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Abstract

In this paper we estimate risk decompositions at intraday frequency for commercial

real estate securities in 1560 intervals of �fteen seconds for 240 days during the Covid

pandemic. In cross-sectional analyses we discover stark patterns of price formation of

risk. We articulate eighteen long-short trading strategies in the frequently traded, and

related, REIT sector to exploit these aberrations. 84% of our risk signalled automated

trading strategies produced signi�cant alphas, with 75% of those generating strong

positive abnormal returns. This is the �rst paper in the literature to estimate risk

decompositions for commercial real estate securities at intraday frequencies.
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Introduction

In November 2021, at the joint conference of the Cleveland Federal Reserve Bank and the

O�ce of Financial Research, against the backdrop of the Covid pandemic, several prominent

speakers emphasized the importance of increasing the pace of disclosure of risks posed to the

�nancial system to increase transparency through technology. The emphasis on shifting focus

from a crisis mode approach (reactive) to a more dynamically prescriptive mode oriented

towards crisis prevention, more rapidly was also discussed. Revealing discontinuities in

risk pricing vis a vis meaningful technological innovations may inform investing even more

easily than they inform policy. Good technology and insightful risk monitoring may enhance

transparency and make direct regulatory intercession less necessary, even if crises emerge.

These insights in part motivate this study which focuses on commercial real estate (`CRE')

securities risk pricing at higher frequencies.

Christopoulos and Barratt (2021a) provide a recent contribution to the microstructure

literature with a model driven reconciliation between the classical e�ective bid-ask spread

estimation of liquidity compared with reduced form driven risk decomposition estimates of

liquidity and excess liquidity. Their inquiry was motivated by two strands of the literature

pertaining to estimations of liquidity: work found in the classical microstructure literature

associated with variants of Roll (1984) and work in the area of �xed income risk decomposi-

tion as found in Longsta�, Mithal and Neis (2005), Bao, Pan and Wang (2011), Gilchrist and

Zakraj²ek (2012), Christopoulos (2017) and Christopoulos and Jarrow (2018). They intro-

duce a general model which is applied to commercial mortgage backed securities (`CMBS')

indexed credit default swaps (`CMBX') on a daily basis. The method proxies for the direct

two step approach of reduced form simulation and risk partitioning techniques introduced in

Christopoulos (2017) and Christopoulos and Jarrow (2018), on a monthly basis. Through a

combination of principal components analysis (`PCA') and ordinary least squares (`OLS'),

Christopoulos and Barratt (2021a) create a projection model of risk partitions to increase
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risk partitioning for CMBX from monthly to daily frequency as informed by the monthly

training set of risk partitions found in Christopoulos and Jarrow (2018) against a digest of

market data. They �nd risk decomposition estimates to be signi�cant in explaining e�ective

bid-ask spreads historically over 12 years between 2007 and 2019, on a daily basis, and also

in 20 day forecasts. The backdrop of high frequency trading seen in other markets is not

addressed. Indeed one may question of what consequence is disclosure of risk decomposition

at higher frequencies than observed trading?

In this paper we respond precisely to that question to show what type of information

content may be disclosed to the market of approximately $12.7 trillion1 of credit sensitive

�xed income products at higher frequencies with risk partitioning. To do this, we extend

the generalizable model of Christopoulos and Barratt (2021a) and apply it to CMBX at

intraday frequency, (the `Intraday Model'). We produce estimated risk partitions in response

to changing market variables in 15 second intervals for 240 trading days during the Covid-

19 pandemic. Because these estimations are current market price independent, the values

produced by our technique are more frequently observable than the actual market pricing

for the sector which they evaluate. As such, this paper presents meaningful risk evaluation

and monitoring measures in (near) real time and gives rise to two main results.

First, during the pandemic, we �nd considerably greater volatility in risk partition pricing

with the Intraday Model at the start of each trading day for all risk partitions compared

with the end of each trading day. We establish this result by conducting a cross-sectional

evaluation of millions of cumulative intraday changes in risk partitions in 15 second intervals

during the pandemic where we �nd stark patterns of risk decomposition price formation over

the course of the trading day.

Since CMBX is quite large with nominal underlying collateral of $600 billion2, and ru-

1Outstanding debt issuance as of 2020 totalled $9.8 trillion for US corporate bonds (`Corporates'), $1.4
trillion for non-agency mortgage securities, and $1.5 trillion for asset backed securities. Source: SIFMA
(2021).

2See SIFMA (2021).
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moured to trade more frequently than the underlying CMBS collateral reference assets, we

turn to the $1.3 trillion3 REIT sector. We do this to determine if intraday risk decomposi-

tions for CMBX have broader meaning to a more frequently traded sector that still shares

similar fundamental risks. REITs �t this description. Like CMBX, REITs are also directly

exposed to the risks of CRE and REITs also trade frequently on public exchanges. Investig-

ating the relationship between CMBX risk partition signals and REIT pricing leads to our

second main result.

Second, well constructed trading strategies using disclosures of CMBX risk partitions

fused with REIT market pricing often result in substantial extraordinary returns. We es-

tablish this result by fusing the cross-sectional insights into CMBX risk partition estimation

with the more frequently traded REIT sector in a set of 18 long-short day trading strategies

during the Covid pandemic for each of the investment grade credit rating classes. The

strategies exploit stark and systematic aberrations in risk decomposition price formation ob-

served intraday which are then articulated into relative value long-short directional signals

for REITs. Trades are executed at the beginning of the day based upon the trading signals

and liquidated at the end of the trading day. The selection of these end points is directly

supported by evidence from our cross-sectional analysis.

Using the Intertemporal Capital Asset Pricing Model (`ICAPM') of Merton (1990) we

�nd 84% (16/18) of the strategies produced positive and statistically signi�cant α′s. 75%

(12/16) of the signi�cant α strategies also exhibited positive cumulative returns over the

Covid-19 crisis period ranging from 9.09% to 41.37% with very good Sharpe ratios ranging

from about 2 to 5. As expected, the liquidity and excess liquidity risk partitions provide the

greatest and most reliable insights. These two main results, and their supporting evidence,

validate the Intraday Model. The intraday trading experiment establishes crossover insights

between theoretical intraday CMBX risk partition signals and the larger and more frequently

traded REIT market.

3See NAREIT (2020).
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We make at least three contributions to the literature in this work. First, we provide

to our knowledge the �rst, if only, intraday higher frequency estimates of risk partitions of

default, rate volatility, liquidity and excess liquidity for the CMBX sector. This contributes

to the strand of the literature focused on asset pricing and high frequency trading. Second,

the investigations into cross sectional price formation contributes to the microstructure liter-

ature focusing on �xed income price formation. It also sets the stage for future investigation

into `bubbles' and their formation at early stages in these markets consistent with regulatory

and microstructure literature aspirations. Finally, third, this work applies our approach to

securities risk pricing within the CRE asset class and we thus contribute to the literature

focusing on securitization and REITs with CRE exposure. As these some $2 trillion in secur-

ities, and underlying collateral, are broadly held in the portfolios and traded by investment

managers, pension funds, insurance companies, mutual funds, hedge funds and banks, this

paper should be of the general interest.

Our paper is the �rst to consider the theoretical price formation of risks for CRE securities

at high frequency. The method and empirical implementation present a new perspective on

the pricing of liquidity for two large and related sectors within US capital markets yielding

insights across credit ratings and across related sectors. The remainder of this paper is

organized as follows: Section 1 provides a brief literature review. Section 2 discusses the data

used in this study. Section 3 introduces the Intraday Model describing it as an interesting

extension to the Daily Model of Christopoulos and Barratt (2021a). Section 4 provides the

results from cross-sectional analysis and trading strategy construction, thereby validating

the Intraday Model. Section 5 summarizes with suggestions for future work.

1 Literature Review

This section discusses some of the literature and market development related to liquidity

pricing at high frequency relevant to our study.
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Many of the classical microstructure models that investigate into issues of illiquidity are

based on both price and volume information content in equity markets.4 As trading frequency

and data reporting has increased, there have been studies in the literature addressing the

phenomenon of the onset of high frequency trading as discussed in Chordia, Goyal, Lehmann

and Saar (2013) and O'Hara (2015), with many focused on equity markets.5

Improved information however, is now available for more sectors, beyond equities, at much

more rapid rates concomitant with the advent of high frequency trading in those sectors.

For example, in addition to enhanced reporting through Trade Reporting and Compliance

Engine (`TRACE') for �xed income securities as discussed in Kozora, et al (2020), and

others6, there have also been parallel developments in technology and electronic platforms

to enhance the rate of trading in credit sensitive �xed income. According to Securities

Industry and Financial Markets Association (`SIFMA'), the $9.7 trillion US corporate market

reported total average daily trading volumes of about $28 billion with increasingly greater

execution on electronic trading platforms. Average daily volumes on the electronic trading

platforms of TradeWeb and MarketAxess7 increased from about 25% of all US corporate bond

trading in 2017 to about 41% in the �rst three quarters of 2021.8 These changes align with

the established presence of electronic trading as reported by TradeWeb and MarketAxess

for non-credit sensitive areas of �xed income such as agency mortgage backed securities

market and US Treasuries. Re�ecting these improvements there have been more recent

articles in the microstructure literature on the subject of liquidity in �xed income securities.

For example, each of Benmelech and Bergman (2018), Haddad, Moreira and Muir (2020),

and most recently Foley-Fisher, Gorton and Verani (2021) provide insightful studies on

the characteristics of liquidity in Corporates and CLOs, and there are others, focused on

4See O'Hara (1997) and Foucault, Pagano and Röell (2013).
5See, for example, Budish, Cramton and Shim (2015).
6See for example earlier work by Hotchkiss and Ronen (2002), Bao, Pan and Wang (2011) and Ronen

and Zhou (2013).
7See Wiltermuth (2021), among others.
8See Table 1 in Christopoulos and Barratt (2021a).

6



disclosures of risks in keeping with the frequency of trading.

Although there have been improvements in corporate bonds data availability, not all �xed

income markets have equally bene�ted. Data for some credit sensitive securitizations has

improved as discussed in Holli�ed, Nekyudov and Spatt (2017), but even with improvements

in reporting which is uneven, we must still contend with the inherently less traded character-

istic of credit sensitive securitizations compared with other �xed income sectors and equities.9

CMBS and its derivative CMBX are OTC products which do not trade (meaningfully) on

electronic exchanges. For CMBS and CMBX, communication between market makers (deal-

ers) and investors in CMBX is still principally done through Bloomberg terminal posts and

sporadically.10 There is reliable recording of day-end mark-to-market values since 2007 for

CMBX through IHS Markit, and some required posting intraday on TRACE.11 However,

the trading in this area of the market may still occur in minutes, days, weeks, months and

even years for the most credit sensitive parts of the capital structure, rather than occurring

in milliseconds as seen in other sectors. Average daily trading volumes (`ADV') for CMBS,

for example, stand at $0.84 billion compared with $27.4 billion for Corporates as noted in

Table 3.

