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The Determinants of Liquidity Risk

Abstract

This paper examines the large liquidity risk premium documented in Acharya and

Pedersen (2005). Using a standard return decomposition, I show that the liquidity

premium has two components: covariation of liquidity costs with (i) market risk

premium shocks and (ii) macroeconomic shocks. In 1964–2017 US stock market

data, both components are priced but the expected return premium associated with

the latter is approximately three times larger than that for the former. Liquidity

volatility is primarily incorporated in stock prices via its common variation with

macroeconomic shocks.
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1 Introduction

Liquidity matters. Many studies show that a lack of liquidity affects asset prices not

only as a direct cost (Amihud and Mendelson, 1986; Brennan and Subrahmanyam, 1996;

Jones, 2002) but also as a systematic risk factor (Pástor and Stambaugh, 2003; Acharya

and Pedersen, 2005; Amihud, 2014). Amihud et al. (2006) argue that liquidity costs and

risks have implications for the allocation of economy’s real resources as they affect firms’

costs of capital. Nevertheless, relatively little is known about the precise links between

liquidity risk and asset prices.

Acharya and Pedersen (2005) derive a liquidity-adjusted capital asset pricing model

(LCAPM hereafter) in which systematic liquidity risks determine asset prices. In addition

to the standard beta, three liquidity betas also appear in the LCAPM: (i) β2 – the

covariation between firm liquidity costs (ci) and market liquidity costs (cM), (ii) β3 –

the (negative) covariation between stock returns (ri) and market liquidity costs (cM),

and (iii) β4 – the (negative) covariation between liquidity costs and market returns (rM).

Using 1964-99 US stock market data, Acharya and Pedersen estimate that the market

price associated with these risks is 0.16%, 0.08%, and 0.82% respectively, from which

they conclude that β4 is the most important source of liquidity risk.

Somewhat surprisingly however, this result has received little attention in the liter-

ature. In this paper, I therefore examine more closely the nature and source of β4 risk.

First, I make use of the Campbell and Shiller’s (1988) decomposition to show that β4 can

be written as the sum of two sub-betas, representing the covariation of liquidity costs

with macroeconomic shocks (shocks to interest rates and aggregate expected dividends)

and financial shocks (shocks to the market risk premium) respectively. Second, aided by

the Merton’s (1980) risk-return relationship, I estimate the market price of each of these
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sub-betas using 1963–2017 US stock market data. I find that the return premium associ-

ated with the macroeconomic shock beta (0.84%) is three times as large as that associated

with the financial shock beta (0.29%). Investor concerns about illiquidity apparently re-

late more to its covariation with adverse macroeconomic shocks than with shocks to risk

premia. By investigating relative importance of cash-flow and risk premium shocks for

firm-level stock returns, Vuolteenaho (2002) document that firm-level stock returns are

predominantly determined by information about future cash-flow.

The difference in return premium associated with the macroeconomic shock beta and

the financial shock beta can be partly explained by the nature of systematic shocks that

stock illiquidity covaries with. Adverse financial shocks and macroeconomic shocks reduce

value of the market portfolio (and hence investor’s wealth), but only financial shocks

improve future investment opportunities (Campbell and Vuolteenaho, 2004). Therefore,

investor is more sensitive to macroeconomic shocks, and requires greater return premium

for stocks whose liquidity costs strongly covary with macroeconomic shocks.

I also find that both macroeconomic and financial shock betas cross-sectionally differ

by firm size (the market capitalization of equity) and firm illiquidity. Both the neg-

ative macroeconomic shock beta and the financial shock beta decrease (increase) as a

function of firm size (firm illiquidity). This finding can be understood as follows. Ad-

verse macroeconomic shocks and/or financial shocks reduce the demand for risky assets

(flight to quality), making small and illiquid stocks even more illiquid (illiquidity spiral).

Therefore, liquidity costs of small and/or illiquid firms show greater covariation with

macroeconomic shocks and financial shocks.

In the next section, I outline the underlying theoretical relationships linking liquidity

and expected returns. Section 3 then presents the estimation results, while section 4

considers some robustness issues. Finally, Section 5 contains some concluding remarks.
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2 The Determinants of Liquidity Risk

In this section, I first describe how liquidity betas affect asset prices in the Acharya and

Pedersen’s LCAPM. Then, applying the Campbell and Shiller’s return decomposition to

the market returns in β4, I show that β4 has two sub-betas: the macroeconomic shock

beta and financial shock beta.

2.1 Liquidity-Adjusted CAPM (LCAPM)

Acharya and Pedersen (2005) derive the LCAPM from an overlapping generations model,

in which investor maximizes his expected utility over time by allocating its endowment

into a portfolio of assets. More importantly, investor is required to pay transaction costs

when selling (liquidating) risky assets. Hence, investor cares about net returns (e.g., after

transaction costs returns). The sale of riskless assets does not incur transaction costs and

short-selling of risky assets is not allowed. Under these conditions, Acharya and Pedersen

derive the LCAPM in equation (1).

E [ri,t − rf,t] = E [ci,t] + βiE [rM,t − cM,t − rf,t]

= E [ci,t] +
Cov(ri,t − ci,t, rM,t − cM,t)

Var(rM,t − cM,t)
E [rM,t − cM,t − rf,t]

= E [ci,t] + λ

(
β1,i + β2,i − β3,i − β4,i

)
(1)

where

λ = E [λt] = E [rM,t − cM,t − rf,t]

β1,i =
Cov (ri,t, rM,t − Et−1 [rM,t])

Var (rM,t − Et−1[rM,t]− (cM,t − Et−1[cM,t]))

β2,i =
Cov (ci,t − Et−1 [ci,t] , cM,t − Et−1 [cM,t])

Var (rM,t − Et−1[rM,t]− (cM,t − Et−1[cM,t]))

β3,i =
Cov (ri,t, cM,t − Et−1 [cM,t])

Var (rM,t − Et−1[rM,t]− (cM,t − Et−1[cM,t]))

β4,i =
Cov (ci,t − Et−1 [ci,t] , rM,t − Et−1 [rM,t])

Var (rM,t − Et−1[rM,t]− (cM,t − Et−1[cM,t]))
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In the LCAPM in addition to the market beta (β1,i), asset prices are determined by

expected liquidity costs and three liquidity betas (β2,i, β3,i, and β4,i). Equation (1) is the

unconditional LCAPM where risk premium is expected to be constant. ri and rM are

firm i and the market returns respectively. rf is the riskless interest rate. ci,t and cM,t

are relative liquidity costs, liquidity costs per dollar invested, for stock i and the market

respectively. λ is the market risk premium.

β2,i is liquidity commonality beta, the covariation between stock i’s liquidity costs

and market liquidity costs. It implies that investor requires greater compensation for a

stock that becomes particularly illiquid during the times when the market as a whole is

illiquid (Chordia et al., 2000; Hasbrouck and Seppi, 2001; Huberman and Halka, 2001;

Coughenour and Saad, 2004).

β3,i is the covariation between stock i returns and market liquidity costs. Stocks with

high β3,i provides a hedge against a drop in market-wide liquidity, and therefore, investor

is willing to pay premium for stocks with greater exposures to β3,i.

Finally, β4,i, the main interest of the present paper, is the covariation between stock

liquidity costs and the market returns. Using US 1964-99 US stock market data, Acharya

and Pedersen document that return premium for β4,i is much greater than that for other

liquidity betas: the return premium associated with β4,i (0.82%) is about 5 and 10 times

greater than that for β2,i and β3,i respectively. The intuition for β4,i is that investor

requires return premium for a stock if the stock becomes particularly illiquid during the

times when investor needs the most (economic downturns).

Given its strong economic significance, I examine β4,i more closely. In the next section,

I show that β4,i can be decomposed into two sub-betas and the large return premium

associated with β4,i is the combined pricing effect of the two sub-betas.

2.2 The Determinants of β4

Campbell and Vuolteenaho (2004) use the return decomposition approximation of Camp-

bell and Shiller and show that the standard market beta can be decomposed into two

sub-betas: the cash-flow beta and the discount-rate beta. In this section, applying the
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market return decomposition of Campbell and Shiller to β4,i, I show that the β4,i can be

decomposed into the macroeconomic shock beta and the financial shock beta.

Equation (2) presents the stock market return decomposition.

r̂M,t − Et−1 [r̂M,t] ≈ ηMac,t − ηπ̂,t (2)

where

ηMac,t = ∆Et

[
∞∑
j=0

ρj∆d̂t+j

]
−∆Et

[
∞∑
j=1

ρj r̂f,t+j

]
and

ηπ̂,t = ∆Et

[
∞∑
j=1

ρjπ̂t+j

]

∆Et denotes the change in expectations from t − 1 to t. r̂ and d̂ are logged stock

returns and dividends respectively. π̂ is logged stock market excess returns. ρ is average

ratio of the stock price to the sum of the stock price and the dividend. Equation (2)

implies that unexpected logged stock market returns, r̂M,t−Et−1 [r̂M,t], are due to either

macroeconomic shocks (ηMac,t, shocks to interest rates and aggregate expected dividends),

financial shocks (ηπ̂,t, shocks to the market risk premium) or combination of the two.

Before I make use of the return decomposition in equation (2), I assume that rM (stock

market returns) is approximately equals to r̂M = ln(rM + 1) and that stock market re-

turns are log-normally distributed (e.g., ln (E[rM + 1]) = E [r̂M ] + 0.5σ2 (r̂M)). These

assumptions are needed because returns in the Campbell and Shiller’s decomposition are

logged (r̂M,t) whereas the market returns in β4,i are simple returns (rM,t). These assump-

tions are also acceptable for monthly market returns. Combining these two assumptions

yields:

rM,t − Et−1[rM,t] ≈ ηMac,t − ηπ̂,t −
1

2
σ2
t−1(r̂M)

Then, by substituting the return decomposition approximation above into β4, I now

show that β4 can be written as the sum of two sub-betas, the macroeconomic shock beta
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(β4a,i) and the financial shock beta (β4b,i).

