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Abstract

This is the first study of the errors of the Bakshi, Kapadia, and Madan (2003) risk-
neutral moment estimators with the density of the underlying explicitly specified. This
was accomplished using the Gram-Charlier expansion. To obtain skewness with (absolute)
errors less than 10−3, the range of strikes (Kmin, Kmax) must contain at least 3/4 to 4/3 of
the forward price and have a step size (∆K) of no more than 0.1% of the forward price.
The range of strikes and step size corresponds to truncation and discretisation errors,
respectively.
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1 Introduction

Risk-neutral moment estimators are functions which convert option prices to the moments

of the underlying asset. These estimators are much more complicated than the estima-

tors for physical moments, as physical moments can be obtained from an underlying

asset’s return using standard statistical methods. The moments most used are the first

and second moments, which correspond to the mean and variance, respectively. Higher

(standardised) moments include the third and fourth moments which correspond to the

skewness and kurtosis, respectively. These moments can be used to form a basis of un-

derstanding of the behaviour of the asset. For a more practical use, the third risk-neutral

moment for the S&P500 is the basis for the Chicago Board Options Exchange (CBOE)

skewness (SKEW) index. The SKEW1 was designed to capture the tail-risk. The method

used to calculate the risk-neutral moments in the CBOE SKEW is Bakshi, Kapadia, and

Madan (2003), which will now be referred to as BKM. As with all numerical calculations

the BKM calculations too have errors. This paper examines the error and convergence of

BKM’s risk-neutral skewness and kurtosis estimators and finds the region in which the

errors of the skewness estimator is bounded by 10−3.

The BKM is an extension of Demeterfi, Derman, Kamal, and Zou (1999) and Carr

and Madan (2001b) which propose methods to price variance swaps via static replication

using options. Volatility swaps (viz. realized volatility forward contracts) provide pure

exposure to volatility in contrast to trading volatility through stock options which are im-

pure as it is contaminated by the option’s dependence on the stock price. This underpins

the CBOE VIX, the volatility index of the S&P500. The BKM method now provides the

foundation for recent literature with regard to risk-neutral moment estimators. Neumann

and Skiadopoulos (2013), Conrad, Dittmar, and Ghysels (2013), Chang, Christoffersen,

and Jacobs (2013), and Stilger, Kostakis, and Poon (2017) studied the time-series re-

lationship between BKM risk-neutral moments and the equity market. Cheng (2018)

1 http://www.cboe.com/products/vix-index-volatility/volatility-indicators/skew

http://www.cboe.com/products/vix-index-volatility/volatility-indicators/skew
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studied the time-series relationship between BKM risk-neutral moments and the VIX.

Chatrath, Miao, Ramchander, and Wang (2016) and Ruan and Zhang (2018) studied the

time-series relationship between BKM risk-neutral moments and the crude oil market.

Christoffersen, Jacobs, and Chang (2011) summarises various risk-neutral estimators in-

cluding those for volatility, skewness, and kurtosis with respect to their underlying asset

for various markets. Bakshi and Madan (2006) study the spread between risk-neutral and

physical volatilities of the S&P100 index. Liu and Faff (2017) propose a forward-looking

market symmetric index which is used to compete with the CBOE SKEW and therefore

the BKM method.

Liu and van der Heijden (2016) and Lee and Yang (2015) study the errors of the BKM

method when the true value of the risk-neutral moment is unknown. Liu and van der

Heijden (2016) uses various option pricing models to create their benchmark risk-neutral

moments. This was done using Monte Carlo simulations on the Black-Scholes-Merton

model (Black and Scholes, 1973; Merton, 1973), Heston stochastic volatility model (Hes-

ton, 1993), Merton jump-diffusion model (Merton, 1976), and Bates stochastic volatility

jump-diffusion model (combination of Merton and Heston models) (Bates, 1996). As

simulations are used, the benchmark is expected to converge to the true value as more

simulations are made. Lee and Yang (2015) uses historical information to calibrate their

benchmark Black-Scholes model and uses the benchmark to compare with the Bates

stochastic volatility jump-diffusion model. The values of the risk-neutral estimators are

not calculated, instead, the errors are determined relative to the benchmark. The Black-

Scholes model has also been used as a benchmark by Dennis and Mayhew (2002) and

Jiang and Tian (2005). Both Liu and van der Heijden (2016) and Lee and Yang (2015)

study the errors of the BKM method with little control over the inputs. They, therefore,

only have approximations of the true moments and introduces additional errors into their

analysis.

In this paper, the benchmark used is created following Zhang and Xiang (2008) in
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using the Gram-Charlier series to create virtual options. These options are created by

specifying parameters such as the skewness and excess kurtosis (hereinafter, kurtosis).

The Gram-Charlier series has been used in many papers, for example, Backus, Foresi,

and Wu (2004), Longstaff (1995), and Jarrow and Rudd (1982). Using these options,

the BKM estimators are applied and compared to the true moments used to create the

options. Both the BKM methodology and Gram-Charlier series can be used to calculate

the VIX. In addition to the moments, these two methods are also compared.

The remainder of this paper is organized as follows. Section 2 presents the method

used to create virtual options, a brief dive into how BKM determines the risk-neutral

skewness, and the method used to quantify and analyse the errors and convergence of the

BKM method. Section 3 describes the data. Section 4 provides the numerical results and

Section 6 concludes. The appendix gives the details of key derivations.

2 Methodology

2.1 Creating Virtual Options

To test the BKM higher-order risk-neutral moment estimators, virtual options with known

properties can be created using Zhang and Xiang (2008) as a basis. The options are

created based on the probability density function of the return of the underlying asset.

The density used in basic models tends to be based on the normal distribution function.

However, the returns of stocks are known to have both skewness and kurtosis which are not

modelled by the symmetric normal distribution. The Gram-Charlier series can be used to

create a new density based on the normal distribution function with specified skewness and

kurtosis. This series is similar to the Taylor series; however, it also combines probability

densities by using Hermite polynomials. The Gram-Charlier series used is given by

f(y) = n(y)− λ1

3!
d3n(y)
dy3 + λ2

4!
d4n(y)
dy4 , (1)
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where n(y) = 1√
2πe
− y

2
2 , λ1 is the skewness, and λ2 is the kurtosis. The density has a

mean, variance, skew, and kurtosis of 0, 1, λ1, and λ2, respectively.

[Insert Figure 1 about here.]

Figure 1 shows the region of skewness and kurtosis, which ensures a valid density function.

The derivation of this region is shown in appendix A.

The stock price at maturity, ST , can be modelled by

ST = F T
t e

(− 1
2σ

2+µc)τ+σ
√
τy, (2)

where F T
t , σ, τ , and µc is the forward price, standard deviation, time to maturity (T − t),

and convexity adjustment term, respectively. The forward price, F T
t , is related to the

current stock price (St) by F T
t = Ste

(r−q)τ , where q is the continuous dividend rate. The

convexity adjustment term, µc, is required to keep this model in the risk-neutral world

(by ensuring that the stock price satisfies the martingale condition). From this, the price

of a European call option will be

ct = e−rτEQt [max(ST −K, 0)] . (3)

In terms of F T
t , K, τ, r, σ, λ1, and λ2, the price is

ct = F T
t e
−rτN(d1)−Ke−rτN(d2) +Ke−rτ

(
λ1

3!A+ λ2

4!B
)
σ
√
τ (4)

where

A = −
(
d2 − σ

√
τ
)
n(d2)

B = −
(
1− d2

2 + σ
√
τd2 − σ2τ

)
n(d2)

d2 =
ln(F T

t /K) +
(
−1

2σ
2 + µc

)
τ

σ
√
τ

, d1 = d2 + σ
√
τ

For a given set of parameters (F T
t , r, σ, λ1, and λ2), the prices for each virtual option can

be created for a range of strikes, K, and maturities, τ . The derivation of Equation (4) is
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shown in appendix B. European put options can be found using the put-call parity

ct − pt = F T
t e
−rτ −Ke−rτ . (5)

With these virtual European put and call options, the BKM skewness and kurtosis estima-

tors can be examined and compared against the true skewness (λ1) and true kurtosis (λ2),

respectively.

2.2 Calculating BKM Skew and Kurtosis

The BKM method calculates the risk-neutral (return) skewness (n = 3) and kurtosis

(n = 4) using the basic normalized nth central moments (viz. standardised moments)

equation

nth standardised moment =
EQt

[(
R (t, τ)− EQt [R (t, τ)]

)n]
{
EQt

[(
R (t, τ)− EQt [R (t, τ)]

)2
]}n

2
(6)

where R (t, τ) ≡ ln [ST ]− ln [St], the log returns. However, BKM makes a small approxi-

mation to the mean and sets dividends, q, to zero:

EQt [R (t, τ)] ≈ µ(t, τ) = erτ−1− 1
2E
Q
t

[
R (t, τ)2

]
− 1

3!E
Q
t

[
R (t, τ)3

]
− 1

4!E
Q
t

[
R (t, τ)4

]
(7)

The approximation is due to the exclusion of higher-order terms in the expansion of the

exponential function. This approximation serves in a similar manner to the convexity

adjustment term in the addition of higher-order moments, for the BKM method, this is

in the form of volatility (R (t, τ)2), cubic (R (t, τ)3), and quadratic (R (t, τ)4) payoff con-

tracts. These contracts are not standard; therefore, to calculate their values, the contracts

are decomposed into standard, European options, bonds, and shares. Equation 1 of Carr

and Madan (2001a) shows that any twice-differentiable payoff function with bounded ex-

pectation can be spanned by a continuum of out-of-the-money (OTM) European options,

bonds, and shares. For payoff function H (x) ∈ C 2 and some constant x0, the decomposed
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payoff function is given by

H (x) = H (x0) +Hx (x0) (x− x0) +
∫ x0

0
Hxx (K) max (K − x, 0) dK

+
∫ ∞
x0

Hxx (K) max (x−K, 0) dK
(8)

Following BKM in using Equation (8), setting ST = S, the dependent variable, and

setting x0 to St, the following payoff

H(S) =


R (t, τ)2 volatility contract (V )
R (t, τ)3 cubic contract (W )
R (t, τ)4 quartic contract (X)

(9)

results in H (St) = 0, Hx (St) = 0, and

Hxx (K) = n

K2

[
(n− 1)

[
ln
(
K

St

)]n−2
−
[
ln
(
K

St

)]n−1]
. (10)

Finally, the expected value of each contract is given by

EQt
[
e−rτR (t, τ)n

]
=
∫ ∞

0

n

K2

[
(n− 1)

[
ln
(
K

St

)]n−2
−
[
ln
(
K

St

)]n−1]
Q (K) dK (11)

where n specifies the type of power contract and Q (K) corresponds to the OTM option

with strike K. If there exists both put and call at the at-the-money point, then the

average of the two is taken. n = {2, 3, 4} corresponds to the volatility (V ), cubic (W ), and

quadratic (X) payoff contracts, respectively. With these payoff contracts, the skewness

can be calculated using Equation (6). More details are shown in appendix C.

