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performance and size. Empirically, we find that 30 global markets’ performance and size, on 
average, decrease with U.S. concentration. This evidence is consistent with our theoretical 
predictions but is inconsistent with extrapolation of single-country (implying homogeneous 
incentives) equilibria to one “global village” [e.g., Feldman, Saxena, and Xu (2020)]. 
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1 Introduction 

The competitive environment faced by fund managers plays a critical role in determining the 

performance, fees, and size in the active fund management industry (AFMI). Recent articles 

study, both theoretically and empirically, how scale, skill, and competitiveness influence U.S. 

AFMI outcomes (i.e., in a single dominant country1) [e.g., Pastor and Stambaugh (2012) (PS); 

Pastor, Stambaugh, and Taylor (2015); and Feldman, Saxena, and Xu (2020) (FSX)]. 

International evidence suggests that AFMI outcomes are heterogeneous across countries [e.g., 

Dyck, Lins, and Pomorski (2013); Khorana, Servaes, and Tufano (2005, 2009); Chan, Covrig, 

and Ng (2005); and Ferreira, Keswani, Miguel, and Ramos (2012, 2013); Ferreira, Matos, and 

Pires (2018)] and that there are significant cross-effects where foreign economies influence 

domestic fund manager outcomes [e.g., Goldstein and Pauzner (2004); Defond, Hu, Hung, and 

Li (2011); Jotikasthira, Lundblad, and Ramadorai (2012); Yu and Wahid (2014)]. This 

international evidence creates the need for theoretical models that provide economic insights 

into how foreign economies affect domestic AFMIs, especially for smaller economies that are 

likely to experience substantial spill-over effects from a dominant foreign country. In this paper, 

we study, theoretically and empirically, how foreign AFMI competitiveness influences the 

performance and size of a domestic AFMI. 

Our two-country model has important features distinguishing it from the single-country 

setting (e.g., PS, FSX):  fund managers in our model spend two types of effort exploring 

investment opportunities. One type targets investment opportunities in the domestic stock 

market, whereas the other type targets opportunities in the foreign stock market. We allow the 

productivity of efforts for finding mispriced assets, and the costs of these efforts, to be 

heterogeneous for the domestic and foreign countries.2,3 

Other features of our model follow PS and FSX:  fund managers, competing for 

investment funds, maximize expected net (of management fees) alphas by choosing 

management fees and costly effort levels. Infinitely many mean-variance risk-averse investors 

maximize their portfolios Sharpe ratios, by allocating their wealth across domestic active funds 

and a passive benchmark portfolio (here, the benchmark includes both domestic and foreign 

 
1 Dominant in the sense that it is little influenced by other countries’ AFMIs. 
2 For example, the costs and productivity of finding alpha in Sydney, Australia, or Silicon Valley are likely to be 
heterogenous for an Australian active manager. 
3 We do not extend the model to include more than two countries as this unnecessarily increases the complexity 
of the model without adding to its intuition: a three-country model can be represented as a two-country model 
with a domestic country and an aggregation of the two foreign countries as a single foreign country. 
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stocks).4,5 Alpha production is subject to decreasing returns to scale at the industry level, as in 

PS and FSX, and at fund levels, as in Berk and Green (2004), FSX, and Feldman and Xu (2020). 

Studying how changes in the competitive environment in a foreign AFMI (FAFMI) 

influence outcomes in a domestic AFMI (DAFMI), we introduce a model of DAFMI/FAFMI 

equilibrium with endogenous performance, size, fees, and managerial effort under a continuum 

of DAFMI and FAFMI concentration levels. 6  Our model analyzes how and by which 

mechanisms FAFMI concentration affects DAFMI. By allowing real-world heterogeneities to 

influence fund managers’ decisions on how to allocate their efforts between domestic and 

foreign stock markets, we obtain novel predictions. All else being equal, a change in the 

concentration of one AFMI induces effort productivities (for finding mispriced opportunities) 

and effort costs to change, incentivizing effort re-allocation across the domestic and foreign 

stock markets. 

As is the case in the real world, DAFMI/FAFMI concentration levels (competitiveness) 

affect alpha production functions and cost functions. Managers’ competition for investment 

funds and investors’ portfolio choices determine equilibrium fund sizes, performance, and 

direct benefits.7 Our main theoretical findings are that an increase in FAFMI concentration 

changes8 both DAFMI performance and size in the same direction. In this setting, equilibrium 

expected net alpha and size depend on a key quantity:  the direct benefits, for DAFMI, defined 

as the sum over domestic and foreign stock markets of gross alphas produced by managers’ 

efforts, minus the sum of the costs of these efforts. Further, the direction of the change of 

equilibrium expected net alpha and size depends on the direction of change of direct benefits. 

Precisely, if and only if (holding DAFMI concentration unchanged) higher FAFMI 

concentration induces higher (lower) DAFMI direct benefits, then it induces higher (lower) 

 
4 In the model, both foreign and domestic active funds aim to outperform the international passive benchmark 
consisting of foreign and domestic stocks. However, we do not allow investors to allocate directly to foreign active 
funds, reflecting real-world barriers, such as transaction and information costs, taxes, and biases, to invest in 
domestic funds. For example, we assume that a representative Australian retail investor does not convert AUD 
savings to USD then fulfill various regulatory and legal requirements before investing in a U.S. active fund. 
Instead, he or she invests in an Australian active fund that looks for investment opportunities in both U.S. and 
Australian markets. 
5 As we argue in Section 2, a case in which both countries’ investors and active funds invest in both countries’ 
active funds falls under the analysis of FSX. 
6 For brevity, we henceforth omit the word “levels” in the terms “concentration levels,” “performance levels,” 
“expected net alpha levels,” “effort levels,” “cost levels,” “investment levels,” etc. 
7 We prove the existence and uniqueness of this equilibrium below, see Proposition 0, its proof intuition, and its 
proof in the appendix. The underlying intuition is simple. Competing managers, who do not offer competitive 
expected net alphas to investors, who maximize their portfolios’ Sharpe ratios, do not attract investments, 
therefore, cannot exist. Thus, in a Nash equilibrium, all mangers offer the same expected net alphas, and managers’ 
skills determine the sizes of their wealth under management. Because of the optimization problems of managers 
and investors, each has a unique optimum; the Nash equilibrium is unique. 
8 Increase or decrease; both first and second order.  
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DAFMI fund expected net alphas and size.9 

Intuitively, as competitiveness increases in FAFMI, there are lower incentives to exert 

effort to search for investment opportunities in the foreign stock market,10 thereby increasing 

incentives and wealth available to DAFMI funds to search for investment opportunities in the 

domestic stock market. Consequently, these changes make it more difficult to find investment 

opportunities domestically. However, these changes could also decrease managers’ salary 

levels and then decrease the effort costs of searching for investment opportunities. If the effect 

on the costs overwhelms the effect on the return from investments, then these changes increase 

DAFMI size and performance. Which of these effects dominates is an empirical question, 

depending of parameter values, a question that we answer in the empirical part of this paper. 

Our analysis is related to that of FSX, though FSX does not address, theoretically or 

empirically, the question of how competitiveness in one market’s AFMI affects other markets’ 

AFMIs. While a single dominant market analysis is reasonable for the U.S., due to its relative 

magnitude, it is unlikely that a smaller market’s AFMI, subject to substantial influence from 

foreign fund managers and investors, behaves in the same way, as if such international effects 

could be largely ignored. Alternatively, one could conceive a one global village11 version of 

the single-country model of FSX, in which fund managers in all countries face the same effort 

productivities and costs for global investment opportunities.12 In such a model, the decision of 

whether to spend more effort in finding investment opportunities in the domestic stock market 

than that effort spent in the foreign stock market is irrelevant. The relevant decision is only 

about how much total effort to spend, given the opportunities and costs of effort. Such a model 

is plausible and has distinct empirical predictions compared to our international model, in 

which effort heterogeneities play an important role in determining AFMIs outcomes. 

Specifically, the one global village model (with no country-level heterogeneities) 

predicts that the performance and size of AFMIs in all countries will respond in the same 

direction to change in a global AFMI competitive environment. For example, if the dominant 

U.S. AFMI becomes more competitive, resulting in a decrease in incentives (productivities net 

 
9  We also provide second-order analysis. In equilibrium, concave DAFMI expected net alphas in FAFMI 
concentration imply concave DAFMI direct benefits in FAFMI concentration. In turn, concave DAFMI direct 
benefits in FAFMI concentration imply concave DAFMI size in FAFMI concentration. On the other hand, 
equilibrium convex DAFMI size in FAFMI concentration implies convex direct benefits in FAFMI concentration, 
and convex DAFMI fund expected net alphas in FAFMI concentration. 
10 Lower (higher) such incentives induce lower (higher) optimal effort allocated to find alphas. 
11 Thomas Friedman defines the global village as a world “tied together into a single globalized marketplace and 
village.” [Poll (2012)]. 
12 That is, a fund manager based in Sydney, Australia faces the same opportunities and costs in finding investment 
opportunities in Silicon Valley as in Sydney. 
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of costs) to exert effort in the U.S. stock market, it will also reduce incentives of foreign fund 

managers to find alphas there. In this one global village model, foreign active fund managers 

cannot have improved incentives to exert effort domestically when U.S. incentives decline. As 

a result, net alphas will decrease together globally, and investors will re-allocate wealth from 

all active funds to the global passive benchmark, resulting in a decrease in the global AFMI 

size. 

In contrast, our model with international competition allows for DAFMI and FAFMI to 

respond in different directions when competitiveness in FAFMI increases. By modeling two 

types of effort for the two countries and their heterogeneous productivities and costs, our model 

allows for the re-allocation of optimal fund manager effort across countries. For example, 

consider the following scenario. As AFMI competitiveness increases in the U.S., there are 

higher costs and lower productivity for domestic active managers to search for investment 

opportunities in the U.S. stock market. However, domestic fund managers find better local 

opportunities to enhance productivity and reduce costs (e.g., they are able to better attract U.S. 

and domestic talent or to acquire U.S. knowledge and technology at more attractive prices, so 

they become more productive at finding investment opportunities domestically). This leads to 

an increase in the domestic AFMI’s alpha and size in response to an increase in the U.S. AFMI 

competitiveness. The one global village model does not allow this scenario. 

Our empirical evidence is inconsistent with a one global village interpretation of FSX, 

and it significantly supports a model with international competition, as does our model here. 

Using the Normalized-Herfindahl-Hirschman Index (NHHI) and other indices as concentration 

(competitive environment) measures, we study 30 active global equity AFMIs, considering 

each one as a domestic AFMI (DAFMI), and analyze their fund net alphas and size associations 

with both the domestic and the U.S. equity AFMI concentration, thus calling U.S. market the 

foreign AFMI (FAFMI). Pooling all the markets’ data together and using multiple hypothesis 

tests, we find that domestic AFMI fund net alphas and sizes are, on average, both significantly 

negatively associated with the U.S. NHHI. Consistent with our theoretical results, DAFMI net 

alphas and sizes move, on average, in the same direction in response to changes in FAFMI 

concentration. Furthermore, we find that, on average, global (DAFMI) markets’ sensitivity to 

U.S. (FAFMI) concentration is higher than to their own concentration. This suggests that the 

heterogeneous international effects we model are of first-order importance for markets outside 

the U.S. 

We also empirically study all 30 individual pairs of the 30 DAFMIs, keeping FAFMI 

fixed to be that of the U.S. The effects for these pairs are expected to be heterogeneous across 
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countries and depend on how U.S. concentration affects incentives (that is, effort productivities 

and costs) in various markets. We find that six (one) DAFMI markets’ fund net alphas and size, 

on average, are both significantly negatively (positively) associated with the FAFMI NHHI, 

whereas nine DAFMI markets’ fund net alphas and size both are insignificantly associated with 

the FAFMI NHHI. Only for 3 of the 30 DAFMI markets are the associations with FAFMI 

NHHI inconsistent with our theoretical prediction; that is, DAFMI alpha and size do not move 

in the same direction when FAFMI NHHI changes.13 Furthermore, after we combine our 

sample’s European DAFMI markets into one EU DAFMI market, we find that this EU DAFMI 

market’s fund net alphas and size both are, on average, significantly negatively associated with 

the FAFMI NHHI. 

Dyck, Lins, and Pomorski (2013) find that alphas are generally larger in emerging 

market equity, followed by non-U.S. developed markets, and are smallest in U.S. markets. 

These results are consistent with the cross-sectional notion that alphas are higher in less 

competitive markets. This result is consistent with our model but is distinct from our key 

empirical result:  in contrast to a cross-sectional relation, we examine a spill over relation where 

changes in competitiveness of the U.S. markets influences the performance and size in other 

markets. 

Our empirical results are robust to several empirical specifications. We use Pastor, 

Stambaugh, and Taylor’s (2015) (PST) recursive demeaning estimator to address endogeneity, 

reverse causality, fund fixed effects, and omitted-variable-related issues when studying the 

FAFMI concentration–DAFMI net alpha relation.14 We also use Zhu’s (2018) estimator in 

studying this relation for a robustness check and find consistent results. We use vector auto-

regression (VAR) techniques to account for simultaneity in determining DAFMI size and 

FAFMI concentration in our robustness checks and find consistent results with those that do 

not use the VAR techniques. We control for survival bias by using Morningstar Direct’s global 

database, which contains both surviving and terminated funds. Our empirical results are also 

robust to the use of alternative estimation methods and concentration measures. 

Our findings provide implications for fund managers, investors, and regulators. Our 

evidence suggests that it is important to understand how changes in the internal competitive 

environment of dominant countries influences the incentives for finding investment 

 
13 In Finland (Chile and Taiwan), fund net alpha is significantly negatively (positively) associated with FAFMI 
NHHI, but DAFMI size is significantly positively (negatively) associated with FAFMI NHHI. 
14 The recursive-demeaning estimator by Pastor, Stambaugh, and Taylor’s (2015) also controls the effects that a 
first-difference approach can control. 
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opportunities in smaller economies. The findings also suggest that current low and decreasing 

concentration in the U.S. AFMI can benefit non-U.S. AFMIs. These are typically good times 

for smaller AFMIs to try to improve domestic effort productivity by acquiring talent and 

technology at more attractive rates. Policy changes or mergers in the U.S. AFMI that 

substantially increase its concentration are likely to negatively affect non-U.S. AFMIs by re-

allocating incentives away from domestic markets toward finding investment opportunities in 

the U.S. 

While we focus on AFMI concentration, our model provides a framework to analyze 

other international AFMI heterogeneities. For example, differences in regulation, capital gains 

taxes, and transaction costs can be modeled as heterogeneously influencing fund manager costs 

for finding investment opportunities. Differences in equity market development, noise trading 

levels, and sophistication of non-AFMI investors can be modeled as heterogeneously 

influencing fund manager productivity. These factors will have theoretical predictions for 

international differences in AFMI alpha and size. Our model can also be extended to allow for 

multiple domestic/foreign AFMIs as well as heterogeneous investors in foreign and domestic 

AFMIs with different levels of home bias, risk aversion, and background risks. Modeling such 

features can provide new testable implications for international differences in AFMI alpha and 

size. We leave these and other such extensions for future research. 

Section 2 develops the theoretical model, Section 3 presents the empirical methods and 

results, and Section 4 concludes. 

2 Theoretical Framework 

We develop a theoretical framework for modeling the effects of DAFMI and FAFMI 

concentrations on DAFMI managerial efforts, fees, performance, size, and direct benefits. For 

simplicity, we consider a two-country international model, in which each country has an AFMI 

with competing fund managers who invest in stocks and infinitely many mean-variance risk-

averse investors who allocate their wealth to a passive international benchmark portfolio and 

active funds. 

Consider three possibilities of investment across the two countries. If each country’s 

investors and AFMI managers invest in both countries’ AFMIs and stocks, respectively, we 

can consider the two countries as one global village with one AFMI. FSX studies this case. 

If each country’s investors and AFMI managers can invest only in their own country, 

we have two separate AFMIs. Each country’s AFMI is, again, modeled in FSX. 

If, however, due to transaction and information costs, each country’s investors invest 
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only in DAFMI, whereas fund managers, facing lower transaction and information costs, invest 

in both countries’ stocks, then a new DAFMI/FAFMI model is required. In such a model, fund 

managers compete domestically for wealth to manage, but both DAFMI and FAFMI 

concentrations affect managers’ gross alpha production and effort costs. We introduce such a 

model in the following sections. We note that this model is applicable to more complex 

situations. For instance, a European country’s AFMI might be closely related to some other 

European countries’ AFMIs, and also be related to the U.S. AFMI. Then, we can regard these 

European countries’ AFMIs, in aggregate, as one DAFMI and the U.S. AFMI as FAFMI. Then, 

we can use our model to study how the FAFMI (U.S.) concentration affects the DAFMI (these 

European markets in aggregate). 

Figure 1 illustrates these three cross-country investment possibilities.  
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Figure 1 Three Cases of a Two-Country Model. 
This figure shows the three cases of two-country models. In the first case, investors invest in both countries’ 
AFMIs and managers invest in both countries’ stocks. The two countries can be regarded as one AFMI “global 
village.” In the second case, investors can invest only in DAFMI and fund managers can only invest in domestic 
stocks. The two countries’ AFMIs are separate. In the third case, investors invest only in DAFMI, whereas fund 
managers invest in stocks of both countries. Each country’s fund managers compete for domestic investments, 
but both DAFMI and FAFMI concentrations affect gross alpha production and effort costs in each country’s AFMI. 

First Case 

 

Second Case 

 

Third Case – The Case in This Study 
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2.1 Setting 
The economy consists of two countries, Country 1 and Country 2, and one period. We 

denote each Country 𝑘’s, 𝑘 = 1,2, parameters by superscripts. For simplicity and without loss 

of generality, we assume the countries’ currency exchange rate is one.15 Country 𝑘 has two 

types of agents:  𝑀௞ , 𝑀௞ > 1 , active fund managers, and 𝑁௞ , 𝑁௞ → ∞ , infinitely many 

investors. Fund managers in both countries are risk-neutral, invest in both countries’ stocks, 

and maximize fund profits by optimally choosing proportional management fees and effort. 

Mean-variance risk-averse investors in both countries allocate their wealth between a passive 

international (including both domestic and foreign stocks) benchmark portfolio and domestic 

active funds (DAFMI), maximizing their portfolios’ Sharpe ratios. All investors are small; thus, 

individual investors’ do not affect fund sizes. 

Due to the economy’s internal symmetry with respect to Country 1 and 2, it is sufficient 

to focus on one country only. We denote Country 1 (2) as domestic (foreign), and its AFMI as 

DAFMI (FAFMI). 

Fund Managers’ Problem 

Manager 𝑖 in Country 1 observes alpha production functional forms and cost functional 

forms, their parameters, and domestic and foreign concentration levels, fund sizes, and fees. 

She maximizes her economic profits by allocating effort in each country, and fee rates, subject 

to nonnegative allocations and nonnegative profit rate. Mathematically, 

 max௘೔భభ,௘೔భమ,௙೔భ 𝑠௜ଵሾ𝑓௜ଵ − 𝐶௜ଵ(𝑒௜ଵଵ, 𝑒௜ଵଶ;  𝑠௜ଵ,𝐻ଵ,𝐻ଶ)ሿ, (1) 

subject to 

 𝑓௜ଵ − 𝐶௜ଵ(𝑒௜ଵଵ, 𝑒௜ଵଶ; 𝑠௜ଵ,𝐻ଵ,𝐻ଶ) ≥ 0, (2) 

 𝑒௜ଵଵ ≥ 0, (3) 

 𝑒௜ଵଶ ≥ 0, (4) 

 
15 Realistically, currency risk is likely to influence investor portfolios as their domestic and foreign consumption 
requires different numeraires. This risk induces a hedging demand. However, this hedging demand can be directly 
managed via currency derivatives and, thereby, separated from problems of choosing active versus passive equity 
management. Specifically, we assume that the passive benchmarks are hedged to local currencies; e.g. U.S. 
investors use their benchmark as MSCI World (hedged to USD) while Australian investors use MSCI World 
(hedged to AUD). In our setting, active equity managers do not have skills in predicting exchange rates, so they 
hedge implicit currency bets when investing internationally. Thus, alpha arises only from the selection or timing 
of equities, after hedging out currency risk. Our preferred way of modeling this fully hedged scenario is assuming 
that the exchange rate is one. This is a reasonable assumption that captures our model property that currency risks 
are orthogonal to the issues we study, keeping our model parsimonious. 
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 𝑓௜ଵ ≥ 0, (5) 

where 𝑠௜ଵ , 𝑓௜ଵ , 𝑒௜ଵଵ , 𝑒௜ଵଶ , and 𝐶௜ଵ(𝑒௜ଵଵ, 𝑒௜ଵଶ;  𝑠௜ଵ,𝐻ଵ,𝐻ଶ)  represent manager 𝑖 ’s fund size, 

(nonnegative) proportional management fee, (nonnegative) effort spent in Country 1’s stock 

market, (nonnegative) effort spent in Country 2’s stock market,16 and average (per dollar) cost 

function, where 𝐻ଵ and 𝐻ଶ represent Country 1 and Country 2 AFMI (DAFMI and FAFMI) 

concentrations, respectively. We define the domain of 𝐻ଵ  and 𝐻ଶ  as [0, 1) , where {0} 

represents a fully competitive market and {1} represents a monopolistic market. 17  Also, 

inequality (2) shows that manager 𝑖’s profit rate should be nonnegative to survive. 

Following FSX, we assume that the marginal diversification benefits of investing in an 

additional fund are trivial, such that managers compete for investments over net alphas. 

Manager 𝑖  has to maximize her fund expected net alpha given fund size and AFMI 

concentrations. Thus, as in FSX, we can transform manager 𝑖’s profit maximizing problem (1) 

to an equivalent problem of maximizing expected net alpha: 

 max௘೔భభ,௘೔భమ,௙೔భ E(𝛼௜ଵห𝐷), (6) 

subject to constraints (2), (3), (4), and (5). 

Proof. See the appendix. 

The proof is similar to the one in FSX. Its intuition is as follows. Under competition, 

funds that offer higher expected net alphas draw (all) investments. The possibility (threat) that 

other managers increase fund profits by improving expected net alphas, and their fund sizes, 

forces managers to maximize expected net alphas to “survive.” Thus, funds must offer similar 

expected net alphas, leading to a unique Nash equilibrium. We note that this aspect of the 

equilibrium is similar to that in PS; but in addition to their result, we show that it holds also in 

the case of a finite number of managers. 

Manager 𝑖’s average cost function has the following form.18 

 𝐶௜ଵ(𝑒௜ଵଵ, 𝑒௜ଵଶ;  𝑠௜ଵ,𝐻ଵ,𝐻ଶ) = 𝑐଴ଵ + 𝑐ଵ,௜ଵ 𝑠௜ଵ + 𝑐ଶଵଵ(𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ) (7) 

 
16 We remind the reader that the first superscript designates the manager’s country, and the second superscript 
designates the country where stock effort was directed. 
17 The open right boundary of the concentrations’ domain implies that managers are competing. 
18 To simplify our model, we assume there is no interaction between effort and size in the average cost function 
because it is unlikely that fund size affects managers’ per dollar efforts. We also assume that there is no interaction 
between concentration and size in the average cost function because it is unlikely that concentration affects 
managers’ average cost sensitivities to fund size. Nevertheless, even if these interacting effects exist, they tend to 
be small in comparison to the effect of other terms in the average cost function. 
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+𝑐ଶଵଶ(𝑒௜ଵଶ;  𝐻ଵ,𝐻ଶ), 

where 𝑐଴ଵ  and 𝑐ଵ,௜ଵ  are constants and 𝑐ଶଵଵ(𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ)  and 𝑐ଶଵଶ(𝑒௜ଵଶ;  𝐻ଵ,𝐻ଶ)  are costs, 

conditional on countries’ concentrations, due to 𝑒௜ଵଵ and 𝑒௜ଵଶ efforts directed at Country 1’s 

stock market and Country 2’s stock market, respectively. Each fund’s operation cost is positive, 

so 𝑐଴ଵ > 0. Also, we assume decreasing returns to scale at the fund level, so fund average cost 

increases with fund size, i.e., 𝑐ଵ,௜ଵ > 0 . 𝑐ଶଵଵ(𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ)  and 𝑐ଶଵଶ(𝑒௜ଵଶ;  𝐻ଵ,𝐻ଶ)  have the 

following functional characteristics: 

• nonnegative, i.e., 𝑐ଶଵଵ(0; 𝐻ଵ,𝐻ଶ) = 0 , 𝑐ଶଵଶ(0; 𝐻ଵ,𝐻ଶ) = 0 , ∀ 𝐻ଵ,𝐻ଶ ; 𝑐ଶଵଵ(𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ) > 0 , ∀ 𝑒௜ଵଵ > 0,𝐻ଵ,𝐻ଶ ; and 𝑐ଶଵଶ(𝑒௜ଵଶ;  𝐻ଵ,𝐻ଶ) > 0 , ∀ 𝑒௜ଵଶ >0,𝐻ଵ,𝐻ଶ; 

• increasing convex in effort, as we assume increasing marginal cost for each unit of 

effort, i.e., 𝑐ଶ ௘೔భభଵଵ (𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ) > 0, 𝑐ଶ ௘೔భభ,௘೔భభଵଵ (𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ) > 0, ∀ 𝑒௜ଵଵ,𝐻ଵ,𝐻ଶ, and 𝑐ଶ ௘೔భమଵଶ (𝑒௜ଵଶ;  𝐻ଵ,𝐻ଶ) > 0, 𝑐ଶ ௘೔భమ,௘೔భమଵଶ (𝑒௜ଵଶ;  𝐻ଵ,𝐻ଶ) > 0, ∀ 𝑒௜ଵଶ,𝐻ଵ,𝐻ଶ. 

