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ABSTRACT 

The paper conducts a comprehensive analysis of different style-integration methods in equity 

index, currency, fixed income and commodity futures markets. We compare empirically the 

naïve equal-weighting integration (EWI) and various sophisticated style-weighting allocations 

that determine the style exposures using past data according to utility maximization, style 

rotation, volatility-timing, cross-sectional pricing, style momentum or principal components 

criteria inter alia. The analysis conducted per futures market and cross-markets reveals that 

the naïve equal-weight integrated portfolio is unrivalled in terms of performance by any of the 

sophisticated style-integrated portfolios. The findings are robust to variants of the 

sophisticated integrations, longer estimation windows, scoring schemes, data snooping tests, 

and subperiod analyses. 
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1. Introduction 

A variety of long-short investment styles have been put forward in the recent literature to 

capture attractive returns at a relatively low risk, leaving investors somewhat bewildered for a 

choice of one style over another. The task of selecting one style to pursue is all the more 

troubling because good past performance is no guarantee of future results. Against this 

background, academics and practitioners alike have suggested to integrate various styles. 

Allocating the investor’s wealth across K independently-managed style portfolios, known 

as the ‘portfolio mix’ strategy, is not practical as it may incur unduly high transaction costs.
1
 

Instead this paper is concerned with the “style-integration” strategy that combines the 

information from multiple signals at asset level to form a unique portfolio. The style-

integrated portfolio could enhance performance relative to the standalone-style portfolios as it 

heavily trades the assets that most signals favor and places less or no emphasis on the assets 

with weak or conflicting signals across styles. However, different methods can be deployed to 

form a style-integrated portfolio and to date there is no empirical study that appraises them 

comparatively. 

The present paper fills this gap by providing academics and practitioners alike with a well-

structured comparison of multiple style-integration approaches: a naïve integration approach 

that assigns time-constant, equal-weights to the standalone styles (Equal-Weighted 

Integration, EWI, hereafter) and six other integrations methods that we call “sophisticated” in 

the sense that they allow for time-varying, heterogeneous style-weights. The six sophisticated 

integrations have in common that the style-weights are derived from past data but they differ 

in the criteria adopted which is either utility maximization (Optimized Integration, OI), 

                                                                 
1
 In a long-short setting if a portfolio buys x units of asset i and another portfolio sells x units of asset i, 

the ‘portfolio mix’ that equally invest into the K style portfolios has zero net exposure to asset i but 

trading costs are incurred twice. DeMiguel et al. (2018) show analytically and empirically that the 

turnover required to rebalance a portfolio based on equal-weighting the K characteristics is about 

1/√𝐾 of that required to rebalance all K individual-characteristic separately.  
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persistence in risk-adjusted performance (Rotation-of-Styles Integration, RSI), volatility 

(Volatility Timing Integration, VTI), pricing ability (Cross-Sectional Pricing Integration, 

CSI), factor momentum (Style Momentum Integration, SMI) and principal components 

analysis (Principal Components Integration, PCI). The EWI, OI, RSI, VTI and SMI strategies 

are not new (e.g., Barberis and Shleifer, 2003; Brandt et al., 2009; Asness et al., 2015; 

Fitzgibbons et al., 2016; Arnott et al., 2018), but the CSI and PCI strategies have not been 

studied as yet, to the best of our knowledge, in the style-integration literature.  

This paper contributes to the literature by providing a comprehensive appraisal of the 

above set of style-integration techniques and variants thereof in a long-short context. 

Following a branch of the literature (Fleming et al., 2001, 2003, and Moskowitz et al., 2012), 

we consider a risk-averse investor who, to avoid restrictions on short-selling and minimize 

transaction costs, implements her allocation decisions by trading futures contracts on multi-

asset classes. We study the out-of-sample performance of style-integration methods separately 

for equity index, currency, fixed income and commodity futures markets. To provide a 

complete picture, we deploy the horse race also in the context of diversified portfolios that 

include all futures classes.  

The findings suggest that the EWI approach is the most effective integration approach due 

to the fact that it is easy to deploy as it does not require any parameter estimation while it 

affords a reward-to-risk profile that is unsurpassed by alternative integration strategies. The 

inability of the sophisticated integration portfolios to consistently outperform the EWI 

portfolio suggests indirectly that the benefits from allowing time-varying and heterogeneous 

style-weights are offset by parameter estimation error and representativeness heuristic bias.
2
 

These findings remain unchallenged in additional analyses which include various re-

                                                                 
2
 As defined by psychologists Amos Tversky and Daniel Kahneman in the early 1970s, when we rely 

on a representative heuristic, we often wrongly judge that something is more representative than it 

actually is. In asset management, representative heuristics lead investors to think that future patterns in 

portfolio behavior (or, in the present context, future patterns in style ranking) will resemble past ones.   
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formulations of the sophisticated style-integration strategies, increasing the length of the 

lookback (estimation) period, and conducting tests that are robust to data snooping.  

Our article speaks to a recent but quickly growing literature on style integration in equity 

markets (Barberis and Shleifer, 2003; Brandt et al., 2009; Frazzini et al., 2013; DeMiguel et 

al., 2018), currency markets (Kroencke et al., 2014; Barroso and Santa-Clara, 2015b), fixed 

income markets (Brooks et al, 2018), commodity markets (Fuertes et al., 2010, 2015; Blitz 

and De Groot, 2014) and across markets (Asness et al., 2013, 2015). A feature that is common 

to many of these studies is their focus on a single style-integration approach. Departing from 

these studies, our article conducts a comprehensive horse-race of style-integrations methods to 

inform academics and practitioners alike on their relative performance.  

By presenting evidence that the EWI strategy dominates the sophisticated integration 

strategies, our article speaks to two other literatures. First, it adds to a voluminous literature 

on forecast combination where the equal-weights forecast combination approach is the de 

facto benchmark against which any newly developed forecast combination is appraised (see 

Timmermann, 2006, for a survey). Second, albeit our paper is concerned with style-

diversification, it echoes in spirit the findings from a parallel literature concerned with asset-

diversification (N assets) instead which has highlighted the effectiveness of the naïve 1/𝑁 

approach (DeMiguel et al., 2009).  

The rest of the paper proceeds as follows. Section 2 presents a general allocation 

framework that nests the standalone styles and style-integration methods, and outlines the 

evaluation tools and statistical tests. Section 3 presents the data, and Section 4 contains the 

main results on the out-of-sample performance of different style-integrated portfolios. Section 

5 discusses additional tests to assess the robustness of our main findings, before concluding in 

Section 6.  

2. Methodology 
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2.1 Portfolio allocation framework 

To set the stage, we begin by laying out the portfolio allocation framework developed by 

Brandt et al.’s (2009) to exploit multiple asset characteristics. We particularize the framework, 

as in Barroso and Santa-Clara (2015b), for assets in zero-net supply given our focus on 

investors that seek exposure to multiple styles via long-short portfolios of futures contracts.  

Let the available cross-section of futures contracts be denoted 𝑖 = 1, . . , 𝑁, the investment 

styles 𝑘 = 1, … , 𝐾, and the portfolio formation times 𝑡 = 1, … , 𝑇; thus 𝑥𝑖,𝑘,𝑡 denotes the value 

of the k characteristic or signal for the ith futures contract at time t. Bold font is used hereafter 

to denote matrices and vectors. The investor’s asset allocation at time t in the context of style-

integration is given by the 𝑁 × 1 vector 𝛟𝑡 which can be decomposed as follows  

 𝛟𝑡 ≡ 𝚯𝑡 × 𝛚𝑡 = (

𝜃1,1,𝑡 … 𝜃1,𝐾,𝑡

⋮ ⋱ ⋮
𝜃𝑁,1,𝑡 … 𝜃𝑁,𝐾,𝑡

) (

𝜔1,𝑡

⋮
𝜔𝐾,𝑡

) = (

𝜙1,𝑡

⋮
𝜙𝑁,𝑡

)      (1) 

where 𝚯𝑡 is an 𝑁 × 𝐾 matrix of asset scores that reflects the allocation of style k to asset i. For 

the main part of our analysis, the elements of the score matrix 𝚯𝑡 are the signals appropriately 

standardized cross-sectionally; namely, 𝜃𝑖,𝑘,𝑡 ≡ (𝑥𝑖,𝑘,𝑡 − 𝑥̅𝑘,𝑡)/𝜎𝑘,𝑡
𝑥  where 𝑥̅𝑘,𝑡 (𝜎𝑘,𝑡