β4,i ≈
Cov

(
ci,t − Et−1 [ci,t] , ηMac,t − ηπ̂,t − 1

2
σ2
t−1(r̂M)

)
Var (rM,t − Et−1[rM,t]− (cM,t − Et−1[cM,t]))

=
Cov (ci,t − Et−1 [ci,t] , ηMac,t − ηπ̂,t)

Var (rM,t − Et−1[rM,t]− (cM,t − Et−1[cM,t]))

= β4a,i + β4b,i (3)

where

β4a,i =
Cov (ci,t − Et−1 [ci,t] , ηMac,t)

Var (rM,t − Et−1[rM,t]− (cM,t − Et−1[cM,t]))

β4b,i =
Cov (ci,t − Et−1 [ci,t] ,−ηπ̂,t)

Var (rM,t − Et−1[rM,t]− (cM,t − Et−1[cM,t]))

The economic intuition behind β4a,i is that when adverse macroeconomic shocks reduce

investor’s wealth, even a small increase in liquidity costs will exert a larger impact on

investor’s marginal utility. Hence, investor would require much greater premium for

stocks whose liquidity costs are strongly (negatively) correlated to macroeconomic shocks.

Furthermore, pricing effect of β4a,i suggests that macroeconomic shocks affect asset prices

not only through its co-variation with stock returns (Campbell and Vuolteenaho, 2004)

but also through its co-variation with stock liquidity costs, shedding light on the role of

macroeconomic shocks in the asset pricing literature.

The financial shock beta, β4b,i, implies that stocks whose illiquidity costs are negatively

correlated with financial shocks should provide premium. An increase in the expected

market return premium (increase in discount rates) implies immediate price reductions

and a simultaneous increase in liquidity costs will accelerate the price reduction process.

Therefore, stocks whose liquidity costs are strongly correlated with financial shocks should

have greater expected returns.

In order to examine how the macroeconomic shock beta and the financial beta affect

asset prices, in the next section using 1963-2017 US stock market data I estimate β4a,i

and β4b,i and their pricing effects.
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3 Estimation

In this section, using 1963–2017 US stock market data (common stocks listed on the

New York Stock Exchange, and American Stock Exchange), I separately estimate the

macroeconomic shock beta and financial shock beta as well as their pricing effects. In

preparation for estimation of these two sub-betas, I first construct 25 illiquidity portfolios

and the market portfolio to use as test assets (Section 3.1). Then, I estimate market and

portfolio liquidity costs shocks (Section 3.2), and macroeconomic shocks and financial

shocks (Section 3.3). Lastly, using the estimated series of portfolio liquidity cost shocks,

and macroeconomic and financial shocks, I present estimation results for the two sub-

betas in Section 3.4 and their pricing effects in Section 3.5.

3.1 Portfolio Formation

I construct a market portfolio as well as 25 illiquidity portfolios to use as test assets. In

the beginning of each month t, I form a market portfolio. For the market portfolio, I

exclude stocks with prices less than $5. Harris (1994) shows that liquidity and trading

volume of low-price stocks are affected by changes in market micro-structures, such as

changes in tick-size. Angel (1997) argues that stocks with a large relative tick size provides

an incentive for liquidity providers to trade those stocks more frequently which in turn

increases the pool of investors who know about the companies. Therefore, in order to

minimize micro-structure effect captured by low-price stocks, I exclude penny stocks.1 I

also exclude stocks that do not have more than 15 days of return and volume data in

month t. I form 25 illiquidity portfolios for year y by sorting stocks by y − 1 average

illiquidity. I exclude stocks whose beginning of the year, y, prices less than $5 and stocks

that do not have more than 100 days of return and volume data in year y − 1.

The model requires value-weighted returns and value-weighted illiquidity for the mar-

ket portfolio. However, many prior liquidity studies focus on equal-weighted return and

illiquidity measures (Chordia et al., 2000; Amihud, 2002; Acharya and Pedersen, 2005;

1According to the U.S. Securities and Exchange Commission (SEC), penny stock refers to a se-
curity whose trading price is less than five dollars per share (https://www.sec.gov/fast-answers/
answerspennyhtm.html).
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Lee, 2011; Acharya et al., 2013; Vu et al., 2015). Constructing the equal-weighted mar-

ket return and market illiquidity is better dealing with over-representation of large and

liquid stocks in my sample especially when my sample does not include illiquid assets

(i.e., corporate bonds, real estate and may small stocks) that constitute a significant

fraction of aggregate wealth (Acharya and Pedersen, 2005).2 Therefore, I focus on equal-

weighted market returns and equal-weighted market illiquidity in this section. Using

equal-weighted market returns and illiquidity also makes it easier to compare my esti-

mation results with prior studies that examine the LCAPM. However, as a robustness

check, I also estimate the model with value-weighted market returns and value-weighted

market illiquidity.

3.2 Measuring Illiquidity Shocks

Liquidity is not an observable variable, but fortunately, several proxies are available. In

the present paper, I use Amihud’s illiquidity measure. Amihud and Noh (2018) document

that unlike volume based measures, Amihud illiquidity correctly depicts several liquidity

crises (e.g., the October 1987 stock market crash and the great financial crisis of 2007-

2009). Moreover, Amihud illiquidity measures overall costs of selling stocks while bid-ask

spread based measures only measure cost of selling small number of stocks.

The monthly Amihud illiquidity for stock i is defined as:

ILLIQi,t =
1

Daysi,t

Daysi,t∑
d=1

|ri,t,d|
Vi,t,d

(4)

ri,t,d and Vi,t,d are stock i returns and dollar trading volume (in million $) on day d in

month t. Daysi,t is the number of valid trading days in month t for stock i. The absolute

return and volume ratio in equation (4) measures the relative size of price reactions to

trading volume on day d. A stock with greater price reactions (high |ri,t,d|) for a given

trading size (Vi,t,d) will have higher ILLIQi,t. Therefore, ILLIQi,t measures average

monthly illiquidity (rather than liquidity) for stock i.

2Less than 15 big stocks account for more than 20% of total market equity capitalization in the sample
market portfolio at the end of 2017.
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The illiquidity proxy in equation (4) has two issues. First, ILLIQi,t measures average

price reactions (in %) relative to trading volumes (in $), and therefore, ILLIQi,t is

not stationary. Second, ILLIQi,t measures price impact whereas the liquidity costs in

equation (1) is ‘dollar costs per dollar invested’. Hence, I use normalized illiquidity, ci,t+1,

in equation (5), instead of ILLIQi,t.

ci,t = min {0.25 + 0.30ILLIQi,tPM,t−1, 30.00} (5)

The normalization process in equation (5) is proposed by Acharya and Pedersen and

it solves the two problems mentioned above. PM,t−1 is the ratio of market equity capi-

talizations at the end of t− 1 and market equity capitalizations at the end of July 1962.

This adjustment makes illiquidity series stationary. The coefficients 0.25 and 0.30 are

chosen to match the cross-sectional distribution of ci,t to the distribution of the effective

half spread. Lastly, in order to avoid estimated liquidity costs being biased by extremely

illiquid stocks, normalized illiquidity is capped at 30%.

Portfolio illiquidity is a weighted sum of stock i’s illiquidity costs and it is defined as:

cp,t =
∑
i∈p

wi,tci,t (6)

where cp,t is a weighted illiquidity costs for a portfolio p, and wi,t is either equal or value-

based weights for stock i in portfolio p. If a portfolio p includes all sample stocks, cp,t

becomes market weighted illiquidity costs.

Lastly, I estimate portfolio p illiquidity innovations, cp,t − Et−1 [cp,t]. The estimation

of the macroeconomic shock beta and the financial shock beta in equation (3) requires

illiquidity innovations rather than illiquidity. More importantly, I find that the first order

autocorrelation in the market illiquidity over the sample period is near 0.90 at monthly

frequency, and therefore, using illiquidity innovations also resolves issues related to non-

stationarity. Similar to Acharya and Pedersen, I estimate illiquidity innovations by AR(3)
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from equation (7).

(
0.25 + 0.30ILLIQp,tPM,t−1

)
= α0 + α1

(
0.25 + 0.30ILLIQp,t−1PM,t−1

)
+ α2

(
0.25 + 0.30ILLIQp,t−2PM,t−1

)
+ α3

(
0.25 + 0.30ILLIQp,t−3PM,t−1

)
+ up,t (7)

where ILLIQp,t =
∑
i∈p

wi,t min

{
ILLIQi,t,

30.00− 0.25

0.30PM,t−1

}

I consider the residuals, up,t, in equation (7) as portfolio p illiquidity cost shocks. The

equation (7) is different from the standard AR(3) model. Changes in cp,t, the normalized

portfolio illiquidity costs, arise when there is a change in portfolio illiquidity (ILLIQp,t),

a change in market equity capitalization (PM,t−1), or a combination of the two. Therefore,

residuals from the standard AR(3) would capture both illiquidity shocks as well as unan-

ticipated changes in market equity capitalizations. In order to capture portfolio liquidity

shocks only, in equation (7), I use the same market index, PM,t−1, for all liquidity costs

terms (cp,t, cp,t−1, cp,t−2 and cp,t−3).

The first order autocorrelations and standard deviation of standardized market liq-

uidity costs innovations (up,t/σ(up,t)) estimated by equation (7) is 0.03 and 0.14% respec-

tively.3

In addition to liquidity costs shock, I also need macroeconomic shocks (ηMac,t) and

financial shocks (−ηπ̂,t) to estimate the macroeconomic shock beta and the financial shock

beta. In the next section, I describe how I estimate these systematic shocks.