The different 𝑐ଵ,௜ଵ ’s across DAFMI funds imply differences in DAFMI fund-level 

decreasing returns to scale parameters, as 𝑐ଵ,௜ଵ ’s measure differences in the rate at which 

managers’ costs in generating gross alpha increase with size. This setting of fund-level 

decreasing returns to scale is consistent with the empirical findings in the literature.19 We now 

introduce two terms, an DAFMI individual manager skill and DAFMI aggregate skill. 

DAFMI fund manager skill. In our model, 𝑐ଵ,௜ଵ ିଵ  is the source of heterogeneous 

manager ability/skill. A more skilled manager is one who has lower total variable costs of 

active management for the same AUM and gross alpha. 

Aggregate DAFMI skill. DAFMI aggregate skill is the sum of individual managers’ 

skills, ∑ ቀ𝑐ଵ,௜ଵ ିଵቁெభ௜ୀଵ . In our model, DAFMI is more skilled when the sum of its mangers’ skills 

is higher. 

We show below that higher DAFMI aggregate skill corresponds to higher DAFMI size 

and that higher individual DAFMI fund managers’ skill, relative to other managers, 

corresponds to a higher relative size of their fund. (See Proposition 1 and the discussion 

following Lemma 1.) 

 
19 Van Binsbergen, Kim, and Kim (2020, Panel A) document the heterogeneity of fund managers’ decreasing 
returns to scale. Other empirical studies, such as Chen, Hong, Huang, and Kubik (2004) and Yan (2008), also 
show that different fund types experience different levels of decreasing returns to scale. 
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By spending efforts, manager 𝑖 improves her fund net alpha. Manager 𝑖’s net alpha has 

the following form. 

 𝛼௜ଵ = 𝑎ଵ − 𝑏ଵ 𝑆ଵ𝑊ଵ + 𝐴ଵଵ(𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ) + 𝐴ଵଶ(𝑒௜ଵଶ;  𝐻ଵ,𝐻ଶ) − 𝑓௜ଵ, (8) 

where 𝑎ଵ and 𝑏ଵ are positive constants and 𝑏ଵ is the industry-level decreasing returns to scale 

rate, with conditional mean and variance 

 E ቀ𝑎ଵ𝑏ଵቚ𝐷ቁ ≜ ൬𝑎ଵ෢𝑏ଵ෢൰ ,    Var ቀ𝑎ଵ𝑏ଵቚ𝐷ቁ ≜ ቆ 𝜎௔భଶ 𝜎௔భ௕భ𝜎௔భ௕భ 𝜎௕భଶ ቇ, (9) 

where 𝐷 is in managers’ and investors’ information sets. Equation (8) is based on the alpha 

production structure in PS and FSX. The information structure in Definitions (9) follows PS. 

For simplicity, we assume 𝜎௔భ௕భ = 0. Parameter 𝑊ଵ is the country’s total wealth, and 𝑆ଵ is 

DAFMI size (controlled by investors). The gross alpha production functions 𝐴ଵଵ(𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ) 

and 𝐴ଵଶ(𝑒௜ଵଶ;  𝐻ଵ,𝐻ଶ) quantify the impact of 𝑒௜ଵଵ and 𝑒௜ଵଶ, respectively. 𝐴ଵଵ(𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ) and 𝐴ଵଶ(𝑒௜ଵଶ;  𝐻ଵ,𝐻ଶ) have the following functional characteristics: 

• nonnegative, i.e., 𝐴ଵଵ(0; 𝐻ଵ,𝐻ଶ) = 0 , 𝐴ଵଶ(0; 𝐻ଵ,𝐻ଶ) = 0 , ∀ 𝐻ଵ,𝐻ଶ  and 𝐴ଵଵ(𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ) > 0, ∀ 𝑒௜ଵଵ > 0,𝐻ଵ,𝐻ଶ, 𝐴ଵଶ(𝑒௜ଵଶ;  𝐻ଵ,𝐻ଶ) > 0, ∀ 𝑒௜ଵଶ > 0,𝐻ଵ,𝐻ଶ; 

• increasing concave in effort, as we assume marginal productivity of efforts is 

decreasing, i.e., 𝐴௘೔భభଵଵ (𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ) > 0, 𝐴௘೔భభ,௘೔భభଵଵ (𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ) < 0, ∀ 𝑒௜ଵଵ,𝐻ଵ,𝐻ଶ 𝐴௘೔భమଵଶ (𝑒௜ଵଶ;  𝐻ଵ,𝐻ଶ) > 0, 𝐴௘೔భమ,௘೔భమଵଶ (𝑒௜ଵଶ;  𝐻ଵ,𝐻ଶ) < 0, ∀ 𝑒௜ଵଶ,𝐻ଵ,𝐻ଶ; 

• 𝐴ଵଵ(𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ)  increases with 𝐻ଵ  and has positive cross partial derivative with 

respect to 𝐻ଵ and 𝑒௜ଵଵ, as higher 𝐻ଵ implies more unexplored investment opportunities 

and higher efficiency in using fund industry resources in Country 1, i.e., 𝐴ுభଵଵ (𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ) > 0, 𝐴௘೔భభ,ுభଵଵ (𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ) > 0, ∀ 𝑒௜ଵଵ > 0,𝐻ଵ,𝐻ଶ; 

• 𝐴ଵଵ(𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ)  increases with 𝐻ଶ  because a higher 𝐻ଶ  implies more unexplored 

opportunities in Country 2, diverting managerial efforts, leaving more unexplored 

opportunities in Country 1, and improving effort productivity in Country 1 as well. That 

is, 𝐴ுమଵଵ (𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ) > 0, 𝐴௘೔భభ,ுమଵଵ (𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ) > 0, ∀ 𝑒௜ଵଵ,𝐻ଵ,𝐻ଶ; 

• 𝐴ଵଶ(𝑒௜ଵଶ;  𝐻ଵ,𝐻ଶ)  increases with 𝐻ଶ  and has positive cross partial derivative with 

respect to 𝐻ଶ and 𝑒௜ଵଶ, as higher 𝐻ଶ implies more unexplored investment opportunities 

in Country 2, i.e., 𝐴ுమଵଶ (𝑒௜ଵଶ;  𝐻ଵ,𝐻ଶ) > 0 , 𝐴௘೔భమ,ுమଵଶ (𝑒௜ଵଶ;  𝐻ଵ,𝐻ଶ) > 0 , ∀ 𝑒௜ଵଶ >0,𝐻ଵ,𝐻ଶ; 
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• 𝐴ଵଶ(𝑒௜ଵଶ;  𝐻ଵ,𝐻ଶ)  increases with 𝐻ଵ  because a higher 𝐻ଵ  implies more unexplored 

opportunities in Country 1, diverting managerial efforts, leaving more unexplored 

opportunities in Country 2, and improving effort productivity in Country 2 as well, i.e., 𝐴ுభଵଶ (𝑒௜ଵଶ;  𝐻ଵ,𝐻ଶ) > 0,  𝐴௘೔భమ,ுభଵଶ (𝑒௜ଵଶ;  𝐻ଵ,𝐻ଶ) > 0, ∀ 𝑒௜ଵଶ,𝐻ଵ,𝐻ଶ. 

From Equation (8) and Definitions (9), manager 𝑖’s fund expected net alpha is20 

 E(𝛼௜ଵห𝐷) = 𝑎ଵ෢ − 𝑏ଵ෢ 𝑆ଵ𝑊ଵ + 𝐴ଵଵ(𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ) + 𝐴ଵଶ(𝑒௜ଵଶ;  𝐻ଵ,𝐻ଶ) − 𝑓௜ଵ. (10) 

We define the direct benefits of efforts exerted by DAFMI managers in the domestic 

stock market 𝑒௜ଵଵ and in the foreign stock market 𝑒௜ଵଶ, as follows: 

 𝐵ଵଵ(𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ) ≜ 𝐴ଵଵ(𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ) − 𝑐ଶଵଵ(𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ), (11) 

 𝐵ଵଶ(𝑒௜ଵଶ;  𝐻ଵ,𝐻ଶ) ≜ 𝐴ଵଶ(𝑒௜ଵଶ;  𝐻ଵ,𝐻ଶ) − 𝑐ଶଵଶ(𝑒௜ଵଶ;  𝐻ଵ,𝐻ଶ). (12) 

These two terms are important for social planners and policy makers, as they capture the direct 

benefits of 𝑒௜ଵଵ and 𝑒௜ଵଶ, respectively, in terms of increase in gross alpha production minus the 

corresponding effort costs. 𝐵ଵଵ(𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ) and 𝐵ଵଶ(𝑒௜ଵଶ;  𝐻ଵ,𝐻ଶ) capture the direct benefit from effort exerted 

in active fund management in terms of an increase in gross alpha production minus the effort 

cost. We interpret benefits generally, allowing them to be positive or negative. 

Whether manager i’s marginal direct benefits of initial effort in each county’s stock 

market are positive [i.e., 𝐵௘೔భభଵଵ (0; 𝐻ଵ,𝐻ଶ) > 0,𝐵௘೔భమଵଶ (0; 𝐻ଵ,𝐻ଶ) > 0,∀ 𝐻ଵ,𝐻ଶ] is an important 

condition affecting the equilibrium. If this condition is not met, no effort is exerted, as in PS 

(see Proposition PS, Section 2.3 in FSX). Whether the sensitivity of manager i’s direct benefits 

at optimal effort is positive or not [i.e., 
ௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభ + ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభ > 0 (≤ 0)  and 

ௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுమ + ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுమ > 0 (≤ 0) ] is also an important condition affecting the 

 
20 Following FSX, investors observe the passive benchmark and the AFMI funds’ returns. The difference between 
these returns comes from three components:  net alphas, the common risk factor, and idiosyncratic risks. As the 
distributions of the common risk and idiosyncratic risk are common knowledge, investors know the likelihood 
functions of the net alphas. Given prior beliefs of net alphas, they form posteriors and update their beliefs. In our 
one-period model, there is no dynamic Bayesian updating, but we suggest that investors reach a fixed-point 

equilibrium. Further, because investors observe fees and fund sizes (thus, industry size), they can also infer the 
sum of 𝐴ଵଵ(𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ)  and 𝐴ଵଶ(𝑒௜ଵଶ;  𝐻ଵ,𝐻ଶ) . For simplicity and brevity, we depress the notation of 𝐴መଵଵ(𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ)  and 𝐴መଵଶ(𝑒௜ଵଶ;  𝐻ଵ,𝐻ଶ)  in favor of 𝐴ଵଵ(𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ)  and 𝐴ଵଶ(𝑒௜ଵଶ;  𝐻ଵ,𝐻ଶ) , as these two 
functions are deterministic. 
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equilibrium.28F

21 

Investors’ Problem 

Country 1’s infinitely many mean-variance risk-averse investors invest in 𝑀ଵ funds, 

earning returns, 𝐫𝐅𝟏, a 𝑀ଵ × 1 vector with elements 𝑟ி,௜ଵ , 𝑖 = 1, … ,𝑀ଵ, in excess of the risk-free 

rate. The model of 𝐫𝐅𝟏 is 

 𝐫𝐅𝟏 = 𝛂𝟏 + 𝛃𝟏𝑟௣ + 𝑥ଵ𝛊𝐌𝟏 + 𝛆𝟏, (13) 

where 𝛂𝟏 is a 𝑀ଵ × 1 vector of fund net alphas in Country 1, with each element as 𝛼௜ଵ, 𝑖 =1, … ,𝑀ଵ; and 𝛃𝟏 is the beta loading of each fund to an international benchmark portfolio. To 

simplify the framework, we assume each fund has beta loading equal to one, with respect to 

the international benchmark portfolio,22 so that 𝛃𝟏 is the same as the 𝑀ଵ × 1 unit vector 𝛊𝐌𝟏. 𝑟௣ is the international benchmark’s return in excess of the risk-free rate, with mean 𝜇௣, 𝜇௣ > 0, 

and variance 𝜎௣ଶ, 𝜎௣ଶ > 0. 𝑥ଵ is the common risk factor of fund returns in Country 1, with mean 

0 and variance 𝜎௫భଶ , 𝜎௫భଶ > 0. 𝛆𝟏 is a 𝑀ଵ × 1 vector of fund idiosyncratic risk factors in Country 

1, and each of its elements is 𝜀௜ଵ, 𝑖 = 1, … ,𝑀ଵ, which has mean 0 and variance 𝜎ఌభଶ , 𝜎ఌభଶ > 0. 

The parameters 𝜇௣, 𝜎௣ଶ, 𝜎௫భଶ , and 𝜎ఌభଶ  are constants, common knowledge to both investors and 

managers. 

Investor 𝑗’s portfolio return (in excess of the risk-free rate) is 

 𝑟௝ଵ = 𝛅𝐣𝟏𝐓𝐫𝐅𝟏 + (1 − 𝛅𝐣𝟏𝐓𝛊𝐌𝟏)𝑟௣ = 𝑟௣ + 𝛅𝐣𝟏𝐓(𝛂𝟏 + 𝑥ଵ𝛊𝐌𝟏 + 𝛆𝟏), (14) 

where 𝛅𝐣𝟏 is a 𝑀ଵ × 1 vector of weights that investor 𝑗 allocates to the 𝑀ଵ funds, with each 

element as 𝛿௝,௜ଵ , and superscript T is a transpose operator. Investor 𝑗’s problem is23 

 max𝛅𝐣𝟏 E൫𝑟௝ଵห𝐷൯ටVar൫𝑟௝ଵห𝐷൯, (15) 

subject to 

 𝛿௝,௜ଵ ≥ 0, ∀𝑖, (16) 

 𝛅𝐣𝟏𝐓𝛊𝐌𝟏 ≤ 1. (17) 

 
21 See also, Proposition 3 and the “proof intuition” to it. 
22 This is a common assumption, as active funds usually have diversified portfolios. See the discussion in Pastor 
and Stambaugh (2012). 
23 Recall Footnote 20. 
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Constraints (16) and (17) imply that investors cannot short sell funds, or short sell the 

international benchmark portfolio. To simplify our analysis, we assume that, in equilibrium, all 

investors have the same weights allocated to funds (i.e., a symmetric equilibrium), such that 

 𝛅𝐣𝟏∗ = 𝛅𝐤𝟏∗, ∀𝑗 ≠ 𝑘. (18) 

In this case, in equilibrium, the fund industry size in Country 1 is 

 𝑆ଵ𝑊ଵ∗ = 𝛅𝐣𝟏∗𝐓𝛊𝐌𝟏 , ∀𝑗. (19) 

We also note that, as in PS and FSX (see PS, pp. 748–750, including Footnote 6, and 

references therein, and FSX, Footnote 4), DAFMI’s and FAFMI’s active search for net alphas 

might have indirect effects not modeled here. It might drive security prices toward their true 

values; it might induce firms to improve governance and performance and to reduce agency 

costs. It might induce transfer of wealth from less productive firms or investors to more 

productive ones. As discussed in PS, FSX, and elsewhere in the literature, gross alphas are 

zero-sum. We note that this is the case regardless of whether any manager’s direct and or 

indirect benefits are non-zero or zero. 

We are now ready to characterize, in the following propositions, lemma, and corollaries, 

the IAFMI equilibrium, induced by managers choosing optimal effort in each country, and 

optimal fees. That is, we characterize DAFMI equilibrium expected net alphas, Sharpe ratios, 

effort, fee rates, direct benefits of effort, DAFMI size, and DAFMI funds’ market shares. In 

Proposition 0, we formally state the DAFMI Nash equilibrium. In Proposition 1, we describe 

the qualitative properties of this equilibrium; and in Lemma 1, we describe technical properties 

of the DAFMI equilibrium used to prove Proposition 0 and 1. We present the two propositions 

and lemma in a sequence, and then provide the proofs intuition. 

We first define DAFMI equilibrium optimal allocations.24 Let 

• 𝐞𝟏𝟏∗  be an 𝑀ଵ × 1  vector with Country 1 managers’ optimal effort allocations to 

Country 1 stocks, 𝑒௜ଵଵ∗, 
• 𝐞𝟏𝟐∗  be an 𝑀ଵ × 1  vector with Country 1 managers’ optimal effort allocations to 

Country 2 stocks, with components, 𝑒௜ଵଶ∗, 
• 𝐟𝟏∗ be an 𝑀ଵ × 1 vector with Country 1 managers’ optimal fee allocations, 𝑓௜ଵ∗, and 

• 𝛅𝟏∗ be an 𝑀ଵ × 𝑁ଵ matrix with vectors of Country 1 investors’ optimal wealth weights 

 
24 This is sufficient for describing the IAFMI equilibrium because of the DAFMI–FAFMI symmetry. 
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allocations to funds, 𝛅𝐣𝟏∗. 
PROPOSITION 0. Unique Nash Equilibrium. 

There exists a unique Nash equilibrium, ൛𝐞𝟏𝟏∗,𝐞𝟏𝟐∗, 𝐟𝟏∗,𝛅𝟏∗ൟ. 
Proof of Proposition 0. See the appendix. 

The following proposition that characterizes the equilibrium. 

PROPOSITION 1. For manager 𝑖, 𝑖 = 1, … ,𝑀ଵ, if initial effort inputs generate positive direct 

benefits of effort, then in the DAFMI equilibrium induced by managers choosing optimal 

effort-fee combinations, (𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗, 𝑓௜ଵ∗), DAFMI size, ௌభௐభ∗, and DAFMI fund market shares, 

௦೔భ∗ௌభ∗ ,∀𝑖, adjust such that the following properties are satisfied. 

1. Competition drives managers’ economic profits to zero, so they can only charge break-

even fees. 

2. Higher managers’ aggregate skill results in higher DAFMI size. 

3. Higher managers’ relative skill results in higher DAFMI fund market share (relative 

fund size). 

4. Managers offer the same market competitive expected net alphas. 

5. Managers offer the same market competitive Sharpe ratios. 

6. Investors hold the same DAFMI portfolio weights (which are proportional to DAFMI 

fund sizes). 

7. Equilibrium efforts and fees are the same across funds. 

8. Equilibrium DAFMI direct benefits of effort are the same across funds. 

Proof of Proposition 1. See the appendix. The proof intuition is below. 

To prove Proposition 1, we use the seven results of the following Lemma 1, which 

characterize properties of the IAFMI equilibrium. (The following statement of Lemma 1 is 

mostly verbal. An analytical statement of the Lemma, with all relevant mathematical 

expressions, is in the Appendix.) 

LEMMA 1. For every manager 𝑖, 𝑖 = 1, … ,𝑀ଵ, if initial effort inputs generate positive direct 

benefits of effort, the DAFMI equilibrium induced by managers choosing optimal effort-fee 

combinations, (𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗, 𝑓௜ଵ∗), has the following properties. 

1. Fees are equal to costs: 

2. The impact of marginal effort, in either country, on gross alpha is set to be equal to the 

marginal average costs of effort in the respective country, thus manager 𝑖’s marginal 

direct benefits of effort (in either country) under the optimal effort are zero. 
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3. When either country’s concentration is higher, DAFMI equilibrium optimal efforts in 

either country are higher (lower) if and only if higher concentration induces a larger 

(smaller) marginal effort impact on gross alphas than on costs in the respective country. 

4. Whether each country’s higher concentrations induce higher equilibrium optimal fees 

depends on whether they induce changes in equilibrium DAFMI sizes and in 

equilibrium optimal efforts in each country that are aggregately positive. 

5. When either country’s concentrations are higher, equilibrium manager 𝑖 ’s direct 

benefits of effort in the respective country are higher (lower) if and only if higher 

concentrations induce, in the respective country, a larger (smaller) impact on gross 

alphas than on costs. 

6. Pairwise relative DAFMI fund sizes, 𝑠௜ଵ∗/𝑠௝ଵ∗ , are inversely proportional to their 

corresponding cost coefficients, 𝑐ଵ,௝ଵ /𝑐ଵ,௜ଵ , (where 𝑐ଵ,௜ଵ  is the intensity of fund-level 

decreasing returns to scale in gross alpha production). 

7. DAFMI fund market shares 𝑠௜ଵ∗/𝑆ଵ∗s are 𝑠௜ଵ∗/𝑆ଵ∗ = ቂ𝑐ଵ,௜ଵ ∑ ൫𝑐ଵ,௜ଵ ൯ିଵெభ௝ୀଵ ቃିଵ, ∀𝑖. 
Analytical statement and proof of Lemma 1. See the appendix. The proof intuition is below. 

The proof of the existence and uniqueness of the Nash equilibrium is similar to the 

single-country one in FSX. Competing for investments, DAFMI managers maximize fund 

expected net alphas by choosing optimal efforts and fees in each country, earning zero 

economic profits (break-even fees) in equilibrium. The reason for the latter is the following. If 

DAFMI managers increase fees, they would lower fund expected net alphas and lose all 

investments. If DAFMI managers decrease fees, they would become insolvent—incurring 

negative cash flows (costs higher than fees). Deviating from equilibrium effort would also 

induce a loss of investments (if decreasing effort) or insolvency (if increasing effort). Therefore, 

DAFMI managers have no incentive to deviate. 

Also, as there are no diversification benefits across funds, DAFMI managers who 

attempt to provide higher expected net alphas attract investments. Consequently, due to 

decreasing returns to scale in performance, on the one hand, and increasing fund costs, on the 

other hand, “alpha gains” are more than mitigated by a (break-even) fee increase, resulting in 

an overall decrease in expected net alpha. Thus, in equilibrium, the allocation of investments, 

or fund sizes, sets expected net alphas to be equal across funds. If DAFMI fund managers 

cannot produce the DAFMI highest expected net alpha, even for an infinitesimal fund size, 

they lose all investments and go out of the market. 

In addition, as DAFMI funds have the same expected net alphas, they have the same 
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expected returns. As the source of DAFMI fund returns’ variance is the same across funds, the 

DAFMI fund return variance is the same across funds. Therefore, DAFMI managers offer the 

same competitive Sharpe ratio. Because investors cannot obtain a higher Sharpe ratio, they 

have no incentive to deviate. 

These conditions result in a DAFMI unique Nash equilibrium in which neither DAFMI 

investors nor DAFMI managers have incentives to deviate from their chosen strategies. 

If an increase in either country’s concentrations induces a higher (lower) marginal effort 

impact on DAFMI gross alphas than a marginal effort impact on DAFMI costs, in the 

respective country, then DAFMI managers optimally choose, in each country, higher (lower) 

efforts in producing fund net alphas. If an increase in either country’s concentrations induces 

higher DAFMI equilibrium optimal efforts in the respective country and DAFMI managers’ 

costs are driven higher, then equilibrium break-even fees are higher. 

Higher concentrations in each country have two effects on manager 𝑖’s direct benefits 

of effort in the respective country. First, in the respective country, they directly affect gross 

alpha production functions, 𝐴ଵଵ(𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ)  and 𝐴ଵଶ(𝑒௜ଵଶ;  𝐻ଵ,𝐻ଶ) , and costs, 𝑐ଶଵଵ(𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ) and 𝑐ଶଵଶ(𝑒௜ଵଶ;  𝐻ଵ,𝐻ଶ), being parameters of each of these functions. Second, 

in the respective country, they affect DAFMI equilibrium optimal efforts, consequently 

changing the respective country’s gross alphas and costs. In equilibrium, the latter (net) effect 

is zero because managers keep increasing DAFMI efforts in each country until, in each country, 

the marginal effort impact on gross alphas is equal to the marginal effort impact on costs. Thus, 

the effect of higher concentration through effort on gross alphas, in each country, is cancelled 

out by its effects on costs. Therefore, in DAFMI equilibrium (as the net second effect is zero), 

changes in either country’s concentrations affect gross alphas and costs through the (direct) 

first effect only. Consequently, if higher, either country’s concentrations induce higher direct 

impacts on gross alphas than on costs in the respective country. DAFMI manager i’s direct 

benefits of effort, in this country, increase in the respective concentration. 

DAFMI managers’ different costs of producing gross alphas (skills) induce different 

fund sizes in equilibrium. There is a separation between the determination processes of DAFMI 

size (that is, DAFMI weight in total wealth, ௌభௐభ∗) and DAFMI fund market shares (that is, 

relative fund sizes within DAFMI). The former is driven by DAFMI managers’ aggregate skill 

(cost), and the latter by DAFMI managers’ relative skills (costs). In other words, how DAFMI 

investors weight the funds inside DAFMI, or investors’ “optimal DAFMI portfolio,” could be 

unaffected by how DAFMI investors weight the DAFMI as a whole relative to the passive 
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benchmark. This separation property facilitates later results. 

