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Abstract

We propose a new econometric model, benchmark combination model (BCM), to estimate and

decompose asset risk premia in empirical asset pricing. BCM pricing kernel is a weighted combi-

nation of the basis portfolios sorted on many asset characteristics. With a no-arbitrage objective,

our approach minimizes cross-sectional pricing errors and identifies the sources of risk premia.

With a 45-year sample of U.S. corporate bonds, we find that BCM outperforms prevailing factor

models in pricing corporate bonds. Second, we find credit ratings, maturity, short-term rever-

sal, momentum, and variance are primary sources of bond risk premia. Finally, incorporating

machine learning forecasts into BCM shows strong evidence of return predictability.
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1 Introduction

The linear factor model is a general framework in empirical asset pricing. Many characteristic-

based factors are proposed for the corporate bond market. However, we find the prevailing factor

models poorly explain and predict individual corporate bond returns. An alternative framework

is the characteristic-based benchmark (Daniel et al., 1997; Cattaneo et al., 2020), which academic

researchers relatively overlook. The sorted portfolio returns based on critical characteristics can

explain the cross-sectional variation of asset returns. This nonparametric way of analyzing asset

returns is a big success in the industry. Morningstar and other practitioners have been promoting

the size-value equity style box and the rating-maturity fixed-income style box as benchmarks for

stocks, bonds, and mutual funds.

The issuance values for the corporate bond market have become larger than for the equity

market1. Still, the literature for methodologies and empirical evidence on pricing corporate bonds

is relatively shorter than equities. Researchers usually classify individual corporate bonds into

different credit rating categories (AAA/AA/A/BBB/Junk) to form portfolios. These are called

basis portfolios, in which individual assets are sorted on one characteristic (ratings). Assets in the

same basis portfolio are observed to bear similar credit risk. Therefore, the corresponding rating-

based portfolio serves as a performance benchmark for all individual corporate bonds with the

same rating. In addition to credit rating, researchers also consider maturity, momentum, reversal,

liquidity, and many bond characteristics to form basis portfolios.

A rational economic benchmark should include all relevant information in these character-

istics to reflect different risk exposures. However, there is a problem in high-dimensional sorts on

multiple characteristics, as highlighted in Cochrane (2011). The average number of corporate bonds

in each sorted portfolio decreases as the number of characteristics increases. Moreover, due to the

interactions among characteristics, a sorted portfolio can contain only a few or even zero bonds.

The consequences include increased estimation errors and a high chance of incorrect model identi-

fication.
1According to SIFMA capital markets statistics, for the U.S. corporate bond market in 2020, the outstanding value is $

9.8 trillion and the insurance value is $ 2.3 trillion, while values for the U.S. equity market are $ 50.8 trillion and $ 390.0
billion, respectively.
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We propose an alternative asset pricing framework, dubbed the benchmark combination model

(BCM afterward), to alleviate the high-dimensional sort problem. Instead of sorting assets over

multiple characteristics, we sort assets on each characteristic to construct basis portfolios. Then, we

apply the linear combination approach on these basis portfolios associated with different character-

istics to build BCM evaluation. This method preserves rich information in all relevant characteristics

with a transparent, objective, and data-driven framework. The linear modeling of high-dimensional

characteristics allows us to decompose returns and infer the sources of risk premia. Beyond corpo-

rate bonds, BCM offers an asset pricing research paradigm that applies to other asset classes, such

as equities, commodities, and currencies.

In a nutshell, the goal of our paper is four-fold: (1) we evaluate the asset pricing performance of

BCM and find our method better than prevailing factor models; (2) we tackle the high-dimensional

sort difficulty for cross-sectional returns; (3) our model is intuitively interpretable and identifies

the economic sources of corporate bond risk premia; and (4) we demonstrate the superiority of our

model for predicting corporate bond returns.

In essence, BCM is equivalent to a non-parametric cross-sectional regression, where bond re-

turn observations are regressed on dummy variables of basis portfolios (Cattaneo et al., 2020). In

addition, Kelly et al. (2019) suggest that sorting on different characteristics provides ensemble sam-

ples to dissect the cross-sectional return distribution. The same bond being evaluated by different

basis portfolios for different risk exposures can be viewed as the ensemble scheme. Each basis port-

folio serves as a “rational” benchmark, and their linear combination helps reduce the bias and vari-

ance for expected returns. Most importantly, a dynamic combination of basis portfolios is a tradable

portfolio that keeps tracking the individual corporate bond return. The tracking error is interpreted

as the pricing error. BCM minimizes the pricing errors to estimate the combination weights. Fi-

nally, the common combination weights can be used to evaluate and decompose corporate bond

risk premia.

Linear factor models are commonly used in empirical asset pricing because of their excellent

statistical properties and intuitive economic interpretation. However, one drawback of the factor

model is that its regression estimation accuracy relies on the sample size. For this reason, most

empirical studies estimate factor models for portfolios instead of individual assets. Although re-
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searchers recognize the factor model framework, constructing characteristic-sorted long-short port-

folios as factors is discretionary and questionable. BCM and factor model share the exact economic

purpose, benchmarking asset returns with a few tradable portfolios and decomposing risk premia.

With less parametric modeling and hence less restrictive parametric assumptions, BCM stands an

excellent chance to outperform conventional linear factor models in pricing individual asset returns.

We demonstrate the application of BCM using a comprehensive data set comprising 753,274

bond-month observations of 22,747 bonds by 3,620 firms from 1976 to 2020. We find that credit

ratings, maturity, short-term reversal, momentum, and variance are important sources of risk pre-

mia. In particular, short-term reversal is an under-appreciated characteristic that shows high power.

BCM has smaller pricing errors than conventional factor models in pricing individual corporate

bond returns, and the performance is persistently good over time. In addition, there is strong evi-

dence that the bond basis portfolio returns are predictable. The combination of portfolio-level pre-

dictions also helps predict individual bond returns. BCM combined with various machine learning

models carries high out-of-sample predictive power for individual bond returns. The long-short

strategy of BCM plus Random Forest delivers a monthly return of 66 bp, which cannot be explained

by the five-factor model of Fama and French (1993) with a monthly alpha of 61 bp, and an annual-

ized Sharpe ratio of 2.05 over the recent 25 years. The strategy delivers a high Sharpe ratio of 2.93

in economic expansion and makes a relatively sizeable monthly alpha of 83 bp over the dot-com

bubble and the 2008 financial crisis.

Literature. Our work is related to the literature on pricing individual corporate bonds based on

the framework of risk factors and characteristics. Fama and French (1993) propose a five-factor

model with three equity factors and two bond market factors to explain the joint cross section of

equity and bond returns. Many papers investigate various factors or anomalies for the cross section

of corporate bond returns; see liquidity from Lin et al. (2011), momentum from Jostova et al. (2013),

volatility from Chung et al. (2019), downside risk from Bai et al. (2019), long-term reversal from

Bali et al. (2021), downside variance from Huang et al. (2021), and jump risk in Chen et al. (2022).

Bredendiek et al. (2019) adopt the characteristic-driven optimal portfolio for corporate bonds, and

recently, Kelly et al. (2021) create latent corporate bond factor models via Instrumental PCA and
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Feng et al. (2021) create another one via deep learning. This paper studies a similar problem and

provides an alternative interpretation of linear model combinations.

This paper contributes to the literature on characteristic-based benchmarks and basis portfo-

lios. Daniel et al. (1997) provide a benchmark evaluation framework for individual equity returns

and mutual fund performance, which dependently sorts on size, value, and momentum. We pro-

vide a solution to the high-dimensional sort difficulty highlighted in Cochrane (2011). Cattaneo

et al. (2020) develop a theoretical work for portfolio sorting by casting it as a nonparametric estima-

tor and presenting valid asymptotic inference. Feng et al. (2020) develop a deep learning framework

to approximate the characteristic-sorted factor model, while Bryzgalova et al. (2020) and Cong et al.

(2021) construct characteristic-sorted basis equity portfolios through regression trees.

Our paper is related to the literature of corporate bond return prediction. For positive pre-

dictability evidence via new methods, Hong et al. (2012) introduce nonlinear time series models,

Lin et al. (2014) adopt combination forecasts, and Lin et al. (2018) develop an iterated combination

approach. Chordia et al. (2017) find equity information, such as firm profitability and asset growth,

can predict corporate bond returns. Bali et al. (2020) and He et al. (2021) use corporate bond and/or

equity characteristics to predict corporate bond returns via machine learning, and Guo et al. (2020)

also find useful yield predictors through dimension reduction.

The remainder of the paper is organized as follows. Section 2 demonstrates the characteristic-

sorting mechanism, BCM pricing kernel, return prediction, comparison with factor model, and im-

plementation details. Section 3 provides data, asset pricing performance, and return prediction

results. Section 4 summarizes our main findings and concludes the paper.

2 Methodology

2.1 Motivating Benchmark Pricing

The Capital Asset Pricing Model (CAPM) claims the market factor is the single factor that

should be priced in the cross section of asset return under mild assumptions (Sharpe, 1964; Lintner,

1965; Jensen et al., 1972). Besides the market factor, Merton (1973) propose Intertemporal CAPM

(ICAPM), which includes an additional state variable of the economy. In ICAPM, the investors aim
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to maximize the expected utility of lifetime consumption while facing the risk and uncertainty in

future investment opportunities. However, the choice of the state variable is never an easy decision.

Since then, there is an explosion of publications on asset pricing factors that claim to proxy the true

state variable. One of the pioneer works is Fama and French (1993), which propose a five-factor

model for stock and bond returns.

The linear factor model framework is well-recognized by economists, statisticians, and the

industry. However, the way of constructing factors is questionable. Many factors discovered in

empirical finance literature are characteristic-based factors. The common practice is sorting the

assets into quintile (decile) portfolios by the characteristic’s value. A long-short spread portfolio is

called a factor. This long-short portfolio assumes a monotonic relationship between characteristics

and asset expected returns. If the relationship is U-shape, the long-short portfolio earns near-zero

returns. In that case, researchers are unlikely to write a paper about it. The long-short portfolio

ignores the information of the sorted portfolios in the middle.

In contrast, because of nonparametric modeling, the characteristic-based benchmark can cap-

ture nonlinear relations, e.g., U-shape and quadratic, between characteristics and expected returns.

We provide simulation studies to show the efficacy of characteristic-based benchmark over the long-

short factor model in Appendix A. We find the long-short factor only works when there is a factor

structure and the relation between characteristics and expected returns is linear. Characteristic-

based benchmark is more robust under different data generating processes than factor models.

Besides, the factor model requires parametric estimation of the factor exposure. One way is

to run the time-series regression of asset returns on the factors (Fama and MacBeth, 1973). The

other way is to estimate a conditional beta, assuming that there is a correlation between factor

exposure and asset characteristics (Rosenberg, 1974; Avramov and Chordia, 2006). Estimating factor

exposure is problematic, when we do not observe the transaction prices but the quotes, the return

history is short, signal to noise ratio is small, and the factor model is not correctly specified. Luckily,

benchmarking asset returns with the basis portfolio is nonparametric (Cattaneo et al., 2020), which

avoids the burdening parametric estimation of factor exposure.
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2.2 Characteristic-Sorted Basis Portfolios on One Dimension

We now describe the procedure to implement our model. The method starts with the formation

of basis portfolios sorted on a single characteristic. The relationship between the excess return r and

a single characteristic z can be formulated by the following equation, 2

ri,t = f(zi,t) + εi,t, (1)

for i = 1, · · · , nt and t = 1, · · · , T . f(zi,t) is the part of returns that can be explained by the

characteristic-based benchmarks.