2.3 Testing for Errors and Convergence

There are many different numerical integration techniques; a commonly used technique

is the trapezium rule (viz. trapezoidal integration). Another is Simpson’s rule. The

trapezium rule essentially adds the area of piecewise-linear lines and Simpson’s rule adds

the area of quadratic curves.

As data from the options market is not continuous, the integral calculation of Equa-

tion (11) must be solved numerically. Using the trapezium rule, the integral can be
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discretised to

EQt
[
e−rτR (t, τ)n

]
=
∞∑
i=1

n

K2
i

[
(n− 1)

[
ln
(
Ki

St

)]n−2
−
[
ln
(
Ki

St

)]n−1]
Q [Ki] ∆Ki (12)

where

∆Ki = 1
2


K2 −K1, i = 1
Ki+1 −Ki−1, 1 < i < m

Km −Km−1, i = m

(13)

and m is the number of strikes. This is slightly different from CBOE’s discretisation

methods as shown in appendix D.

The trapezium rule has been used by many, for example Chang, Christoffersen, and

Jacobs (2013), Chatrath, Miao, Ramchander, and Wang (2016), Conrad, Dittmar, and

Ghysels (2013), Dennis and Mayhew (2002), Jiang and Tian (2005), Neumann and Ski-

adopoulos (2013), Ruan and Zhang (2018), and Stilger, Kostakis, and Poon (2017). Stil-

ger, Kostakis, and Poon (2017) uses the trapezium rule as a robustness check for their

primary numerical integration method - Simpson’s rule.

Jiang and Tian (2005) begin their study of truncation errors, discretisation errors,

errors caused by using the spot prices rather than the forward prices and vice versa, and

the limited availability of strike prices. Some of these errors are quantified and used

to analyse the CBOE VIX in Jiang and Tian (2007). Similarly, Chang, Christoffersen,

Jacobs, and Vainberg (2011) applies the same errors and extends it to option implied

skewness.

The truncation and discretisation errors are the two sources of errors that were tested.

1. Truncation errors ∫ ∞
0
· · · dK →

∫ Kmax

Kmin
· · · dK (14)

as K ∈ (0,∞)→ K ∈ [Kmin, Kmax] (15)

The range of strikes are finite, therefore, the range of the integral is truncated to
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the strikes that are available. This is tested by defining Kmin and Kmax as

[Kmin, Kmax] :=
[
F T
t × a, F T

t /a
]

(16)

where a ∈ (0, 1) is the boundary controlling factor. So as a → 0, Kmin → 0 and

Kmax → ∞ and as a → 1, Kmin, Kmax → F T
t . For calculations, the maximum and

minimum strike prices are rounded to the nearest dollar and a is varied between

0.05 and 0.95 in 0.01 intervals.

2. Discretisation errors ∫ Kmax

Kmin
· · · dK →

Kmax∑
Kmin

· · ·∆Ki (17)

To compute integrals numerically, the integrand and region must first be discretised.

This can be done using the trapezium rule. This is not the only reason why dis-

cretising is required. The other reason is that the strikes provided in the market is

not continuous, but rather, usually in fixed intervals of $1, $5, $25, and $50.1 The

step size, ∆K, has been chosen to vary from 1 to 50, in increments of 1.

For each combination of a and ∆K, of which there are 4,550, the mesh of points (pairs

of skewness and kurtosis) within the valid Gram-Charlier region have been used to create

virtual options (as described in Section 2.1). From this, the discretised BKM method is

applied to each set of options to find the risk-neutral moments. The estimation error is

defined as

Estimation Error := Estimated Moment− True Moment (18)

The error for each point in the valid Gram-Charlier region for a specific combination of a

and ∆K is averaged to find the average error for the whole valid region. The maximum

of the absolute value of the error over the valid region was also recorded.

The specification of each parameter is shown in Table I and the skewness-kurtosis
1 Generally, minimum strike price intervals are as follows: (1) $0.50 where the strike price is less

than $15, (2) $1 where the strike price is less than $200, and (3) $5 where the strike price is greater
than $200. (http://www.cboe.com/products/vix-index-volatility/vix-options-and-futures/
vix-options/vix-options-specs)

http://www.cboe.com/products/vix-index-volatility/vix-options-and-futures/vix-options/vix-options-specs
http://www.cboe.com/products/vix-index-volatility/vix-options-and-futures/vix-options/vix-options-specs
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points used in the valid Gram-Charlier region are shown in Figure 2.

[Insert Table I and Figure 2 about here.]

An example of the error calculation for skewness and kurtosis done for the points from

Figure 2 are shown in Figure 3. From this, both the average of the errors and the maximum

absolute error for each region are plotted at their respective boundary controlling factor

and step size.

[Insert Figure 3 about here.]

2.4 Calculating the Volatility Indices

The CBOE VIX can be calculated analytically using the Gram-Charlier series with the

following proposition.

Proposition 1. Suppose that stock price is described by

ST = F T
t e

(− 1
2σ

2+µc)τ+σ
√
τy,

where y is an extension of the standard normal distribution to include higher moments

using the Gram-Charlier series and µc is the convexity adjustment term. Then the VIX

is given by

VIX = 100
√
σ2 − 2µc (19)

Proof. See appendix E.

This proposition allows the variance swap to be calculated directly from the distribu-

tion of the returns, specifically, the moments, and the time to maturity. For a stock price

model with moments no higher than kurtosis, the VIX is given by

VIX = 100

√√√√σ2 + 2
τ

ln
[
1 + λ1

3!
(
σ
√
τ
)3

+ λ2

4!
(
σ
√
τ
)4
]

(20)
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A simpler form of Equation (20) can be obtained by approximating the log and square

root, as shown here

VIX = 100σ
[
1 + λ1

3! σ
√
τ + λ2

4! σ
2τ − λ2

1
72σ

2τ + o
(
σ2τ

)]
(21)

By suppressing kurtosis, this formula shows that introducing negative skewness to returns

will result in the VIX becoming smaller than the standard deviation. Originally, without

kurtosis and skewness, the two were simply linked by a scaling factor.

The CBOE VIX is used as a benchmark against the VIX calculated using the BKM

method. This VIX can be calculated with

VIX ≈ 100
√
−2
τ
µ+ 2r. (22)

2.5 Testing the Convexity Adjustment Term

The approximation made by BKM (Equation (7)) can be analysed analytically by entering

the Black-Scholes stock price model into the approximation1

EQt [R (t, τ)] ≈
(
r − 1

2σ
2
)
τ

+

(
32 (rτ)3 − 24 (rτ)2 σ2τ + 8rτ (σ2τ)2 + 48rτσ2τ − (σ2τ)3 − 16 (σ2τ)2)

σ2τ

384
(23)

and comparing the BKM return to Black-Scholes expected log return
(
r − 1

2σ
2
)
τ . Clearly,

the returns are not the same. This additional term corresponds to the convexity adjust-

ment term µc as calculated by the BKM method. This is found by comparing the expected

log returns of the BKM method and Gram-Charlier series return

EQt [R (t, τ)] = EQt

[
ln ST
St

]
=
(
r − 1

2σ
2 + µc

)
τ (24)

=⇒ µc,BKM = 1
τ
EQt [R (t, τ)]−

(
r − 1

2σ
2
)

(25)

1 The details are shown in appendix F.
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Using Equation (24) in place of the BKM µ, the errors caused by BKM’s approximation

can be calculated.

3 Data

As this paper uses virtual options to test for estimation errors, the data required is

minimal and can be set arbitrarily. However, to direct the results towards US markets,

specifically the S&P 500, the risk-free rate, volatility, and time to maturity, have been

set to 2.4%,1 0.20, and one month, respectively. These values partially reflect the current

market conditions in April 2019. The current market volatility based on the CBOE VIX2

is oddly low, so the standard deviation has been chosen to be 0.20. A one month time to

maturity has been chosen as these tend to be the most liquid (shortest term contracts).

4 Numerical Results

4.1 BKM Estimation

The mean errors of the VIX, standard deviation, skewness, and kurtosis estimators are

shown in Table II. The mean error is the mean of the estimation error (Equation (18))

calculated over each valid Gram-Charlier region. These errors show that, as expected, the

smaller boundary controlling factor (a), the smaller the approximation error. Similarly,

a smaller step size (∆K) corresponds to a smaller discretisation error. As these two

approaches zero, the discretisation and truncation of the BKM method tend towards an

integral over an infinite range. For the average of skewness errors to be less than 10−3

the boundary controlling factor and step size, as shown in Table II, must be less than

0.75 and $20, respectively. A more robust way to limit errors to be below 10−3 is done by

using the maximum value of the absolute error rather than the mean. This is shown in

1 Using the Treasure bill rates from https://home.treasury.gov/
2 https://www.cboe.com/VIX

https://home.treasury.gov/
https://www.cboe.com/VIX
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Table III. The constraint is stronger and is reflected in the allowable boundary controlling

factor and step size. The boundary controlling factor and step size to ensure that the

errors are bounded by 10−3 must also be bounded by 0.75 and $2, respectively. The step

size is dependent on the forward price, to generalize this result, the step size must be less

than 0.1% of the forward price. Comparing the errors of the second to fourth moments

shows that the BKM estimator, for these values, is more accurate for lower-order moment

estimators.

[Insert Tables II and III about here.]

A visual form of Table II is presented in Figure 4. This figure shows that the errors

caused by truncation of the integral causes less predictable behaviour, whereas changes

in the step size do not seem to affect the error as unpredictably. Although the truncation

error is less predictable, when the boundary controlling factor is below 0.75, the behaviour

is stable.