For convenience in describing the equilibrium in the following propositions, we define 

the equilibrium optimal expected net alphas of an initial marginal investment in the DAFMI 

(i.e., where 𝑆ଵ = 0) as 𝑋൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯. Quantitatively, 

 𝑋൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ ≜ 𝑎ଵ෢ + 𝐴ଵଵ(𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ) + 𝐴ଵଶ(𝑒௜ଵଶ;  𝐻ଵ,𝐻ଶ) −𝑐଴ଵ − 𝑐ଶଵଵ(𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ) − 𝑐ଶଵଶ(𝑒௜ଵଶ;  𝐻ଵ,𝐻ଶ). 
(20) 

For DAFMI to exist, we must have positive expected net alphas for initial infinitesimal 

investments into it, or29F
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 𝑋൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ > 0, ∀ 𝐻ଵ,𝐻ଶ. (21) 

If Inequality (21) is violated, investors receive no advantage in diverting funds from the 

passive index to the DAFMI. Also, to offer meaningful results, we assume that initial marginal 

allocations of effort generate positive AFMI direct benefits of effort; that is, 

 𝐵௘೔భభଵଵ (0; 𝐻ଵ,𝐻ଶ) > 0, 𝐵௘೔భమଵଶ (0; 𝐻ଵ,𝐻ଶ) > 0, ∀𝑖,𝐻ଵ,𝐻ଶ, (22) 

such that the optimal effort, (𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗) , is positive, finite, and attainable, i.e., 𝐵௘೔భభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ = 0, 𝐵௘೔భమଵଶ ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ = 0,   𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗ < 𝐾,   ∀𝑖,𝐻ଵ,𝐻ଶ , for some 

positive constant 𝐾. We focus on the case where the optimal effort is positive. 

As in PS (see their Proposition 2) and FSX (see their Proposition RA2), the explicit 

analytic solutions for ௌభௐభ∗ are solutions of a cubic equation and are cumbersome. The following 

proposition presents the cubic equation, and its corollary presents properties of its solution. 

PROPOSITION 2. Equilibrium Optimal Allocations. 

For manager 𝑖, 𝑖 = 1, … ,𝑀ଵ, we have 

1. E(𝛼௜ଵห𝐷)หቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ > 0; and 

2. the equilibrium optimal ௌభௐభ∗ is either 1 or a real positive solution (smaller than 1), of 

the following first-order condition (a cubic equation) of the investors’ problem 

[Equations (15)−(17)]. After substituting 𝛅𝐣𝟏∗𝐓𝛊𝐌𝟏 = ௌభௐభ∗ , ∀𝑗, 
 

25 The condition in Inequality (21) here is equivalent to the condition that 𝑎 > 0 in PS. See PS, p. 747, for further 
discussion and insights. 
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 −𝛾𝜎௕భଶ ቆ 𝑆ଵ𝑊ଵ∗ቇଷ − ൞𝛾𝜎௔భଶ + 𝛾𝜎௫భଶ + 𝑏ଵ෢ + ቎෍൫𝑐ଵ,௜ଵ ൯ିଵெభ
௜ୀଵ ቏ିଵ 𝑊ଵൢ 𝑆ଵ𝑊ଵ∗ 

+𝑋൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ = 0, 

(23) 

 where 𝛾 ≜ 𝜇௣/𝜎௣ଶ. 

Proof of Proposition 2. See the appendix. 

The intuition of Proposition 2 is as follows. DAFMI investors allocate investments to 

funds based on their risk-return tradeoffs. Investing wealth in the DAFMI increases portfolios’ 

risk, so they choose to limit these investments, leaving E(𝛼௜ଵห𝐷)หቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ > 0. The risk-

return tradeoff of potentially investing the last dollar, the dollar that would drive DAFMI fund 

expected net alphas to zero, is “in the variance favor.” That is, the marginal cost of risk, of 

investing this last dollar, is higher than the marginal benefit of the gained net alpha. This 

prevents optimizing DAFMI risk-averse investors from allocating it to the DAFMI, leaving 

DAFMI fund expected net alphas to be positive. The properties of the cubic equation guarantee 

exactly one real positive root. If the positive root is larger than 1, then ௌభௐభ∗ = 1. 

We can now write the following corollary, characterizing DAFMI equilibrium relations 

between performance and size, and between the rate of returns to scale decrease and size. 

COROLLARY TO PROPOSITION 2. For large enough 𝑊ଵ, such that ௌభௐభ∗ < 1, we have 

the following. 

1. Higher equilibrium optimal expected net alphas of an initial marginal investment in the 

DAFMI induce a larger equilibrium DAFMI size relative to total DAFMI wealth, or 

ௗ ೄభೈభ∗ௗ௑ቀ௘೔భభ∗,௘೔భమ∗; ுభ,ுమቁ = ଵఊ൥ଷఙ್భమ ቆ ೄభೈభ∗ቇమାఙೌభమ ାఙೣభమ ൩ା௕భ෢ାቂ∑ ൫௖భ,೔భ ൯షభಾభೕసభ ቃషభௐభ > 0. (24) 

2. A higher rate of decrease in aggregate DAFMI returns to scale [fund level and industry-

level,  𝑏ଵ෢ + ቂ∑ ൫𝑐ଵ,௜ଵ ൯ିଵெభ௝ୀଵ ቃିଵ 𝑊ଵ] induces a smaller equilibrium DAFMI size, or 

ௗ ೄభೈభ∗ௗ൜௕భ෢ାቂ∑ ൫௖భ,೔భ ൯షభಾభೕసభ ቃషభௐభൠ = ି ೄభೈభ∗ఊ൥ଷఙ್భమ ቆ ೄభೈభ∗ቇమାఙೌభమ ାఙೣభమ ൩ା௕భ෢ାቂ∑ ൫௖భ,೔భ ൯షభಾభೕసభ ቃషభௐభ < 0. (25) 
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Proof of Corollary to Proposition 2. See the appendix. 

The intuition of this corollary is as follows. A higher level of DAFMI equilibrium 

optimal expected net alpha of an initial marginal investment, 𝑋൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯, attracts 

more investments to the DAFMI. Also, we can see that 𝑏ଵ෢  is the industry-level expected 

decreasing returns to scale rate coming from the alpha production function, based on current 

information, whereas ቂ∑ ൫𝑐ଵ,௜ଵ ൯ିଵெభ௝ୀଵ ቃିଵ𝑊ଵ  may be regarded as the equilibrium decreasing 

returns to scale factor coming from DAFMI managers’ costs of alpha production (calculated 

by aggregating all the fund average cost sensitivities to size, 𝑐ଵ,௜ଵ ’s). The latter decreasing 

returns to scale factor, ቂ∑ ൫𝑐ଵ,௜ଵ ൯ିଵெభ௝ୀଵ ቃିଵ𝑊ଵ, is inversely proportional to DAFMI aggregate 

skill. Thus, the factor 𝑏ଵ෢ + ቂ∑ ൫𝑐ଵ,௜ଵ ൯ିଵெభ௝ୀଵ ቃିଵ𝑊ଵ may be regarded as the combined decreasing 

returns to scale factor in DAMI. 

The next proposition offers comparative statics that underlie our main empirical 

analysis. The following statement of Proposition 3 is mostly verbal. An analytical statement of 

the proposition, with all relevant mathematical expressions, is in the Appendix.) 

PROPOSITION 3. Sensitivities of DAFMI Size and Expected Net Alphas to Concentration. 

Where  ௌభௐభ∗ < 1, we have the following.26 

1. Higher concentrations, in either country, induce larger (smaller) DAFMI equilibrium 

size and higher (lower) DAFMI equilibrium expected net alphas if and only if higher 

concentrations induce a larger (smaller) aggregate (over the two countries) impacts of 

induced optimal effort changes on gross alphas than on costs. 

2. If concave in either country’s concentration, DAFMI equilibrium direct benefits of 

efforts function indicates concave DAFMI equilibrium size in the respective 

concentration. (If convex in either country’s concentration, DAFMI equilibrium size 

indicates convex, DAFMI equilibrium direct benefits of efforts function in the 

respective concentration.) The sensitivity of equilibrium DAFMI size to the cross 

partial derivative of DAFMI and FAFMI concentrations depend on signs and sizes of 

 
26  When ௌభௐభ∗ = 1 , it is the case that, 1. ௌభௐభ∗  is unrelated to DAFMI and FAFMI concentrations; 2. higher 
DAFMI/FAFMI concentrations induce higher (lower) DAFMI/FAFMI equilibrium expected net alphas if and 
only if higher concentrations induce a larger (smaller) impact on gross alphas than on costs; and 3. 
DAFMI/FAFMI equilibrium expected net alphas are concave (convex), in DAFMI/FAFMI concentrations, if and 
only if the DAFMI/FAFMI equilibrium direct benefit function is concave (convex), in concentrations. 
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several terms, including the sum of the sensitivities of DAFMI direct benefits due to 

efforts exerted in the domestic and foreign stock markets, to the cross partial derivative 

of DAFMI and FAFMI concentrations, and the product of the sums of DAFMI direct 

benefits sensitivities, due to efforts exerted in the domestic and foreign stock markets, 

to DAFMI and FAFMI concentrations, respectively. 

3. Concave equilibrium expected net alphas, in either country’s concentration, indicates 

concave, in concentration, equilibrium direct benefit function. (Convex, in 

concentration, equilibrium direct benefit function indicates convex, in concentration, 

equilibrium expected net alphas.) 

Similar to the case of equilibrium DAFMI size, the sensitivity of DAFMI equilibrium 

expected net alpha dependency on the cross partial derivative of DAFMI and AFMI 

concentrations depends on signs and sizes of several terms, including the sum of the 

sensitivities of DAFMI direct benefits due to efforts exerted in the domestic and foreign 

stock markets, to the cross partial derivative of DAFMI and FAFMI concentrations, 

and the product of the sums of DAFMI direct benefits sensitivities due to efforts exerted 

in the domestic and foreign stock markets, to DAFMI and FAFMI concentrations, 

respectively. 

Analytical statement and proof of Proposition 3. See the appendix. 

The intuition behind Proposition 3 is as follows. Changes of 𝐻ଵ affect both DAFMI 

cost and productivity of efforts exerted in alpha production in both domestic and foreign stock 

markets. In turn, such changes affect equilibrium DAFMI expected net alpha, E(𝛼௜ଵห𝐷)หቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ , in two stages. In the first stage, if a higher 𝐻ଵ  induces a larger 

(smaller) aggregate, across the domestic and foreign stock markets, impact on gross alphas than 

on costs, it increases (decreases) DAFMI managers’ ability to produce expected net alphas, 

thereby increasing (decreasing) the DAFMI expected net alphas produced. In the second stage, 

DAFMI investors react to the increase (decrease) in DAFMI fund expected net alphas by 

increasing (decreasing) investments in funds, consequently decreasing (increasing) DAFMI 

expected net alphas, due to decreasing returns to scale. The risk-return tradeoff of DAFMI risk-

averse investors makes their reaction to changes in DAFMI fund expected net alphas less 

intense. That is, they subdue their additional investments to funds when inferring higher fund 

expected net alphas due to risk increase, and they limit their reduction in investments to funds 

when observing lower fund expected net alphas due to the decrease in risk. 
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The first stage and second stage described above, the latter as affected by risk attitudes, 

result in a change of DAFMI optimal efforts in both the domestic and foreign stock markets. 

DAFMI new optimal efforts, in turn, affect DAFMI alphas productions and the efforts costs 

producing it in both the domestic and foreign stock markets. The overall outcome depends on 

the aggregate—across the domestic and foreign stock markets—relative sensitivities to 

DAFMI concentration of—the domestic and foreign stock markets—alpha production 

functions, on the one hand, and of the efforts cost functions, on the other. Indeed, we formally 

show that whether a higher 𝐻ଵ  increases equilibrium DAFMI expected net alpha, E(𝛼௜ଵห𝐷)หቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ, depends on whether it has a larger impact on DAFMI gross alphas 

than on the costs producing it [i.e., the sign of 
ௗ୉ቀ𝛼௜ଵቚ𝐷ቁௗுభ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ, depends on the sign 

of 
ௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభ + ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభ = 𝐴ுభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ + 𝐴ுభଵଶ ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ −𝑐ଶ ுభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ − 𝑐ଶ ுభଵଶ ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯27  (as we show in Lemma 1.5 above). Thus, a 

higher 𝐻ଵ induces a larger equilibrium DAFMI expected net alpha if and only if it induces 

higher equilibrium DAFMI direct benefits, ൣ𝐵ଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ + 𝐵ଵଶ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯൧. This 

explains the expected net alpha part of Proposition 3.1. 

If a higher 𝐻ଵ induces a larger (smaller) impact on gross alphas than on costs, then it 

attracts more (fewer) investments to the DAFMI [if investors have additional wealth to allocate 

to funds (i.e., ௌభௐభ∗ < 1)]. This explains the size part of Proposition 3.1. 

The intuition regarding 𝐻ଶ in Proposition 3.1 is similar. 

Examining the second-order effects of DAFMI concentration on DAFMI size, we first 

note that changes in 𝐻ଵ that induce a larger ௌభௐభ∗ result in a larger allocation to DAFMI funds 

and, in turn, in a higher investors’ overall portfolio risk. Mean-variance risk-averse investors 

facing risk-return tradeoffs respond to an increase in marginal portfolio risks, holding other 

parameters constant, by optimally lowering investment in funds. Thus, how changes in 𝐻ଵ 

affect changes in equilibrium ௌభௐభ∗ depends on how changes in 𝐻ଵ affect this risk-return tradeoff. 

The implications for the second-order derivative 
ௗమ ೄభೈభ∗ௗுభమ  are in the proof of Proposition 3, which 

 
27 This total derivative of DAFMI direct benefits with respect to 𝐻ଵ is the same as its partial derivative with respect 
to 𝐻ଵ. 
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expresses this tradeoff analytically by identifying 
ௗమ ೄభೈభ∗ௗுభమ  as a sum of two addends. The first 

addend is negative (positive) if the sum of the direct benefits functions is concave (convex) in 𝐻ଵ, and the second one is always negative. This shows that a concave sum of the direct benefits 

functions in 𝐻ଵ implies an ௌభௐభ∗ concave in 𝐻ଵ; and a convex ௌభௐభ∗ in 𝐻ଵ implies a convex sum 

of the direct benefits functions in 𝐻ଵ. 

The intuition regarding 𝐻ଶ in Proposition 3.2 is similar to that of 𝐻ଵ. The intuition 

regarding the cross partials in Proposition 3.2 is straightforward, as second-order derivatives 

become cross partial derivatives and squares of first-order derivatives become products of first-

order derivatives with respect to both countries’ concentrations. 

This explains Proposition 3.2. 

Similarly, examining the second-order effects of DAFMI concentration on expected net 

alphas, we show that as 𝐻ଵ  changes, the change of marginal E(𝛼௜ଵห𝐷)หቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ, i.e., 

ௗమ୉ቀ𝛼௜ଵቚ𝐷ቁௗுభమ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ, is positively proportional to the second-order change in the sum of 

the direct benefit functions plus an adjustment term that captures the effects of risk. This 

adjustment term ensures that, holding all other parameters constant, if investors’ marginal 

portfolios risks of investing in funds are higher, investors optimally invest less in funds. In 

doing so, they exert a smaller negative impact on expected net alphas; thus, a higher 𝐻ଵ induces 

a higher marginal E(𝛼௜ଵห𝐷)หቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ. We can see that if the second-order derivative of 

the sum of the direct benefits functions is positive, 
ௗమ୉ቀ𝛼௜ଵቚ𝐷ቁௗுభమ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ must be positive, 

whereas if 
ௗమ୉ቀ𝛼௜ଵቚ𝐷ቁௗுభమ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ is negative, the second-order derivative of the sum of the 

direct benefits functions must be negative. 

The intuition regarding 𝐻ଶ in Proposition 3.3 is similar to that of 𝐻ଵ. The intuition 

regarding the cross partials in Proposition 3.3, similar to that in Proposition 3.2. 

This explains Proposition 3.3. 

When investors have no additional wealth to allocate to funds, i.e., ௌభௐభ∗ = 1, they exert 

no impact on marginal E(𝛼௜ଵห𝐷)หቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ , making the marginal equilibrium optimal 
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expected net alphas depend only on the effect of 𝐻ଵ and 𝐻ଶ on managers’ ability to produce 

net alphas. 

We are now ready for the following proposition. 

PROPOSITION 4. Relation between skill, market share, and net alpha. 

When ௌభௐభ∗ < 1 , a decrease (increase) in DAFMI manager 𝑖 ’s skill, 𝑐ଵ,௜ଵ ିଵ,  while DAFMI 

manager 𝑗’s skill, 𝑐ଵ,௝ଵ ିଵ, ∀𝑗 ≠ 𝑖, is unchanged induces 

1. a decrease (increase) in ௦೔భ∗ௌభ∗ ,∀𝑖, and an increase (decrease) in 
௦ೕభ∗ௌభ∗ ,∀𝑗 ≠ 𝑖, and 

2. a decrease (increase) in E(𝛼௜ଵห𝐷)หቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ  and a decrease (increase) in E൫𝛼௝ଵห𝐷൯หቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ, ∀𝑗 ≠ 𝑖. 
Proof of Proposition 4. See the appendix. 

According to Proposition 4, a decrease in DAFMI manager 𝑖’s skill leads to a decrease 

in 𝑖’s market share, ௦೔భ∗ௌభ∗. Some of the assets that fund 𝑖 loses are invested in all other funds, 

thereby increasing the market share of all other funds. 

Also, a higher skill (lower 𝑐ଵ,௜ଵ ), affects E(𝛼௜ଵห𝐷)หቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ in two stages. In the 

first stage, it decreases DAFMI manager 𝑖 ’s average cost and, thus, induces higher fund 

expected net alphas. As DAFMI manager 𝑖 offers a higher fund expected net alpha, investments 

shift into DAFMI fund 𝑖 from other DAFMI funds, making all those funds’ expected net alphas 

higher due to decreasing returns to scale at the fund level. At the second stage, an increase in 

DAFMI fund expected net alphas attracts investments into DAFMI, which in turn drives down 

DAFMI funds’ expected net alphas due to decreasing returns to scale at the industry level. 

Where ௌభௐభ∗ < 1, DAFMI investors’ portfolio risks increase (decrease) when they invest more 

(less) in DAFMI. Thus, they subdue DAFMI investment increases when observing an increase 

in DAFMI fund expected net alphas, and they limit investment reductions when observing a 

decrease in DAFMI fund expected net alphas. Thus, DAFMI investors’ risk aversion mitigates 

the countered effect at the second stage and makes the first stage’s effect dominant. 

Where ௌభௐభ∗ = 1, DAFMI investors have no additional wealth to allocate to funds, so 

their investments have no impact on DAFMI marginal equilibrium optimal expected net alphas, 

causing the first stage’s effect to dominate. 
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2.2 Endogenous Market Concentrations 
Our model allows for an endogenous measure of DAFMI and FAFMI concentrations. 

Modeling an endogenous measure of concentration facilitates the use of available and prevalent 

empirical measures. If we define 𝐻ଵ and 𝐻ଶ to be Herfindahl-Hirschman indices (HHI), which 

is the sum of market shares squared, then 𝐻ଵ and 𝐻ଶ are endogenous to our model.28 Using 

funds’ equilibrium market share, as identified in Lemma 1.7, we can write the equilibrium 

DAFMI and FAFMI concentrations, 𝐻ଵ∗ and 𝐻ଶ∗, as 

 𝐻ଵ∗ ≜ ∑ ൬௦೔భ∗ௌభ∗൰ଶெభ௜ୀଵ = ∑ ቂ𝑐ଵ,௜ଵ ∑ ൫𝑐ଵ,௜ଵ ൯ିଵெభ௝ୀଵ ቃିଶெభ௜ୀଵ , (26) 

 𝐻ଶ∗ ≜ ∑ ൬௦೔మ∗ௌమ∗൰ଶெమ௜ୀଵ = ∑ ቂ𝑐ଵ,௜ଶ ∑ ൫𝑐ଵ,௜ଶ ൯ିଵெమ௝ୀଵ ቃିଶெమ௜ୀଵ . 
(27) 

We can see that 𝐻ଵ∗ and 𝐻ଶ∗ are determined by 𝑐ଵ,௜ଵ s and 𝑐ଵ,௜ଶ s. Specifically, depending on the 

size of 𝑐ଵ,௜ଵ  relative to that 𝑐ଵ,௝ଵ , ∀𝑗 ≠ 𝑖 , an increase in 𝑐ଵ,௜ଵ , holding 𝑐ଵ,௝ଵ , ∀𝑗 ≠ 𝑖  constant, 

increases or decreases 𝐻ଵ∗. 
For simplicity and brevity, we focus our discussion on DAFMI (similar results hold for 

FAFMI). When the DAFMI concentration is defined as the HHI, Propositions 3 and 4 imply 

that the relation between the 𝑐ଵ,௜ଵ s, DAFMI equilibrium fund expected net alphas, and DAFMI 

size is complex. An increase in 𝑐ଵ,௜ଵ  affects the DAFMI equilibrium fund expected net alphas in 

two ways:  1. its direct impact leads to lower DAFMI equilibrium fund expected net alphas 

(Proposition 4) and 2. depending on fund 𝑖’s size relative to DAFMI rivals, it increases or 

decreases 𝐻ଵ∗, which consequently increases (decreases) DAFMI equilibrium fund expected 

net alphas if and only if 
ௗ஻భభቀ௘೔భభ∗; ுభ∗,ுమ∗ቁௗுభ + ௗ஻భమቀ௘೔భమ∗; ுభ∗ ,ுమ∗ቁௗுభ ≥ 0 (< 0) (Proposition 3.1). 

Similarly, an increase in 𝑐ଵ,௜ଵ  affects the equilibrium DAFMI size in two ways:  1. its direct 

impact leads to an (inverse direction) DAFMI size change, and 2. it increases or decreases 𝐻ଵ∗, 
which consequently increases (decreases) the equilibrium DAFMI size if and only if ௗ஻భభቀ௘೔భభ∗; ுభ∗,ுమ∗ቁௗுభ + ௗ஻భమቀ௘೔భమ∗; ுభ∗ ,ுమ∗ቁௗுభ ≥ 0 (< 0) (Proposition 3.1). Thus, in the endogenous 

DAFMI concentration measure case, the relation between the 𝑐ଵ,௜ଵ s, DAFMI equilibrium fund 

 
28 In an 𝑀ଵ-fund DAFMI, for example, the HHI could have values between the highest concentration, 1, in which 
one of the funds captures practically all the market share, and the lowest concentration, 1/𝑀ଵ, in which market 
shares are evenly divided. That is, in an 𝑀ଵ-funds’ market HHI ∈ ቂ 1𝑀1 , 1). 
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expected net alphas, and DAFMI size depend on fund 𝑖’s size relative to rivals.29 

Due to investments in the foreign stock market, DAFMI is also affected by changes in 𝐻ଶ∗. An increase in 𝑐ଵ,௜ଶ  affects DAFMI equilibrium fund expected net alphas in the following 

way:  depending on fund 𝑖’s size relative to rivals’, it increases or decreases 𝐻ଶ∗ , which 

consequently increases (decreases) DAFMI equilibrium fund expected net alphas if and only 

if 
ௗ஻భభቀ௘೔భభ∗; ுభ∗,ுమ∗ቁௗுమ + ௗ஻భమቀ௘೔భమ∗; ுభ∗,ுమ∗ቁௗுమ ≥ 0 (< 0) (Proposition 3.1). Also, an increase in 𝑐ଵ,௜ଶ  

affects DAFMI size in the following way:  depending on fund 𝑖’s size relative to rivals’, it 

increases or decreases 𝐻ଶ∗, which consequently increases (decreases) equilibrium DAFMI size 

if and only if 
ௗ஻భభቀ௘೔భభ∗; ுభ∗,ுమ∗ቁௗுమ + ௗ஻భమቀ௘೔భమ∗; ுభ∗,ுమ∗ቁௗுమ ≥ 0 (< 0) (Proposition 3.1). Notice that an 

increase in 𝑐ଵ,௜ଶ  does not have direct impact on DAFMI fund expected net alphas and size, as 

that of 𝑐ଵ,௜ଵ . Its impact on DAFMI is only through its impact on FAFMI concentration, 𝐻ଶ∗. 
Thus, when the market concentration is endogenous, the relations between DAFMI 

concentration and DAFMI equilibrium fund expected net alphas and size are more complex. 

On the other hand, the relations between FAFMI concentration and the DAFMI equilibrium 

fund expected net alphas and size are similar to those under the exogenous concentrations 

framework. 

Please see the discussion in FSX regarding the industry characteristics affecting 

equilibrium markets’ concentration and why modeling those here would unnecessarily 

complicate our model. As long as real-world concentration is not exactly determined by the 𝑐ଵ,௜ଵ s (or any other exogenous parameter of our model), we are back to the case that when 

concentration is exogenous (that is, has an exogenous component), our predictions remain 

unaltered regarding the relation between changes in exogenous DAFMI concentration level, 

the DAFMI equilibrium fund expected net alphas, and DAFMI size. 

Similarly to FSX, we now proceed with an empirical analysis of the benefits and costs 

of changing concentrations of DAFMI and FAFMI using the version of our model with 

endogenous concentrations. This version of our model befits available data of empirical market 

 
29 We believe that our cost function, Equation (18), is a concise one that captures essential effects within our 
model. To assure that all our functional form restrictions of the non-specialized model (exogenous concentration), 
which we deem basic and simple, hold in the specialized one (endogenous measure of industry concentration); 
however, we need to impose additional, technical, “second-order,” parameter restrictions. For brevity and 
simplicity, we do not impose these restrictions. We call the parameter values that make the specialized model 
abide by these restrictions plausible. We later confirm that the said technical restrictions are not empirically 
binding. That is, imposing these restrictions would not change our empirical results. In other words, the 
empirically estimated parameters fall within the plausible parameters range. 
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concentrations, such as the HHI. Popular empirical market concentration measures, such as 

HHI, are functions of rivals’ relative sizes. We use empirical techniques to control potential 

endogeneity of market concentration measures. 