3.3 Measuring Market Risk and Macroeconomic Shocks

In this section, I estimate macroeconomic shocks and financial shocks. I do this in two

steps. I first present the regression model derived from applying Merton’s (1980) theoret-

ical relationship between the market risk premium and market return variance (market

risk) to the return decomposition in equation (2). Then, I estimate the corresponding

3Acharya and Pedersen (2005) find that the standard deviation of market illiquidity innovation is
0.17% and the first order autocorrelation is -0.03 for 1964-1999 period.
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shocks from the regression model.

Merton (1980) shows that if investors have homogeneous beliefs about expected re-

turns and if the investment opportunity set is constant (e.g., uncorrelated with news

about future investment opportunities), expected market risk premium is linearly related

to its conditional variance.

Et [πt+1] = γσ2
t (π) (8)

where πt+1 = rM,t+1 − rf

Equation (8) implies that the market risk premium is proportional to the market

risk premium variance, σ2
t (π). γ is interpreted as relative risk aversion of representative

investor. Other studies have shown similar risk-return relationships. Assuming quadratic

utility or normally distributed returns, Huang and Litzenberger (1988) show that market

risk premium is a product of aggregate relative risk aversion and market return variance.

Incorporating risk-free asset market clearing condition, Boyle (2005) shows that market

risk premium is a product of average risk aversion of all investors and market return

variance.

Unfortunately, the systematic return-risk relationship in equation (8) cannot be di-

rectly applied to the return decomposition in equation (2). In order to make the use of

the return-risk relationship, I assume that πM,t+1 ≈ π̂M,t+1 where π̂M,t+1 = ln(πM,t+1 + 1)

and that log-normally distributed market risk premium (e.g., ln (E[πM + 1]) = E[π̂M ] +

0.5σ2
t (π̂)), and then, the equation (8) can be rewritten as:

Et [π̂t+1] ≈ γσ2
t (π)− 1

2
σ2
t (π̂) ≈

(
γ − 1

2

)
σ2
t (π̂)

The latter approximation is due to close relationship between logged market excess return

variance and simple market excess return variance. I find that the correlation between

σ2
t (π) and σ2

t (π̂) during the sample period is 0.998. In other words, market excess return

variance and logged market excess return variance are pretty much identical in practice.

Then, assuming constant expectation of risk premium and applying the law of iterated
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expectations to the above expected logged market excess return expectation equation, I

show that

r̂M,t − Et−1 [r̂M,t] = ηMac,t −

(
∞∑
j=1

ρjĒt [π̂t+j]−
∞∑
j=1

ρjĒt−1 [πt+j]

)

= ηMac,t −
ρ

1− ρ
(
Ēt [π̂t+j]− Ēt−1 [π̂t+j]

)
= ηMac,t + φ

(
σ2
t (π̂)− Et−1

[
σ2
t (π̂)

])
(9)

where φ = − ρ
1−ρ

(
γ − 1

2

)
, and −ηπ̂,t ≈ φ (σ2

t (π̂)− Et−1 [σ2
t (π̂)])

Equation (9) suggests that both macroeconomic and financial shocks can be estimated

by regressing unexpected changes in logged market excess returns on unexpected changes

in logged market excess return variance. In this study, I consider the part of the unex-

pected logged market excess returns that are explained by unexpected changes in logged

market excess return variance as financial shocks (−ηπ̂,t), and the remaining components

as macroeconomic shocks. As 0 < ρ < 1, if γ > 1
2
, the relationship between unexpected

logged market excess returns and variance, captured by φ = − ρ
1−ρ

(
γ − 1

2

)
, is negative.

French et al. (1987) argue that the negative relationship between unexpected changes in

market excess returns and market excess return variance is indirect evidence of a positive

relationship between conditional market return and risk.4

However, the estimation of macroeconomic shocks and financial shocks in equation

(9) requires an additional step – estimation of unexpected changes in logged market

excess returns and variance. I estimate both variables from ARMA(m,n). m and n

in ARMA(m,n) represent order of the autoregressive and the the moving average part

respectively. Unexpected changes in logged market excess returns, εr̂M ,t, and unexpected

changes in logged market excess return variance, εσ2(π̂),t, are estimated by ARMA(m,n)

4When investors receive positive market risk shocks, due to autocorrelations in market risk, investors
will make upward adjustments in their market risk forecasts. If market risk premium is positively
related to ex-ante market risk, investors’ discount rates for future cash flows will be revised upward.
The increase in discount rates will bring the current stock prices down, and therefore, there should be
negative contemporaneous relationship between market return and market risk shocks.
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Table 1: ARMA (m,n) Estimation For Market Return and Market Risk

This table presents the ARMA estimation results for the logged market excess returns (r̂M,t) and
variance (σ2

t (π̂)). Sample period for the estimation is from January 1964 to December 2017 (648
months). Monthly logged equal-weighted market excess return is the logged average monthly stock
returns for all stocks in the market portfolio minus the logged riskless interest rate. Monthly logged
market excess return variance is computed from daily logged market excess returns for each month
adjusted for numbers of trading days in the month. The first four columns present ARMA estimation
results for the logged market excess returns and the latter four columns present ARMA estimation
results for logged market excess return variance. Standard errors are presented in parentheses. AIC
(Akaike information criterion) and BIC (Bayesian information criterion) measures estimation fitness
adjusting for the numbers of estimated parameters. ACF(1) is first-order autocorrelation coefficient for
estimated residuals. LB (6) and LB (12) are Ljung-Box test statistics with 6 lags (six month) and with
12 lags (one year), testing for independency in the estimated residuals from the ARMA model. P-value
for Ljung-Box test are in square brackets.

Market Return, r̂M,t Market Excess Return Variance, σ2
t (π̂)

ARMA ARMA ARMA ARMA ARMA ARMA ARMA ARMA
(1,0) (1,1) (2,0) (2,1) (1,0) (1,1) (2,0) (2,1)

Const.
0.011 0.011 0.011 0.012 0.003 0.003 0.003 0.003

(0.003) (0.003) (0.003) (0.003) (0.000) (0.000) (0.000) (0.001)

ψ1
0.165 -0.165 0.176 0.088 0.558 0.730 0.488 1.070

(0.039) (0.214) (0.039) (0.538) (0.033) (0.049) (0.039) (0.228)

ψ2
-0.064 -0.050 0.127 -0.205
(0.039) (0.099) (0.039) (0.146)

θ1
0.342 0.088 -0.256 -0.589

(0.204) (0.538) (0.071) (0.216)

AIC -1811.28 -1811.85 -1811.96 -1809.99 -5264.00 -5274.18 -5272.47 -5273.53

BIC -1797.85 -1793.96 -1794.06 -1787.62 -5250.58 -5256.29 -5254.58 -5251.16

ACF(1) 0.011 -0.000 0.001 0.000 -0.070 0.007 -0.005 -0.003

LB(6)
5.861 3.436 3.305 3.290 16.177 4.419 5.806 3.125

[0.439] [0.753] [0.770] [0.772] [0.013] [0.620] [0.445] [0.793]

LB(12)
10.526 8.011 7.814 7.824 17.851 4.723 6.393 3.442
[0.570] [0.784] [0.800] [0.799] [0.120] [0.967] [0.895] [0.992]

equations in (10) and (11).

r̂M,t = Constant. + εr̂M ,t +
m∑
j=1

ψj r̂M,t−j +
n∑
k=1

θkεr̂M ,t−k (10)

σ2
t (π̂) = Constant. + εσ2(π̂),t +

m∑
j=1

ψjσ
2
t−j(π̂) +

n∑
k=1

θkεσ2(π̂),t−k (11)

Table 1 presents ARMA estimation results for the logged market excess returns and

variance for January 1964 - December 2017 (648 months). First of all, looking at AIC

(Akaike information criterion), BIC (Bayesian information criterion), and ACF(1) (the

first order autocorrelation), ARMA (2,0) seems the best specification for logged market

excess returns and ARMA (1,1) for logged market excess return variance. The first order

autocorrelation in the estimated unexpected changes in the logged market excess returns,
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Table 2: Estimation of Macroeconomic and Financial shocks

The first two columns in this table present estimation results for equation (9) with and without constant.
The left hand side variable is the unexpected logged equal-weighted market excess returns estimated
from ARMA (2,0) and the right hand side variable is unexpected logged equal-weighted market excess
return variance estimated from ARMA (1,1). The sample period for the estimated is Jan 1964 - Dec
2017 (648 months). Newey and West (1994) heteroskedasticity and autocorrelation consistent (HAC)
standard errors are reported in parenthesis. The last two columns present descriptive statistics for the
estimated macroeconomic shocks (residuals, ηMac,t) and the estimated financial shocks (fitted values,

−ηπ̂,t = φ̂
(
σ2
t (π̂)− Et−1

[
σ2
t (π̂)

])
). ‘Std. Dev.’ is standard deviation of the estimated macroeconomic

shocks and financial shocks. ‘Autocorr.’ is the first-order autocorrelation. ‘Corr. with εr̂M ,t’ is the
correlation between unexpected logged market excess returns (εr̂M ,t = r̂M,t − Et−1 [r̂M,t]) with the
estimated macroeconomic and financial shocks.