𝑥 ) is the 

cross sectional mean (standard deviation) of the kth characteristic at time t. Accordingly, the 

kth strategy longs (shorts) asset i  at time t when 𝜃𝑖,𝑘,𝑡 > 0 (𝜃𝑖,𝑘,𝑡 < 0) which we refer to as 

𝜃𝑖,𝑘,𝑡
𝐿  (𝜃𝑖,𝑘,𝑡

𝑆 ) hereafter. Using the standardized signals as scores naturally implies equal long 

and short investment mandates, ∑ 𝜃𝑖,𝑘,𝑡
𝐿𝑁𝐿

𝑖=1 = ∑ |𝜃𝑖,𝑘,𝑡
𝑆 |

𝑁𝑆
𝑖=1  per style k, with 𝑁𝑳 + 𝑁𝑺 = 𝑁.  At 

each portfolio formation time t, we work with the original distribution of signals {𝑥𝑖,𝑘,𝑡}
𝑖=1

𝑁
 per 

style k; see e.g. Brandt et al. (2009), Barroso and Santa-Clara (2015b), Fischer and Gallmeyer 

(2016), Ghysels et al. (2016), inter alia. In the robustness tests section, we conduct the horse 

race of style-integration methods using several outlier-robust scoring schemes including the 

case where the signals are winsorized prior to standardization as in DeMiguel et al. (2018).   
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The entries of the 𝐾 × 1 weight vector 𝛚𝑡 capture the relative importance given to each 

of the K styles; unless noted otherwise, the weights are unrestricted. The entries of the 𝑁 × 1 

vector 𝛟𝑡 represent the solution of the style-integrated portfolio allocation problem; namely, 

the sign of the allocation, 𝜙𝑖,𝑡 > 0 or 𝜙𝑖,𝑡 < 0, indicates the specific position, long or short, 

that the style-integrated portfolio takes on asset i at time t. The vector 𝛟𝑡 is scaled to 𝛟̃𝑡; i.e., 

𝜙̃𝑖,𝑡 = 𝜙𝑖,𝑡/ ∑ |𝜙𝑖,𝑡|𝑁
𝑖=1  to ensure 100% investment of the investor’s mandate, ∑ |𝜙̃𝑖,𝑡|𝑁

𝑖=1 = 1. It 

follows that, by construction, the final style-integrated portfolio allocates an equal investment 

mandate to the longs and to the shorts; i.e., ∑ 𝜙̃𝑖,𝑡
𝐿

𝑖 = ∑ |𝜙̃𝑖,𝑡
𝑆 |𝑖 = 0.5.  The long/short positions 

taken at each portfolio formation time t (month-end in our analysis) are held for a month on a 

fully-collateralized basis; a new 𝛟̃𝑡+1 is then obtained that defines the style-integrated 

portfolio over the next month and so on. We adopt an “out-of-sample” or real time approach 

throughout the paper meaning that at each time t the vector 𝛟𝑡 is determined using a past 

window of data.  

2.2 Standalone styles 

The standalone-style portfolios emerge as particular cases of Equation (1) for a sparse weight 

vector 𝛚𝑡 with one entry equal to 1 and the K-1 remaining entries equal to 0. For our 

implementation of the integration methods we utilize, without loss of generality, the five 

styles described next that have been proposed in the literature to capture risk premia in various 

asset classes. Appendix A, Panel A, refers the reader to a few representative studies for each 

style.
3
   

The momentum style pursues the trend-continuation principle that the past well-

performing assets (or winners) tend to continue outperforming past losers. In our study, the 

                                                                 
3
 As in Asness et al. (2013) and Koijen et al. (2018), for each style we define the signals identically (as 

discussed in Section 2.2) across all the futures classes for the sake of simplicity. This simplification 

ought not to be a concern since we are not aiming to find the best predictor of returns in each class but 

instead, for a given futures class and a set of styles, we seek to uncover the best style-integration 

method. 
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sorting signal for the cross-section of front-end futures contracts is the average of their daily 

excess returns in the past year; namely, 𝑥𝑖,𝑡 ≡
1

𝐷
∑ 𝑟𝑖,𝑡−𝑗

𝐷−1
𝑗=0  where D denotes the number of 

days.  

The value style rests upon the notion of long-run mean reversion. Following Asness et al. 

(2013) inter alia, the signal is defined as the log of the average D daily front-end futures prices 

4.5 to 5.5 years before portfolio formation t over the current front-end futures price; namely, 

𝑥𝑖,𝑡 ≡ 𝑙𝑛
1

𝐷
∑ 𝑓𝑖,𝑡−𝑗

𝑡1𝐷−1
𝑑=0

𝑓
𝑖,𝑡
𝑡1

 where 𝑡1 is the maturity of the front-end contract. The idea is to buy (sell) 

currently underpriced (overpriced) futures contracts relative to their long-term mean value.  

Next, we consider the carry trade that relies on the roll-yield defined as the difference 

between the logarithmic front-end futures price and the logarithmic second-nearest futures 

price; namely, 𝑥𝑖,𝑡 ≡ ln(𝑓𝑖,𝑡
𝑡1) − ln (𝑓𝑖,𝑡

𝑡2) where 𝑡1 and 𝑡2 denote the maturity of the front-end 

and second-nearest futures contracts. The idea is to buy (sell) futures contracts with negatively 

(positively) sloped term structure of futures prices to capture the expected increase (decrease) 

in their price as maturity approaches under the assumption that the futures curve stays the 

same.  

The liquidity style captures a risk premium that reflects the compensation that investors 

demand for holding less liquid assets. Following prior studies (e.g., Szymanowska et al., 

2014), we adopt the Amivest liquidity measure which averages the daily dollar volume per 

absolute return of the front-end futures contract over the past two months (D days); in our 

paper the signal is defined as the opposite of this measure, 𝑥𝑖,𝑡 ≡ −
1

𝐷
∑

$𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡−𝑗

|𝑟𝑖,𝑡−𝑗|

𝐷−1
𝑗=0  , so that 

positive standardized-signals dictate long positions as formalized in the above framework, 

Equation (1). 

Our final style adopts a skewness signal which is motivated by the notion that investors 

tend to prefer positively-skewed assets. Following prior studies (Fernandez-Perez et al., 
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2018), the signal is defined as the third moment of the distribution of daily excess returns of 

the front-end futures contracts in the prior year; again, we use the negative of this measure so 

that positive standardized-signal values amount to long positions,  𝑥𝑖,𝑡 ≡ −
1

𝐷

∑ (𝑟𝑖,𝑡−𝑗−𝜇𝑖)
3𝐷−1

𝑗=0

𝜎𝑖
3   

with D days.  

2.3. Style-integration methods 

Next we discuss the seven style-integration methods, particular cases of Equation (1), that 

arise from different approaches to determine the style-weighting vector 𝛚𝑡. As discussed next, 

the first method is based on weights set a priori whereas the other six integration methods are 

called “sophisticated” because they allow for time-varying and heterogeneous weights 𝛚𝑡 

which are derived from past data in the 60-month window preceding portfolio formation time 

t.  

Equally-Weighted Integration (EWI). The naïve EWI method assigns homogeneous 

weights to the 𝐾 signals constantly at each portfolio formation time 𝑡 = 1, … , 𝑇; namely, 

𝛚𝑡 = 𝛚 = (1/𝐾, … ,1/𝐾)′. EWI is appealing for various reasons. First, it incurs no sampling 

uncertainty or estimation risk as 𝛚𝑡 is not derived from past data. Second, it sidesteps 

concerns related to the so-called representativeness heuristic which can bias the sophisticated 

style-integration approaches as they assign more weight to the best styles (where “best” is 

defined according to some criteria) under the presumption that the past relative ranking of the 