Other areas of the literature focus on risk decomposition and disclosure of theoretical

liquidity, which may di�er from e�ective bid-ask spreads estimates of liquidity. For example,

Amihud (2002) and Gilchrist and Zakraj²ek (2012) each identify measures of liquidity for

credit sensitive �xed income securities. Additionally, studies disclosing default and liquidity

components such as Longsta�, Mithal and Neis (2005) �nd substantial concentration of de-

fault risk in corporate bond spreads that vary across credit ratings informed by implementing

a theoretical model similar in class to Christopoulos and Jarrow (2018). Bao, Pan and Wang

(2011) and Han and Zhou (2016) isolate factors apart from credit risk to be attributable to

9See Table 3 for a snapshot of multiple sector average daily trading volumes
10See the Christopoulos and Barratt (2021a) Appendix A.1. for greater detail on CMBX trading.
11Subject to 90 day SEC imposed reporting embargos with respect to volumes.
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overall risk premia for that sector. They �nd illiquidity in corporate bonds increases with

volatility and to be highly time varying. Bao, O'Hara and Zhou (2018) provide insights into

deterioration of liquidity in the corporate bond market during times of distress and the poten-

tial for mischaracterization of risks of liquidity as default with implications for policy-making

particularly for crisis mitigation. Gilchrist and Zakraj²ek (2012) introduce the excess bond

premium (`EBP') approach in excess of default risk estimated using �rm speci�c variables

and the distance to default framework of Merton (1974). Their results indicate signi�cant

explanatory power for both the isolated default partition and the excess bond risk premia

for several economic indicators including the civilian unemployment rate (`UER'). Broto and

Lamas (2016) use PCA to construct liquidity indices for US �xed income demonstrating an

application of that technique in this area of the literature. In Christopoulos (2017) and

Christopoulos and Jarrow (2018), the reduced form simulations introduced in those studies

�rst allowed, and then restricted, simulation of default applied to about $400mm in CRE

loans underlying the most actively traded CMBS which serve as collateral for CMBX over

the 2007-2014 period. The state transition simulation informed by a rich history and well

speci�ed model approach allowed for isolation of implied risk neutral prices for default and

interest rate risks, both of which were explicitly modelled.12 Most recently, Christopoulos

and Barratt (2021a) introduce the daily estimation risk decomposition approach for CMBX.

Finally, Gilchrist et al (2021) consider the risk decompositions with the EBP approach for

Corporates in a study focusing on the Covid pandemic and the policy response of the Federal

Reserve, on a daily basis, using the last transaction prices and volumes.

In the absence of rich data and well developed exchange traded markets, credit sensitive

sectors in the �xed income market may remain silent with respect to the pricing of their

underlying risks without the bene�t of revealed intraday price formation indicators found

in prices, bid-ask spreads, volumes or counterparties. This opacity in risk pricing disclosure

motivates this paper into higher frequency risk decomposition estimation. It builds o� the

12See Christopoulos and Barratt (2021a) for a more detailed summary of these two works.
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prior literature into risk decomposistion. It also focuses the application onto CMBS and

CMBX asset pricing and microstructure and addresses the inherently less frequent trading

characteristic of that sector, despite its size. The potential impact of this sector on the

�nancial markets in economic downturns has been seen in the Great Financial Crisis and,

more recently, in the Covid pandemic.

2 Data

In this section we discuss the data used throughout this study.

At the intraday level, during the Covid-19 pandemic period of April 2020-April 2021

we use prices for 25 representative publicly traded REITs obtained from Yahoo! Finance

in the estimation of the Intraday Model obtained through through RapidAPI. We select

these REITs due to their similarity to CMBX on a few dimensions. Table 1 lists the names

of the 25 REITs used in this study along with their property type, ticker, factor name

(`proptype_ticker'), and market capitalization as of June 27, 2021. The market capitalization

of these 25 REITs selected total $478.45 billion. According to the National Association of

Real Estate Investment Trusts (`NAREIT'), the total market capitalization (market cap) of

US REITs was $1249.19 billion as of December 31, 202013, and so our sample captures about

38% of the US REIT sector by market cap. NAREIT also states that the total number

of US REITs is 223, and so by counts, our sample represents about 11% of the US REIT

sector. Additionally, these REITs also are well distributed across multiple property types

as shown in a further summary of the REIT sample in our study broken down by property

type in Table 2. Finally, our estimated economy also captures most of the REITs used in

the prior study of Christopoulos and Jarrow (2018) and for continuity with the simulation,

we also use these REITs. The CMBX in our sample represent approximately $400 billion

of CMBS underlying, the size of our REIT sample and our CMBX sample are of similar

13See NAREIT (2020).
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market magnitude which is important in establishing a signal in one market as indicative of

a condition in another market. We thus feel our sample is broadly representative of the US

REIT sector. These 25 REITs are included in the training data and then used in the Daily

and Intraday Models to estimate CMBX risk partitions.

[Insert Table 1 about here]

[Insert Table 2 about here]

We also captured the intraday values of the Chicago Board Options Exchange's CBOE

Volatility Index (the `VIX'), constant maturity (`CMT') US Treasury yields to maturity

using the RapidAPI application with Yahoo! Finance. These factors are used in countless

research studies. The choice of the VIX is particularly important for its broad usage in the

market as a fear gauge as discussed in Carr (2017). These data are summarized later in

Tables 5 and 6 at the start and at the end of the trading days during this period. We poll

the data in 15 second time-stamped intervals and the average delay over this period is about

1.15 seconds. The data is always `most-recent' and re�ective of updates driven by trading in

the marketplace. The data polling for each day starts at approximately 9:30:15am EST and

ends at approximately 4:15:00pm EST. There were some delays in reporting due to electronic

communication lags on the internet in the application of up to 2 seconds. Additionally, some

delays in reporting can take up to 15 minutes for the VIX at the start of each trading day.

All Federal holidays are excluded with trading in our studey only taking place on days when

both bond and stock markets were open. Reporting terminates early with early market

closings market circuit breaker triggers.

Finally, to put observable liquidity at a high level in context, using public data from

SIFMA and NAREIT we see that REITs in the aggregate appear to be more liquid than

CMBS. Table 3 indicates approximately 10x the dollar trading volume for REITs compared

with CMBS with 4x the e�ciency of turnover rates de�ned as average daily volume (`ADV')

divided outstanding issuance. Because REITs and CMBX share similar risks to CRE and
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because REITs trade much more frequently than the underlying for CMBX derivatives, we

use REITs to articulate our CRE risk pricing insights strategies based on CMBX trading

signals in Section 4.

[Insert Table 3 about here]

Finally, for the trading strategies and related ICAPM testing conducted during the Covid-

19 pandemic period (240 days between April 2020-April 2021) we obtain daily values of the

market portfolio (Mkt-Rf, which consists of all NYSE, AMEX, and NASDAQ �rms), small

minus big (`SMB'), high minus low (`HML'), and momentum (`MOM') indices from Ken

French's website.14

3 The Model

This section introduces the model used in this study

This model estimates the projections which index a series of transformations, ex-post sim-

ulation and project fair value prices of risk partitions onto market spreads above the risk-free

rate (`Spreads'). This results in risk partitioned Spreads for default, interest rates, liquidity

and excess liquidity for individual CMBX series and tranches, which are then indexed across

the CMBX sector for a set of sector-wide risk partition benchmarks. The pricing of residual

risk premia identi�ed in those two works are interpreted as distinct partitions of liquidity and

excess liquidity availability which, unlike default and interest rate risks, are not explicitly

modelled. Christopoulos and Barratt (2021a) estimate the risk partitions daily from the

monthly simulated risk partitions of of Christopoulos (2017) and Christopoulos and Jarrow

(2018) with what they call the `Daily Model', over the sample period of November 2007-April

2019. In this paper we summarize the same mathematics introduced in that paper which we

too use, extending them to handle intraday frequency.

14See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/.
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They implement a standard linear regression on the logs of the risk partitions reported in

the monthly training set of Christopoulos and Jarrow (2018) against a digest of market data

(25 REITs, 4 US Treasuries, and the VIX volatility index). From 92 monthly observations in

the training period over the period November 2007-June 2014 they create a lower-dimensional

set of factors to explain 96% of the total variance at observed dates by performing a principal

components analysis (`PCA') retaining enough factors to preserve 96% of the total variance

at the observed dates. For the PCA they, in general form, let xq(t) be the value of the q-th

explanatory variable at time t. For PCA loadings piq, i ∈ [1, 5], q ∈ [1, 30] assuming all 30

factors, the elements of the i x q matrix of principal components of the observed explanatory

variables xq(t) for all observed t, there exists a set of factors fi(t) such that

xq(t) =
30∑
i=1

piqfi(t) (1)

with each explanatory variable a linear combination of the factors fi at all times t. They

reduce dimension because they have only 92 observations in the history of simulated risk

partitions. The process reduced the number of components from 30 observable variables, to

5 variables. The factors are determined with matrix multiplication as

fi(t) =
30∑
q=1

piqxq(t), i ∈ {1...5} (2)

The factors fi(t) are uncorrelated
15, such that the partial sum

xq(t) =
5∑
i=1

piqfi(t) + εn(t), E[εn] = 0 (3)

is an unbiased estimator of xq(t), where the error term E[εn] =
∑30

i=6 piqfi(t), which is the

minimal possible error that can be introduced in a 1:1 transformation with the technique.

From the covariance matrix of the explanatory variables they calculate the 30 × 30 matrix

15See the proof in Christopoulos and Barratt (2021a) Appendix A.3.
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of eigenvectors and their corresponding eigenvalues which are reported in their study. The

�rst �ve eigenvalues have cumulative variance of 96.11%, supporting use of just the �rst �ve

principal components. This allowed the transformation of 30 variables into a digest of just 5

variables with xq(t) the value of the q-th economic variable at time t. The �ve-dimensional

digest is used to construct factor volatility explanatory variables for the risk component

estimates. The factor volatilities fit are a function of the PCA loadings and the explanatory

variables observed at time t.

For RT the 5× 30 PCA loadings matrix, and ET the 30× 92 matrix of the 30 variables

over 92 observation dates, whose elements are xq(t), then the factor matrix, F, calculated

using matrix multiplication as the product of RT and ET , is

F = RTET =


f1,1 · · · ft,5
...

. . .
...

f92,1 · · · f92,5

 (4)

which yields a 92×5 matrix, the elements of which are the factors, fti that they use to capture

the volatility in their model. Switching notation fti ≡ fit for the remaining calculations, the

factor volatility determined from the PCA is vi(t) ≡ [fi(t)− fi(t− 1)]2. For each month, t,

to estimate the risk partition they begin with an opening value based on the previous two

one-month volatilities of the variables vi(t) and vi(t − 1) and the CMBX indexed market

spread Sk(t) for each credit rating class, as these were the values made available to them for

training purposes.