(1) (2) ηMac,t −ηπ̂,t

Const.
0.000 Std. Dev. 0.055 0.022

(0.002) Min -0.229 -0.341

φ
-5.463 -5.463 Max 0.229 0.143
(0.764) (0.765) Autocorr. -0.087 0.007

adj. R2 0.141 0.141 Corr. with εrM ,t 0.926 0.378

r̂M,t − Et−1 [r̂M,t], and market excess return variance, σ2
t (π̂)− Et−1 [σ2

t (π̂)], are near zero

under these specifications. The last two rows report Ljung-Box test statistics and their

p-values for the estimated unexpected changes in the logged market excess returns and

variances with six lags (six month) and with twelve lags (one year). Ljung-Box test

statistics are small and have p-value greater than 5%, indicating that the estimated

r̂M,t − Et−1 [r̂M,t] and σ2
t (π̂)− Et−1 [σ2

t (π̂)] are time-independent.

Using the estimated unexpected logged market excess returns and variance from

ARMA models, I now estimate macroeconomic and financial shocks. Table 2 presents

estimation results of the time series regression in equation (9). The left hand side vari-

able is unexpected logged market excess returns estimated by ARMA(2,0) and the right

hand side variable is unexpected logged market excess return variance estimated by

ARMA(1,1). I estimate the regression equation (9) without a constant (model restriction)

and with a constant as a free parameter.

I find that the estimated coefficients on unanticipated changes in logged market excess

return variance (φ̂) is negative and statistically significant. The adjusted R2 is 0.141,

implying that only 14 percent of the variations in the unexpected changes in logged market

returns are explained by unexpected changes in the variances. I consider the residuals in

the restricted model (column (2) in Table 2) as macroeconomic shocks (ηMac,t) and the
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fitted values as negative of financial shocks (−ηπ̂,t).

The last two columns in Table 2 present summary statistics for the estimated macroe-

conomic and financial shocks. The first order autocorrelation in macroeconomic and fi-

nancial shocks is low. The correlation between unexpected logged market excess returns,

r̂M,t − Et−1 [r̂M,t] and ηMac,t is 0.926 and the correlation between r̂M,t − Et−1 [r̂M,t] and

−ηπ̂,t is 0.378. This indicates that unexpected logged stock market excess returns are

much more closely related to macroeconomic shocks, ηMac,t than with financial shocks,

−ηπ,t. With the estimated series of ηMac,t and −ηπ,t, I now move onto the estimation of

the macroeconomic shock beta (β4,a) and financial shock beta (β4,b).

3.4 Measuring Macroeconomic and Financial Shock Betas

In Section 2.2, I have shown that β4,p, the covariation between firm liquidity costs and

the market returns, has two components - the macroeconomic shock beta, β4a,p, and

the financial shock beta, β4b,p. In this section, I measure the two sub-liquidity betas

separately. The two sub-liquidity betas are:

β4a,p =
Cov (cp,t − Et−1 [cp,t] , ηMac,t)

Var (rM,t − Et−1[rM,t]− (cM,t − Et−1[cM,t]))

β4b,p =
Cov (cp,t − Et−1 [cp,t] ,−ηπ̂,t)

Var (rM,t − Et−1[rM,t]− (cM,t − Et−1[cM,t]))

And, the sum of the two sub-liquidity betas must be approximately equal to β4,p.

β4,p = β4a,p + β4b,p

Panel A in Table 3 presents β4a,p and β4b,p for 25 illiquidity portfolios for the sample

period, January 1964 to December 2017 (648 months). I find that exposures to both be-

tas substantially vary cross-sectionally. Relatively more illiquid portfolios have stronger

liquidity costs covariation with both macroeconomic shocks and financial shocks than liq-

uid portfolios. The cross-sectional difference can be partly explained by flight to liquidity

effect. Adverse systematic shocks reduce the demand for illiquid stocks, making illiq-

15



Table 3: The macroeconomic shock and financial shock betas estimation

This table presents estimated macroeconomic shock betas (100 · β4a,p) and financial shock betas
(100 · β4b,p) for 25 illiquidity sorted portfolios and size (market equity capitalization) portfolios.
t − statistics, ratios of estimated betas and bootstrap standard error, are reported in parenthesis.
Bootstrap standard errors are computed from 10,000 simulated realizations. Estimates are for the
January 1964 - December 2017 period (648 months). To save space, this table presents β4a,p and β4b,p
only for odd-numbered portfolios.

Portfolio 1 3 5 7 9 11 13 15 17 19 21 23 25

Panel A: Illiquidity Sorted Portfolios

100·β4a,p -0.00 -0.02 -0.04 -0.07 -0.10 -0.20 -0.30 -0.52 -0.71 -1.13 -1.99 -2.83 -5.87
(-2.54) (-7.08) (-7.49) (-7.47) (-7.85) (-7.60) (-5.84) (-7.15) (-6.45) (-6.76) (-7.86) (-6.45) (-5.23)

100·β4b,p
-0.00 -0.00 -0.01 -0.01 -0.01 -0.03 -0.04 -0.05 -0.08 -0.14 -0.14 -0.39 -2.01

(-1.51) (-3.43) (-3.28) (-3.13) (-3.60) (-2.94) (-3.38) (-3.06) (-2.80) (-3.00) (-1.47) (-1.70) (-2.31)

Panel B: Market Equity Capital (Size) Sorted Portfolios

100·β4a,p -0.00 -0.02 -0.05 -0.09 -0.17 -0.22 -0.43 -0.63 -0.93 -1.43 -1.99 -3.62 -7.42
(-5.28) (-5.31) (-6.92) (-5.00) (-6.44) (-5.79) (-7.12) (-6.84) (-6.21) (-6.13) (-6.66) (-6.08) (-6.66)

100·β4b,p
-0.00 -0.00 -0.01 -0.02 -0.03 -0.04 -0.05 -0.08 -0.15 -0.17 -0.21 -0.53 -1.56

(-2.79) (-2.83) (-3.34) (-2.75) (-2.96) (-3.14) (-2.93) (-2.90) (-2.80) (-2.09) (-1.93) (-1.97) (-2.09)

uid stocks even more illiquid. Therefore, illiquid portfolios have much greater illiquidity

sensitivity to macroeconomic and financial shocks (e.g., β4a,p and β4b,p).

Looking at the relative size of the two sub-betas, stock liquidity costs co-vary much

more strongly with macroeconomic shocks than with financial shocks. For illiquid port-

folio (Portfolio 25), risk exposures to β4a,p is -5.87 whereas risk exposures to β4b,p is only

-2.01. This large difference can be partly explained by the nature of the systematic shocks,

macroeconomic shocks and financial shocks, that liquidity costs covary with. Financial

shocks reduce stock prices (and hence investors’ wealth), but it improves future invest-

ment opportunities as discount rates go up. On the other hand, macroeconomic shocks

affect investors’ wealth but have limited impact on future investment opportunity sets,

so investor’s demand for risky assets would be more sensitive to macroeconomic shocks,

making stocks’ illiquidity much more strongly correlated with macroeconomic shocks.

Panel B in Table 3 presents the estimated β4a,p and β4b,p for 25 size portfolios. Similar

to illiquidity portfolios, small size portfolios have greater risk exposures to both β4a,p and

β4b,p. The greater risk exposures to β4a,p and β4b,p may, in part, explain the large return

premium associated with small stocks (size premium). Looking at the ratio of the two

betas, I find that the exposures to the macroeconomic shock beta is about 5 times greater

than the exposures to the financial shock beta for portfolios of small stocks.
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So far, I have examined the macroeconomic shock and financial shock betas associated

with illiquidity and size portfolios and find that small and illiquid portfolios have greater

exposures to both sub-liquidity betas than big and liquid portfolios, and that portfolios

have greater exposures to β4a,p than to β4b,p. Motivated by this finding, I examine return

premium associated with the two sub-liquidity betas in the following section.

3.5 Pricing Macroeconomic Shock and Financial Shock Betas

In this section, I estimate return premium associated with the macroeconomic and finan-

cial shock betas in the context of Acharya and Pedersen’s LCAPM. The playground for

this section is 25 value weighted illiquidity portfolios.

The expected return premium associated with the macroeconomic and financial beta

is a product of the risk exposures to each beta and price of risk. Therefore, in addition

to the estimation of β4a,p and β4b,p in Section 3.4, I also need to estimate the price of

risk, λ, in equation (1). This requires me to estimate the other two liquidity betas (β2,p

and β3,p) as well as the market beta (β1,p). So, I first present estimated betas along with

descriptive statistics for each illiquidity portfolio. Then, I estimate the price of risk in

the context of the LCAPM in equation (1), and finally I present the expected return

premium associated with each beta.

3.5.1 Illiquidity Portfolio Beta Estimation

Table 4 presents estimated portfolio betas and descriptive statistics for 25 illiquidity port-

folios. Average portfolio liquidity costs, E [cp,t], monotonically increases from portfolio 1

(most liquid) to portfolio 25 (most illiquid). Average illiquidity portfolio returns increase

with portfolio illiquidity. Size and illiquidity are negatively related.

β1,p measures portfolio exposures to market risk. Illiquid portfolios tend to have

greater exposures to market risk. β1,p× 100 (non-monotonically) increases from 54.37 for

the most liquid portfolio to 74.98 for the most illiquid portfolio. On the other hand, the

overall liquidity beta (e.g., ( β2,p − β3,p − β4a,p − β4b,p ) ×100) monotonically increases

from 0.38 for the most liquid portfolio to 8.85 for the most illiquid portfolio. This suggests
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Table 4: Portfolio Betas and Characteristics for 25 Illiquidity Portfolios

This table reports estimated portfolio betas for 25 illiquidity portfolios, updated every January based
on previous years’ stock illiquidity during 1964-2017 (54 years). The market beta, β1,p, and liquidity
betas, β2,p, β3,p, β4a,p, and β4b,p, are computed by value weighted monthly illiquidity portfolio returns
and illiquidity innovations, and equally weighted monthly market portfolio returns and illiquidity
innovations. t − statistics, a ratio of estimated β and bootstrap standard error, are reported in
parentheses. Bootstrap standard errors are computed from 10,000 simulated realizations. Column 6-11
in this table presents portfolio characteristics. E [cp] column reports average illiquidity of portfolio p
and σ (∆cp) column reports standard deviation of portfolio p’s illiquidity innovations. E [re,p] and σ (rp)
are average and standard deviation of value weighted monthly portfolio excess returns for portfolio p.
Portfolio turnover (trn) and market capitalization (Size) are reported in the last two columns. To save
space, I only report properties of odd numbered portfolios.