We sort individual corporate bonds on a single characteristic z and calculate the order statistics.

We can partition the cross section into S number of buckets. The first bucket contains the corporate

bonds with small z values, and the S-th bucket includes those with large z values. The partition P

is denoted as

Ps,t =
[
z(b s−1

S
ntc),t, z(b

s
S
ntc),t

)
, (2)

for s = 1, · · · , S − 1, and

PS,t =
[
z(bS−1

S
ntc),t, z(nt),t

]
, (3)

where z(l),t is the order statistic, and b·c is the floor operator. The characteristic zi,t maps to one

partition. We can write the partition index as a function of characteristic s(i) = s(zi,t). The partition

index s implies the basis portfolio return Rs,t,3

f(zi,t) = Rs,t =
1

|Ps,t|
∑

i′:zi′,t∈Ps,t

ri′,t, (4)

where |Ps,t| denotes the number of bond observations in partition Ps,t.

This subsection incorporates maths formulas to define the univariate-sorted portfolio returns,

one of the most popular tools in empirical finance (Cattaneo et al., 2020). The individual assets can

be clustered to construct well-diversified basis portfolios based on the order statistics of a charac-

2zi,t is observed at the beginning of period t, and ri,t is observed at the end of period t.
3For demonstration, we use equal-weighted portfolio returns. It is easy to extend to value-weighted portfolio return.

In empirical study, we use equal-weighted basis portfolio as the main results, and the value-weighted basis portfolio as
robustness check.
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teristic. The number of assets in each basis portfolio is about nt/S. Given that nt is large and S

is small, these basis portfolios are well-diversified with many underlying assets. Thus, the basis

portfolio returns are potential candidates to serve as benchmarks to price the individual assets.

2.3 High-dimensional Sort Difficulty

Implementing a high-dimensional sort is difficult as indicated by Cochrane (2011). Though

the benchmark evaluation through multivariate-sort mechanism is straightforward, it can be quite

challenging when there are more than three characteristics.

There are two cases of multivariate-sort on multiple characteristics, the dependent sort and the

independent sort. In the case of the dependent sort, suppose the number of partitions is S for each

characteristic and K is the number of characteristics. There are SK number of partitions, and the

average number of corporate bonds in each partition is nt/(SK). For a sample of 2,000 bonds, with

five partitions, and four characteristics, the average portfolio size is 3.2. Researchers hope to form

portfolios containing a sufficient number of corporate bonds to represent the common risks and di-

versify the idiosyncratic risks. However, high-dimensional sorting shrinks the size of each portfolio

dramatically. In the case of independent sort, the average portfolio size is also 3.2. But, it is very

likely that some partitions contain even fewer corporate bonds, especially when characteristics are

highly correlated. For more details, we provide an example of the independent sort to demonstrate

the difficulty in Appendix B.

2.4 The Benchmark Combination Model

BCM is a combination approach with distinct advantages when facing a large number of char-

acteristics in portfolio sorting. With K number of characteristics in matrix form Z and S number of

partitions on each dimension, there are K×S number of univariate-sorted basis portfolios Rk,s,t. A

bond i has K basis portfolios that can be the potential benchmarks, and we denote them in: 4

Xi,t = [Xi,t,1, Xi,t,2, · · · , Xi,t,K ]ᵀ. (5)

4For different month t, Xi,t,k of the same i and k is possible to correspond to different s. For example, a bond i can be
AAA in terms of rating now, and possibly downgraded to Junk next month.
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We combine K basis portfolios into one benchmark with the common combination weight:

Ω = [ω1, ω2, · · · , ωK ]ᵀ, (6)

and the benchmark is:

f(Zi,t) = ΩᵀXi,t =

K∑
k=1

ωkXi,t,k. (7)

BCM Estimation and Asset Pricing. The primary goal of BCM is to price individual corporate

bonds. The estimation procedure of BCM weights follows the arbitrage pricing theory. Similar to

Lin et al. (2018) and Feng et al. (2020), we formulate the estimation as an optimization problem to

minimize the pricing error. To reserve the economic interpretability, we add non-negativity and

sum-to-unity constraints on common combination weights. Essentially, our estimation is imple-

mented as a constrained panel regression:

ri,t = ΩᵀXi,t + εi,t, (8)

with
K∑
k=1

ωk = 1, ωk ≥ 0.

The panel regression helps to identify important sources of risk when decomposing the risk

premia for individual corporate bond returns. The important benchmarks will have positive weights,

and the trivial benchmarks will be pushed to zero with the two constraints. We provide a bootstrap

test for the combination weights in Section 2.6.

In machine learning terminology, BCM is an ensemble method, which takes advantage of

many weak models and gets a strong model. In terms of economic interpretation, the ΩᵀXi,t is

a replicating (synthetic) portfolio for individual bond i at time t with a minimal pricing error. The

two constraints are economically tacit. The sum-to-unity constraint is a budget constraint when we

do replicating and rebalancing. The non-negativity constraint is a no-short-selling constraint, as

we know it is much more expensive to short corporate bonds than stocks. If we remove the two

constraints, we do find negative numbers, and the total budget deviates slightly from one in the

unreported empirical findings.
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For robustness, we provide two other specifications: LASSO, and step-wise selection. Their

empirical results are close to the constrained panel regression in Eq. 8. Please find more details in

Section 3.2.

BCM Return Prediction. In BCM framework, the conditional forecast for individual bond returns

is straightforward:

Et(ri,t+1) =
K∑
k=1

ωk|tEt(Xi,t+1,k), (9)

where Et(ri,t+1) is the conditional expectation of asset i’s return at time t+ 1 based on information

up to time t, wk|t is the combination weight estimated at time t, and Et(Xi,t+1,k) is the conditional

expectation of basis portfolio returns.

To understand Et(Xi,t+1,k), it is a prediction for the basis portfolio return. The corporate bond

portfolio returns are predictable, according to Hong et al. (2012); Lin et al. (2014, 2018). Given asset

i, time t, and characteristics k, we can find the sorting index s. Actually, Xi,t+1,k is a basis portfolio

return, and we can denote it asRk,s,t+1. We formulate the prediction problem in a general predictive

function g(·):

Et(Xi,t+1,k) = Et(Rk,s,t+1) = gk,s(Z̃k,s,t, xt), (10)

where two groups of predictors are included: Z̃k,s,t are aggregated characteristics for different basis

portfolios s of characteristic k, and xt are macroeconomic predictors up to time t. We are agnostic

to function g(·), and try to use predictive (machine learning) models to approximate it. The details

of predictive modeling is in Section 2.6. We plug the forecast Et(Xi,t+1,k) into Eq. 9 to predict

individual corporate bond returns.

2.5 Connection with Factor Model

BCM provides a linear pricing kernel for individual corporate bond returns. A replicating

(synthetic) portfolio is implied for the individual corporate bonds, which allocates a capital budget

on basis portfolios. The conventional factor models have a similar pricing kernel interpretation.

For example, the pricing kernel of CAPM for asset i is the product of two components: the factor
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loading βi and the market factor ft, and the formulation is

βi × ft. (11)

The CAPM provides a replicating portfolio of individual asset returns, which allocates βi weight to

the market factor. The replicating portfolio captures the systematic risk of an individual asset, and

provides an economically interpretable benchmark for individual asset evaluation.

The estimation and interpretation for BCM are similar to the multi-factor model under the no-

arbitrage condition in linear modeling. However, the multi-factor model estimates factor loadings

for different assets (N ×K parameters for a K-factor model to N assets). By contrast, our BCM uses

all assets to estimate the common combination weights (K parameters for K characteristics). BCM

has a large estimation sample with a small number of parameters.

2.6 Implementation Details

Implementing our method involves two steps. First, we estimate the common combination

weights. We perform the constrained panel regression in Eq. 8 for all the observations. That is the

in-sample estimation of combination weights. For out-of-sample estimation, we update the model

annually using the rolling window of the past 60 months. To obtain the statistical significance of

combination weights, we employ 1,000 bootstrap samples and report the non-negative estimation

frequency for each benchmark to measure the significance of weights. A variable that appears

more than 90% of bootstraps is deemed significant, while less than 10% means the variable is not

significant.

Second, we build the return forecasts for the basis portfolios sorted on each one of the char-

acteristics. Specifically, we train the predictive model by time-series modeling. Besides macroeco-

nomic predictors, the predictive model for AAA portfolio only uses its characteristics and does not

involve data from any other basis portfolio. We specify the training data as the rolling window

of the past 20 years, update the model annually, and predict the 12 monthly observations in the

following year. The predictive modeling design follows He et al. (2021). We consider five major

forecasting methods, including historical average, mean combination, principal component regres-
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sion, LASSO, and Random Forest. The predictive models are briefly introduced in Appendix C.

2.7 Performance Measures

Pricing Measure. Once the weights are estimated, we use Eq. 7 to construct our model-implied

return benchmark for each individual corporate bond. Given the targets are individual asset re-

turns, we adopt the pricing performance measures total R2 and predictive R2 introduced in Kelly

et al. (2019). Both measures can be used for in-sample and out-of-sample studies.

Total R2 = 1−

∑
i,t

(
ri,t −

∑K
k=1 ω̂kXi,t,k

)2∑
i,t r

2
i,t

, (12)

where ω̂k is the estimate of weight. The total R2 represents the fraction of the return variation

explained by the contemporaneous realization of basis portfolio returns, aggregated over all assets

and all periods. For in-sample pricing exercises, ω̂k is estimated with the whole sample of interest.

For out-of-sample pricing exercises, the weights are estimated in a rolling-window manner with the

available information up to time t− 1, denoted as ω̂k = ω̂k|t−1.

We calculate the predictive R2 as follows:

Predictive R2 = 1−

∑
i,t

(
ri,t −

∑K
k=1 ω̂kX̄i,t−1,k

)2∑
i,t r

2
i,t

, (13)

where X̄i,t−1,k denotes the sample average of the basis portfolio returns. For in-sample analysis,

X̄i,t−1,k is the sample mean of basis portfolio return. For out-of-sample analysis, X̄i,t−1,k is the

historical average by time t − 1. As a reminder, the basis portfolio index follows the one at time

t. For example, a bond is currently AAA in terms of rating, we use the AAA portfolio moving

average as X̄i,t−1,k, although it may belong to Junk two months ago. The predictive R2 represents

the fraction of the realized return variation explained by the model-implied expected returns. We

use similar performance measures for factor model.
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Prediction Measure. We calculate the prediction error for basis portfolio return R̂k,s,t, and com-

pare with the 20-year moving average R̄k,s,t. The conventional form of out-of-sample R2 is:

R2
OOS,k,s = 1−

∑
t(Rk,s,t − R̂k,s,t)2∑
t(Rk,s,t − R̄k,s,t)2

, for k in 1, · · · ,K, and s in 1, · · · , S. (14)

For brevity, we aggregate the prediction errors across the five portfolios sorted one characteristic k.