The risk partitions are the proportional results from the 92 monthly simulations and

indexing of Christopoulos and Jarrow (2018) over the period November 2007 thru June

2015. The initial risk component yjk(t0), j ∈ {def, rate, ...}, k ∈ {AAA,AJ/AS, ...}, is given
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by

yjk(t) = αjk +
5∑
i=1

βijkvi(t) + γijkvi(t− 1) + δijk [vi(t)− vi(t− 1)]2 + ψkSk(t) + εjk(t) (5)

The coe�cients {αjk, βijk, γijk, δijk, ψk} were determined through OLS by minimizing the

sum of the squared error
∑

t εjk(t) with t indexed in months with E[εjk(t)] = 0. In total, 16

coe�cients were estimated, one for each of the 15 separate volatility components, and one

for the indexed market spread corresponding to the credit rating class. The OLS capture 90

monthly observations over the period 12/2007 - 6/2015 with statistically signi�cant results.

In particular, the third principal component for all three volatilities vi(t), vi(t − 1), and

[vi(t)− vi(t− 1)]2 appears consistently more signi�cant across all regressions compared with

other principal components, with the VIX the largest value suggesting its large in�uence on

the third principal component. After determining the estimates in Eq. (5) they then predict

the daily spread risk decompositions using Eq. (6) combining the estimates and 2828 daily

on the run observations, adjusting the lookback of the factor volatilities with 22 trading days

equal to one month from the date of the daily observations for the updated calculations. The

estimation model is re-expressed for the daily predicted model with the following procedure.

For all trading days, u, compute predicted values on the left hand side based on the

principal component volatilities, market spreads and estimated coe�cients on the right hand

side as

ŷjk(u) = αjk +
5∑
i=1

βijkvi(u) + γijkvi(u− 22) + δijk [vi(u)− vi(u− 22)]2 + ψkSk(t) (6)

with the �nal risk composition then computed as a proportion of the total for the bond:

ȳjk(u) =
ŷjk(u)∑
j ŷjk(u)

(7)
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All four risk components are computed this way as the proportions of Eq. (7) for the CMBX

sector across all credits in Figure 1.

[Insert Figure 1 about here]

The time series is a weighted average across all on-the run investment grade credit ratings

classes with the weights the class subordination levels. The daily default, interest rate,

liquidity availability and excess liquidity availability indices for the aggregate sector-wide

CMBX found in Christopoulos and Barratt (2021a) is shown in Figure 1.

The Daily Model is based on changes in explanatory variables which capture the economy

of REITs, US Treasuries and the VIX, not market pricing for CMBX. As such, there is

nothing in principle that prevents us from increasing the frequency of estimation for all risk

components from daily, to shorter intervals intraday. In this section we increase the frequency

of linear estimation from daily to 15 second intervals, intraday, for each trading day in the

Covid-19 pandemic in our sample (the `Intraday Model'). This allows us to investigate

into CMBX risk price formation at higher frequency than observed market pricing which is

exogenous to the model.

Speci�cally, all mathematics in the Daily Model apply to all trading days u, with time

t the intraday time interval index with t ∈ [1, 1560] representing one of the 1560 15 second

intervals from 9:30:15am to 4:15:00pm EST for each trading day u. Once the daily ini-

tial conditions have been determined, for each trading day, u, the intraday changes in risk

composition are then modelled as a zero-centered function of the evolution of the factors

∆yjk(t) =
5∑
i=1

ηijk∆fi(t) + ε∆
jk(t) (8)

for the j-th risk partition of the k-th bond at time t. We compute a covariance matrix

such that ηijk is the covariate of the i-th factor with the corresponding bond's corresponding

risk component. The coe�cients ηijk are determined through OLS and ε∆
jk(t) has expected
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mean zero with standard deviation
√
η0jk. We normalize the sum of the proportions for the

intraday risk decomposition to 1 as was done previously for daily observations in Eq. (7).

The �nal risk composition is then calculated using the initial condition and the instant-

aneous changes:

yjk(t) = yjk(t0) +
t∑

t′=1

∆yjk(t
′) (9)

where the intraday estimation of risk components yjk(t) is the j-th component of the risk

partition for bond k at time t on trading day u. The �rst term on the righthand side,

yjk(t0), is the initial value of the risk component intraday and the second term
∑t

t′=1 ∆yjk(t
′)

the intraday sum of the changes in the risk component de�ned in Eq. (8). Importantly,

these changes in the economy on the right hand side of Eq. (9) are independent of current

market prices. Their relationship is to estimated risk partitions on the left hand side is

statistically driven vis a vis the coe�cients, ηijk, interacting with the change in the factor

volatilities, ∆fi(t), on the right hand side of the equation. The factor volatilities, fi(t), are

determined with PCA as shown in Eq. (4) and related de�nitions, as previously discussed.

In conjunction, these mathematics are the `Intraday Model'.

4 Results

This section presents the results for this study.

4.1 Intraday decomposition time series

Although the time scales for the training data and intraday time steps of 15 seconds are

vastly di�erent, they appear to scale well. What we see in Figure 2 is the intraday evolution

of risk decompositions, yjk(t) as de�ned in Eq. (9) for CMBX over two trading days for all

j ∈ [1, 4] risk partitions and k ∈ [1, 6] credit ratings. The risk partitions are observed for

t ∈ [1, 1560] consecutive 15 second intervals in length per trading day. The �rst estimation
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occurs at or after 9:30:15 seconds following the market open; the last estimation occurs at

or about 4:15:00pm. The variability at the open occurs because the implementation requires

the information released at 9:30:00am, the variability at the close is due to reporting delays

which may occur slightly before or slightly after 4:15:00pm. The risk partitions at the tranche

level and for the aggregate composite (`Christopoulos and Jarrow (2018) Composite') are

projections based on the training set of simulated and indexed risk partition primitives in

Christopoulos and Jarrow (2018).

[Insert Figure 2 about here]

The risk composites vary considerably across credit rating classes, days, and intraday.

The rank order results by credit ratings are similar to �ndings of Longsta�, Mithal and Neis

(2005) in the corporate bond sector regarding the proportion of the risk of default embedded

in spreads varying by credit rating. The intraday decompositions re�ect updated live data

for 25 REITs, 4 US Treasuries, and the VIX index as previously described. Figure 2a shows

the evolution for u = April 17, 2020 in the early stages of the Covid-19 global pandemic

with the Dow Jones Industrial Average (`DJIA') closing 23537, while Figure 2b shows the

evolution of the risk decomposition indices on u = December 4, 2020 with the DJIA closing

at 30217. The sum of all compositions on all intervals are normalized to 1. The values

are di�erent. Although we show only two trading dates, these evolutions di�er on di�erent

trading days The values are captured intraday in 15 second intervals for all 240 trading days

between April 7, 2020 and April 8, 2021 in this study.

As noted in Christopoulos (2017), model estimated liquidity of CMBX vary considerably

across credit ratings and time. AAA CMBS securities make up about 80 percent of the CMBS

market due to the senior/subordinate capital structure as noted in An, Deng, Nichols and

Sanders (2015) and Riddiough and Zhu (2016) while subordinate BBB- CMBS make up less

than 5 percent of the market. As BBB- securities are more immediately exposed to loss

manifestation following a default event than AAA securities a smaller proportion of the risk
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compensation above the risk free rate for BBB- securities should be associated with liquidity

availability when compared with AAA. This dynamic is con�rmed in Christopoulos (2017)

and Christopoulos and Jarrow (2018) in indexed form from 2007-2015 in monthly simulations

and is con�rmed again in this paper with bid-ask comparisons daily (as previously discussed),

and now as evident, intraday.

4.2 Statistical summary of time series

[Insert Table 4 about here]

Table 4 provides a statistical summary across all observations intraday for default, rates,

liquidity and excess liquidity risk partitions. The summary results generally follow intuition

with some new insights and we exhibit all investment grade classes. Focusing �rst on intraday

default risk pricing, we observe AAA CMBX appear to exhibit substantially greater volatility

than BBB-, with only the AJ exhibiting greater volatility. Rates volatility pricing intraday

is much calmer than default intraday pricing across most credits with the exception of the

BBB class. Again, as with default, the AJ class appears to exhibit higher volatility than

the AAA class. This relatively higher volatility for the AJ class compared with the AAA

class repeats across all four risk measures. Finally, as we are concentrating on liquidity, the

low nominal amounts of both liquidity and excess liquidity in BBB- classes should result

in higher volatility estimates re�ective of scarce liquidity availability. Min and max values

follow intuition suggesting that the capital structure allocation concentrates mispricing in

the mid-section with the endpoints of AAA and BBB- exhibiting more regular behaviour.

4.3 Cross sectional visualizations

While the summary information in Table 4 is interesting from an academic perspective, it is

fundamentally limited for two reasons. First, the values estimated intraday still must use an
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initial set of simulated values and market spreads. The simulated risk decomposition studies

of Christopoulos (2017) and Christopoulos and Jarrow (2018), re�ecting actual cash�ow and

updated credit and prepayment pro�les, end in 2015.

Second, the initialized spread value informing these evolutions are restricted to only

March 18, 2020 because no additional daily CMBX pricing data was made available to us

after that date. In this sense, the intraday results depicted are essentially cross-sectional

intraday stress tests of the response of risk decompositions holding market spreads as of

March 18, 2020 held constant. Although the limitations of the initialization restrict the

validity of the intraday time series across dates, they will reveal insights in cross sectional

analysis. Each day is a valid time series and the collection of all dates represents the set

for cross section evaluation. At the same time, because the real time estimations are price

independent, observing their changes over time yields some unique insights. One way to

approach the evaluation of cross section of daily time series is through the heat map approach

using binning. We want to cast the daily risk pricing data against both time and a relevant

variable. The VIX provides such a variable as a dominant explanatory variable in the

previous daily historical analysis.

[Insert Figure 3 about here]

[Insert Figure 4 about here]

To simplify the notation for the remainder of the paper, we de�ne the cumulative intraday

change for each risk partition as

Wjkut ≡
t∑

t′=1

∆yjku(t
′) (10)

This is the second term Eq. (9), now also indexed for the u-th trading day, and so de�ned

for j risk partitions, of k credit rating classes, for u trading days and t intraday trading
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times. Figure 3 shows 275370 observations computed for each of the intraday default risk

partition pricings. We use a double binning method to observe. The x-axes re�ect 3 minute

intervals binned from the 15 second interval values while the y-axes capture the log change

of the VIX from the start of the trading day (with t = 0, 9:30am) until close. The y-

axes are partitioned in increments of 0.01. The z-axes are the heat map renderings of

Wjkut de�ned in Eq. 10. The depiction have non-constant upper and lower boundaries, but

identical colorscaling . This is purposeful, as each of the classes may have inherently di�erent

sensitivities to market indicators. The plots represent the data for each of the CMBX classes

with AAA in the upper left, AJ upper right, and so forth, with BBB- in the bottom right.

The color saturation produced for each plot is interesting during the Covid period. Together

they suggest somewhat lower intraday default risk pricing for AAA, AJ and BBB- classes

compared with the AA, A and BBB classes. In Figure 4 we take the same vantage point

but for liquidity availability. Here, we see somewhat greater intraday liquidity availability

for AAA with the least liquidity available for A and BBB classes as indicated by the color

palettes and contour lines.