K styles is a good guide to their future relative ranking. Third, the simplicity of the EWI 

approach reduces the scope for data mining since it circumvents the choices associated with 

the pre-ranking of the K standalone styles; instances are the specific length of the estimation 

or lookback period, the ranking or estimation criterion (e.g., investor’s utility function) and so 

forth. 
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Optimal Integration (OI).  This method defines the style-weighting vector 𝛚𝑡 as the set 

of weights that maximize the conditional expected utility of the portfolio that exploits all K 

styles. Accordingly, at each portfolio formation time t, we solve the following optimization 

problem 𝑚𝑎𝑥
𝛚

 𝐸𝑡[𝑈(∑ 𝜔𝑘𝑟𝑘,𝑡+1
𝐾
𝑘=1 )] with 𝑟𝑘,𝑡 denoting the month t excess return of the kth 

style portfolio. Following DeMiguel et al. (2018), the OI style-weights are determined under 

an unconstrained mean-variance utility assumption 𝐸𝑡[𝑈(𝑟𝑃,𝑡+1)] = 𝛚𝒕
′𝝁𝑡 −

𝛾

2
𝛚𝒕

′Σ𝑡𝛚𝑡 −

𝛾𝛚𝒕
′ 𝝈𝑏𝑘 where the 𝐾 × 1 vector 𝝁𝑡 contains the expected standalone-style portfolio excess 

returns with kth entry estimated as 𝜇̂𝑘,𝑡 =
1

60
∑ 𝑟𝑘,𝑡−𝑗 ,60−1

𝑗=0  𝚺𝑡 is the corresponding variance-

covariance matrix, and 𝝈𝑏𝑘 is the vector of covariances between the benchmark and 

standalone-style portfolios which is not needed in the present context of assets in zero-net 

supply.
4
 We employ the closed-form solution, 𝛚𝑡 = 

1

𝛾
𝚺𝑡

−1𝝁𝑡 with coefficient of relative risk 

aversion 𝛾=5 and 𝝎t  R
K
 (as unrestricted style weights allow for the possibility of taking the 

opposite of the score obtained for the kth style when it crashes; e.g., Daniel and Moskowitz, 

2016). This is essentially the OI approach of Brandt et al. (2009) adapted here to assets in 

zero-net supply as in Barroso and Santa-Clara (2015b). In the robustness checks section of the 

paper, we consider different utility functions. 

Rotation-of-Styles Integration (RSI). At each month-end t, the RSI portfolio adopts the 

jth style with the highest past Sharpe ratio (𝜔𝑗,𝑡 = 1) and neglects other styles, 𝜔𝑘,𝑡 = 0, 

𝑘 = 1, … , 𝐾 (𝑘 ≠ 𝑗). RSI is motivated by the theoretical style-switching model of Barberis 

and Shleifer (2003) and the idea is to exploit any persistence in relative style performance. 

                                                                 

4
 Notwithstanding the potential short-selling and liquidity constraints, as well as the higher trading 

costs, the long-short style-integrated portfolio strategies appraised in the paper are applicable to assets 

in positive net supply (e.g., stocks and bonds)  simply by modifying Equation (1) as 𝛟𝑡 = 𝛟̅𝑡 +
1

𝑁
(𝚯𝑡 × 𝛚𝑡) where 𝛟̅𝑡 denotes the benchmark allocations (e.g., market-portfolio weights).  In our 

present analysis, 𝛟̅𝐭 = 𝟎, as futures contracts are in zero-net supply, and the factor 1/𝑁 cancels out 

after normalizing 𝛟𝑡 to 𝛟̃𝑡.  
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Volatility Timing Integration (VTI). This style-integration method defines the relative 

exposure to a style as inversely proportional to the variance of its past excess returns, 𝜔𝑘,𝑡 ≡

1/𝜎𝑘,𝑡
2 . This approach is inspired by the Kirby and Ostdiek (2012) volatility-timing allocation 

of N assets into a portfolio which can be seen as a restricted (or extreme “shrinkage”) mean-

variance approach that makes the simplifying assumption of equal means and zero 

covariances.  

Cross-Sectional Pricing Integration (CSI). The style weights in the CSI method reflect 

the relative ability of the standalone style premia to explain the cross-sectional variation in the 

asset returns. Higher weights are given to the styles or factors that are better able to price the 

assets. As in Fama and MacBeth (1973), at each month-end t we estimate a univariate time-

series OLS regressions per futures contract 𝑖 = 1, … , 𝑁 and style 𝑘 = 1, … , 𝐾 (a total of 

𝑁 × 𝐾 regressions) using the preceding 60-month length window of data  

                  𝑟𝑖,𝑠 = 𝑎𝑖,𝑘 + 𝑏𝑖,𝑘𝑟𝑘,𝑠 + 𝜀𝑖,𝑠, 𝑠 = 𝑡 − 59, … , 𝑡   (2) 

where 𝑟𝑖,𝑠 is the month s excess return of the ith futures contract, 𝑟𝑘,𝑠 is the month s excess 

return of the kth style, 𝜀𝑖,𝑠 is an error term, 𝑎𝑖,𝑘 and 𝑏𝑖,𝑘 are the estimated coefficients. At step 

two, we estimate for each of those 60 months a cross-sectional OLS regression  

𝑟𝑖,𝑠 = 𝜆𝑘,𝑠
0 + 𝜆𝑘,𝑠

1 𝑏̂𝑖,𝑘 + 𝜖𝑖,𝑠, 𝑖 = 1,2, … , 𝑁    (3) 

for 𝑠 = 𝑡 − 59, … , 𝑡 (60 × 𝐾 regressions). The explanatory power of the kth factor in 

Equation (3) determines the weight that the CSI portfolio assigns to the kth style, 𝜔𝑘,𝑡 ≡

1

60
∑ 𝑅𝑘,𝑡−𝑗

260−1
𝑗=0 .  

Style Momentum Integration (SMI). Recent studies document momentum in the styles 

or factor returns themselves (Ehsani and Linnainmaa, 2017; Arnott et al., 2018). Accordingly, 

the SMI style-weights at each portfolio formation time t are given by the average excess 
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returns of the standalone-style portfolios in the prior 60-month lookback period, 𝜔𝑘,𝑡 ≡

1

60
∑ 𝑟𝑘,𝑡−𝑗

60−1
𝑗=0 . 

Principal Components Integration (PCI). This method defines the style weights as a 

direct function of the eigenvectors associated with the first m principal components of the K 

style premia (𝑚 < 𝐾); namely, 𝝎𝒕 ≡
𝑒1,𝑡𝑳1,𝑡+𝑒2,𝑡𝑳2,𝑡+⋯+𝑒𝑚,𝑡𝑳𝑚,𝑡

𝑒1,𝑡+𝑒2,𝑡+⋯+𝑒𝑚,𝑡
 where 𝑒𝑗,𝑡 is the explanatory 

power of the jth principal component, 𝑳𝑗,𝑡 is the corresponding K-vector of loadings (or jth 

eigenvector, 𝑗 = 1, … , 𝐾), and m is the number of PCs that explain at least  of the total 

variation in the standalone style premia. We use the conservative threshold =90% in our 

main analysis.  

Appendix A, Panel B, refers the reader to studies that deploy the EWI, OI, RSI, VTI or 

SMI methods. To our knowledge, the CSI and PCI methods are new to the integration 

literature. 

2.4. Everywhere style-integration  

The discussion thus far has been implicitly geared towards the construction of futures class-

specific portfolios; namely, equity index, fixed income, currency or commodity futures 

portfolios. Since investors in futures markets may seek diversification across futures classes, 

we describe now a method for the construction of “everywhere” style-integrated portfolios 

with a view to appraise their relative effectiveness also in this scenario.  

As argued by Barberis and Schleifer (2003), investors have a tendency to classify 

decisions into categories based on some similarities among them, e.g. asset classes; 

accordingly, we conceptualize the everywhere style-integrated portfolio construction as 

involving two sequential decisions: i) how much funds to allocate to each of the four futures 

classes, and ii) the style exposures within each asset class. More specifically, the everywhere 
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style-integrated portfolio from month t to month t+1 is formalized as a weighted combination 

of style-integrated portfolios per class 

𝑅𝑃,𝑡+1 = 𝝋𝑡
′ 𝒓𝑃,𝑡+1 = ∑ 𝜑𝑡

𝑐4
𝑐=1 𝑟𝑃,𝑡+1

𝑐     (4) 

where 𝜑𝑡
𝑐 represents decisions made at portfolio formation time t based on past data; the 

subscripts  𝑐 = 1, . . ,4  denote the equity index, currency, fixed income and commodity 

futures classes, respectively, which receive allocations 𝜑𝑡
𝑐 at each portfolio formation time t, 

and 𝑟𝑃,𝑡
𝑐 = 𝑓(𝝎𝑡

𝑐), is the month t return of the style-integrated portfolio for the cth futures 

class which hinges on the choice of style-weighting vector 𝝎𝑡
𝑐.  