R2
OOS,k = 1−

∑S=5
s=1

∑
t(Rk,s,t − R̂k,s,t)2∑S=5

s=1

∑
t(Rk,s,t − R̄k,s,t)2

, for k in 1, · · · ,K. (15)

We evaluate the predictability of individual bond returns with the out-of-sample R2 below:

R2
OOS = 1−

∑
i,t(ri,t − Et(ri,t+1))

2∑
i,t(ri,t − r̄i,t)2

. (16)

where the baseline prediction r̄i,t is the 20-year moving average return for the corresponding rating

basis portfolio.5 The r̄i,t is a stronger prediction than zero for fixed-income securities.

2.8 Fama-MacBeth Tests

The above metrics are aggregate measures over all time periods. However, the drawbacks for

such aggregate measures are that they cannot reflect the performance variation over time and can

be dominated by extremely volatile periods. To overcome this problem, we follow He et al. (2021)

and adopt the Fama and MacBeth (1973)-style time-series average measures for R2. In particular,

we aggregate the information in the large cross section for each time period to obtain the R2
t . For

example, we can calculate the periodical version of total R2
t as

Total R2
t = 1−

∑
i

(
ri,t −

∑K
k=1 ω̂kXi,t,k

)2∑
i r

2
i,t

. (17)

Therefore, we are able to perform the Fama-MacBeth test on the average performance for the

5For example, a rating AAA bond uses the average returns of the rating AAA portfolio as the r̄i,t in denominator.
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time series {R2
t }Tt=1 with the following hypothesis with Newey and West (1987) standard errors,

H0: R2 > 0 ; H1: R2 ≤ 0.

3 Empirical Results

3.1 Data

Returns The corporate bond data is from four sources: the Lehman Brother Fixed Income (LBFI)

database, DataStream, the National Association of Insurance Commissioners (NAIC) database, and

the Enchanced Trade Reporting and Compliance Engine (TRACE) database. We combine the data

from these sources to get a large sample. When there are duplicate observations from multiple

sources, we keep only one of them by a priority rank. The high to low priority rank is TRACE,

NAIC, LBFI, and DataStream. Whenever there is a choice, we prefer the transaction-based return

data (TRACE) to the return data based on quotes and matrix calculations (LBFI). The enhanced

TRACE data starts in 2002. Using the LBFI and NAIC data extends our sample to early 1973.

We calculate corporate bond returns using the combined sample. The monthly corporate bond

return at time t is calculated as follows:

Rt =
(Pt +At) + Ct − (Pt−1 +At−1)

Pt−1 +At−1
, (18)

where Pt is the price, At is the accrued interest, and Ct is the coupon payment. We obtain excess

return by subtracting the three-month Treasury bill rate from the raw return. Our sample excludes

bonds with embedded options and bonds with maturity less than one year or longer than thirty

years. Summary statistics of the bond sample are shown in Table 1.

[Insert Table 1 here]

Characteristics We collect 20 corporate bond characteristics covering three categories: fundamen-

tal characteristics (e.g., ratings, maturity), return-distribution characteristics (e.g., momentum, re-

versal), and covariance with common risk factors (e.g., beta of term factor and default factor). A
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list of characteristics is at Table D.1. The sample period runs from January 1973 through Septem-

ber 2020. Because we need three years of data to calculate the return-based characteristics, the full

sample of predictors starts from January 1976.

Based on each characteristic, we construct the basis portfolios (univariate-sorted quintile port-

folios) and rebalance them every month. We calculate the basis portfolio returns as the equally-

weighted average of the underlying assets’ returns. Following Feng and He (2022), the aggregated

characteristics of the basis portfolios are the equally-weighted average of the underlying assets’

characteristics, which serves as Z̃k,s,t in Eq. 10.

Macroeconomic Predictors We consider 20 macroeconomic predictors to help predict basis port-

folio returns in Eq. 10. Detailed descriptions on the predictors are included in Table D.1. Lin et al.

(2014) and Lin et al. (2018) find that macroeconomic variables contains rich information for future

corporate bond returns. Our macro predictor set covers two main categories: bond market variables

(e.g., treasury bill rate, rating spread) and equity market variables (e.g., S&P 500 index returns, S&P

500 index earnings-to-price ratio).

Factor Models Fama and French (1993) provide a five-factor model (FF5) that tries to explain the

cross-sectional variation of both equity and bond returns, including MKT, SMB, HML, TERM, and

DEF. 6 FF5 is available for our whole sample period. Bai et al. (2019) propose a four-factor model

(BBW4) for corporate bond market, including MKTbond, DRF, CRF, and LRF. 7 BBW4 data starts

from July 2004. So, the comparison between BCM and BBW4 is only applicable in recent 16 years.

The beta of each bond is estimated via time-series regression with an intercept. We consider

two versions of the beta. The in-sample beta of a bond is estimated with one regression that includes

the bond’s whole return time series. The out-of-sample beta of a bond on a date is estimated with

the past five-year rolling window data.

6The monthly returns of MKT, SMB, and HML are downloaded from Kenneth R. French. We also benefit from Amit
Goyal for calculating TERM and DEF. TERM is the difference between the monthly long-term government bond return
(from Ibbotson Associates) and the one-month treasury bill rate measured at the end of the previous month (from the
Center for Research in Security Prices, CRSP). DEF is the difference between the return on a market portfolio of long-
term corporate bonds (the Composite portfolio on the corporate bond module of Ibbotson Associates) and the long-term
government bond return.

7BBW4 is downloaded form Turan G. Bali.
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3.2 Bond Risk Premium Decomposition

In-Sample Estimation. Table 2 reports the combination weight values and bootstrap inference

results. The first column is the estimation over 45 years from 1976 to 2020. We find that the bench-

marks related to rating, maturity, short-term reversal, momentum (12 months), and variance have

positive weights. According to the 1000 bootstrap exercises, there are more than 90% chances that

these five benchmarks have positive weights. The other benchmarks have almost zero weights and

less than 10% chances of positive weights in bootstrap inference.

The second and third columns report the benchmark importance under different economic

regimes. We classify the sample into expansion and recession according to the NBER Business Cycle

Dating. We find maturity benchmark matters only in expansion. Rating and short-term reversal

are persistently strong with more than 15% weights in both regimes, but the former is stronger in

recession, and the latter is stronger in expansion. Momentum (12 months) and variance are more

important in recession than expansion.

We report the estimation for each five-year window in the remaining nine columns to inves-

tigate the time-varying patterns in benchmark weights. Rating is neglected by our model in the

1990s. Maturity is missed in two subsamples, the early 1980s recession and the 2008 global financial

crisis, consistent with columns two and three. Short-term reversal is persistently positive over all

subsamples. Momentums (6 and 12 months) are important in the early sample but seldom selected

after 2000. Downside risk is only positive in the late 1970s and around the 2008 global financial cri-

sis. Given the time-varying fact for subsample analysis, it is necessary to estimate dynamic weights

for out-of-sample exercises.

[Insert Table 2 here]

Out-of-Sample Estimation. We estimate the combination weights for each year with the past five-

year sample. In Table 3, there are 40 rows for each year from 1981 to 2020. Again, we find clear time-

varying patterns in the weights. The out-of-sample weight is important for investment applications,

such as constructing a replicating portfolio to hedge the risk of a corporate bond (total R2 in Eq. 12)

and predicting future corporate bond returns (predictive R2 in Eq. 13 and out-of-sample R2 in Eq

16).
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[Insert Table 3 here]

Alternative Specifications. In addition to the constrained panel regression in Eq. 8, we investigate

two alternative specifications to estimate combination weights: LASSO and step-wise selection. We

run LASSO with nonlinearity constraint and then re-scale the weights to meet the sum-to-unity

constraint. For (forward) step-wise selection, we run linear regression with the two constraints for

each regression and use “BIC” as the criteria for model selection. In Table E.1, E.2, E.3, and E.4, we

report the alternative results with model selection focus. We find the estimated value of LASSO and

step-wise selection are very close to our main result. The selected positive benchmarks in LASSO

and step-wise selection are also consistent with our main result. The sparsity pattern seems to result

from non-negativity constraint, instead of the LASSO penalty of step-wise selection.

We also consider value-weighted basis portfolio returns for BCM. The combination weights are

reported in Table E.5, and E.6. The stylized facts on selected positive benchmarks are still consistent

with the main result, the equal-weighted basis portfolio case, except that the size benchmark takes

a higher weight in value-weighted specification. Overall, our combination weight estimation is

robust to alternative specifications. In empirical applications, we only report for the constrained

BCM with equal-weighted basis portfolio return as the main result.

3.3 Asset Pricing Model Performance

In-Sample Pricing Performance. Table 4 reports the in-sample pricing performance of BCM. In

the first row panel A, with a sparse weight of 5 non-negative components, BCM explains about

40% of the total variation in individual corporate returns for a large sample from year 1976 to 2020.

The performance is persistent over time since the Fama-MacBeth time-series average R2 is also

about 40% and statistically significant. In the second row, the expansion period performance is

close to the whole period, but remember the combination weight is fitted with only the expansion

period observations. In the third row, recession has about 5% larger total R2 than expansion. When

we look into five-year sub-periods in the remaining rows of panel A, the performance measure is

persistently positive in the range of 27% to 85%, and the Fama-MacBeth version is in the range of

22% to 66%. Comparing different rating groups, we find the pricing performance is robust. The
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returns of Investment Grade Bonds are more explainable than Non-Investment Grade Bonds.

The total R2 in panel A takes account of the contemporaneous realizations in basis portfolio

returns, while the predictive R2 in panel B is about the fraction of return variation explained by

the conditional expected returns. Although BCM has 40% of total R2, we find the predictive R2

is much smaller. The predictive R2 for the whole sample is less than 1%. The overall predictive

R2 is positive, but not persistent over time. We only find a few subsamples that the Fam-MacBeth

R2 is statistically significant, e.g., early 1990s, early 2010s, and Non-Investment Grade Bonds in

expansion. Luckily, the predictive R2 is acceptable in the recent decade.

[Insert Table 4 here]

Out-of-Sample Pricing Performance. Table 5 reports the out-of-sample pricing performance of

BCM. The combination weights are estimated annually with past five-year data and reported in

Table 3. In panel A, the out-of-sample total R2 is about 35%, which is close to the in-sample coun-

terpart with a slight decrease. We can construct a dynamic replicating portfolio for each bond,

and it hedges 35% return variation in the cross section of corporate bond returns. The results are

persistently strong for different subsamples.

Panel B shows the out-of-sample predictive R2, which is essentially a predictive performance

measure. The predictive R2 becomes more than 1% and significantly larger than zero, when we

dynamically update the combination weights ω̂k and trailing mean X̄i,t−1,k of basis portfolio re-

turns. A positive predictive R2 means the BCM forecast is more accurate than a naive zero forecast.

Looking at five-year subsamples, we find 4 out of 8 periods have significantly positive predictive

R2. The return predictability is concentrated in economic expansion. It is easier to predict the Non-

Investment Grade Bonds returns than Investment Grade Bond returns.