These perspectives document some important facts in theoretical observation of CMBX

risk pricing during the Covid period, one of the most interesting being an apparent regular

`spot' of volatility in the �rst 15 minutes of trading in the cross section. This repeats across

all instruments and risk partitions in our sample. Figure 5 zooms in on this interval for each

of the risk partitions for all classes to revealing more detail of the phenomenon. There we see

`peaks' as indicated by the contour lines exceeding 1, and `valleys' as indicated by contour

lines less than one clustered about 9:39am. The subplots depict risk pricing for default,

liquidity, excess liquidity and rates indices for all investment grade credit rating classes.

For example, consider in Figure 5 the case of intraday liquidity availability pricing in the

second composite of six plots on the top right. At about 9:39am we observe considerable

cross-sectional deterioration in liquidity availability for AAA, AJ, AA and BBB- classes with

contour labels in `valleys' ranging from 0.70 to 0.84. In contrast class A class shows relatively
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more modest deterioration in liquidity availability at about 0.94 while the BBB class shows

expansion of liquidity availability of about 1.35. These types of comparisons can be made for

all credit ratings classes and all estimated risk partitions generated by the Intraday Model.

[Insert Figure 5 about here]

In Tables 5 and 6 we observe summary values across 246 trading days, two times during

the trading day: the opening (9:30:15) and the closing (4:15:00).

[Insert Table 5 about here]

[Insert Table 6 about here]

Opening volatilities for the cumulative changes in proportions of all risk partitions are

categorically higher than the closing volatilities for those values. Additionally, looking at the

modelled economy, the VIX and interest rates also exhibit categorically higher opening volat-

ility compared with closing volatility. Finally, REITs also exhibit mostly higher volatility at

the open than the close, but not categorically with only 18 of the 25 REITs exhibiting higher

volatility at the open in the cross-section with and 7 of the 25 exhibiting lower volatility

at the open in the cross-section. The di�erences in magnitude between the theoretical risk

partitions and the publicly traded securities and indices are not completely surprising. The

risk partition measures represent cumulative changes in proportions from the start of the

day. In contrast, the pricing for the publicly traded objects are just prices and not changes

of prices. The cross-sectional insights across all intervals and at the open and close give us

our third main result : During the pandemic, we �nd considerably greater volatility in risk

partition pricing at the start of each trading day for all risk partitions compared to the end

of each trading day. This �nding of higher volatility of signals at the open compared with

the close prompts further investigation into liquidity across the CMBX and REIT sectors.
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4.4 Trading strategies

4.4.1 REITs liquidity and trade frequency

REITs, like CMBS and CMBX, have similar underlying exposure to CRE risk, and so es-

timated CMBX risk partitions may carry relevance to REIT pricing in the marketplace. As

previously mentioned, CMBX as an OTC product does not trade electronically. That means

that the estimated risk partitions in this study update more rapidly than the pricing of ac-

tual CMBX securities and the pricing of their underlying CMBS collateral. In earlier studies

the CMBX risk partitions gave many pro�table insights into the buy/sell decision-making

within the CMBX market. Publicly traded REITs trade on electronic equity exchanges and

thus have a similar frequency of price updates as our intraday risk measures.

4.4.2 Trading signal

We focus our trading strategies on REITs due to their better liquidity in the market and

their observable pricing. We use the risk partitions of default, liquidity and excess liquidity.

The interest rate risk partition is a more complex interpretation in the trading context with

respect to REITs. Higher interest rate risk compensation for higher future rate volatility

may a�ect REITs di�erently, depending on leverage and asset composition. As such inquiry

into trading signals based on the rate risk partition is left to future research. To keep things

tractable we present one trading signal, Lιjkut, de�ned as

Lιjkut =
∆Rιut

Wjkut

(11)

∆Rιut is de�ned for ι ∈ [1, 25] REITs in our sample as

∆Rιut =
Rιut

Rιt=4:15:00pm,u−1

(12)
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and represents the proportion of cumulative changes in REIT prices from the close of the

prior trading day t =4:15:00 pm to the time of trade execution for the ι-th REIT. Wjkut is

de�ned in Eq. (10) as the cumulative intraday change in the theoretical price of the CMBX

risk partition for j risk partitions, of k credit rating classes, for u trading days and t intraday

trading times.

The trading signal Lιjkut has been carefully selected from among others considered in

the development of this study. It has several interesting properties and provides clear theor-

etical and trading directional (long-short) interpretations that correspond to intuition. As

noted earlier, the liquidity and excess liquidity measures have the interpretation of liquidity

availability. Large values for those measures suggest that compensation in market spreads

exceeds (wider than) what is required fair compensation for the risks of default and interest

rate risks. In this paper, which does not bene�t from market prices to project onto, the risk

composition is theoretical, and estimates re�ect cumulative intraday changes in the meas-

ures from the opening bell. As such, higher values for cumulative changes intraday in the

liquidity and excess liquidity pricing measures, suggest more attractive pricing (liquidity)

or enhanced safety of liquidity to spread shocks (excess liquidity) for CMBX. This would

suggest, temporally, a healthier than expected CRE environment than is being priced by the

market in theory. The opposite interpretation is true for default risk pricing where higher

cumulative values for the theoretical pricing of default risk indicates greater default risk

(more compensation required) while lower cumulative values suggest lower default risk (less

compensation required). We summarize some of these interpretation with examples in Table

7 which capture all changes in the components of the signal and the trading interpreta-

tion. The statistical analysis shows the mean and median for the Lιjkut ratios to be strongly

clustered about 1, thereby justifying this value to be the center point about which the for

direction of trading (long-short) is determined.

[Insert Table 7 about here]
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Speci�cally, for liquidity and excess liquidity measures, higher values of Lιjkut > 1 cor-

respond to `sell' signals while lower values of Lιjkut < 1 correspond to `buy' signals. Values

of Lιjkut = 1 indicate no trade signal. It is important to see that the relative rate of change

between the numerator and denominator come into play and the signal picks up these sub-

tleties. For example, consider in Table 7 Examples 3 and 13, ∆R ↑,W^. Both instances

correspond to simultaneous increases in both the numerator and the denominator, indic-

ated by the upward pointing arrows. In Example 3, the cumulative proportional liquidity

measure W is increasing more slowly (1.20) than the cumulative proportional REIT price

change ∆R (1.25). Since liquidity availability is lagging price increases, the trade signal

suggests `sell' as prices are moving higher than justi�ed relative to the liquidity measure

(L = 1.25/1.20 = 1.0417 > 1 → 'sell'). In contrast, in Example 13, also ∆R ↑,W^, since

liquidity (1.10) is increasing more rapidly than the cumulative price increases in the REIT

(1.02), the trade signal suggests a buying opportunity (L = 1.02/1.10 = 0.9273 < 1→ 'buy').

Finally, while liquidity and excess liquidity availability generate the same directional sig-

nalling, the default risk measure generates exactly the opposite signal, because higher default

risk decompositions correspond to higher default risk as noted in Christopoulos (2017).

4.4.3 Automated trading strategies

The purpose of the automated trading strategies is primarily oriented towards discerning the

value of the trading signals to understanding the related REIT market pricing of CRE risks

at higher frequencies. On each day we consider the set of all 25 REITs with the Trading

Signal Lιjkut for all risk partitions for all credits. We `buy' securities into the long portfolio

and `sell' securities into the short portfolio. We assume execution at mid-market prices for

the REITs when we enter and exit trades and do not, in this initial study, make adjustments

for bid/ask spreads of REITs which were not provided. We execute all our trading (long

and short positions) at the �rst trade of the day at approximately t =9:30:15 am EST. We
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unwind all positions at end of the day at the close of the day approximately t =4:15:00pm

EST.16 For all strategies we rank order the REITs based on the values Lιjkut and buy or

sell them instantaneously into their respective portfolios at the price which contributes to

the signals. In this paper, long and short portfolios are assumed to make price weighted

contributions to the long-short portfolio components with the daily returns on long-short

components equally weighted. We consider the rank order of the REITs based on the signals

with interpretations given in Table 7. For liquidity and excess liquidity risk availability

portfolios, for those REITs with values of Lιjkut > 1 we `sell' those securities in the short

portfolio; and for those REITs with values Lιjkut < 1 we `buy' those securities into the long

portfolio. In the case of the default risk partition portfolio we buy (long) REITs with values

of Lιjkut < 1 and sell (short) REITs with values of Lιjkut > 1. Values of Lιjkut = 1 indicate

no trade signal in all cases.

It is certainly the case in this strategy that on any given day we may be 100% directionally

long or short, but we are never more than 50% weighted long-short. In the instances where

100% of the values Lιjkut are in the same direction (Eg. all > 1 or all< 1), then the

corresponding portfolio is allocated 50% to the direction given by the uniform signal on that

day and 50% into cash (0% Return). For example, if all 25 REITs had a buy-signal based on

Lιjkut then all 25 would be purchased into the long position. The return for the day would

be calculated based on the change in value between 9:30:15am (when they were purchased)

and 4:15:00pm (when they were sold). However, in such cases 50% of the portfolio is said to

have been moved to cash with assumed 0% return for that day. On all other days, when the

signals are mixed 50% of the returns are generated by the long leg of the portfolio and 50%

are generated by the short leg of the portfolio, regardless of how many signals indicate long

and short on such date. The risk management of the portfolio is enforced in cases where

only one direction is signalled, with a 50% allocation to cash imposed. Additionally, the

16On occasion there are small di�erences of a few seconds due to latency. All trading times are time
stamped.
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time horizon of mandatory unwind of all positions by the end of the day ensures that each

portfolio horizon is only one trading session. The obvious arti�ce is the forcing trades to

close at the end of the day instead exploiting the intraday changes observable in Figures 2, 3,

4 and 5. Investigation of such tactical intraday exploitation of CMBX risk partition pricing

is outside the scope of this paper and left to future work.

4.5 Trading strategy results

4.5.1 Returns

The trading strategies were implemented for excess liquidity, liquidity and default risk meas-

ures for all ratings classes 12 month cumulative returns, Sharpe ratios and standard devi-

ations for the portfolios were calculated. Sharpe ratios, Hω, for the ω-th di�erent trading

strategies17 with ω ∈ [1, 18] trading strategies were calculated as

Hω =
Rω −Rλ

σω ×
√

240
(13)

The standard deviation of the daily returns for the day trading strategy portfolio is denoted

as σω. The square root of the 240 trading days is the required adjustment for daily standard

deviations for 240 trading days in our sample period. The cumulative trading return for

the speci�c day trading strategy is denoted, Rω, while Rλ is the cumulative return for the

long-only portfolio. The long-only portfolio (with 100% allocation to the 25 REITs), like

the day trading strategies, is also a day traded portfolio executed with buys and sells at

9:30am and 4:00pm, respectively, on each trading day contemporaneous with the long-short

portfolio. For the long-short trading strategies, the same credit rating x risk partition cohort

drove the buy sell decisions, with updated values for Lιjkut at each time t over the sample

period.

