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Abstract

We propose an averaging rule that combines established minimum-variance strategies to
minimize the expected out-of-sample variance. Our rule overcomes the problem of selecting
the “best” strategy ex-ante and diversifies remaining estimation errors of the strategies
included in the averaging. Extensive simulations show that the contributions of estimation
errors to the out-of-sample variances are uncorrelated between the considered strategies.
This implies that averaging over multiple strategies offers sizable diversification benefits.
Across all data sets we find that our rule achieves a significantly lower out-of-sample standard
deviation than any competing strategy and that the Sharpe ratio is at least 25% higher than
for the 1/N portfolio.
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1 Introduction

Existing literature on portfolio selection offers a broad range of approaches to alleviate the

impact of estimation errors on out-of-sample portfolio performance. Nevertheless, DeMiguel et al.

(2009) find that no single portfolio strategy consistently outperforms the 1/N rule. Stimulated

by this observation, several authors suggested improved estimates of the input parameters on

the covariance (see, e.g., Fan et al., 2013; Ledoit and Wolf, 2017, 2020), the inverse covariance

(see, e.g., Kourtis et al., 2012; DeMiguel et al., 2013; Ledoit and Wolf, 2018; Shi et al., 2020)

and the portfolio weight level (see, e.g., Kan and Zhou, 2007; Tu and Zhou, 2011; DeMiguel

et al., 2013). Further contributions propose extensions of the optimization problem via norm

constraints in order to regularize portfolio weights (see, e.g., Brodie et al., 2009; DeMiguel et al.,

2009; Xing et al., 2014; Li, 2015; Yen, 2016). The plethora of evolving strategies challenges

practitioners and academics alike to select one of the proposed strategies. In addition to the

challenge of identifying the “best” strategy ex-ante, the limitation to a single strategy may

forego potential diversification benefits. If estimation errors are not perfectly correlated across

individual strategies, a combination of different approaches offers the potential to further diversify

estimation errors. The resulting portfolio weights are less prone to estimation errors and achieve,

on average, an improved out-of-sample performance.

In this paper, we propose an averaging rule that overcomes the strategy selection problem

and exploits the potential to diversify estimation errors between individual strategies. Thus,

our approach takes the principle of diversification from the portfolio to the estimation level.

Following the consensus in the literature, we apply our averaging rule to minimum-variance

portfolios because expected returns are notoriously difficult to estimate (see, e.g., Merton, 1980).

Our rule aims to minimize the expected out-of-sample portfolio variance. For this purpose

and to reduce the impact of estimation errors, we combine established approaches on three

different levels: i) the covariance level, where averaging is applied before one computes the

inverse of the covariance matrix, ii) the inverse covariance level, where averaging is applied on

the individual inverses of the various covariance matrices, and iii) the portfolio weight level,

where averaging is applied directly on the portfolio weights. Our averaging rule combines the

unbiased sample estimator with a multitude of structured estimators.1 Thus, our approach

1Throughout the paper, we average over three different levels (covariance, inverse, and weight level), use the
Sample and the structured (target) estimators (jointly denoted as strategies) for averaging on the aforementioned
levels, and benchmark our rule against existing shrinkage approaches (denoted as benchmarks).
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extends the idea of shrinkage from a single to a multi-target specification.

In extensive simulations, we find that estimation errors between established minimum-

variance strategies are uncorrelated. This correlation structure offers sizable and persistent

diversification benefits. Our averaging rule utilizes this structure to diversify estimation errors,

leading to a decrease in the out-of-sample standard deviation as the number of strategies increases.

The average out-of-sample standard deviation of our rule is lower than those of any single strategy

over all simulations. Our averaging rule also achieves higher Sharpe ratios for smaller estimation

windows. In addition, we find that our rule compares favorably to the selected benchmarks, not

only in terms of lower out-of-sample standard deviation, but also higher out-of-sample Sharpe

ratio. This includes the most recent non-linear shrinkage approach of Ledoit and Wolf (2017).

Empirical results on five data sets confirm the findings from the simulation study in

which our rule achieves a lower out-of-sample standard deviation than any single strategy. The

standard deviation reduction in comparison to the non-linear shrinkage strategy of Ledoit and

Wolf (2017) is statistically significant on all five data sets. Our rule achieves the second highest

Sharpe ratio on all data sets in comparison to the considered strategies. Relative to the 1/N

strategy, the out-of-sample Sharpe ratio of our rule is on all data sets at least 25% higher, being

statistically significant in four out of five sets. The turnover and short interest of our averaging

rule is modest. These properties make our averaging rule both statistically and economically

appealing.

Our paper relates to prior contributions proposing combinations of portfolio weights or

input parameters to reduce estimation errors. Tu and Zhou (2011) show that combining portfolio

weights of established mean-variance strategies with the 1/N rule improves the out-of-sample

performance of the respective strategies. Kourtis et al. (2012) find that a linear combination of

the sample and two structured estimators on the inverse covariance level improves the out-of-

sample performance of minimum-variance portfolios. Lancewicki and Aladjem (2014) propose

the combination of multiple targets for the shrinkage estimation of covariance matrices. The

results of the aforementioned articles suggest that estimation errors may further be reduced, if

additional resources for reducing estimation errors are included. We follow this path, exploring

whether estimation errors can be diversified more comprehensively if multiple resources for the

diversification are taken into account.

We contribute to the existing literature in two ways: First, in a battery of simulations, we
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find that estimation errors between a variety of established minimum-variance strategies are

uncorrelated which is undocumented and unexploited so far. The resulting diversification benefits

are sizable and persistent for different estimation windows. Second, we provide a framework

for combining multiple strategies to alleviate the impact of estimation errors. Our averaging

rule builds on the principle of diversification, is easy to calibrate, and extends to an arbitrary

number of strategies, not limited to those selected for this paper. On simulated and empirical

data our rule compares favorably to selected benchmarks in terms of out-of-sample standard

deviation and Sharpe ratio. Thus, averaging over multiple strategies provides a promising avenue

to reduce the impact of estimation errors on out-of-sample portfolio performance.

The paper is organized as follows. Section 2 reviews the considered minimum-variance

strategies and introduces our averaging rule. Section 3 describes the simulation procedure

and explores the behavior of the averaging rule using simulated data. Section 4 evaluates the

out-of-sample performance of our rule on five empirical data sets. Section 5 concludes.

2 Portfolio optimization and estimation errors

2.1 Minimum-variance portfolio optimization

Throughout the paper we focus on the estimation of the minimum-variance portfolio resulting

from the following optimization problem:

min
w

w′Σw (1)

s.t. w′1N = 1,

where Σ is the true but unknown covariance matrix, 1N is a N -dimensional vector of ones,

and N is the number of investable risky assets, respectively. The allocation to the N assets

within the minimum-variance portfolio results from solving the problem in Equation (1), with

the optimal portfolio weights given by:

w = Σ−11N (1′NΣ−11N )−1. (2)

Because w depends on the true but unknown covariance matrix, Σ has to be replaced by a

suitable estimator, Σ̂. A natural estimator for the covariance matrix is the sample covariance
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matrix. Nevertheless, the estimation error associated with the sample covariance matrix can be

substantial (see, e.g., Ledoit and Wolf, 2003; DeMiguel et al., 2009; Ledoit and Wolf, 2020). Any

estimation errors in Σ̂ or its inverse, translate into sub-optimal allocations with an adverse effect

on the portfolio performance.

2.2 Alleviating estimation errors: Existing approaches

The literature proposes different approaches to mitigate the impact of estimation errors on

minimum-variance portfolio weights and out-of-sample performance. The first branch of litera-

ture suggests structured estimators of the covariance matrix. Examples include the constant

correlation model (see, e.g., Elton and Gruber, 1973) and (approximate) factor models (see,

e.g., Chan et al., 1999; Fan et al., 2013). The second branch proposes shrinkage estimators of

the covariance matrix (see, e.g., Ledoit and Wolf, 2003, 2004a,b, 2017, 2020), its inverse (see,

e.g., Kourtis et al., 2012; DeMiguel et al., 2013; Ledoit and Wolf, 2018; Shi et al., 2020), and

portfolio weights (see, e.g., Kan and Zhou, 2007; Tu and Zhou, 2011; DeMiguel et al., 2013).

The third branch regularizes portfolio weights through the imposition of weight constraints.

Frost and Savarino (1986) as well as Jagannathan and Ma (2003) study the effects of short-sale

constraints. Brodie et al. (2009), DeMiguel et al. (2009), Xing et al. (2014), Li (2015), and Yen

(2016) suggest the imposition of norm constraints on portfolio weights.

Throughout the paper we report results for eleven minimum-variance strategies, covering

at least one representative of the aforementioned branches from the existing literature. Each of

the minimum-variance strategies can be represented by an estimator of the covariance matrix or

its inverse. The portfolio weights of these strategies are given by Equation (2), with Σ̂ being one

of the following estimators, clustered into two groups.2 The first group comprises the sample as

well as structured estimates of the covariance matrix and represents the building blocks for our

averaging rule:

• Sample: The (unbiased) sample covariance matrix, Σ̂S .

• 1F: The covariance matrix implied by the single factor model of Sharpe (1963), Σ̂1F .

• CC: The covariance matrix recovered from a constant correlation matrix with the average

of all pairwise correlations off the main diagonal and the assets’ individual standard

deviations, Σ̂CC (Elton and Gruber, 1973).
2We provide a comprehensive review of the strategies in Section A.1 of the Internet Appendix.
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• ID: A diagonal matrix with the average variance of all assets on the main diagonal,

Σ̂ID. The resulting minimum-variance portfolio corresponds to the 1/N portfolio, which

represents a benchmark in terms of risk-adjusted performance (DeMiguel et al., 2009).

• SC: The covariance matrix corresponding to the short-sale constrained minimum-variance

portfolio from Jagannathan and Ma (2003), implying non-negative portfolio weights, Σ̂SC .

• POET: The covariance matrix based on the approximate factor model by Fan et al. (2013)

with risk factors defined by the principal components of the sample covariance matrix,

Σ̂POET . We use the first three principal components throughout the paper.

The second group of estimators covers combinations of the sample and another covariance

estimator serving as benchmarks for our averaging rule:

• LW1F: A linear combination of Σ̂S and Σ̂1F . The combination intensity is determined by

the linear shrinkage estimator of Ledoit and Wolf (2003).

• LWID: A linear combination of Σ̂S and Σ̂ID. The combination intensity is determined by

the linear shrinkage estimator of Ledoit and Wolf (2004a).

• LWCC: A linear combination of Σ̂S and Σ̂CC . The combination intensity is determined by

the linear shrinkage estimator of Ledoit and Wolf (2004b).

• LWNLS: A non-linear shrinkage estimator, correcting for over-dispersed eigenvalues of the

sample covariance matrix following Ledoit and Wolf (2017). This approach represents our

benchmark in terms of out-of-sample variance.

• KDM: A linear combination of Σ̂−1
S , identity I, and Σ̂−1

1F . The combination intensity is

determined following Kourtis et al. (2012).

All approaches aim to determine the single best strategy to alleviate the impact of estimation

errors. The wide variety of approaches leaves investors with the question of which suggested

strategy to follow. Without any ex-ante knowledge about the “best” approach, investors face the

problem of picking a single strategy. In contrast to choosing one single strategy, we advocate

that investors should diversify over various strategies to mitigate estimation errors.
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2.3 Estimation error diversification: An averaging approach

Our approach to estimation error diversification generalizes the idea of shrinkage. We suggest

blending the sample with a multitude of structured estimators. If estimation errors can be reduced

by combining the sample with one structured estimator, averaging over multiple estimators

should offer further diversification potential. In essence, our approach brings the principle of

diversification from the portfolio to the estimation level.

We suggest an averaging rule that combines individual estimators with the objective

of minimizing the expected out-of-sample variance of the corresponding minimum-variance

portfolio.3 Because there is no consensus in the literature whether estimation errors can most

efficiently be diversified on the covariance, inverse or portfolio weight level, we consider averaging

over estimators on the three aforementioned levels. We assign the averaging intensities to the

considered estimators on the respective level such that the expected out-of-sample variance of

the corresponding minimum-variance portfolio is minimized:

min
λAV−Level

E
(
ŵAV−Level (λAV−Level)′ΣŵAV−Level (λAV−Level)

)
(3)

s.t. λ′AV−Level1M = 1 (4)

λAV−Level ≥ 0, (5)

where λAV−Level are the averaging intensities on the respective averaging level, ŵAV−Level are

the corresponding portfolio weight estimates, 1M is a M -dimensional vector of ones, and M

is the number of estimators. Equations (3) - (5) correspond to a minimum-variance portfolio

optimization problem with non-negativity restrictions on the averaging intensities. We impose

the non-negativity constraint because Jagannathan and Ma (2003) demonstrate that it has a

shrinkage-like effect, reduces estimation errors, and improves the portfolio performance. The

literature on linear regression model averaging also finds that non-negativity constraints enhance

the quality of the respective combination (see, e.g., Timmermann, 2006; Hansen, 2008).4

If averaging is conducted on the covariance or inverse level, we combine the M estimators

of the covariance matrix or its inverse in a first step and compute the corresponding minimum-

3We do not claim that other, potentially more sophisticated averaging rules may deliver improved results. We
rather advocate in a comparatively simple setting that averaging over individual established approaches provides
a promising avenue to alleviate the impact of estimation errors on portfolio performance.