[Insert Table 5 here]

Model Comparison. We evaluate the pricing performance of FF5 (MKT, SMB, HML, TERM, and

DEF from year 1976 to 2020) (Fama and French, 1993) and BBW4 (MKTbond, DRF, CRF, and LRF

from July 2004 to 2020) (Bai et al., 2019) and compare with BCM.
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Table 6 reports the in-sample results. FF5 provides positive total R2 since January 1976 , but its

Fama-MacBeth time-series average R2 is negative. The total R2 of BBW4 is statistically significant

and close to BCM. But, BBW4 is available in a relatively short period. The predictive R2 of FF5 is

significantly positive after July 2004, while BBW4 is negative. BCM has the largest predictive R2

among the three.

[Insert Table 6 here]

The out-of-sample comparison is in Table 7. From in-sample to out-of-sample results, the total

R2 drops dramatically for FF5 and BBW4, but BCM only decrease less than 10%. The out-of-sample

predictive R2 of all three models are positive after July 2009, and BCM outperforms FF5 and BBW4.

[Insert Table 7 here]

More details about the performance of FF5 and BBW4 are reported in Table F.1 and F.2. Overall,

the BCM gives higher asset pricing performance in individual corporate bond returns than FF5 and

BBW4.

3.4 Predicting Returns with BCM

The results above suggest that BCM serves as an asset pricing model very well. An issue of

considerable interest is whether we can exploit BCM for predicting future bond returns. The out-

of-sample predictive R2 in Table 5 is actually a predictive performance measure, and it shows the

potential of BCM in predicting individual bond returns. Recall that we use the trailing mean of basis

portfolio returns as the conditional expected return for basis portfolios X̄i,t−1,k. If we have a better

prediction for future basis portfolio returns than the trailing mean, we are likely to see even better

predictions for individual corporate bond returns. This section provides further evidence of return

predictability under BCM framework using both conventional and machine learning methods.

Predicting Basis Portfolio Returns. Referring to Hong et al. (2012); Lin et al. (2014, 2018), we

predict the basis portfolio returns with portfolio-level characteristics and macroeconomic variables.

We list four predictive models including: Mean Combination Forecast, LASSO, PCA Regression,
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and Random Forest. All of them outperform the historical average of 20-year window in predicting

future basis portfolio returns. Please find the details in Appendix G and Table G.1.

Predicting Individual Bond Returns by BCM. Next, we demonstrate how to generate return

forecasts using BCM. In step one, we create the return forecasts for various basis portfolios. In step

two, we combine these return forecasts with the dynamic weights in Table 3 to obtain predictions

for individual bond returns.

Table 8 panel A reports the out-of-sample performance of the benchmark combination forecast

over year 1996 to 2020. Taking LASSO as an example, we have LASSO predictions for various basis

portfolios and combine these LASSO forecasts with BCM weights. We then report the out-of-sample

R2
OOS of predicting individual bond returns by the weighted combination LASSO forecast, labeled

“BCM-LASSO”. We find that the historical average forecast of basis portfolios and BCM already

gives good predictions for individual corporate bond returns, while Mean Combination Forecast,

LASSO, PCA Regression, and Random Forest show substantial out-of-sample predictability. In

contrast, FF5 does not show a positive number.

In terms of sub-periods, we find the return predictability is concentrated in expansion (panel

B), and is weak in recession (panel C). The predictability is larger in Investment Grade Bonds than

Non-Investment Grade Bonds. To accommodate the data availability of BBW4, we report panel D

for July 2009 to recent. Overall, the four predictive model forecasts under BCM framework can pre-

dict individual corporate bond returns more accurately than historical average and BCM. Among

the five BCM forecasts, BCM-RF is the most recommended specification. It is possible to survey

more machine learning models to predict basis portfolio returns, but our point is that the BCM

framework is valuable in return prediction tasks.

[Insert Table 8 here]

Investment Performance. We construct forecast-implied (quintile) long-short portfolios based on

BCM forecasts for individual corporate bond returns. Figure 1 shows the cumulative returns of the

sorted portfolios and long-short portfolios. One dollar investment in 1996 grows to about 7 dollars

in 2020 for BCM-MEAN and BCM-RF. We find the long-short strategy returns grow exponentially,
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but have some drawdowns in recession, especially during the 2008 global financial crisis and the

2020 pandemic.

[Insert Figure 1 here]

Table 9 reports the performance measures for these long-short portfolios. We report the av-

erage return, α based on FF5, t-statistics for the alpha, and the annualized Sharpe ratio. These

positive investment performances are robust for all listed methods, including BCM-AVG. The α’s

are significantly positive, indicating FF5 cannot explain the long-short strategy returns.

BCM-RF delivers a 66 bp monthly average return, 61 bp alpha on FF5, and 2.05 annualized

Sharpe ratio. The Sharpe ratio is even larger, if we only include Investment Grade bonds or only

invest during expansion. During recession, the alpha of BCM-RF on FF5 is 83 bp, although the R2

measure is negative. In panel D, we report alpha controlling BBW4. Still, BCM-RF has a signifi-

cantly positive alpha of 42 bp, and the Sharpe ratio is 2.13 after July 2009. Overall, the long-short

investment strategies generate significant profits and risk-adjusted performance.

[Insert Table 9 here]

4 Conclusion

This paper presents a new asset pricing framework to estimate and decompose the individual

asset risk premia. The proposed benchmark combination model (BCM) is related to the linear factor

asset pricing model and the basis portfolio benchmark evaluation of Daniel et al. (1997). BCM is a

solution to the high-dimensional sort difficulty in Cochrane (2011) using a linear combination of

univariate-sorted basis portfolios. We provide a linear model combination framework that is trans-

parent, objective, and economically interpretable. This approach can be easily applied to corporate

bond market and other asset classes.

With a no-arbitrage objective, BCM minimizes cross-sectional pricing errors and decomposes

the sources of risk premia. We apply the model to corporate bond data and find that credit rat-

ings, maturity, short-term return reversal, momentum (12 months), and variance are five important

sources of corporate bond risk premia. In particular, short-term reversal is an under-appreciated

characteristic with high explanatory power for corporate bond returns.
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We compare BCM with the conventional factor models for pricing and prediction performance.

BCM has the advantage of dealing with individual assets that have a short history of data, low

signal-to-noise ratio, and nonlinear relations between characteristics and returns. We find evidence

that BCM outperforms conventional factor models in pricing individual corporate bond returns.

Moreover, BCM generates substantial return predictability for individual corporate bonds.

For future research, BCM is applicable to other assets, such as equity, mutual fund, FX, option,

crypto, and so on. The current investigation on BCM is empirical, we also welcome theoretical

works on it.
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Figure 1: Long-Short Strategy Returns

This figure shows the cumulative returns plot of the sorted portfolios and long-short strategies. Label 1 to 5 are the low
to high portfolios. Label “ls” is the long-short strategy. The shadow area is recession by NBER.
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Table 1: Summary Statistics

The sample includes 753,274 monthly return observations of 22,747 unique corporate bonds by 3,620 firms from January
1976 to September 2020. The raw data starts in 1973. However, we require a three-year window to initialize risk charac-
teristics such as βterm, βsmb, and so on. We report TRACE and NAIC together because they are both transaction-based
data, and a large proportion of NAIC observations are covered by TRACE.

Panel A: Descriptive Statstics

All Databases Lehman DataStream TRACE&NAIC
Bond-month observations 753,274 182,931 20,413 549,930
Start Year 1976 1976 1990 1993
End Year 2020 1998 2008 2020
% of IG 85.23 88.06 77.48 84.49
% of NIG 14.77 11.94 22.52 15.51
Return - mean (%) 0.51 0.78 0.51 0.41
Return - median (%) 0.39 0.69 0.42 0.28
Excess return - mean (%) 0.20 0.19 0.20 0.21
Excess return - median (%) 0.12 0.16 0.12 0.10
Rating - mean 5.60 5.58 7.46 5.53
Rating - median 5 5 7 5
Duration - mean (years) 5.61 5.37 8.91 5.58
Duration - median (years) 4.82 5.01 9.48 4.57
Age - mean (years) 6.37 7.16 6.78 6.09
Age - median (years) 5.03 6.41 6.34 4.39
Amt outst. - mean ($ million) 502 64 186 662
Amt outst. - median ($ million) 130 25 100 200

Panel B: Sample Distribution (%) By Rating & Maturity
AAA AA A BBB NIG All

Maturity
1 2.04 2.13 5.46 2.77 1.00 13.41
2 1.62 2.03 5.10 2.59 0.92 12.26
3 1.16 1.67 4.26 2.26 0.85 10.21
4 1.16 1.56 4.18 2.12 0.80 9.82
5 0.68 1.00 2.76 1.68 0.71 6.83
6 0.67 0.89 2.62 1.62 0.68 6.48
7 0.51 0.80 2.31 1.48 0.56 5.65
8 0.49 0.77 2.26 1.37 0.51 5.40
9 0.47 0.74 2.20 1.30 0.47 5.19

10 0.13 0.41 0.96 0.80 0.28 2.58
≥ 11 1.73 2.53 7.80 7.52 2.60 22.18
All 10.67 14.54 39.90 25.52 9.38 100.00
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Table 4: Pricing Performance for Individual Corporate Bonds (In-Sample Result)

This table reports the (in-sample) pricing performance of BCM for individual corporate bond returns. The combination
weights are reported in Table 2. The first three rows are based on the whole sample, the expansion period, and the
recession period. The remaining rows are for each five-year window. Panel A reports the performance for the total R2

in Eq. 12. In the columns, we consider the whole sample, the Investment Grade Bonds, and the Non-Investment Grade
Bonds. Panel B reports the predictive R2 in Eq. 13, and we use the unconditional average of basis portfolio returns as the
X̄i,t−1,k. The R2 columns report the aggregated pricing performance, pooling all bonds and periods. FM-R2 reports the
time-series average of {R2

t}Tt=1, more details in Section 2.8. We also report the Fama-MacBeth t-test for FM-R2, where the
signs ***, **, and * indicate significance at the 1%, 5%, and 10% level, respectively.