[Insert Figure 4 about here.]

Figure 5 shows the projection of Figure 4 to show just the errors with respect to

the step size. Due to the large errors caused by truncation, Figure 5 shows errors with

boundary controlling factor values of 0.05, 0.40, and 0.75. The error boundary of 10−3 is

shown in red. The same has been done for variance and VIX and is shown in Figure 7.

Figures 6 and 8 show the same errors but with respect to the boundary controlling factors

for step sizes of 1, 10, and 25.

[Insert Figures 5, 6, 7 and 8 about here.]

The skewness errors can easily be restricted below 10−3 by fixing ∆K = $2 and

a ≤ 0.75. Kurtosis, however, have much larger errors.

The standard deviation, skewness, and kurtosis using the BKM method and the VIX

have been calculated for a skewness and kurtosis of −1 and 2.5, respectively. This has
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been done for a boundary controlling factor value of 0.05, 0.40, and 0.75 and step size of

1 to 50. This is shown in Figure 9. Figure 10 shows the same errors with respect to the

boundary controlling factors.

[Insert Figures 9 and 10 about here.]

To examine the independence of the skewness estimator from kurtosis, the skewness

is estimated when the skewness, the boundary controlling factor and step size are set to

-1, 0.25 and 1, respectively, whilst adjusting the kurtosis within the valid Gram-Charlier

region. The same has been done for kurtosis when it is set to 2.5. As neither the

true skewness nor the true kurtosis has been chosen to be zero, the relative error for

each estimator can, therefore, be calculated. The (absolute) relative error is defined as

Relative Error =
∣∣∣x−xtrue
xtrue

∣∣∣, where x is the estimated value, and xtrue is the true value. The

maximum(minimum) relative error for skewness and kurtosis were found to be 4.476 ×

10−04(4.476× 10−04) and 1.272× 10−03(1.245× 10−03), respectively. These relative error

curves are monotonically increasing and decreasing, as shown in Figure 11. These values

cannot be used to compare the sensitivity of skewness and kurtosis directly. The difference

of the maximum and minimum values for skewness and kurtosis are 5.866 × 10−08 and

2.663×10−05, respectively. From this, the effects of kurtosis on the estimation of skewness

and vice versa are shown to be insignificant. Therefore, for this case, the estimation of

skewness is independent of kurtosis and vice versa.

[Insert Figure 11 about here.]

4.2 In-Depth Error Analysis

A closer inspection of errors shows that the current level of granularity of the step size

∆K = 1 is not sufficient to show the overall form of the relationship between the errors

and step size. By reducing the step size to ∆K = 0.001, this reveals a form which is closer

to the true form. This is shown in Figure 12.
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[Insert Figure 12 about here.]

The error does not decrease exponentially with respect to the step size, but more

so quadratically. The error envelope, positive (+) and negative (−), was found using a

least-squares approximation of a relatively simple parsimonious quadratic curve

β1∆K + β2(∆K)2. (26)

The coefficients β+
1 , β+

2 , β−1 , and β−2 were found to be 2.984 × 10−04, 1.969 × 10−05,

−1.639 × 10−04, and −8.959 × 10−06, respectively. Using these values, the asymmetric

envelope can be decomposed into two components, a symmetric envelope, and a trend

term. The symmetric envelope has parameters βs1 and βs2 equal to 2.311 × 10−04 and

1.433 × 10−05, respectively. The trend component has parameters βt1 and βt2 equal to

6.726× 10−05 and 5.366× 10−06, respectively. The error is oscillating with an increasing

period, to capture this behaviour, Equation (26) seems to be suitable. The increasing

period increases approximately quadratically with βω1 and βω2 equal to 6.980× 10−04 and

4.967× 10−04, respectively. This model is also presented in Figure 12. The methodology

used to obtain these parameters are presented in appendix G.

As the risk-neutral moments are composed of multiple contracts, which in itself pro-

duces errors, the errors of each contract with respect to the step size is shown in Figure 13.1

[Insert Figure 13 about here.]

The errors of the volatility contract can be modelled the same way as the skewness es-

timator. The same error model is not appropriate for the other contracts. The coeffi-

cients for the volatility contract (relative) errors are βs =
[
1.487× 10−04 8.976× 10−06

]T
,

βt =
[
2.539× 10−05 4.631× 10−06

]T
, and βω =

[
2.773× 10−05 5.113× 10−04

]T
. The

relative error is defined as

Relative Error := Estimated− True
True . (27)

1 The details of true contract values are shown in appendix H.
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4.3 Alternative Convexity Adjustment Term

The errors of using the Black-Scholes return in place of BKM’s approximation have been

tabulated in Tables IV and V and presented in Figures 14 and 15.

[Insert Tables IV and V and Figures 14 and 15 about here.]

Tables IV and V have been combined with Tables II and III in Tables VI and VII,

respectively, to allow for ease of comparison.

[Insert Tables VI and VII about here.]

In general, there is a slight decrease in both mean and absolute maximum errors for

skewness when the boundary controlling factor is less than 0.75. For larger boundary

controlling factors, the alternate convexity adjustment term increases the errors.

5 Implications

The implications of this papers are that the discretised BKM methodology is unable to

accurately mainly due to the interval of strikes being too large. The truncation errors do

cause some issues; however, not as much as the step size (for the intervals used). Many

papers have studied the smoothing and extrapolation techniques which can be used to

improve the accuracy of the BKM estimators. This paper provides a way to compare

the estimator with the true underlying moment. Using this methodology, smoothing

techniques as well as extrapolating techniques can be remeasured using true moment

values.

6 Conclusion

This paper shows a method to create virtual options using the Gram-Charlier series. These

virtual options are created by specifying the mean, variance, skewness, and kurtosis. By
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doing so, risk-neutral moment estimators can be compared with the true values. The

BKM method is used to calculate the CBOE SKEW, this paper finds that to estimate

skewness within 10−3 of the true value, the range of strikes (Kmin, Kmax) must contain at

least 3/4 to 4/3 of the forward price and have a step size (∆K) of no more than 0.1% of the

forward price. Rather than using the absolute error as the measure, if the average error

is used, then the step size restriction can be relaxed to 1% of the forward price. Under

the same boundary controlling factor and step size specification, the absolute errors of

the kurtosis, standard deviation and VIX are bounded by 5 × 10−3, 10−4, and 5 × 10−3,

respectively.

The errors of skewness were found to oscillate with respect to the step size. Increas-

ing the granularity of the step size decreases the error approximately quadratically, not

exponentially.
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Appendix

A Gram-Charlier Region Derivation
The Gram-Charlier expansion up to the kurtosis term, which is given by Equation (1), can
also be expressed in terms of Hermite polynomials and the standard normal distribution
probability density function rather than the normal distribution and its derivatives. That
is,

f(x) = n(x)
[
1 + λ1

3!He3(x) + λ2

4!He4(x)
]

(A.1)

where He, the Hermite polynomial, is defined as

Hen(x) := (−1)nex
2

2
dn

dxn
e−

x2
2 =

(
x− d

dx

)n
· 1 (A.2)

which gives He2(x) = x2 − 1, He3(x) = x3 − 3x, and He4(x) = x4 − 6x2 + 3.
A necessary but not sufficient condition for f to be a valid probability density is that f

must be positive semi-definite. As n(x) is already a valid density function, this condition
is inherited by the Gram-Charlier series, that is,

1 + λ1

3!He3(x) + λ2

4!He4(x) ≥ 0, ∀x (A.3)

Following Jondeau and Rockinger (2001), the valid Gram-Charlier region can be found
by finding λ1 and λ2 which satisfies

1 + λ1

3!He3(x) + λ2

4!He4(x) = 0 (A.4)

and

λ1

2!He2(x) + λ2

3!He3(x) = 0 (A.5)

for all x. The λ1 and λ2 must simultaneously satisfy Equation (A.4) to ensure that
p4(x) = 0 and Equation (A.5) to ensure that adjacent values of λ1 and λ2 will also satisfy
p4(x) = 0 for (infinitesimally) small variations of x. Equation (A.5) can be found by
taking the derivative of Equation (A.4) with respect to x. The explicit equations for λ1
and λ2, found from simultaneously solving Equation (A.4) and Equation (A.5), are

λ1(x) = −24 He3(x)
4He2

3(x)− 3He2(x)He4(x) (A.6)

λ2(x) = 72 He2(x)
4He2

3(x)− 3He2(x)He4(x) . (A.7)

These equations are used to plot the Gram-Charlier region in Figures 1, 2 and 3.
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B Virtual Options Derivation
Using the methodology laid out by Zhang and Xiang (2008) the Gram-Charlier series can
be used to create virtual options with known variance, skewness, and kurtosis.

With the underlying stock price, ST , modelled by

ST = F T
t e

(− 1
2σ

2+µc)τ+σ
√
τy, (2)

in the risk-neutral world, where µc is the convexity adjustment term and y is a random
number with mean zero, variance 1, skewness λ1, and kurtosis λ2.

Using the Martingale condition (F T
t = EQt [ST ]), the convexity adjustment term can

be found to be
µc = −1

τ
ln
[
1 + λ1

3!
(
σ
√
τ
)3

+ λ2

4!
(
σ
√
τ
)4
]

(B.1)

Zhang and Xiang (2008) then uses Harrison and Kreps (1979) and Harrison and
Pliska (1981) to compute the European call option

ct = e−rτEQt [max(ST −K, 0)]

= e−rτ
∫ ∞
−d2

(
F T
t e

(− 1
2σ

2+µc)τ+σ
√
τy −K

)
f(y)dy

where

d2 =
ln(F T

t /K) +
(
−1

2σ
2 + µc

)
τ

σ
√
τ

, d1 = d2 + σ
√
τ

Using basic integration techniques, Equation (4) can be obtained. Equation (4) is different
to the call price presented in the appendix of Zhang and Xiang (2008) due to a minor
error, the call price could be further simplified.