Estimated Portfolio Betas Portfolio Characteristics

β1,p β2,p β3,p β4a,p β4b,p E [cp] σ (∆cp) E [re,p] σ (rp) trn Size
(·100) (·100) (·100) (·100) (·100) (%) (%) (%) (%) (%) (bl$)

1
54.37 0.00 -0.38 -0.00 -0.00

0.25 0.00 0.47 1.53 5.68 24.16
(29.31) (1.95) (-4.93) (-2.54) (-1.51)

3
66.09 0.00 -0.51 -0.02 -0.00

0.26 0.00 0.55 1.76 7.90 4.48
(41.23) (6.74) (-5.35) (-7.08) (-3.43)

5
69.32 0.00 -0.54 -0.04 -0.01

0.27 0.01 0.65 1.82 8.57 2.41
(48.79) (5.81) (-5.94) (-7.49) (-3.28)

7
76.40 0.00 -0.66 -0.07 -0.01

0.28 0.01 0.73 1.95 9.56 1.37
(44.64) (6.15) (-5.47) (-7.47) (-3.13)

9
78.50 0.00 -0.69 -0.10 -0.01

0.30 0.02 0.74 1.99 9.28 0.92
(54.32) (6.33) (-6.20) (-7.85) (-3.60)

11
76.99 0.00 -0.68 -0.20 -0.03

0.34 0.03 0.70 2.04 8.64 0.66
(53.31) (6.30) (-6.43) (-7.60) (-2.94)

13
81.06 0.01 -0.71 -0.30 -0.04

0.38 0.05 0.74 2.11 8.45 0.48
(49.27) (6.28) (-5.86) (-5.84) (-3.38)

15
82.73 0.01 -0.74 -0.52 -0.05

0.45 0.07 0.82 2.22 7.82 0.36
(58.67) (6.22) (-7.09) (-7.15) (-3.06)

17
85.09 0.01 -0.82 -0.71 -0.08

0.59 0.11 0.78 2.32 6.88 0.27
(56.39) (6.42) (-7.17) (-6.45) (-2.80)

19
87.38 0.03 -0.80 -1.13 -0.14

0.79 0.17 0.89 2.43 6.41 0.18
(43.66) (6.60) (-7.07) (-6.76) (-3.00)

21
88.04 0.04 -0.86 -1.99 -0.14

1.27 0.31 0.90 2.58 5.23 0.12
(46.70) (6.07) (-6.56) (-7.86) (-1.47)

23
81.82 0.08 -0.80 -2.83 -0.39

2.45 0.59 0.95 2.72 4.53 0.08
(32.94) (6.93) (-6.70) (-6.45) (-1.70)

25
74.98 0.22 -0.75 -5.87 -2.01

8.29 1.47 0.95 3.05 2.96 0.03
(26.13) (6.13) (-7.36) (-5.23) (-2.31)

that portfolios with greater illiquidity also have greater exposures to illiquidity beta risks.

Similar to Acharya and Pedersen, I find negative relationship between exposures to

liquidity beta risks and average liquidity costs and size. If investors apply higher discount

rates to stocks with greater liquidity beta and liquidity costs, the illiquid stocks would

have lower market equity capitalization. The converse is also true. Small firms tend to

have reduced ability to absorb negative economic shocks, so they are less attractive to

investors, which in turn make these stocks illiquid. Therefore, I interpret the negative

relationship as reinforcement effect, rather than causal relationship.

18



3.5.2 LCAPM Estimation

In this section, using the estimated βs and portfolio excess returns, I estimate price of risk

(λ) from the cross-sectional regression of the LCAPM. The LCAPM estimation results

are presented in Table 5.

The first three rows in Table 5 report estimation results of the following regression

model:

E [rp,t − rf,t] = α +KE [cp,t] + λnetβnet,p (12)

where K ∈ {κ̄, κ, 0} and βnet,p ≡ β1,p + β2,p − β3,p − β4a,p − β4b,p

In equation (12), I do not restrictions the intercept, α, to be equal zero, but leave it as

a free parameter. Equation (12) implies that price of risk (λnet) is the same for different

beta risks. For example, price of one unit of market risk, β1,p, is the same as the price of

one unit of liquidity commonality risk, β2,p, and so on.

The second term in equation (12), KE [cp,t], is costs of holding a portfolio p. In

the LCAPM, every investor rebalances his/her portfolio every period, but I estimate

liquidity costs at monthly frequency. Therefore, average monthly liquidity costs would

overestimate liquidity costs for some portfolios if the portfolios are, on average, held more

than a month. Similarly, average monthly liquidity costs would underestimate liquidity

costs for some other portfolios if the portfolios are held less than one month. This

imbalance in holding periods and estimation frequency is adjusted by the parameter, K

in equation (12). For example, if average investment holding period for portfolio p is

one and half year, then the average monthly liquidity costs should be E [cp,t] /18 where

K = 1/18, rather than E [cp,t].

I estimate equation (12) with three different restrictions on K ∈ {κ̄, κ, 0}. I estimate

the equation (1) with K = κ̄ (calibrated by turnover), with K = κ (a free parameter), and

with K = 0. The average monthly turnover of sample stocks is 0.073 (7.3%), implying

that investors’ average stock holding period is 13.66 months (≈ 1/0.073) for 1964-2017,

so I use κ̄ = 0.073.
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Table 5: LCAPM Estimation for 25 Illiquidity Portfolios

This table reports cross-sectional liquidity-adjusted CAPM estimation results. The estimation is based
on the 25 illiquidity portfolio monthly value weighted returns for Jan 1964 - Dec 2017 (648 months).
The regression model is E[rp,t − rf,t] = α + KE [cp,t] + λnetβnet where K ∈ {κ̄, κ, 0}. κ̄ is average
monthly turnover for all stocks (0.073) and κ indicate a free parameter. βnet,p is the overall LCAPM
beta of portfolio p, βnet,p ≡ β1,p + β2,p − β3,p − β4a,p − β4b,p. t-statistics in parentheses are estimated
by GMM framework. The last column reports adjusted R2s obtained from OLS.

Constant E [cp] β1,p β2,p β3,p β4a,p β4b,p βnet,p R2

1
-0.005 0.073 0.867 0.38

(-0.027) (—) (4.097)

2
-0.210 0.021 1.191 0.89

(-2.668) (4.136) (11.944)

3
-0.295 1.324 0.82

(-2.986) (10.814)

4
-0.335 0.073 5.069 -3.676 0.84

(-3.576) (—) (8.636) (-6.849)

5
-0.068 -0.031 -5.396 6.357 0.89

(-0.580) (-0.941) (-1.598) (1.966)

6
-0.148 -2.253 3.344 0.89

(-1.831) (-4.452) (7.226)

7
-0.314 0.073 1.647 -36.419 39.070 19.046 -3.177 0.85

(-1.754) (—) (2.937) (-0.282) (0.944) (2.249) (-0.844)

The first row in Table 5 presents estimation results of equation (12) with K=0.073.

The estimated intercept is economically small and statistically not different from zero.

The estimated price of risk, λnet, is 0.867 and statistically significant. However, the

adjusted R2 is only 0.38, indicating that βnet poorly explains cross-sectional variations in

average illiquidity portfolio net returns, E[rp,t − κ̄cp,t − rf,t].

The second row in Table 5 reports estimation results of equation (12) with K = κ

where κ is a free parameter. The estimated price of risk, λnet, is 1.191, slightly greater

than what is estimated in the first row. The estimated κ is 0.021, smaller than the

average stock turnover ratio, and the adjusted R2 is 0.89. When κ is estimated as a free

parameter, there is a substantial improvement in the model fit. The third row presents

estimation results of equation (12) with κ = 0. I find that the estimated price of risk is

not much different from what is estimated in the second row.

The next three rows report estimation results of the following regression model:

E [rp,t − rf,t] = α +KE [cp,t] + λ1β1,p + λnetβnet,p (13)

where K ∈ {κ̄, κ, 0} and βnet,p ≡ β1,p + β2,p − β3,p − β4a,p − β4b,p

In equation (13), I assume that price of market risk is different from price of liquidity

risk. The interpretation of estimated coefficients requires caveat. λ1 does not estimate a
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Table 6: Correlations Between Portfolio Betas

This table reports correlations between the market and liquidity betas for 25 value-weighted illiquidity
portfolios reported in Table 4.

β1,p β2,p β3,p β4a,p β4b,p

β1,p 1.000 0.200 -0.948 -0.313 -0.075
β2,p 1.000 -0.448 -0.980 -0.957
β3,p 1.000 0.547 0.306
β4a,p 1.000 0.920
β4b,p 1.000

risk premium on market risk as β1,p is also contained in βnet,p. The price of market risk

is the sum of λ1 and λnet and price of liquidity risk is λnet.

Depending on the restriction on K, price of liquidity risk varies from -3.676 to 6.357.

Acharya and Pedersen also find similar amount of variations in the estimated liquidity

risk premium. The negative price of liquidity risk in the fourth row, however, is puzzling.

The estimated market price of risk ranges from 0.961 to 1.393.

The last row in Table 5 reports the estimation results of the following LCAPM re-

gression model.