The asset manager determines 𝝎𝑡
𝑐 and 𝝋𝑡 using two non-overlapping windows of each 60 

monthly observations. The first 60-month window is used to obtain the style-weight vector 

𝝎𝑡
𝑐 separately for each futures class, 𝑐 = 1, … ,4 following the style-integration methods 

described in Section 2.3. The subsequent 60-month window and the corresponding returns 𝑟𝑃,𝑡
𝑐  

are used to determine the class-weighting vector 𝝋𝒕 for an agent with an unconstrained mean-

variance utility (DeMiguel et al., 2009). Accordingly, at each portfolio formation time t the 

investor maximizes the mean-variance utility of the everywhere style-integrated portfolio over 

the 60-month prior window to derive the class-weights as 𝝋𝑡 ≡
1

𝛾
𝚺̃𝑡

−1𝝁̃𝑡 where 𝝁̃𝑡 is the 4 × 1 

vector of expected excess returns for the class-specific style-integrated portfolios and 𝚺̃𝑡 is the 

variance-covariance matrix. As before, we employ the relative risk aversion parameter 𝛾=5. 

The resulting allocations, 𝝋𝑡, are standardized to ensure full investment. In the robustness 

tests section, we consider other everywhere style-integrations. 

2.5. Evaluation criteria and statistical tests 

We begin by appraising the portfolio strategies using the well-known Sharpe ratio. To make 

statistical inferences, we deploy the Opdyke (2007) test for the null hypothesis 𝐻0: 𝑆𝑅𝑃𝑎
≥
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𝑆𝑅𝑃𝑏
 versus the alternative 𝐻𝐴: 𝑆𝑅𝑃𝑎

< 𝑆𝑅𝑃𝑏
where 𝑃𝑎 and 𝑃𝑏 denote two alternative 

portfolios.
5
  

In order to account for non-normality, we also evaluate the relative performance of the 

portfolios by means of two alternative ratios: the Sortino ratio which scales mean returns by 

the downside standard deviation, and the Omega ratio which uses as risk measure the 

probability-weighted ratio of gains versus losses relative to a threshold excess return of zero.  

In addition, for each portfolio strategy we compute the certainty equivalent return 

(CER) which represents the risk-free return that an investor is willing to accept instead of 

engaging in the risky investment. Adopting the mean-variance utility for now, the CER of 

portfolio P is calculated as the annualized average realized utility over the evaluation period; 

namely,  𝐶𝐸𝑅𝑃 = 𝜇𝑃 −
𝛾

2
𝜎𝑃

2  where 𝜇𝑃 and 𝜎𝑃
2 denote the first two moments of the portfolio 

excess returns distribution. A strictly positive CER means that the risky portfolio is more 

appealing than the risk-free asset. Following DeMiguel et al. (2009), we test the superiority of 

the EWI portfolio over another portfolio j, namely 𝐻0: 𝐶𝐸𝑅𝐸𝑊𝐼 ≥ 𝐶𝐸𝑅𝑗 versus 𝐻𝐴: 𝐶𝐸𝑅𝐸𝑊𝐼 <

𝐶𝐸𝑅𝑗, by exploiting the asymptotic properties of functional forms of the estimators for means 

and variances. We also assess the robustness of our findings by calculating the CER measure 

and corresponding tests for the above 𝐻0 versus 𝐻𝐴 hypotheses under a power utility 

assumption.  

To provide a more complete picture of the relative effectiveness of different style-

integration methods we compare the EWI and sophisticated style-integrations in terms of the 

volatility (standard deviation) of their excess returns, and downside risk as measured by the 

semi standard deviation, maximum drawdown and 99% modified (Cornish-Fisher) VaR that 

                                                                 
5
 Opdyke (2007) provides an expression for the asymptotic distribution of differences in Sharpe ratios 

that is valid under quite general conditions (stationary and ergodicity of returns) thus permitting time-

varying conditional volatilities, serial correlation, and other non-iid return behavior.  
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accounts for skewness and kurtosis. When the returns have negative skewness or fat-tails, the 

Cornish-Fisher VaR will give a larger estimation for the loss than the traditional VaR.   

Finally, even though futures contracts are cheap to trade and therefore transaction costs 

are unlikely to alter the performance comparison, for completeness we take into account the 

trading intensity of each strategy. To this end, we measure portfolio turnover (TO) as the 

average of all the trades incurred over the sample evaluation period 

𝑇𝑂𝑃 =
1

𝑇−1
∑ ∑ (|𝜙̃𝑃,𝑖,𝑡+1 − 𝜙̃𝑃,𝑖,𝑡+|)𝑁

𝑖=1
𝑇−1
𝑡=1                  (5) 

where 𝜙̃𝑃,𝑖,𝑡 is the allocation to the ith asset at month-end t in the portfolio and 𝜙̃𝑃,𝑖,𝑡+ ≡

𝜙̃𝑃,𝑖,𝑡 × 𝑒𝑟𝑖,𝑡+1 is the actual portfolio weight immediately before the next rebalancing is due at 

month-end 𝑡 + 1, where 𝑟𝑖,𝑡+1 denotes the realized monthly excess return of the ith futures 

contract from 𝑡 to 𝑡 + 1. Thus, the above TO measure captures the mechanical evolution of 

the futures contracts weights due to within-month price dynamics.  

3. Data  

We collect daily settlement prices, volume and open interest from Thomson Reuters 

Datastream for 131 US-exchanged futures contracts on 45 equity indices, 22 fixed income 

and interest rates, 21 foreign currencies and 43 commodities, as detailed in Appendix B. The 

time-series start in April 1982 for equity indices, January 1979 for currencies, October 1975 

for fixed income, and January 1979 for commodities. All the time-series end in December 

2017.
 
 

We deploy the strategies by taking positions on the first nearest-to-maturity contracts as 

these are the most liquid.
6
 Specifically, returns are changes in logarithmic prices of the front-

                                                                 

6
 For the same reason, at each portfolio formation time, we exclude the futures contracts with zero 

open interest. Qualitatively similar results, shown in Table A.I of the Internet Appendix, are obtained 

when we restrict our sample to a more liquid universe (the 90% or 80% of contracts with the highest 

open interest) to provide conservative evidence on an implementable set of trading strategies. The 

Internet Appendix is available as supplement material with the online version of this article. 



15 
 

end contract up to one month before maturity, then we roll to the second-nearest contract to 

mitigate the confounding impact of erratic prices and volumes as maturity approaches.  

To ensure a reasonable level of diversification across futures contracts in the long-short 

portfolios held, the initial portfolio formation time in our exercise is dictated by the 

requirement that any subsequent long-short portfolio formed includes at least six futures 

contracts. Thus, the start date for the monthly portfolio excess returns that is common across 

the standalone-styles and style-integrations is September 2001 for equity index futures, 

December 1991 for fixed income futures, August 1989 for currency futures, and July 1989 for 

commodity futures. 

Futures markets are a sound “laboratory” for the present long-short style-integrated 

portfolio analysis for quite a few reasons: taking short positions in futures contracts is as 

feasible as taking long positions (since no short-selling restrictions are imposed), transaction 

costs implied are relatively low compared to those incurred on the underlying assets, futures 

contracts at least in the front-end are highly liquid. They also allow investors to leverage their 

positions and provide them with an exposure similar to that obtained on the underlying asset 

(in line with the observations made by Moskowitz et al. (2012), Bessembinder (1992) and de 

Roon et al. (2000), we find that the front-contract futures excess returns are highly correlated 

with the spot excess returns on the same underlying asset; e.g., the correlation between the 

monthly S&P500 (CME) futures excess returns and the underlying cash index excess returns 

is 99%, Euro vs US dollar (CME) futures and the underlying is 99%, or Gold (CMX) futures 

and the underlying is 97%). 

4. Results 

4.1. Ranking and correlation structure of standalone-style portfolios  

We begin by summarizing the performance of the standalone-style portfolios over the entire 

sample period in Table 1 to provide a static picture of their relative standing -- per futures 
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class, equity indices (Panel A), fixed income (Panel B), currencies (Panel C) and commodities 

(Panel D), and cross-class using the unrestricted mean-variance weighting approach described 

in Section 2.4 (Panel E). The results confirm stylized facts such as that there is pervasive 

momentum and carry everywhere. The ranking of styles differs across futures classes; for 

instance, the momentum and skewness premia stand out in commodity futures markets, while 

the value and carry premia stand out in currency futures markets. Thus, the difficulty of 

finding one style that is consistently performing across futures classes poses a challenge for 

investors that seek broad diversification through cross-(futures) class portfolios. This 

motivates style-integration. 