17See Sharpe (1994).
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The return on the long-only day traded portfolio over the sample period was -14.97%

during the 240 days during the Covid pandemic making up our sample period. Table 8

summarizes the results over 240 trading days for the long-short portfolios during the Covid

pandemic. The best results were found with the excess liquidity risk strategy returns of

41.37% for AJ (Panel A). The worst result was found with the default risk strategy of -

34.67% for BBB (Panel C). For portfolios with positive returns, the portfolio Sharpe ratios

were quite strong with values ranging from 1.99 to 5.09; For excess liquidity and liquidity

trading strategies we see categorically positive returns ranging from 9.09% to 41.37% for all

credit rating classes. For the default pricing driven signals, positive returns of 11.08% and

17.08% are captured only for the AAA and AJ classes, respectively. To put these ratios and

returns into context, consider the survey of Lo (2002) which reports 12-month estimated

Sharpe ratios for 10 mutual funds and 12 hedge funds in the range of 0.49 to 3.83, after

adjusting for serial correlation. More recently, Investment News (2020) report the top 10

hedge funds at year end 2020 demonstrating Sharpe ratios of 0.72 to 1.68, with annual

returns of 17.8% to 37.4%. The results of our automated trading strategies appear to be in

line with, if a bit better than, these top professional performances.

As the measures produced are theoretical for CMBX and updated more frequently than

that market trades, the reverse application of going from REIT pricing to CMBX intraday

pricing, is not possible. Unlike two funds that recently exploited mispricing of risk in CMBX

as described in Tempkin (2021), we do not have access to intraday trading information

for CMBX, which is not regularly reported. This maintains our focus on the relationships

between CMBX risk measures and the larger ($1.3 trillion) and more liquid (see Table 3)

REIT market. While there may be some con�icting directional signals across di�erent trading

signals, the returns during considerably di�erent periods of volatility during Covid suggest

that the signals within cohorts are reliable. While the overall levels of returns and Sharpe

ratios could be lower if executed, they could also be considerably higher. The calculation

of Sharpe ratios is done with the returns on the trading strategies and with the long-only
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returns which are both subject to the same transaction costs (they are both REITs), and

thus the transactions costs are internally consistent. This internal consistency in trading

horizon supports analysis using ICAPM.

[Insert Table 8 about here]

4.5.2 ICAPM

To test for skill in the trading strategies we use the ICAPM of Merton (1990). We choose

this approach as a standard approach for equity asset pricing tests of skills. An alternative

approach was introduced by Acharya and Pedersen (2005) which includes the Amihud (2002)

ILLIQ measure. However, ILLIQ is dependent on observed volumes. Since no observed

volumes were provided for CMBX, ILLIQ cannot be implemented as an ICAPM factor in

this study. However, the key �ndings of Acharya and Pedersen (2005) concerning �ight to

liquidity do appear to be con�rmed in this study, in particular in our trading strategies that

exploit the estimated reduced form measures of liquidity and excess liquidity.

Following Christopoulos and Jarrow (2018) the �nal regression model to test for abnormal

returns in our trading strategies is given by:

Rωu −Rλu = α +
M∑
i=2

βωi(Riu − ru) + εu (14)

with u ∈ [1, 240] trading days, Rωu the daily returns of the trading strategy portfolio, Rλu

the returns of the long-only trading portfolio, Riu the i-th portfolio equity risk factor, and

ru the risk-free rate. Positive and signi�cant α implies these trading strategies generate ab-

normal returns. We use the standard risk factors to evaluate equity based trading strategies

introduced in Fama and French (1993) including: (i) the market portfolio, (ii) the SMB

equity index, and (iii) the HML index as well as the MOM risk factor introduced in Carhart

(1997). We test the trading strategies with results summarized in Table 9. For each of the
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six credit rating classes our trading strategies span 240 trading dates from u = 4/8/2020

thru u = 3/31/2021. The results are quite strong. All of the strategies were statistically

signi�cant overall based on the F-test. Adjusted R-squared values ranged from 0.3187 to

0.4760. 84% (16/18) of the strategies produced positive and signi�cant α′s ranging from

0.01 to 0.100 levels signi�cance. In all strategies the market portfolio was statistically sig-

ni�cant at the 0.001 level and negative. The MOM risk factor was generally insigni�cant

and negative. SMB varied in sign and was insigni�cant across all strategies. HML was cat-

egorically negative and highly signi�cant at the 0.001 level. 75% (12/16) of the signi�cant

strategies also exhibited positive abnormal returns ranging from 9.09% to 41.37%.

[Insert Table 9 about here]

This comparatively greater proportion of positive returns coupled with positive and sig-

ni�cant α is echoed when we break down returns by credit rating class as seen in Figure

6. The plots are read from left to right by descending credit rating class beginning with

AAA (blue) in the top left and BBB- (red) in the bottom right. Across all strategies and

credits, the strategies for the AJ class (green) appear to perform best. The capital structure

di�erences are consistent with the earlier literature18 and discussion. Interestingly, as noted

in An, Deng, Nichols and Sanders (2015) the pricing of credit risk alone is insu�cient to

explain subordination impact on pricing. While Wjkut values in Eq. (11) are picking up

risk tranching e�ects, and di�erentiating across di�erent risks, they are not directly pricing

the idiosyncratic risks of CMBX bond collateral due to data restrictions at this time. Thus

we provide evidence of idiosyncratic risk of collateral in CMBX to be comparatively more

important for lower credit rated tranches than higher rated tranches and, as such signals

with respect to default x REITs to be weakest in the absence of updated current loan level

default data, which was not available for this study.

18See for example Riddiough and Zhu (2016).
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[Insert Figure 6 about here]

This is an excellent result. If there is a systematic mispricing of liquidity and excess

liquidity in CMBX capital structure informed by broader market misspeci�cation of state

transitions and their impact on credit tranches, then those CMBX risk partitions should

provide the best signals to the related REIT market. Further, if the liquidity and excess

liquidity availability in the capital structure is not accurately priced, as found under risk

neutral simulation in Christopoulos (2017) and Christopoulos and Jarrow (2018), then those

signals from the bottom of the capital structure should provide the best of the best signals

in the cohort. This is exactly what we see. The liquidity and excess liquidity trading signals

with respect to REIT relative value provide more consistent and positive insights than default

at the bottom of the capital structure. While there are some di�erences at the BBB- level

the results still are consistent with a mispricing of liquidity and excess liquidity in CMBX

and establish a relationship of similar mispricing in REITs.19 As shown in the cross-sectional

analysis, we �nd considerably greater volatility in risk partition pricing at the start of each

trading day for all risk partitions compared to the end of each trading day, which contrast

with the much more muted volatility for REITs from the start to end of the trading day.

This suggests that the monthly and daily analyses provided by the theoretical liquidity risk

partitions persist at the intraday level, which is our �rst main result. Finally, the success of

the trade strategies and their signi�cance con�rm that CMBX risk partitions bring valuable

insights to the related REIT sector and to CMBX at higher frequencies which is our second

main result, completing the Intraday Model validation.

19Tables of all trades for all trading strategies are available upon request.
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5 Summary

The estimation of risk partitions at intraday frequency for CMBX is conducted in this study.

Our estimations are conducted for all investment grade credits in 15 second intervals over 240

days during the Covid pandemic. We �nd stark and regular volatility pockets of risk partition

pricing in the cross-section over the sample period April 2020-April 2021. If broader real

estate risk sentiments of investors are embedded within the CMBX residual risk partitions

of liquidity and excess liquidity, it would make sense if those measures also revealed pricing

insights into real estate risk in securities apart from CMBX. We �nd this to be true. By

fusing the CMBX risk partition signals with REIT pricing in 18 trading strategies over

240 trading days, we achieved signi�cant ICAPM α′s in 84% of the strategies and positive

cumulative returns ranging from 9.09% to 41.37% in 75% of those strategies during the

Covid pandemic. By our results, the fusion of CMBX risk partition signals with REIT

pricing appears to exploit rapid changes in investor sentiment with respect to the pricing of

real estate securities risks. We �nd that intraday CMBX risk partitions reveal insights into

the related REIT sector intraday, with matching trading frequency.

The intraday estimation of reduced form risk partitions, as we have done in this work,

is general. It can be applied to all �xed income securities, with particular bene�t to those

securities that are credit sensitive and trade with less frequency than more mature sectors.

To be sure, a training set for the economy and reduced form simulated risk partitions is

required. This necessarily requires the simulation of those reduced form risk partitions

directly as introduced in Christopoulos (2017) and Christopoulos and Jarrow (2018). With

that, and by our method, the intraday estimations can be conducted. Further, it should be

noted that what we execute utilizes the same initial condition date of March 18, 2020, for

the market spreads, which allows for our cross-sectional analysis to be especially meaningful.

However time series analyses in subsequent work could be conducted if end-of-day mark-to

market pricing were provided. This would allow for two sets of estimations to take place
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intraday: one based on the March 18, 2020 initial market spread and the other based on

the market spread reported from the previous close. Again, these estimates are proxies for

the simulation based and loan and bond level data intensive simulations of Christopoulos

(2017) and Christopoulos and Jarrow (2018), but early work on that technology suggest that

computational time could be achieved with the same frequency as these estimations. And

so future studies, could compare estimate to direct simulation liquidity assessments.

Additionally, consideration of dynamic intraday strategies would be interesting in that

it would further clarify the meaning of the signals at higher frequencies instead of only

exploiting them at pre-de�ned �xed points at the beginning and end of the trading day. This

could foster better sensitivity analysis and optimization across di�erent signals at di�erent

points in time and could improve trading selection into portfolios. This sets the stage for

investigation into `bubbles' in these markets diagnosing price formation and testing theories

surrounding these phenomena.

Finally, from a risk policy perspective, investigating into a longer term relationship

between intraday signals of risk partitions and manifestation of actual hazards in the real

estate asset classes would be an interesting area for exploration. This would be fostered

by the rapid estimation of risk partitions in this work and, in parallel, the simulation of

those reduced form risk partitions directly as introduced in Christopoulos (2017) and Chris-

topoulos and Jarrow (2018). Interesting analyses and comparisons between ratings upgrades

and downgrades and mark-to-model estimations of risk could be juxtaposed with near real

time risk decomposition estimation. Since lending criteria, risk retention, and capital con-

straints all have links to capital markets, research into the evolution of those links, with our

intraday approach, before hazards manifest, seems a natural next level of inquiry. This is

left to future research.To our knowledge, this is the �rst paper to investigate into the risk

decomposition and price formation of commercial real estate securities at higher frequencies.