C BKM Derivation
The standardised skewness is given by Equation (6) when n = 3. Expanding this,
the BKM formula for risk-neutral skewness can be found. Similarly, the standardised
kurtosis can be found when n = 4. BKM defines µ, V , W , and X as EQt [R (t, τ)],
EQt

[
e−rτR (t, τ)2

]
, EQt

[
e−rτR (t, τ)3

]
, and EQt

[
e−rτR (t, τ)4

]
, respectively.

Skewness =
EQt

[
(R (t, τ)− µ)3

]
{
EQt

[
(R (t, τ)− µ)2

]} 3
2

(C.1)

=
EQt

[
R (t, τ)3 − 3µR (t, τ)2 + 3µ2R (t, τ)− µ3

]
{
EQt

[
R (t, τ)2 − 2µR (t, τ) + µ2

]} 3
2

(C.2)

= erτW − 3µerτV + 3µ2µ− µ3

[erτV − 2µµ+ µ2]
3
2

= erτW − 3µerτV + 2µ3

[erτV − µ2]
3
2

(C.3)
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Kurtosis =
EQt

[
(R (t, τ)− µ)4

]
{
EQt

[
(R (t, τ)− µ)2

]}2 (C.4)

=
EQt

[
R (t, τ)4 − 4µR (t, τ)3 + 6µ2R (t, τ)2 − 4µ3R (t, τ) + µ4

]
{
EQt

[
R (t, τ)2 − 2µR (t, τ) + µ2

]}2 (C.5)

= erτX − 4µerτW + 6µ2erτV − 4µ3µ+ µ4

[erτV − 2µµ+ µ2]2
(C.6)

= erτX − 4µerτW + 6µ2erτV − 3µ4

[erτV − µ2]2
(C.7)

The (annualized) variance σ2 is given by

σ2 = 1
τ
EQt

[
(R (t, τ)− µ)2

]
= erτV − µ2

τ
(C.8)

D Numerical Integration
The traditional trapezium rule is given in the form of Equation (D.1). With a small
rearrangement, Equation (D.2) can be obtained. This is the trapezium rule that is used
for calculations.∫ b

a
f(x)dx =

n−1∑
i=1

f(xi) + f(xi+1)
2 ∆xi, ∆xi = xi+1 − xi (D.1)

=
n∑
i=1

f(xi)∆xi, ∆xi = 1
2


x2 − x1, i = 1
xi+1 − xi−1, 1 < i < n

xn − xn−1, i = n

(D.2)

The CBOE uses Equation (D.3) which introduces a small error at the end points, Kmin
and Kmax. This method does, however, give equal weighting to each option - rather than
half the weight given to end points if the traditional trapezium rule is used.

∫ b

a
f(x)dx ≈

n∑
i=1

f(xi)∆xi, ∆xi =


x2 − x1, i = 1
xi+1−xi−1

2 , 1 < i < n

xn − xn−1, i = n

(D.3)

=
∫ b

a
f(x)dx−

(
f(x1)x2 − x1

2 + f(xn)xn − xn−1

2

)
(D.4)
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E VIX Derivation
E.1 Variance Swap Derivation

Demeterfi, Derman, Kamal, and Zou (1999) present a method to replicate variance swaps
with European options. Following part of their procedure, for a differential stock price
form of

dSt
St

= (r − q) dt+ σtdWt

where r, q and σ is risk-free rate, continuous dividend rate and the volatility parameters,
respectively, the following can be obtained:

VIX2 = 2
τ
EQt

[∫ T

t

dSt
St
− ln ST

St

]
× 1002 (E.1)

With some algebraic manipulation, an intuitive formula can be found:

VIX = 100
√
−2
τ
EQt

[
ln ST
Ste(r−q)τ

]
(E.2)

E.2 CBOE VIX

Using the integral form of stock price derived using the Gram-Charlier region, with some
algebra, the following can be obtained.

VIX2 = −2
τ
EQt

[
ln ST
Ste(r−q)τ

]
× 1002 (E.3)

= −2
τ
EQt

[(
−1

2σ
2 + µc

)
τ + σ

√
τy
]
× 1002 (E.4)

=
[(
σ2 − 2µc

)
− 2
τ
σ
√
τEQt [y]

]
× 1002 (E.5)

=
[
σ2 − 2µc

]
× 1002 (E.6)

=⇒ VIX = 100
√
σ2 − 2µc (E.7)

The volatility index can also calculated using the BKM method

VIX2 = −2
τ
EQt

[
ln ST
Sterτ

]
× 1002 =

[
−2
τ
EQt [R (t, τ)] + 2r

]
× 1002 (E.8)

=⇒ VIX ≈ 100
√
−2
τ
µ+ 2r (E.9)

where

µ(t, τ) := erτ − 1− 1
2E
Q
t

[
R (t, τ)2

]
− 1

3!E
Q
t

[
R (t, τ)3

]
− 1

4!E
Q
t

[
R (t, τ)4

]
(E.10)

As µ, the approximation of EQt [R (t, τ)], is required, this method introduces errors, how-
ever, it does remain model-free.



Bakshi, Kapadia, and Madan (2003) Risk-Neutral Moment Estimators 24

F BKM and Black-Scholes Risk-Neutral Log Returns
Using the standard Black-Scholes stock price model,

ST = Ste
(r− 1

2σ
2)τ+σWτ , (F.1)

where Wτ is a Wiener process, the expected value of log returns is

EQt [R (t, τ)] = EQt

[(
r − 1

2σ
2
)
τ + σWτ

]
=
(
r − 1

2σ
2
)
τ. (F.2)

From this, the BKM’s approximation can be compared like so

EQt [R (t, τ)] ≈ erτ − 1− 1
2E
Q
t

[
R (t, τ)2

]
− 1

3!E
Q
t

[
R (t, τ)3

]
− 1

4!E
Q
t

[
R (t, τ)4

]
.

As the BKM approximates the exponential term when used with R(t, τ), this is also done
to erτ . The result is

EQt [R (t, τ)] ≈ 1 + rτ + 1
2(rτ)2 + 1

3!(rτ)3 + 1
4!(rτ)4 − 1

− 1
2E
Q
t

[
R (t, τ)2

]
− 1

3!E
Q
t

[
R (t, τ)3

]
− 1

4!E
Q
t

[
R (t, τ)4

]
.

Expanding this further and simplifying, Equation (23) can be obtained.

G Error Envelope Derivation
Using a simple curve was sufficient to capture the main characteristics of the error.

Y = Errors (Peaks (+ or −)) (G.1)
x = Corresponding ∆K (G.2)
X =

[
x x2

]
(G.3)

For y = β1x+ β2x
2

Y = Xβ (G.4)

=⇒ β =
(
XTX

)−1
XTY (G.5)

For the positive envelope and negative envelope, the coefficients are assigned to β+ and
β−, respectively. The symmetric envelope and trend can be found from βs = β+−β−

2 and
βt = β++β−

2 , respectively. From this, the envelope component equations are given by

Es = Xβs (G.6)
Et = Xβt (G.7)
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The positive and negative envelopes are therefore

E+ = Xβs +Xβt, E− = −Xβs +Xβt (G.8)

To capture behaviour of the oscillations, the same quadratic model was used. Therefore,
the coefficients were calculated the same way. The coefficient of the oscillations, denoted
as βω, forms the following oscillating function

Ω = sin
(

2π
Xβω

x

)
(G.9)

Combining the envelope, trend and oscillating function forms the following model

Error Model = EsΩ + Et

= Xβs sin
(

2π
Xβω

x

)
+Xβt

(G.10)

As X =
[
x x2

]
, the model describes the error as changing quadratically in both the

magnitude and period. Due to the specification of the model, when x (viz. ∆K) is zero,
the error vanishes.

H Testing the Volatility, Cubic, and Quartic Contracts Directly
The BKM method utilizes three contracts formed by Carr and Madan’s payoff decom-
position function. To test the accuracy of the BKM estimators, the components within
these estimators, the three contracts, can also be tested.

As the risk-neutral moments are known, the values of the contract can be calculated
like so

erτV = σ2τ + µ2 (H.1)

erτW = λ1
(
σ2τ

) 3
2 + 3µσ2τ + µ3 (H.2)

erτX = (λ2 + 3)
(
σ2τ

)2
+ 4λ1µ

(
σ2τ

) 3
2 + 6µ2σ2τ + µ4 (H.3)

For this exact calculation, µ =
(
r − 1

2σ
2 + µc

)
τ , this uses the Black-Scholes and Gram-

Charlier model (Equation (24)). This can be used to test the accuracy of the calculation
of each contract.
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Tables

Table I: Specification of Parameters.
The value(s) of each parameter used in calculations are specified in this table.

Parameter Definition Range
F T
t Forward Price at time t with maturity date T $2,000
r Risk-Free Rate 2.4%

τ = T − t Time to Maturity 1 month
σ Standard Deviation 0.20
λ1 Skewness (−1.05, 1.05)
λ2 Excess Kurtosis [0, 4]

a = Kmin

F T
t

= F T
t

Kmax
Boundary Controlling Factor [0.05, 0.95]

∆K Step Size of Strikes [1, 50]
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Table II: Lookup Table for Mean Errors.
This table shows the mean errors of the VIX, standard deviation, skewness, and kur-
tosis estimators which were calculated from the valid Gram-Charlier region. These val-
ues have been scaled. The options created have a forward price F T

t , time to maturity
τ , risk-free rate r, and standard deviation σ, have been arbitrarily set to $2,000, one
month, 2.4%, and 0.20, respectively. This has been done for various boundary control-
ling factor (a) values and step sizes (∆K). The error for each a and ∆K is defined as
Error := mean (Estimated Moment− True Moment).