4Britten-Jones (1999) shows that the mean-variance portfolio optimization problem can be formulated as a linear
regression problem.

6



variance portfolio weights in a second step. Following the objective outlined in Equation (3),

we combine the individual estimators such that the expected out-of-sample variance of the

corresponding minimum-variance portfolio is minimized. We approximate the expected out-

of-sample variance based on a jackknife procedure, considering a one-month holding period

throughout the paper (see, e.g., Ledoit and Wolf, 2017).

We suggest two jackknife approximations of the expected out-of-sample variance. The first

specification assumes that portfolio returns are independent and identically distributed (i.i.d.).

In this case, we compute the expected out-of-sample variance as follows:

E(ŵAV−Level(λAV−Level)′ΣŵAV−Level(λAV−Level)) =
r∑
i=1

(rJKi,AV−Level − r̄JKAV−Level)2, (6)

with r̄JKAV−Level = 1
τ

τ∑
i=1

rJKi,AV−Level,

where rJKi,AV−Level is the jackknife return for the i-th observation and the considered averaging

level, AV −Level. The second specification of our jackknife approximation assumes that portfolio

returns exhibit time-series characteristics. We account for time-series patterns by exponentially

weighting the jackknife returns for the approximation of the expected out-of-sample variance:

E(ŵAV−Level−E(λAV−Level−E)′ΣŵAV−Level−E(λAV−Level−E)) =∑r
i=1 e

ωi(rJKi,AV−Level−E − r̄JKAV−Level−E)2∑τ
i=1 e

ωi
, (7)

with r̄JKAV−Level−E =
∑τ
i=1 e

ωirJKi,AV−Level−E∑τ
i=1 e

ωi
,

where ω is the decay rate. We follow Basak et al. (2009) and set ω = 0.01 when using daily

data.5

We compute jackknife returns by dropping the excess returns falling into the i-th month

from our in-sample period and compute the covariance or its inverse, respectively, using the

remaining excess returns within the in-sample period. We denote the m-th estimator of the

covariance or its inverse, by Σ̂−i,m and Σ̂−1
−i,m, respectively. The minimum-variance portfo-

lio weights corresponding to the combination of the M estimators of the covariance matrix,

5We set ω = 0.21 for additional results with monthly data in Section A.4 of the Internet Appendix.
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ŵ−i,AV−Cov, and its inverse, ŵ−i,AV−Inv, are given by:

ŵ−i,AV−Cov =
(

M∑
m=1

λ̂m,Cov · Σ̂−i,m

)−1

1N

1′N

(
M∑
m=1

λ̂m,Cov · Σ̂−i,m

)−1

1N

−1

,

ŵ−i,AV−Inv =
(

M∑
m=1

λ̂m,Inv · Σ̂−1
−i,m

)
1N

(
1′N

M∑
m=1

λ̂m,Inv · Σ̂−1
−i,m1N

)−1

,

where λ̂m,Cov and λ̂m,Inv are our estimates of the averaging intensities of the m-th strategy. We

then compute the jackknife excess returns for the i-th month, rJKi,Cov and rJKi,Inv, representing the

excess returns that would have been achieved from holding ŵ−i,Cov and ŵ−i,Inv, respectively, in

the hold-out month i. Repeating these steps for all months within our in-sample period yields

the time series of jackknifed portfolio excess returns. We use the sample variance of this time

series as an estimate of the objective in Equation (3). The portfolio weights resulting from this

averaging procedure are given by:

ŵAV−Cov =
(

M∑
m=1

λ̂m,Cov · Σ̂m

)−1

1N

1′N

(
M∑
m=1

λ̂m,Cov · Σ̂m

)−1

1N

−1

, (8)

ŵAV−Inv =
(

M∑
m=1

λ̂m,Inv · Σ̂−1
m

)
1N

(
1′N

M∑
m=1

λ̂m,Inv · Σ̂−1
m 1N

)−1

, (9)

where Σ̂m and Σ̂−1
m are the m-th estimators of the covariance or its inverse, based on all in-sample

observations, respectively.

If averaging is conducted on the portfolio weight level, we combine the M estimators of the

minimum-variance portfolio weights such that the expected out-of-sample variance in Equation

(3) is minimized. We follow the outlined jackknife procedure and drop the excess returns falling

into the i-th month. Thereafter, we compute the minimum-variance portfolio weights ŵ−i,m

for each of the M estimators. The minimum-variance portfolio weights of the combination,

ŵ−i,AV−Wgt, in the hold-out month i are given by:

ŵ−i,AV−Wgt =
M∑
m=1

λ̂m,Wgt · ŵ−i,m,

where λ̂Wgt are the estimated averaging intensities. Repeating the procedure for all months

and computing the sample variance of the time series of jackknife excess returns again gives

the estimate of the expected out-of-sample variance in Equation (3). The portfolio weights
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corresponding to averaging on the weight level are given by:

ŵAV−Wgt =
M∑
m=1

λ̂m,Wgt · ŵm. (10)

Table 1 provides an overview of our proposed averaging rule on the three levels in Panel A and

the strategies in Panel B. Panel C lists the five selected benchmarks of which LWNLS is the

latest and most sophisticated, and thus our target to beat in terms of out-of-sample variance.

Throughout the paper we consider averaging over the sample and the 1F, CC, ID, SC,

and POET estimates on the three aforementioned levels.6 The selected set of estimators is, as

any other set, an ad-hoc selection for which the motivation is twofold. First, we seek to build

our averaging rule on an established set of simple estimators. Second, we want to include a

sufficiently large number of estimators to explore the trade-off between a higher potential to

diversify estimation errors and the newly arising estimation problem. Including more estimators

in the averaging rule offers a greater potential to diversify estimation errors. Yet, including more

strategies requires the estimation of more averaging intensities, giving rise to a new source of

estimation errors. We explore this trade-off in the following simulation study.

[TABLE 1 ABOUT HERE]

3 Simulation study

3.1 Simulation procedure

The data generating process of our simulation study follows Tu and Zhou (2011). We consider

N = 25 assets with the simulated excess return of security j at time t, rj,t, coming from the

Fama-French three-factor model with mispricing:

rj,t = αj + βj,MKT rt,MKT + βj,SMB rt,SMB + βj,HML rt,HML + uj,t, (11)

6We do not include existing shrinkage strategies in our averaging rule, because the shrinkage intensities are
estimated empirically and are thus inherently estimation error prone. Including shrinkage estimators in the
averaging rule thus potentially induces an error-in-errors problem. We also do not include norm-constrained
strategies in our paper because the moment-shrinkage representation of norm constraints does not hold for
arbitrary levels of the constraint. Thus, it is not possible to use the aforementioned approaches on the three
considered averaging levels.
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where βj,MKT , βj,SMB, and βj,HML are the factor loadings, αj is the mispricing factor, and uj,t

is the residual at time t. The premia of the market rt,MKT , size rt,SMB , and value factor rt,HML

at t follow a multivariate normal distribution. Table 2 shows the means and standard deviations

of the factors as well as the correlation matrix between the factors.

[TABLE 2 ABOUT HERE]

The assets’ factor loadings are randomly paired and evenly spread between 0.9 and 1.2

for βMKT , -0.3 and 1.4 for βSMB, -0.5 and 0.9 for βHML, as well as -2.0% and 2.0% for the

annualized mispricing factor α, in each simulation. The error term of each asset at t, uj,t, comes

from a multivariate normal distribution with N ∼ (0,Σu). Again, we follow Tu and Zhou (2011)

and assume that the covariance matrix Σu is diagonal. The residuals’ annualized volatility is

drawn from a uniform distribution with a lower bound of 10% and an upper bound of 30%, such

that the average idiosyncratic volatility in the cross-section equals 20%.

We run 10,000 simulations. In each run k we draw τ = {60, 120, 240, 480, 960} monthly

observations from the outlined data generating process and save the population mean vector,

µk, and the covariance matrix, Σk. These parameters result from the random pairing of the

assets’ factor loadings, their mispricing, as well as their idiosyncratic volatility. We then estimate

the portfolio weights of the m-th strategy, ŵk,m, based on the τ simulated excess returns and

evaluate the estimated portfolio weights on the out-of-sample standard deviation, σ̂k,m, and

Sharpe ratio, Ψ̂k,m, of this simulation run7:

σ̂k,m =
√
ŵ′k,mΣkŵk,m, (12)

Ψ̂k,m =
ŵ′k,mµk√
ŵk,mΣkŵk,m

. (13)

3.2 Simulation results

In a first step, we evaluate the potential to diversify the estimation errors of the individual

strategies. We quantify the contribution of the estimation errors to the out-of-sample variances

of the m-th strategy in the k-th simulation run as the following loss:

Lk,m = (ŵk,m − wk)′Σk (ŵk,m − wk) , (14)

7Throughout the paper we report annualized variances and Sharpe ratios if not indicated otherwise.
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where wk are the true minimum-variance portfolio weights, which we compute using the popula-

tion covariance matrix of the respective run, Σk. Table 3 reports the means, standard deviations,

and correlation coefficients between the losses of the considered strategies over the 10,000 simu-

lation runs. The means of all strategies decrease for increasing estimation windows in Panels A -

E, except for the ID strategy. As expected, this decrease is most pronounced for the unbiased

Sample strategy. The ID strategy corresponds to the 1/N portfolio, such that the means and

standard deviations are constant over the estimation windows. The standard deviations of the

other strategies decrease with increasing sample sizes, being highest for the Sample for τ = 60

and smallest for τ = 960. Most importantly, the correlations are small in absolute terms, offering

sizable diversification opportunities. The average pairwise correlation reduces from an already

low level of 0.173 to 0.046 going from τ = 60 to τ = 960. The minimum and maximum pairwise

correlation between the considered strategies range from -0.345 to 0.745 and -0.392 to 0.394 for

τ = 60 and τ = 960, respectively. The correlation is the highest between the two (approximate)

factor model strategies POET and 1F, highlighting the need for heterogeneous strategies to lever

the diversification potential. In contrast to existing linear shrinkage approaches that combine the

Sample with one or two other strategies (see, e.g., Ledoit and Wolf, 2003, 2004a,b; Kourtis et al.,

2012), our results suggest that combining a multitude of strategies offers sizable diversification

benefits. Yet, averaging over multiple strategies gives rise to a new estimation problem, resulting

in the following trade-off: on the one hand, increasing the number of strategies improves the

diversification of the estimation errors; on the other hand, it increases the number of averaging

intensities that need to be estimated, creating a new source of estimation errors.

[TABLE 3 ABOUT HERE]

We evaluate this trade-off in Table 4 by applying our averaging rule to the Sample and an

increasing number of strategies from Panel B of Table 1. Importantly, we consider all possible

permutations that result from combining the Sample with the respective subset of strategies.8

For each permutation in each simulation run we compute the averaging intensities according to

our averaging rule and obtain the resulting portfolio weights.9 We then evaluate the estimated

portfolio weights based on their out-of-sample standard deviation according to Equation (12).

8When averaging over the sample and another strategy, we have M = 2, which gives rise to five permutations.
The number of permutations for M = 3 and M = 4 amounts to ten, respectively, for M = 5 to five, and for
M = 6 to one.

9We only consider i.i.d. weighted jackknife returns in our averaging rule as the data generating process in the
simulation is also i.i.d.
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Table 4 shows the annualized average out-of-sample standard deviations over all simulations

and permutations for the corresponding number of strategies. Panels A-E present the results

for the different estimation windows τ = {60, 120, 240, 480, 960}, when averaging is conducted

on the portfolio weight (AV-Wgt), the inverse (AV-Inv), or the covariance (AV-Cov) level. Our

results show that the average out-of-sample standard deviation decreases as the number of

strategies increases.10 This result holds irrespective of the estimation window and the averaging

level, demonstrating that the diversification benefits outweigh the newly created estimation error

problem.

[TABLE 4 ABOUT HERE]

Investigating the relevance of each strategy within our averaging rule, we turn to Figure 1.

This figure shows the mean averaging intensities of the considered strategies over all simulations

when averaging is conducted over M = 6 strategies. Panel A displays the mean averaging

intensities for AV-Wgt, Panels B and C show the respective weights for AV-Inv and AV-Cov.

We observe similar patterns for the three averaging levels. Our rule utilizes, on average, the

multitude of strategies, corroborating their relevance for an efficient diversification of estimation

errors. Turning to the weighting of the individual strategies, the weight of the Sample is low

when the estimation window is small and vice versa. This is in line with our results in Table 3.

The average loss of the Sample is high (low) for smaller (higher) estimation windows, offering

higher (lower) diversification gains. These higher (lower) gains are leveraged by assigning higher

(lower) weights to the remaining strategies. This is in line with Table 3 where the average loss of

the Sample decreases as the estimation window increases.