All Bond Investment Grade Bond Non-Investment Grade Bond

Time Range R2 FM-R2 R2 FM-R2 R2 FM-R2

Panel A: Total R2 %

1976-2020 39.79 39.54*** 41.82 40.95*** 29.78 24.81***
Expansion 38.43 39.40*** 40.71 40.98*** 25.45 22.54***
Recession 43.26 42.65*** 44.94 42.55*** 36.72 34.47***

1976-1980 85.33 66.80*** 87.87 69.10*** 40.63 17.72***
1981-1985 76.68 61.51*** 78.62 63.54*** 44.49 36.42***
1986-1990 59.25 47.74*** 65.70 53.18*** 32.06 23.33***
1991-1995 43.07 48.60*** 45.46 48.84*** 26.69 31.56***
1996-2000 32.09 26.48*** 32.67 26.79*** 25.93 21.09***
2001-2005 27.52 23.49*** 29.76 25.09*** 17.92 14.06***
2006-2010 28.25 22.70*** 25.93 21.83*** 35.02 21.24***
2011-2015 32.98 27.90*** 33.51 27.87*** 30.11 23.99***
2016-2020 52.76 33.95*** 52.15 34.79*** 55.29 22.55***

Panel B: Predictive R2 %

1976-2020 0.67 1.29 0.54 0.99 1.32 2.38***
Expansion 0.85 1.41* 0.63 1.10 2.13 2.40***
Recession 0.85 2.26 1.13 2.51 -0.26 1.66

1976-1980 0.15 -6.25 0.24 -6.59 -1.52 -7.54
1981-1985 1.36 -2.91 1.25 -3.27 3.10 -0.81
1986-1990 3.19 -4.05 3.10 -6.91 3.60 1.71
1991-1995 0.80 6.11*** 0.57 6.10** 2.32 6.34***
1996-2000 5.48 0.52 5.53 0.41 5.01 0.25
2001-2005 3.52 3.16 3.41 3.08 3.99 3.16*
2006-2010 0.73 -0.49 0.69 -0.69 0.86 0.42
2011-2015 7.58 7.00*** 7.29 6.52*** 9.11 8.02***
2016-2020 4.58 3.64 4.94 3.28 3.10 5.89
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Table 5: Pricing Performance for Individual Corporate Bonds (Out-of-Sample Result)

This table reports the (out-of-sample) pricing performance of BCM for individual corporate bond returns. The combi-
nation weights are updated annually and reported in Table 3. To calculate the out-of-sample predictive R2, we use the
trailing average of basis portfolio returns as the X̄i,t−1,k in Eq. 13. Other format follows Table 4.

All Bond Investment Grade Bond Non-Investment Grade Bond

Time Range R2 FM-R2 R2 FM-R2 R2 FM-R2

Panel A: Total R2 %

1981-2020 35.12 35.96*** 36.62 37.06*** 28.26 23.48***
Expansion 34.51 35.64*** 36.32 36.87*** 24.78 22.75***
Recession 36.27 38.55*** 37.25 38.62*** 32.87 29.40***

1981-1985 75.82 60.17*** 77.93 62.52*** 40.72 31.66***
1986-1990 57.89 47.23*** 63.57 51.77*** 33.92 26.60***
1991-1995 41.74 48.05*** 44.14 47.73*** 25.30 30.15***
1996-2000 31.46 25.82*** 32.13 26.18*** 24.29 19.51***
2001-2005 26.82 23.41*** 29.11 25.12*** 17.02 13.70***
2006-2010 26.50 22.64*** 25.16 22.42*** 30.40 18.68***
2011-2015 31.16 26.46*** 30.80 25.70*** 33.07 26.36***
2016-2020 51.96 34.20*** 51.80 35.36*** 52.59 21.17***

Panel B: Predictive R2 %

1981-2020 0.19 1.06* 0.04 0.87 0.90 2.18***
Expansion 0.65 1.28* 0.43 1.02 1.89 2.52***
Recession -0.43 -0.72 -0.49 -0.39 -0.21 -0.55

1981-1985 -2.46 -2.41 -2.56 -2.56 -0.98 -0.85
1986-1990 0.45 -3.02 0.20 -3.87 2.01 1.28
1991-1995 0.17 5.35*** -0.51 5.24** 4.79 6.40***
1996-2000 -2.17 -1.65 -2.21 -1.65 -1.72 -1.35
2001-2005 0.89 1.10** 0.88 1.12** 0.94 0.99**
2006-2010 0.39 0.54 0.32 0.39 0.62 1.13*
2011-2015 3.59 4.09*** 3.33 3.78*** 4.99 5.02***
2016-2020 3.05 4.63** 3.36 4.61** 1.76 4.93***
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Table 6: Comparing BCM and Factor Model (In-Sample Result)

The expression “In-sample” indicates the combination weights of BCM and beta’s of FF5 and BBW4 are estimated with
whole sample data. The in-sample weight of BCM is reported in the “1976-2020” column of Table 2. The FF5 denotes
the five-factor model in Fama and French (1993) and the five factors are MKT, SMB, HML, TERM, and DEF from January
1976 to September 2020. The BBW4 denotes the factor model in Bai et al. (2019) and the four factors are MKTbond, DRF,
CRF, and LRF from July 2004 to September 2020. The in-sample FF5 data covers January 1976 to September 2020, and the
in-sample BBW data covers July 2004 to September 2020. Format follows Table 4.

All Bond Investment Grade Bond Non-Investment Grade Bond

Time Range Model R2 FM-R2 R2 FM-R2 R2 FM-R2

Panel A: Total R2 %

1976 Jan- BCM 39.79 39.54*** 41.82 40.95*** 29.78 24.81***
FF5 13.72 -18.31 11.51 -18.16 24.58 -13.61

2004 Jul-
BCM 30.84 27.69*** 30.35 27.97*** 32.47 21.80***
FF5 21.50 -1.72 18.58 -2.51 31.18 -2.89
BBW4 38.75 20.70*** 39.53 21.64*** 36.18 12.22***

Panel B: Predictive R2 %

1976 Jan- BCM 0.67 1.29 0.54 0.99 1.32 2.38***
FF5 -0.41 -1.48 -0.51 -0.66 0.11 -1.59

2004 Jul-
BCM 1.41 3.14*** 1.48 3.00*** 1.18 3.69***
FF5 0.73 1.74*** 0.64 1.47*** 1.03 2.82***
BBW4 -0.59 -1.82 -0.81 -1.96 0.27 -1.93
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Table 7: Comparing BCM and Factor Model (Out-of-Sample Result)

The expression “Out-of-sample” indicates the combination weights of BCM and beta’s of factor models are updated
dynamically with a five-year rolling window. So, the out-of-sample data starts five years later than the in-sample data
in Table 6. The out-of-sample weight of BCM is in of Table 3. The FF5 denotes the five-factor model in Fama and French
(1993) and the five factors are MKT, SMB, HML, TERM, and DEF. The BBW4 denotes the factor model in Bai et al. (2019)
and the four factors are MKTbond, DRF, CRF, and LRF. Format follows Table 4.

All Bond Investment Grade Bond Non-Investment Grade Bond

Time Range Model R2 FM-R2 R2 FM-R2 R2 FM-R2

Panel A: Total R2 %

1981 Jan- BCM 35.12 35.96*** 36.62 37.06*** 28.26 23.48***
FF5 -13.94 -45.18 -13.17 -44.87 -17.41 -60.91

2009 Jul-
BCM 37.28 29.72*** 36.33 29.51*** 40.95 24.80***
FF5 -21.31 -25.20 -14.82 -19.06 -46.33 -61.54
BBW4 15.29 9.17*** 19.18 13.15*** 0.30 -19.01

Panel B: Predictive R2 %

1981 Jan- BCM 0.19 1.06 0.04 0.87 0.90 2.18***
FF5 -1.30 -3.04 -1.47 -4.03 -0.55 -0.36

2009 Jul-
BCM 3.13 4.14*** 3.04 3.94*** 3.50 4.82***
FF5 1.73 2.51*** 1.76 2.31*** 1.63 2.68
BBW4 4.05 1.36 3.58 1.45 5.88 -1.88
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Table 8: Predicting Individual Bond Returns with BCM Forecast

This table reports out-of-sample R2
OOS (%) of predicting individual corporate bond returns using the BCM framework

combined with five predictive models. We provide four panels for different periods, panel A for the whole out-of-sample
period from Jan 1996 to Sep 2020, panel B for the expansion months, panel C for the recession months, and panel D for
Jul 2009 and afterward to accommodate the availability of BBW4 data. The BCM-AVG forecast combines the twenty-year
rolling window average of basis portfolio returns with the five-year rolling window BCM weight in Table 3. Similarly, we
combine the Mean Combination (LASSO, PCA, RF) forecast with BCM weights and get BCM-MEANC (-LASSO, -PCA, -
RF) forecasts for individual bond returns. The forecasts for basis portfolios are based on past twenty-year rolling window
training model. The row of FF5 is the forecast given by the five-factor model, with a five-year rolling window beta and a
twenty-year rolling window average factor return. The row of BBW4 is the forecast given by the BBW four-factor model,
with a five-year rolling window beta and expanding window average factor return. Format follows Table 4.

All Bond IG Bond NIG Bond

Model R2 FM-R2 R2 FM-R2 R2 FM-R2

Panel A: Prediction Period 1996 Jan - 2020 Sep

BCM-AVG 0.29 0.80*** 0.34 0.94 0.06 0.20
BCM-MEANC 1.08 1.50*** 1.08 1.61 1.07 0.86**
BCM-LASSO 3.83 2.62*** 3.57 2.67*** 4.86 1.79*
BCM-PCA 3.73 2.30** 3.22 2.19** 5.83 1.78
BCM-RF 3.40 3.43*** 3.60 3.57*** 2.61 2.13**
FF5 -0.69 -1.68 -0.85 -1.75 -0.02 -0.88

Panel B: Expansion

BCM-AVG 0.38 0.87*** 0.47 1.03*** -0.07 0.21
BCM-MEANC 1.37 1.65*** 1.43 1.78*** 1.03 0.92**
BCM-LASSO 4.27 2.84*** 4.31 2.95*** 4.02 1.74
BCM-PCA 4.97 2.68*** 4.82 2.65*** 5.69 1.84
BCM-RF 5.04 3.82*** 5.35 3.99*** 3.47 2.32**
FF5 -1.20 -1.83 -1.41 -1.94 -0.12 -0.87

Panel C: Recession

BCM-AVG 0.13 0.15** 0.10 0.16 0.22 0.13
BCM-MEANC 0.56 0.04 0.37 -0.05 1.10 0.35
BCM-LASSO 3.04 0.50 2.08 -0.01 5.81 2.21
BCM-PCA 1.52 -1.31 -0.02 -2.21 5.98 1.22
BCM-RF 0.47 -0.32 0.07 -0.47 1.63 0.24
FF5 0.22 -0.21 0.27 0.03 0.10 -1.01

Panel D: Prediction Period 2009 Jul - 2020 Sep (for BBW4 data)

BCM-AVG 0.69 1.37*** 0.96 1.67*** -0.37 -0.40
BCM-MEANC 1.97 2.09*** 2.05 2.33*** 1.65 0.41
BCM-LASSO 4.77 1.77 4.61 2.00 5.39 -0.15
BCM-PCA 4.81 1.29 3.81 1.11 8.70 0.89
BCM-RF 4.49 3.17*** 4.65 3.39*** 3.87 1.23
BBW4 3.36 1.19 2.89 1.33 5.23 -0.89
FF5 0.51 -1.35 0.27 -1.47 1.46 -0.99
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Table 9: Forecast-Implied Long-Short Strategy Performance

This table reports the performance for the forecast-implied quintile long-short strategies. The performance measures
include average excess returns (%), alphas (%) on a factor model (use FF5 for panel A, B, and C, use BBW4 for panel D),
t-statistics for the alpha, and the annualized Sharpe ratio. The signs ***, **, and * indicate the significance of alphas at the
1%, 5%, and 10% level, respectively.