∆K 1 2 3 4 5 10 20 30 40 50
a VIX ×10

0.05 -0.03 -0.06 -0.08 -0.10 -0.09 0.00 0.38 -0.49 -1.12 2.98
0.40 -0.03 -0.06 0.03 -0.10 -0.09 0.00 0.38 1.00 1.87 2.98
0.75 -0.03 -0.06 -0.03 -0.10 -0.09 0.00 0.38 -0.50 -1.12 2.98
0.80 -0.06 -0.09 -0.11 -0.13 -0.12 -0.03 0.35 -0.53 1.82 2.94
0.82 -0.17 -0.20 -0.12 -0.25 -0.24 -0.15 0.20 0.82 1.62 -0.26
0.84 -0.53 -0.55 -0.54 -0.60 -0.59 -0.49 -0.13 -1.07 1.22 -2.04
0.86 -1.44 -1.48 -1.52 -1.53 -1.50 -1.48 -1.11 -2.01 0.34 -3.11
0.88 -3.42 -3.45 -3.42 -3.50 -3.54 -3.45 -3.37 -2.49 -2.62 -3.93
0.90 -7.04 -7.06 -7.14 -7.21 -7.20 -7.11 -6.75 -7.71 -6.40 -5.34
0.92 -13.13 -13.24 -13.18 -13.29 -13.44 -13.35 -13.89 -14.01 -12.48 -16.77
0.94 -22.97 -23.14 -23.05 -23.49 -23.33 -23.99 -23.66 -23.10 -22.32 -34.92
0.95 -30.20 -30.42 -30.45 -30.48 -30.28 -31.18 -30.87 -36.88 -33.17 -28.67
a Risk-Neutral Standard Deviation ×1,000

0.05 -0.03 -0.05 -0.08 -0.10 -0.09 0.00 0.38 -0.49 -1.12 2.98
0.40 -0.03 -0.05 0.03 -0.10 -0.09 0.00 0.38 1.00 1.87 2.98
0.75 -0.03 -0.06 -0.03 -0.10 -0.09 0.00 0.38 -0.50 -1.12 2.98
0.80 -0.06 -0.09 -0.11 -0.13 -0.12 -0.03 0.34 -0.52 1.82 2.94
0.82 -0.17 -0.20 -0.12 -0.25 -0.24 -0.15 0.20 0.82 1.63 -0.23
0.84 -0.53 -0.56 -0.54 -0.60 -0.59 -0.50 -0.13 -1.07 1.24 -2.04
0.86 -1.45 -1.49 -1.52 -1.53 -1.51 -1.48 -1.11 -2.01 0.33 -3.12
0.88 -3.43 -3.46 -3.42 -3.51 -3.54 -3.45 -3.34 -2.49 -2.51 -3.92
0.90 -7.05 -7.08 -7.14 -7.21 -7.20 -7.11 -6.75 -7.72 -6.30 -5.24
0.92 -13.13 -13.23 -13.18 -13.28 -13.42 -13.33 -13.80 -13.99 -12.39 -16.51
0.94 -22.96 -23.12 -23.03 -23.45 -23.30 -23.92 -23.58 -23.03 -22.25 -34.43
0.95 -30.19 -30.40 -30.43 -30.46 -30.27 -31.12 -30.80 -36.60 -33.10 -28.61
a Risk-Neutral Skewness ×1,000

0.05 -0.02 -0.04 -0.07 -0.09 -0.07 0.09 0.75 -2.09 -1.99 5.42
0.40 -0.02 -0.04 0.02 -0.09 -0.07 0.09 0.75 1.84 3.40 5.42
0.75 -0.01 -0.03 -0.01 -0.08 -0.06 0.10 0.76 0.49 -1.97 5.43
0.80 0.76 0.73 0.71 0.69 0.71 0.88 1.58 -1.17 3.39 6.54
0.82 2.57 2.41 2.48 2.08 1.95 1.35 0.26 1.51 -1.56 -15.76
0.84 6.41 6.39 6.01 6.35 6.38 6.58 7.39 3.16 1.35 1.43
0.86 13.68 12.77 11.85 12.74 13.66 9.29 10.11 7.71 13.44 12.45
0.88 22.95 22.94 19.67 22.92 19.62 19.81 3.04 21.76 -33.26 11.79
0.90 33.81 33.80 28.57 28.54 28.55 28.70 29.27 29.62 -24.08 -21.35
0.92 39.19 35.34 39.18 35.32 27.55 27.68 -12.32 25.22 -9.41 -116.20
0.94 44.68 39.06 39.05 27.64 33.38 4.35 4.90 5.83 7.17 -312.59
0.95 48.46 41.53 41.53 41.52 48.46 13.17 13.59 -154.54 9.59 16.90
a Risk-Neutral Kurtosis ×100

0.05 0.30 0.57 0.81 1.03 0.92 -0.05 -3.90 5.06 11.85 -29.91
0.40 0.30 0.57 -0.27 1.03 0.92 -0.05 -3.90 -10.23 -18.95 -29.91
0.75 0.25 0.52 0.30 0.99 0.87 -0.10 -3.95 5.18 11.79 -29.98
0.80 -2.72 -2.45 -2.20 -1.98 -2.10 -3.08 -6.96 1.86 -22.85 -33.19
0.82 -10.04 -9.86 -10.69 -9.59 -9.81 -11.28 -16.28 -22.69 -34.26 -18.72
0.84 -28.07 -27.82 -28.24 -27.38 -27.50 -28.46 -32.31 -26.23 -52.06 -15.07
0.86 -62.21 -62.36 -62.55 -61.95 -61.67 -64.59 -68.21 -60.58 -82.37 -51.65
0.88 -114.83 -114.61 -116.48 -114.24 -115.53 -116.33 -125.57 -124.74 -150.27 -122.66
0.90 -181.35 -181.16 -182.81 -182.33 -182.41 -183.05 -185.60 -179.00 -210.07 -217.06
0.92 -255.47 -256.14 -255.16 -255.86 -257.57 -258.03 -267.91 -254.03 -274.90 -278.01
0.94 -328.86 -329.59 -329.96 -331.04 -330.22 -334.64 -335.65 -337.35 -339.77 -342.57
0.95 -364.12 -364.86 -364.74 -364.63 -363.78 -368.12 -368.65 -376.61 -357.58 -372.80
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Table III: Lookup Table for Maximum Absolute Errors.
This table shows the maximum values of the absolute errors of the VIX, standard de-
viation, skewness, and kurtosis estimators which were calculated from the valid Gram-
Charlier region. These values have been scaled. The options created have a forward price
F T
t , time to maturity τ , risk-free rate r, and standard deviation σ, have been arbitrarily

set to $2,000, one month, 2.4%, and 0.20, respectively. This has been done for various
boundary controlling factor (a) values and step sizes (∆K). The error for each a and ∆K
is defined as Error := max |Estimated Moment− True Moment|.

∆K 1 2 3 4 5 10 20 30 40 50
a VIX ×10

0.05 0.03 0.06 0.08 0.10 0.09 0.01 0.39 0.49 1.13 3.01
0.40 0.03 0.06 0.03 0.10 0.09 0.01 0.39 1.01 1.89 3.01
0.75 0.03 0.06 0.04 0.10 0.09 0.01 0.39 0.50 1.13 3.01
0.80 0.09 0.12 0.14 0.16 0.15 0.06 0.38 0.56 1.87 2.99
0.82 0.29 0.31 0.23 0.37 0.36 0.28 0.37 0.99 1.85 0.51
0.84 0.92 0.94 0.93 0.99 0.98 0.89 0.52 1.52 1.81 2.48
0.86 2.51 2.56 2.61 2.61 2.57 2.59 2.23 3.15 1.68 4.30
0.88 5.82 5.85 5.85 5.89 5.97 5.88 5.98 4.93 5.74 6.61
0.90 11.45 11.48 11.60 11.67 11.66 11.57 11.21 12.20 11.39 10.30
0.92 19.89 20.03 19.95 20.08 20.29 20.19 20.94 20.84 19.43 24.53
0.94 31.46 31.65 31.55 32.02 31.85 32.57 32.18 31.55 30.66 44.52
0.95 38.99 39.22 39.25 39.28 39.07 39.98 39.61 45.94 41.88 37.03
a Risk-Neutral Standard Deviation ×1,000

0.05 0.03 0.05 0.08 0.10 0.09 0.00 0.38 0.49 1.12 2.98
0.40 0.03 0.05 0.03 0.10 0.09 0.00 0.38 1.00 1.87 2.98
0.75 0.03 0.06 0.03 0.10 0.09 0.00 0.38 0.50 1.12 2.98
0.80 0.09 0.12 0.14 0.16 0.15 0.06 0.38 0.55 1.87 2.97
0.82 0.29 0.32 0.24 0.37 0.36 0.28 0.37 0.99 1.85 0.45
0.84 0.94 0.96 0.95 1.01 1.00 0.91 0.54 1.52 1.81 2.49
0.86 2.56 2.60 2.64 2.65 2.62 2.61 2.25 3.17 1.67 4.34
0.88 5.90 5.93 5.91 5.98 6.03 5.94 5.93 5.00 5.47 6.59
0.90 11.60 11.62 11.71 11.78 11.77 11.68 11.32 12.31 11.17 10.09
0.92 20.07 20.18 20.13 20.23 20.38 20.29 20.82 20.93 19.30 23.86
0.94 31.66 31.82 31.72 32.12 31.99 32.53 32.15 31.51 30.62 43.31
0.95 39.19 39.39 39.42 39.45 39.28 40.01 39.64 45.26 41.90 37.05
a Risk-Neutral Skewness ×1,000

0.05 0.45 0.86 1.25 1.59 1.40 0.17 6.40 9.43 18.97 48.73
0.40 0.45 0.86 0.42 1.59 1.40 0.17 6.40 16.69 30.87 48.73
0.75 0.42 0.84 0.50 1.57 1.38 0.19 6.43 8.04 18.94 48.76
0.80 1.76 1.43 1.43 1.54 1.48 2.40 8.72 7.12 32.85 51.59
0.82 8.03 7.49 8.78 6.51 6.65 7.95 13.66 24.23 39.40 29.68
0.84 26.04 25.64 25.85 24.94 25.14 26.78 33.32 19.46 56.10 10.00
0.86 70.13 69.52 68.94 68.86 69.28 69.78 76.37 62.33 102.23 54.46
0.88 157.13 156.77 157.28 156.17 155.71 157.29 160.27 173.96 233.88 167.69
0.90 300.10 299.79 299.10 298.29 298.46 299.80 305.14 295.80 359.97 369.99
0.92 493.22 491.88 492.73 491.42 489.29 490.18 511.61 482.16 519.22 641.21
0.94 706.05 702.99 703.47 696.68 699.71 685.77 685.68 687.45 690.14 1041.57
0.95 805.46 800.84 800.68 800.51 804.98 781.73 781.60 954.29 760.23 781.10
a Risk-Neutral Kurtosis ×100