[FIGURE 1 ABOUT HERE]

In the context of our proposed rule, the previous findings demonstrate that averaging over

a greater number of strategies is superior to averaging over fewer. This result holds irrespective

of the averaging level as well as the estimation window. We further find that averaging over

more strategies is not only beneficial with respect to the out-of-sample standard deviation, but

10We evaluate the distribution of the out-of-sample standard deviations over all simulation runs and permutations
for AV-Wgt, AV-Inv, and AV-Cov using kernel densities in the left column of Figures A.2.1, A.2.2, and A.2.3 of
the Internet Appendix. The distributions for M = 6 center around smaller out-of-sample standard deviations
and collapse more tightly around this value than the distributions for smaller values of M . This result holds for
all averaging levels and supports the finding that combining all six strategies is beneficial when compared to
averaging over a subset.
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also in terms of the out-of-sample Sharpe ratio.11 Thus, for the rest of our paper we apply our

rule to the Sample and the remaining five strategies in Panel B of Table 1, setting M = 6.

[TABLE 5 ABOUT HERE]

We compare the out-of-sample standard deviations of our averaging rule against the

established strategies in Table 5. Our rule achieves, on average, lower out-of-sample standard

deviations than the considered strategies over all estimation windows. This finding again holds

for all averaging levels. We note that the out-of-sample standard deviations of our rule are, on

average, lower than any of the sophisticated benchmarks in Panel C.12

[TABLE 6 ABOUT HERE]

Table 6 reports the risk-adjusted performance of our rule in comparison to the established

strategies. AV-Wgt delivers, on average, slightly higher Sharpe ratios than AV-Inv and AV-Cov.

The Sharpe ratios of AV-Wgt for τ = 60 and 120 are higher than the Sharpe ratios of any

strategy in Panel B. We find that only SC delivers, on average, a higher Sharpe ratio for the

remaining estimation windows. The average Sharpe ratios of AV-Wgt in comparison to the

benchmarks in Panel C, are higher than those of the considered strategies across all estimation

windows. These results suggest that our rule compares favorably to the existing strategies not

only with respect to the standard deviation, but also in terms of the Sharpe ratio.13

Our simulation study has three key results: First, the contributions of the estimation errors

to the out-of-sample variances are uncorrelated between the considered strategies, offering sizable

diversification benefits. This suggests that averaging over a multitude of strategies reduces the

overall impact of estimation errors. Second, combining more strategies yields a lower standard

deviation and a higher risk-adjusted performance. The performance across the averaging levels
11We report the results for the average out-of-sample Sharpe ratio in Table A.2.1 of the Internet Appendix. We
find that the average Sharpe ratio increases with the number of strategies. We investigate the distribution of
the out-of-sample Sharpe ratios for AV-Wgt, AV-Inv, and AV-Cov using kernel densities and report the results
in the right column of Figures A.2.1, A.2.2, and A.2.3 of the Internet Appendix. We find that the distributions
for M = 6 are centered around a higher mean value and collapse for estimation windows up to τ = 120 more
tightly around the mean value. This effect diminishes as the estimation window increases.

12We investigate the out-of-sample standard deviations of our rule in comparison to the existing strategies in
more detail, exploring the kernel densities for AV-Wgt, AV-Inv, and AV-Cov in Figures A.2.4, A.2.5, and A.2.6
of the Internet Appendix. The left column in each figure shows the densities in comparison to the considered
strategies. The kernel densities of each averaging level of our rule also compare favorably to the benchmarks.
We find that the distributions of AV-Wgt, AV-Inv, and AV-Cov collapse as tightly as the competing benchmarks,
but around a smaller mean value. This observation holds for estimation windows of up to τ = 480.

13The kernel densities of the out-of-sample Sharpe ratios for AV-Wgt, AV-Inv, and AV-Cov in Figures A.2.7, A.2.8,
and A.2.9 of the Internet Appendix, corroborate the favorable comparison relative to the existing strategies.
The aforementioned figures present the results in comparison to the considered strategies in the left column and
the benchmarks in the right column.
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is similar, but slightly in favor of the portfolio weight level. We thus use AV-Wgt as the reference

strategy in the empirical section of this paper. Third, we find that our rule compares favorably to

the set of established strategies, suggesting that the combination of existing strategies represents

an efficient way to alleviate the impact of estimation errors on out-of-sample performance.

4 Empirical study

4.1 Data

We evaluate the out-of-sample performance of our averaging rule in comparison to the eleven

competing strategies on five empirical data sets based on daily excess returns.14 Table 7 provides

an overview of the data sets and their source. We use the Fama-French 6- and 25-factor as well

as the 10- and 30-industry portfolios from Kenneth French’s homepage. The construction of the

STOCK500 data set follows Chan et al. (1999), Jagannathan and Ma (2003), and DeMiguel et al.

(2009). In July of each year, we select the 500 largest stocks in terms of market capitalization

from all NYSE, AMEX, and NASDAQ stocks with a share code of 10 or 11 in the Center for

Research in Security Prices (CRSP) database that fulfill the following criteria. We filter out

stocks with a price of less than USD 5, as well as stocks with missing excess returns in the 756

trading days preceding, or the 252 days subsequent to the selection date.15 The selected stocks

constitute the investment universe for one year, which is then revised based on the outlined

criteria.

[TABLE 7 ABOUT HERE]

We compute the out-of-sample excess returns for each portfolio strategy from Table 1

using the common rolling-sample procedure, setting τ = 756 observations. Starting in June 1973,

we estimate the portfolio weights of each portfolio strategy using only the information in the

estimation window comprising the most recent τ excess returns. We hold the estimated portfolio

weights constant for 21 trading days, representing a one-month holding period, and save the

corresponding out-of-sample excess returns. We then move the estimation window forward by 21

14Our choice of a daily data frequency follows Ledoit and Wolf (2017) and is also in line with industry standards.
We report empirical results on a monthly data frequency in Tables A.4.2 - A.4.5 of the Internet Appendix. We
find that the results based on monthly excess returns are qualitatively similar to the ones presented in this
section.

15We use the common convention that a calendar month comprises 21 trading days throughout the empirical
section of this paper. The 252 and 756 trading days correspond to one and three years of data.
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trading days and repeat the aforementioned procedure over the entire sample period.

4.2 Performance evaluation

We compare our averaging rule with each competing portfolio strategy in terms of standard

deviation (s) and Sharpe ratio (SR) of out-of-sample excess returns, the average portfolio

turnover (TRN), and the average short interest (SI). The respective metrics for the i-th

strategy are the same as used by DeMiguel et al. (2013) and given by:

si =

√√√√ 1
T − τ − 1

T−1∑
t=τ

(
ŵ′i,trt+1 − r̄i

)2
, with r̄i = 1

T − τ

T−1∑
t=τ

ŵ′i,trt+1, (15)

SRi = r̄i
si
, (16)

TRNi = 1
T − τ − 1

(T−21)/21∑
t=1

∥∥∥ŵi,τ+t·21+1 − ŵi,(τ+t·21)+

∥∥∥
1
, (17)

SIi = 1
T − τ

T∑
t=τ

‖ŵi,t‖1 − 1
2 , (18)

where T is the total number of observations in our sample period from June 1973 - June 2019,

ŵi,t are the weights of strategy i at time t, ŵi,t+ are the respective weights at the end of t but

before rebalancing, ŵi,t+1 are the congruent weights after rebalancing at time t+ 1, and ‖ŵt‖1
is the 1-norm of the portfolio weights at time t. We further denote the vector of excess returns

at t+ 1 by rt+1.16

Based on robust inference proposed by Ledoit and Wolf (2011), we measure the statistical

significance of the differences between our averaging rule on the portfolio weight level, AV-Wgt-E,

and LWNLS when investigating the out-of-sample standard deviation. We choose LWNLS

as a benchmark because it represents the most sophisticated strategy in terms of portfolio

variance minimization. When evaluating the out-of-sample Sharpe ratio, we compare our rule

with ID using the robust procedure from Ledoit and Wolf (2008).17 The ID portfolio serves as

a benchmark for the Sharpe ratio because DeMiguel et al. (2009) find that no sophisticated

portfolio strategy outperforms the 1/N portfolio.18

16We use the 30-day T-bill rate from Kenneth French’s website to proxy the risk-free rate.
17We confine the statistical inference to the aforementioned pairwise tests to avoid multiple-testing problems in
the inference (see Ledoit and Wolf (2017) and references therein).

18Note that the minimum-variance portfolio based on a scalar multiple of the identity matrix corresponds to the
1/N portfolio.
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4.3 Out-of-sample results

Table 8 reports the annualized out-of-sample standard deviations of our proposed rule on the

three averaging levels, the strategies, and benchmarks. For all considered data sets our rule

achieves comparable standard deviations across all averaging levels. Averaging with exponentially

smoothed jackknife returns (AV-Wgt-E) performs slightly superior to the unweighted jackknife

returns, suggesting that the accommodation of time-series characteristics is beneficial on empirical

data sets.19 The standard deviation of AV-Wgt-E is lower than those of the considered strategies

on all averaging levels and across all data sets.

[TABLE 8 ABOUT HERE]

Comparing AV-Wgt-E to the benchmark strategies in Panel C, we find that our rule

achieves significantly lower standard deviations than LWNLS across all five data sets. Also,

in comparison to the linear shrinkage strategies LW1F, LWID, LWCC, and KDM we find

that AV-Wgt-E delivers lower standard deviations across all data sets. Our results show that

averaging over multiple strategies leads to a more efficient diversification and compares favorably

to existing shrinkage approaches in terms of out-of-sample standard deviation.

To study the relevance of each individual strategy within our AV-Wgt-E rule, we plot the

estimated averaging intensities for all data sets in Figure 2. AV-Wgt-E combines at least two

estimators at any point in time across all data sets. The maximum number of strategies with

positive weights amounts to six strategies across all data sets, confirming the relevance of each

strategy within our averaging rule.

[FIGURE 2 ABOUT HERE]

Table 9 shows the annualized out-of-sample Sharpe ratios of our averaging rule, the

various strategies, and benchmarks. Our rule delivers the second highest Sharpe ratio on the

Fama-French and industry portfolios compared to the strategies in Panel B. The Sharpe ratio

of AV-Wgt-E on the STOCK500 data set is higher than for any strategy. AV-Wgt-E delivers

a statistically significant Sharpe ratio increase relative to the ID strategy on four out of five

data sets. The smallest increase in Sharpe ratio amounts to 25% for the 30Ind portfolio, being

economically, but not statistically significant. We conclude that our averaging rule meets the

19For the remaining performance metrics we also find similar results on the different averaging levels, and thus,
confine the discussion to AV-Wgt-E vis-a-vis the strategies and benchmarks for the sake of brevity.
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challenge set forth by DeMiguel et al. (2009) to deliver significantly higher risk-adjusted excess

returns.

[TABLE 9 ABOUT HERE]

The performance of AV-Wgt-E is comparable to the Ledoit-Wolf shrinkage strategies

LW1F, LWID, LWCC, and LWNLS across all data sets.20 AV-Wgt-E performs somewhat better

on the 30Ind data set, while the shrinkage strategies seem to deliver slightly higher Sharpe

ratios on the 25FF and STOCK500 data sets. The performance of AV-Wgt-E and the shrinkage

strategies on the 6FF and 10Ind data set is almost identical.

We assess the practicality of our averaging rule against the established strategies in terms

of turnover and short interest. Table 10 shows that the average monthly turnover of AV-Wgt-E

is modest across all data sets and ranges from 4.49% on the 10Ind to 14.50% on the 25FF data

set. The turnover of AV-Wgt-E is slightly lower than for the Ledoit-Wolf shrinkage strategies

on the Fama-French and industry portfolios, but only half the turnover of the aforementioned

strategies on the STOCK500 data set.21 The turnover of AV-Wgt-E is generally lower for all

data sets in comparison to the strategies allowing for short sales, i.e. Sample, 1F, CC and POET.

[TABLE 10 ABOUT HERE]

Table 11 reports the average daily short interest. The numbers for AV-Wgt-E range

between 40.42% on the 10Ind and 173.52% on the 25FF data set, which is lower than for AV-Wgt.

On average, the reported short interest of AV-Wgt-E is lower than that of the Ledoit-Wolf

shrinkage strategies. The favorable comparison is mainly due to the STOCK500 data set, where

AV-Wgt-E realizes a lower short interest than LWNLS and LWID of 10 and 60%, respectively.

The short interest of our rule is, on average, slightly higher than for the strategies that allow

short sales, except for the Sample and POET strategy.

[TABLE 11 ABOUT HERE]

20The benchmarks in Panel C also generate higher Sharpe ratios than the ID portfolio, which is in line with the
results of Ledoit and Wolf (2017).