All Bond IG Bond NIG Bond

Model Avg.Ret α SR Avg.Ret. α SR Avg.Ret. α SR

Panel A: Prediction Period 1996 Jan - 2020 Sep

BCM-AVG 0.67 0.58*** 1.89 0.66 0.60*** 1.95 0.57 0.47*** 1.41
BCM-MEANC 0.69 0.59*** 1.73 0.69 0.61*** 1.85 0.56 0.49*** 1.29
BCM-LASSO 0.51 0.44*** 1.55 0.51 0.47*** 1.69 0.40 0.33*** 1.01
BCM-PCA 0.58 0.53*** 1.60 0.52 0.49*** 1.56 0.30 0.26*** 0.63
BCM-RF 0.66 0.61*** 2.05 0.70 0.67*** 2.36 0.56 0.52*** 1.53

Panel B: Expansion

BCM-AVG 0.69 0.61*** 2.38 0.67 0.62*** 2.39 0.59 0.49*** 1.84
BCM-MEANC 0.70 0.61*** 2.27 0.68 0.62*** 2.28 0.58 0.49*** 1.74
BCM-LASSO 0.54 0.50*** 2.15 0.52 0.51*** 2.12 0.40 0.37*** 1.29
BCM-PCA 0.60 0.54*** 2.00 0.57 0.54*** 1.98 0.44 0.39*** 1.36
BCM-RF 0.70 0.68*** 2.93 0.71 0.71*** 2.98 0.57 0.52*** 2.04

Panel C: Recession

BCM-AVG 0.43 0.26 0.59 0.53 0.23 0.79 0.46 0.78 0.51
BCM-MEANC 0.67 0.93* 0.74 0.79 0.85** 0.99 0.37 1.01 0.38
BCM-LASSO 0.24 0.46 0.32 0.39 0.47 0.63 0.39 0.71 0.45
BCM-PCA 0.33 0.85** 0.46 0.05 0.50 0.08 -1.09 -0.35 -0.99
BCM-RF 0.25 0.83** 0.33 0.53 0.96*** 0.85 0.47 0.84 0.56

Panel D: Prediction Period 2009 Jul - 2020 Sep (for BBW4 data)

BCM-AVG 0.92 0.49*** 2.43 0.88 0.48*** 2.54 0.77 0.38*** 1.92
BCM-MEANC 0.92 0.47*** 2.29 0.88 0.45*** 2.38 0.77 0.41*** 1.90
BCM-LASSO 0.58 0.32*** 1.77 0.57 0.38*** 1.97 0.39 0.23** 1.09
BCM-PCA 0.76 0.35*** 2.15 0.70 0.36*** 2.24 0.50 0.22** 1.31
BCM-RF 0.71 0.42*** 2.13 0.70 0.42*** 2.24 0.69 0.42*** 1.94
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Appendices

A Simulation

For our empirical data, there are extensive nonlinear relations between asset characteristics

and expected return, as demonstrated in Figure A.1. This section provides simulation experiments

to show that benchmark models capture the nonlinear relations between asset characteristics and

expected return in asset pricing. However, the characteristic-based factors (long-short portfolios)

do not.

Assume we have N = 1000 assets, T = 300 time periods, one factor with normal distribution

ft ∼ N (µ = 1%, σ2 = 1%), and one characteristic with uniform distribution in each time period

zi,t ∼ U(−1, 1). 8 Other parameters are a = 0.005, b = 0.5, µ = 0.005, σ = 0.005, εi,t ∼ i.i.d.N (0, σ2).

We consider six cases of the data generating process.

• (L) Linear relation between characteristics and expected returns, without factor structure.

This formulation follows the data generating process of Eq. 5 in Daniel and Titman (1997),

which assume expected returns are a function of the observable asset characteristics. We ex-

tend the linear assumption between characteristics and expected returns to nonlinear relations

in cases U and S.

ri,t = azi,t−1 + µ+ εi,t (19)

• (U) U-shape relation between characteristics and expected returns, without factor structure.

ri,t = az2i,t−1 + µ+ εi,t (20)

• (S) Square-root relation between characteristics and expected returns, without factor structure.

ri,t = a(zi,t−1 + 1)(1/2) + µ+ εi,t (21)
8We assume there is only one factor and one characteristic for demonstration, the study can be extended to multiple

factors and characteristics.
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• (LF) Linear relation between characteristics and expected returns, with a factor.

This formulation follows the literature of factor model with conditional beta, such as Rosen-

berg (1974); Avramov and Chordia (2006). We extend the linear assumption between charac-

teristics and beta’s to nonlinear relations in cases UF and SF. In simulation, we estimate the

asset beta via time-series regression, agnostic to the conditional relation between characteris-

tics and beta’s.

βi,t = b(zi,t−1 + 1) (22)

ri,t = βi,tft + εi,t (23)

• (UF) U-shape relation between characteristics and expected returns, with a factor.

βi,t = bz2i,t−1 (24)

ri,t = βi,tft + εi,t (25)

• (SF) Square-root relation between characteristics and expected returns, with a factor.

βi,t = b(zi,t−1 + 1)(1/2) (26)

ri,t = βi,tft + εi,t (27)

For each case, we sort the individual assets into five portfolios based on their characteristic. A long-

short factor is simulated as longing the top and shorting the bottom. We report the expected returns

of the sorted portfolios and factors in Figure A.2, which clearly shows U-shape, square-root, and

linear relations. Notably, the long-short factors don’t earn significantly positive returns for the cases

(U) and (UF).

The long-short factors can price the assets. In comparison, we use the sorted portfolios as

benchmarks to price the assets. In Table A.1, we report the total R2 and predictive R2 for the

benchmark model and long-short factor model, where we sort the assets into five portfolios. The

benchmark model gives positive numbers for cases without a factor structure (U,S, and L), but the
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factor model does not. For the conditional factor model cases (LF and SF), the factor model gives

good results, and so does the benchmark model in total R2, but the benchmark model is relatively

weaker in predictive R2. The factor model fails dramatically for the conditional factor model case

(UF), but the benchmark model is still robust. So, the long-short factor model works only when

there is a factor structure, and the relationship between beta’s and characteristics is linear. The

factor model fails if there is no factor structure or the relations between characteristics and beta’s is

far from linear, such as a U-shape. Luckily, the benchmark model performs well under the six data

generating processes, robust to the factor structure and nonlinearity.

What if we sort into ten portfolios instead of five? In Figure A.3, we report the expected

returns of the sorted portfolios and factors. In Table A.2, we report the total R2 and predictive

R2 for benchmark model (ten sorted portfolios) and long-short factor model, where we sort the

assets into ten portfolios. We find the performance of ten-portfolio benchmark model is similar to

the five-portfolio benchmark model in Table A.1.

The simulation study assumes a balanced panel data structure. In other words, there is a

complete time series for each asset. However, the empirical corporate bond data is unbalanced,

making beta estimation even more difficult for factor models. In this sense, benchmark models

have a higher chance of outperforming factor models.

38

Electronic copy available at: https://ssrn.com/abstract=3940817



Figure A.1: Expected Excess Returns of Sorted Portfolios in Empirical Data

For each characteristic, we sort the cross section of corporate bonds into five portfolios and re-balance monthly over the
45-year sample from 1976 to 2020. We report the expected excess returns (%) for each portfolio. The relation between the
characteristics and returns seems linear, e.g., TMT. However, there are also nonlinear relations, e.g., MOM1M, MOM36M,
and VAR.
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Table A.1: Asset Pricing Performance for Simulation, Five-Portfolio Case

This table shows the total R2 and predictive R2 of benchmark pricing model and long-short factor
based pricing model.

Benchmark Factor

Total R2 % Predictive R2 % Total R2 % Predictive R2 %
U 31.72 28.96 0.29 0.00
S 49.40 46.54 -1.71 -1.93
L 24.98 12.90 -10.98 -11.29

UF 26.04 2.70 0.32 -0.04
SF 63.63 22.83 63.61 28.90
LF 71.47 19.36 71.94 37.54

Table A.2: Asset Pricing Performance for Simulation, Ten-Portfolio Case

This table shows the total R2 and predictive R2 of benchmark pricing model and long-short factor
based pricing model.

Benchmark Factor

Total R2 % Predictive R2 % Total R2 % Predictive R2 %
U 32.30 28.70 0.30 0.00
S 49.71 46.48 -0.96 -1.19
L 25.54 12.70 -6.75 -7.07

UF 28.26 1.68 0.25 -0.05
SF 64.13 22.71 63.40 28.91
LF 72.17 19.10 71.88 37.54
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B High-Dimensional Sorting Difficulty

This section demonstrates the high-dimensional sort difficulty with the real data in Table B.1.

We do independent quintile sorting on maturity and rating, then report the average number of

bonds in each sorting bucket. We repeat the process on maturity and downside risk. For rating

and maturity, the number of bonds in each bucket is no less than 30 over the 25 years. However,

there are a few buckets with less than 10 bonds for maturity and downside risk. These buckets

are small portfolios that are not well-diversified. So, the high-dimensional sort difficulty is salient

when characteristics are correlated.

Table B.1: The Number of Observations by Buckets for Bivariate Sorts

This table reports the monthly average number of observations in each bucket for independent bivariate sorts from 1996
to 2020. We sort individual corporate bonds by credit rating, maturity, and downside risk into five buckets. The top
table shows the number of observations for rating and maturity sorts, and the bottom table shows the bivariate sorts on
maturity and downside risk.

Maturity
1 2 3 4 5 All

Rating

AAA 60 52 48 39 34 233
AA 62 62 53 46 37 260
A 151 151 139 131 126 697

BBB 80 83 96 122 139 520
JUNK 31 36 48 46 48 210
ALL 384 384 384 384 384 1920

Downside risk

1 18 29 53 85 200 386
2 19 37 81 114 135 386
3 38 71 111 122 43 385
4 82 135 108 56 5 386
5 228 112 30 6 1 378

ALL 384 384 384 384 384 1920
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C Introduction to Predictive Models

This section introduce the predictive models g(·) used to forecast basis portfolio returns in Eq.

10. And we re-type the essential part as:

Et(Rk,s,t+1) = gk,s(Z̃k,s,t, xt).

The expected return of basis portfolio Rk,s,t+1 is a function of the portfolio characteristic Z̃k,s,t and

the macroeconomic predictor xt, where k is for characteristic, s is for sorting index, and t is for time.

The portfolio characteristic Z̃k,s,t is the equal-weighted average of the characteristic of underlying

individual bonds in that portfolio, and the macroeconomic predictor xt is observable.

For each basis portfolio k, s, we fit a time-series predictive model for it and update the model

on an annual basis. For simplicity, we omit the subscript k and s, use P of dimension J to denote

the joint set of predictors Z̃k,s,t and xt, and re-write the time-series predictive model as:

Et(Rt+1) = g(Pt). (28)

The first functional form we can consider is (multiple) linear regression, which assumes a linear

relationship between returns and predictors.

Rt+1 = g(Pt; θ) + εt+1 = P ᵀ
t θ + εt+1. (29)

The problem can be solved by minimizing the sum of squared errors L(θ) via any optimization tool

or analytical solution of OLS.