[Insert Table 1 around here] 

We observe also that although a few of the standalone styles – liquidity (equity index 

futures), value (fixed income futures), and skewness (currency futures) – rank bottom as 

shown in the static snapshot provided by Table 1, their relative ranking reverses over sub-

periods. The extent of the instability in the relative ranking of the styles is illustrated in Table 

2 which reports over 5-year non-overlapping windows the Sharpe ratios of the standalone 

strategies and corresponding ranks (where 1 denotes worst performance and 5 best 

performance). The momentum strategy switches from best to worst in fixed income markets 

depending on the sub-period considered (Panel B). Similar instability in relative ranking is 

observed for the value strategy in equity markets (Panel A) and the carry and skewness 

strategies in commodity markets (Panel D). Hence, time-variation in the relative performance 

of the standalone-style portfolios poses a challenge for an investor in choosing a “best” style 

which further motivates style integration. Relatedly, the integration of styles ought to provide 

investors with some protection against the occasional “crashes” that they may suffer which are 

difficult to predict in real time; e.g, Barroso and Santa-Clara (2015a) discuss crashes in the 

momentum style. 
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[Insert Table 2 around here] 

Finally, to grasp the extent of the overlap across the standalone styles, Table 3 shows the 

correlation structure of their excess returns per futures class in Panels A to D, and in the cross-

class setting in Panel E. The pairwise Pearson correlations across styles per futures class are 

generally small ranging from -0.06 (commodities) to 0.16 (fixed income) on average. This is 

echoed by the pairwise correlations across the cross-class style portfolios. The value style, 

which is contrarian in nature, typically correlates negatively with the other styles. This mild 

correlation structure across styles additionally motivates the notion of style-integrated 

portfolio allocation. The key idea is that, by aggregating the information from multiple signals 

at asset level, the investor ought to obtain a more reliable (composite) signal and a better 

allocation.  

 [Insert Table 3 around here] 

4.2 Performance of style-integrated portfolios 

What is the most effective way for an investor to construct a unique portfolio that is exposed 

to multiple styles? Table 4 answers this question by summarizing the seven style-integrated 

portfolio strategies discussed in Section 2.3 per futures class and across futures classes. As 

revealed by Panels A to D for the equity index, currency, fixed income and commodity 

futures, respectively, the naïve EWI portfolio is often unrivalled in terms of performance – as 

measured either by the Sharpe ratio, Omega ratio, Sortino ratio or CER – by the sophisticated 

style-integrated portfolios. For example, across integration strategies EWI presents the highest 

Sharpe ratios in Panels A, B and D and comes close second after VTI in terms of Sharpe ratio 

in Panel C and E. Moreover, the EWI strategy is also well positioned vis-à-vis the 

sophisticated style-integrations regarding trading turnover, as Figure 1 illustrates. 

[Insert Figure 1 around here] 
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To add statistical significance to these findings, we assess the statistical superiority of the 

EWI strategy relative to the sophisticated portfolios through the Opdyke test. The null 

hypothesis is 𝐻0: 𝑆𝑅𝐸𝑊𝐼 ≥ 𝑆𝑅𝑗 where j denotes a sophisticated style-integrated strategy. The 

test p-values are large across all futures classes and hence, they suggest that the Sharpe ratio 

of the EWI portfolio is unsurpassed by the Sharpe ratio of sophisticated style-integrated 

portfolios. Consistent with this finding, the p-values for the test that assesses the relative 

effectiveness of the EWI strategy using the CER as criteria, 𝐻0: 𝐶𝐸𝑅𝐸𝑊𝐼 ≥ 𝐶𝐸𝑅𝑗, 

unambiguously fail to reject the null hypothesis and hence, endorse the simple EWI method 

for style integration.
7
  

[Insert Table 4 around here] 

Since investors often seek broad diversification across multiple asset classes, it is also 

important to compare the effectiveness of the alternative style-integration methods in the 

context of “everywhere” portfolios of equity index, fixed income, currency and commodity 

futures. The results of this additional horse race are shown in Panel E of Table 4. 

Reassuringly, as borne out by the Opdyke test (𝐻0: 𝑆𝑅𝐸𝑊𝐼 ≥ 𝑆𝑅𝑗) and CER test 

(𝐻0: 𝐶𝐸𝑅𝐸𝑊𝐼 ≥ 𝐶𝐸𝑅𝑗), we find that in a cross-class context the EWI approach is not 

challenged either.  

Table 5 reports the Sharpe ratios, and corresponding Opdyke test p-values, over 5-year 

non-overlapping rolling windows. With only one exception, the Sharpe ratio of the EWI 

portfolio remains superior to that of sophisticated style-integration portfolios as borne out by 

                                                                 

7
 These main findings are not challenged under a power utility assumption, that is, by calculating 

𝐶𝐸𝑅 = (
12

𝑇
) ∑

(1+𝑟𝑃,𝑡+1)
1−𝛾

−1

1−𝛾
𝑇−1
𝑡=0  with 𝑟𝑃,𝑡+1 the portfolio excess return on month t+1; we use 𝛾 = 5. 

The test for differences in CERs with power utility is based on the Politis and Romano (1994) 

bootstrap method using B=10,0000 iterations. We construct bootstrap time-series of returns for the 

EWI portfolio and each competing integrated portfolio, {𝑟𝐸𝑊𝐼,𝑡
∗ , 𝑟𝑗,𝑡

∗ ,}, by combining random blocks of 

length l sample from the original time-series of returns. The block-length l is geometrically distributed 

with expected value 1/𝑞. We use 𝑞 = {0.2, 0.5}. Results are provided in Table A.II of the Internet 

Appendix. 
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large Opdyke test p-values across all the subperiods. A dynamic comparison of the style-

integration methods is also conducted by ranking their performance. Specifically, we start off 

by assigning a top (bottom) rank of 7 (1) to the integrated strategy with the highest (lowest) 

Sharpe ratio. This is done for each of the 5-year non-overlapping periods, as well as for each 

of the class of futures (Panels A to D) and across classes (Panel E). We then average the ranks 

thus obtained per integrated strategy and calculate the standard deviation of these ranks, as 

well as the ratio of the mean rank to its standard deviation. The results, presented at the 

bottom of Table 5, suggest that the naïve EWI portfolio has a relatively high volatility-

adjusted expected rank which suggests that it offers sizeable risk-adjusted returns consistently 

across subperiods and futures classes. Endorsing our prior findings, the sophisticated two-step 

CSI strategy acquires a similar volatility-adjusted mean rank as the naïve EWI; given that the 

latter is much simpler to deploy as it does not require parameter estimation, it is the preferred 

strategy overall. 

[Insert Table 5 around here] 

Next we compare the full-sample performance of the standalone-style portfolios in Table 

1 and the EWI portfolio in Table 4 under all the scenarios (four separate futures classes and 

cross-class) while bearing in mind the turnover shown in Figure 1. The results presented in 

Table A.III of the Internet Appendix indicate that EWI statistically delivers superior out-of-

sample performance than the standalone style. Further to compare the style portfolios and the 

EWI portfolio we rank all six of them over 5-year non-overlapping subperiods and across 

scenarios, as explained above. The results shown suggest that the volatility-adjusted expected 

rank is highest for EWI.  Moreover, the EWI portfolio offers a shield against the downside 

risk of standalone-style portfolios as borne out by the risk measures shown in Table A.IV of 

the Internet Appendix. These findings are not new but serve to confirm (in the context of wide 

cross-sections of futures contracts for four instruments) prior studies advocating style-
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integration (e.g., Brandt et al., 2009; Asness et al., 2013; Barroso and Santa-Clara, 2015b; 

DeMiguel et al., 2018).  

As a byproduct of our analysis, we can compare the performance of the dominant EWI 

strategy when it is deployed for individual futures classes and cross-classes. Since the 

performance measures reported in Table 4 for those different contexts are based on samples of 

returns starting on different periods, for this comparison to be informative, we recalculate the 

same measures over the longest sample period that is common (September 2006 to December 

2017). The results reported in Table A.V of the Internet Appendix confirm the broad 

diversification benefits of cross-class style integration.
8
 For instance, with a Sharpe ratio of 

1.03 and 99% VaR of 0.0138, the cross-class EWI portfolio is more attractive than the single 

futures-class EWI portfolios with Sharpe ratios ranging from 0.17 (fixed income) to 0.97 

(equity index), and 99% VaRs ranging from 0.0224 (fixed income) to 0.1234 (equity index).  