21The replacement of a stock in the investment universe is not considered for the turnover. This is in line with
the turnover computation on the Fama-French data sets. The Fama-French factor and industry portfolios are
constructed at the end of each June and its composition is kept stable for the next 12 months until revision of
the applicable investment universe. Next June the composition changes, stocks no longer matching the criteria
are dropped, and new stocks are included in the portfolios. This cannot be accounted for during the turnover
computation and, consequently, we apply the same logic to the CRSP stock data set.
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To further assess the practicality of our averaging rule compared to the existing portfolio

strategies, we account for transaction costs in the empirical analysis. The portfolio return, net

of transaction costs, is given by:

rtci = (1 + ri)

1− κ
(T−21)/21∑

t=1

∥∥∥ŵi,τ+t·21+1 − ŵi,(τ+t·21)+

∥∥∥
1

− 1 (19)

where κ are the transaction costs for rebalancing the portfolio. In Table 12, we follow DeMiguel

et al. (2013) and compare the out-of-sample Sharpe ratios after adjusting for proportional

transaction costs of 25bps. Comparing our rule to the benchmarks, AV-Wgt-E performs somewhat

better on 6FF, 30Ind, and STOCK500, while the shrinkage strategies seem to deliver slightly

higher Sharpe ratios on the 25FF and 10Ind data sets. The transaction cost-adjusted Sharpe

ratios of AV-Wgt-E are higher than for the ID strategy across all data sets, remaining significantly

higher on four out of five data sets.22

[TABLE 12 ABOUT HERE]

Concluding our empirical analysis, we find that our averaging rule delivers significantly

lower out-of-sample standard deviations than established estimators of the global minimum-

variance portfolio. This result is important because the out-of-sample standard deviation is

the primary performance criterion when estimating a minimum-variance portfolio (see Ledoit

and Wolf, 2017). The risk-adjusted performance of our averaging rule is significantly higher in

comparison to the 1/N portfolio and is akin to the Ledoit-Wolf shrinkage strategies, including the

non-linear estimator of Ledoit and Wolf (2017). This still holds after adjusting for transaction

costs. The modest turnover, especially on the STOCK500 data set, compares favorably to

existing strategies and supports the practicality of our rule.

5 Conclusion

In this paper, we propose a novel approach to alleviate the impact of estimation errors on

out-of-sample portfolio performance. Our approach builds on the idea of shrinkage and consists

of combining the Sample with a multitude of structured estimators to minimize the expected
22In robustness tests in Table A.3.1 we double the transaction costs to 50bps to follow Balduzzi and Lynch (1999)
who argue that 50bps are a good estimate of transaction costs for private investors. In this case the Sharpe
ratio of AV-Wgt-E is after the adjustment for transaction costs no longer statistically, but still economically
significantly higher than ID on the STOCK500 data set.
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out-of-sample variance of the corresponding minimum-variance portfolio. The motivation behind

this idea is to bring the principle of diversification from the portfolio to the estimation level. If

errors in the individual estimators are not perfectly correlated, the combination of the latter

offers diversification benefits. Consequently, the resulting estimates of the minimum-variance

portfolio weights from our averaging procedure should be less error prone and, on average, deliver

an improved out-of-sample performance.

We evaluate our rule through extensive simulations and find that averaging over a larger

number of estimators is superior to averaging over fewer in terms of out-of-sample standard

deviation and Sharpe ratio. This observation holds for all possible averaging levels, i.e. the

portfolio weight, the inverse, and the covariance level. We attribute the performance gains to

the leveraged benefits of estimation error diversification between the considered estimators. This

diversification potential exists for large and small estimation windows. Our rule achieves, on

average, lower out-of-sample standard deviations than any of the competing eleven minimum-

variance strategies. The results for the risk-adjusted performance are similar for small estimation

windows, suggesting that our averaging rule alleviates the impact of estimation errors on

out-of-sample portfolio performance.

Our empirical results are in line with the findings from the simulation study. Our proposed

averaging rule achieves a lower out-of-sample portfolio standard deviation than any competing

minimum-variance strategy, including the non-linear shrinkage approach of Ledoit and Wolf

(2017). In terms of out-of-sample Sharpe ratio, we find that our averaging rule outperforms the

1/N portfolio on all data sets, with statistically significant increases on four out of five. In terms

of turnover and short interest, the portfolio weights of our rule are smooth over time and do not

contain extreme positions.

Our results suggest that the diversification of estimation errors through averaging over

the sample and multiple structured estimators provides a fruitful way to reduce the impact of

estimation errors on out-of-sample portfolio performance. Future research may elaborate on

alternative approaches for determining averaging intensities, or may extend the set of strategies

used for averaging to explore potential limits of the suggested estimation error diversification.
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Tables and figures

Table 1: List of averaging rules, strategies, and benchmarks

This table lists the proposed averaging rules on the considered levels in Panel A, the strategies
in Panel B, and the benchmarks, representing sophisticated estimates of the minimum-variance
portfolio, in Panel C.

# Description Abbreviation

Panel A: Averaging rules
1 Averaging on the portfolio weight level with exponentially smoothed

jackknife returns
AV-Wgt-E

2 Averaging on the inverse covariance level with exponentially smoothed
jackknife returns

AV-Inv-E

3 Averaging on the covariance level with exponentially smoothed jackknife
returns

AV-Cov-E

4 Averaging on the portfolio weight level with i.i.id jackknife returns AV-Wgt
5 Averaging on the inverse covariance level with i.i.id jackknife returns AV-Inv
6 Averaging on the covariance level with i.i.id jackknife returns AV-Cov

Panel B: Strategies
7 Minimum-variance portfolio based on the sample covariance matrix Sample
8 Minimum-variance portfolio with a single market factor (Sharpe, 1963) 1F
9 Minimum-variance portfolio with the constant correlation model implied

covariance matrix (Elton and Gruber, 1973)
CC

10 Minimum-variance portfolio with a scalar multiple of the identity matrix,
representing the 1/N strategy of DeMiguel et al. (2009)

ID

11 Minimum-variance portfolio with short-sale constraints (Jagannathan
and Ma, 2003)

SC

12 Minimum-variance portfolio based on the approximate factor model of
(Fan et al., 2013), using the first three principal components

POET

Panel C: Benchmarks
13 Minimum-variance portfolio with the covariance matrix as weighted

average between the sample covariance and the single factor covariance
matrix (Ledoit and Wolf, 2003)

LW1F

14 Minimum-variance portfolio with the covariance matrix as weighted
average between the sample covariance and a scalar multiple of the
identity matrix (Ledoit and Wolf, 2004a)

LWID

15 Minimum-variance portfolio with the covariance matrix as weighted aver-
age between the sample covariance and a constant correlation covariance
matrix (Ledoit and Wolf, 2004b)

LWCC

16 Minimum-variance portfolio with the non-linear shrinkage estimator of
the covariance matrix by (Ledoit and Wolf, 2017)

LWNLS

17 Minimum-variance portfolio based on a linear combination of the inverse
covariance matrix of the sample, identity matrix, and single factor matrix
following (Kourtis et al., 2012)

KDM
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Table 2: Summary statistics of simulation parameters

This table reports the monthly means, standard deviations (Std. dev.), and cross-correlations
between the three Fama-French factors market (MKT), size (SMB), and value (HML) in the
simulation. The reported values correspond to the empirical values over the period from June
1963 - August 2007. The time horizon for the calibration of the parameters corresponds to Tu
and Zhou (2011).

MKT SMB HML

Descriptive statistics
Mean 0.478 0.236 0.450
Std. dev. 4.379 3.215 2.809

Cross-correlations
MKT 1.000 0.287 -0.390
SMB 1.000 -0.260
HML 1.000
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Table 3: Descriptive statistics of estimation errors across estimation windows

This table shows the means, standard deviations (Std. dev.), and Bravais-Pearson correlation
coefficients of the estimation errors between the single strategies. The estimation error for
the m-th portfolio strategy in the k-th simulation run is defined as the following loss: Lk,m =
(ŵk,m − wk)′Σk (ŵk,m − wk), where ŵi,k are the estimated minimum-variance portfolio weights
and wk are the true minimum-variance portfolio weights, which are computed using the population
covariance matrix of the respective run, Σk. The reported values show the correlation over
10,000 simulation runs between the losses of the respective estimators. Panels A - E report the
respective results for estimation windows of τ = {60, 120, 240, 480, 960}. The reported means
and standard deviations are scaled by 1,000, respectively. The abbreviations for the strategies
are explained in Panel B of Table 1.

Sample 1F CC ID SC POET

Panel A: Estimation window τ = 60
Mean 1.326 0.440 0.537 0.940 0.441 0.548
Std. dev. 0.524 0.148 0.193 0.118 0.150 0.169

Cross-correlations
Sample 1.000 0.365 0.224 -0.171 0.259 0.434
1F 1.000 0.357 -0.174 0.139 0.745
CC 1.000 -0.345 0.349 0.413
ID 1.000 -0.086 -0.257
SC 1.000 0.347
POET 1.000

Panel B: Estimation window τ = 120
Mean 0.481 0.394 0.480 0.940 0.306 0.402
Std. dev. 0.159 0.128 0.166 0.118 0.092 0.115

Cross-correlations
Sample 1.000 0.216 0.180 -0.209 0.347 0.418
1F 1.000 0.106 -0.024 -0.043 0.609
CC 1.000 -0.370 0.327 0.232
ID 1.000 -0.060 -0.189
SC 1.000 0.191
POET 1.000

Panel C: Estimation window τ = 240
Mean 0.209 0.376 0.453 0.940 0.228 0.291
Std. dev. 0.066 0.120 0.151 0.118 0.066 0.088

Cross-correlations
Sample 1.000 0.103 0.140 -0.220 0.282 0.334
1F 1.000 -0.025 0.106 -0.112 0.492
CC 1.000 -0.388 0.344 0.097
ID 1.000 0.013 -0.048
SC 1.000 0.053
POET 1.000

Table continues on next page
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Table 3 continues here
Sample 1F CC ID SC POET

Panel D: Estimation window τ = 480
Mean 0.099 0.369 0.438 0.940 0.185 0.212
Std. dev. 0.030 0.113 0.145 0.118 0.056 0.072

Cross-correlations
Sample 1.000 0.024 0.117 -0.210 0.162 0.225
1F 1.000 -0.058 0.194 -0.101 0.391
CC 1.000 -0.380 0.323 0.014
ID 1.000 0.109 0.090
SC 1.000 -0.023
POET 1.000

Panel E: Estimation window τ = 960
Mean 0.049 0.366 0.432 0.940 0.162 0.164
Std. dev. 0.015 0.109 0.140 0.118 0.053 0.059

Cross-correlations
Sample 1.000 -0.026 0.114 -0.238 0.077 0.141
1F 1.000 -0.057 0.226 -0.113 0.349
CC 1.000 -0.392 0.308 -0.027
ID 1.000 0.158 0.180
SC 1.000 -0.007
POET 1.000
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Table 4: Simulated average out-of-sample standard deviations for varying numbers of strategies

This table reports the annualized average out-of-sample standard deviations of our proposed
averaging rules with i.i.d jackknife returns on the portfolio weight (AV-Wgt), the inverse
(AV-Inv), and the covariance (AV-Cov) level over 10,000 simulation runs for varying numbers
of strategies, M . Panels A-E show the respective weights for the estimation windows of
τ = {60, 120, 240, 480, 960}. The results for M = 2 up to M = 6 represent averages over all
possible permutations from combining the Sample with the five remaining strategies. The
abbreviations for the averaging rules are explained in Panel A of Table 1.

M = 2 M = 3 M = 4 M = 5 M = 6

Panel A: Estimation window τ = 60
AV-Wgt 0.170 0.165 0.164 0.162 0.162
AV-Inv 0.170 0.165 0.164 0.162 0.162
AV-Cov 0.168 0.166 0.165 0.164 0.164

Panel B: Estimation window τ = 120
AV-Wgt 0.162 0.160 0.159 0.157 0.157
AV-Inv 0.163 0.160 0.159 0.157 0.157
AV-Cov 0.161 0.160 0.159 0.158 0.158

Panel C: Estimation window τ = 240
AV-Wgt 0.157 0.156 0.155 0.155 0.155
AV-Inv 0.157 0.156 0.155 0.155 0.155
AV-Cov 0.157 0.156 0.156 0.155 0.155

Panel D: Estimation window τ = 480
AV-Wgt 0.154 0.153 0.153 0.153 0.153
AV-Inv 0.154 0.153 0.153 0.153 0.153
AV-Cov 0.154 0.153 0.153 0.153 0.153

Panel E: Estimation window τ = 960
AV-Wgt 0.152 0.152 0.152 0.152 0.152
AV-Inv 0.152 0.152 0.152 0.152 0.152
AV-Cov 0.152 0.152 0.152 0.152 0.152
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Table 5: Simulated average out-of-sample standard deviations

This table reports the annualized average out-of-sample standard deviations of our proposed
averaging rules with i.i.d jackknife returns on the portfolio weight (AV-Wgt), the inverse (AV-
Inv), and the covariance (AV-Cov) level over 10,000 simulation runs in comparison to established
minimum-variance strategies. The standard deviations are reported for the estimation windows
of τ = {60, 120, 240, 480, 960}. The results for AV-Wgt, AV-Inv, and AV-Cov are based on
averaging over all M = 6 strategies. The abbreviations for the averaging rules, strategies, and
benchmarks are explained in Table 1.