L(θ) =
1

T

T∑
t=1

(Rt+1 − g (Pt; θ))
2 . (30)

However, linear regression doesn’t give acceptable predictive performance in the literature

(Welch and Goyal, 2008; Lin et al., 2014; Gu et al., 2020; Bali et al., 2020). Historical average, forecast

combination, and machine learning models arise to predict returns quite well. We describe five

predictive models of our interest in the following subsections.
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C.1 Machine Learning Models

C.1.1 Least Absolute Shrinkage and Selection Operator

The failure of the linear regression model is by large because of the high dimension of the

predictors and overfitting. LASSO adds a penalty term on the loss function L(θ) in Eq. 30 and we

have:

L(θ; ·) =
1

T

T∑
t=1

(Rt+1 − g (Pt; θ))
2 + λ

J∑
j=1

|θj | . (31)

The loss function penalizes the sum of the absolute value of the coefficients in favor of a parsimo-

nious specification to avoid overfitting. As a result, some coefficients will be penalized to zero. The

goal of using LASSO is to get a better out-of-sample prediction than linear regression. The hyper-

parameter λ controls for the amount of penalty, which is chosen by cross-validation described in

Section C.1.4.

C.1.2 Principal Component Regression

PCR projects the high-dimensional predictors to a small number of uncorrelated principal com-

ponents. This is a brilliant way to deal with the high correlation and high dimension in the predictor

set. The number of principal components denoted as J ′ is a hyperparameter, which is smaller than

J .

In the first step, we recursively estimate the principal component weight matrix ΩJ ′ of dimen-

sion J × J ′. The principal components are deemed to retain essential information of the predictor

set in the dimension reduction process. This step is unsupervised machine learning. For the j′-th

column of ΩJ ′ , we solve it as

wj′ = arg max
w

Var(Ptw), s.t. w′w = 1, Cov (Ptw,Ptwl) = 0, l = 1, 2, . . . , j′ − 1. (32)

In the second step, we run predictive linear regression with the principal components. This step is

supervised machine learning.

Rt+1 = (PtΩJ ′)
ᵀθJ ′ + ε̃t+1. (33)
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C.1.3 Random Forest

Tree models are flexible for nonlinear and interactive functional form, unlike the linear models

listed above. A single tree clusters the observations into non-overlapping groups or leaves. Each

leaf has a parameter that is the tree prediction for the dependent variable of the observations in that

leaf. Assume we have L leaves in a tree model, the model would be

g (Pt; θ, L) =

L∑
l=1

θl1{Pt∈leafl}. (34)

Random forest is an ensemble method that takes average of many decorrelated trees with

bootstrapped observations and a random subset of features. Random forests attenuate overfitting

in bootstrapped samples and make reliable out-of-sample predictions.

C.1.4 Cross-Validation

Many machine learning methods require tuning hyperparameters. We adopt a deterministic

five-fold cross-validation scheme as illustrated in Figure C.1. To predict returns in year Y , we first

split the past data up to the end of year Y −1 into five consecutive time intervals as five folds. Then,

we train each model using four of the five folds and validate using the remaining one fold, resulting

in five validation errors. Finally, we determine the best parameters according to the average of these

five validation errors and refit the model using all five data folds.

Figure C.1: Deterministic Five-Fold Cross-Validation

This figure demonstrates the deterministic five-fold cross-validation scheme. At the beginning of each year, we re-
estimate the models using data of the past 20 years. Specifically, the deterministic design divides the sample into five
consecutive parts.

Experiment 1 Validation Train Train Train Train Holdout

Experiment 2

Experiment 3

Experiment 4

Experiment 5

Year Y − 20 to Y − 1 Year Y
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C.2 Other Predictive Models

C.2.1 Historical Average

We use the historical average of basis portfolio return over w periods as the prediction for next

period return, which ignores any information in Z̃k,s,t and xt.

Et(Rt+1) =
1

t

τ=t∑
τ=t−w+1

Rτ (35)

C.2.2 Mean Combination

Combination method (Timmermann, 2006; Lin et al., 2018) is a practical solution to do predic-

tion with a large number of predictors. The first step is to run univariate predictive regressions for

each predictor j, and get multiple forecast values R̂t+1|t,j for one return.

Rt+1 = aj + bjPj,t + εj,t+1. (36)

R̂t+1|t,j = aj + bjPj,t. (37)

The second step is to combine the multiple forecasts with some weight, and get one single forecast

for the return. We choose a naive but robust mean combination approach, which combines the

multiple forecast values with equal weight.

R̂MC
t+1|t =

J∑
j=1

1

J
R̂t+1|t,j . (38)
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D Predictor List
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Table D.1: Predictor List

Acronym Description Details

Macro Predictors
Bond market variable
TERM Term factor Long-term government bond return (from Ibbotson Associates) minus

the one-month Treasury bill rate
DEF Default factor Long-term corporate bond return minus long-term government bond

return (from Ibbotson Associates)
CP5 Cochrane-Piazzesi forward factor Codes of Monika Piazzesi, 5-year specification
ILL Pastor-Stambaugh illiquidity Download from Robert Stambaugh
TBL 3-month treasury bill rate Download from Fed. St. Louis
CBMKT Corporate bond market return Value-weighted corporate bond market return, equal weight
MTS Maturity spread Return of long (greater than 10 years) maturity corporate bond returns

minus return of short (2 to 5 years) maturity corporate bond returns,
equal weight

RTS Rating spread Return of Junk bond minus return of AAA bond, equal weight
INFL CPI index Download from Fed. St. Louis
TMS Term spread Long-term yield on government bonds (from Ibbotson Associates)

minus the one-month Treasury bill rate
DFY Default yield spread Yield of BAA- corporate bond minus yield of AAA corporate bonds
Equity market variable
DP Dividend-to-price S&P500 index dividend-to-price
EP Earnings-to-price S&P500 index earnings-to-price
NI Net equity issuance S&P500 index net equity issuance
LEV Leverage S&P500 index leverage
SVAR Stock variance S&P500 index variance
MKTRF Market factor Download from Kenneth French
SMB Size factor Download from Kenneth French
HML Value factor Download from Kenneth French
MOM Momentum factor Download from Kenneth French

Corporate Bond Characteristics
Fundamental
CRT Credit Rating From FISD
TMT Time-to-maturity From FISD
AGE Time-from-issuance From FISD
SIZE Amount outstanding From FISD
CPN Coupon rate From FISD
Return-distribution
STR Short-term Reversal Lag 1-month return
MOM6M 6-month momentum Lag 2-month to lag 6-month cumulative return
MOM12M 12-month momentum Lag 2-month to lag 12-month cumulative return
LTR2Y 2-year long-term reversal Lag 13-month to lag 24-month cumulative return
LTR3Y 3-year long-term reversal Lag 13-month to lag 36-month cumulative return
VAR Variance Variance of returns of the past 36 months
DSD Downside risk 5% VaR of returns of the past 36 months
SKEW Skewness Skewness of returns of the past 36 months
KURT Kurtosis Kurtosis of returns of the past 36 months
Covariance on risk factors
BETA MKT Multiple regression beta of a five-factor model
BETA SMB Multiple regression beta of a five-factor model
BETA HML Multiple regression beta of a five-factor model
BETA DEF Multiple regression beta of a five-factor model
BETA TERM Multiple regression beta of a five-factor model
RVAR Residual variance in the multiple regression of a five-factor model
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F Factor Model Performance by Period

Table F.1: Fama-French Five-Factor Model Performance

Format follows Table 4. The factor model is MKT, SMB, HML, TERM, and DEF (Fama and French, 1993).

INS OOS

Time Range R2 FM-R2 R2 FM-R2

Panel A: Total R2 %

1976-2020 13.72 -18.31 -13.94 -45.18
Expansion 8.68 -19.46 -14.02 -48.87
Recession 22.90 -8.82 -13.78 -15.12

1976-1980 26.47 -46.44
1981-1985 23.81 -15.05 2.68 -103.04
1986-1990 -7.04 -42.96 -73.46 -106.41
1991-1995 16.78 -25.77 13.97 -24.98
1996-2000 11.27 2.81 -17.80 -41.60
2001-2005 -11.93 -30.94 -5.48 -6.38
2006-2010 26.83 6.57 -24.09 -33.48
2011-2015 4.27 -2.43 -27.54 -34.42
2016-2020 21.50 -10.10 -8.03 -11.33

Panel B: Predictive R2 %

1976-2020 -0.41 -1.48 -1.30 -3.04
Expansion -0.60 -1.73 -1.68 -3.47
Recession -0.06 0.56 -0.59 0.50

1976-1980 -1.79 -3.52
1981-1985 1.16 -0.70 1.11 -0.19
1986-1990 2.24 -3.43 -3.85 -20.56
1991-1995 -3.34 -6.47 1.07 4.00
1996-2000 -4.41 -3.92 -12.44 -12.49
2001-2005 -0.04 -0.88 0.88 1.04
2006-2010 0.30 0.01 -0.91 -1.48
2011-2015 2.65 2.88*** 2.80 2.85***
2016-2020 1.89 2.91** 2.02 2.82*
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Table F.2: Bai Bali Wen Four-Factor Model Performance

Format follows Table 4. The factor model is MKTbond, DRF, CRF, and LRF (Bai et al., 2019). The “46.71(NA)“ (“-
0.45(NA)“) in row Recession of the last column means the average R2 during recession period (March and April in 2020)
is 46.71% (-0.45%), but we cannot calculate t-statistics for it as we have only two points (March and April 2020).

INS OOS

Time Range R2 FM-R2 R2 FM-R2

Panel A: Total R2 %

1976-2020 38.75 20.70*** 15.29 9.17***
Expansion 24.30 18.98*** 11.16 8.61***
Recession 51.04 35.76*** 45.63 46.71(NA)

2001-2005 24.14 19.46***
2006-2010 40.80 18.52*** 5.54 -1.40
2011-2015 22.39 14.68*** 7.23 1.14
2016-2020 55.04 29.73*** 35.81 20.98***

Panel B: Predictive R2 %

1976-2020 -0.59 -1.82 4.05 1.36
Expansion -0.38 -1.76 4.97 1.39
Recession -0.95 -2.51 -2.67 -0.45(NA)

2001-2005 -0.13 -0.65
2006-2010 -0.31 -3.85 7.80 6.48*
2011-2015 2.47 0.78 0.96 -2.40
2016-2020 2.00 -0.61 3.59 3.71
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G Predicting Basis Portfolio Returns

This section presents the return predictability evidence for basis portfolios. We report the

aggregate out-of-sample R2 (Eq. 15) of five basis portfolios for each characteristic. Consistent with

Lin et al. (2014) and Lin et al. (2018), we find that Mean Combination Forecast can predict the

rating or maturity basis portfolio returns. Furthermore, we find that machine learning methods can

substantially improve forecast performance.

In Table G.1, we extend the return predictability studies to all 20 groups of basis portfolio re-

turns. We find high return predictability for all basis portfolios over their historical average. The

traditional mean combination forecast method delivers robust predictability. Moreover, machine

learning methods, including LASSO, PCA regression, and Random Forest, generate strong return

predictability. This paper’s results constitute another contribution: basis portfolio returns are pre-

dictable, primarily via machine learning methods. We put this section in the appendix because it is

not the main contribution.

Table G.1: Predicting Corporate Bond Basis Portfolio Returns

This table reports the out-of-sample R2
OOS (%) of return forecasts for basis bond portfolios. The prediction methods are

listed for each column, and the out-of-sample prediction baseline is the historical average return of each basis portfolio.
We aggregate the results for the five basis portfolios of each one of the 20 characteristics, see Eq. 15.