E[rp,t − rf,t] = α + 0.073E [cp,t] + λ1β1,p + λ2β2,p + λ3β3,p + λ4aβ4a,p + λ4bβ4b,p (14)

The regression model (14) estimates prices for each beta risk separately. Estimated

price of market risk is 1.647 and is statistically significant. However, estimated prices

of liquidity risks seem unrealistic. This is a typical result of (severe) multicollinearity

problem. Under the multicollinearity problem, the estimated coefficients are very sensitive

to minor changes in the data. Therefore, the estimated coefficients in the last row in Table

5 are difficult to interpret. Table 6 presents correlation between the estimated betas in

Table 4. The estimated absolute correlation is as high as 0.980 between β2,p and β4a,p.

In the following section, using the estimated price of risks in Table 5, I estimate return

premium associated with the macroeconomic shock beta and the financial shock beta, as

well as return premium associated with other betas in the LCAPM.
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3.5.3 Economic Significance

Table 4 suggests that the most illiquid portfolio on average generates about 0.48%p

(5.76%p annually) more returns than the most liquid portfolios. The LCAPM and the

decomposition in Section 2.2 suggest that this large illiquidity return premium of 5.76%

can be explained by expected liquidity costs, E[cp], the market beta (β1,p), the covari-

ation between firm liquidity costs and market liquidity costs (β2,p), and the covariation

between stock returns and market liquidity costs (β3,p), and more importantly, by the

macroeconomic shock beta (β4a,p) as well as by the financial shock beta (β4b,p).

In this section, I estimate the return premium associated with each beta. The required

returns associated with each beta are estimated by the product of market price of risk

and the excess risk exposures to corresponding betas. For market price of risk, I use λnet

from the second row of Table 5 where I assume the price of risk is the same for all betas

and where κ is estimated as a free parameter. λnet in the second row is relatively more

precisely estimated (smaller standard error).

Table 4 suggests that the monthly turnover adjusted liquidity costs of holding illiquid

portfolio is 0.245% (≈ 8.29 ∗ 0.0296) and the costs for holding liquid portfolio is 0.014%

(≈ 0.25 ∗ 0.0568). Therefore, the annualized return premium due to liquidity costs is

2.772% for 1964-2017.

Illiquid portfolios have greater exposure to market risk. The return premium due to

the market beta (β1,p) is:

12 · λnet
(
β1,25 − β1,1

)
= 2.946% (15)

It implies that about half (≈ 51%) of the illiquidity premium comes form the excess

exposures to the market risk. Put it differently, about half of the illiquidity premium is

coming from liquidity costs and exposures to liquidity beta risks.

β2,p is liquidity commonality beta (the covariation with firm liquidity costs and market
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liquidity costs). The return premium due to β2,p is:

12 · λnet
(
β2,25 − β2,1

)
= 0.031% (16)

The illiquidity return premium due to β2,p is positive but is not economically significant.

The 95% confidence interval for the return premium associated with β2,p is [0.018, 0.054].5

Similarly, the return premium due to the covariation between stock returns and market

liquidity costs, β3,p, is

− 12 · λnet
(
β3,25 − β3,1

)
= 0.054% (17)

and 95% confidence interval is [-0.0016, 0.1354].

Finally, the return premium associated with the macroeconomic shock beta (β4a,p)

and the financial shock beta (β4b,p) is:

− 12 · λnet
(
β4a,25 − β4a,1

)
= 0.839% (18)

− 12 · λnet
(
β4b,25 − β4b,1

)
= 0.288% (19)

The estimated return premium due to the macroeconomic shock beta (β4a,p) is 0.839%

annually and its 95% confidence interval is [0.421%, 1.483%]. The estimated return

premium due to the financial shock beta (β4b,p) is 0.288% annually and its 95% confidence

interval is [0.059%, 0.772%]. This implies that the return premium due to the covariation

between firm liquidity costs and market returns, β4,p ≈ β4a,p + β4a,p, is approximately

1.127% annually.

The return premium due to β4a,p is approximately three times greater than that for

β4b,p. Greater return premium for β4a,p is rather an expected result as illiquid portfolios

have much greater exposures to β4a,p than to β4b,p. Campbell and Vuolteenaho (2004)

5Risk premium associated with liquidity commonality beta is estimated by the product of price of
risk, λnet from row 2 in Table 5, and difference in β2,p (i.e., β2,25 − β2,1). The 97.5% confidence interval
of λnet is [0.9676, 1.4146] and the 97.5% bias-corrected bootstrapped confidence interval for 100 · β2,25
and 100 · β2,1 are [0.0015, 0.0032] and [0.0000, 0.0000] respectively. Therefore, 97.5% confidence interval
for 100 · (β2,25 − β2,1) is [0.0015, 0.0032]. 95% confidence interval for 100 · λnet (β2,25 − β2,1) is [0.0176,
0.0537]. In this calculation, I assume that β2,1, β2,25 and λnet are independent.

23



document that large return premium associated with small stocks is in part due to their

greater exposures to return sensitivity to real economic shocks (e.g., macroeconomic

shocks). They find that pricing effect of the covariation between stock returns and cash

flow news shocks (e.g., macroeconomic shocks) is much greater than the pricing effect

of the covariation between stock returns and discount rate news shocks (e.g., financial

shocks). Therefore, strong return premium associated with the macroeconomic shock beta

implies that that macroeconomic shocks strongly affect asset prices not only through their

covariation with stock returns but also through their covariation with stock liquidity.

The return premium associated with the financial shock beta is 0.288% annually. This

finding is particularly interesting not only because it is the first study that documents

pricing effect of the systematic covariation between liquidity costs and financial shocks,

but it also explains about a quarter (≈ 26%) of the large return premium associated with

liquidity sensitivity to market returns, β4,p.

4 Robustness Tests

I have shown that β4,p, the covariation between firm liquidity costs and market returns,

has two components: the macroeconomic shock beta (β4a,p) and the financial shock beta

(β4b,p). Then, using portfolios sorted on illiquidity, I find that both sub-liquidity betas are

strongly priced. In this section, I repeat the same exercise, but with different playgrounds

to examine whether both β4a,p and β4a,p are consistently priced.

4.1 Value-Weighted Market Portfolio

In this section, to examine whether my results are robust to the choice of value-weighted

versus equal weighted market portfolio returns and illiquidity. Estimated betas and port-

folio characteristics and the LCAPM results are reported in Table 7 and Table 8.

Consistent with prior estimation results, I find that exposures to the macroeconomic

shock beta and the financial shock beta are substantially vary cross-sectionally and that

illiquid portfolios have much greater exposures to the macroeconomic shock beta than to
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Table 7: Portfolio Betas and Characteristics for 25 Illiquidity Portfolios (Value weighted Market Portfolio)

This table reports estimated portfolio betas for 25 illiquidity portfolios, updated every January based
on previous years’ stock illiquidity during 1964-2017 (54 years). The market beta, β1,p, and liquidity
betas, β2,p, β3,p, β4a,p, and β4b,p, are computed by value weighted monthly portfolio returns and
illiquidity innovations, and macroeconomic and financial shocks estimated from value-weighted market
returns. t− statistics, a ratio of estimated β and bootstrap standard error, are reported in parentheses.
Bootstrap standard errors are computed from 10,000 simulated realizations. Column 6-11 in this table
presents portfolio characteristics. E [cp] column reports average illiquidity of portfolio p and σ (∆cp)
column reports standard deviation of portfolio p’s illiquidity innovations. E [re,p] and σ (rp) are average
and standard deviation of value weighted monthly portfolio excess returns for portfolio p. Portfolio
turnover (trn) and market capitalization (Size) are reported in the last two columns. To save space, I
only report properties of odd numbered portfolios.

Estimated Portfolio Betas Portfolio Characteristics

β1,p β2,p β3,p β4a,p β4b,p E [cp] σ (∆cp) E [re,p] σ (rp) trn Size
(·100) (·100) (·100) (·100) (·100) (%) (%) (%) (%) (%) (bl$)

1
87.43 0.00 -0.05 -0.00 -0.00

0.25 0.00 0.47 1.53 5.68 24.16
(67.50) (1.94) (-7.76) (-3.32) (-1.24)

3
94.82 0.00 -0.06 -0.02 -0.00

0.26 0.00 0.55 1.76 7.90 4.48
(68.03) (6.35) (-8.66) (-6.73) (-3.01)

5
95.68 0.00 -0.07 -0.05 -0.01

0.27 0.01 0.65 1.82 8.57 2.41
(52.27) (5.72) (-8.75) (-7.39) (-2.86)

7
102.39 0.00 -0.07 -0.08 -0.01

0.28 0.01 0.73 1.95 9.56 1.37
(41.00) (5.61) (-8.91) (-7.31) (-2.95)

9
102.86 0.00 -0.08 -0.12 -0.01

0.30 0.02 0.74 1.99 9.28 0.92
(36.09) (6.39) (-9.34) (-7.78) (-3.23)

11
97.42 0.00 -0.08 -0.25 -0.03

0.34 0.03 0.70 2.04 8.64 0.66
(31.09) (6.24) (-9.21) (-7.55) (-2.76)

13
102.86 0.00 -0.08 -0.38 -0.04

0.38 0.05 0.74 2.11 8.45 0.48
(31.21) (5.83) (-8.67) (-6.15) (-2.76)

15
102.30 0.00 -0.08 -0.62 -0.05

0.45 0.07 0.82 2.22 7.82 0.36
(29.18) (6.20) (-8.31) (-6.85) (-2.80)

17
103.01 0.00 -0.09 -0.84 -0.08

0.59 0.11 0.78 2.32 6.88 0.27
(27.61) (6.13) (-8.89) (-6.49) (-2.59)

19
104.85 0.00 -0.09 -1.32 -0.15

0.79 0.17 0.89 2.43 6.41 0.18
(23.77) (6.34) (-8.96) (-6.34) (-2.89)

21
103.74 0.01 -0.09 -2.50 -0.12

1.27 0.31 0.90 2.58 5.23 0.12
(22.73) (6.19) (-8.72) (-7.57) (-1.21)

23
94.88 0.01 -0.09 -3.26 -0.47

2.45 0.59 0.95 2.72 4.53 0.08
(18.44) (7.70) (-7.78) (-5.11) (-1.68)

25
84.88 0.02 -0.08 -8.32 -2.14

8.29 1.47 0.95 3.05 2.96 0.03
(17.10) (8.07) (-7.02) (-5.48) (-1.90)

the financial shock beta.