τ = 60 τ = 120 τ = 240 τ = 480 τ = 960

Panel A: Averaging rules
AV-Wgt 0.162 0.157 0.155 0.153 0.152
AV-Inv 0.162 0.157 0.155 0.153 0.152
AV-Cov 0.164 0.158 0.155 0.153 0.152

Panel B: Single strategies
Sample 0.258 0.168 0.158 0.154 0.152
1F 0.220 0.165 0.164 0.164 0.164
CC 0.216 0.168 0.167 0.167 0.167
ID 0.184 0.184 0.184 0.184 0.184
SC 0.202 0.162 0.159 0.157 0.156
POET 0.221 0.165 0.161 0.158 0.157

Panel C: Benchmarks
LW1F 0.165 0.160 0.156 0.153 0.152
LWID 0.172 0.163 0.157 0.154 0.152
LWCC 0.167 0.161 0.157 0.154 0.152
LWNLS 0.167 0.161 0.157 0.154 0.152
KDM 0.167 0.165 0.164 0.164 0.164
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Table 6: Simulated average out-of-sample Sharpe ratios

This table reports the annualized average out-of-sample Sharpe ratios of our proposed averaging
rules with i.i.d jackknife returns on the portfolio weight (AV-Wgt), the inverse (AV-Inv),
and the covariance (AV-Cov) level over 10,000 simulation runs in comparison to established
minimum-variance strategies. The Sharpe ratios are reported for the estimation windows of
τ = {60, 120, 240, 480, 960}. The results for AV-Wgt, AV-Inv, and AV-Cov are based on averaging
over all M = 6 strategies. The abbreviations for the averaging rules, strategies, and benchmarks
are explained in Table 1.

τ = 60 τ = 120 τ = 240 τ = 480 τ = 960

Panel A: Averaging rules
AV-Wgt 0.486 0.494 0.498 0.497 0.497
AV-Inv 0.486 0.494 0.497 0.497 0.497
AV-Cov 0.482 0.491 0.496 0.497 0.496

Panel B: Single strategies
Sample 0.343 0.441 0.469 0.481 0.488
1F 0.398 0.442 0.440 0.438 0.438
CC 0.405 0.471 0.472 0.474 0.474
ID 0.471 0.471 0.471 0.471 0.471
SC 0.431 0.494 0.500 0.503 0.505
POET 0.395 0.460 0.472 0.480 0.485

Panel C: Benchmarks
LW1F 0.457 0.466 0.476 0.483 0.489
LWID 0.448 0.463 0.477 0.485 0.490
LWCC 0.467 0.475 0.482 0.487 0.491
LWNLS 0.452 0.460 0.468 0.472 0.476
KDM 0.446 0.442 0.440 0.438 0.438
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Table 7: List of the empirical data sets for daily data

This table lists the data sets for the empirical evaluation of our proposed averaging rule in
comparison to existing minimum-variance strategies, their abbreviations, the number of assets
in each data set, and the data sources. All data sets span the period from June 1973 - June
2019, comprise daily data, and apply in the case of portfolio data the value weighting scheme
to the respective constituents. Data from Kenneth French is taken from his website (http://
mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html) and represents
different cuts of the U.S. stock market. The STOCK500 data set contains the 500 largest single
stocks in terms of market capitalization in July of every year after filtering out stocks that have a
price of less than $5, or exhibit missing returns in the preceding 756 and subsequent 252 trading
days to the selection date. All stock prices are taken from the Center of Research in Security
Prices (CRSP).

# Data set Abbreviation N Source

1 6 Fama and French portfolios of firms sorted by size
and book-to-market

6FF 6 K. French

2 25 Fama and French portfolios of firms sorted by size
and book-to-market

25FF 25 K. French

3 10 industry portfolios representing the U.S. stock mar-
ket

10Ind 10 K. French

4 30 industry portfolios representing the U.S. stock mar-
ket

30Ind 30 K. French

5 500 Stocks with the largest market capitalization STOCK500 500 CRSP
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Table 8: Empirical out-of-sample standard deviations

This table reports the annualized out-of-sample standard deviations of our averaging rule on the
portfolio weight (AV-Wgt-E / AV-Wgt), the inverse (AV-Inv-E / AV-Inv), and the covariance
(AV-Cov-E / AV-Cov) level in Panel A, of the single strategies in Panel B, and of the benchmarks
in Panel C. Averaging rules with suffix −E are constructed with exponentially smoothed jackknife
returns. The results are shown for the Fama-French factor-mimicking and industry portfolios,
as well as the STOCK500 data set. The out-of-sample period is from June 1976 - June 2019.
The abbreviations for the averaging rules, strategies, and benchmarks, as well as for the data
sets, are explained in Tables 1 and 7, respectively. We report statistical significance for the
null hypothesis wherein the log out-of-sample variance of AV-Wgt-E is greater than or equal
to that of the non-linear shrinkage approach LWNLS of Ledoit and Wolf (2017). We follow
Ledoit and Wolf (2011) and use their proposed bootstrap procedure with a block length of 5
and 1,000 iterations. Statistical significance at the 1, 5, and 10% level is denoted by ***, **,
and *, respectively.

6FF 25FF 10Ind 30Ind STOCK500
Panel A: Averaging rules
AV-Wgt-E 0.1180 0.0956 0.1127 0.1050 0.0851
AV-Inv-E 0.1191 0.0980 0.1141 0.1072 0.0895
AV-Cov-E 0.1228 0.0976 0.1135 0.1054 0.0837

AV-Wgt 0.1202 0.0979 0.1148 0.1064 0.0853
AV-Inv 0.1202 0.0979 0.1149 0.1064 0.0854
AV-Cov 0.1201 0.0977 0.1148 0.1067 0.0827

Panel B: Single strategies
Sample 0.1203 0.0975 0.1156 0.1071 0.1159
1F 0.1401 0.1358 0.1203 0.1194 0.1187
CC 0.1360 0.1411 0.1204 0.1272 0.1420
ID 0.1657 0.1658 0.1562 0.1629 0.1686
SC 0.1393 0.1335 0.1210 0.1168 0.1027
POET 0.1223 0.1011 0.1173 0.1126 0.0899

Panel C: Benchmarks
LW1F 0.1201 0.0975 0.1155 0.1069 0.0856
LWID 0.1211 0.0974 0.1156 0.1069 0.0959
LWCC 0.1217 0.1010 0.1158 0.1068 0.0900
LWNLS 0.1203*** 0.0973*** 0.1154*** 0.1068*** 0.0862**
KDM 0.1401 0.1358 0.1203 0.1194 0.1187
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Table 9: Empirical out-of-sample Sharpe ratios

This table reports the annualized out-of-sample Sharpe ratios of our averaging rule on the
portfolio weight (AV-Wgt-E / AV-Wgt), the inverse (AV-Inv-E / AV-Inv), and the covariance
(AV-Cov-E / AV-Cov) level in Panel A, of the single strategies in Panel B, and of the benchmarks
in Panel C. Averaging rules with suffix −E are constructed with exponentially smoothed jackknife
returns. The results are shown for the Fama-French factor-mimicking and industry portfolios, as
well as the STOCK500 data set. The out-of-sample period is from June 1976 - June 2019. The
abbreviations for the averaging rules, strategies, and benchmarks, as well as for the data sets,
are explained in Tables 1 and 7, respectively. We use the 30-day T-bill rate as the risk-free rate.
We report statistical significance for the null hypothesis wherein the Sharpe ratio of AV-Wgt-E
is less than or equal to that of the ID strategy, corresponding to the 1/N portfolio. We follow
Ledoit and Wolf (2008) and use their proposed bootstrap procedure with a block length of 5
and 1,000 iterations. Statistical significance at the 1, 5 and 10% level is denoted by ***, **, and
*, respectively.

6FF 25FF 10Ind 30Ind STOCK500

Panel A: Averaging rules
AV-Wgt-E 1.1929 0.9361 0.7460 0.6327 0.8081
AV-Inv-E 1.1566 0.8600 0.7195 0.6258 0.7633
AV-Cov-E 1.0331 0.8744 0.7383 0.6460 0.8298

AV-Wgt 1.2230 0.9745 0.7474 0.6360 0.8087
AV-Inv 1.2215 0.9757 0.7474 0.6329 0.7915
AV-Cov 1.2059 0.9680 0.7429 0.6337 0.8813

Panel B: Single strategies
Sample 1.2236 1.0181 0.7366 0.5973 0.6976
1F 0.9627 0.7175 0.7906 0.6319 0.6778
CC 0.9908 0.7305 0.7166 0.6200 0.5261
ID 0.5441*** 0.3003*** 0.5269* 0.5076 0.5750*
SC 0.8048 0.4770 0.6639 0.6413 0.8006
POET 1.2790 0.8664 0.7053 0.5921 0.6916

Panel C: Benchmarks
LW1F 1.1999 1.0013 0.7413 0.6020 0.9334
LWID 1.1699 0.9751 0.7655 0.6255 0.8065
LWCC 1.1305 0.8729 0.7871 0.6029 0.8709
LWNLS 1.2110 0.9926 0.7376 0.6058 0.8690
KDM 0.9627 0.7175 0.7906 0.6319 0.6778
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Table 10: Empirical average monthly turnover

This table reports the average monthly turnover of our averaging rule on the portfolio weight
(AV-Wgt-E / AV-Wgt), the inverse (AV-Inv-E / AV-Inv), and the covariance (AV-Cov-E /
AV-Cov) level in Panel A, of the single strategies in Panel B, and of the benchmarks in Panel C.
Averaging rules with suffix −E are constructed with exponentially smoothed jackknife returns.
The results are shown for the Fama-French factor-mimicking and industry portfolios, as well
as the STOCK500 data set. The out-of-sample period is from June 1973 - June 2019. The
abbreviations for the averaging rules, strategies, and benchmarks, as well as for the data sets,
are explained in Tables 1 and 7, respectively. Turnover is measured as the average percentage of
total wealth traded in each month. The numbers are reported in percentages.

6FF 25FF 10Ind 30Ind STOCK500

Panel A: Averaging rules across three levels
AV-Wgt-E 9.96 14.50 4.49 7.59 10.40
AV-Inv-E 9.55 12.35 4.13 6.73 8.33
AV-Cov-E 6.64 12.62 4.07 7.32 12.32

AV-Wgt 11.35 16.52 4.72 8.51 11.36
AV-Inv 11.49 16.62 4.76 8.59 11.27
AV-Cov 11.32 16.31 4.79 8.56 13.03

Panel B: Single strategies
Sample 12.07 17.67 5.78 10.49 49.57
1F 9.39 16.22 7.61 11.00 12.27
CC 7.40 15.21 6.29 9.76 16.49
ID 1.48 1.68 2.32 2.87 5.45
SC 0.46 0.94 1.10 1.86 3.65
POET 15.96 18.25 6.62 11.28 17.75

Panel C: Benchmarks
LW1F 11.70 17.24 5.74 10.11 22.64
LWID 9.05 15.58 5.00 9.63 33.38
LWCC 8.64 15.18 5.44 9.58 26.65
LWNLS 11.82 17.19 5.70 10.01 18.70
KDM 9.39 16.22 7.60 11.00 12.27
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Table 11: Empirical average daily short interest

This table reports the average daily short interest of our averaging rule on the portfolio weight
(AV-Wgt-E / AV-Wgt), the inverse (AV-Inv-E / AV-Inv), and the covariance (AV-Cov-E /
AV-Cov) level in Panel A, of the single strategies in Panel B, and of the benchmarks in Panel C.
Averaging rules with suffix −E are constructed with exponentially smoothed jackknife returns.
The results are shown for the Fama-French factor-mimicking and industry portfolios, as well
as the STOCK500 data set. The out-of-sample period is from June 1973 - June 2019. The
abbreviations for the averaging rules, strategies, and benchmarks, as well as for the data sets,
are explained in Tables 1 and 7, respectively. Short interest is measured by the average amount
of wealth that is held in short positions. The numbers are reported in percentages.

6FF 25FF 10Ind 30Ind STOCK500

Panel A: Averaging rules
AV-Wgt-E 125.79 173.52 40.42 63.27 95.81
AV-Inv-E 120.47 147.57 35.36 53.02 96.07
AV-Cov-E 85.23 150.48 33.69 59.70 94.60

AV-Wgt 143.50 201.65 45.52 75.14 97.75
AV-Inv 145.02 202.89 45.87 76.00 96.67
AV-Cov 143.57 197.73 45.78 75.51 115.48

Panel B: Single strategies
Sample 151.70 215.21 57.83 97.21 366.94
1F 102.92 156.50 68.81 88.75 62.30
CC 87.44 146.64 55.29 74.97 85.18
ID 0.00 0.00 0.00 0.00 0.00
SC 0.00 0.00 0.00 0.00 0.00
POET 191.03 210.65 67.52 97.94 113.66

Panel C: Benchmarks
LW1F 147.10 209.67 57.28 92.65 156.13
LWID 114.82 189.64 48.04 87.77 240.22
LWCC 107.85 180.44 52.12 88.00 192.04
LWNLS 149.13 209.27 56.74 91.52 113.18
KDM 102.92 156.50 68.81 88.75 62.30
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Table 12: Empirical out-of-sample Sharpe ratios adjusted for transaction costs of 25bps

This table reports the annualized out-of-sample Sharpe ratios after transaction costs of our
averaging rule on the portfolio weight (AV-Wgt-E / AV-Wgt), the inverse (AV-Inv-E / AV-Inv),
and the covariance (AV-Cov-E / AV-Cov) level in Panel A, of the single strategies in Panel B, and
of the benchmarks in Panel C. Averaging rules with suffix −E are constructed with exponentially
smoothed jackknife returns. The results are shown for the Fama-French factor-mimicking and
industry portfolios, as well as the STOCK500 data set. The out-of-sample period is from June
1973 - June 2019. The abbreviations for the averaging rules, strategies, and benchmarks, as well
as for the data sets, are explained in Tables 1 and 7, respectively. We use the 30-day T-bill rate
as the risk-free rate. The transaction costs are set to 25bps. We report statistical significance
for the null hypothesis wherein the Sharpe ratio of AV-Wgt-E is less than or equal to that of
the ID strategy, corresponding to the 1/N portfolio. We follow Ledoit and Wolf (2008) and use
their proposed bootstrap procedure with a block length of 5 and 1,000 iterations. Statistical
significance at the 1, 5 and 10% level is denoted by ***, **, and *, respectively.