This paper contributes to the literature on price formation and highlights the role of risk

partitioning in enhancing transparency in credit sensitive US �xed income securities, rapidly.
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Tables

Table 1: Sample REITs

PropType Ticker Factor Name REIT Name Market Cap ($bn)

Industrial (IN) DRE IN_DRE Duke Realty $18.04
FR IN_FR First Industrial Realty Trust $6.90
PLD IN_PLD Prologis, Inc. $90.25
SELF IN_SELF Global Self Storage, Inc. $54.28

Hotel (LO) HST LO_HST Host Hotels & Resorts, Inc. $12.41
MAR LO_MAR Marriott International, Inc. $45.64
WH LO_WYND Wyndam Hotels & Resorts, Inc. $6.82
MGM LO_MGM MGM Resorts International $21.53

Multifamily (MF) AVB MF_AVB Avalon Bay Communities, Inc. $29.87
ELS MF_ELS Equity LifeStyle Properties, Inc. $13.81
EQR MF_EQR Equity Residential $29.39
UDR MF_UDR UDR, Inc. $14.80

O�ce (OF) BXP OF_BXP Boston Properties, Inc. $18.70
CLI OF_CLI Mack-Cali Realty Corporation $1.55
HIW OF_HIW Highwoods Properties, Inc. $4.85
SLG OF_SLG SL Green Realty Corp. $5.72
VNO OF_VNO Vornado Realty Trust $9.24

Mixed Use/Other (OT) BKD OT_BKD Brookdale Senior Living Inc. $1.54
NNN OT_NNN National Retail Properties, Inc. $8.41
PSB OT_PSB PS Business Parks, Inc. $4.15
WPC OT_WPC W.P. Carey Inc. $13.93

Retail (RT) KIM RT_KIM KIMCO Realty Corporation $9.14
REG RT_REG Regency Centers Corporation $11.05
SPG RT_SPG Simon Property Group $43.06
TCO RT_TCO Taubman Centers Inc. $3.40

This table summarizes the 25 REITs used in this study. The market capitalization of the REITs are $478.45 billion as of 6/27/2021. The �rst
column provides the property type and groups the REITs by property type separated by borders. The six property types are Industrial (IN), Hotel
(LO), Multifamily (MF), O�ce (OF), Mixed Use/Other (OT), and Retail (RT). The second column provides the stock market ticker symbol. The
third column provides the factor name composite of the property type with the ticker. The fourth column provides the name of the REIT, with
the �fth column the market capitalization.
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Table 2: Aggregate Summary of Sample REITs

Property Type Market Cap ($bn) % Market Cap Count US Count % of US

Industrial (IN) $169.47 35.42% 4 13 30.77%

Hotel (LO) $86.39 18.06% 4 13 30.77%

Multifamily (MF) $87.86 18.36% 4 20 20.00%

O�ce (OF) $40.06 8.37% 5 19 26.32%

Mixed Use/Other (OT) $28.02 5.86% 4 126 3.17%

Retail (RT) $66.65 13.93% 4 32 12.50%

Total $478.45 100.00% 25 223 100.00%

This table aggregates values related to the 25 REITs used in this study. The �rst column gives the property type and total labels. The six property
types are Industrial (IN), Hotel (LO), Multifamily (MF), O�ce (OF), Mixed Use/Other (OT), and Retail (RT). The second column provides the
market capitalization (Market Cap). The third column provides proportion of each property type Market Cap compared to the total Market Cap
in the sample. The fourth column provides the counts of the REITs by property type in the sample. The �fth column the number of REITs by
property type in the US. The sixth column captures the proportion of the sample count to the US count of REITs.
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Table 3: Liquidity summary for several sectors

Sector ADV ($bn) Outstanding ($bn) Turnover Turnover % Tsy

US Tsys $565.00 $19,300.00 2.9275% 100.0000%

US RMBS (Agency) $289.80 $9,900.00 2.9273% 99.9936%

US REITs $8.70 $1,300.00 0.6692% 22.8604%

US Corporates $27.46 $10,600.00 0.2590% 8.8480%

US CMBS $0.84 $596.40 0.1408% 4.8112%

This table provides summary issuance and trading volume for US Treasuries, US Agency backed mortgage backed securities, US REITs, US
Corporate Bonds and US CMBS. The columns report the average daily trading volume (ADV) at of Q1 2021 and the outstanding issuance, in
$billions. The Turnover is the ratio of ADV/Outstanding issuance. The Turnover % of Tsy is the ratio of Turnover/Turnover of US Treasuries.
Source: SIFMA (2021) and NAREIT (2020).
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Table 4: Summary statistics of cumulative changes of intraday CMBX risk partitions

Panel A: Default AAA AJ AA A BBB BBB-

min 0.483416 0.338351 0.494514 0.609670 0.717165 0.823893
max 1.820368 8.403204 6.036482 6.121692 1.913765 1.400509
mean 1.000102 1.000104 1.000046 1.000039 1.000012 1.000005
median 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
variance 0.000212 0.000380 0.000156 0.000147 0.000020 0.000006
stdev 0.014562 0.019491 0.012485 0.012127 0.004425 0.002384
obs 275370 275370 275370 275370 275370 275370

Panel B: Rate risk AAA AJ AA A BBB BBB-

min 0.702365 0.610945 0.530693 0.583500 0.476037 0.599777
max 1.518098 1.742393 2.244835 1.871355 1.976362 1.469975
mean 1.000010 1.000137 1.000058 1.000042 1.000061 1.000024
median 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
variance 0.000019 0.000281 0.000123 0.000086 0.000123 0.000041
stdev 0.004340 0.016768 0.011092 0.009273 0.011089 0.006433
obs 275370 275370 275370 275370 275370 275370

Panel C: Liquidity AAA AJ AA A BBB BBB-

min 0.735970 0.330755 0.030144 0.016780 0.275537 0.134313
max 1.707165 8.456980 9.348418 27.908990 2.411473 6.462325
mean 1.000036 1.000466 1.000559 1.000738 1.000176 1.000397
median 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
variance 0.000078 0.001217 0.001370 0.007370 0.000361 0.000976
stdev 0.008806 0.034890 0.037017 0.085848 0.019004 0.031240
obs 275370 275370 275370 275370 275370 275370

Panel D: XS liquidity AAA AJ AA A BBB BBB-

min 0.346666 0.136986 0.508825 0.508825 0.508825 0.140683
max 3.379393 7.812876 2.413748 2.413748 2.413748 6.325317
mean 1.000147 1.000329 1.000074 1.000074 1.000074 1.000184
median 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
variance 0.000333 0.000868 0.000152 0.000152 0.000152 0.000719
stdev 0.018239 0.029465 0.012328 0.012328 0.012328 0.026816
obs 275370 275370 275370 275370 275370 275370

This table provides summary statistics of intraday CMBX risk partitions. The columns show the investment grade credit rating class and the
rows the summary statistics of minimum (min), maximum (max), mean, median, variance, standard deviation (stdev), kurtosis and the number of
observation (obs). Panel A summarizes for default risk, Panel B summarizes for interest rate risk, Panel C summarizes for liquidity, while Panel
D summarizes for excess (XS) liquidity.
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Table 5: Open Summary during Covid

variable mean median min max variance stdev n

VIX 26.7659 25.6000 16.5500 47.3400 31.88860 5.6470 246

IN_DRE 37.9874 38.5400 30.4000 43.0600 6.83532 2.6144 246
IN_FR 41.0038 41.5825 33.1700 47.3700 8.22299 2.8676 246
IN_PLD 98.7801 99.5750 81.4700 109.7950 35.65076 5.9708 246
IN_SELF 4.0519 4.0000 3.5200 5.0500 0.08360 0.2891 246

LO_HST 12.8944 11.8875 9.1400 18.4200 4.94857 2.2245 246
LO_MAR 109.4389 100.5550 72.7600 155.7419 495.52655 22.2604 246
LO_WYND 37.0577 33.4700 21.0900 51.7500 93.63226 9.6764 246
LO_MGM 24.6343 22.3325 12.1100 41.7300 63.82471 7.9890 246

MF_AVB 162.0976 159.2000 133.1000 193.5300 145.65429 12.0687 246
MF_ELS 62.7243 62.7025 55.8600 68.2900 5.18841 2.2778 246
MF_EQR 60.1919 59.3700 46.0100 75.9600 37.04669 6.0866 246
MF_UDR 37.7456 37.4550 29.9100 45.6700 11.21798 3.3493 246

OF_BXP 91.4597 91.0200 70.7300 108.5900 74.19748 8.6138 246
OF_CLI 14.0493 13.8825 10.4000 18.5100 2.23470 1.4949 246
OF_HIW 37.9485 38.0200 29.4500 45.1700 10.21290 3.1958 246
OF_SLG 54.5778 50.6400 36.8300 77.1200 93.46684 9.6678 246
OF_VNO 38.3335 37.5750 29.9550 49.0300 16.31488 4.0392 246

OT_BKD 3.8272 3.3900 2.4400 6.7500 1.36962 1.1703 246
OT_NNN 37.3254 36.8075 27.1050 45.8552 17.25113 4.1534 246
OT_PSB 133.0409 131.7250 110.3200 159.8700 106.10071 10.3005 246
OT_WPC 67.5772 68.2300 54.5500 75.0000 12.15876 3.4869 246

RT_KIM 13.6444 12.6550 8.3400 19.7200 8.91863 2.9864 246
RT_REG 45.0055 44.4750 34.0300 59.8800 38.80736 6.2296 246
RT_SPG 78.3857 69.6225 49.7200 120.4975 364.88435 19.1019 246
RT_TCO 40.0019 40.4050 28.1450 46.8000 13.19712 3.6328 246

TSY_3MO 0.0854 0.0880 0.0030 0.2350 0.00149 0.0386 246
TSY_5YR 0.4095 0.3600 0.2060 0.9710 0.02983 0.1727 246
TSY_10YR 0.8936 0.7735 0.5260 1.7490 0.10170 0.3189 246
TSY_30YR 1.6290 1.5460 1.1380 2.4960 0.11141 0.3338 246

AAA_def 1.0131 1.0015 0.6218 1.8204 0.01493 0.1222 246
AAA_rates 1.0015 1.0001 0.8004 1.5181 0.00313 0.0560 246
AAA_reglq 1.0046 0.9995 0.7360 1.3345 0.00616 0.0785 246
AAA_xslq 1.0118 0.9994 0.3467 3.1465 0.04744 0.2178 246

AJ_def 1.0457 1.0008 0.5545 8.4032 0.23584 0.4856 246
AJ_rates 1.0023 0.9998 0.8048 1.3263 0.00365 0.0604 246
AJ_reglq 1.0303 0.9959 0.3308 2.8615 0.10486 0.3238 246
AJ_xslq 1.0308 0.9975 0.1370 4.5724 0.11270 0.3357 246

AA_def 1.0277 1.0000 0.5937 6.0365 0.10726 0.3275 246
AA_rates 1.0082 1.0003 0.6064 2.2448 0.01458 0.1207 246
AA_reglq 1.0092 0.9982 0.0301 3.0219 0.07331 0.2708 246
AA_xslq 1.0087 0.9992 0.5088 2.4137 0.02058 0.1435 246