Finally, leaving the dominant EWI method aside for a moment, we draw comparisons 

across the remaining style-integrated strategies in terms of several performance measures over 

the entire sample period (Table 4) and Sharpe ratio-based ranking over subperiods (Table 5). 

We observe that the CSI portfolio strategy inspired by the two-step Fama-MacBeth 

methodology affords relatively high performance in a fairly consistent manner across 

scenarios (futures classes and cross-class) and over time. Both the OI and the statistically-

motivated PCI lie at the other end of the spectrum with the least attractive performance.  

5. Robustness tests 

The purpose of this section is primarily to assess the robustness of our main finding that the 

naïve EWI strategy is unrivalled by sophisticated style-integration strategies to: 

reformulations of the sophisticated style-integration strategies, longer estimation windows, 

                                                                 
8
 The diversification benefits of deploying the EWI portfolios in an everywhere (cross-class) fashion 

stem from the low correlations between the EWI excess returns across futures classes which ranges 

from -0.23 (equity index and fixed income portfolios) to 0.20 (equity index and foreign exchange 

portfolios). 
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different sub-periods, and deploying the “reality check” test in Hansen (2005) to mitigate data 

snooping concerns. To preserve length, the tabulated tests for differences in performance 

focus on the Sharpe ratio; tests based on the CER measure produced qualitatively similar 

results. 

5.1. Reformulations of the “sophisticated” style-integration methods 

We begin by considering four alternative OI strategies where the objective function to 

optimize is: i) the mean-variance utility with shrinkage of the covariance matrix (Ledoit and 

Wolf, 2004) which is an asymptotically optimal convex linear combination of the sample 

covariance matrix with the identity matrix, ii) the power utility 𝑈(𝑟𝑃,𝑡+1) =
(1+𝑟𝑃,𝑡+1)

1−𝛾
−1

1−𝛾
, 

iii) the exponential utility 𝑈(𝑟𝑃,𝑡+1) = −
𝑒−𝜅(1+𝑟𝑃,𝑡+1)

𝜅
,  and iv) the power utility with 

disappointment aversion (Gul, 1991) 𝑈(𝑟𝑃,𝑡+1) =
(1+𝑟𝑃,𝑡+1)

1−𝛾
−1

1−𝛾
 if 𝑟𝑃,𝑡+1 > 0 and 

(1+𝑟𝑃,𝑡+1)
1−𝛾

−1

1−𝛾
+ (

1

𝐴
− 1) [

(1+𝑟𝑃,𝑡+1)
1−𝛾

−1

1−𝛾
] if 𝑟𝑃,𝑡+1 ≤ 0. 𝛾 and 𝜅 are the relative and absolute 

risk aversion parameters, respectively, and 𝐴 ≤ 1 is the coefficient of disappointment aversion 

that controls the relative steepness of the value function in the gains/losses regions; we use 

𝛾 = 𝜅 = 5 and A=0.6.
9
 

Next we consider an investor who is only concerned about risk, measured by the variance, 

and therefore she obtains the style exposures as the solution of the problem 

𝑚𝑖𝑛𝛚  [𝑉𝑎𝑟𝑡(𝑟𝑃,𝑡+1)] subject to ∑ 𝜔𝑘
𝐾
𝑘=1 = 1 (to avoid the trivial solution 𝜔𝑘 = 0). The 

minimum variance portfolio can be cast as a special case of the mean-variance portfolios by 

assuming equal means. 

                                                                 

9
 The power utility with disappointment aversion embeds the behavioral notion that investors are more 

sensitive to losses than to gains of equal size.  A=1 implies the standard power utility function without 

loss aversion. We solved the OI problem using A=0.8 and the main insights also hold.  
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For each of the above reformulations of the OI strategy, we deploy a restricted (ω𝑘 ≥ 0) 

version and an unrestricted (∀𝜔𝑘) version.  We also deploy now a constrained (ω𝑘 ≥ 0) 

version of our earlier mean-variance utility OI approach, for completeness. 

Inspired by the cluster combination approach of Aiolfi and Timmermann (2006), we 

deploy a smoother version of the RSI strategy based on the three styles with the best past 

performance. Specifically, at each month-end the resulting RSI(3) portfolio has equal 

exposure to the top three styles according to the Sharpe ratio (𝜔𝑘 = 1/3) and no exposure to 

the remaining styles.  

Next, the earlier VTI strategy inspired by Kirby and Ostdiek (2012) is reformulated in 

two ways. First, by considering the more general VTI(𝜂) strategy with style weights ω𝑘,𝑡 =

(1 σ𝑘,𝑡
2⁄ )

𝜂
 where timing-aggressiveness is dictated by the parameter 𝜂.

10
 Second, by 

considering the reward-to-risk timing integration (RRTI) with style weights 𝜔𝑘,𝑡 =

(𝜇̂𝑘,𝑡
+ /σ𝑘,𝑡

2 )
𝜂
 where 𝜇̂𝑘,𝑡

+ = max(0, 𝜇̂𝑘,𝑡), and 𝜇̂𝑘,𝑡 is the mean excess return of the kth style. We 

use 𝜂 = 4.  

As a variant of the earlier CSI approach, we formulate a time-series pricing integration 

(TSI) that solely focuses on the first-stage of Fama-MacBeth (1973). Accordingly, at each 

portfolio formation time t, the TSI strategy estimates 𝑁 × 𝐾 predictive OLS regressions of the 

monthly excess returns of each asset 𝑖 = 1, … , 𝑁 on the past-month style premium 𝑘 =

1, … , 𝐾  

𝑟𝑖,𝑠 = 𝑎𝑖,𝑘 + 𝑏𝑖,𝑘𝑓𝑘,𝑠−1 + 𝜀𝑖,𝑠, 𝑠 = 𝑡 − 59, … , 𝑡                            (8) 

and the kth style weight is defined as the average predictive power 𝜔𝑘,𝑡 ≡
1

𝑁
∑ 𝑅𝑖,𝑘,𝑡

2𝑁
𝑖=1  based 

on the regression’s coefficient of determination  𝑅𝑖,𝑘,𝑡
2 . Finally, we deploy a very parsimonious 

                                                                 

10
 For η = 0, there is no volatility-timing, ωk = 1/K for k = 1, … , K and the EWI strategy arises. For 

η = 1, the baseline VTI strategy arises. For η → ∞, the most aggressive volatility-timing strategy 

arises such that the jth style with the lowest past variance receives weight ωj = 1 (ωk = 0, k ≠ j). 
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version of the earlier PCI approach that focuses on the 1
st
 principal component, denoted 

PCI(1). 

Table A.VI of the Internet Appendix reports results for these reformulations of the 

sophisticated style-integrations deployed per futures class and cross-classes. The performance 

of these reformulated style-integration strategies, as measured by the Sharpe ratio, does not 

challenge the performance of the much easier-to-construct EWI portfolio. This is formally 

confirmed by large Opdyke test p-values which fail to reject 𝐻0: 𝑆𝑅𝐸𝑊𝐼 ≥ 𝑆𝑅𝑗 throughout. 

5.2. Alternative scoring schemes  

Our analysis thus far has relied on the standardized signals, as entries of the scoring matrix 𝚯𝑡 

in Equation (1), to rank the cross-section of futures contracts according to each style. We now 

turn attention to three alternative scoring schemes. Following DeMiguel et al. (2018), the first 

seeks to mitigate the biases induced by noise (outliers) in the individual signals by first 

winsorizing the signals, and then standardizing the resulting winsorized signals. Specifically, 

at each portfolio formation time for each signal 𝑘 = 1, … ,5, we shrink all signal values above 

the upper threshold 𝑄3,𝑘 + 3 ∙ 𝑅𝑘  to that upper threshold value, and any signal values below 

the lower threshold 𝑄1,𝑘 − 3 ∙ 𝑅𝑘   to that lower threshold value; 𝑄1,𝑘 and 𝑄3,𝑘 are the first and 

third quartiles of the distribution {𝑥𝑖,𝑘}
𝑖=1

𝑁
 and 𝑅𝑘 is the interquartile range. 

The second scoring scheme is based on standardized rankings, 𝜃𝑖,𝑘,𝑡 ≡ 𝑧̃𝑖,𝑘,𝑡 = (𝑧𝑖,𝑘,𝑡 −

𝑧𝑘̅,𝑡)/𝜎𝑘,𝑡
𝑧  where 𝑧𝑖,𝑘,𝑡 ∈ {1, … , 𝑁} is the ith asset rank at time t according to 𝑥𝑖,𝑘,𝑡 (i.e., a rank 

N is assigned to the best candidate, and 1 to the worst candidate).  By transforming the signals 

onto rankings, this approach ought to mitigate the effects of potential outliers in the individual 

signals while it still differentiates among the candidate assets for the long and short positions.  