6FF 25FF 10Ind 30Ind STOCK500

Panel A: Averaging rules
AV-Wgt-E 1.1676 0.8903 0.7341 0.6111 0.7713
AV-Inv-E 1.1325 0.8220 0.7086 0.6070 0.7354
AV-Cov-E 1.0169 0.8355 0.7276 0.6252 0.7856

AV-Wgt 1.1945 0.9236 0.7351 0.6120 0.7713
AV-Inv 1.1927 0.9245 0.7350 0.6087 0.7354
AV-Cov 1.1775 0.9176 0.7304 0.6096 0.7856

Panel B: Single strategies
Sample 1.1934 0.9634 0.7216 0.5680 0.5426
1F 0.9425 0.6815 0.7716 0.6043 0.6483
CC 0.9745 0.6981 0.7009 0.5970 0.4908
ID 0.5415*** 0.2973*** 0.5225* 0.5024 0.5669*
SC 0.8038 0.4748 0.6612 0.6365 0.7882
POET 1.2396 0.8119 0.6885 0.5621 0.6104

Panel C: Benchmarks
LW1F 1.1706 0.9478 0.7264 0.5737 0.7740
LWID 1.1475 0.9269 0.7526 0.5985 0.7810
LWCC 1.1092 0.8277 0.7730 0.5761 0.7797
LWNLS 1.1814 0.9393 0.7228 0.5777 0.7540
KDM 0.9425 0.6815 0.7716 0.6043 0.6483
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Figure 1: Mean averaging intensities in the simulated data sets

This figure plots the mean averaging intensities over all 10,000 simulations that our averaging rule
with i.i.d jackknife returns assigns to one of the considered estimators for estimation window sizes
of τ = {60, 120, 240, 480, 960}. Panel A shows the mean averaging intensities when averaging
is conducted on the portfolio weight level (AV-Wgt), Panel B when averaging is conducted on
the the inverse (AV-Inv), and Panel C when averaging is conducted on the covariance level
(AV-Cov). The abbreviations for the six strategies are explained in Panel B of Table 1.
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Figure 2: Averaging intensities of AV-Wgt-E for portfolios and stocks

This figure plots the averaging intensities of the averaging rule on the portfolio weight level with
exponentially smoothed jackknife returns (AV-Wgt-E) over the out-of-sample period from June
1973 - June 2019. The intensities represent the allocation of the respective strategy within the
averaging rule over the holding period, which comprises 21 trading days. Panel A shows the plot
for the 6FF, Panel B for the 25FF, Panel C for the 10Ind, Panel D for the 30Ind, and Panel E
for the STOCK500 data set. The abbreviations for the strategies and data sets are explained in
Tables 1 and 7.

36



37



Internet Appendix for
Diversifying estimation errors:

An efficient averaging rule for portfolio optimization

This Version: May 5, 2021

Abstract

We propose an averaging rule that combines established minimum-variance strategies to
minimize the expected out-of-sample variance. Our rule overcomes the problem of selecting
the “best” strategy ex-ante and diversifies remaining estimation errors of the strategies
included in the averaging. Extensive simulations show that the contributions of estimation
errors to the out-of-sample variances are uncorrelated between the considered strategies.
This implies that averaging over multiple strategies offers sizable diversification benefits.
Across all data sets we find that our rule achieves a significantly lower out-of-sample standard
deviation than any competing strategy and that the Sharpe ratio is at least 25% higher than
for the 1/N portfolio.
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A Internet Appendix

In this appendix, we present supplementary information and results with the following structure:

Appendix A.1: Description of estimators

Appendix A.2: Additional simulation results

Appendix A.3: Additional empirical results

Appendix A.4: Empirical study on monthly excess returns
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A.1 Description of estimators

In this section, we describe the considered minimum-variance estimators introduced in Section 2.2.

Sample estimator

The Sample estimator is denoted by Σ̂S and is based on the unbiased estimation of the vector of
means m of the in-sample asset excess returns in the estimation window, i.e. the sample size τ :

m = 1
τ
X1N (20)

Σ̂S = 1
τ
X

(
I − 1

τ
1N1′N

)
X−1 (21)

where X is a N × τ matrix of τ observations and N assets, 1N is a conformable vector of ones,
and I is a conformable identity matrix.

Single-factor model

The return of stock i at time t, ri,t, is in the single-factor model of Sharpe (1963) described as:

ri,t = αi + βirMKT,t + εi,t, (22)

where αi is the mispricing of stock i, βi is the beta factor of stock i, rMKT,t is the excess return
of the market over the risk-free rate at time t, and εi,t is the residual return of stock i at time t.
Following Chan et al. (1999), the covariance matrix estimator Σ̂1F implied by the single-factor
model (1F) is given by:

Σ̂1F = σ̂2
MKT β̂β̂

′ + ∆̂, (23)

where σ̂2
MKT is an unbiased estimate of the market variance, β̂ is an N × 1 vector comprising

estimates of stock betas, and ∆̂ is a diagonal matrix with the residual variances along the main
diagonal.

Constant correlation model

Elton and Gruber (1973) suggest a structured estimator of the covariance matrix assuming that
each pair of assets has the identical correlation coefficient, while each of the N assets has an
individual standard deviation. The resulting constant correlation covariance matrix estimator is
given by:

Σ̂CC = ΛCΛ′, (24)

where Λ denotes a diagonal matrix containing the sample standard deviations ŝi of the individual
assets with i = {1, 2, 3, . . . , N}, and C is the constant correlation matrix with ones along the
main diagonal and the average of all pairwise correlations off the main diagonal.
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Multiple of the identity matrix

This estimator implies that all assets are uncorrelated and exhibit equal variances. Following
Ledoit and Wolf (2004a), the elements along the main diagonal are set to the average variance
of all assets in the investment universe. The covariance matrix estimator for the scaled identity
matrix model ID is given by:

Σ̂ID = Iµŝ, with µŝ = 1
N

N∑
i=1

ŝ2
i , (25)

where ŝ2
i is the sample variance of asset i. The resulting minimum-variance portfolio corresponds

to the 1/N portfolio.

Principal components

Fan et al. (2013) introduce the principal orthogonal complement thresholding method, POET,
which uses an approximate factor model to define the risk factors based on principal components
of the sample covariance matrix. The authors impose a threshold on the remaining principal
components after taking out the first K. The covariance matrix estimator Σ̂POET of the POET
model is given by:

Σ̂POET =
K∑
i=1

γ̂τ,iξ̂iξ̂
′
i + R̂TK , (26)

where γ̂τ,1 ≥ γ̂τ,2 ≥ · · · ≥ γ̂τ,N are the ordered eigenvalues of the sample covariance matrix Σ̂S

over the estimation window τ , (ξ̂i)Ni=1 are the corresponding eigenvectors, R̂TK is the principal
orthogonal complement of K diverging eigenvalues of Σ̂S . We set K = 3 in applications of the
model.

Linear shrinkage estimators of the covariance matrix

The linear shrinkage estimators of Ledoit and Wolf (2003, 2004a,b) have the following general
form:

Σ̂LW = φF̂ + (1− φ)Σ̂S . (27)

The shrunken covariance matrix Σ̂LW is a convex combination of the estimated sample covariance
matrix Σ̂S and a shrinkage target F̂ , with the shrinkage intensity, φ, taking values between
zero and one. The optimal shrinkage intensity is determined by minimizing the mean-squared
error of Σ̂LW . The authors consider three different candidates for F̂ : the single-factor model
covariance matrix Σ̂LW1F by Ledoit and Wolf (2003), a multiple of the identity matrix Σ̂LWID

as in Ledoit and Wolf (2004a), and the constant correlation model implied covariance matrix
Σ̂LWCC by Ledoit and Wolf (2004b).
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Shrinkage estimators for the inverse covariance matrix

Kourtis et al. (2012) propose a shrinkage estimator of the inverse covariance matrix as a convex
combination of the estimated inverse sample covariance matrix Σ̂−1

S , the identity I, the inverse
covariance matrix Σ̂−1

1F implied by the single-factor model of Sharpe (1963). The shrunken inverse
covariance matrix Σ̂−1

KDM is then given by:

Σ̂−1
KDM = φ1Σ̂−1

S + φ2I + (1− φ1 − φ2)Σ̂−1
1F , (28)

where the intensity parameters φ1, φ2, φ3 are determined by minimizing the out-of-sample
portfolio variance of jackknife returns.

Non-linear shrinkage estimators for the inverse covariance matrix

Ledoit and Wolf (2017) propose a non-linear shrinkage estimator (NLS) of the covariance matrix.
The procedure corrects the over-dispersed eigenvalues of the sample covariance matrix. The
non-linear shrinkage estimator for the NLS covariance matrix is given by:

Σ̂NLS := Uτ D̂τU
′
τ , where (29)

D̂τ := diag(d̂τ (γτ,1), . . . , d̂τ (γτ,N )), and

d̂τ (γτ,i) :=


1

γτ,i|ĉ(γτ,i)|2 if γτ,i > 0,
1

(N
τ
−1)ĉ(0) if N > τ and γτ,i = 0,

where Uτ is an orthogonal matrix from a spectral decomposition of the sample covariance matrix
Σ̂S , ĉ is the complex-valued Stieltjes transformation, and γτ,i are the sample eigenvalues, sorted
in increasing order.

Short-sale constraints

Jagannathan and Ma (2003) provide a moment shrinkage interpretation of short-sale constraints
in the minimum-variance portfolio optimization problem. The shortsale constraint augments the
optimization problem in Equation (1) by the following inequality:

ŵi ≥ 0, for i = 1, 2, . . . , N. (30)

Jagannathan and Ma (2003) show that the asset weights of the short-sale constrained minimum-
variance portfolio correspond to those of the GMVP based on the following covariance estimator:

Σ̂SC = Σ̂S − (δ1′ + 1δ′), (31)

where δ = (δ1, δ2, . . . , δN ) is the vector of Lagrange multipliers for the non-negativity constraints
in Equation (30).
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A.2 Additional simulation results

This section contains the supporting figures for our simulation study. Complementing the results
for the standard deviation in Table 4, we report the results for the average out-of-sample Sharpe
ratio in Table A.2.1. Similar to the standard deviation, we find that the average Sharpe ratio
increases with the number of strategies.

In the left column of Figures A.2.1, A.2.2, and A.2.3, we evaluate the distribution of the
annualized out-of-sample standard deviations for AV-Wgt, AV-Inv, and AV-Cov with the kernel
densities over all simulation runs and permutations. The distributions for M = 6 center around
smaller out-of-sample standard deviations and collapse more tightly around this value than the
distributions for smaller values of M . The result holds for all averaging levels and supports
the finding that combining all six strategies is beneficial when compared to averaging over a
subset. Investigating the distribution of the out-of-sample Sharpe ratios for AV-Wgt, AV-Inv,
and AV-Cov, we turn to the right column of Figures A.2.1, A.2.2, and A.2.3. We find that the
distributions for M = 6 are centered around a higher mean value and collapse more tightly
around the mean value for estimation windows up to τ = 120. This effect diminishes as the
estimation window increases.

In Figures A.2.4, A.2.5, and A.2.6, we investigate the out-of-sample standard deviations
of our averaging rule in relation to the existing strategies in more detail, exploring the kernel
densities for AV-Wgt, AV-Inv, and AV-Cov, respectively. The left column in each figure shows
the densities in comparison to the considered strategies. We find that the distributions for
AV-Wgt, AV-Inv, and AV-Cov are centered around a smaller mean value and collapse more
tightly for estimation windows up to τ = 480 in comparison to the aforementioned strategies.
The kernel densities of each averaging level of our rule also compare favorably to the benchmarks.
We find that the distributions for AV-Wgt, AV-Inv, and AV-Cov collapse as tightly as the
competing strategies, but around a smaller mean value. This observation holds for estimation
windows of up to τ = 480.