Whether DAFMI fund net alphas and DAFMI size move in the same direction as 

DAFMI (FAFMI) concentration become empirical questions. Further, in cases where active 

fund management creates value, if fund net alphas and DAFMI size increase with DAFMI 

(FAFMI) concentration, our model predicts positive marginal direct benefits of efforts, for 

plausible parameter values. Both signs of benefits sensitivity to changing concentrations are 

plausible alternatives to a null hypothesis of no benefits of active fund managers’ efforts. 

In the following empirical analysis, we use alternative empirical measures of 

concentration to evaluate robustness to issues such as endogeneity. We also control for 

potential endogeneity of DAFMI size and alpha using lagged measures of concentration and 

the recursive demeaning estimator of PST. 

3 Empirical Study 

We analyze the concentration–net alpha and concentration–DAFMI size relations using 

international data of active equity mutual funds. We regard the U.S. AFMI as FAFMI, whose 

concentrations might affect another market’s DAFMI net alphas and size. This is because the 

U.S. has the largest AFMI, which influences global DAFMIs. We analyze how DAFMI 

concentrations and, more importantly, how the FAFMI concentration influence global DAFMI 

net alphas and sizes. 

3.1 Methodology 
We describe our concentration measures, fund net alpha estimates, and our econometric 

models in this section. 

Concentration Measures 

Following FSX, and many other empirical papers, we use the following three indices 

to measure AFMI concentrations. The indices 𝑖, 𝑗, and 𝑡 indicate the fund, the market, and the 

time, respectively. 

1. Herfindahl-Hirschman Index (HHI) 

 𝐻𝐻𝐼௝,௧ = ෍𝑀𝑆௜,௝,௧ଶெೕ,೟
௜ୀଵ . (28) 
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2. Normalized-Herfindahl-Hirschman Index (NHHI) 

 𝑁𝐻𝐻𝐼௝,௧ = 𝑀௝,௧ × 𝐻𝐻𝐼௝,௧ − 1𝑀௝,௧ − 1 . (29) 

3. 5-Fund-Index (5FI) 

 5𝐹𝐼௝,௧ = ෍𝑀𝑆௜,௝,௧ହ
௜ୀଵ . (30) 

Here 𝑀𝑆௜,௝,௧ is the market share of a fund in its market, measured as the fund’s asset under 

management divided by the total assets under management in its market, and the 𝑀𝑆௜,௝,௧’s in 

the 5𝐹𝐼௝,௧ are those of the largest five funds in market 𝑗. 𝑀௝,௧ is the number of funds in market 𝑗. As some markets tend to have a large number of funds and others tend to have a small number 

of funds in our sample period, we focus on the results of using NHHI as the market 

concentration measure because it adjusts the effect of the number of funds on market 

concentrations [Cremers, Nair, and Peyer (2008)]. For a robustness check, we redo the analyses 

using HHI and 5FI. 

Style-Matching Model and Net Alpha Estimation 

Following FSX, we develop our style-matching model to estimate funds’ passive 

benchmarks and then calculate fund net alphas. We use the following return-generating process: 

 𝑅௜,௝,௧ = 𝛼௜,௝,௧ + 𝑏௜,௝,௧ଵ 𝐹௝,௧ଵ + ⋯+ 𝑏௜,௝,௧௡ೕ 𝐹௝,௧௡ೕ, (31) 

where 𝑅௜,௝,௧ is the return net of management fees of an active fund, 𝛼௜,௝,௧ is the fund net alpha, 

and 𝐹௝,௧ଵ  through 𝐹௝,௧௡ೕ are the factors constructing the benchmark portfolio returns. We require 

the benchmark portfolio to be an international passive benchmark portfolio, so 𝐹௝,௧ଵ  through 𝐹௝,௧௡ೕ 
include returns net of management fees of domestic tradable index funds of different asset 

classes, a U.S. large-cap equity tradable index fund, and a domestic risk-free asset.30 We 

include a U.S. large-cap equity tradable index fund because it can be a potential factor in this 

 
30 After matching the styles of the active funds, we compare the fund net alphas of active funds from different 
categories. See, for example, discussions in Sharpe (1992) and Berk and Binsbergen (2015). 
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international passive benchmark.31,32 Coefficients 𝑏௜,௝,௧ଵ  through 𝑏௜,௝,௧௡ೕ  represent the loadings, 

and 𝑛௝ is the number of these factors in a particular market. In our algorithm, in each fund 

market, we minimize the variance of the residual when projecting 𝑅௜,௝,௧ on 𝐹௝,௧ଵ  through 𝐹௝,௧௡ೕ, 
and we constrain the coefficients 𝑏෠௜,௝,௧ଵ  through 𝑏෠௜,௝,௧௡ೕ  to be positive and sum up to one (as 

investors cannot short sell funds). We use a 5-year rolling window, from months 𝑡 − 60 to 𝑡 −1 , to estimate 𝑏෠௜,௝,௧ଵ  through 𝑏෠௜,௝,௧௡ೕ . The predicted value 𝑏෠௜,௝,௧ଵ 𝐹௝,௧ଵ + ⋯+ 𝑏෠௜,௝,௧௡ೕ 𝐹௝,௧௡ೕ  is the 

international passive benchmark at time 𝑡 , and we estimate 𝛼௜,௝,௧  by subtracting 𝑅௜,௝,௧  from 𝑏෠௜,௝,௧ଵ 𝐹௝,௧ଵ + ⋯+ 𝑏෠௜,௝,௧௡ೕ 𝐹௝,௧௡ೕ. We note that our empirical design of identifying passive benchmarks 

using matching tradable index funds fits our theoretical structure, which assumes the 

appropriate international passive benchmarks for each fund. 

Our style-matching method is similar to the style-matching model developed by Sharpe 

(1992). Also, as our passive benchmark is tradable, our net alpha estimation is consistent with 

the Berk and Binsbergen (2015) argument that to measure the value added by a fund, its 

performance should be compared to the next-best investment opportunity available to investors. 

Moreover, our style-matching passive benchmark is similar to the characteristic-based 

benchmark developed by Daniel, Grinblatt, Titman, and Wermers (1997). Our model is similar 

to the style-matching model of FSX except that ours contains an additional U.S. large-cap 

equity tradable index fund besides domestic tradable index funds. 

Concentration−Net Alpha Relation 

Pastor, Stambaugh, and Taylor (2015) (PST) develop a recursive demeaning (RD) 

estimator to control endogeneity bias. We adopt their method here to analyze the 

concentration−net alpha relation. The model we use is 

 𝛼ప,ఫ,௧തതതതതത = 𝛽ଵ𝑁𝐻𝐻𝐼ఫ,௧ିଵ஽തതതതതതതതതതതതത + 𝛽ଶ𝑁𝐻𝐻𝐼௧ିଵ௎ௌതതതതതതതതതതതത + 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠௧തതതതതതതതതതതതത + 𝜀ప,ఫ,௧തതതതത, (32) 

where the superscription D and US represent the domestic and the U.S. concentration measures, 

respectively. The bar above the variables represents the recursive forward-demeaning operator. 

 
31 In many of the markets that we study, during early years of the data sample, the U.S. large-cap equity index 
funds are the only U.S. equity index funds available to investors, due to their higher liquidity. Other index funds, 
such as the U.S. small-cap equity index funds and the U.S. all-equity index funds, were not available in these 
markets during those years. Also, we use the Vanguard 500 Index Fund as the U.S. large-cap equity tradable index 
fund, whose returns move closely with the returns of the U.S. stock market, and even move closely with the returns 
of global markets. Thus, this index fund can represent a factor in the international passive benchmark. 
32 A list of these index funds is in an online Data Appendix. 
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The recursive forward-demeaned value of a time-series variable 𝑋௧ is 

 𝑋௧തതത = 𝑋௧ − 1𝑇 − 𝑡 + 1෍𝑋௦,்
௦ୀ௧  (33) 

where 𝑇 is the total number of observations of this time-series.  

Following the literature [e.g., FSX, PST, and Spiegel and Zhang (2013)], we use the 

lagged values of the following variables as control variables: 

• Market Share, which is calculated as a fund’s net assets under management (AUM) divided 

by the sum of all funds’ net AUM in the same month; 

• Fund Volatility, which is the standard deviation of a fund’s net return in the last 12 months; 

• Fund Age, which is calculated as the number of months since the fund’s inception month; 

• DAFMI Size, which is the sum of funds’ net assets under management in a DAFMI market, 

divided by this market’s stock market capitalization. 

The variable Time Trend, which is equal to one for the first observation and increases by one 

over each month, is also included to control any time-trend effect in the fund net alphas. 

The recursive demeaning method that we use addresses the omitted fund fixed effect. 

An additional concern is that reverse causality could exist between fund market shares and fund 

net alphas because when fund net alphas are higher, corresponding asset values increase and 

funds attract investments, both leading to a higher market share. To address this endogeneity 

issue, we use the recursive backward-demeaned market share to instrument for the recursive 

forward-demeaned market share, following PST and FSX.33 For a robustness check, we also 

use the lagged market share with a constant term to instrument for the recursive forward-

demeaned market share, following Zhu (2018). 

Our model is similar to the concentration−net alpha model in FSX, except for the 

following:  1. whereas FSX studies how U.S. AFMI concentration affects U.S. AFMI net alphas, 

our international model uses the U.S. AFMI concentration as FAFMI concentration, and studies 

the associations of this FAFMI concentration with fund net alphas in other global DAFMI 

markets; 2. our model includes more fund-level controls, such as fund volatility and fund age. 

We also run the model in Equation (32) and estimate the coefficients at each DAFMI 

market. 

 
33 The recursive backward-demeaned value of a time-series variable 𝑋௧ is 𝑋௧ = 𝑋௧ − ଵ௧ିଵ∑ 𝑋௦௧ିଵ௦ୀଵ . PST shows that 
this method can address both the omitted fund fixed effect issue and the reverse causality issue. 
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Concentration−DAFMI Size Relation 

Our panel regression model is 

 𝐷𝐴𝐹𝑀𝐼_𝑆𝑖𝑧𝑒௝,௧ = 𝛽଴ + 𝛽ଵ𝑁𝐻𝐻𝐼௝,௧ିଵ஽ + 𝛽ଶ𝑁𝐻𝐻𝐼௧ିଵ௎ௌ + 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠௧ + 𝜀௝,௧, (34) 

where 𝐷𝐴𝐹𝑀𝐼_𝑆𝑖𝑧𝑒௝,௧ is the DAFMI size of each global market. We include lagged DAFMI 

Size, Time Trend, and market fixed effects as control variables. We also perform the model in 

Equation (34) at each DAFMI market and estimate the coefficients without market fixed effects 

but with Newey-West estimates of standard error. 

3.2 Data 

We obtain our data from the Global Databases of Morningstar Direct. Our sample 

contains 30 active equity mutual fund markets. Due to data availability, most of these markets 

have observations from 1999, so we set our sample period from the beginning of 1999 to the 

end of 2015 and use monthly data. 34  Our online Data Appendix supplements the data 

description below. 

The active equity mutual fund filter and the sample development method are similar to 

those in FSX. We use keywords in Morningstar to identify active equity mutual funds. We 

require the mutual funds to be open-ended and non-restricted. In each mutual fund market 

dataset, we exclude index funds, enhanced index funds, funds of funds, and in-house funds of 

funds. Also, we require funds to be classified as “Equity” in the Global Broad Category Group, 

and we further identify equity funds based on their Morningstar Category. Next, we use the 

fund identification provided by Morningstar to aggregate fund share class-level information to 

fund-level information. To have sufficient observations of net alphas for each fund to mitigate 

measurement error, we require each of our active equity mutual funds to have at least ten years’ 

return observations, as we use a five-year rolling window to estimate fund net alphas.35  

The index funds used in the style-matching model are also from Morningstar. We 

require index funds to have no missing observations in our sample period so that the style-

matching model is consistent and stable. The information of the risk-free rate of each market 

is provided by the International Financial Statistics on the official website of International 

Monetary Fund (IMF). 

For each market, the DAFMI size is calculated as total funds’ net assets under 

 
34 As we use a 5-year rolling window to estimate fund net alphas, the tests contain observations from the beginning 
of 2004 to the end of 2015. 
35 We also omit some rare cases in which there is a gap with more than five years’ return observations missing. 



 

34 

management divided by domestic stock market capitalization, which is a relative size measure 

and which is consistent with FSX and PST. Each market’s fund net assets under management 

and stock market capitalization are also provided by the Global Databases of Morningstar 

Direct. 

All the fund returns are net of administrative and management fees and other costs taken 

out of fund assets; thus, the fund alphas we estimate are net alphas (net of fees). For comparison 

purpose and to be consistent with our international model, we measure the fund returns, risk-

free returns, fund net assets under management, and stock market capitalization in U.S. dollars. 

We define a fund’s age as the number of months since the fund’s inception month, which is 

also provided by the Global Databases of Morningstar Direct.36 

Table 1 reports the summary statistics of these global active equity mutual fund markets. 

Panel A presents the summary statistics of market-level variables. It shows that the average 

DAFMI Size greatly varies across the global markets, from around 6.5% in Canada to 0.015% 

in Germany. The market concentration also greatly varies across the global markets. The 

average NHHI value ranges from around 0.36 in Austria to around 0.01 in Taiwan. Panel B 

shows the summary statistics of fund-level variables. The average R-squared of the style-

matching model are quite high in each market (ranging from 97% in Chile to 83% in Mexico), 

with a low standard deviation in each market. This result indicates that our style-matching 

benchmarks perform well in tracking the style of the active equity mutual funds, so it is unlikely 

that our style-matching models omit relevant factors in developing the passive benchmarks. 

Also, most DAFMI markets’ average Net Return and Net Alphas are slightly positive with large 

standard deviations. In most markets, the average fund market share is small, showing that 

there are no dominating funds in these markets, and fund volatilities are large compared to fund 

returns. Asian markets (e.g., mainland China, India, Japan, Korea, and Thailand) tend to have 

younger funds, whereas European markets (e.g., France, Germany, and the United Kingdom) 

tend to have older funds.  

 
36 The inception date information of funds in the Israel market is not available in the Global Databases of 
Morningstar Direct, so for funds in this market, we use the month of the first observation of a fund’s returns as 
this fund’s inception month. 
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Table 1 Summary Statistics. 
Monthly data is used. Panel A reports the summary statistics for market-level data, and Panel B reports those for 
fund-level data. We report the number of observations, mean, and standard deviation of each variable. DAFMI 
Size is the sum of funds’ net assets under management in a DAFMI market divided by this market’s stock market 
capitalization, and it is in decimal. NHHI, HHI, and 5FI are Normalized-Herfindahl-Hirschman Index, Herfindahl-
Hirschman Index, and the 5-Fund-Index, respectively, and they are in decimals. Net Return and Net Alpha are 
fund net return and fund net alpha, respectively, and they are in percentages, and net of administrative and 
management fees and other costs taken out of fund assets. The Style-Matching Model R2 is the R2 when estimating 
the style-matching model, and it is in decimal. Market Share is calculated as a fund’s net assets under management 
(AUM) divided by the sum of all funds’ net AUM in the same month. 
 
Panel A: Summary statistics for market-level data 

Global Market
Number
of Funds

Number of
Observations

Mean Standard
Deviation

Number of
Observations

Mean Standard
Deviation

Number of
Observations

Mean Standard
Deviation

Number of
Observations

Mean Standard
Deviation

Australia 257 144 0.0374 0.0065 144 0.0180 0.0048 144 0.0212 0.0056 144 0.2325 0.0404
Austria 7 144 0.0178 0.0062 144 0.3612 0.2337 144 0.4164 0.2322 144 0.8918 0.0823
Belgium 20 144 0.0020 0.0022 144 0.1224 0.1193 144 0.1744 0.1388 144 0.6914 0.1673
Brazil 102 144 0.0017 0.0020 144 0.0237 0.0159 144 0.0283 0.0189 144 0.2785 0.0971
Canada 299 144 0.0651 0.0049 144 0.0127 0.0007 144 0.0149 0.0012 144 0.1818 0.0103
Chile 25 144 0.0090 0.0130 144 0.0248 0.0082 144 0.0530 0.0168 144 0.3888 0.0771
China (Mainland) 4 144 0.0026 0.0011 139 0.1039 0.0637 144 0.2193 0.2031 144 0.7666 0.2222
Denmark 24 144 0.0128 0.0039 144 0.0507 0.0158 144 0.0760 0.0223 144 0.5091 0.0780
Finland 27 144 0.0077 0.0051 144 0.1014 0.0504 144 0.1804 0.0898 144 0.7198 0.2124
France 180 144 0.0109 0.0033 144 0.0251 0.0100 144 0.0286 0.0107 144 0.2908 0.0488
Germany 89 144 0.0001 0.0001 144 0.0630 0.0321 144 0.0730 0.0357 144 0.5237 0.1016
Greece 14 144 0.0180 0.0061 144 0.1530 0.2439 144 0.1992 0.2373 144 0.7045 0.1416
Hong Kong 14 144 0.0008 0.0005 130 0.1330 0.1003 144 0.2812 0.2675 144 0.8170 0.1219
India 38 144 0.0034 0.0023 144 0.0837 0.1337 144 0.1713 0.2265 144 0.5272 0.3156
Israel 82 144 0.0189 0.0137 144 0.0169 0.0070 144 0.0257 0.0068 144 0.2572 0.0566
Italy 47 144 0.0063 0.0030 144 0.0268 0.0119 144 0.0397 0.0180 144 0.3318 0.0944
Japan 317 144 0.0034 0.0018 144 0.0976 0.1387 144 0.0995 0.1385 144 0.3622 0.1757
Korea 210 144 0.0580 0.0295 144 0.0162 0.0044 144 0.0186 0.0058 144 0.2115 0.0518
Mexico 29 144 0.0003 0.0001 144 0.1466 0.1146 144 0.1789 0.1293 144 0.6584 0.1391
Netherlands 15 144 0.0021 0.0041 144 0.0841 0.0763 144 0.1462 0.0979 144 0.7077 0.1512
Norway 45 144 0.0267 0.0099 144 0.0573 0.0247 144 0.0770 0.0260 144 0.5101 0.0819
Portugal 17 144 0.0022 0.0016 117 0.0942 0.0364 117 0.1483 0.0320 117 0.7513 0.0601
Singapore 13 144 0.0015 0.0009 144 0.1785 0.1053 144 0.2974 0.1723 144 0.8351 0.1044
South Africa 78 144 0.0197 0.0039 144 0.0466 0.0111 144 0.0559 0.0147 144 0.4269 0.0559
Spain 85 144 0.0027 0.0025 144 0.0237 0.0086 144 0.0318 0.0083 144 0.2977 0.0400
Sweden 90 144 0.0203 0.0097 144 0.0441 0.0484 144 0.0665 0.0819 144 0.4012 0.2286
Switzerland 118 144 0.0063 0.0030 144 0.0242 0.0190 144 0.0321 0.0244 144 0.2877 0.1122
Taiwan 98 144 0.0212 0.0191 144 0.0094 0.0011 144 0.0160 0.0006 144 0.1841 0.0086
Thailand 132 144 0.0141 0.0075 144 0.0201 0.0055 144 0.0254 0.0060 144 0.2713 0.0392
United Kingdom 379 144 0.0073 0.0054 144 0.0438 0.0605 144 0.0525 0.0786 144 0.3510 0.2222

DAFMI Size NHHI HHI 5FI

 
  



 

36 

Panel B: Summary statistics for fund-level data 

Global Market
Number of

Observations
Mean Standard

Deviation
Number of

Observations
Mean Standard

Deviation
Number of

Observations
Mean Standard

Deviation
Number of

Observations
Mean Standard

Deviation
Number of

Observations
Mean Standard

Deviation
Number of

Observations
Mean Standard

Deviation
Australia 28,197       0.7645 7.1380 28,197       0.2154 1.9923 28,197       0.9285 0.0790 27,951       0.0044 0.0092 28,197       6.6662 2.5895 28,197       156.9449 78.0510
Austria 571            1.1370 8.5657 571            0.1817 2.2183 571            0.9018 0.0416 318            0.2302 0.3016 571            6.8843 3.6184 571            193.8091 47.3629
Belgium 2,690         0.7719 6.1115 2,690         0.2272 1.8962 2,690         0.8959 0.0799 1,949         0.0642 0.0909 2,690         5.2739 2.6627 2,690         167.2743 94.7546
Brazil 11,283       0.3186 10.0539 11,283       0.2377 5.0543 11,283       0.9021 0.0835 11,283       0.0049 0.0131 11,283       8.6979 3.5834 11,283       154.4623 75.3139
Canada 34,810       0.5163 6.1113 34,810       0.0100 1.9951 34,810       0.8877 0.1086 32,147       0.0038 0.0070 34,810       5.4672 2.4536 34,810       201.7699 132.5100
Chile 1,500         1.2362 6.0915 1,500         0.1442 1.0964 1,500         0.9724 0.0273 1,500         0.0292 0.0213 1,500         6.0348 2.1127 1,500         177.1000 86.3065
China (Mainland) 325            0.7791 7.7435 325            0.1558 2.4760 325            0.9479 0.0517 325            0.1131 0.0710 325            7.6592 2.7960 325            102.8031 24.3654
Denmark 2,773         1.2043 6.3738 2,773         0.1216 1.3192 2,773         0.9486 0.0748 2,726         0.0333 0.0389 2,773         5.7295 2.5818 2,773         191.8370 89.3553
Finland 3,356         0.8177 7.0131 3,356         0.0488 1.7025 3,356         0.9293 0.0752 1,927         0.0695 0.0918 3,356         6.3940 2.7714 3,356         163.8603 78.1918
France 22,324       0.5189 6.2557 22,324       0.1273 1.9821 22,324       0.8749 0.1212 21,627       0.0049 0.0116 22,324       5.7187 2.3752 22,324       195.1456 98.0176
Germany 10,630       0.7717 6.8077 10,630       0.1068 2.0592 10,630       0.9066 0.1017 9,348         0.0144 0.0295 10,630       6.1183 2.9736 10,630       226.7954 169.4476
Greece 1,656         -0.4618 9.2689 1,656         0.0328 2.0276 1,656         0.9410 0.0463 982            0.0920 0.1236 1,656         7.5792 3.4792 1,656         142.0888 67.2920
Hong Kong 2,134         0.8363 6.3093 2,134         0.1679 2.1306 2,134         0.8640 0.1671 1,417         0.0860 0.1046 2,134         5.6537 2.4568 2,134         145.2816 74.5456
India 11,090       1.2264 8.5167 11,090       0.3846 2.7072 11,090       0.8884 0.0931 3,186         0.0138 0.0207 11,090       8.1268 3.0045 11,090       138.6034 53.6679
Israel 8,466         0.6473 6.9214 8,466         0.1620 2.9836 8,466         0.8287 0.1345 8,466         0.0098 0.0132 8,466         6.2083 2.7682 8,466         155.5122 54.7284
Italy 5,601         0.2624 6.9582 5,601         0.1239 1.2957 5,601         0.9547 0.0569 5,236         0.0165 0.0201 5,601         6.2208 2.7494 5,601         160.6245 59.0760
Japan 35,633       0.3950 5.0012 35,633       0.0656 2.1802 35,633       0.8585 0.1433 35,574       0.0029 0.0196 35,633       4.6409 1.8697 35,633       138.5075 61.9765
Korea 16,819       0.5343 7.4214 16,819       0.0128 1.8854 16,819       0.9491 0.0413 16,769       0.0020 0.0050 16,819       6.8830 3.3583 16,819       109.7323 30.4874
Mexico 3,320         0.5156 6.6944 3,320         0.0493 2.6913 3,320         0.8277 0.1744 2,896         0.0343 0.0627 3,318         5.9836 2.6956 3,320         202.8283 71.8646
Netherlands 1,876         0.6674 6.7878 1,876         0.1517 2.4881 1,876         0.8732 0.1522 1,425         0.0757 0.0821 1,876         6.0162 2.7520 1,876         207.7729 142.1011
Norway 5,738         1.0073 8.4386 5,738         0.0864 2.0225 5,738         0.9316 0.0703 5,588         0.0223 0.0344 5,738         7.6985 3.2807 5,738         171.9840 71.9108
Portugal 1,778         0.1448 7.7343 1,778         0.0488 2.1276 1,778         0.9292 0.0242 1,739         0.0646 0.0737 1,778         7.0545 2.3312 1,778         172.8661 38.0430
Singapore 1,710         0.8435 6.4475 1,710         0.0121 1.3539 1,710         0.9375 0.0551 1,285         0.1016 0.1434 1,710         5.5903 2.9420 1,710         188.2772 72.5187
South Africa 8,995         0.8079 7.2570 8,995         0.1223 2.2113 8,995         0.9137 0.0712 8,589         0.0142 0.0265 8,995         6.8175 2.3513 8,995         159.0649 107.1109
Spain 9,962         0.5168 7.0045 9,962         0.0025 1.2959 9,962         0.9559 0.0758 9,734         0.0115 0.0170 9,962         6.2243 2.9537 9,962         157.4677 59.5060
Sweden 11,197       1.0388 7.2233 11,197       0.0449 1.5148 11,197       0.9468 0.0620 9,015         0.0132 0.0199 11,003       6.5627 2.8655 11,003       177.5179 89.7282
Switzerland 12,788       0.7914 5.2876 12,788       0.0479 1.9316 12,788       0.8940 0.1129 11,708       0.0088 0.0157 12,788       4.7589 2.0713 12,788       163.4837 104.7498
Taiwan 7,308         0.4173 5.5388 7,308         0.1297 2.4830 7,308         0.8365 0.0665 7,308         0.0085 0.0087 7,308         5.8419 2.3938 7,308         183.4614 49.5105
Thailand 14,135       1.0660 6.7499 14,135       0.1447 1.5856 14,135       0.9479 0.0414 14,127       0.0054 0.0107 14,135       6.6426 2.0872 14,135       139.0712 52.6587
United Kingdom 48,939       0.6505 5.4471 48,939       0.0118 1.5585 48,939       0.9206 0.0774 31,019       0.0039 0.0144 48,939       4.8214 2.1785 48,939       226.4449 146.5886

Fund AgeNet Return Net Alpha Stlye-Matching Model  R 2 Market Share Fund Volatility
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Figure 2 illustrates the monthly NHHI of the U.S. active equity mutual fund market 

from January 1999 to December 2015. It shows that the concentration of this U.S. market 

decreases substantially from January 1999 to the end of 2003. After that, it started to increase 

gradually and decreased again, reaching the lowest point at the current time. 