The covariation between portfolio illiquidity shock and macroeconomic shocks (100 ·

β4a,p) estimated from equal-weight market excess returns and value-weighted market ex-

cess return for the most illiquidity portfolio is -5.84 and -8.32 respectively. This maybe in

part due to that the systematic macroeconomic shocks (e.g, aggregate cash-flow shocks),

which firm liquidity costs covary with, is better captured when using value-weight market

returns. On the other hand, when using equal-weight market returns, adverse cash-flow

shocks coming from big size firms, which affect many investors, can easily be offset by

positive cash-flow shocks arising from small firms. Vuolteenaho (2002) find that when

firm level cash-flow shocks is largely diversified away when they are aggregated into an

equal weighted portfolio.
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Table 8: LCAPM Estimation for 25 Illiquidity Portfolios (Value Weighed Portfolio Returns)

This table reports cross-sectional liquidity-adjusted CAPM estimation results. The estimation is based
on the 25 illiquidity portfolio monthly value weighted returns for Jan 1964 - Dec 2017 (648 months).
The regression model is E[rp,t − rf,t] = α + KE [cp,t] + λnetβnet where K ∈ {κ̄, κ, 0}. κ̄ is average
monthly turnover for all stocks (0.087) and κ indicate a free parameter. βnet,p is the overall LCAPM
beta of portfolio p, βnet,p ≡ β1,p + β2,p − β3,p − β4a,p − β4b,p. t-statistics in parentheses are estimated
by GMM framework. The last column reports adjusted R2s obtained from OLS.

Constant E [cp] β1,p β2,p β3,p β4a,p β4b,p βnet,p R2

1
-1.492 0.073 2.161 0.61

(-4.452) (—) (6.517)

2
-1.319 0.049 2.014 0.75

(-4.564) (6.742) (7.074)

3
-0.948 1.697 0.31

(-1.990) (3.601)

4
-1.414 0.073 1.550 0.555 0.68

(-4.752) (—) (2.653) (0.826)

5
-0.833 -0.085 -10.354 11.883 0.80

(-2.783) (-1.837) (-2.933) (3.523)

6
-1.146 -3.932 5.772 0.78

(-4.375) (-7.645) (9.748)

7
-0.444 0.073 0.594 1244.200 -711.202 2.633 16.848 0.79

(-1.156) (—) (1.022) (0.578) (-2.166) (0.434) (1.603)

The covariation between portfolio illiquidity shock and financial shocks (100 · β4b,p)

estimated from equal-weight market excess returns and value-weighted market excess

return for the most illiquidity portfolio is -2.01 and -2.14 respectively.

Looking at the LCAPM estimation results in Table 8, the market price of risk, λnet, is

also priced with value-weighted market portfolio returns. The return premium associated

with the macroeconomic shock beta and the financial shock beta is 2.01% and 0.52%

respectively.

4.2 Size Portfolio

In this section, I examine size portfolios. I form 25 portfolios sorted by market equity

capitalization. Estimated betas and portfolio characteristics and the LCAPM estimation

results are reported in Table 9 and Table 10.

Consistent with prior studies (Banz, 1981; Fama and French, 1992; Fama and French,

1993), I find that small-sized stocks have greater average returns. Small stocks also

have greater average illiquidity, illiquidity variance, and exposures to liquidity betas. I

find that exposures to the market beta increases from 53.10 for portfolios with large

company stocks to 82.21 for portfolios of small company stocks. Similarly, The overall

risk exposures to liquidity betas, 100 · (β2,p− β3,p− β4a,p− β4b,p), increase from 0.36 to
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Table 9: Portfolio Betas and Characteristics for 25 Size Portfolios

This table reports estimated portfolio betas for 25 size portfolios updated every January based on
previous years’ stocks market equity capitalization during 1964-2017 (54 years). The market beta,
β1,p, and liquidity betas, β2,p, β3,p, β4a,p, and β4b,p, are computed by monthly portfolio value weighted
average returns and portfolio illiquidity innovations. t − statistics, ratio of estimated β and bootstrap
standard error, are reported in parentheses. Bootstrap standard errors are computed from 10,000
simulated realizations. Column 6-11 in this table presents portfolio characteristics. E [cp] column
reports average illiquidity of portfolio p and σ (∆cp) column reports standard deviation of portfolio p’s
illiquidity innovations. E [re,p] and σ (rp) are average and standard deviation of value weighted monthly
portfolio excess returns for portfolio p. Portfolio turnover (trn) and market capitalization (Size) are
reported in the last two columns. To save space, I only report properties of odd numbered portfolios.

Estimated Portfolio Betas Portfolio Characteristics

β1,p β2,p β3,p β4a,p β4b,p E [cp] σ (∆cp) E [πp] σ (rp) trn Size
(·100) (·100) (·100) (·100) (·100) (%) (%) (%) (%) (%) (bl$)

1
53.10 0.00 -0.36 -0.00 -0.00

0.25 0.00 0.48 1.52 5.21 25.28
(28.24) (7.27) (-4.80) (-5.28) (-2.79)

3
67.24 0.00 -0.54 -0.02 -0.00

0.26 0.00 0.61 1.77 8.17 4.42
(47.77) (5.89) (-5.97) (-5.31) (-2.83)

5
74.42 0.00 -0.59 -0.05 -0.01

0.27 0.01 0.64 1.90 9.68 2.19
(55.22) (6.23) (-6.02) (-6.92) (-3.34)

7
81.28 0.00 -0.70 -0.09 -0.02

0.30 0.02 0.69 1.98 10.11 1.30
(59.11) (5.46) (-5.92) (-5.00) (-2.75)

9
82.60 0.00 -0.71 -0.17 -0.03

0.33 0.03 0.77 2.06 9.80 0.87
(79.51) (5.85) (-6.74) (-6.44) (-2.96)

11
84.02 0.01 -0.70 -0.22 -0.04

0.38 0.05 0.79 2.17 10.25 0.62
(73.69) (5.05) (-6.26) (-5.79) (-3.14)

13
91.52 0.01 -0.79 -0.43 -0.05

0.43 0.07 0.78 2.29 9.94 0.45
(68.27) (5.61) (-6.96) (-7.12) (-2.93)

15
91.45 0.01 -0.80 -0.63 -0.08

0.53 0.10 0.82 2.39 9.93 0.32
(67.19) (6.42) (-7.21) (-6.84) (-2.90)

17
93.13 0.02 -0.85 -0.93 -0.15

0.69 0.15 0.81 2.57 9.47 0.23
(55.73) (6.23) (-6.98) (-6.21) (-2.80)

19
96.39 0.04 -0.93 -1.43 -0.17

0.96 0.25 0.78 2.70 9.08 0.15
(47.30) (6.05) (-6.89) (-6.13) (-2.09)

21
97.08 0.05 -0.89 -1.99 -0.21

1.53 0.38 0.87 2.85 8.08 0.10
(46.03) (5.90) (-6.27) (-6.66) (-1.93)

23
94.66 0.10 -0.88 -3.62 -0.53

2.89 0.71 0.91 3.00 6.95 0.05
(40.61) (6.48) (-7.13) (-6.08) (-1.97)

25
82.21 0.26 -0.85 -7.42 -1.56

8.14 1.40 0.93 3.17 5.09 0.01
(29.39) (7.92) (-8.53) (-6.66) (-2.09)

10.09. Therefore, larger return premium in small size company stocks is not only due to

exposures to market beta, but also due to exposure to liquidity betas.

I find that the portfolio of small company stocks, Portfolio 25 in Table 9, have much

greater exposures to liquidity sensitivity to macroeconomic shocks compared to the risk

exposures to liquidity sensitivity to market risk, indicating the size premium is more

strongly associated with β4b,p. Campbell and Vuolteenaho (2004) document that small

stocks have considerably higher cash-flow beta, the covariation between stock return and

cash-flow shocks, than larger stocks and the pricing effect of cash-flow beta is greater

than the pricing effect of discount-rate beta, the covariation between stock return and

discount rate shocks.

In terms of the LCAPM estimation, similar to Fama and French (1993) and Acharya
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Table 10: LCAPM Estimation for 25 Size Portfolios

This table reports cross-sectional liquidity-adjusted CAPM estimation results. The estimation is based
on the 25 size portfolio monthly value weighted returns for Jan 1964 - Dec 2017 (648 months). The
regression model is E[rp,t − rf,t] = α + KE [cp,t] + λnetβnet where K ∈ {κ̄, κ, 0}. κ̄ is average monthly
turnover for all stocks (0.087) and κ indicate a free parameter. βnet,p is the overall LCAPM beta of
portfolio p, βnet,p ≡ β1,p + β2,p − β3,p − β4a,p − β4b,p. t-statistics in parentheses are estimated by GMM
framework. The last column reports adjusted R2s obtained from OLS.