The kernel density plots of the annualized out-of-sample Sharpe ratios for AV-Wgt, AV-Inv,
and AV-Cov in Figures A.2.7, A.2.8, and A.2.9 corroborate the favorable comparison relative to
the existing strategies. The left column of the aforementioned figures presents the results in
comparison to the considered strategies. The distribution of the out-of-sample Sharpe ratios
for all averaging levels of our rule collapses more tightly around a higher mean value than the
aforementioned strategies, except for SC. The right column of the aforementioned figures shows
the results in comparison to the benchmarks. We find that our rule centers around a higher
mean value for all estimation windows and collapses more tightly around the respective mean
for estimation windows up to τ = 120.
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Table A.2.1: Simulated average out-of-sample Sharpe ratios for a varying number of strategies

This table reports the annualized average out-of-sample Sharpe ratios of our proposed averaging
rules with i.i.d jackknife returns on the portfolio weight (AV-Wgt), the inverse (AV-Inv),
and the covariance matrix (AV-Cov) level over 10,000 simulation runs for a varying number
of strategies, M . Panels A - E show the respective results for estimation windows of τ =
{60, 120, 240, 480, 960}. The results for M = 2 up to M = 6 represent averages over all possible
permutations from combining the Sample with the remaining five strategies from Panel B in
Table 1. The abbreviations for the averaging rules are explained in Panel A of Table 1.

M = 2 M = 3 M = 4 M = 5 M = 6

Panel A: Estimation window τ = 60
AV-Wgt 0.458 0.474 0.481 0.486 0.486
AV-Inv 0.459 0.475 0.481 0.486 0.486
AV-Cov 0.462 0.473 0.478 0.481 0.482

Panel B: Estimation window τ = 120
AV-Wgt 0.470 0.484 0.489 0.494 0.494
AV-Inv 0.470 0.484 0.489 0.494 0.494
AV-Cov 0.474 0.484 0.488 0.491 0.491

Panel C: Estimation window τ = 240
AV-Wgt 0.480 0.489 0.493 0.497 0.498
AV-Inv 0.480 0.489 0.493 0.497 0.497
AV-Cov 0.482 0.490 0.493 0.495 0.496

Panel D: Estimation window τ = 480
AV-Wgt 0.486 0.491 0.494 0.497 0.497
AV-Inv 0.486 0.491 0.494 0.497 0.497
AV-Cov 0.488 0.492 0.495 0.496 0.497

Panel E: Estimation window τ = 960
AV-Wgt 0.490 0.493 0.495 0.497 0.497
AV-Inv 0.490 0.493 0.494 0.497 0.497
AV-Cov 0.491 0.493 0.495 0.496 0.496
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Figure A.2.1: Kernel densities of simulated standard deviations and Sharpe ratios for AV-Wgt

This figure plots the densities based on the normal kernel of the annualized out-of-sample
standard deviations and Sharpe ratios of our averaging rule with i.i.d jackknife returns on the
portfolio weight (AV-Wgt) level over 10,000 simulation runs for a varying number of strategies,
M . The densities for M = 2 up to M = 6 are based on all possible permutations from combining
the Sample with the remaining five strategies from Panel B in Table 1. Panels A - E show the
respective results for estimation windows of τ = {60, 120, 240, 480, 960}.

Panel A: Estimation window τ = 60

Panel B: Estimation window τ = 120
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Panel C: Estimation window τ = 240

Panel D: Estimation window τ = 480

Panel E: Estimation window τ = 960
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Figure A.2.2: Kernel densities of simulated standard deviations and Sharpe ratios for AV-Inv

This figure plots the densities based on the normal kernel of the annualized out-of-sample
standard deviations and Sharpe ratios of our averaging rule with i.i.d jackknife returns on the
inverse covariance matrix (AV-Inv) level over 10,000 simulation runs for a varying number of
strategies, M . The densities for M = 2 up to M = 6 are based on all possible permutations
from combining the Sample with the remaining five strategies from Panel B in Table 1. Panels
A - E show the respective results for estimation windows of τ = {60, 120, 240, 480, 960}.

Panel A: Estimation window τ = 60

Panel B: Estimation window τ = 120
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Panel C: Estimation window τ = 240

Panel D: Estimation window τ = 480

Panel E: Estimation window τ = 960
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Figure A.2.3: Kernel densities of simulated standard deviations and Sharpe ratios for AV-Cov

This figure plots the densities based on the normal kernel of the out-of-sample standard deviations
and Sharpe ratios of our averaging rule with i.i.d jackknife returns on the covariance matrix
(AV-Cov) level over 10,000 simulation runs for a varying number of strategies, M . The densities
for M = 2 up to M = 6 are based on all possible permutations from combining the Sample with
the remaining five strategies from Panel B in Table 1. Panels A - E show the respective results
for estimation windows of τ = {60, 120, 240, 480, 960}.

Panel A: Estimation window τ = 60

Panel B: Estimation window τ = 120
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Panel C: Estimation window τ = 240

Panel D: Estimation window τ = 480

Panel E: Estimation window τ = 960
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Figure A.2.4: Kernel densities of simulated standard deviations for AV-Wgt compared to
established strategies and benchmarks

.
This figure plots the densities based on the normal kernel of the annualized out-of-sample
standard deviations of our averaging rule with i.i.d jackknife returns on the portfolio weight
(AV-Wgt) level over 10,000 simulation runs in comparison to the strategies (left column) and
benchmarks (right column) for the considered estimation windows of τ = {60, 120, 240, 480, 960}.
The results for AV-Wgt are based on averaging over the M = 6 strategies from Panel B in Table
1. For illustration purpose only, we exclude the ID strategy because it distorts the visualization
of the remaining strategies.

Panel A: Estimation window τ = 60

Panel B: Estimation window τ = 120
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Panel C: Estimation window τ = 240

Panel D: Estimation window τ = 480

Panel E: Estimation window τ s= 960
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Figure A.2.5: Kernel densities of simulated standard deviations for AV-Inv compared to
established strategies and benchmarks

This figure plots the densities based on the normal kernel of the annualized out-of-sample standard
deviations of our averaging rule with i.i.d jackknife returns on the inverse covariance matrix
(AV-Inv) level over 10,000 simulation runs in comparison to the strategies (left column) and
benchmarks (right column) for the considered estimation windows of τ = {60, 120, 240, 480, 960}.
The results for AV-Wgt are based on averaging over the M = 6 strategies from Panel B in Table
1. For illustration purpose only, we exclude the ID strategy because it distorts the visualization
of the remaining strategies.

Panel A: Estimation window τ = 60

Panel B: Estimation window τ = 120
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Panel C: Estimation window τ = 240

Panel D: Estimation window τ = 480

Panel E: Estimation window τ = 960
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Figure A.2.6: Kernel densities of simulated standard deviations for AV-Cov compared to
established strategies and benchmarks

This figure plots the densities based on the normal kernel of the annualized out-of-sample
standard deviations of our averaging rule with i.i.d jackknife returns on the covariance matrix
(AV-Cov) level over 10,000 simulation runs in comparison to the strategies (left column) and
benchmarks (right column) for the considered estimation windows of τ = {60, 120, 240, 480, 960}.
The results for AV-Wgt are based on averaging over the M = 6 strategies from Panel B in Table
1. For illustration purpose only, we exclude the ID strategy because it distorts the visualization
of the remaining strategies.

Panel A: Estimation window τ = 60

Panel B: Estimation window τ = 120
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Panel C: Estimation window τ = 2460

Panel D: Estimation window τ = 480

Panel E: Estimation window τ = 960
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Figure A.2.7: Kernel densities of simulated Sharpe ratios for AV-Wgt compared to established
strategies and benchmarks

This figure plots the densities based on the normal kernel of the annualized out-of-sample Sharpe
ratios of our averaging rule with i.i.d jackknife returns on the portfolio weight (AV-Wgt) level
over 10,000 simulation runs in comparison to the strategies (left column) and benchmarks (right
column) for the considered estimation windows of τ = {60, 120, 240, 480, 960}. The results
for AV-Wgt are based on averaging over the M = 6 strategies from Panel B in Table 1. For
illustration purpose only, we exclude the ID strategy because it distorts the visualization of the
remaining strategies.

Panel A: Estimation window τ = 60

Panel B: Estimation window τ = 120
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Panel C: Estimation window τ = 240

Panel D: Estimation window τ = 480

Panel E: Estimation window τ = 960
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Figure A.2.8: Kernel densities of simulated Sharpe ratios for AV-Inv compared to established
strategies and benchmarks

This figure plots the densities based on the normal kernel of the annualized out-of-sample Sharpe
ratios of our averaging rule with i.i.d jackknife returns on the inverse covariance matrix (AV-Inv)
level over 10,000 simulation runs in comparison to the strategies (left column) and benchmarks
(right column) for the considered estimation windows of τ = {60, 120, 240, 480, 960}. The results
for AV-Inv are based on averaging over the M = 6 strategies from Panel B in Table 1. For
illustration purpose only, we exclude the ID strategy because it distorts the visualization of the
remaining strategies.

Panel A: Estimation window τ = 60

Panel B: Estimation window τ = 120
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Panel C: Estimation window τ = 240

Panel D: Estimation window τ = 480

Panel E: Estimation window τ = 960
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Figure A.2.9: Kernel densities of simulated Sharpe ratios for AV-Cov compared to established
strategies and benchmarks

This figure plots the densities based on the normal kernel of the annualized out-of-sample Sharpe
ratios of our averaging rule with i.i.d jackknife returns on the covariance matrix (AV-Cov)
level over 10,000 simulation runs in comparison to the strategies (left column) and benchmarks
(right column) for the considered estimation windows of τ = {60, 120, 240, 480, 960}. The results
for AV-Cov are based on averaging over the M = 6 strategies from Panel B in Table 1. For
illustration purpose only, we exclude the ID strategy because it distorts the visualization of the
remaining strategies.

Panel A: Estimation window τ = 60

Panel B: Estimation window τ = 120
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Panel C: Estimation window τ = 240

Panel D: Estimation window τ = 480

Panel E: Estimation window τ = 960
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A.3 Additional empirical results

In this section, we show additional empirical results. Table A.3.1 reports the out-of-sample
Sharpe ratios under consideration of transaction costs of 50bps.

Table A.3.1: Empirical out-of-sample Sharpe ratios adjusted for transaction costs of 50bps

This table reports the annualized out-of-sample Sharpe ratios of our averaging rule on the
portfolio weight (AV-Wgt-E / AV-Wgt), the inverse (AV-Inv-E / AV-Inv), and the covariance
(AV-Cov-E / AV-Cov) level in Panel A, of the single strategies in Panel B, and of the benchmarks
in Panel C, after adjustment for transaction costs. Averaging rules with suffix −E are constructed
with exponentially smoothed jackknife returns. The results are shown for the Fama-French
factor-mimicking and industry portfolios, as well as the STOCK500 data set. The out-of-sample
period is from June 1976 - June 2019. The abbreviations for the strategies and benchmarks
in Panels B and C, as well as for the data sets, are explained in Tables 1 and 7, respectively.
We use the 30-day T-bill rate as the risk-free rate. The transaction costs are set to 50bps. We
report statistical significance for the null hypothesis wherein the Sharpe ratio of AV-Wgt-E is
less than or equal to that of the ID strategy, corresponding to the 1/N portfolio. We follow
Ledoit and Wolf (2008) and use their proposed bootstrap procedure with a block length of 5
and 1,000 iterations. Statistical significance at the 1, 5 and 10% level is denoted by ***, **, and
*, respectively.

6FF 25FF 10Ind 30Ind STOCK500

Panel A: Averaging rule across three levels
AV-Wgt-E 1.1421 0.8442 0.7222 0.5894 0.7345
AV-Inv-E 1.1083 0.7837 0.6978 0.5881 0.7074
AV-Cov-E 1.0007 0.7963 0.7169 0.6043 0.7412

AV-Wgt 1.1660 0.8723 0.7227 0.5880 0.7345
AV-Inv 1.1638 0.8730 0.7225 0.5844 0.7074
AV-Cov 1.1489 0.8670 0.7179 0.5856 0.7412

Panel B: Single strategies
Sample 1.1631 0.9082 0.7066 0.5386 0.4429
1F 0.9223 0.6454 0.7526 0.5767 0.6163
CC 0.9581 0.6656 0.6852 0.5740 0.4568
ID 0.5389*** 0.2943*** 0.5181* 0.4971 0.5573
SC 0.8028 0.4727 0.6585 0.6318 0.7794
POET 1.2000 0.7572 0.6716 0.5320 0.5760

Panel C: Benchmarks
LW1F 1.1411 0.8940 0.7114 0.5453 0.7762
LWID 1.1249 0.8784 0.7396 0.5715 0.5991
LWCC 1.0878 0.7822 0.7589 0.5491 0.6948
LWNLS 1.1517 0.8855 0.7080 0.5495 0.7281
KDM 0.9223 0.6454 0.7526 0.5767 0.6163
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A.4 Results on monthly data frequency

Following Ledoit and Wolf (2017), we change the excess return frequency from daily to monthly.
While keeping the out-of-sample period the same from June 1976 - June 2019, we use the longer
available history to estimate the covariance matrix over τ = 120 most recent months, i.e. 10
years of data, as common in the literature. The data sets as described in Table A.4.1 are the
same for the Fama-French factor-mimicking and industry portfolios. We reduce the CRSP data
set to the 30 largest stocks, representing the Dow Jones Industrial Average index. We thus ensure
that the number of assets N remains smaller than the available monthly observations τ . In July
of each year we select the 30 largest stocks in terms of market capitalization from all NYSE,
AMEX, and NASDAQ stocks in the Center for Research in Security Prices (CRSP) database
that fulfill the following criteria. We filter out stocks with a price of less than USD 5 as for daily
observations, as well as stocks with missing excess returns in the 120 preceding months or the 12
months subsequent to the selection date. The stocks constitute the investment universe for one
year. For our rolling-sample procedure, we set the estimation window to τ = 120 observations,
corresponding to ten years of monthly data. We estimate the portfolio weights of each strategy
using only the information in the estimation window, which comprises the most recent τ excess
returns. We hold the estimated portfolio weights constant for a one-month holding period, and
save the corresponding out-of-sample excess returns. We then move the estimation window
forward by a month and repeat the aforementioned procedure over the entire sample period.
The specification is thus similar to the simulation study with an estimation window of τ = 120.