 

Figure 2 NHHI of the U.S. Active Equity Mutual Fund Market. 
The U.S. NHHI value is in decimals. Sample period is from January 1999 to December 2015. 

 

3.3 Empirical Results 

Table 2 reports the empirical results of the concentration−net alpha relation. We find 

that, on average, DAFMI net alphas are significantly negatively associated with DAFMI NHHI 

and U.S. NHHI. However, the absolute value of the coefficient of U.S. NHHI is much larger 

than that of DAFMI NHHI, showing that a small change in the concentration in the U.S. AFMI, 

say 0.01 change in U.S. NHHI, has a much larger impact on the DAFMI net alphas than the 

same magnitude change in DAFMI NHHI [regarding model specification (3), 136.5698/0.4526 

≈ 302 times in magnitude]. If we consider the values of the standardized coefficients, i.e., the 

t-statistics, we find that the absolute value of the t-statistics of U.S. NHHI is 13.96, which is 

still three times larger than that of DAFMI NHHI, 4.64. 

Also, DAFMI NHHI does not have much power in explaining DAFMI net alphas, as 

illustrated by the small R-squared in model specification (1). After we add U.S. NHHI in model 

specifications (2) and (3), these models’ explanation power improves, as the R-squareds of 

these two model specifications almost triple.41 Further including lagged Market Share in the 

 
41 As shown in the literature, fund net alphas, or risk-adjusted abnormal returns, are difficult to explain, so the 
small R-squared values of the models in Table 2 are consistent with the findings in the literature. 
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controls reduces the sample size by more than 13%, and reduces the R-squared and adjusted 

R-squared (as we use the instrumental variable regression here to instrument for the forward-

demeaned market share with its backward-demeaned value); but we still find consistent results 

in the coefficients of DAFMI NHHI and U.S. NHHI. If we use HHI and 5FI as concentration 

measures, we find consistent results, though DAFMI 5FI is not significant. 

In unreported robustness tests, we instrument for the forward-demeaned market share 

with the lagged market share and a constant term, following Zhu (2018). Also, we test model 

(32) in Table 2 by using fund fixed-effect regressions instead of the RD method. In addition, 

we extend the sample period to earlier years, starting from 1997, when quite a few markets do 

not have observations, and redo the tests in Table 2. We find consistent results in all these tests. 

Our framework provides an appealing explanation for our interesting finding that U.S. 

NHHI has larger impact on DAFMIs net alphas than DAFMI NHHI has. Changes in U.S. AFMI 

concentration affect the alpha productivity and effort costs of searching investment 

opportunities in the U.S. stock markets; consequently, by a substitution effect, the changes 

affect the incentives of managers to search for opportunities in global stock markets. As the 

U.S. AFMI is much larger than global DAFMI markets, the impact of the U.S. AFMI 

concentration changes would be larger than that of DAFMIs concentration changes. 

Table 3 reports the empirical results of the concentration−DAFMI size relation. We 

find that, on average, DAFMI size is significantly negatively associated with U.S. NHHI but 

insignificantly associated with DAFMI NHHI. In particular, 0.01 increase in U.S. NHHI, on 

average, decreases DAFMI size (relative to the domestic stock market capitalization) by more 

than 10 basis points, as shown in model specifications (2) and (3). As the global stock markets’ 

capitalizations are huge, this represents an economically significant decrease in DAFMI size 

measured in dollar. Also, the R-squared and adjusted R-squared of each model specification in 

Table 3 are close to 90%, showing that DAFMI size is well explained by the models. When the 

concentrations are measured by HHI or 5FI, we find consistent results. 

In unreported tests using a panel VAR model, regarding DAFMI size and DAFMI 

concentration measures as endogenous and the U.S. concentration measures as exogenous, we 

find that DAFMI size has insignificant impact on DAFMI concentration measures. Thus, 

results in Table 3 are not affected by bias created by the reverse causality between DAFMI size 

and DAFMI concentration measures.  
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Table 2 Concentrations and Fund Net Alpha. 
The dependent variable is Net Alpha and is in percentage. The variables are recursively forward-demeaned. 
DAFMI Size is the sum of funds’ net assets under management in a DAFMI market divided by this market’s stock 
market capitalization, and it is in decimal. DAFMI and U.S. NHHI, HHI, and 5FI are Normalized-Herfindahl-
Hirschman Index, Herfindahl-Hirschman Index, and the 5-Fund-Index of the corresponding market, respectively, 
and they are in decimals. Time Trend is equal to one for the first observation and increases by one over each month. 
For each fund, Market Share is calculated as a fund’s net assets under management (AUM) divided by the sum of 
all funds’ net AUM in the same month. Fund Volatility is the standard deviation of a fund’s net return in the last 
12 months. Fund Age is calculated as the number of months since the fund’s inception month. Standard errors are 
clustered by fund and presented in parentheses. The symbols ***, **, and * represent the 1%, 5%, and 10% 
significant level, respectively, in a two-tail t-test. 

(1) (2) (3) (4) (5) (6)
Lagged DAFMI NHHI -0.1708* -0.4526*** -0.7435***

(0.0885) (0.0875) (0.1604)
Lagged U.S. NHHI -129.5473*** -136.5698*** -137.8691***

(6.3192) (6.4891) (9.8781)
Lagged DAFMI HHI -0.7267***

(0.2179)
Lagged U.S. HHI -137.8569***

(9.5359)
Lagged DAFMI 5FI -0.1680

(0.1589)
Lagged U.S. 5FI -12.9864***

(0.8676)
Lagged Market Share 0.3988 1.0544 1.0427

(3.9721) (3.9514) (4.1441)
Lagged Fund Volatility 0.0176*** 0.0344*** 0.0340*** 0.0325*** 0.0325*** 0.0335***

(0.0025) (0.0026) (0.0026) (0.0029) (0.0029) (0.0029)
Lagged Fund Age 0.1982*** 0.1654*** 0.1715*** 0.1788*** 0.1794*** 0.1788***

(0.0282) (0.0290) (0.0288) (0.0301) (0.0301) (0.0304)
Lagged DAFMI Size 0.4154 -0.5494 -0.5533 -1.2676 -1.2699 -1.7595*

(0.7707) (0.7387) (0.7360) (0.9190) (0.9305) (0.9035)
Time Trend -0.2009*** -0.1703*** -0.1768*** -0.1845*** -0.1851*** -0.1850***

(0.0285) (0.0293) (0.0291) (0.0304) (0.0305) (0.0308)

Number of Observations 325,318 325,318 325,318 282,251 282,251 282,251
R-squared 0.0009 0.0024 0.0026 0.0025 0.0024 0.0024
Adjusted R-squared 0.0009 0.0024 0.0026 0.0025 0.0024 0.0023  
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Table 3 Concentrations and DAFMI Size. 
The dependent variable is DAFMI Size. DAFMI Size is the sum of funds’ net assets under management in a 
DAFMI market divided by this market’s stock market capitalization, and it is in decimal. DAFMI and U.S. NHHI, 
HHI, and 5FI are Normalized-Herfindahl-Hirschman Index, Herfindahl-Hirschman Index, and the 5-Fund-Index 
of the corresponding market, respectively, and they are in decimals. Time Trend is equal to one for the first 
observation and increases by one over each month. Market fixed effects are controlled. Standard errors are 
clustered by market and presented in parentheses. The symbols ***, **, and * represent the 1%, 5%, and 10% 
significant level, respectively, in a two-tail t-test. 

(1) (2) (3) (4) (5)
Lagged DAFMI NHHI -0.0017 -0.0020

(0.0015) (0.0016)
Lagged U.S. NHHI -0.1213** -0.1733**

(0.0469) (0.0654)
Lagged DAFMI HHI -0.0016

(0.0010)
Lagged U.S. HHI -0.1932**

(0.0751)
Lagged DAFMI 5FI -0.0011*

(0.0006)
Lagged U.S. 5FI -0.0167**

(0.0063)
Lagged DAFMI Size 0.9390*** 0.9384*** 0.9373*** 0.9361*** 0.9353***

(0.0120) (0.0122) (0.0126) (0.0131) (0.0133)
Time Trend -0.0000 -0.0000 -0.0000* -0.0000* -0.0000*

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Constant 0.0014** 0.0022*** 0.0033** 0.0037** 0.0051**

(0.0006) (0.0008) (0.0013) (0.0015) (0.0020)

Number of Observations 4,268 4,320 4,268 4,290 4,290
R-squared 0.8878 0.8876 0.8880 0.8880 0.8878
Adjusted R-squared 0.8877 0.8875 0.8879 0.8879 0.8877  
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To test whether DAFMI markets’ fund net alphas and size are both significantly 

associated with the concentration measures, we conduct multiple hypothesis tests on whether 𝛽ଵ in Equation (32) and 𝛽ଵ in Equation (34) are both significantly different from zero, and on 

whether 𝛽ଶ in Equation (32) and 𝛽ଶ in Equation (34) are both significantly different from zero. 

The tests are based on the p-values from model specification (4) in Table 2 and model 

specification (3) in Table 3. As the p-values are estimated based on t-test statistics, multiple 

hypothesis methods assuming nonnegative correlation are appropriate. Thus, we choose the 

Sidak method, a one-step method, and the Holland-Copenhaver method, a step-down method 

[see the discussions in Newson and the ALSPAC Study Team (2003)]. The uncorrected critical 

p-value is set to be 0.1, and then we calculate the corrected critical p-values based on the Sidak 

method and the Holland-Copenhaver method. 

Results in Table 4 show that DAFMI markets’ fund net alphas and size both 

significantly decrease with U.S. NHHI because both 𝛽ଶ = 0 in Equation (32) and 𝛽ଶ = 0 in 

Equation (34) are rejected, in the Sidak method and in the Holland-Copenhaver method. In fact, 

if we set the uncorrected critical p-value to 0.05 instead of 0.1, both 𝛽ଶ in Equation (32) and 𝛽ଶ in Equation (34) still pass the multiple hypothesis tests. Thus, we are 95% confident that 

these two significant results are real. 

On the other hand, we cannot be 90% confident that DAFMI markets’ fund net alphas 

and size both significantly decrease with DAFMI NHHI because 𝛽ଵ in Equation (34) does not 

pass the multiple hypothesis tests. We find consistent test results where concentrations are 

measured by HHI and 5FI. 

The findings that, on average, DAFMI markets’ fund net alphas and size, both, decrease 

with the U.S. AFMI concentration, is consistent with the predictions of our theoretical model, 

under both the exogenous concentration framework and the endogenous concentration 

framework. Based on our empirical and theoretical results, we conclude that higher 

concentrations in the U.S. AFMI induce smaller aggregate impacts of induced optimal effort-

level changes on gross alphas than on costs. In other words, higher U.S. AFMI concentration 

induces lower DAFMI direct benefits.  
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Table 4 Results of Multiple Hypothesis Tests. 
This table presents the results of the tests on whether Net Alpha and DAFMI Size are both significantly associated 
with DAFMI concentration measures and whether they are both significantly associated with U.S. concentration 
measures. The tests are based on the p-values from model specifications (4), (5), (6) in Table 2 and (3), (4), (5) 
Table 3. The uncorrected critical p-value is set to be 0.10. The corrected p-value and the rejection decision of the 
Sidak method and the Holland-Copenhaver method are presented. 

Coefficient P-Value Critical P-Value Reject Critical P-Value Reject
Net Alpha--Lagged DAFMI NHHI -0.7435 0.0000 0.0513 Yes 0.0513 Yes
DAFMI Size--Lagged DAFMI NHHI -0.0020 0.2228 0.0513 No 0.1000 No

Net Alpha--Lagged U.S. NHHI -137.8691 0.0000 0.0513 Yes 0.0513 Yes
DAFMI Size--Lagged U.S. NHHI -0.1561 0.0122 0.0513 Yes 0.1000 Yes

Coefficient P-Value Critical P-Value Reject Critical P-Value Reject
Net Alpha--Lagged DAFMI HHI -0.7267 0.0009 0.0513 Yes 0.0513 Yes
DAFMI Size--Lagged DAFMI HHI -0.0015 0.1582 0.0513 No 0.1000 No

Net Alpha--Lagged U.S. HHI -137.8569 0.0000 0.0513 Yes 0.0513 Yes
DAFMI Size--Lagged U.S. HHI -0.1751 0.0158 0.0513 Yes 0.1000 Yes

Coefficient P-Value Critical P-Value Reject Critical P-Value Reject
Net Alpha--Lagged DAFMI 5FI -0.1680 0.2902 0.0513 No 0.1000 No
DAFMI Size--Lagged DAFMI 5FI -0.0010 0.0797 0.0513 No 0.0513 No

Net Alpha--Lagged U.S. 5FI -12.9864 0.0000 0.0513 Yes 0.0513 Yes
DAFMI Size--Lagged U.S. 5FI -0.0149 0.0087 0.0513 Yes 0.1000 Yes

Panel C: 5FI Results Sidak Holland–Copenhaver

Panel A: NHHI Results Sidak Holland–Copenhaver

Panel B: HHI Results Sidak Holland–Copenhaver

 
  



 

43 

Table 5 reports the results of the concentrations−net alpha relations and the 

concentrations−DAFMI size relations in Equations (32) and (34), respectively, for individual 

DAFMI markets.42 We show only the results of relevant coefficients. We also conduct similar 

multiple hypothesis tests with the same critical p-values and check, for each individual DAFMI 

market, whether 𝛽ଵ in Equation (32) and 𝛽ଵ in Equation (34) are both significantly different 

from zero and whether 𝛽ଶ  in Equation (32) and 𝛽ଶ  in Equation (34) are both significantly 

different from zero. The statistics of multiple hypothesis tests are unreported for brevity. 

We find that in six (one) DAFMI markets, Austria, Germany, Israel, Japan, Spain, and 

the United Kingdom (Australia), on average, fund net alphas and sizes are both significantly 

negatively (positively) associated with U.S. NHHI, whereas nine DAFMI markets’ fund net 

alphas and size are both insignificantly associated with U.S. NHHI. On the other hand, on 

average, in only one (two) DAFMI market, Finland (Chile and Taiwan), fund net alpha is 

significantly negatively (positively) associated with U.S. NHHI, but its size is significantly 

positively (negatively) associated with U.S. NHHI. These results show that, in general, DAFMI 

markets’ fund net alphas and size are more likely to move in the same direction when U.S. 

NHHI changes, than to move in opposite directions. This finding is consistent with the 

prediction of our theoretical model under both the exogenous concentration framework and the 

endogenous concentration framework. 

Regarding the association with the DAFMI NHHI, we find that in only three (one) 

DAFMI markets, Germany, Greece, and Singapore (Australia) fund net alphas and size are 

both significantly negatively (positively) associated with DAFMI NHHI. Also, five DAFMI 

markets’ fund net alphas and size are both insignificantly associated with DAFMI NHHI. On 

the other hand, on average, in three (one) DAFMI markets, Hong Kong, Sweden, and the 

United Kingdom (Spain), fund net alpha is significantly positively (negatively) associated with 

DAFMI NHHI, but size is significantly negatively (positively) associated with DAFMI NHHI. 

In unreported robustness checks, we replace NHHI by HHI and 5FI, and redo these 

tests. We find consistent results. 

The current low and probably decreasing concentration in the U.S. AFMI, given the 

tradeoff of higher U.S. AFMI concentration is not changed, would benefit (harm) other global 

DAFMI markets whose fund net alphas and size are, on average, negatively (positively) 

associated with the U.S. NHHI. Our results show that, on average, other global DAFMI markets 

 
42 When testing the concentrations−net alpha relation for each DAFMI market, we do not include the fund market 
share as a control because it is insignificant in the tests and including it significantly reduces the sample sizes of 
some small markets. We exclude the fund market share in the controls to reduce noise in the estimations. 
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in our sample are likely to benefit from the decreasing concentration in the U.S. AFMI. 

Robustness Check:  Regarding European Union Markets as One DAFMI Market 

Investors in the European Union (EU) might invest in active funds of any of the EU 

member countries with low transaction costs due to the policies, such as the same currency 

used in EU and the low capital control inside the EU. Thus, we regard the EU markets in our 

sample as one DAFMI market, calculate its concentration measures and DAFMI size, and redo 

our analyses. The EU markets in our sample include Austria, Belgium, Denmark, Finland, 

France, Germany, Greece, Italy, Netherlands, Portugal, Spain, Sweden, and the United 

Kingdom, and all of these 13 countries joined the EU before the start of our sample period. 

After this combination, we have a total of 18 DAFMI markets in our sample. In 

unreported tests, we redo our analyses in Table 2 and Table 3, and find consistent results in the 

signs, magnitudes, and significances of the coefficients. 

In unreported tests, we also perform the analyses of Table 5 on the EU market, and 

check how its fund net alphas and DAFMI size change with concentrations. We find that in the 

EU market, the DAFMI net alphas and size are both significantly and negatively associated 

with DAFMI NHHI and U.S. NHHI (based on results of similar multiple hypothesis tests), and 

the effect of a small change in U.S. NHHI are much larger than the effects of the same 

magnitude change in DAFMI NHHI. These results also imply that we are not in one global 

village, consistent with what we have found before. 

We do not combine other DAFMI markets. For example, we do not combine the Asian 

markets into one DAFMI market. This is because large transaction costs would discourage 

investors in one market (e.g., mainland China) from investing in active funds operating in 

another market (e.g., Japan), making each of these DAFMI markets an individual market in 

practice.  
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Table 5 Results of Each Market. 
Panel A shows the results of the concentrations−net alpha relations for each DAFMI market, and the dependent 
variable is fund Net Alpha. Standard errors are clustered by fund and presented in parentheses. Panel B shows the 
results of the concentrations−DAFMI size relations for each market, and the dependent variable is DAFMI Size. 
Newey-West estimates of standard error with a maximum lag of 12 months are used and presented in parentheses. 
In both panels, concentrations are measured by NHHI, and only the coefficients of the DAFMI NHHI and the U.S. 
NHHI are reported. Control variables in the tests of Panel A and B are the same as those in model specification 
(3) of Table 2 and Table 3, respectively. Control variables’ coefficients are omitted here for brevity. The symbols 
***, **, and * represent the 1%, 5%, and 10% significant level, respectively, in a two-tail t-test. 

Panel A: Results of concentrations−net alpha relations 

Global Market Coefficient Standard Error Coefficient Standard Error
Australia 125.9292*** (16.5322) 309.5224*** (50.9527) 28,029 0.0438
Austria 5.1260*** (0.9187) -2,647.3727*** (391.4927) 564 0.0556
Belgium 1.8650*** (0.6542) -9.1151 (49.7206) 2,668 0.0073
Brazil 0.5451 (3.8677) -96.1587* (52.2873) 11,219 0.0065
Canada -181.1875*** (22.0536) -173.1231*** (26.7814) 34,675 0.0103
Chile -66.6638** (25.2895) 560.1942** (223.1512) 1,475 0.0545
China (Mainland) -16.9914 (31.0978) -1,026.2887 (821.8890) 321 0.0383
Denmark 4.1505 (4.5418) -61.8472 (67.0540) 2,763 0.0123
Finland 4.0763*** (0.7630) -250.5316*** (41.9122) 3,329 0.0216
France 6.0672*** (1.7516) 113.6250*** (18.5782) 22,144 0.0106
Germany -4.2801*** (0.7191) -185.8201*** (34.0415) 10,541 0.0124
Greece -1.3648*** (0.3569) -54.5851 (78.0598) 1,639 0.0134
Hong Kong 0.5265** (0.2475) -31.2086 (108.8858) 2,125 0.0132
India 4.3950*** (0.8540) 55.8574 (53.6853) 10,981 0.0257
Israel 44.3736*** (5.5980) -555.0263*** (61.6503) 8,384 0.0306
Italy -7.7472*** (2.3477) -167.6262*** (50.5915) 5,554 0.0037
Japan -0.6904*** (0.2309) -155.3339*** (17.8868) 35,407 0.0098
Korea 99.0272*** (7.2094) -131.6193*** (39.3773) 16,609 0.0235
Mexico -1.2081 (1.7108) -595.0665*** (116.2500) 3,289 0.0393
Netherlands -9.7028* (5.0168) -14.5984 (51.6035) 1,861 0.0164
Norway -23.9439*** (2.8096) -347.1046*** (38.0491) 5,724 0.0280
Portugal 29.3836*** (4.2338) -962.4869*** (85.5555) 1,761 0.0504
Singapore -0.8709** (0.3721) 50.6522 (100.5254) 1,705 0.0196
South Africa 30.6163*** (7.0941) -276.1948*** (30.7909) 8,951 0.0247
Spain -18.9087*** (2.2604) -127.5332*** (29.1495) 9,877 0.0184
Sweden 1.6164** (0.6218) 34.8206 (22.7690) 10,965 0.0048
Switzerland 5.3854*** (1.7370) 26.1425 (27.9872) 12,724 0.0065
Taiwan 221.3754*** (56.7624) 434.9734*** (89.0874) 7,210 0.0083
Thailand 12.6860*** (2.4723) -155.7064*** (36.4270) 14,045 0.0182
United Kingdom 1.8723*** (0.2298) -32.4324* (17.9394) 48,779 0.0048

Lagged DAFMI NHHI Lagged U.S. NHHI Number of
Observations

R-squared
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Panel B: Results of concentrations−DAFMI size relations 

Global Market Coefficient Standard Error Coefficient Standard Error
Australia 0.6249*** (0.2359) 0.7778* (0.4535) 144 0.8559
Austria 0.0028 (0.0026) -0.7475* (0.4508) 144 0.8266
Belgium 0.0021 (0.0021) -0.0868 (0.0853) 143 0.8852
Brazil 0.0061 (0.0070) 0.2491 (0.1517) 144 0.8845
Canada 0.1890 (0.2570) -0.1675 (0.2102) 144 0.8559
Chile 0.1389 (0.0843) -0.8077** (0.4009) 144 0.9672
China (Mainland) -0.0007 (0.0008) 0.0854 (0.0557) 138 0.8222
Denmark 0.0074 (0.0181) 0.2887 (0.1745) 144 0.8703
Finland -0.0010 (0.0020) 0.1541** (0.0777) 144 0.9817
France -0.0040 (0.0248) 0.1278 (0.1567) 144 0.9281
Germany -0.0019*** (0.0005) -0.0478*** (0.0163) 144 0.2883
Greece -0.0072*** (0.0021) -1.7732*** (0.5678) 144 0.7541
Hong Kong -0.0002** (0.0001) -0.0416*** (0.0133) 129 0.9885
India -0.0006 (0.0009) 0.1122 (0.0733) 143 0.9139
Israel 0.1948 (0.1251) -4.9103* (2.7980) 144 0.8292
Italy 0.0086 (0.0094) -0.1340 (0.1474) 144 0.9417
Japan 0.0006 (0.0007) -0.0875** (0.0439) 144 0.9049
Korea 0.3201 (0.3657) 0.1406 (0.7746) 144 0.8945
Mexico -0.0001* (0.0001) -0.0055 (0.0047) 143 0.9780
Netherlands -0.0001 (0.0028) 0.0811 (0.2892) 144 0.0019
Norway 0.0063 (0.0088) 0.0357 (0.1987) 144 0.9772
Portugal 0.0223 (0.0138) -0.1995 (0.1405) 116 0.9015
Singapore -0.0003* (0.0002) -0.0426 (0.0411) 144 0.9604
South Africa -0.0066 (0.0222) 0.0809 (0.0669) 144 0.9682
Spain 0.0051* (0.0028) -0.0915*** (0.0309) 144 0.9928
Sweden -0.0226* (0.0131) -0.7917 (0.5138) 144 0.9533
Switzerland -0.0085 (0.0081) -0.0764 (0.2098) 144 0.7317
Taiwan 0.7602 (0.6852) -1.0715* (0.6254) 144 0.9627
Thailand 0.0161 (0.0236) -0.2496 (0.2070) 144 0.9701
United Kingdom -0.0085*** (0.0025) -0.9730*** (0.2742) 144 0.9197

Lagged DAFMI NHHI Lagged U.S. NHHI Number of
Observations

R-squared
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4 Conclusion 

We introduce a theoretical model of IAFMI equilibrium with which we investigate 

DAFMI performance, size, and managerial efforts under a continuum of DAFMI and FAFMI 

concentrations. Utilizing PS’s and FSX’s single-country frameworks, in which fund managers 

have homogeneous incentives (effort productivities and costs) while searching for investment 

opportunities, we create a two-country IAFMI framework in which in each country, due to 

transaction costs, information costs, and taxes, investors invest only in DAFMI funds, whereas 

fund managers invest in both domestic and foreign stock markets facing heterogeneous 

incentives. Gross alpha production and managerial effort costs depend on concentrations. In 

particular, higher FAFMI concentration implies higher incentives to explore investment 

opportunities in the foreign stock market because effort spent there is more productive. 