Characteristic MeanComb LASSO PCA Random Forest
Rating 3.25 9.48 12.46 9.17
Maturity 2.99 10.48 10.44 9.41
Size 3.28 10.31 9.54 10.39
Age 3.25 13.79 11.48 11.29
Coupon 3.15 11.03 10.49 10.34
Short-term Rev 2.99 12.92 9.94 11.07
Momentum 6M 2.75 10.89 11.36 9.41
Momentum 12M 2.68 12.35 10.86 9.42
Long-term Rev 2Y 3.95 15.64 13.62 11.72
Long-term Rev 3Y 3.43 11.44 10.79 9.92
Variance 2.69 9.97 10.44 9.29
Downside Risk 2.98 8.82 11.59 9.62
Skewness 2.92 9.29 6.95 10.05
Kurtosis 3.22 14.16 10.27 10.63
Beta mkt 2.58 8.45 9.89 8.94
Beta smb 3.20 12.21 10.37 9.61
Beta hml 2.98 12.41 9.87 10.08
Beta term 2.82 11.29 7.78 9.76
Beta def 3.12 11.82 10.09 10.13
Residual Var. 2.75 8.38 11.29 9.46
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H BCM Performance with Value-Weighted Basis Portfolio
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Table H.1: Value-Weighted Basis Portfolio: Pricing Performance for Individual Corporate Bonds
(In-Sample Result)

Format follows Table 4.

All Bond Investment Grade Bond Non-Investment Grade Bond

Time Range R2 FM-R2 R2 FM-R2 R2 FM-R2

Panel A: Total R2 %

1976-2020 36.59 35.83*** 38.27 36.97*** 28.32 23.36***
Expansion 34.67 35.70*** 36.50 37.12*** 24.24 21.81***
Recession 40.90 39.80*** 42.80 38.98*** 33.52 32.41***

1976-1980 84.63 65.13*** 87.17 67.40*** 40.06 16.03***
1981-1985 75.03 59.23*** 77.04 61.37*** 41.77 33.80***
1986-1990 56.48 44.25*** 62.67 47.72*** 30.38 22.61***
1991-1995 38.21 43.72*** 40.75 42.72*** 20.90 27.72***
1996-2000 29.14 23.47*** 29.65 23.74*** 23.72 18.62***
2001-2005 23.92 20.41*** 25.02 20.98*** 19.22 15.77***
2006-2010 26.34 20.53*** 24.30 19.67*** 32.30 18.95***
2011-2015 30.30 25.02*** 30.58 24.76*** 28.81 22.74***
2016-2020 50.25 32.22*** 50.47 33.48*** 49.34 17.74***

Panel B: Predictive R2 %

1976-2020 0.58 1.38** 0.46 1.12 1.18 2.30***
Expansion 0.69 1.42** 0.50 1.15** 1.81 2.23***
Recession 0.80 2.19 1.06 2.42 -0.23 1.65

1976-1980 0.11 -6.72 0.21 -7.02 -1.55 -8.52
1981-1985 1.35 -2.86 1.24 -3.23 3.08 -0.60
1986-1990 3.00 -2.88 2.94 -5.37 3.25 2.20
1991-1995 0.58 5.76** 0.34 5.88** 2.25 5.74***
1996-2000 5.40 0.54 5.44 0.44 4.92 0.21
2001-2005 3.04 3.00** 2.87 2.89** 3.80 3.10**
2006-2010 0.48 -0.72 0.38 -0.95 0.77 0.24
2011-2015 6.63 6.55*** 6.35 6.14*** 8.17 7.18***
2016-2020 4.41 4.04 4.74 3.74 3.03 5.94
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Table H.2: Value-Weighted Basis Portfolio: Pricing Performance for Individual Corporate Bonds
(Out-of-Sample Result)

Format follows Table 5.

All Bond Investment Grade Bond Non-Investment Grade Bond

Time Range R2 FM-R2 R2 FM-R2 R2 FM-R2

Panel A: Total R2 %

1976-2020 32.77 33.02*** 33.94 34.00*** 27.46 22.06***
Expansion 31.33 32.58*** 32.75 33.90*** 23.66 21.19***
Recession 35.53 36.58*** 36.40 34.83*** 32.50 29.07***

1981-1985 74.34 58.26*** 76.49 60.67*** 38.69 29.92***
1986-1990 54.67 43.33*** 60.21 46.21*** 31.32 24.72***
1991-1995 36.25 42.79*** 38.62 44.81*** 20.00 26.04***
1996-2000 28.87 23.11*** 29.42 23.42*** 22.97 17.77***
2001-2005 23.16 20.22*** 24.64 21.06*** 16.82 14.38***
2006-2010 25.58 20.74*** 23.97 20.03*** 30.29 18.59***
2011-2015 28.76 23.98*** 28.28 23.17*** 31.37 24.46***
2016-2020 49.48 32.07*** 49.45 33.04*** 49.62 20.63***

Panel B: Predictive R2 %

1976-2020 0.06 0.79 -0.08 0.61 0.73 1.89***
Expansion 0.46 1.00* 0.25 0.76 1.65 2.23***
Recession -0.45 -0.90 -0.51 -0.58 -0.27 -0.81

1981-1985 -2.54 -2.57 -2.62 -2.69 -1.24 -1.22
1986-1990 0.34 -2.84 0.09 -3.60 1.92 1.24
1991-1995 0.09 5.00*** -0.58 4.99** 4.63 5.98***
1996-2000 -1.99 -1.53 -2.04 -1.54 -1.52 -1.24
2001-2005 0.76 0.90** 0.73 0.88** 0.87 0.94**
2006-2010 0.33 0.53 0.29 0.43 0.43 0.85
2011-2015 2.84 3.31*** 2.58 3.00*** 4.24 4.33***
2016-2020 2.32 3.63*** 2.49 3.53*** 1.61 4.33***
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Table H.3: Value-Weighted Basis Portfolio: Predicting Individual Bond Returns with BCM Forecast

Format follows Table 8.

All Bond IG Bond NIG Bond

Model R2 FM-R2 R2 FM-R2 R2 FM-R2

Panel A: Prediction Period 1996 Jan - 2020 Sep

BCM-AVG 0.25 0.12 0.25 0.21 0.26 -0.20
BCM-MEANC 0.92 1.08*** 0.91 1.16*** 0.92 0.71**
BCM-LASSO 3.09 1.82** 2.78 1.80** 4.35 1.49
BCM-PCA 3.36 1.85* 2.83 1.65 5.51 1.84
BCM-RF 3.19 2.95*** 3.37 3.04*** 2.43 1.96**
FF5 -0.69 -1.68 -0.85 -1.75 -0.02 -0.88

Panel B: Expansion

BCM-AVG 0.22 0.13 0.21 0.22 0.27 -0.20
BCM-MEANC 1.16 1.20*** 1.22 1.30*** 0.87 0.77**
BCM-LASSO 3.30 2.00** 3.25 2.02** 3.58 1.48
BCM-PCA 4.46 2.21** 4.27 2.08** 5.40 1.97
BCM-RF 4.79 3.32*** 5.06 3.43*** 3.42 2.17**
FF5 -1.20 -1.83 -1.41 -1.94 -0.12 -0.87

Panel C: Recession

BCM-AVG 0.32 0.08 0.35 0.14 0.25 -0.20
BCM-MEANC 0.48 -0.07 0.31 -0.14 0.97 0.17
BCM-LASSO 2.71 0.06 1.84 -0.37 5.23 1.56
BCM-PCA 1.39 -1.64 -0.08 -2.48 5.63 0.63
BCM-RF 0.31 -0.59 -0.03 -0.72 1.30 -0.08
FF5 0.22 -0.21 0.27 0.03 0.10 -1.01

Panel D: Prediction Period 2009 Jul - 2020 Sep (for BBW4 data)

BCM-AVG 1.36 0.66 1.49 0.90* 0.89 -0.84
BCM-MEANC 1.70 1.45*** 1.76 1.65*** 1.43 0.23
BCM-LASSO 4.42 1.14 4.23 1.29 5.15 -0.14
BCM-PCA 4.35 0.85 3.43 0.60 7.94 1.07
BCM-RF 4.15 2.54*** 4.26 2.72*** 3.71 0.94
FF5 0.51 -1.35 0.27 -1.47 1.46 -0.99
BBW4 3.36 1.19 2.89 1.33 5.23 -0.89
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Table H.4: Value-Weighted Basis Portfolio: Forecast-Implied Long-Short Strategy Performance

Format follows Table 9.

All Bond IG Bond NIG Bond

Model Avg.Ret α SR Avg.Ret. α SR Avg.Ret. α SR

Panel A: Prediction Period 1996 Jan - 2020 Sep

BCM-AVG 0.50 0.39*** 1.08 0.51 0.44*** 1.28 0.41 0.37*** 0.83
BCM-MEANC 0.50 0.42*** 1.21 0.49 0.45*** 1.34 0.36 0.33*** 0.73
BCM-LASSO 0.37 0.31*** 1.17 0.38 0.35*** 1.38 0.31 0.30*** 0.72
BCM-PCA 0.46 0.43*** 1.33 0.40 0.38*** 1.25 0.19 0.17*** 0.42
BCM-RF 0.48 0.42*** 1.29 0.51 0.48*** 1.62 0.38 0.35*** 0.85

Panel B: Expansion

BCM-AVG 0.55 0.48*** 1.62 0.53 0.49*** 1.64 0.40 0.37*** 1.04
BCM-MEANC 0.53 0.46*** 1.67 0.50 0.46*** 1.65 0.39 0.36*** 0.98
BCM-LASSO 0.40 0.37*** 1.66 0.40 0.39*** 1.70 0.27 0.27*** 0.76
BCM-PCA 0.46 0.40*** 1.62 0.43 0.40*** 1.61 0.30 0.26*** 0.80
BCM-RF 0.55 0.53*** 2.26 0.54 0.54*** 2.28 0.38 0.37*** 1.09

Panel C: Recession

BCM-AVG 0.05 0.40 0.05 0.36 0.48 0.42 0.41 0.67 0.39
BCM-MEANC 0.23 0.64 0.24 0.44 0.67 0.59 0.11 0.46 0.11
BCM-LASSO 0.03 0.46 0.04 0.21 0.53 0.40 0.78 0.91 0.84
BCM-PCA 0.54 0.77 0.73 0.19 0.41 0.29 -0.83 -0.59 -0.93
BCM-RF -0.17 0.57 -0.18 0.22 0.79*** 0.30 0.41 0.90 0.41

Panel D: Prediction Period 2009 Jul - 2020 Sep (for BBW4 data)

BCM-AVG 0.75 0.22*** 1.72 0.72 0.22*** 1.85 0.57 0.19** 1.50
BCM-MEANC 0.73 0.27*** 1.82 0.67 0.24*** 1.89 0.53 0.16 1.27
BCM-LASSO 0.44 0.19** 1.46 0.45 0.24*** 1.71 0.20 0.12 0.68
BCM-PCA 0.65 0.32*** 2.07 0.59 0.30*** 2.02 0.34 0.05 0.92
BCM-RF 0.56 0.22** 1.54 0.55 0.25*** 1.75 0.31 0.04 0.88
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