We find that the results on a monthly data frequency are qualitatively similar to the ones
presented in Section 4 for daily observations. Our averaging rule achieves on all averaging levels
comparable standard deviations and Sharpe ratios. Comparing AV-Wgt-E to the benchmarks in
Panel C of Table A.4.2, we find that AV-Wgt-E achieves on all five data sets lower standard
deviations than LWNLS, being significantly lower for four out of five. The standard deviation
is also always lower than the other shrinkage estimators LW1F, LWID, LWCC, or KDM. In
terms of out-of-sample risk-adjusted performance, AV-Wgt-E achieves consistently higher Sharpe
ratios compared to the ID strategy in Panel B of Table A.4.3. In most cases, the performance is
similar to the benchmarks in Panel C. The monthly average turnover for AV-Wgt-E as shown in
Table A.4.4 is smaller than for the benchmarks in the 30Ind data set but tends to be larger in
the remaining data sets. The short interest of AV-Wgt-E in Table A.4.5 is the smallest of all
strategies (excluding ID and SC) in the 30-industry and the STOCK30 data sets. The short
interest of our rule is on a similar level as LW1F and LWNLS on the remaining data sets.
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Table A.4.1: List of the empirical data sets for monthly data

This table lists the data sets for the empirical evaluation of our proposed averaging rule in
comparison to existing portfolio strategies, their abbreviations, the number of assets in each
data set, and the data sources. All data sets span the period from June 1966 - June 2019,
comprise monthly data, and apply in the case of portfolio data the value weighting scheme
to the respective constituents. Data from Kenneth French is taken from his website (http://
mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html) and represents
different cuts of the U.S. stock market. The STOCK30 data set contains the 30 largest single
stocks in terms of market capitalization in July of every year after filtering out stocks that have
a price of less than $5, or missing returns in the preceding 120 and subsequent 12 months to the
selection date. All stock prices are taken from the Center of Research in Security Prices (CRSP).

# Data set Abbreviation N Source

1 6 Fama and French portfolios of firms sorted by size and
book-to-market

6FF 6 K. French

2 25 Fama and French portfolios of firms sorted by size
and book-to-market

25FF 25 K. French

3 10 industry portfolios representing the U.S. stock market 10Ind 10 K. French

4 30 industry portfolios representing the U.S. stock market 30Ind 30 K. French

5 30 Stocks with the largest market capitalization STOCK30 30 CRSP
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Table A.4.2: Empirical out-of-sample standard deviations based on monthly observations

This table reports the annualized out-of-sample standard deviation of our averaging rule on the
portfolio weight (AV-Wgt-E / AV-Wgt), the inverse (AV-Inv-E / AV-Inv), and the covariance
(AV-Cov-E / AV-Cov) level in Panel A, of the single strategies in Panel B, and of the benchmarks
in Panel C. Averaging rules with suffix −E are constructed with exponentially smoothed jackknife
returns. The results are shown for the Fama-French factor-mimicking and industry portfolios,
as well as the STOCK30 data set. The out-of-sample period is from June 1976 - June 2019.
The abbreviations for the averaging rules, strategies, and benchmarks, as well as for the data
sets, are explained in Tables 1 and 7, respectively. We report statistical significance for the null
hypothesis wherein the (log) expected out-of-sample portfolio variance of the averaging rule on
the portfolio weight level with exponentially smoothed jackknife returns, AV-Wgt-E, is greater
than or equal to that of the non-linear shrinkage approach LWNLS of Ledoit and Wolf (2017).
We follow Ledoit and Wolf (2011) and use their proposed bootstrap procedure with a block
length of 5 and 1,000 iterations. Statistical significance at the 1, 5, and 10% level is denoted by
***, **, and *, respectively.

6FF 25FF 10Ind 30Ind STOCK30

Panel A: Averaging rule across three levels
AV-Wgt-E 0.1289 0.1209 0.1147 0.1121 0.1238
AV-Inv-E 0.1308 0.1286 0.1155 0.1173 0.1254
AV-Cov-E 0.1368 0.1248 0.1140 0.1136 0.1232

AV-Wgt 0.1295 0.1213 0.1152 0.1130 0.1241
AV-Inv 0.1295 0.1214 0.1153 0.1128 0.1241
AV-Cov 0.1309 0.1213 0.1154 0.1133 0.1242

Panel B: Single strategies
Sample 0.1310 0.1285 0.1171 0.1230 0.1353
1F 0.1570 0.1888 0.1229 0.1249 0.1363
CC 0.1525 0.1980 0.1276 0.1406 0.1385
ID 0.1629 0.1690 0.1410 0.1577 0.1458
SC 0.1452 0.1413 0.1168 0.1177 0.1239
POET 0.1337 0.1262 0.1184 0.1187 0.1299

Panel C: Benchmarks
LW1F 0.1319 0.1237 0.1161 0.1146 0.1266
LWID 0.1312 0.1205 0.1144 0.1144 0.1264
LWCC 0.1456 0.1519 0.1165 0.1168 0.1236
LWNLS 0.1310** 0.1238** 0.1159 0.1156** 0.1265**
KDM 0.1570 0.1888 0.1229 0.1249 0.1363
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Table A.4.3: Empirical out-of-sample Sharpe ratios based on monthly observations

This table reports the annualized out-of-sample Sharpe ratios of our averaging rule on the
portfolio weight (AV-Wgt-E / AV-Wgt), the inverse (AV-Inv-E / AV-Inv), and the covariance
(AV-Cov-E / AV-Cov) level in Panel A, of the single strategies in Panel B, and of the benchmarks
in Panel C. Averaging rules with suffix −E are constructed with exponentially smoothed jackknife
returns. The results are shown for the Fama-French factor-mimicking and industry portfolios, as
well as the STOCK30 data set. The out-of-sample period is from June 1976 - June 2019. The
abbreviations for the averaging rules, strategies, and benchmarks, as well as for the data sets, are
explained in Tables 1 and 7, respectively. We use the 30-day T-bill rate as the risk-free rate. We
report statistical significance for the null hypothesis wherein the Sharpe ratio of the averaging
rule on the portfolio weight level with exponentially smoothed jackknife returns, AV-Wgt-E, is
less than or equal to that of the ID strategy, corresponding to the 1/N portfolio. We follow
Ledoit and Wolf (2008) and use their proposed bootstrap procedure with a block length of 5
and 1,000 iterations. Statistical significance at the 1, 5, and 10% level is denoted by ***, **,
and *, respectively.

6FF 25FF 10Ind 30Ind STOCK30

Panel A: Averaging rule across three levels
AV-Wgt-E 0.9102 0.8945 0.6952 0.6512 0.5751
AV-Inv-E 0.8553 0.7778 0.6754 0.6280 0.5838
AV-Cov-E 0.7006 0.8269 0.6916 0.6675 0.5932

AV-Wgt 0.9241 0.9119 0.7049 0.6485 0.5774
AV-Inv 0.9289 0.9131 0.7031 0.6478 0.5792
AV-Cov 0.9228 0.9258 0.6945 0.6409 0.5659

Panel B: Single strategies
Sample 0.9695 1.0133 0.7009 0.5573 0.3819
1F 0.5441 0.5569 0.7356 0.6452 0.6055
CC 0.5572 0.5045 0.6708 0.6273 0.5659
ID 0.5651*** 0.5735*** 0.5824 0.5318 0.5467
SC 0.6150 0.6291 0.6803 0.6320 0.6024
POET 1.0861 0.9389 0.6298 0.6005 0.6335

Panel C: Benchmarks
LW1F 0.9277 0.9785 0.7103 0.6339 0.4857
LWID 0.7996 0.9539 0.7241 0.6869 0.4969
LWCC 0.6538 0.7455 0.7024 0.6624 0.5385
LWNLS 0.9006 0.8737 0.6974 0.6623 0.5486
KDM 0.5441 0.5569 0.7356 0.6452 0.6055
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Table A.4.4: Empirical average monthly turnover based on monthly observations

This table reports the average monthly turnover of our averaging rule on the portfolio weight
(AV-Wgt-E / AV-Wgt), the inverse (AV-Inv-E / AV-Inv), and the covariance (AV-Cov-E /
AV-Cov) level in Panel A, of the single strategies in Panel B, and of the benchmarks in Panel C.
Averaging rules with suffix −E are constructed with exponentially smoothed jackknife returns.
The results are shown for the Fama-French factor-mimicking and industry portfolios, as well
as the STOCK30 data set. The out-of-sample period is from June 1976 - June 2019. The
abbreviations for the averaging rules, strategies, and benchmarks, as well as for the data sets,
are explained in Tables 1 and 7, respectively. Turnover is measured as the average percentage of
total wealth traded in each month. The numbers are reported in percentages.

6FF 25FF 10Ind 30Ind STOCK30

Panel A: Averaging rule across three levels
AV-Wgt-E 18.81 41.74 10.97 20.95 40.50
AV-Inv-E 17.21 31.95 10.19 20.40 37.85
AV-Cov-E 9.73 23.15 8.92 18.70 37.85

AV-Wgt 18.23 40.99 11.02 20.52 40.27
AV-Inv 18.47 41.57 10.99 20.28 40.75
AV-Cov 23.865 39.87 11.56 21.35 40.75

Panel B: Single strategies
Sample 21.88 79.46 15.47 45.92 29.74
1F 12.36 24.54 9.25 14.79 12.69
CC 10.32 23.23 7.54 13.96 10.64
ID 1.47 1.67 2.26 2.85 4.36
SC 4.09 6.96 4.87 6.74 8.98
POET 27.22 43.96 16.37 23.96 17.85

Panel C: Benchmarks
LW1F 19.73 55.67 13.60 29.33 19.06
LWID 9.03 32.09 10.41 26.35 18.92
LWCC 10.89 28.60 9.63 22.20 14.26
LWNLS 19.56 54.99 13.78 28.95 19.14
KDM 12.36 24.54 9.25 14.79 12.69
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Table A.4.5: Empirical average monthly short interest based on monthly observations

This table reports the average monthly short interest of our averaging rule on the portfolio
weight (AV-Wgt-E / AV-Wgt), the inverse (AV-Inv-E / AV-Inv), and the covariance (AV-Cov-E
/ AV-Cov) level in Panel A, of the single strategies in Panel B, and of the benchmarks in Panel C.
Averaging rules with suffix −E are constructed with exponentially smoothed jackknife returns.
The results are shown for the Fama-French factor-mimicking and industry portfolios, as well
as the STOCK30 data set. The out-of-sample period is from June 1976 - June 2019. The
abbreviations for the averaging rules, strategies, and benchmarks, as well as for the data sets,
are explained in Tables 1 and 7, respectively. Short interest is measured by the average amount
of wealth that is held in short positions. The numbers are reported in percentages.

6FF 25FF 10Ind 30Ind STOCK30

Panel A: Averaging rule across three levels
AV-Wgt-E 106.38 193.28 36.13 56.71 27.64
AV-Inv-E 89.80 115.67 25.32 54.37 20.56
AV-Cov-E 42.47 102.57 21.01 52.27 25.61

AV-Wgt 108.23 195.87 36.47 57.28 27.98
AV-Inv 111.16 198.87 35.54 56.94 27.93
AV-Cov 107.66 199.12 35.76 60.05 29.03

Panel B: Single strategies
Sample 140.33 328.78 64.29 159.97 85.36
1F 88.05 158.19 53.68 82.89 44.79
CC 76.54 144.93 41.03 77.17 38.58
ID 0.00 0.00 0.00 0.00 0.00
SC 0.00 0.00 0.00 0.00 0.00
POET 193.73 269.34 70.25 96.15 53.75

Panel C: Benchmarks
LW1F 123.08 260.15 59.75 113.88 55.48
LWID 63.08 171.05 41.86 97.42 51.26
LWCC 75.19 159.06 38.56 86.43 40.78
LWNLS 116.09 253.59 56.81 105.21 51.73
KDM 88.05 158.18 53.68 82.89 44.79
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