0.05 0.40 0.77 1.10 1.40 1.25 0.07 5.28 6.87 16.04 40.48
0.40 0.40 0.77 0.37 1.40 1.25 0.07 5.28 13.87 25.67 40.48
0.75 0.32 0.69 0.39 1.32 1.16 0.16 5.38 6.98 15.93 40.60
0.80 4.92 4.56 4.23 3.93 4.09 5.42 10.69 2.83 32.55 46.25
0.82 17.61 17.41 18.53 17.11 17.44 19.62 26.82 35.53 52.24 32.52
0.84 48.14 47.79 48.44 47.21 47.37 48.67 53.87 46.59 82.06 31.10
0.86 104.25 104.58 104.95 104.04 103.54 108.04 112.82 102.70 131.53 90.92
0.88 187.73 187.44 190.21 186.95 188.96 189.97 203.51 200.64 239.27 198.81
0.90 288.52 288.27 290.72 290.10 290.19 290.95 293.97 285.05 326.85 334.87
0.92 393.61 394.56 393.21 394.19 396.54 397.03 409.88 391.09 417.34 422.37
0.94 488.22 489.13 489.59 490.92 489.91 495.30 496.35 498.13 500.66 503.97
0.95 530.36 531.24 531.09 530.95 529.94 535.06 535.65 544.30 521.68 540.33
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Table IV: Errors for Alternative Convexity Adjustment Term.
This table shows the mean errors of the VIX, standard deviation, skewness, and kur-
tosis estimators which were calculated from the valid Gram-Charlier region. The ex-
pected return of BKM has been replaced by EQt [R (t, τ)] =

(
r − 1

2σ
2 + µc

)
τ . These

values have been scaled. The options created have a forward price F T
t , time to maturity

τ , risk-free rate r, and standard deviation σ, have been arbitrarily set to $2,000, one
month, 2.4%, and 0.20, respectively. This has been done for various boundary control-
ling factor (a) values and step sizes (∆K). The error for each a and ∆K is defined as
Error := mean (Estimated Moment− True Moment).

∆K 1 2 3 4 5 10 20 30 40 50
a Risk-Neutral Standard Deviation ×1,000

0.05 -0.03 -0.05 -0.08 -0.10 -0.09 0.00 0.38 -0.49 -1.12 2.98
0.40 -0.03 -0.05 0.03 -0.10 -0.09 0.00 0.38 1.00 1.87 2.98
0.75 -0.03 -0.06 -0.03 -0.10 -0.09 0.00 0.38 -0.50 -1.12 2.98
0.80 -0.06 -0.09 -0.11 -0.13 -0.12 -0.03 0.34 -0.52 1.82 2.94
0.82 -0.17 -0.20 -0.12 -0.25 -0.24 -0.15 0.20 0.82 1.63 -0.23
0.84 -0.53 -0.56 -0.54 -0.60 -0.59 -0.50 -0.13 -1.07 1.24 -2.04
0.86 -1.45 -1.49 -1.52 -1.53 -1.51 -1.48 -1.11 -2.01 0.33 -3.12
0.88 -3.43 -3.46 -3.42 -3.51 -3.54 -3.45 -3.34 -2.49 -2.51 -3.92
0.90 -7.05 -7.07 -7.14 -7.21 -7.20 -7.11 -6.75 -7.71 -6.30 -5.24
0.92 -13.12 -13.23 -13.18 -13.28 -13.42 -13.33 -13.79 -13.98 -12.39 -16.50
0.94 -22.95 -23.11 -23.02 -23.44 -23.29 -23.90 -23.57 -23.01 -22.24 -34.40
0.95 -30.17 -30.38 -30.41 -30.44 -30.25 -31.10 -30.78 -36.57 -33.08 -28.59
a Risk-Neutral Skewness ×1,000

0.05 0.00 0.00 0.00 -0.00 0.01 0.09 0.42 -1.67 -1.01 2.86
0.40 0.00 0.00 0.00 -0.00 0.01 0.09 0.42 0.98 1.78 2.86
0.75 0.02 0.02 0.02 0.01 0.02 0.10 0.43 0.93 -1.00 2.87
0.80 0.81 0.81 0.81 0.81 0.82 0.91 1.28 -0.71 1.81 4.01
0.82 2.72 2.58 2.58 2.29 2.16 1.48 0.09 0.81 -2.96 -15.53
0.84 6.86 6.87 6.48 6.87 6.89 7.01 7.50 4.09 0.30 3.20
0.86 14.93 14.06 13.17 14.07 14.97 10.57 11.08 9.47 13.15 15.17
0.88 25.95 25.96 22.66 25.98 22.72 22.82 5.98 23.93 -30.97 15.24
0.90 40.03 40.04 34.88 34.91 34.92 34.98 35.23 36.45 -18.43 -16.65
0.92 50.99 47.24 51.03 47.27 39.65 39.69 0.20 37.85 1.80 -100.97
0.94 65.92 60.47 60.37 49.38 54.97 26.60 26.81 27.19 27.77 -279.03
0.95 76.99 70.30 70.33 70.35 77.08 42.73 42.82 -118.90 41.23 43.85
a Risk-Neutral Kurtosis ×100

0.05 0.30 0.57 0.81 1.03 0.92 -0.05 -3.89 5.06 11.85 -29.91
0.40 0.30 0.57 -0.27 1.03 0.92 -0.05 -3.89 -10.23 -18.95 -29.91
0.75 0.25 0.52 0.30 0.99 0.87 -0.10 -3.95 5.18 11.79 -29.97
0.80 -2.72 -2.45 -2.20 -1.98 -2.10 -3.08 -6.96 1.86 -22.85 -33.18
0.82 -10.04 -9.87 -10.69 -9.60 -9.81 -11.28 -16.28 -22.69 -34.26 -18.72
0.84 -28.07 -27.82 -28.24 -27.38 -27.50 -28.46 -32.31 -26.24 -52.05 -15.08
0.86 -62.21 -62.37 -62.55 -61.96 -61.67 -64.59 -68.21 -60.58 -82.37 -51.66
0.88 -114.83 -114.61 -116.48 -114.24 -115.53 -116.33 -125.58 -124.75 -150.27 -122.67
0.90 -181.34 -181.15 -182.80 -182.32 -182.40 -183.04 -185.60 -178.99 -210.09 -217.07
0.92 -255.44 -256.11 -255.13 -255.82 -257.54 -258.01 -267.94 -254.01 -274.92 -278.24
0.94 -328.76 -329.50 -329.87 -330.98 -330.15 -334.64 -335.65 -337.35 -339.76 -343.96
0.95 -363.95 -364.71 -364.59 -364.48 -363.61 -368.08 -368.60 -377.34 -357.55 -372.74
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Table V: Maximum Value of the Absolute Error for Alternative Convexity
Adjustment Term.
This table shows the maximum values of the absolute errors of the VIX, standard devi-
ation, skewness, and kurtosis estimators which were calculated from the valid Gram-
Charlier region. The expected return of BKM has been replaced by EQt [R (t, τ)] =(
r − 1

2σ
2 + µc

)
τ . These values have been scaled. The options created have a forward

price F T
t , time to maturity τ , risk-free rate r, and standard deviation σ, have been ar-

bitrarily set to $2,000, one month, 2.4%, and 0.20, respectively. This has been done for
various boundary controlling factor (a) values and step sizes (∆K). The error for each a
and ∆K is defined as Error := max |Estimated Moment− True Moment|.

∆K 1 2 3 4 5 10 20 30 40 50
a Risk-Neutral Standard Deviation ×1,000

0.05 0.03 0.05 0.08 0.10 0.09 0.00 0.38 0.49 1.12 2.98
0.40 0.03 0.05 0.03 0.10 0.09 0.00 0.38 1.00 1.87 2.98
0.75 0.03 0.06 0.03 0.10 0.09 0.00 0.38 0.50 1.12 2.98
0.80 0.09 0.12 0.14 0.16 0.15 0.06 0.38 0.55 1.87 2.97
0.82 0.29 0.32 0.24 0.37 0.36 0.28 0.37 0.99 1.85 0.45
0.84 0.94 0.96 0.95 1.01 1.00 0.91 0.54 1.52 1.81 2.49
0.86 2.56 2.60 2.64 2.64 2.62 2.61 2.25 3.17 1.67 4.34
0.88 5.90 5.93 5.91 5.98 6.03 5.94 5.93 5.00 5.46 6.58
0.90 11.59 11.62 11.70 11.78 11.77 11.67 11.31 12.30 11.17 10.08
0.92 20.06 20.17 20.12 20.22 20.37 20.28 20.80 20.92 19.29 23.84
0.94 31.64 31.80 31.70 32.10 31.96 32.51 32.13 31.49 30.60 43.28
0.95 39.17 39.36 39.39 39.42 39.25 39.98 39.61 45.22 41.87 37.03
a Risk-Neutral Skewness ×1,000

0.05 0.43 0.83 1.18 1.50 1.34 0.16 6.07 9.01 18.00 46.15
0.40 0.43 0.83 0.40 1.50 1.34 0.16 6.07 15.81 29.24 46.15
0.75 0.44 0.83 0.52 1.50 1.34 0.18 6.10 8.47 17.96 46.18
0.80 1.82 1.53 1.55 1.68 1.61 2.44 8.43 6.66 31.25 49.06
0.82 8.23 7.71 8.92 6.77 6.84 8.06 13.46 23.48 40.68 29.30
0.84 26.46 26.08 26.27 25.43 25.62 27.18 33.39 20.33 54.92 12.10
0.86 71.30 70.71 70.15 70.09 70.50 70.93 77.20 63.96 101.80 57.07
0.88 159.92 159.58 160.02 159.01 158.56 160.06 162.76 175.88 231.40 170.68
0.90 305.91 305.62 304.93 304.18 304.33 305.59 310.62 302.15 354.32 365.29
0.92 504.25 502.95 503.81 502.54 500.44 501.25 499.51 493.84 508.41 625.21
0.94 726.13 723.16 723.56 717.04 719.99 704.95 705.76 707.12 709.05 1005.64
0.95 832.66 828.19 828.06 827.91 832.26 809.53 809.07 918.02 790.09 806.32
a Risk-Neutral Kurtosis ×100