Moreover, this FAFMI concentration increase also induces incentives to divert managerial 

effort from the domestic stock market to the foreign one, affecting, in turn, incentives to spend 

effort to explore investment opportunities in the domestic stock market. By symmetry, higher 

DAFMI concentration induces similar effects. 

Our model’s comparative statics characterize the association between DAFMI expected 

net alphas and a continuum of DAFMI and FAFMI concentrations, and that between DAFMI 

size and a continuum of DAFMI and FAFMI concentrations. In particular, we show that, in 

equilibrium, if and only if higher FAFMI concentration induces higher (lower) DAFMI direct 

benefits does it induce higher (lower) DAFMI fund expected net alphas and size. By symmetry, 

a similar necessary and sufficient condition holds for higher DAFMI concentration. 

In addition, the concavity of DAFMI fund expected net alphas in FAFMI concentration 

indicates that DAFMI direct benefits of effort are concave in FAFMI concentration. This 

further induces concavity of DAFMI size in FAFMI concentration. On the other hand, 

equilibrium convex DAFMI size in FAFMI concentration implies convex direct benefits in 

FAFMI concentration and, consequently, convex DAFMI fund expected net alphas in FAFMI 

concentration. By symmetry, similar second-order results hold for DAFMI concentration. 

We specialize our model to allow for endogenous concentrations, which befits 

empirical market concentration measures, thus facilitating empirical studies. Although the 

relation between DAFMI concentration and DAFMI expected net alpha, and that between 

DAFMI concentration and DAFMI size, become more complex in this framework, we are still 

able to conclude that DAFMI fund expected net alphas and size, in equilibrium, move in the 

same direction as FAFMI concentration. 
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We use the data of 30 active equity mutual fund markets in Morningstar Direct to test 

our theoretical findings. We find that, on average, DAFMI fund net alphas and size decrease 

with the U.S. AFMI concentration. As FSX find that U.S. AFMI fund net alphas and size 

increase in U.S. AFMI concentration, our findings suggest that we do not live in one global 

village. 

Our findings provide relevant implications for fund managers, investors, and regulators. 

If market parameters leading to the current equilibrium persist, the current low, and probably 

decreasing, concentration in the U.S. AFMI would benefit (harm) other global DAFMI markets 

whose fund net alphas and size are, on average, negatively (positively) associated with the U.S. 

AFMI concentration. Our empirical results suggest that, on average, other global DAFMI 

markets would benefit from the declining U.S. AFMI concentration. 
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APPENDIX FOR ONLINE PUBLICATION 

Proof of Managers' Maximization Problems Equivalence:  Profits and Expected Net 
Alpha 

We prove that when DAFMI managers maximize fund expected net alphas, they 

maximize profits and must do so in order to survive (that is, have wealth to manage and be 

solvent).43 We also show that this maximization leads to a unique Nash equilibrium. 

First, we establish that all managers offer the same level of fund expected net alpha. 

This is the case in PS and FSX as well, and the rationale here is the same:  managers who offer 

expected net alpha that is lower than the highest offered by some other manager attract no 

investments, as diversification benefits are irrelevant, negligible to risk-averse investors, and, 

thus, out of the DAFMI. 

Next, we show that DAFMI managers’ competition drives the DAFMI (unique) 

expected net alphas to be the highest possible one, in which managers are still solvent; that is, 

managers charge break-even fees. 

Suppose that managers choose profit maximizing optimal effort and fees to set DAFMI 

funds expected net alpha to be 𝛼ത. Without loss of generality, we assume that 𝛼ത is between zero 

and the highest expected net alpha that allows solvency. We show that, in equilibrium, 𝛼ത is the 

maximum fund expected net alpha that mangers can produce (while staying solvent). They do 

that by choosing optimal efforts 𝑒௜ଵଵ∗ and 𝑒௜ଵଶ∗ (by fulfilling the condition in Lemma 1.2) and 

charging a fee 𝑓௜ଵ  such that the fund expected net alpha is exactly 𝛼ത . Substituting 𝛼ത  into 

Equation (10) (our “state” equation that links efforts, alpha production functions, fees, and fund 

expected net alphas) yields 

 𝑓௜ଵ = 𝑎ଵ෢ − 𝑏ଵ෢ ௌభௐభ∗ + 𝐴ଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ + 𝐴ଵଶ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ − 𝛼ത. (35) 

Denote the profit rate of manager i, as 𝑝𝑟𝑜௜ଵ, 𝑝𝑟𝑜௜ଵ ≜ 𝑓௜ଵ − 𝐶௜ଵ൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝑠௜ଵ,𝐻ଵ,𝐻ଶ൯. 
Then, from the last definition and equation (35), we have 

 𝛼ത = 𝑎ଵ෢ − 𝑏ଵ෢ ௌభௐభ∗ + 𝐴ଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ + 𝐴ଵଶ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ − 𝑝𝑟𝑜௜ଵ −𝑐଴ଵ − 𝑐ଵ,௜ଵ 𝑠௜ଵ − 𝑐ଶଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ − 𝑐ଶଵଶ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯. (36) 

As all managers produce the same expected net alphas, Equation (36) implies an 

equilibrium condition, 

 
43 By our model assumptions, insolvent managers are out of the DAFMI. 
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 𝑝𝑟𝑜௜ଵ + 𝑐ଵ,௜ଵ 𝑠௜ଵ = 𝑝𝑟𝑜௝ଵ + 𝑐ଵ,௝ଵ 𝑠௝ଵ, ∀𝑖, 𝑗. (37) 

Next, we consider manager 𝑖’s total dollar profit function (size in dollars times the per 

dollar profit rate): 𝑠௜ଵ𝑝𝑟𝑜௜ଵ = 𝑠௜ଵ[𝑓௜ଵ − 𝑐଴ଵ − 𝑐ଵ,௜ଵ 𝑠௜ଵ − 𝑐ଶଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ − 𝑐ଶଵଶ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯], (38) 

and by the first-order condition, the optimal fund size given manager 𝑖’s profit is 𝑠௜ଵ௢௣௧ = 𝑓௜ଵ − 𝑐଴ଵ − 𝑐ଶଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ − 𝑐ଶଵଶ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯2𝑐ଵ,௜ଵ = 𝑝𝑟𝑜௜ଵ2𝑐ଵ,௜ଵ + 𝑠௜ଵ2 . (39) 

The latter equality is useful in presenting the optimal size relative to current size. Note 

that if manager 𝑖 maximizes her fund’s expected net alpha, the profit rate 𝑝𝑟𝑜௜ଵ = 0, and the 

condition in Equation (39) for 𝑠௜ଵ௢௣௧ does not exist. For some manager 𝑗, 𝑗 ≠ 𝑖, it is possible 

that 𝑝𝑟𝑜௝ଵ is so high that 𝑠௝ଵ < 𝑠௝ଵ௢௣௧. In other words, it might be possible that some manager 𝑗, 𝑗 ≠ 𝑖, increases his (dollar) profits by increasing his fund expected net alpha, reducing profit 

rates and increasing (his fund) size. As manager 𝑖  does not observe other managers’ cost 

functions,44  she must consider the above possibility [to avoid losing (all) the wealth she 

manages]. 

We now demonstrate that the possible scenario described above indeed occurs. We 

analyze a simple game between manager 𝑖 and all other managers, denoted “−𝑖”. The actions 

of this game are to either maintain expected net alpha or improve it by an infinitesimal amount. 

Throughout, we assume that the diversification benefits of investing in both manager 𝑖 and 

manager −𝑖 are negligible. The payoffs are the profits of the two managers. 

If manager 𝑖 improves her fund expected net alpha infinitesimally and manager −𝑖 does 

not follow, then manager 𝑖’s profit change by an infinitesimal amount, say 𝜀௜ଵ, and manager −𝑖 
receives no investments and earns no profits. If, on the other hand, manager 𝑖 does not follow 

manager −𝑖 when increasing her fund’s expected net alpha infinitesimally, then manager −𝑖 
profits change by 𝜀ି௜ଵ , and manager 𝑖 receives no investments and earns no profits. Suppose 

that manager 𝑖 believes that manager −𝑖’s strategy is to improve his or her fund expected net 

alpha, 𝛼ത with (nontrivial) probability 𝑝 and to maintain 𝛼ത with probability 1 − 𝑝. Suppose that 

manager 𝑖’s strategy is to improve her fund expected net alpha with probability 𝜃 and maintain 𝛼ത with probability 1 − 𝜃. 

 
44 If cost functions were common knowledge, each manager could have calculated the DAFMI equilibrium 
independently. 
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The payoffs of such a game are illustrated in the following table, with the row (column) 

representing manager 𝑖’s (−𝑖’s) action, and with manager 𝑖’s (−𝑖’s) payoffs in the first (second) 

figures in the brackets.45 

  Maintain 𝛼ത Improve Infinitesimally 

  1 − 𝑝 𝑝 

Maintain 𝛼ത 1 − 𝜃 (𝑝𝑟𝑜௜ଵ𝑠௜ଵ,𝑝𝑟𝑜ି௜ଵ 𝑠ି௜ଵ ) (0,𝑝𝑟𝑜ି௜ଵ 𝑠ି௜ଵ + 𝜀ି௜ଵ ) 

Improve 
Infinitesimally 𝜃 (𝑝𝑟𝑜௜ଵ𝑠௜ଵ + 𝜀௜ଵ, 0) (𝑝𝑟𝑜௜ଵ𝑠௜ଵ + 𝜀௜ଵ,𝑝𝑟𝑜ି௜ଵ 𝑠ି௜ଵ + 𝜀ି௜ଵ ) 

We show that in this game, manager 𝑖  optimally chooses 𝜃 = 1, until reaching the 

highest fund expected net alphas. (This is the break-even/zero-profits point, beyond which the 

manager becomes insolvent.) As manager 𝑖 is a generic manager, this implies that all mangers 

do that. We also show that once managers reach the point of producing the highest fund 

expected net alphas, they are in (a Nash) equilibrium. 

The expected payoff of manager 𝑖 is46 

 𝜋௜ଵ = (1 − 𝑝)[(1 − 𝜃)𝑝𝑟𝑜௜ଵ𝑠௜ଵ + 𝜃(𝑝𝑟𝑜௜ଵ𝑠௜ଵ + 𝜀௜ଵ)] + 𝑝𝜃(𝑝𝑟𝑜௜ଵ𝑠௜ଵ + 𝜀௜ଵ). (40) 

The first-order condition is 

 ௗగ೔భௗఏ = 𝜀௜ଵ + 𝑝 ∗ 𝑝𝑟𝑜௜ଵ𝑠௜ଵ. (41) 

Equation (56) shows that 𝜀௜ଵ → 0 implies that  𝑑𝜋௜ଵ/𝑑𝜃 > 0. Thus, manager 𝑖’s optimal 

choice to maximize 𝜋௜ଵ is 𝜃 = 1. That is, increasing fund expected net alphas increases profits. 

As managers keep increasing fund expected net alphas, they reach a level of fund 

expected net alpha where 𝛼ത is the maximum fund expected net alpha. At this point, managers’ 

profit rates must be zero (otherwise managers could use profits to increase fund expected net 

alphas). Moreover, further increases of fund expected net alphas (by increasing efforts or 

decreasing fees) make managers insolvent. Thus, at this point, when 𝛼ത is the optimal fund 

expected net alpha, 𝜀௜ଵ  and 𝜀ି௜ଵ  are negative. Managers are, then, in a Nash equilibrium 

(Maintain 𝛼ത, Maintain 𝛼ത). 

 
45 For simplicity and brevity, we do not introduce new notation to differentiate the infinitesimal profit changes 
when one or two players move. We use 𝜀𝑖1 and 𝜀−𝑖1  in both cases. 
46 Generally, 𝜀𝑖1 and 𝜀−𝑖1  may be positive or negative, which does not affect our results as they approach zero. If 
the infinitesimal profit change for manager 𝑖, when both players move, was denoted 𝛿𝑖1, Equation (56) would have 
been  ௗగ೔ௗఏ = 𝜀௜ଵ + 𝑝(𝛿௜ଵ − 𝜀௜ଵ) + 𝑝 × 𝑝𝑟𝑜௜𝑠௜, yielding the same result as 𝜀𝑖1 and 𝛿𝑖1 approach zero. 
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Therefore, each manager will improve his or her fund expected net alpha as long as it 

is below the maximum fund expected net alpha. Thus, managers’ problems of maximizing 

profits is equivalent to maximizing their funds’ expected net alphas. 

Next, we show that that managers’ optimization leads to a unique DAFMI equilibrium. 

Because at any fund expected net alpha below the maximizing level, managers attract no 

investments and have incentives to increase fund expected net alphas. Because further 

increasing fund expected net alpha above the maximizing level drives managers to insolvency, 

this Nash equilibrium is unique. 

The proof for FAFMI managers is similar. 

Q.E.D. 

Proof of Proposition 0 ൛𝐞𝟏𝟏∗, 𝐞𝟏𝟐∗, 𝐟𝟏∗,𝛅𝟏∗ൟ is a Nash Equilibrium for the following reasons. 

1. Given other DAFMI managers’ optimal choices, a manager has incentives to not 

deviate from 𝐞𝟏𝟏∗, 𝐞𝟏𝟐∗, and 𝐟𝟏∗. If a DAFMI manager deviates from 𝐞𝟏𝟏∗, 𝐞𝟏𝟐∗, and 𝐟𝟏∗, this manager decreases the fund expected net alpha, either losing all investment or 

becoming insolvent. Also, DAFMI managers cannot deviate from both in offsetting 

ways and gain. This is because effort increases do not sufficiently improve performance 

to justify costs and fee increases, and effort reductions cause too great a loss of 

performance that cannot be returned to investors through fee reductions. The reason is 

that a manager’s optimal effort and fee together determine his or her fund expected net 

alpha. If the DAFMI manager deviates from the equilibrium and produces a higher fund 

expected net alpha, he or she incurs a loss; and if the DAFMI manager deviates and 

produces a lower fund expected net alpha, he or she receives no investments. We proved 

these results in the previous proof of maximization problem equivalence. 

2. Given DAFMI managers’ and other DAFMI investors’ optimal choices, a DAFMI 

investor has no incentive to deviate from 𝛅𝐣𝟏∗. This is because, when there are infinitely 

many small mean-variance risk-averse investors, each investor’s choice does not affect 

fund sizes and, thus, DAFMI size. Changing allocations across funds does not improve 

an DAFMI investor’s portfolio Sharpe ratio, whereas changing allocations between the 

DAFMI and the passive benchmark decreases the portfolio Sharpe ratio. ൛𝐞𝟏𝟏∗, 𝐞𝟏𝟐∗, 𝐟𝟏∗,𝛅𝟏∗ൟ is unique because 𝐞𝟏𝟏∗  is unique because, for each DAFMI fund, 𝑒௜ଵଵ∗  is the unique solution of 
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𝐵௘೔భభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ = 0; 𝐞𝟏𝟐∗  is unique because, for each DAFMI fund, 𝑒௜ଵଶ∗  is the unique solution of 𝐵௘೔భమଵଶ ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ = 0; 𝐟𝟏∗ is unique because, for each DAFMI fund, 𝑓௜ଵ∗ − 𝐶௜ଵ൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝑠௜ଵ∗,𝐻ଵ,𝐻ଶ൯ = 0, 

where 𝐶௜ଵ൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝑠௜ଵ∗,𝐻ଵ,𝐻ଶ൯  is a deterministic function of 𝑒௜ଵଵ∗  and 𝑒௜ଵଶ∗ , and 𝐞𝟏𝟏∗  and  𝐞𝟏𝟐∗ are unique; 𝛅𝟏∗  is unique because allocations to DAFMI funds maximize DAFMI investor 

portfolios’ Sharpe ratios, driving fund expected net alphas to the same values. Deviating, 

thus, cannot help and to the extent that large deviation would affect fund sizes, they 

will decrease Sharpe ratios. Moreover, the uniqueness of 𝐞𝟏𝟏∗, 𝐞𝟏𝟐∗and   𝐟𝟏∗ rules out 

the existence of additional equilibrium allocations. We show below (Proposition 2) that 

each 𝛅𝐣𝟏∗ is the weights vector of DAFMI funds’ “market portfolio.” 

The proof for FAFMI managers is similar. 

Q.E.D. 

Analytical Statement of Lemma 1 

For every manager 𝑖, 𝑖 = 1, … ,𝑀ଵ, if initial effort inputs generate positive direct benefits of 

effort [i.e., 𝐵௘೔భభଵଵ (0; 𝐻ଵ,𝐻ଶ) > 0,𝐵௘೔భమଵଶ (0; 𝐻ଵ,𝐻ଶ) > 0,∀ 𝐻ଵ,𝐻ଶ ], the DAFMI equilibrium 

induced by managers choosing optimal effort-fee combinations, (𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗,𝑓௜ଵ∗) , has the 

following properties. 

1. Fees are equal to costs: 

 𝑓௜ଵ∗ − 𝐶௜ଵ൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝑠௜ଵ∗,𝐻ଵ,𝐻ଶ൯ = 0. (42) 

2. The impact of marginal effort, in either country, on gross alpha is set to be equal to the 

marginal average costs of effort in the respective country, thus manager 𝑖’s marginal 

direct benefits of effort (in either country) under the optimal effort are zero: 

 𝐴௘೔భభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ − 𝑐ଶ ௘೔భభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ = 𝐵௘೔భభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ = 0, 
𝐴௘೔భమଵଶ ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ − 𝑐ଶ ௘೔భమଵଶ ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ = 𝐵௘೔భమଵଶ ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ = 0. (43) 

3. When either country’s concentration is higher, DAFMI equilibrium optimal efforts in 

either country are higher (lower) if and only if higher concentration induces a larger 

(smaller) marginal effort impact on gross alphas than on costs in the respective country. 
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Or, 𝑑𝑒௜ଵଵ∗/𝑑𝐻ଵ ≥ 0(< 0) iff 𝐴௘೔భభ,ுభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ − 𝑐ଶ ௘೔భభ,ுభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ ≥ 0(<0), 𝑑𝑒௜ଵଶ∗/𝑑𝐻ଵ ≥ 0(< 0) iff 𝐴௘೔భమ,ுభଵଶ ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ − 𝑐ଶ ௘೔భమ,ுభଵଶ ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ ≥ 0(<0), 𝑑𝑒௜ଵଵ∗/𝑑𝐻ଶ ≥ 0(< 0) iff 𝐴௘೔భభ,ுమଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ − 𝑐ଶ ௘೔భభ,ுమଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ ≥ 0(<0), 𝑑𝑒௜ଵଶ∗/𝑑𝐻ଶ ≥ 0(< 0) iff 𝐴௘೔భమ,ுమଵଶ ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ − 𝑐ଶ ௘೔భమ,ுమଵଶ ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ ≥ 0(<0). 

(44) 

4. Whether each country’s higher concentrations induce higher equilibrium optimal fees 

depends on whether they induce changes in equilibrium DAFMI sizes and in 

equilibrium optimal efforts in each country that are aggregately positive. Or, 

 𝑑𝑓௜ଵ∗𝑑𝐻ଵ = ቎෍൫𝑐ଵ,௝ଵ ൯ିଵெభ
௝ୀଵ ቏ିଵ𝑊ଵ 𝑑 ቀ ௌభௐభቁ∗𝑑𝐻ଵ + 𝑐ଶ ௘೔భభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ 𝑑𝑒௜ଵଵ∗𝑑𝐻ଵ  

          +𝑐ଶ ௘೔భమଵଶ ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ 𝑑𝑒௜ଵଶ∗𝑑𝐻ଵ + 𝑐ଶ ுభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ 
          +𝑐ଶ ுభଵଶ ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯, 
𝑑𝑓௜ଵ∗𝑑𝐻ଶ = ቎෍൫𝑐ଵ,௝ଵ ൯ିଵெభ

௝ୀଵ ቏ିଵ𝑊ଵ 𝑑 ቀ ௌభௐభቁ∗𝑑𝐻ଶ + 𝑐ଶ ௘೔భభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ 𝑑𝑒௜ଵଵ∗𝑑𝐻ଶ  

          +𝑐ଶ ௘೔భమଵଶ ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ 𝑑𝑒௜ଵଶ∗𝑑𝐻ଶ + 𝑐ଶ ுమଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ 
          +𝑐ଶ ுమଵଶ ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯. 

(45) 

5. When either country’s concentrations are higher, equilibrium manager 𝑖 ’s direct 

benefits of effort in the respective country are higher (lower) if and only if higher 

concentrations induce, in the respective country, a larger (smaller) impact on gross 

alphas than on costs. Or, ௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభ ≥ 0 (< 0) iff 𝐴ுభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ − 𝑐ଶ ுభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ ≥ 0 (< (46) 
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0), 

ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభ ≥ 0 (< 0) iff 𝐴ுభଵଶ ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ − 𝑐ଶ ுభଵଶ ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ ≥ 0 (<0), 

ௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுమ ≥ 0 (< 0) iff 𝐴ுమଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ − 𝑐ଶ ுమଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ ≥ 0 (<0), 

ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுమ ≥ 0 (< 0) iff 𝐴ுమଵଶ ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ − 𝑐ଶ ுమଵଶ ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ ≥0 (< 0). 

6. Pairwise relative DAFMI fund sizes, 𝑠௜ଵ∗/𝑠௝ଵ∗ , are inversely proportional to their 

corresponding cost coefficients, 𝑐ଵ,௝ଵ /𝑐ଵ,௜ଵ  (where 𝑐ଵ,௜ଵ  is the intensity of fund-level 

decreasing returns to scale in gross alpha production). 

7. DAFMI fund market shares, 𝑠௜ଵ∗/𝑆ଵ∗s are 𝑠௜ଵ∗/𝑆ଵ∗ = ቂ𝑐ଵ,௜ଵ ∑ ൫𝑐ଵ,௜ଵ ൯ିଵெభ௝ୀଵ ቃିଵ, ∀𝑖. 
Proof of Proposition 1 and Lemma 1. 

The proof of Proposition 1.1 is in the Proof of 0.1. 

To maximize E(𝛼௜ଵห𝐷)หቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ, manager 𝑖 chooses the breakeven management 

fee. This is because choosing higher fee would decrease expected net alpha and choosing lower 

fee would induce insolvency. Moreover, changing both fees and efforts would move managers 

away from optimal effort. Thus, 

 𝑓௜ଵ∗ − 𝐶௜ଵ൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝑠௜ଵ∗,𝐻ଵ,𝐻ଶ൯ = 0. (47) 

This proves Lemma 1.1. 

If direct benefit of DAFMI manager 𝑖  exerted to domestic stock market 𝐵ଵଵ(𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ) has a partial derivative with respect to effort, at zero effort, is positive, i.e., 𝐵௘೔భభଵଵ (0; 𝐻ଵ,𝐻ଶ) = 𝐴௘೔భభଵଵ (0; 𝐻ଵ,𝐻ଶ) − 𝑐ଶ ௘೔భభଵଵ (0; 𝐻ଵ,𝐻ଶ) > 0, then it pays to exert this effort, 

and the optimal level is positive, i.e., 𝑒௜ଵଵ∗ > 0. The first-order condition, with respect to effort, 

to maximize E(𝛼௜ଵห𝐷) becomes 

 𝐴௘೔భభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ − 𝑐ଶ ௘೔భభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ = 𝐵௘೔భభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ = 0. (48) 

The related second-order condition, 𝐴௘೔భభ,௘೔భభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ −
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𝑐ଶ ௘೔భభ,௘೔భభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ < 0, is satisfied by assumptions. (This is because we assume that 

productivity effort decreases in scale, i.e., 𝐴௘೔భభ,௘೔భభଵଵ (𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ) < 0,∀𝑒௜ଵଵ, and that the costs 

of effort increase in scale, i.e., 𝑐ଶ ௘೔భభ,௘೔భభଵଵ (𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ) > 0, ,∀𝑒௜ଵଵ). Thus, 𝑒௜ଵଵ∗ is a maximum. 

(We assume that functional forms of effort productivities and effort costs induce a finite 𝑒௜ଵଵ∗.) 
By symmetries, the proof of the results regarding 𝑒௜ଵଶ∗ is similar to the one regarding 𝑒௜ଵଵ∗. This proves Lemma 1.2. 