A_def 1.0219 0.9997 0.6108 6.1217 0.11167 0.3342 246
A_rates 1.0084 0.9995 0.7212 1.8714 0.00939 0.0969 246
A_reglq 1.0013 1.0004 0.0168 3.4114 0.05614 0.2369 246
A_xslq 1.0087 0.9992 0.5088 2.4137 0.02058 0.1435 246

BBB_def 1.0050 0.9999 0.7172 1.9138 0.00514 0.0717 246
BBB_rates 1.0101 1.0001 0.6726 1.4887 0.00836 0.0914 246
BBB_reglq 0.9934 0.9982 0.3555 1.9290 0.02679 0.1637 246
BBB_xslq 1.0087 0.9992 0.5088 2.4137 0.02058 0.1435 246

BBBm_def 1.0029 1.0001 0.9184 1.4005 0.00095 0.0308 246
BBBm_rates 1.0012 1.0000 0.5998 1.3887 0.00533 0.0730 246
BBBm_reglq 1.0430 0.9956 0.1343 5.0141 0.15543 0.3942 246
BBBm_xslq 1.0062 0.9992 0.3763 2.7905 0.03548 0.1884 246

This table summarizes the observations of intraday data at the open of the trading day 9:30:15ET for 246 trading days during the pandemic
April 2020 - April 2021). The �rst column provides the abbreviation for the variable name. The VIX is the CBOE volatility index. This is
followed by the prices of 25 REITs with the name a composite made up of the property type (industrial (IN), hotel/lodging (LO), multifamily
(MF), mixed use/other (OT), o�ce (OF) and retail (RT)) and the REIT's stock market ticker. Following the REITs are US Treasury yields with
ticker representing the 4 maturities of 3 month, 5 year, 10 year and 30 year. The remaining values are the simulated risk partitions indexed in
Christopoulos and Jarrow (2018) in cumulative change form. The ticker is a composite of the 4 types of risk partitions default (def), interest rates
(rates), liquidity (reglq) and excess liquidity (xslq) combined with the credit rating class names of AAA, AJ, AA, A, BBB and BBB- (BBBm).
Each of the columns to the right of the ticker report statistics across all 246 observations.40



Table 6: Close Summary during Covid

variable mean median min max variance stdev n

VIX 26.6096 25.6550 16.9900 45.4300 29.64890 5.4451 246

IN_DRE 38.0191 38.4550 30.4000 43.0300 6.75872 2.5998 246
IN_FR 41.0291 41.6200 33.3500 47.4500 8.21028 2.8654 246
IN_PLD 98.7703 99.6100 82.8500 109.5300 36.53448 6.0444 246
IN_SELF 4.0505 4.0000 3.5622 5.0500 0.08343 0.2888 246

LO_HST 12.8848 11.9275 9.4500 18.4200 4.91837 2.2177 246
LO_MAR 109.2835 100.3450 75.2600 157.5000 492.77623 22.1986 246
LO_WYND 37.0491 33.2800 21.3900 51.7500 92.64766 9.6254 246
LO_MGM 24.6201 22.0400 12.6800 42.2000 63.62672 7.9766 246

MF_AVB 161.9634 159.0800 132.7800 193.6100 143.79254 11.9914 246
MF_ELS 62.7417 62.6450 56.1500 68.2900 5.27037 2.2957 246
MF_EQR 60.1311 59.3700 46.2300 74.9600 37.29848 6.1072 246
MF_UDR 37.7246 37.5050 29.6000 45.5600 11.21592 3.3490 246

OF_BXP 91.4361 91.2000 71.1500 108.6600 73.53062 8.5750 246
OF_CLI 14.0223 13.8000 10.4100 18.6900 2.24609 1.4987 246
OF_HIW 37.9085 38.0250 29.7050 45.2300 10.27220 3.2050 246
OF_SLG 54.5360 51.1750 36.8200 77.7900 92.16894 9.6005 246
OF_VNO 38.2630 37.4800 30.1900 49.0100 16.01428 4.0018 246

OT_BKD 3.8215 3.4050 2.4350 7.0500 1.37638 1.1732 246
OT_NNN 37.3067 36.7350 27.6000 45.6000 16.87934 4.1084 246
OT_PSB 133.0165 131.8750 110.3100 159.9100 107.41229 10.3640 246
OT_WPC 67.5539 68.1400 54.5600 74.3100 11.90968 3.4510 246

RT_KIM 13.6380 12.7100 8.3000 19.7000 8.91577 2.9859 246
RT_REG 44.9848 44.4500 34.0500 59.6500 38.49700 6.2046 246
RT_SPG 78.2918 69.4800 51.2000 121.1400 363.46241 19.0647 246
RT_TCO 40.0404 40.4700 32.8700 46.6900 12.51065 3.5370 246

TSY_3MO 0.0850 0.0880 0.0030 0.2100 0.00149 0.0386 246
TSY_5YR 0.4094 0.3620 0.1950 0.9410 0.02932 0.1712 246
TSY_10YR 0.8942 0.7630 0.5150 1.7460 0.10130 0.3183 246
TSY_30YR 1.6306 1.5450 1.1620 2.4760 0.11075 0.3328 246

AAA_def 0.9997 0.9999 0.9806 1.0272 0.00002 0.0039 246
AAA_rates 1.0001 1.0000 0.9971 1.0066 0.00000 0.0010 246
AAA_reglq 1.0001 1.0001 0.9745 1.0138 0.00001 0.0032 246
AAA_xslq 1.0006 1.0000 0.9696 1.0326 0.00004 0.0060 246

AJ_def 1.0001 1.0000 0.9913 1.0217 0.00001 0.0026 246
AJ_rates 1.0002 1.0001 0.9666 1.0247 0.00002 0.0040 246
AJ_reglq 1.0001 1.0000 0.9176 1.0409 0.00009 0.0092 246
AJ_xslq 0.9988 1.0000 0.9528 1.0172 0.00006 0.0079 246

AA_def 1.0000 1.0000 0.9866 1.0188 0.00000 0.0018 246
AA_rates 1.0004 1.0003 0.9775 1.0225 0.00002 0.0043 246
AA_reglq 0.9992 1.0000 0.9347 1.0215 0.00004 0.0066 246
AA_xslq 0.9995 1.0000 0.9776 1.0071 0.00001 0.0033 246

A_def 1.0000 1.0000 0.9870 1.0065 0.00000 0.0014 246
A_rates 1.0003 1.0002 0.9824 1.0169 0.00001 0.0034 246
A_reglq 0.9998 1.0000 0.9441 1.0294 0.00003 0.0054 246
A_xslq 0.9995 1.0000 0.9776 1.0071 0.00001 0.0033 246

BBB_def 0.9999 1.0000 0.9952 1.0030 0.00000 0.0009 246
BBB_rates 1.0001 1.0000 0.9827 1.0273 0.00002 0.0042 246
BBB_reglq 1.0000 0.9999 0.9785 1.0248 0.00002 0.0047 246
BBB_xslq 0.9995 1.0000 0.9776 1.0071 0.00001 0.0033 246

BBBm_def 1.0000 1.0000 0.9953 1.0029 0.00000 0.0008 246
BBBm_rates 0.9999 1.0000 0.9877 1.0059 0.00000 0.0012 246
BBBm_reglq 0.9993 1.0000 0.9467 1.0170 0.00003 0.0056 246
BBBm_xslq 0.9996 1.0000 0.9665 1.0092 0.00001 0.0033 246

This table summarizes the observations of intraday data at the close of the trading day 4:15:00ET for 246 trading days during the pandemic
(April 2020 - April 2021). The �rst column provides the abbreviation for the variable name. The VIX is the CBOE volatility index. This is
followed by the prices of 25 REITs with the name a composite made up of the property type (industrial (IN), hotel/lodging (LO), multifamily
(MF), mixed use/other (OT), o�ce (OF) and retail (RT)) and the REIT's stock market ticker. Following the REITs are US Treasury yields with
ticker representing the 4 maturities of 3 month, 5 year, 10 year and 30 year. The remaining values are the simulated risk partitions indexed in
Christopoulos and Jarrow (2018) in cumulative change form. The ticker is a composite of the 4 types of risk partitions default (def), interest rates
(rates), liquidity (reglq) and excess liquidity (xslq) combined with the credit rating class names of AAA, AJ, AA, A, BBB and BBB- (BBBm).
Each of the columns to the right of the ticker report statistics across all 246 observations.41



Table 7: Trade Signal Examples

Ex # type ∆R W L = ∆R/W W = XSLQ W= LQ W= DEF

1 ∆R ↑, W^ 1.250 1.250 1.0000 no trade no trade no trade

2 ∆R ↓, W_ 0.990 0.990 1.0000 no trade no trade no trade

3 ∆R ↑, W^ 1.250 1.200 1.0417 sell sell buy

4 ∆R ↓, W_ 0.990 0.980 1.0102 sell sell buy

5 ∆R ↑, W0 1.500 1.000 1.5000 sell sell buy

6 ∆R^, W_ 1.200 0.999 1.2012 sell sell buy

7 ∆R0, W_ 1.000 0.900 1.1111 sell sell buy

8 ∆R0, W0 1.000 1.000 1.0000 no trade no trade no trade

9 ∆R0, W^ 1.000 1.500 0.6667 buy buy sell

10 ∆R ↓, W^ 0.800 1.500 0.5333 buy buy sell

11 ∆R ↓, W0 0.900 1.000 0.9000 buy buy sell

12 ∆R ↓, W_ 0.960 0.970 0.9897 buy buy sell

13 ∆R ↑, W^ 1.020 1.100 0.9273 buy buy sell

14 ∆R ↓, W_ 0.960 0.960 1.0000 no trade no trade no trade

15 ∆R ↑, W^ 1.020 1.020 1.0000 no trade no trade no trade

This table summarizes the logic underlying the direction (long/buy or short/sell) for the Trading Signal, Lιjkut. The 15 examples show possible
trading signal impact, numerically, for di�erent cumulative changes in REIT prices, ∆R, and di�erent cumulative changes in the risk partition,
W . The rows capture the di�erent examples and the columns the combination of changes (type), the individual changes (∆Rand W ) the signal
(L = ∆R/W ), and the di�erent types of risk partition tested in the trading strategies: excess liquidity (W = XSLQ), liquidity (W = LQ), and
default (W = DEF). The rowwise indication of `no trade' indicates that no valid trade signal is observed for L at that time. The indication of
`sell' is a signal to allocate the REIT corresponding to R into the short portfolio, while an indication of `buy' is a signal to allocate to the REIT
correspond to R into the long portfolio.
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Table 8: Cumulative returns for Trading Strategies

Panel A: Excess Liquidity

AAA AJ AA A BBB BBB-

Return 9.09% 41.37% 37.62% 37.62% 37.62% 15.09%
Stdev 0.78% 0.71% 0.78% 0.78% 0.78% 0.76%
Sharpe 1.99 5.09 4.37 4.37 4.37 2.57

Panel B: Liquidity

AAA AJ AA A BBB BBB-

Return 37.69% 22.80% 14.34% 34.89% 39.95% 21.03%
Stdev 1.09% 1.09% 0.74% 0.75% 0.77% 0.72%
Sharpe 3.12 2.23 2.57 4.30 4.63 3.24