0.05 0.40 0.77 1.10 1.40 1.25 0.07 5.28 6.87 16.04 40.47
0.40 0.40 0.77 0.37 1.40 1.25 0.07 5.28 13.87 25.66 40.47
0.75 0.32 0.69 0.39 1.32 1.16 0.16 5.37 6.98 15.93 40.59
0.80 4.92 4.56 4.23 3.94 4.09 5.42 10.69 2.82 32.54 46.24
0.82 17.61 17.41 18.53 17.12 17.44 19.62 26.82 35.52 52.28 32.50
0.84 48.14 47.80 48.44 47.21 47.37 48.68 53.87 46.59 82.05 31.19
0.86 104.26 104.59 104.96 104.05 103.54 108.05 112.83 102.71 131.53 90.93
0.88 187.72 187.43 190.21 186.94 188.96 189.97 203.52 200.64 239.15 198.82
0.90 288.48 288.23 290.69 290.06 290.16 290.91 293.93 285.02 326.87 334.93
0.92 393.51 394.47 393.11 394.09 396.47 396.97 409.96 391.03 417.40 422.37
0.94 488.02 488.95 489.41 490.79 489.75 495.28 496.33 498.11 500.64 505.50
0.95 530.08 530.98 530.84 530.70 529.65 534.97 535.55 545.30 521.61 540.23
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Table VI: Comparison of Errors for the Original and Alternative Convexity
Adjustment Term.
This table shows a comparison of the mean errors of the standard deviation, skewness,
and kurtosis estimators which were calculated from the valid Gram-Charlier region. The
difference is that the expected return of BKM has been replaced by EQt [R (t, τ)] =(
r − 1

2σ
2 + µc

)
τ . These values have been scaled. The options created have a forward

price F T
t , time to maturity τ , risk-free rate r, and standard deviation σ, have been ar-

bitrarily set to $2,000, one month, 2.4%, and 0.20, respectively. This has been done for
various boundary controlling factor (a) values and step sizes (∆K). The error for each a
and ∆K is defined as Error := mean (Estimated Moment− True Moment).

EQt [R (t, τ )] = BKM µ EQt [R (t, τ )] =
(
r−

1
2
σ2 + µc

)
τ

∆K 1 2 3 4 5 1 2 3 4 5
a Risk-Neutral Standard Deviation ×1,000

0.05 -0.03 -0.05 -0.08 -0.10 -0.09 -0.03 -0.05 -0.08 -0.10 -0.09
0.40 -0.03 -0.05 0.03 -0.10 -0.09 -0.03 -0.05 0.03 -0.10 -0.09
0.75 -0.03 -0.06 -0.03 -0.10 -0.09 -0.03 -0.06 -0.03 -0.10 -0.09
0.80 -0.06 -0.09 -0.11 -0.13 -0.12 -0.06 -0.09 -0.11 -0.13 -0.12
0.82 -0.17 -0.20 -0.12 -0.25 -0.24 -0.17 -0.20 -0.12 -0.25 -0.24
0.84 -0.53 -0.56 -0.54 -0.60 -0.59 -0.53 -0.56 -0.54 -0.60 -0.59
0.86 -1.45 -1.49 -1.52 -1.53 -1.51 -1.45 -1.49 -1.52 -1.53 -1.51
0.88 -3.43 -3.46 -3.42 -3.51 -3.54 -3.43 -3.46 -3.42 -3.51 -3.54
0.90 -7.05 -7.08 -7.14 -7.21 -7.20 -7.05 -7.07 -7.14 -7.21 -7.20
0.92 -13.13 -13.23 -13.18 -13.28 -13.42 -13.12 -13.23 -13.18 -13.28 -13.42
0.94 -22.96 -23.12 -23.03 -23.45 -23.30 -22.95 -23.11 -23.02 -23.44 -23.29
0.95 -30.19 -30.40 -30.43 -30.46 -30.27 -30.17 -30.38 -30.41 -30.44 -30.25
a Risk-Neutral Skewness ×1,000

0.05 -0.02 -0.04 -0.07 -0.09 -0.07 0.00 0.00 0.00 -0.00 0.01
0.40 -0.02 -0.04 0.02 -0.09 -0.07 0.00 0.00 0.00 -0.00 0.01
0.75 -0.01 -0.03 -0.01 -0.08 -0.06 0.02 0.02 0.02 0.01 0.02
0.80 0.76 0.73 0.71 0.69 0.71 0.81 0.81 0.81 0.81 0.82
0.82 2.57 2.41 2.48 2.08 1.95 2.72 2.58 2.58 2.29 2.16
0.84 6.41 6.39 6.01 6.35 6.38 6.86 6.87 6.48 6.87 6.89
0.86 13.68 12.77 11.85 12.74 13.66 14.93 14.06 13.17 14.07 14.97
0.88 22.95 22.94 19.67 22.92 19.62 25.95 25.96 22.66 25.98 22.72
0.90 33.81 33.80 28.57 28.54 28.55 40.03 40.04 34.88 34.91 34.92
0.92 39.19 35.34 39.18 35.32 27.55 50.99 47.24 51.03 47.27 39.65
0.94 44.68 39.06 39.05 27.64 33.38 65.92 60.47 60.37 49.38 54.97
0.95 48.46 41.53 41.53 41.52 48.46 76.99 70.30 70.33 70.35 77.08
a Risk-Neutral Kurtosis ×100

0.05 0.30 0.57 0.81 1.03 0.92 0.30 0.57 0.81 1.03 0.92
0.40 0.30 0.57 -0.27 1.03 0.92 0.30 0.57 -0.27 1.03 0.92
0.75 0.25 0.52 0.30 0.99 0.87 0.25 0.52 0.30 0.99 0.87
0.80 -2.72 -2.45 -2.20 -1.98 -2.10 -2.72 -2.45 -2.20 -1.98 -2.10
0.82 -10.04 -9.86 -10.69 -9.59 -9.81 -10.04 -9.87 -10.69 -9.60 -9.81
0.84 -28.07 -27.82 -28.24 -27.38 -27.50 -28.07 -27.82 -28.24 -27.38 -27.50
0.86 -62.21 -62.36 -62.55 -61.95 -61.67 -62.21 -62.37 -62.55 -61.96 -61.67
0.88 -114.83 -114.61 -116.48 -114.24 -115.53 -114.83 -114.61 -116.48 -114.24 -115.53
0.90 -181.35 -181.16 -182.81 -182.33 -182.41 -181.34 -181.15 -182.80 -182.32 -182.40
0.92 -255.47 -256.14 -255.16 -255.86 -257.57 -255.44 -256.11 -255.13 -255.82 -257.54
0.94 -328.86 -329.59 -329.96 -331.04 -330.22 -328.76 -329.50 -329.87 -330.98 -330.15
0.95 -364.12 -364.86 -364.74 -364.63 -363.78 -363.95 -364.71 -364.59 -364.48 -363.61
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Table VII: Comparison of Maximum Value of the Absolute Error for the Orig-
inal and Alternative Convexity Adjustment Term.
maximum values of the absolute errors of the standard deviation, skewness, and kurtosis
estimators which were calculated from the valid Gram-Charlier region. The difference is
that the expected return of BKM has been replaced by EQt [R (t, τ)] =

(
r − 1

2σ
2 + µc

)
τ .

These values have been scaled. The options created have a forward price F T
t , time to

maturity τ , risk-free rate r, and standard deviation σ, have been arbitrarily set to $2,000,
one month, 2.4%, and 0.20, respectively. This has been done for various boundary con-
trolling factor (a) values and step sizes (∆K). The error for each a and ∆K is defined as
Error := max |Estimated Moment− True Moment|.

EQt [R (t, τ )] = BKM µ EQt [R (t, τ )] =
(
r−

1
2
σ2 + µc

)
τ

∆K 1 2 3 4 5 1 2 3 4 5
a Risk-Neutral Standard Deviation ×1,000

0.05 0.03 0.05 0.08 0.10 0.09 0.03 0.05 0.08 0.10 0.09
0.40 0.03 0.05 0.03 0.10 0.09 0.03 0.05 0.03 0.10 0.09
0.75 0.03 0.06 0.03 0.10 0.09 0.03 0.06 0.03 0.10 0.09
0.80 0.09 0.12 0.14 0.16 0.15 0.09 0.12 0.14 0.16 0.15
0.82 0.29 0.32 0.24 0.37 0.36 0.29 0.32 0.24 0.37 0.36
0.84 0.94 0.96 0.95 1.01 1.00 0.94 0.96 0.95 1.01 1.00
0.86 2.56 2.60 2.64 2.65 2.62 2.56 2.60 2.64 2.64 2.62
0.88 5.90 5.93 5.91 5.98 6.03 5.90 5.93 5.91 5.98 6.03
0.90 11.60 11.62 11.71 11.78 11.77 11.59 11.62 11.70 11.78 11.77
0.92 20.07 20.18 20.13 20.23 20.38 20.06 20.17 20.12 20.22 20.37
0.94 31.66 31.82 31.72 32.12 31.99 31.64 31.80 31.70 32.10 31.96
0.95 39.19 39.39 39.42 39.45 39.28 39.17 39.36 39.39 39.42 39.25
a Risk-Neutral Skewness ×1,000

0.05 0.45 0.86 1.25 1.59 1.40 0.43 0.83 1.18 1.50 1.34
0.40 0.45 0.86 0.42 1.59 1.40 0.43 0.83 0.40 1.50 1.34
0.75 0.42 0.84 0.50 1.57 1.38 0.44 0.83 0.52 1.50 1.34
0.80 1.76 1.43 1.43 1.54 1.48 1.82 1.53 1.55 1.68 1.61
0.82 8.03 7.49 8.78 6.51 6.65 8.23 7.71 8.92 6.77 6.84
0.84 26.04 25.64 25.85 24.94 25.14 26.46 26.08 26.27 25.43 25.62
0.86 70.13 69.52 68.94 68.86 69.28 71.30 70.71 70.15 70.09 70.50
0.88 157.13 156.77 157.28 156.17 155.71 159.92 159.58 160.02 159.01 158.56
0.90 300.10 299.79 299.10 298.29 298.46 305.91 305.62 304.93 304.18 304.33
0.92 493.22 491.88 492.73 491.42 489.29 504.25 502.95 503.81 502.54 500.44
0.94 706.05 702.99 703.47 696.68 699.71 726.13 723.16 723.56 717.04 719.99
0.95 805.46 800.84 800.68 800.51 804.98 832.66 828.19 828.06 827.91 832.26
a Risk-Neutral Kurtosis ×100