Fully differentiating (48) with respect to 𝐻ଵ and 𝐻ଶ, we have 

 𝑑𝑒௜ଵଵ∗𝑑𝐻ଵ = − 𝐴௘೔భభ,ுభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ − 𝑐ଶ ௘೔భభ,ுభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯𝐴௘೔భభ,௘೔భభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ − 𝑐ଶ ௘೔భభ,௘೔భభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ (49) 

 𝑑𝑒௜ଵଵ∗𝑑𝐻ଶ = − 𝐴௘೔భభ,ுమଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ − 𝑐ଶ ௘೔భభ,ுమଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯𝐴௘೔భభ,௘೔భభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ − 𝑐ଶ ௘೔భభ,௘೔భభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯. (50) 

Thus, the sign of 𝑑𝑒௜ଵଵ∗/𝑑𝐻ଵ  ( 𝑑𝑒௜ଵଵ∗/𝑑𝐻ଶ ) depends on the sign of 𝐴௘೔భభ,ுభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ − 𝑐ଶ ௘೔భభ,ுభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯  ( 𝐴௘೔భభ,ுమଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ −𝑐ଶ ௘೔భభ,ுమଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ ), because we have shown that the denominator of 𝑑𝑒௜ଵଵ∗/𝑑𝐻ଵ 

(𝑑𝑒௜ଵଵ∗/𝑑𝐻ଶ) is negative. 

By symmetries, the proof of the results regarding 𝑒௜ଵଶ∗ is similar to the one regarding 𝑒௜ଵଵ∗. This proves Lemma 1.3. 

The optimal DAFMI manager effort 𝑒௜ଵଵ∗  is determined only by the functions 𝐴ଵଵ(𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ) and 𝑐ଶଵଵ(𝑒௜ଵଵ;  𝐻ଵ,𝐻ଶ), which are the same across DAFMI funds. Thus, we 

have 𝑒௜ଵଵ∗ = 𝑒௝ଵଵ∗  and, consequently, 𝐵ଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ = 𝐵ଵଵ൫𝑒௝ଵଵ∗;  𝐻ଵ,𝐻ଶ൯,∀𝑖, 𝑗 . By 

symmetries, the proof of the results regarding 𝑒௜ଵଶ∗ is similar to the one regarding 𝑒௜ଵଵ∗, and we 

also have 𝑒௜ଵଶ∗ = 𝑒௝ଵଶ∗  and, consequently, 𝐵ଵଶ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ = 𝐵ଵଶ൫𝑒௝ଵଶ∗;  𝐻ଵ,𝐻ଶ൯,∀𝑖, 𝑗 . 

Because, in equilibrium, managers produce the (same) fund expected net alphas (Proposition 

1.3, which we proved above in the Manager’s Equivalence Problems theorem) and, as we just 

showed, exert the same optimal efforts (i.e., 𝑒௜ଵଵ∗ = 𝑒௝ଵଵ∗  and 𝑒௜ଵଶ∗ = 𝑒௝ଵଶ∗,∀𝑖, 𝑗), from the 

definition of fund net alpha in Equation (8), we have that 𝑓௜ଵ∗ = 𝑓௝ଵ∗,∀𝑖, 𝑗. 
These prove Proposition 1.7 and Proposition 1.8. 

As 𝑒௜ଵଵ∗ , 𝑒௜ଵଶ∗ , and E(𝛼௜ଵห𝐷)หቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ  are the same across DAFMI funds, we 
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further have 𝐶௜ଵ൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝑠௜ଵ∗,𝐻ଵ,𝐻ଶ൯ = 𝐶௝ଵ൫𝑒௝ଵଵ∗, 𝑒௝ଵଶ∗;  𝑠௝ଵ∗,𝐻ଵ,𝐻ଶ൯,∀𝑖, 𝑗 , and recall that 𝐶௜ଵ൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝑠௜ଵ∗,𝐻ଵ,𝐻ଶ൯ = 𝑐଴ଵ + 𝑐ଵ,௜ଵ 𝑠௜ଵ∗ + 𝑐ଶଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ + 𝑐ଶଵଶ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯. As 𝑐଴ଵ, 𝑒௜ଵଵ∗ , 𝑒௜ଵଶ∗  and 𝐶௜ଵ൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝑠௜ଵ∗,𝐻ଵ,𝐻ଶ൯ are the same across DAFMI funds, we have the 

following relationship between different funds’ sizes and costs: 

 𝑐ଵ,௜ଵ 𝑠௜ଵ∗ = 𝑐ଵ,௝ଵ 𝑠௝ଵ∗,∀𝑖, 𝑗, (51) 

or 𝑠௜ଵ∗/𝑠௝ଵ∗ = 𝑐ଵ,௝ଵ /𝑐ଵ,௜ଵ , ∀𝑖, 𝑗. 
This proves Lemma 1.6. 

Summing 𝑠௜ଵ∗/𝑠௝ଵ∗ with respect to 𝑖, 𝑖 = 1,2, … ,𝑀ଵ, we have ∑ ௦೔భ∗௦ೕభ∗ெభ௜ୀଵ = ௌభ∗௦ೕభ∗ = ∑ ௖భ,ೕభ௖భ,೔భெభ௜ୀଵ . 

Inversing the second equality and exchanging the subscripts 𝑗 and 𝑖 gives 

 𝑠௝ଵ∗𝑆ଵ∗ = ቎𝑐ଵ,௜ଵ ෍൫𝑐ଵ,௜ଵ ൯ିଵெభ
௝ୀଵ ቏ିଵ ,∀𝑖. (52) 

This proves Lemma 1.7. 

Using the break-even fee condition and Equation, we can write 

 𝑓௜ଵ∗ = 𝐶௜ଵ൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝑠௜ଵ∗,𝐻ଵ,𝐻ଶ൯ 
= 𝑐଴ଵ + 𝑐ଵ,௜ଵ 𝑠௜ଵ∗ + 𝑐ଶଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ + 𝑐ଶଵଶ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ 

= 𝑐଴ଵ + 𝑐ଵ,௜ଵ 𝑠௜ଵ∗𝑆ଵ∗ ቆ 𝑆ଵ𝑊ଵ∗ቇ𝑊ଵ + 𝑐ଶଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ + 𝑐ଶଵଶ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ 
= 𝑐଴ଵ + ቎෍൫𝑐ଵ,௝ଵ ൯ିଵெభ

௝ୀଵ ቏ିଵ𝑊ଵ ቆ 𝑆ଵ𝑊ଵ∗ቇ + 𝑐ଶଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯
+ 𝑐ଶଵଶ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯. 

(53) 

Fully differentiating 𝑓௜ଵ∗ with respect to 𝐻ଵ and 𝐻ଶ, we have 

 𝑑𝑓௜ଵ∗𝑑𝐻ଵ = ቎෍൫𝑐ଵ,௝ଵ ൯ିଵெభ
௝ୀଵ ቏ିଵ 𝑊ଵ 𝑑(𝑆ଵ/𝑊ଵ)∗𝑑𝐻ଵ + 𝑐ଶ ௘೔భభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ 𝑑𝑒௜ଵଵ∗𝑑𝐻ଵ

+ 𝑐ଶ ௘೔భమଵଶ ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ 𝑑𝑒௜ଵଶ∗𝑑𝐻ଵ + 𝑐ଶ ுభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯+ 𝑐ଶ ுభଵଶ ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯, 
(54) 
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 𝑑𝑓௜ଵ∗𝑑𝐻ଶ = ቎෍൫𝑐ଵ,௝ଵ ൯ିଵெభ
௝ୀଵ ቏ିଵ 𝑊ଵ 𝑑(𝑆ଵ/𝑊ଵ)∗𝑑𝐻ଶ + 𝑐ଶ ௘೔భభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ 𝑑𝑒௜ଵଵ∗𝑑𝐻ଶ

+ 𝑐ଶ ௘೔భమଵଶ ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ 𝑑𝑒௜ଵଶ∗𝑑𝐻ଶ + 𝑐ଶ ுమଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯+ 𝑐ଶ ுమଵଶ ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯. 

(55) 

Thus, whether each country’s higher concentrations induce higher equilibrium optimal fees 

depends on whether they induce changes in equilibrium DAFMI sizes and in equilibrium 

optimal efforts in each country that are aggregately positive. 

This proves Lemma 1.4. 

Fully differentiate 𝐵ଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ with respect to 𝐻ଵ  and 𝐻ଶ , and use the result 𝐵௘೔భభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ = 0, and we have 

 𝑑𝐵ଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯𝑑𝐻ଵ = 𝐵௘೔భభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ 𝑑𝑒௜ଵଵ∗𝑑𝐻ଵ + 𝐴ுభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯− 𝑐ଶ ுభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯= 𝐴ுభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ − 𝑐ଶ ுభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ 
(56) 

 𝑑𝐵ଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯𝑑𝐻ଶ = 𝐵௘೔భభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ 𝑑𝑒௜ଵଵ∗𝑑𝐻ଶ + 𝐴ுమଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯− 𝑐ଶ ுమଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯= 𝐴ுమଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ − 𝑐ଶ ுమଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯. 
(57) 

By symmetries, the proof of the results regarding 𝑒௜ଵଶ∗ is similar to the one regarding 𝑒௜ଵଵ∗. 
Thus, where either country concentrations are higher, equilibrium manager 𝑖’s direct benefits 

of effort in the respective country are higher (lower) if and only if higher concentrations induce, 

in the respective country, a larger (smaller) impact on gross alphas than on costs. 

This proves Lemma 1.5. 

In equilibrium, all DAFMI funds’ expected alphas are the same, i.e., E(𝛼௜ଵห𝐷)หቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ is the same across for all funds. Consequently, DAFMI fund expected 
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returns E൫𝑟ி,௜ଵ ห𝐷൯หቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ = E(𝛼௜ଵห𝐷)หቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ + 𝜇௣ are the same in equilibrium. 

In addition, as DAFMI funds have the same expected alphas, they have the same expected 

returns. The source of DAFMI fund returns’ variance is the same across funds, and Var൫𝑟ி,௜ଵ ห𝐷൯หቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ = 𝜎௣ଶ + 𝜎௔భଶ + ൬ ௌభௐభ∗൰ଶ 𝜎௕భଶ + 𝜎௫ଶ + 𝜎ఌଶ , ∀𝑖 . That is, the DAFMI 

fund return variance is the same across funds. Combining these results, we conclude that all 

managers offer the same competitive Sharpe ratio. 

This proves Proposition 1.4 and 1.5. 

We note that Proposition 1.3 is a direct consequence of Lemma 1.6 and 1.7. 

Finally, to prove Proposition 1.2, recalling that aggregate skill is ∑ ൫𝑐ଵ,௜ଵ ൯ିଵெభ௜ୀଵ , we 

differentiate ௌభௐభ∗ by parts to get 

 𝑑 ௌభௐభ∗𝑑 ൜𝑏ଵ෢ + ቂ∑ ൫𝑐ଵ,௜ଵ ൯ିଵெభ௝ୀଵ ቃିଵ𝑊ଵൠ 𝑑 ൜𝑏ଵ෢ + ቂ∑ ൫𝑐ଵ,௜ଵ ൯ିଵெభ௝ୀଵ ቃିଵ 𝑊ଵൠ𝑑 ∑ ൫𝑐ଵ,௜ଵ ൯ିଵெభ௜ୀଵ > 0. (58) 

The inequality is correct because, from Equation (66), the first multiplicand of the LHS 

is negative, and because the variables in the second multiplicand of the LHS are positive, the 

second multiplicand is negative. 

This proves Proposition 1.2. 

This proves Proposition 1 except for Proposition 1.6, which is proved in the next section. 

Q.E.D. 

Proof of Proposition 1.6, Proposition 2, and Corollary to Proposition 2 

DAFMI investor 𝑗’s portfolio Sharpe ratio is 
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 E൫𝑟௝ଵห𝐷൯ටVar൫𝑟௝ଵห𝐷൯
= 𝜇௣ + 𝛅𝐣𝟏𝐓𝛊𝐌𝟏 ൤𝑎ଵ෢ − 𝑏ଵ෢ ௌభௐభ∗ + 𝐴ଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ + 𝐴ଵଶ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ − 𝑓௜ଵ∗൨

ඨ𝜎௣ଶ + ൤𝜎௔భଶ + 𝜎௫భଶ + ቀ ௌభௐభ∗ቁଶ 𝜎௕భଶ ൨ ቀ𝛅𝐣𝟏𝐓𝛊𝐌𝟏ቁଶ + 𝜎ఌభଶ ቀ𝛅𝐣𝟏𝐓𝛅𝐣𝟏ቁ
= 𝜇௣ + 𝛅𝐣𝟏𝐓𝛊𝐌𝟏 ൜− ௌభௐభ∗ ൜ቂ∑ ൫𝑐ଵ,௜ଵ ൯ିଵெభ௝ୀଵ ቃିଵ 𝑊ଵ + 𝑏ଵ෢ൠ + 𝑋൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ൠ

ඨ𝜎௣ଶ + ൤𝜎௔భଶ + 𝜎௫భଶ + ቀ ௌభௐభ∗ቁଶ 𝜎௕భଶ ൨ ቀ𝛅𝐣𝟏𝐓𝛊𝐌𝟏ቁଶ + 𝜎ఌభଶ ቀ𝛅𝐣𝟏𝐓𝛅𝐣𝟏ቁ . 
(59) 

The second equality holds because 𝑓௜ଵ∗ − 𝐶௜ଵ൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝑠௜ଵ∗,𝐻ଵ,𝐻ଶ൯ = 0, the definition of 𝑋൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ , 𝑐ଵ,௜ଵ 𝑠௜ଵ∗ = 𝑐ଵ,௜ଵ ௦೔భ∗ௌభ∗ ൬ ௌభௐభ∗൰𝑊ଵ , and Equation (52). We assume that 

marginal diversification benefits of investing in one more fund is trivial, so we set 𝜎ఌభଶ ቀ𝛅𝐣𝟏𝐓𝛅𝐣𝟏ቁ → 0 when solving the problem. When maximizing DAFMI investor 𝑗’s portfolio 

Sharpe ratio, we take the first-order condition with respect to 𝛅𝐣𝟏. We have 

 ఓ೛ఙ೛మ ቈ𝜎௔భଶ + 𝜎௕భଶ ൬ ௌభௐభ∗൰ଶ + 𝜎௫భଶ ቉ 𝛅𝐣𝟏∗𝐓𝛊𝐌𝟏 − ൜ቂ∑ ൫𝑐ଵ,௜ଵ ൯ିଵெభ௜ୀଵ ቃିଵ 𝑊ଵ +
𝑏ଵ෢ൠ ௌభௐభ∗ + 𝑋൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ = 0. 

(60) 

Notice that each small investor regards ௌభௐభ∗ as given since each of them cannot affect this ratio. 

Substitute 𝛾 ≜ 𝜇௣/𝜎௣ଶ, (𝛾 > 0) and symmetric equilibrium condition ௌభௐభ∗ = 𝛅𝐣𝟏∗𝐓𝛊𝐌𝟏 into (60), 

we have 

 −𝛾𝜎௕భଶ ൬ ௌభௐభ∗൰ଷ − ൜𝛾𝜎௔భଶ + 𝛾𝜎௫భଶ + 𝑏ଵ෢ + ቂ∑ ൫𝑐ଵ,௜ଵ ൯ିଵெభ௜ୀଵ ቃିଵ𝑊ଵൠ ௌభௐభ∗ +𝑋൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ = 0. 
(61) 

If the constraint 𝛅𝐣𝟏∗𝐓𝛊𝐌𝟏 ≤ 1 is not binding (i.e., ௌభௐభ∗ < 1), the equilibrium optimal ௌభௐభ∗  is a real positive solution of this cubic equation. This is because the condition 𝑋൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ > 0,∀ 𝐻ଵ,𝐻ଶ  (positivity of the lowest order polynomial coefficient) 

and the negativity of the two higher order polynomial coefficients −𝛾𝜎௕భଶ , and −൜𝛾𝜎௔భଶ +
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𝛾𝜎௫భଶ + 𝑏ଵ෢ + ቂ∑ ൫𝑐ଵ,௜ଵ ൯ିଵெభ௜ୀଵ ቃିଵ𝑊ଵൠ , (i.e., −𝛾𝜎௕భଶ < 0 , and −൜𝛾𝜎௔భଶ + 𝛾𝜎௫భଶ + 𝑏ଵ෢ +ቂ∑ ൫𝑐ଵ,௜ଵ ൯ିଵெభ௜ୀଵ ቃିଵ𝑊ଵൠ < 0) guarantee the existence of exactly one positive real solution for 

ௌభௐభ∗ (and two imaginary ones). Also, as each DAFMI investor cannot affect the value of ௌభௐభ∗, 
the cubic equation above shows that the solution for  𝛅𝐣𝟏∗𝐓𝛊𝐌𝟏 = ௌభௐభ∗  is unique given the 

parameter values and the market ௌభௐభ∗. 
If the constraint 𝛅𝐣𝟏∗𝐓𝛊𝐌𝟏 ≤ 1 is binding, (i.e., ௌభௐభ∗ = 1), there is an obviously unique 

solution where DAFMI investors maximize their portfolio Sharpe ratios by allocating all their 

wealth to the DAFMI (no international passive index holdings). 

We, thus, demonstrated that 𝛅𝐢𝟏∗ = 𝛅𝐣𝟏∗,∀𝑖, 𝑗 , such that 𝛅𝐣𝟏∗𝐓𝛊𝐌𝟏 = ௌభௐభ∗ , induces a 

unique equilibrium. 

This proves Proposition 1.6 and Proposition 2.2. 

In addition, from the proofs above, we have shown that 

 E(𝛼௜ଵห𝐷)หቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ = − ௌభௐభ∗ ൜ቂ∑ ൫𝑐ଵ,௜ଵ ൯ିଵெభ௝ୀଵ ቃିଵ𝑊ଵ + 𝑏ଵ෢ൠ +𝑋൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯. (62) 

Also, by taking variance on both sides of the alpha production function, we have 

 Var(𝛼௜ଵห𝐷)หቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ = 𝜎௔భଶ + ቆ 𝑆ଵ𝑊ଵ∗ቇଶ 𝜎௕భଶ . (63) 

By substituting (62) into (61) and rearranging, we have 

 E(𝛼௜ଵห𝐷)หቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ = 𝑆ଵ𝑊ଵ∗ 𝛾 ൤𝜎௫భଶ + Var(𝛼௜ଵห𝐷)หቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ൨. (64) 

Because all the components on the right-hand side of the equation above are positive, we have E(𝛼௜ଵห𝐷)หቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ > 0. The intuition is that a portfolio with allocations to DAFMI funds 

and the international passive benchmark is always riskier (i.e., higher portfolio return variance) 

than a portfolio with allocations only to the international passive benchmark. If E(𝛼௜ଵห𝐷)หቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ = 0, because of a sufficiently large amount of investment in DAFMI 

funds, DAFMI investors can always improve their portfolio Sharpe ratios (in particular, reduce 

their portfolios risk) by shifting wealth from DAFMI to the international passive benchmark. 
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Thus, we should have E(𝛼௜ଵห𝐷)หቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ > 0 to induce investments to DAFMI funds. 

This proves Proposition 2.1. 

This proves Proposition 2. 

Where ௌభௐభ∗ < 1, fully differentiating (61) with respect to 𝑋൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ and 𝑏ଵ෢ + ቂ∑ ൫𝑐ଵ,௜ଵ ൯ିଵெభ௝ୀଵ ቃିଵ𝑊ଵ, respectively, we have 

 ௗ ೄభೈభ∗ௗ௑ቀ௘೔భభ∗,௘೔భమ∗; ுభ,ுమቁ = ଵఊ൥ଷఙ್భమ ቆ ೄభೈభ∗ቇమାఙೌభమ ାఙೣభమ ൩ା௕భ෢ାቂ∑ ൫௖భ,೔భ ൯షభಾభೕసభ ቃషభௐభ > 0, (65) 

 ௗ ೄభೈభ∗ௗ൜௕భ෢ାቂ∑ ൫௖భ,೔భ ൯షభಾభೕసభ ቃషభௐభൠ = ିೄభೈభ∗ఊ൥ଷఙ್భమ ቆ ೄభೈభ∗ቇమାఙೌభమ ାఙೣభమ ൩ା௕భ෢ାቂ∑ ൫௖భ,೔భ ൯షభಾభೕసభ ቃషభௐభ < 0. 
(66) 

The inequalities above hold because the parameters are positive. 

This proves the Corollary of Proposition 2. 

Q.E.D. 

Analytical Statement of Proposition 3 
Sensitivities of DAFMI Size and Expected Net Alphas to Concentration. 

Where  ௌభௐభ∗ < 1, we have the following.47 

1. Higher concentrations, in either country, induce larger (smaller) DAFMI equilibrium 

size and higher (lower) DAFMI equilibrium expected net alphas if and only if higher 

concentrations induce a larger (smaller) aggregate (over the two countries) impacts of 

induced optimal effort changes on gross alphas than on costs. 

The analytical statements of the verbal statements are as follows. Regarding DAFMI 

equilibrium size sensitivity to DAFMI concentration, we have 

ௗ ೄభೈభ∗ௗுభ = ௗ ೄభೈభ∗ௗ௑ቀ௘೔భభ∗,௘೔భమ∗; ுభ,ுమቁ ቈௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభ + ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభ ቉; (67) 

thus, 

 
47  When ௌభௐభ∗ = 1 , it is the case that, 1. ௌభௐభ∗  is unrelated to DAFMI and FAFMI concentrations; 2. higher 
DAFMI/FAFMI concentrations induce higher (lower) DAFMI/FAFMI equilibrium expected net alphas if and 
only if higher concentrations induces a larger (smaller) impact on gross alphas than on costs; and 3. 
DAFMI/FAFMI equilibrium expected net alphas are concave (convex), in DAFMI/FAFMI concentrations, if and 
only if the DAFMI/FAFMI equilibrium direct benefit function is concave (convex), in concentrations. 
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ௗ ೄభೈభ∗ௗுభ ≥ 0 (< 0) iff 
ௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభ + ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభ ≥ 0 (< 0). 

The analytical statements regarding DAFMI equilibrium size sensitivity to foreign 

concentration are 

ௗ ೄభೈభ∗ௗுమ = ௗ ೄభೈభ∗ௗ௑ቀ௘೔భభ∗,௘೔భమ∗; ுభ,ுమቁ ቈௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுమ + ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுమ ቉; (68) 

thus, 

ௗ ೄభೈభ∗ௗுమ ≥ 0 (< 0) iff 
ௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுమ + ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுమ ≥ 0 (< 0). 

The analytical statements regarding DAFMI equilibrium expected net alpha sensitivity 

to DAFMI concentration are ௗ୉ቀ𝛼௜ଵቚ𝐷ቁௗுభ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ = ቈௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభ + ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభ ቉  
                      × ቊ1 − ൜𝑏ଵ෢ + ቂ∑ ൫𝑐ଵ,௜ଵ ൯ିଵெభ௝ୀଵ ቃିଵ𝑊ଵൠ ௗ൫ௌభ/ௐభ൯∗ௗ௑ቀ௘೔భభ∗,௘೔భమ∗; ுభ,ுమቁቋ; 

(69) 

thus, ௗ୉ቀ𝛼௜ଵቚ𝐷ቁௗுభ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ ≥ 0 (< 0) iff 
ௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభ + ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభ ≥ 0 (< 0). 

The analytical statements regarding DAFMI equilibrium expected net alpha sensitivity 

to foreign concentration are ௗ୉ቀ𝛼௜ଵቚ𝐷ቁௗுమ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ = ቈௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுమ + ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுమ ቉  
        × ቊ1 − ൜𝑏ଵ෢ + ቂ∑ ൫𝑐ଵ,௜ଵ ൯ିଵெభ௝ୀଵ ቃିଵ𝑊ଵൠ ௗ൫ௌభ/ௐభ൯∗ௗ௑ቀ௘೔భభ∗,௘೔భమ∗; ுభ,ுమቁቋ; 

(70) 

thus, 

 
ௗ୉ቀ𝛼௜ଵቚ𝐷ቁௗுమ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ ≥ 0 (< 0) iff 

ௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுమ + ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுమ ≥ 0 (< 0). 

2. If concave in either country’s concentration, DAFMI equilibrium direct benefits of 

efforts function indicates concave DAFMI equilibrium size in the respective 

concentration. (If convex in either country’s concentration, DAFMI equilibrium size 
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indicates convex, DAFMI equilibrium direct benefits of efforts function in the 

respective concentration.) The sensitivity of equilibrium DAFMI size to the cross 

partial derivative of DAFMI and FAFMI concentrations depend on signs and sizes of 

several terms, including the sum of the sensitivities of DAFMI direct benefits due to 

efforts exerted in the domestic and foreign stock markets, to the cross partial derivative 

of DAFMI and FAFMI concentrations, and the product of the sums of DAFMI direct 

benefits sensitivities, due to efforts exerted in the domestic and foreign stock markets, 

to DAFMI and FAFMI concentrations, respectively. 

The analytical statements of the above verbal statements regarding second-order 

sensitivity of equilibrium DAFMI size to DAFMI concentration are 

ௗమ ೄభೈభ∗ௗுభమ = ௗ ೄభೈభ∗ௗ௑ቀ௘೔భభ∗,௘೔భమ∗; ுభ,ுమቁ ቈௗమ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభమ + ௗమ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభమ ቉ −
6𝛾ଵ𝜎௕భଶ ௌభௐభ∗ ቈௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభ + ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభ ቉ଶ ቈ ௗ൫ௌభ/ௐభ൯∗ௗ௑ቀ௘೔భభ∗,௘೔భమ∗; ுభ,ுమቁ቉ଷ; 

(71) 

thus, 

if 
ௗమ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభమ + ௗమ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభమ ≤ 0 then ௗమ൫ௌభ/ௐభ൯∗ௗுభమ ≤ 0, and if ௗమ൫ௌభ/ௐభ൯∗ௗுభమ ≥ 0, 

then 
ௗమ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభమ + ௗమ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభమ ≥ 0. 