Constant E [cp] β1,p β2,p β3,p β4a,p β4b,p βnet,p R2

1
0.299 0.087 0.433 0.14

(1.794) (—) (2.282)

2
0.077 0.018 0.779 0.87

(1.277) (3.384) (10.905)

3
0.021 0.867 0.82

(0.304) (10.779)

4
-0.033 0.087 5.739 -4.782 0.88

(-0.498) (—) (12.500) (-11.301)

5
0.067 0.024 0.530 0.266 0.86

(0.782) (0.664) (0.177) (0.092)

6
0.105 -1.440 2.176 0.87

(1.636) (-3.296) (5.402)

7
0.064 0.087 0.575 -251.412 -25.171 0.162 -8.941 0.89

(0.658) (—) (1.530) (-0.597) (-0.783) (0.029) (-0.203)

and Pedersen (2005), I find that the fit of the LCAPM is relatively poor (R2=87%,

Row 2 in Table 10) and the estimated coefficient on the net beta is small, λnet = 0.78,

suggesting that the LCAPM does not explain much of the cross-sectional average returns

on size portfolios. The return premium associated with the macroeconomic shock beta

and the financial shock beta is 0.69% and 0.15% respectively. Consistent with illiquidity

portfolios, return premium associated with the macroeconomic shock beta is greater than

that associated with the financial shock beta.

4.3 Including NASDAQ Stocks

In this section, I include NASDAQ stocks in the sample. One of the reasons that I exclude

NASDAQ stocks from the main analysis is that NASDAQ joins the CRSP in December,

1972, limiting period of analysis. Moreover, different trading mechanisms in NASDAQ

and NYSE may have their own micro-structure effects on required return on the listed

stocks. And, trading volumes recorded in NASDAQ is inflated due to double counting

(Atkins and Dyl, 1997; Amihud, 2002; Ben-Rephael et al., 2015), so estimated illiquidity

for NASDAQ stocks could be underestimated.

I form 25 illiquidity portfolios with NASDAQ stocks and re-estimate return premium

associated with the two sub-liquidity betas. Therefore, in this section, the dataset in-
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Table 11: Portfolio Betas and Characteristics for 25 Illiquidity Portfolios

This table reports estimated portfolio betas for 25 illiquidity portfolios that are updated every Jan-
uary based on previous years’ stock illiquidity during 1974-2017 (44 years). The sample includes
NYSE/AMEX/NASDAQ stocks. The market beta, β1,p, and liquidity betas, β2,p, β3,p, β4a,p, and β4b,p,
are computed by monthly portfolio value weighted average returns and portfolio illiquidity innovations.
t− statistics, ratio of estimated β and bootstrap standard error, are reported in parentheses. Bootstrap
standard errors are computed from 10,000 simulated realizations. Column 6-11 in this table presents
portfolio characteristics. E [cp] column reports average illiquidity of portfolio p and σ (∆cp) column
reports standard deviation of portfolio p’s illiquidity innovations. E [re,p] and σ (rp) are average and
standard deviation of value weighted monthly portfolio excess returns for portfolio p. Portfolio turnover
(trn) and market capitalization (Size) are reported in the last two columns. To save space, I only report
properties of odd numbered portfolios.

Estimated Portfolio Betas Portfolio Characteristics

β1,p β2,p β3,p β4a,p β4b,p E [cp] σ (∆cp) E [πp] σ (rp) trn Size
(·100) (·100) (·100) (·100) (·100) (%) (%) (%) (%) (%) (bl$)

1
48.03 0.01 -1.67 -0.01 -0.00

0.25 0.05 0.67 1.66 8.82 45.94
(20.10) (0.98) (-2.96) (-0.98) (0.43)

3
57.15 0.00 -1.98 -0.00 -0.00

0.25 0.00 0.83 1.92 11.96 6.42
(21.81) (3.90) (-2.67) (-4.48) (-2.59)

5
64.34 0.00 -2.29 -0.01 -0.00

0.26 0.00 0.87 2.06 13.42 2.77
(24.52) (0.32) (-2.67) (-2.44) (-2.66)

7
67.04 0.00 -2.07 -0.01 -0.01

0.27 0.01 0.85 2.18 12.71 1.66
(25.20) (0.59) (-2.19) (-3.19) (-2.74)

9
69.34 0.00 -2.04 -0.03 -0.01

0.28 0.01 1.01 2.29 12.26 1.09
(23.86) (0.56) (-2.31) (-4.39) (-3.12)

11
72.91 0.00 -2.00 -0.07 -0.02

0.30 0.02 0.90 2.40 10.92 0.77
(24.32) (0.25) (-2.01) (-4.39) (-2.61)

13
72.50 0.00 -2.56 -0.10 -0.03

0.35 0.03 0.83 2.53 10.29 0.55
(24.02) (0.71) (-2.63) (-4.79) (-2.49)

15
74.10 0.00 -2.47 -0.15 -0.04

0.42 0.05 1.01 2.60 9.35 0.41
(24.44) (0.89) (-1.97) (-4.27) (-2.37)

17
75.05 0.01 -3.43 -0.32 -0.06

0.55 0.10 1.09 2.71 8.27 0.30
(22.66) (1.06) (-3.81) (-4.36) (-1.54)

19
72.26 0.02 -2.53 -0.55 -0.13

0.82 0.18 1.07 2.79 7.74 0.21
(22.45) (1.41) (-2.36) (-4.41) (-2.13)

21
68.96 0.08 -2.30 -0.63 -0.59

1.42 0.39 1.08 2.91 6.32 0.15
(22.18) (1.64) (-2.28) (-2.20) (-2.49)

23
59.40 0.23 -3.09 -1.51 -0.85

3.25 0.72 1.00 3.02 5.25 0.10
(17.88) (1.58) (-4.48) (-3.03) (-2.05)

25
61.51 1.69 -2.12 -4.19 -1.55

9.75 1.92 0.79 3.79 5.22 0.05
(14.93) (3.15) (-2.97) (-3.93) (-2.30)

cludes NYSE/AMEX and NASDAQ stocks from 1973 to 2017. The estimated betas and

portfolio characteristics and the LCAPM estimation results are reported in Table 11 and

Table 12.

Consistent with portfolios with NYSE/AMEX stocks, portfolios with NYSE/AMEX

and NASDAQ stocks on average show that more illiquid portfolios tend to have greater

exposures to liquidity betas. Total liquidity risk exposures, 100·(β2,p− β3,p− β4a,p− β4b,p),

increase from 1.69 for the most liquid portfolio to 9.55 for the most illiquid portfolio. In

terms of the LCAPM estimation, the fit of the model is low, R2=0.33. However, the

estimated overall risk premium, λnet is similar to the price of risk estimated in Section

3.5.2. The estimated annualized return premium associated with the macroeconomic

shock beta and the financial shock beta is 0.50% and 0.19% respectively.
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Table 12: LCAPM Estimation for 25 Illiquidity Portfolios

This table reports cross-sectional liquidity-adjusted CAPM estimation results. The estimation is based
on the 25 size portfolio monthly value weighted returns for 1974-2017 (44 years). The sample includes
NYSE/AMEX/NASDAQ stocks. The regression model is E[rp,t − rf,t] = α+KE [cp,t] + λnetβnet where
K ∈ {κ̄, κ, 0}. κ̄ is average monthly turnover for all stocks (0.095) and κ indicate a free parameter.
βnet,p is the overall LCAPM beta of portfolio p, βnet,p ≡ β1,p + β2,p − β3,p − β4a,p − β4b,p. t-statistics
in parentheses are estimated by GMM framework. The last column reports adjusted R2s obtained from
OLS.

Constant E [cp] β1,p β2,p β3,p β4a,p β4b,p βnet,p R2

1
0.017 0.095 1.123 0.07

(0.039) (—) (1.781)

2
0.212 0.003 1.006 0.33

(1.182) (0.324) (3.967)

3
0.218 1.003 0.36

(1.216) (3.949)

4
0.190 0.095 10.752 -9.386 0.74

(0.817) (—) (8.175) (-7.073)

5
0.217 -0.090 -11.867 12.487 0.47

(1.391) (-2.709) (-2.852) (3.098)

6
0.204 -0.850 1.834 0.35

(1.151) (-0.850) (1.817)

7
0.153 0.095 1.034 -65.723 -0.468 4.474 -26.544 0.91

(1.115) (—) (4.576) (-3.761) (-0.113) (0.428) (-2.005)

5 Conclusion

Acharya and Pedersen (2005) derive the LCAPM and find that the covariation between

firm liquidity costs and market returns (β4) is the most important source of liquidity risk.

In this study, making the use of the return decomposition of Campbell and Shiller (1988),

I show that β4 has two sub-components: the macroeconomic shock beta and the financial

shock beta.

I first show that the return on the market portfolio can be decomposed into two

components: macroeconomic shocks (shocks to interest rates and aggregate expected

dividends) and financial shocks (shocks to the market risk premium). The macroeconomic

shock beta measures firm liquidity costs covariation with macroeconomic shocks and the

financial shock beta measures firm liquidity costs covariation with financial shocks.

Using 1964-2017 US stock market data, I find that both sub-betas are priced, but the

expected return premium associated with firm liquidity costs covariation with macroeco-

nomic shocks is approximately three times larger than that for the covariation between

firm liquidity costs and financial shocks. The threefold difference in expected return pre-

mium can be explained by the nature of the systematic shocks that covary with firm

liquidity costs.
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Both adverse financial shocks and macroeconomic shocks reduce value of the mar-

ket portfolio (and hence investor’s wealth), but only financial shocks improve future

investment opportunities (Campbell and Vuolteenaho, 2004). Therefore, investor is more

sensitive to macroeconomic shocks, and requires greater return premium for stocks whose

liquidity costs strongly covary with macroeconomic shocks.

The strong pricing effect of the macroeconomic shock beta also implies that macroe-

conomic shocks affect asset prices not only through its covariation with stock returns

(Campbell and Vuolteenaho, 2004), but also through its covariation with firm liquidity

costs.
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