A very parsimonious scheme sorts the candidate futures contracts according to the 

signals, {𝑥𝑖,𝑘,𝑡}
𝑖=1

𝑁
 and assigns those with a signal value above (below) the median signal a 
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score of +1(-1). As the final allocations 𝜙𝑖,𝑡 resulting from Equation (1) will not add to zero in 

this scheme when the available futures contracts N is an odd number, we center them before 

scaling, i.e., 𝜙̃𝑖,𝑡 = (𝜙𝑖,𝑡 − 𝐸𝑖(𝜙𝑖,𝑡))/ ∑ |𝜙𝑖,𝑡 − 𝐸𝑖(𝜙𝑖,𝑡)|𝑁
𝑖=1  to ensure 100% fulfilment of the 

investor’s mandate. This simple heuristic is also robust to noise but it may lose information by 

mapping the signals onto just two scores; namely, it does not discriminate among the 

candidate assets for the long positions; likewise as regards the short positions.  

Finally, inspired by the asset management literature we consider three schemes that at each 

portfolio formation time consider only the assets bucketed into the extreme (top and bottom) 

quintiles according to the signal at hand, and ignore the assets in the intermediate quintiles. 

Specifically, the quintile version of the standardized signals scheme, the standardized rankings 

scheme and the binary {-1, +1} scheme described above; in all of them, the number of 

contracts in the top and bottom quintiles is N/5 (rounded up to the closest integer). For 

consistency with our earlier portfolio formation approaches, we ensure full investment of the 

investor’s mandate and allocate an equal investment mandate to the longs and to the shorts 

throughout. 

The main finding is that for all of the alternative scoring schemes, the EWI strategy 

remains unchallenged by the sophisticated style-integrations, as borne out by the Sharpe ratios 

and Opdyke test p-values for the hypothesis: 𝐻0: 𝑆𝑅𝐸𝑊𝐼 ≥ 𝑆𝑅𝑗 where j is the sophisticated 

integrated portfolio at hand. Table A.VII of the Internet Appendix reports the results.  

As a byproduct of this analysis, the comparison across scoring schemes suggests that 

exploiting the full cross-section of signals (instead of merely the signals provided by extreme 

quintiles) results in better performance across integration methods, futures classes and cross-

class. The average Sharpe ratio of the integrated portfolios indeed stands at 0.67 when 𝜃𝑖,𝑘,𝑡 

considers the whole cross-section of signals and drops to 0.58 when 𝜃𝑖,𝑘,𝑡 is only populated 

with the signals delivered by extreme quintiles. This implies that the scoring approaches that 
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exploit the whole cross section of available futures enable a more informative composite 

signal.  

5.3 Other class-weighting methods for the “everywhere” style-integrated portfolios 

 

To assess the robustness of our prior findings as regards the comparison of style-integration 

methods in an “everywhere” (cross futures class) context, we now deploy Equation (4) using 

two simple heuristics to determine the class-weights 
𝑡
 as an alternative to the mean-variance 

optimization deployed earlier.  

  Constant weights. Following common practice among academics and practitioners, 

we form global portfolios by assigning predetermined time-constant weights to each futures 

class, i.e. 𝝋𝒕 ≡ 𝝋 in Equation (4); see e.g. Jacobs et al. (2010) and Asness et al. (2015). 

Specifically, the equity index, fixed income, currency and commodity building blocks (class-

specific style-integrated portfolios) are given weights 40%, 40%, 10% and 10%, respectively, 

towards the everywhere style integrated portfolio. The weights are rebalanced at each 

portfolio formation time t to its original mix to accommodate within-month movements in the 

value of the asset class.
11

  

 Risk-parity (EWMA) weights. Risk parity has gained prominence among practitioners to 

aggregate asset classes into a global risk-balanced portfolio due to its parsimony and 

effectiveness (Ang, 2014). This simple heuristic seeks to achieve identical contributions of the 

each asset class to the risk of the global portfolio, ignoring correlations. Specifically, the 

importance given to each futures class, 𝑐 = 1, … ,4,  at each portfolio formation time t is 

inversely proportional to the expected volatility of the asset class, 𝜑𝑡
𝑐 ≡ 1 𝜎𝑡

𝑐⁄  in Equation (4). 

Following Natixis (2015) and Moskowitz et al. (2012) inter alia, we obtain the volatility 𝜎𝑡
𝑐 

using the forward-looking Exponentially Weighted Moving Average (EWMA) model of 

                                                                 
11

 We also used 50%, 30%, 10% and 10% weights for equity index, fixed income, currency and 

commodity futures, respectively, or equal class weights. The key findings remain unchallenged. 
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Riskmetrics’ tool, a specific case of GARCH(1,1) model that does not require parameter 

estimation  

𝜎𝑡
𝑐 = √(1 − 𝜆) ∑ 𝜆𝑗(𝑟𝑐,𝑡−𝑗 − 𝑟̅𝑐,𝑡

𝑚−1

𝑗=0
)2 

where 𝑚 = 60 months in our context and 𝑟̅𝑐,𝑡 is the average return over those past 60 months. 

We use the smoothing parameter value 𝜆 = 0.97 as recommended by Riskmetrics for 

monthly data. The resulting allocations are also standardized to ensure full investment. 

Finally, we consider a direct approach to constructing the everywhere style-integrated 

portfolio which is a one-stage version of the above risk-parity approach as deployed by 

Moskowitz et al. (2012). At each portfolio formation time t, we apply the methods discussed 

in Section 2.3 to the entire cross-section of futures contracts to obtain the style-integrated 

allocations, 𝜙𝑖,𝑡, 𝑖 = 1, … , 𝑁 (𝑁 = 131) and scale each by the expected volatility of the 

corresponding futures contract using the EWMA model. Thus, the everywhere style-

integrated portfolio uses the allocations 𝜙̆𝑖,𝑡 =
𝜙𝑖,𝑡

𝜎𝒊,𝒕
, 𝑖 = 1, … , 𝑁 (𝑁 = 131). These allocations 

are finally standardized to ensure full investment, that is, 𝜙̃̆𝑖,𝑡 = 𝜙̆𝑖,𝑡/ ∑ |𝜙̆𝑖,𝑡|𝑁
𝑖=1  where 

∑ 𝜙̃̆𝑖,𝑡
𝑁
𝑖=1 = 1. 

 The latter approaches to constructing everywhere style-integrated portfolios – the two 

stage approach and the direct approach -- have in common their risk-parity flavour. They 

differ primarily in that the two-stage approach allows for distinct style weights per futures 

class, 𝝎𝑡(𝑐) , the direct approach accounts for differences in volatility in the instruments 

within each futures class; for instance, natural gas versus gold or wheat in the commodity 

futures class.  

As Table A.VIII of the Internet Appendix reveals, the main finding of our paper as 

regards the unrivalled performance of the EWI strategy is not challenged by the choice of the 
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class-weighting approach.  Although it goes beyond the scope of the paper, we compare for a 

given style-integration strategy, the Sharpe ratios obtained using the four class-weighting 

schemes entertained in the paper. While we do not claim that either of these schemes is 

optimal, we observe that the simplest heuristic that assigns constant weights to the four 

futures classes is the most effective in line with previous findings in the literature (Jacobs et 

al., 2014). In particular, the everywhere EWI portfolio based on constant weights 40% (equity 

index), 40% (fixed income), 10% (currencies) and 10% (commodities) stands out with a 

Sharpe ratio of 1.13, while the next most effective approach to select the class weights is the 

unrestricted mean-variance approach leading to an everywhere EWI portfolio with a Sharpe 

ratio of 1.03.  The naïve risk-parity schemes (two-stage in Panel B or one-stage in Panel C of 

Table A.VIII) are the least effective. 

5.4 Is the superior economic performance of EWI due to data snooping? 

Employing the same dataset repetitively to test the performance of many investment strategies 

can trigger false discoveries -- this is the data snooping issue as it is understood by 

practitioners. Now we conduct the Superior Predictive Ability test of Hansen (2005) based on 

Sharpe ratio differences, as outlined next, to alleviate the impact of data snooping on our 

empirical inference.  