The analytical statements regarding second-order sensitivity of DAFMI size to FAFMI 

concentration are 

ௗమ ೄభೈభ∗ௗுమమ = ௗ ೄభೈభ∗ௗ௑ቀ௘೔భభ∗,௘೔భమ∗; ுభ,ுమቁ ቈௗమ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுమమ + ௗమ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுమమ ቉ −
6𝛾ଵ𝜎௕భଶ ௌభௐభ∗ ቈௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுమ + ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுమ ቉ଶ ቈ ௗ൫ௌభ/ௐభ൯∗ௗ௑ቀ௘೔భభ∗,௘೔భమ∗; ுభ,ுమቁ቉ଷ; 

(72) 

thus, 

if 
ௗమ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுమమ + ௗమ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுమమ ≤ 0 then ௗమ൫ௌభ/ௐభ൯∗ௗுమమ ≤ 0, and if ௗమ൫ௌభ/ௐభ൯∗ௗுమమ ≥ 0, 

then 
ௗమ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுమమ + ௗమ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுమమ ≥ 0. 

The analytical statements regarding the cross partial derivative sensitivity of 

equilibrium DAFMI size to DAFMI and FAFMI concentrations are 



 

66 

ௗమ ೄభೈభ∗ௗுభௗுమ = ௗ ೄభೈభ∗ௗ௑ቀ௘೔భభ∗,௘೔భమ∗; ுభ,ுమቁ ቈௗమ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభௗுమ + ௗమ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభௗுమ ቉  
−6𝛾ଵ𝜎௕భଶ ௌభௐభ∗ ൥ ௗ ೄభೈభ∗ௗ௑ቀ௘೔భభ∗,௘೔భమ∗; ுభ,ுమቁ൩ଷ   

× ቈௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభ + ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభ ቉ ቈௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுమ + ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுమ ቉; 
(73) 

thus, the sign of the cross partial derivative of ௌభௐభ∗ with respect to 𝐻ଵ and 𝐻ଶ depends 

on the signs and magnitudes of 
ௗమ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభௗுమ + ௗమ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభௗுమ , 

ௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభ +
ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభ , and 

ௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுమ + ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுమ . 

3. Concave equilibrium expected net alphas in either country’s concentration, indicates 

concave, in concentration, equilibrium direct benefit function. (Convex, in 

concentration, equilibrium direct benefit function indicates convex, in concentration, 

equilibrium expected net alphas.) 

Similar to the case of equilibrium DAFMI size, the sensitivity of DAFMI equilibrium 

expected net alpha dependency on the cross partial derivative of DAFMI and AFMI 

concentrations depends on signs and sizes of several terms, including the sum of the 

sensitivities of DAFMI direct benefits due to efforts exerted in the domestic and foreign 

stock markets, to the cross partial derivative of DAFMI and FAFMI concentrations, 

and the product of the sums of DAFMI direct benefits sensitivities due to efforts exerted 

in the domestic and foreign stock markets, to DAFMI and FAFMI concentrations, 

respectively. 

The analytical statements of the verbal statements regarding second-order sensitivity of 

equilibrium DAFMI expected net alpha to DAFMI concentration are ௗమ୉ቀ𝛼௜ଵቚ𝐷ቁௗுభమ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ = ቈௗమ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభమ + ௗమ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభమ ቉ ቊ1 −
൜𝑏ଵ෢ + ቂ∑ ൫𝑐ଵ,௜ଵ ൯ିଵெభ௝ୀଵ ቃିଵ𝑊ଵൠ ௗ൫ௌభ/ௐభ൯∗ௗ௑ቀ௘೔భభ∗,௘೔భమ∗; ுభ,ுమቁቋ + 6𝛾𝜎௕భଶ ௌభௐభ∗ ൜𝑏ଵ෢ +

ቂ∑ ൫𝑐ଵ,௜ଵ ൯ିଵெభ௝ୀଵ ቃିଵ𝑊ଵൠ ቈௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభ + ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభ ቉ଶ ቈ ௗ൫ௌభ/ௐభ൯∗ௗ௑ቀ௘೔భభ∗,௘೔భమ∗; ுభ,ுమቁ቉ଷ; 

(74) 

thus, 
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if 
ௗమ୉ቀ𝛼௜ଵቚ𝐷ቁௗுభమ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ ≤ 0 , then 

ௗమ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభమ + ௗమ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభమ ≤ 0  and 

if 
ௗమ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభమ + ௗమ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభమ ≥ 0, then 

ௗమ୉ቀ𝛼௜ଵቚ𝐷ቁௗுభమ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ ≥ 0. 

(The fact that equilibrium expected net alpha is concave in 𝐻ଵ indicates that the sum of 

the second-order derivatives of 𝐵ଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯  and 𝐵ଵଶ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯  with 

respect to 𝐻ଵ is negative, and the fact that the sum of the second-order derivatives of 𝐵ଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ and 𝐵ଵଶ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ with respect to 𝐻ଵ is positive indicates that 

equilibrium expected net alpha is convex in 𝐻ଵ.) 

The analytical statements regarding second-order sensitivity of equilibrium DAFMI 

expected net alpha to FAFMI concentration are ௗమ୉ቀ𝛼௜ଵቚ𝐷ቁௗுమమ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ = ቈௗమ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுమమ + ௗమ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுమమ ቉ ቊ1 −
൜𝑏ଵ෢ + ቂ∑ ൫𝑐ଵ,௜ଵ ൯ିଵெభ௝ୀଵ ቃିଵ𝑊ଵൠ ௗ൫ௌభ/ௐభ൯∗ௗ௑ቀ௘೔భభ∗,௘೔భమ∗; ுభ,ுమቁቋ + 6𝛾𝜎௕భଶ ௌభௐభ∗ ൜𝑏ଵ෢ +

ቂ∑ ൫𝑐ଵ,௜ଵ ൯ିଵெభ௝ୀଵ ቃିଵ𝑊ଵൠ ቈௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுమ + ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுమ ቉ଶ ቈ ௗ൫ௌభ/ௐభ൯∗ௗ௑ቀ௘೔భభ∗,௘೔భమ∗; ுభ,ுమቁ቉ଷ; 

(75) 

thus, 

if 
ௗమ୉ቀ𝛼௜ଵቚ𝐷ቁௗுమమ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ ≤ 0 , then 

ௗమ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுమమ + ௗమ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுమమ ≤ 0  and 

if 
ௗమ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுమమ + ௗమ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுమమ ≥ 0, then 

ௗమ୉ቀ𝛼௜ଵቚ𝐷ቁௗுమమ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ ≥ 0. 

(The fact that equilibrium expected net alpha is concave in 𝐻ଶ indicates that the sum of 

the second-order derivatives of 𝐵ଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯  and 𝐵ଵଶ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯  with 

respect to 𝐻ଶ is negative, and the fact that the sum of the second-order derivatives of 𝐵ଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ and 𝐵ଵଶ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ with respect to 𝐻ଶ is positive indicates that 

equilibrium expected net alpha is convex in 𝐻ଶ.) 

The analytical statements regarding the cross partial derivative sensitivity of 

equilibrium DAFMI expected net alpha to DAFMI and FAFMI concentrations are 
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ௗమ୉ቀ𝛼௜ଵቚ𝐷ቁௗுభௗுమ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ = ቈௗమ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభௗுమ + ௗమ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభௗுమ ቉ ൝1 −
൜𝑏ଵ෢ + ቂ∑ ൫𝑐ଵ,௜ଵ ൯ିଵெభ௝ୀଵ ቃିଵ𝑊ଵൠ ௗ൬ ೄభೈభ൰∗ௗ௑ቀ௘೔భభ∗,௘೔భమ∗; ுభ,ுమቁൡ + 6𝛾𝜎௕భଶ ௌభௐభ∗ ൜𝑏ଵ෢ +

ቂ∑ ൫𝑐ଵ,௜ଵ ൯ିଵெభ௝ୀଵ ቃିଵ𝑊ଵൠ ቈௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభ + ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభ ቉ ቈௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுమ +
ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுమ ቉ ቈ ௗ൫ௌభ/ௐభ൯∗ௗ௑ቀ௘೔భభ∗,௘೔భమ∗; ுభ,ுమቁ቉ଷ, 

(76) 

thus, the sign of 
ௗమ୉ቀ𝛼௜ଵቚ𝐷ቁௗுభௗுమ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ  depends on the signs and magnitudes of 

ௗమ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభௗுమ + ௗమ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభௗுమ , 
ௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభ + ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభ , and 

ௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுమ + ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுమ . 

Proof of Proposition 3 

Also, where ௌభௐభ∗ < 1, by the chain rule, we have 

 𝑑 ௌభௐభ∗𝑑𝐻ଵ = 𝑑 ௌభௐభ∗𝑑𝑋൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ 𝑑𝑋൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯𝑑𝐻ଵ  

= 𝑑 ௌభௐభ∗𝑑𝑋൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ ൣ𝐴ுభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ + 𝐴ுభଵଶ ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯− 𝑐ଶ ுభଵଵ ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯ − 𝑐ଶ ுభଵଶ ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯൧ 
= 𝑑 ௌభௐభ∗𝑑𝑋൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ ቈ𝑑𝐵ଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯𝑑𝐻ଵ

+ 𝑑𝐵ଵଶ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯𝑑𝐻ଵ ቉. 

(77) 

Recall that ௗ൫ௌభ/ௐభ൯∗ௗ௑ቀ௘೔భభ∗,௘೔భమ∗; ுభ,ுమቁ > 0 . Thus, we have that ௗ൫ௌభ/ௐభ൯∗ௗுభ ≥ 0 (< 0)  if and only if 

ௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభ + ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభ ≥ 0 (< 0).  
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Fully differentiating 
ௗ ೄభೈభ∗ௗுభ  with respect to 𝐻ଵ again, we have 

 ௗమ൫ௌభ/ௐభ൯∗ௗுభమ = ௗ൫ௌభ/ௐభ൯∗ௗ௑ቀ௘೔భభ∗,௘೔భమ∗; ுభ,ுమቁ ቈௗమ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభమ + ௗమ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభమ ቉ +
ௗమ൫ௌభ/ௐభ൯∗ௗ௑ቀ௘೔భభ∗,௘೔భమ∗; ுభ,ுమቁమ ቈௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభ + ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభ ቉  

= ௗ൫ௌభ/ௐభ൯∗ௗ௑ቀ௘೔భభ∗,௘೔భమ∗; ுభ,ுమቁ0 ቈௗమ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభమ + ௗమ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభమ ቉ −
6𝛾𝜎௕భଶ ௌభௐభ∗ ቈௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభ + ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభ ቉ଶ ቈ ௗ൫ௌభ/ௐభ൯∗ௗ௑ቀ௘೔భభ∗,௘೔భమ∗; ுభ,ுమቁ቉ଷ. 

(78) 

The second equality holds because, by differentiating (65) with respective to 𝑋൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ again, we have 

 𝑑ଶ(𝑆ଵ/𝑊ଵ)∗𝑑𝑋൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ଶ = −6𝛾𝜎௕భଶ 𝑆ଵ𝑊ଵ∗ ቈ 𝑑(𝑆ଵ/𝑊ଵ)∗𝑑𝑋൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯቉ଷ (79) 

and then substitute the result. 

Notice that 6𝛾ଵ𝜎௕భଶ ௌభௐభ∗ > 0 , ቈௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభ + ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభ ቉ଶ > 0 , and 

ௗ൫ௌభ/ௐభ൯∗ௗ௑ቀ௘೔భభ∗,௘೔భమ∗; ுభ,ுమቁ > 0. Thus, if 
ௗమ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభమ + ௗమ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభమ ≤ 0, then ௗమ൫ௌభ/ௐభ൯∗ௗுభమ ≤ 0, 

and if ௗమ൫ௌభ/ௐభ൯∗ௗுభమ ≥ 0, then 
ௗమ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభమ + ௗమ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభమ ≥ 0. 

Following similar mathematics, we can prove the results of ௗ൫ௌభ/ௐభ൯∗ௗுమ , ௗమ൫ௌభ/ௐభ൯∗ௗுమమ , and 

ௗమ൫ௌభ/ௐభ൯∗ௗுభௗுమ  where ௌభௐభ∗ < 1. 

Where ௌభௐభ∗ = 1,  ௌభௐభ∗ does not depend on 𝐻ଵ or 𝐻ଶ. 

Moreover, where ௌభௐభ∗ < 1, fully differentiating (62) with respect to 𝐻ଵ, we have 
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 𝑑E(𝛼௜ଵห𝐷)𝑑𝐻ଵ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ
= −𝑑(𝑆ଵ/𝑊ଵ)∗𝑑𝐻ଵ ൞቎෍൫𝑐ଵ,௜ଵ ൯ିଵெభ

௝ୀଵ ቏ିଵ 𝑊ଵ + 𝑏ଵ෢ൢ
+ ቈ𝑑𝐵ଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯𝑑𝐻ଵ + 𝑑𝐵ଵଶ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯𝑑𝐻ଵ ቉ 

= ቈ𝑑𝐵ଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯𝑑𝐻ଵ + 𝑑𝐵ଵଶ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯𝑑𝐻ଵ ቉൞1
− ൞𝑏ଵ෢ + ቎෍൫𝑐ଵ,௜ଵ ൯ିଵெభ

௝ୀଵ ቏ିଵ𝑊ଵൢ 𝑑(𝑆ଵ/𝑊ଵ)∗𝑑𝑋൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ൢ. 

(80) 

By (65), we have 

 1 − ൞𝑏ଵ෢ + ቎෍൫𝑐ଵ,௜ଵ ൯ିଵெభ
௝ୀଵ ቏ିଵ𝑊ଵൢ 𝑑 ቀ ௌభௐభቁ∗𝑑𝑋൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯

= 𝛾 ቈ3𝜎௕భଶ ൬ ௌభௐభ∗൰ଶ + 𝜎௔భଶ + 𝜎௫భଶ ቉𝛾 ൤3𝜎௕భଶ ቀ ௌభௐభ∗ቁଶ + 𝜎௔భଶ + 𝜎௫భଶ ൨ + 𝑏ଵ෢ + ቂ∑ ൫𝑐ଵ,௜ଵ ൯ିଵெభ௝ୀଵ ቃିଵ 𝑊ଵ > 0. 
(81) 

The last inequality holds because the values of all the parameters and variables in the equation 

are positive. Then, from the result of this inequality, Equation (80) implies that ௗ୉ቀ𝛼௜ଵቚ𝐷ቁௗுభ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ ≥ 0 (< 0) if and only if 
ௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభ + ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభ ≥ 0 (<

0). 

Also, differentiate 
ௗ୉ቀ𝛼௜ଵቚ𝐷ቁௗுభ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ again with respect to 𝐻ଵ. Using the result 

of (79), we have 
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 𝑑ଶE(𝛼௜ଵห𝐷)𝑑𝐻ଵଶ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ
= ቈ𝑑ଶ𝐵ଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯𝑑𝐻ଵଶ + 𝑑ଶ𝐵ଵଶ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯𝑑𝐻ଵଶ ቉ ൞1
− ൞𝑏ଵ෢ + ቎෍൫𝑐ଵ,௜ଵ ൯ିଵெభ

௝ୀଵ ቏ିଵ𝑊ଵൢ 𝑑(𝑆ଵ/𝑊ଵ)∗𝑑𝑋൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ൢ
− ቈ𝑑𝐵ଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯𝑑𝐻ଵ + 𝑑𝐵ଵଶ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯𝑑𝐻ଵ ቉൞𝑏ଵ෢
+ ቎෍൫𝑐ଵ,௜ଵ ൯ିଵெభ

௝ୀଵ ቏ିଵ𝑊ଵൢ 𝑑ଶ(𝑆ଵ/𝑊ଵ)∗𝑑𝑋൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ଶ 

= ቈ𝑑ଶ𝐵ଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯𝑑𝐻ଵଶ + 𝑑ଶ𝐵ଵଶ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯𝑑𝐻ଵଶ ቉ ൞1
− ൞𝑏ଵ෢ + ቎෍൫𝑐ଵ,௜ଵ ൯ିଵெభ

௝ୀଵ ቏ିଵ𝑊ଵൢ 𝑑(𝑆ଵ/𝑊ଵ)∗𝑑𝑋൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ൢ
+ 6𝛾𝜎௕భଶ 𝑆ଵ𝑊ଵ∗ ቈ𝑑𝐵ଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯𝑑𝐻ଵ
+ 𝑑𝐵ଵଶ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯𝑑𝐻ଵ ቉ଶ ቈ 𝑑(𝑆ଵ/𝑊ଵ)∗𝑑𝑋൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯቉ଷ. 

(82) 

Notice that 6𝛾𝜎௕భଶ ௌభௐభ∗ > 0, ቈௗ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభ + ௗ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభ ቉ଶ > 0, ௗ൫ௌభ/ௐభ൯∗ௗ௑ቀ௘೔భభ∗,௘೔భమ∗; ுభ,ுమቁ > 0, 

and 1 − ൜𝑏ଵ෢ + ቂ∑ ൫𝑐ଵ,௜ଵ ൯ିଵெభ௝ୀଵ ቃିଵ𝑊ଵൠ ௗ൬ ೄభೈభ൰∗ௗ௑ቀ௘೔భభ∗,௘೔భమ∗; ுభ,ுమቁ > 0.  Thus, if 

ௗమ୉ቀ𝛼௜ଵቚ𝐷ቁௗுభమ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ ≤ 0 , then 
ௗమ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభమ + ௗమ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభమ ≤ 0 , and if 

ௗమ஻భభቀ௘೔భభ∗; ுభ,ுమቁௗுభమ + ௗమ஻భమቀ௘೔భమ∗; ுభ,ுమቁௗுభమ ≥ 0, then 
ௗమ୉ቀ𝛼௜ଵቚ𝐷ቁௗுభమ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ ≥ 0. 
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Where ௌభௐభ∗ = 1, fully differentiating (62) with respect to 𝐻ଵ, we have 

 𝑑E(𝛼௜ଵห𝐷)𝑑𝐻ଵ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ = 𝑑𝑋൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯𝑑𝐻ଵ =
= 𝑑𝐵ଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯𝑑𝐻ଵ + 𝑑𝐵ଵଶ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯𝑑𝐻ଵ  

(83) 

 𝑑ଶE(𝛼௜ଵห𝐷)𝑑𝐻ଵଶ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ
= 𝑑ଶ𝐵ଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯𝑑𝐻ଵଶ + 𝑑ଶ𝐵ଵଶ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯𝑑𝐻ଵଶ . (84) 

Following similar mathematics, we can prove the results of 
ௗ୉ቀ𝛼௜ଵቚ𝐷ቁௗுమ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ, ௗమ୉ቀ𝛼௜ଵቚ𝐷ቁௗுమమ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ, and 

ௗమ୉ቀ𝛼௜ଵቚ𝐷ቁௗுభௗுమ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ. 
Putting the results in this section together, where ௌభௐభ∗ < 1, we have 

 𝑑 ௌభௐభ∗𝑑𝐻ଵ ≥ 0(< 0) ⇔= 𝑑𝐵ଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯𝑑𝐻ଵ + 𝑑𝐵ଵଶ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯𝑑𝐻ଵ ≥ 0(
< 0) ⇔ 𝑑E(𝛼௜ଵห𝐷)𝑑𝐻ଵ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ ≥ 0(< 0) 

(85) 

 𝑑ଶ(𝑆ଵ/𝑊ଵ)∗𝑑𝐻ଵଶ > 0 ⇒ 𝑑ଶ𝐵ଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯𝑑𝐻ଵଶ + 𝑑ଶ𝐵ଵଶ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯𝑑𝐻ଵଶ > 0
⇒ 𝑑ଶE(𝛼௜ଵห𝐷)𝑑𝐻ଵଶ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ > 0 (86) 

 𝑑ଶ𝐸(𝛼௜ଵห𝐷)𝑑𝐻ଵଶ ቤቄ𝒆𝟏𝟏∗,𝒆𝟏𝟐∗,𝒇𝟏∗,𝜹𝟏∗ቅ < 0
⇒ 𝑑ଶ𝐵ଵଵ൫𝑒௜ଵଵ∗;  𝐻ଵ,𝐻ଶ൯𝑑𝐻ଵଶ + 𝑑ଶ𝐵ଵଶ൫𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯𝑑𝐻ଵଶ < 0
⇒ 𝑑ଶ(𝑆ଵ/𝑊ଵ)∗𝑑𝐻ଵଶ < 0. 

(87) 

This proves Proposition 3. 
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Q.E.D. 

Proof of Proposition 4 

Where ௌభௐభ∗ < 1, if we fully differentiate ௌభௐభ∗ with respect to 𝑐ଵ,௜ଵ , we have 

 ௗ ೄభೈభ∗ௗ௖భ,೔భ =
ିೄభೈభ∗ௐభ

൝ఊ൥ଷఙ್భమ ቆ ೄభೈభ∗ቇమାఙೌభమ ାఙೣభమ ൩ା௕భ෢ାቂ∑ ൫௖భ,೔భ ൯షభಾభೕసభ ቃషభௐభൡቀ∑ ൫௖భ,೔భ ൯షభಾభೕసభ ቁమ൫௖భ,೔భ ൯మ < 0. 
(88) 

The first equality holds because the derivative of 𝑋൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯ with respect to 𝑐ଵ,௜ଵ  is 

0, and the last inequality holds because all the parameter and variable values in the equation 

above are positive and we have a negative sign in the numerator. 

Also, fully differentiating E(𝛼௜ଵห𝐷)หቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ with respect to 𝑐ଵ,௜ଵ , and substituting 

the result of 
ௗ ೄభೈభ∗ௗ௖భ,೔భ  above, we have 

 𝑑E(𝛼௜ଵห𝐷)𝑑𝑐ଵ,௜ଵ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ
= −൞𝑏ଵ෢ + ቎෍൫𝑐ଵ,௜ଵ ൯ିଵெభ

௝ୀଵ ቏ିଵ 𝑊ଵൢ𝑑 ቀ ௌభௐభቁ∗𝑑𝑐ଵ,௜ଵ
− −ቀ ௌభௐభቁ∗𝑊ଵቀ∑ ൫𝑐ଵ,௜ଵ ൯ିଵெభ௝ୀଵ ቁଶ ൫𝑐ଵ,௜ଵ ൯ଶ 

= ିఊ൥ଷఙ್భమ ቆ ೄభೈభ∗ቇమାఙೌభమ ାఙೣభమ ൩ ೄభೈభ∗ௐభ
൝ఊ൥ଷఙ್భమ ቆ ೄభೈభ∗ቇమାఙೌభమ ାఙೣభమ ൩ା௕భ෢ାቂ∑ ൫௖భ,೔భ ൯షభಾభೕసభ ቃషభௐభൡቀ∑ ൫௖భ,೔భ ൯షభಾభೕసభ ቁమ൫௖భ,೔భ ൯మ < 0. 

(89) 

The last inequality holds because all the parameter and variable values in the equation above 

are positive and we have a negative sign in the numerator. 

Where ௌభௐభ∗ = 1 , ௗ൫ௌభ/ௐభ൯∗ௗ௖భ,೔భ = 0 , and as E(𝛼௜ଵห𝐷)หቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ =
−൜ቂ∑ ൫𝑐ଵ,௜ଵ ൯ିଵெభ௝ୀଵ ቃିଵ𝑊ଵ + 𝑏ଵ෢ൠ + 𝑋൫𝑒௜ଵଵ∗, 𝑒௜ଵଶ∗;  𝐻ଵ,𝐻ଶ൯, we have 
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 ௗ୉ቀ𝛼௜ଵቚ𝐷ቁௗ௖భ,೔భ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ = − ିௐభቀ∑ ൫௖భ,೔భ ൯షభಾభೕసభ ቁమ൫௖భ,೔భ ൯మ < 0. (90) 

The last inequality holds all the parameter and variable values are positive and we have a 

negative sign in the numerators. The result of 
ௗ୉ቀ𝛼௝ଵቚ𝐷ቁௗ௖భ,೔భ ቤቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ, ∀𝑗 ≠ 𝑖 are similar. 

This proves Proposition 4.2. 

As ௦೔భ∗ௌభ∗ decreases in 𝑐ଵ,௜ଵ  whereas 
௦ೕభ∗ௌభ∗ ,∀𝑖 ≠ 𝑗, increases in 𝑐ଵ,௜ଵ , from results above, we 

find that E(𝛼௜ଵห𝐷)หቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ and ௦೔భ∗ௌభ∗ are increasing/decreasing in the same direction due 

to changes in 𝑐ଵ,௜ଵ , and that E൫𝛼௝ଵห𝐷൯หቄ𝐞𝟏𝟏∗,𝐞𝟏𝟐∗,𝐟𝟏∗,𝛅𝟏∗ቅ and 
௦ೕభ∗ௌభ∗ ,∀𝑖 ≠ 𝑗 are increasing/decreasing 

inversely due to changes in 𝑐ଵ,௜ଵ , whether ௌభௐభ∗ < 1 or ௌభௐభ∗ = 1. 

This proves Proposition 4.1. 

This proves Proposition 4. 

Q.E.D. 