0.05 0.40 0.77 1.10 1.40 1.25 0.40 0.77 1.10 1.40 1.25
0.40 0.40 0.77 0.37 1.40 1.25 0.40 0.77 0.37 1.40 1.25
0.75 0.32 0.69 0.39 1.32 1.16 0.32 0.69 0.39 1.32 1.16
0.80 4.92 4.56 4.23 3.93 4.09 4.92 4.56 4.23 3.94 4.09
0.82 17.61 17.41 18.53 17.11 17.44 17.61 17.41 18.53 17.12 17.44
0.84 48.14 47.79 48.44 47.21 47.37 48.14 47.80 48.44 47.21 47.37
0.86 104.25 104.58 104.95 104.04 103.54 104.26 104.59 104.96 104.05 103.54
0.88 187.73 187.44 190.21 186.95 188.96 187.72 187.43 190.21 186.94 188.96
0.90 288.52 288.27 290.72 290.10 290.19 288.48 288.23 290.69 290.06 290.16
0.92 393.61 394.56 393.21 394.19 396.54 393.51 394.47 393.11 394.09 396.47
0.94 488.22 489.13 489.59 490.92 489.91 488.02 488.95 489.41 490.79 489.75
0.95 530.36 531.24 531.09 530.95 529.94 530.08 530.98 530.84 530.70 529.65
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(a) Gram-Charlier Curve.
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(b) Probability Densities.

Figure 1: Gram-Charlier Valid Region.
This figure shows the region (shaded area) in which pairs of skewness and kurtosis values
will yield valid probability density function using the Gram-Charlier series. The curve
represents the skewness and kurtosis required to make the density function vanish. Point A
corresponds to the origin and points B to O, correspond to various points where the
gradient is −∞, −1, 0, 1, or ∞.
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Figure 2: Points in the Gram-Charlier Region used for Calculations.
Each point used for calculations has been marked with a black dot. The number of points
is 2,515. Skewness ranges between -1.05 and 1.05 and kurtosis between 0 and 4.
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(a) Skewness Error
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(b) Kurtosis Error

Figure 3: Example of the Errors for Skewness and Kurtosis.
These figures show the errors between the estimated skewness (a) and kurtosis (b) (using
the BKM method) and their true values. Based on the valid Gram-Charlier region, of
which 2,515 pairs of true skewness and kurtosis values were used to calculated the error
surface. For this set of figures, K ∈ [500, 8000] (a = 0.25) and ∆K = 1.
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Figure 4: Sensitivity of the Average Error for Skewness.
Using the Gram-Charlier series, virtual options with known standard deviation σ, skew-
ness λ1, and kurtosis λ2 were created for a forward price F T

t , time to maturity τ , risk-free
rate r, and standard deviation σ, have been arbitrarily set to $2,000, one month, 2.4%,
and 0.20, respectively. In total 2,515 different pairs of skewness and kurtosis (within the
Gram-Charlier region) were used. The errors are shown for a varying degree of fineness of
strike discretisation (∆K ∈ [1, 50]). The range of strikes used is also varied symmetrically
by adjusting a ∈ [0.05, 0.95] for [Kmin, Kmax] = [F T

t × a, F T
t /a] (rounded to the nearest

dollar). These errors are the averaged errors of the entire valid Gram-Charlier region.
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(a) Mean Skewness Error.
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(b) Maximum Absolute Skewness Error.
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(c) Mean Kurtosis Error.

0 5 10 15 20 25 30 35 40 45 50

 K

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

M
ax

im
um

 A
bs

ol
ut

e 
K

ur
to

si
s 

E
rr

or

a = 0.05
a = 0.40
a = 0.75

0 5 10 15 20 25

 K

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

M
ax

im
um

 A
bs

ol
ut

e 
K

ur
to

si
s 

E
rr

or

a = 0.05
a = 0.40
a = 0.75

0 1 2 3 4 5 6 7 8 9 10

 K

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

M
ax

im
um

 A
bs

ol
ut

e 
K

ur
to

si
s 

E
rr

or

a = 0.05
a = 0.40
a = 0.75

(d) Maximum Absolute Kurtosis Error.

Figure 5: Errors w.r.t. ∆K.
These figures have been created for boundary controlling factor values of 0.05, 0.40, and
0.75 and for step sizes of ∆K from 1 to 50, to 25, and to 10. The error boundary of 10−3

is shown in red.
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(d) Maximum Absolute Kurtosis Error.

Figure 6: Errors w.r.t. a.
These figures have been created for step sizes of 1, 10, and 25 and for boundary controlling
factors of a from 0.05 to 0.95, to 0.75, and to 0.50. The error boundary of 10−3 is shown
in red.
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(a) Mean Standard Deviation Error.
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(b) Maximum Absolute Standard Deviation Error.
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(c) Mean VIX Error.
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(d) Maximum Absolute VIX Error.

Figure 7: Standard Deviation Errors w.r.t. ∆K.
These figures have been created for boundary controlling factor values of 0.05, 0.40, and
0.75 and for step sizes of ∆K from 1 to 50, to 25, and to 10. The error boundary of 10−3

is shown in red.
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(d) Maximum Absolute VIX Error.

Figure 8: Standard Deviation Errors w.r.t. a.
These figures have been created for step sizes of 1, 10, and 25 and for boundary controlling
factors of a from 0.05 to 0.95, to 0.75, and to 0.50. The error boundary of 10−3 is shown
in red.
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Figure 9: Values w.r.t. ∆K.
These figures have been created for boundary controlling factor values of 0.05, 0.40, and
0.75 and for step sizes of ∆K from 1 to 50, to 25, and to 10. The true value is shown
in red. These figures have been plotted for a standard deviation (σ), skewness (λ1) and
kurtosis (λ2) of 0.20, −1, and 2.5, respectively. The corresponding VIX value is 19.8136.
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(b) Kurtosis.
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(c) Standard Deviation.
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Figure 10: Values w.r.t. a.
These figures have been created for step sizes of 1, 10, and 25 and for boundary controlling
factors of a from 0.05 to 0.95, to 0.75, and to 0.50. The true value is shown in red. These
figures have been plotted for a standard deviation (σ), skewness (λ1) and kurtosis (λ2) of
0.20, −1, and 2.5, respectively. The corresponding VIX value is 19.8136.
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(a) Skewness Values and Relative Errors.
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(b) Kurtosis Values and Relative Errors.

Figure 11: Independence of Skewness and Kurtosis.
These figure shows to values and relative errors of skewness when kurtosis is changed (a),
and kurtosis when skewness is changed (b). The boundary controlling factor and step size
are set to 0.25 and 1, respectively. When testing skewness, the true skewness is set to -1.
For kurtosis, the true value is set to 2.5.
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Figure 12: Granularity of Step Size ∆K.
The errors for skewness for a boundary controlling factor of a = 0.05 with varing step
sizes between 1 and 50 shows that, in general, as the step size gets larger, so do the
errors. When the fineness of the granularity is increased from ∆K = 1 (black line) to
∆K = 0.001 (red line), the shape of the relationship between the error and the step size is
reavealed. The forward price F T

t , time to maturity τ , risk-free rate r, standard deviation
σ, skewness λ1, and kurtosis λ2, are equal to $2,000, one month, 2.4%, 0.20, −1, and 2.5,
respectively. The error model and envelope (E±) is given by

Error Model = Xβs sin
(

2π
Xβω

∆K
)

+Xβt and E± = X (βt ± βs)

where βs =
[
2.311× 10−04 1.433× 10−05

]T
, βt =

[
6.726× 10−05 5.366× 10−06

]T
, βω =[

6.980× 10−04 4.967× 10−04
]T
, and X =

[
∆K (∆K)2

]
.
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(a) Volatility Contract Relative Error.
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(b) Cubic Contract Relative Error.
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(c) Quartic Contract Relative Error.

Figure 13: Contract Errors w.r.t. ∆K.
The relative errors for the volatility, cubic, and quartic contracts for a boundary control-
ling factor of a = 0.05 with varing step sizes between 1 and 50 shows that, in general,
as the step size gets larger, so do the errors. The forward price F T

t , time to maturity τ ,
risk-free rate r, standard deviation σ, skewness λ1, and kurtosis λ2, are equal to $2,000,
one month, 2.4%, 0.20, −1, and 2.5, respectively. The value of the volatility, cubic, and
quartic contracts are 3.327× 10−03, −1.884× 10−04, and 6.071× 10−05, respectively. The
relative error is defined as Relative Error := Estimated−True

True .



Bakshi, Kapadia, and Madan (2003) Risk-Neutral Moment Estimators 46

0 5 10 15 20 25 30 35 40 45 50

 K

-8

-6

-4

-2

0

2

4

6

8

A
ve

ra
ge

 S
ke

w
ne

ss
 E

rr
or

10-3

a = 0.05
a = 0.40
a = 0.75

0 5 10 15 20 25

 K

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 S
ke

w
ne

ss
 E

rr
or

10-3

a = 0.05
a = 0.40
a = 0.75

0 1 2 3 4 5 6 7 8 9 10

 K

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 S
ke

w
ne

ss
 E

rr
or

10-3

a = 0.05
a = 0.40
a = 0.75

(a) Mean Skewness Error.
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(b) Maximum Absolute Skewness Error.
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(c) Mean Kurtosis Error.
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(d) Maximum Absolute Kurtosis Error.

Figure 14: Errors w.r.t. ∆K with Alternative Convexity Adjustment Term.
These figures have been created for boundary controlling factor values of 0.05, 0.40, and
0.75 and for step sizes of ∆K from 1 to 50, to 25, and to 10. The error boundary of 10−3

is shown in red.
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(d) Maximum Absolute Kurtosis Error.

Figure 15: Errors w.r.t. a with Alternative Convexity Adjustment Term.
These figures have been created for step sizes of 1, 10, and 25 and for boundary controlling
factors of a from 0.05 to 0.95, to 0.75, and to 0.50. The error boundary of 10−3 is shown
in red.
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