Panel C: Default

AAA AJ AA A BBB BBB-

Return 11.08% 17.08% -5.23% -13.02% -34.67% -32.53%
Stdev 0.80% 0.72% 0.79% 0.73% 0.84% 0.86%
Sharpe 2.11 2.87 0.80 0.17 -1.52 -1.31

This table provides the cumulative returns over 240 consecutive trading days over the sample period for the Trading Strategies using the three
di�erent risk partitions of Excess Liquidity (panel A), Liquidity (panel B), and Default (panel C) as embedded within Eq. (11). Each of the panels
A, B and C provide the 12 month cumulative returns (Return), the standard deviation (Stdev) and the Sharpe Ratio (Sharpe) for each of the
credit cohort trading strategy portfolios denoted AAA, AJ, AA, A, BBB and BBB- in the columns.
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Table 9: ICAPM Results

Panel A, AAA α Mkt-Rf MOM SMB HML F Adj-Rsq N

XSLiquidity 0.004437** -0.011797*** -0.001651 -0.00105 -0.008825*** 39.87 0.3187 240
(0.001599) (0.001355) (0.001589) (0.002011) (0.002176) 0.00

Liquidity 0.0038399* -0.0137208*** -0.0012093 0.0007149 -0.0092415*** 54.21 0.476 240
(0.0015339) (0.0013006) (0.0015248) (0.0019296) (0.0020874) 0.00

Default 0.003991* -0.015079*** -0.001129 0.00106 -0.009997*** 52.45 0.4191 240
(0.001714) (0.001454) (0.001704) (0.002157) (0.002333) 0.00

Panel B, AJ α Mkt-Rf MOM SMB HML F Adj-Rsq N

XSLiquidity 0.004683** -0.011807*** -0.002287 -0.001453 -0.009541*** 41.04 0.3391 240
(0.001586) (0.001345) (0.001576) (0.001995) (0.002158) 0.00

Liquidity 0.004194** -0.01331*** -0.0009555 0.00002154 -0.008433*** 53.18 0.4646 240
(0.0015) (0.001272) (0.001491) (0.001887) (0.002041) 0.00

Default 0.004079* -0.01402*** -0.001466 -0.00004531 -0.008893*** 45.21 0.3462 240
(0.00167) (0.001416) (0.00166) (0.002101) (0.002273) 0.00

Panel C, AA α Mkt-Rf MOM SMB HML F Adj-Rsq N

XSLiquidity 0.0038622* -0.0125738*** -0.0021869 -0.0009717 -0.0098577*** 41.67 0.3486 240
(0.0016568) (0.0014047) (0.0016469) (0.0020842) (0.0022547) 0.00

Liquidity 0.004194** -0.01331*** -0.0009555 0.00002154 -0.008433*** 53.18 0.4646 240
(0.0015) (0.001272) (0.001491) (0.001887) (0.002041) 0.00

Default 0.004079* -0.01402*** -0.001466 -0.00004531 -0.008893*** 45.21 0.3462 240
(0.00167) (0.001416) (0.00166) (0.002101) (0.002273) 0.00

Panel D, A α Mkt-Rf MOM SMB HML F Adj-Rsq N

XSLiquidity 0.003497* -0.012009*** -0.002309 -0.001462 -0.010016*** 42.67 0.3593 240
(0.00161) (0.001365) (0.0016) (0.002025) (0.002191) 0.00

Liquidity 0.004194** -0.01331*** -0.0009555 0.00002154 -0.008433*** 53.18 0.4646 240
(0.0015) (0.001272) (0.001491) (0.001887) (0.002041) 0.00

Default 0.004079* -0.01402*** -0.001466 -0.00004531 -0.008893*** 45.21 0.3462 240
(0.00167) (0.001416) (0.00166) (0.002101) (0.002273) 0.00

Panel E, BBB α Mkt-Rf MOM SMB HML F Adj-Rsq N

XSLiquidity 0.0025332 -0.0120336*** -0.0023626 -0.0006994 -0.0098406*** 38.99 0.3121 240
(0.0016395) (0.0013901) (0.0016297) (0.0020625) (0.0022311) 0.00

Liquidity 0.004575** -0.0128342*** -0.0006617 -0.0003317 -0.0079207*** 52.7 0.459 240
(0.0014701) (0.0012464) (0.0014613) (0.0018493) (0.0020005) 0.00

Default 0.005056** -0.0134311*** -0.0003629 -0.0002725 -0.0077591*** 51.39 0.4141 240
(0.0015477) (0.0013123) (0.0015385) (0.001947) (0.0021063) 0.00

Panel F, BBB- α Mkt-Rf MOM SMB HML F Adj-Rsq N

XSLiquidity 0.002663 -0.012487*** -0.003047. -0.001407 -0.010772*** 40.39 0.3351 240
(0.001682) (0.001426) (0.001672) (0.002116) (0.002289) 0.00

Liquidity 0.0066207** -0.0180265*** -0.0027309 -0.0004056 -0.0140932*** 46.3 0.4231 240
(0.0022618) (0.0019177) (0.0022483) (0.0028453) (0.003078) 0.00

Default 0.0078028*** -0.0181336*** -0.0023276 -0.0000474 -0.0137304*** 43.97 0.3912 240
(0.0023297) (0.0019753) (0.0023158) (0.0029307) (0.0031704) 0.00

This table provides the results the ICAPM regressions of Merton (1990) with the four factors introduced by Fama and French (1993) (the market
portfolio (Mkt-Rf), high minus low (HML), and small minus big (SMB) and the fourth factor of momentum (MOM) introduced by Carhart (1997).

The form of the regression is Rωu −Rλu = α+
M∑
i=2

βωi(Riu − ru) + εu with the di�erence between the trading strategy portfolio minus the long

only portfolio as the dependent variable, and the four factors as independent variables. Three strategies are tested for each credit rating class
captured in the panels. Each panel presents excess liquidity (XSLiqudity), Liquidity and Default The columns correspond to intercept alpha and
each of the explanatory factors. The �nal three columns show the F-test value, the Adjusted R-squared value and the number of observations.
The estimates, the F-test value, the Adjusted R-squared value and number of observations are in the row labelled with the trading strategy. The
standard error of the estimates (in parentheses) are shown in the row immediately below the estimates and the p-value for the F-test immediately
below the F-test statistics. Panel A, shows the results for AAA, Panel B shows the results for AJ, Panel C shows the results for AA, Panel D
shows the results for A, Panel E shows the results for BBB and Panel F shows the results for BBB-. ***/**/*/' correspond to 0.1%, 1%, 5% and
10% levels of signi�cance.
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Figure Captions

Figure 1. Daily Indexed CMBX Risk Partitions

Figure 2. CMBX intraday risk decomposition (15 second intervals)

Figure 3. Default cross section (all observations)

Figure 4. Liquidity cross section (all observations)

Figure 5. All partitions, all dates, 9:30:00am to 9:45:00am

Figure 6. Trading strategy returns and alpha signi�cance levels by ratings
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Figures

Figure 1: Daily Indexed CMBX Risk Partitions

This �gure depicts the estimated risk partitions de�ned in Eq. (7) for all four risk components of default, interest rates, liquidity and excess
liquidity on a daily basis in the plot on the left from November 2007 thru April 2019. These estimates are based on the monthly training set of 92
weighted observations of risk partitions for the CMBX sector overall across all credits as depicted in Fig. (9) in Christopoulos and Jarrow (2018).
The x-axis capture the trading days over the sample period and the y-axis captures the proportions of risk. Source: Christopoulos and Barratt
(2021a).
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Figure 2: CMBX intraday risk decomposition (15 second intervals)

(a) CMBX intraday, 20200417

(b) CMBX intraday, 20201204

This �gure provides proportional intraday CMBX risk decomposition in 1560, 15 second intervals. The four components of risk modelled are
default, interest rates, liquidity and excess liquidity. The x-axis capture the time intervals from 9:30:15am to 4:15:00pm.EST The y-axis captures
the estimated proportion of CMBX risk embedded within CMBS spreads as determined in Eq. (7). Fig. (2.a) captures the intraday evolution of
CMBX proportional risk decompositions on April 17, 2020 and Fig. (2.b) captures the intraday evolution of CMBX proportional risk decompositions
on December 4, 2020. Separate evolutions are provided for each of the investment grade CMBX tranches, as well as for the weighted average
composite index across all investment grade CMBX as shown monthly in Christopoulos and Jarrow (2018).
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Figure 3: Default cross section (all observations)

This �gure provides the cross section across all 275370 observations of default risk composition for each of the investment grade CMBX tranches
from AAA (top-left) to BBB- (bottom right). The x-axes re�ect 3 minute intervals binned from the 15 second interval values while the y-axes
capture the log change of the VIX from the start of the trading day (with t = 0, 9:30am) until close. The y-axes are partitioned in increments of
0.01. The z-axes are the heat map renderings of Wjkut de�ned in Eq. 10 for default risk across all days in the sample period at identical times.
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Figure 4: Liquidity cross section (all observations)

This �gure provides the cross section across all 275370 observations of liquidity risk composition for each of the investment grade CMBX tranches
from AAA (top-left) to BBB- (bottom right). The x-axes re�ect 3 minute intervals binned from the 15 second interval values while the y-axes
capture the log change of the VIX from the start of the trading day (with t = 0, 9:30am) until close. The y-axes are partitioned in increments of
0.01. The z-axes are the heat map renderings of Wjkut de�ned in Eq. 10 for liquidity risk across all days in the sample period at identical times.
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Figure 5: All partitions, all dates, 9:30:00am to 9:45:00am

This �gure provides the cross section across all 275370 observations of risk composition for each of the four risk components (default, top left),
liquidity (top right), excess (XS) liquidity (bottom left) and interest rates (bottom right). Each of the four risk component contain six charts
depicting the investment grade CMBX tranches from AAA (top-left) to BBB- (bottom right). The x-axes re�ect 3 minute intervals binned from
the 15 second interval values from 9:30:15am to 9:45:00am EST. The y-axes capture the log change of the VIX from the start of the trading day
(with t = 0, 9:30:15am) until 9:45:00am. The y-axes are partitioned in increments of 0.01. The z-axes are the heat map renderings of Wjkut
de�ned in Eq. 10 for all four risk components and all six ratings with non-constant upper and lower boundaries, but identical colorscaling. The
contour lines and hue of indicate higher or lower cumulative changes in liquidity risk across all days in the sample period at identical times.
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Figure 6: Trading strategy returns and alpha signi�cance levels by ratings

This �gure depicts the 16 (of 18 total) trading strategy returns with statistically signi�cant and positive α′s showing their α signi�cance and the
returns for those strategies, broken out by credit rating class. The x-axes show α signi�cance levels and the y-axes show the cumulative returns
over the sample period. The credit ratings begin with AAA in the upper left corner and descend rowwise from left to right ending with BBB- in
the bottom right corner.
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