first three items dR/R, dfh,τλη /f
h,τ
λη and

df δ,τη /f δ,τη . Notice that dR/R has been solved in Appendix A.3 and equation (19b), then

without loss of generality, to take deviation on dfa,τωη /f
a,τ
ωη and put every item with dt into
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“Drift” again, we can find that

dfa,τωη

fa,τωη

=
d(
∑

j ωjηjif
a,τ
j )∑

j ωjηjif
a,τ
j

−
d(
∑

j ωjηji)∑
j ωjηji

+Drift · dt

=
∑
j

[
ωjηjif

a,τ
j∑

j ωjηjif
a,τ
j

·
d(ηjif

a,τ
j )

ηjif
a,τ
j

− ωjηji∑
j ωjηji

· dηji(t)
ηji(t)

]
+Drift · dt

=
∑
j

[(
ωjηjif

a,τ
j∑

j ωjηjif
a,τ
j

− ωjηji∑
j ωjηji

)
· dηji(t)
ηji(t)

+
ωjηjif

a,τ
j∑

j ωjηjif
a,τ
j

·
dfa,τj

fa,τj

]

+Drift · dt

=
∑
j

[(
ωjηjif

a,τ
j∑

j ωjηjif
a,τ
j

− ωjηji∑
j ωjηji

)
· dηji(t)
ηji(t)

+
ωjηji∑

j ωjηjif
a,τ
j

·
∂fa,τj

∂µ
dµ̂a

j (t)

]
+Drift · dt

=
∑
j

[(
ωjηjif

a,τ
j∑

j ωjηjif
a,τ
j

− ωjηji∑
j ωjηji

)
· dηji(t)
ηji(t)

−
ωjηjif

a,τ
j∑

j ωjηjif
a,τ
j

· 1− e−κa
j τ

κaj
dµ̂a

j (t)

]
+Drift · dt

=
∑
j

[(
ωjηji∑
j ωjηji

−
ωjηjif

a,τ
j∑

j ωjηjif
a,τ
j

)
· βij(t)

−
ωjηjif

a,τ
j∑

j ωjηjif
a,τ
j

· 1− e−κa
j τ

κaj
Σ̂a

j

]⊤
dB̂i(t) + Drift · dt.

So by combining all the results, we can get the forward volatility vector given by equation

(24). Moreover, we can also directly get the volatility vector of Treasury yield based on

the diffusion of − 1
τ
· df δ,τη /f δ,τη .

A.6 Convenience Yield

Denote by τ = T − t the time interval, we can directly get the formulas of bond and

convenience yieldy from P (t, T ) = e−y(τ)τ and H(t, T ) = R(t)e[y(τ)−yc(τ)]τ . Comparing this

47



with the forward price given by (22) shows

yc(τ) = − logPc(t, T )

τ
,

which is the same as the yield for a bond denominated by crude oil.

For a small τ , we can obtain an approximation as follows. First notice that, by

equation (21),

F (τ, µ̂h
j (t)) ≈ 1− bhj τ − τ

(
1− 1

2
κhj τ
)(
µ̂h
j (t)− γhj (τ)

)
= 1− τ

(
ρj + µ̂h

j (t)− ∥σh∥2 + γhj (0)− γhj (τ) +
1

2
κhj
(
γhj (τ)− µ̂h

j (t)
)
τ

)
≈ 1− τ

(
ρj + µ̂h

j (t)− ∥σh∥2 +
τ

2

[
κhj
(
αh
j − µ̂h

j (t)
)
− Σ̂h

j · σh
]
− τ 2

4
∥Σ̂h

j ∥2
)

thus,

yc(τ) = −1

τ
log
(∑

j λjηji(t)F (τ, µ̂
h
j (t))∑

j λjηji(t)

)

≈ −1

τ
log
(
1−

τ
∑

j λjηji(t)

(
ρj + µ̂h

j (t)− ∥σh∥2 + τ
2

[
κhj
(
αh
j − µ̂h

j (t)
)
− Σ̂h

j · σh
]
− τ2

4
∥Σ̂h

j ∥2
)

∑
j λjηji(t)

)

≈

∑
j λjηji(t)

(
ρj + µ̂h

j (t)
)

∑
j λjηji(t)

− ∥σh∥2 +
τ

2
·

∑
j λjηji(t)

[
κhj
(
αh
j − µ̂h

j (t)
)
− Σ̂h

j · σh
]

∑
j λjηji(t)

− τ 2

4
·
∑

j λjηji(t)∥Σ̂h
j ∥2∑

j λjηji(t)
.

Appendix B Estimation

B.1 Time-series to Match

There are 3 blocks of the data, and three households are used in estimation. The 6

observed time series to match in first block are dividend yield of S&P 500 index, volatility

of S&P 500 return, volatility of the 3-month Treasury yield, correlation between the S&P

500 return and 3-month Treasury yield, volatility of the 1-month futures of crude oil, and
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correlation between the S&P 500 return and the 1-month futures return of crude oil,

δ(t)

S(t)
=
η13(t) + η23(t) + 1
η13(t)
ρ1

+ η23(t)
ρ2

+ 1
ρ3

Vol(S(t)) = ∥σS(t)∥

Vol(y(t, t+ 1/4)) = ∥σy((t, t+ 1/4)∥

Corr(S(t), y(t, t+ 1/4)) =
σS(t) · σy(t, t+ 1/4)

∥σS(t)∥ · ∥σy(t, t+ 1/4)∥

Vol(H(t, t+ 1/12)) = ∥σH(t, t+ 1/12)∥

Corr(S(t), H(t, t+ 1/12)) =
σS(t) · σH(t, t+ 1/12)

∥σS(t)∥ · ∥σH(t, t+ 1/12)∥
,

in which σS(t), σy(t, t+1/4), and σH(t, t+1/12) have been represented in equations (19a),

(23), and (24) respectively. For simplicity, we use βij =
(
βij,1, βij,2

)⊤
= σ−1 (µ̂i− µ̂j), and

without loss of generality, we pick i = 3 so β3j and ηj3 are in these equations.

The second block is the term structures of Treasure yield and convenience yield, both

covering 6 maturities,

y(t, T ) = − ln

∑
j ηj3(t) · F (T − t, µ̂δ

j(t))∑
j ηj3(t)

yc(t, T ) = − ln

∑
j λjηj3(t) · F (T − t, µ̂h

j (t))∑
j λjηj3(t)

,

where, for a = δ, h,

F (τ, µ̂a
j (t)) = exp

[
− baj τ −

1− e−κaτ

κa

(
µ̂a
j (t)− γaj (τ)

)]
and

baj = ρj + γaj (0)− ∥σa∥2, γaj (τ) = αa
j −

Σ̂a
j · σa
κaj

−
∥Σ̂a

j∥2

4κaj
2 ·
(
3− e−κa

j τ
)
.

The third block is the term structures of the volatilities of zero coupon yield ∥σy(t, T )∥

and volatilities of oil futures ∥σH(t, T )∥, also covering the 6 maturities, based on equations

(23) and (24).
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