Adopting the EWI portfolio strategy as benchmark, we appraise the 𝑀 = 27 portfolio 

strategies studied in the paper (five standalone styles discussed in Section 2.2, six 

sophisticated style-integration strategies discussed in Section 2.3 and 16 variants thereof as 

discussed in Section 5.1). Let 𝑆𝑅𝑗 denote the Sharpe ratio of the jth portfolio strategy (𝑗 =

1, … , 𝑀) and define  𝑆𝑅𝐸𝑊𝐼 as the Sharpe ratio of the EWI strategy. Relative performance is 

measured in terms of differences between both Sharpe ratios, 𝑑𝑗 ≡ 𝑆𝑅𝑗 − 𝑆𝑅𝐸𝑊𝐼. The 

expected “loss” of the jth strategy relative to the benchmark is therefore 𝐸[𝑑𝑗] = 𝐸[ 𝑆𝑅𝑗 −

𝑆𝑅𝐸𝑊𝐼]. Strategy j is better in terms of Sharpe ratio than the benchmark (EWI) if and only if 
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𝐸[𝑑𝑗]  >  0. The null hypothesis is that the best of the M strategies does not obtain a superior 

Sharpe ratio than the benchmark EWI strategy; i.e., 𝐻0: 𝑚𝑎𝑥𝑗=1,…,𝑀𝐸[𝑆𝑅𝑗]  ≤  𝐸[𝑆𝑅𝐸𝑊𝐼].12
  

The bootstrap p-values of the test, reported in Table A.IX of the Internet Appendix, 

ranging from 0.65 to 0.97 across all futures classes and cross class, are consistently unable to 

reject 𝐻0. Thus, we can assert that the key finding that the EWI portfolio is unsurpassed by the 

sophisticated style-integrated portfolios is robust to data snooping biases. 

5.5 Longer estimation windows 

The sophisticated style-integration approaches, unlike the EWI approach which is parameter-

free, suffer from estimation error. It is therefore natural for us to investigate whether the EWI 

portfolio can be “easily” beaten by simply increasing the length of the lookback (or 

estimation) window as the estimation error ought to diminish on average with longer 

estimation windows. To do this, instead of the fixed 60-month rolling windows used thus far 

to estimate the style-weighting vector 𝛚𝑡 in Equation (1) we now use: i) recursive windows 

expanded one month at a time (starting from 60 months) and ii) fixed 120-month length 

rolling windows. As Table A.X of the Internet Appendix shows, none of sophisticated 

integrated portfolios significantly outperforms the simpler-to-construct EWI portfolio. 

5.6 Are the findings time-specific? 

To address this question, we conduct now a sub-period comparison of the style-integration 

methods based on two economic criteria. We split the sample months into months pertaining 

to: i) high versus low volatility regimes specific to each futures class,
13

 and ii) recession 

versus expansion months according to the NBER-dated business cycle phases. We report 

                                                                 
12

 The test is based on a statistic with a non-standard distribution that we approximate using the Politis 

and Romano (1994) random-length bootstrap method described earlier in Section 4.2. The block-

length l is geometrically distributed with expected value 1/𝑞. We use 𝑞 = {0.2, 0.5}.  
13

 The regimes per futures class (and cross-class) are obtained by fitting a GARCH(1,1) model to the 

monthly excess returns of a long-only equally-weighted monthly-rebalanced portfolio of all  futures 

contracts. The cut-off points are the means of the fitted annualized volatilities: 12.15% for equity 

indices, 3.50% for fixed income, 7.67% for currencies, 10.86% for commodities, and 3.40% for cross-

class (where the cross-class portfolio is that obtained by an unconstrained mean-variance optimizer). 
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Sharpe ratios and test the null hypothesis that EWI is unchallenged by the sophisticated style-

integrated portfolio at hand. We also report the rank of each strategy in each sub-sample -- a 

number ranging between 1 (lowest Sharpe ratio) and 7 (highest Sharpe ratio) – and the 

instability-adjusted mean rank, as earlier. Notwithstanding the small number of months in 

some of the regimes (e.g., recessions) the results, presented in Table A.XI of the Internet 

Appendix, suggest that the Sharpe of the EWI portfolio remains superior to that of the 

alternative integrated portfolios as borne out by large Opdyke test p-values for 𝐻0: 𝑆𝑅𝐸𝑊𝐼 ≥

𝑆𝑅𝑗; the only exception is the low-volatility regime for the equity futures cross-section where 

the SMI portfolio significantly outperforms the EWI portfolio at the 10% level.  As regards 

the performance ranking, the highest instability-adjusted mean rank is clearly achieved by the 

EWI portfolio strategy which is thus confirmed as the preferred one followed by the CSI 

strategy, in line with our earlier findings. 

6. Conclusions  

The asset pricing literature has identified a set of long-short investment strategies, termed 

styles, backed by reasonable economic intuition and out-of-sample tests that deliver attractive 

long-term risk-adjusted returns pervasively across asset classes and different markets. 

However, as past performance is not necessarily a good guide for future performance, 

choosing one style over another may be bewildering for investors, particularly, those 

interested in broad diversification across multiple asset classes. Following a recent literature, 

this article studies style-integration defined as the combination of multiple asset 

characteristics with a view to construct a unique portfolio with simultaneous exposures to 

many styles. We contribute to the literature by providing a comprehensive analysis of the 

effectiveness of various existing style-integrations and novel ones. Specifically, we confront 

the naïve equal-weight-integration (EWI) approach that assigns time-constant and 

homogeneous weights to the different styles, with a set of “sophisticated” approaches with 
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time-varying and heterogeneous style weights that are estimated from past data according to 

some criteria such as utility maximization, style rotation, volatility timing, cross-sectional 

pricing, style momentum and principal components.  

Employing cross-sections of futures contracts on equity indices, fixed income, 

currency and commodity futures to sidestep short-sale constraints and to keep transaction 

costs low, we construct long-short portfolios according to the aforesaid methods in various 

scenarios: per futures class and cross-class. The risk-adjusted performance of the naïve EWI 

portfolio is unrivalled by that of any of the sophisticated style-integrated portfolios 

consistently in all scenarios. This finding is robust to trading costs, reformulations of the 

sophisticated integration methods, sub-period analysis, data snooping tests and longer 

estimation windows.  

Our study is ambitious in that it confronts the EWI portfolio with seven sophisticated 

style-integrated portfolio strategies and variants thererof. Given that new integration methods 

may be put forward in future research, the main takeaway from our paper is that the naïve 

EWI approach lends itself as a challenging benchmark to confront any style-integration 

method with.  
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Appendix A. Background studies on standalone styles and style-integrations 

 

Equities Fixed income Currencies Commodities Across classes

Panel A: Individual-style strategies

Asness et al. (2013, 2015) Asness et al. (2013, 2015) Asness et al. (2013, 2015) Asness et al. (2013, 2015) Asness et al. (2013, 2015)

Jegadeesh and Titman (1993) Brooks et al. (2018) Menkhoff et al. (2012) Erb and Harvey (2006)

Moskowitz et al. (2012) Shleifer and Summers (1990) Miffre and Rallis (2007)

Asness et al. (2013, 2015) Asness et al. (2013, 2015) Asness et al. (2013, 2015) Asness et al. (2013, 2015) Asness et al. (2013, 2015)

DeBondt and Thaler (1985, 1987) Brooks et al. (2018)

Asness et al. (2015) Asness et al. (2015) Asness et al. (2015) Asness et al. (2015) Asness et al. (2015)

Koijen et al. (2018) Brooks et al. (2018) Fama (1984) Erb and Harvey (2006 Koijen et al. (2018)

Koijen et al. (2018) Koijen et al. (2018) Koijen et al. (2018)

Menkhoff et al. (2012) Gorton and Rouwenhorst (2006)

Amihud et al. (2005) Amihud et al. (2005) Koijen et al. (2018) Koijen et al. (2018)

Pastor and Stambaugh (2003) Lin et al. (2011) Mancini et al. (2013) Szymanowska et al. (2014)

Skewness Amaya et al. (2015) Chiang (2016) Brunnermeier et al. (2009) Fernandez-Perez et al. (2018)

Panel B: Style-integrated strategies

EWI Asness et al. (2013) Asness et al. (2013) Asness et al. (2013) Asness et al. (2013)

Blitz and van Kliet (2008) Brooks et al. (2018) Kroencke et al. (2014) Blitz and De Groot (2014)

Fitzgibbons et al. (2016) Blitz and van Kliet (2008) Fuertes et al. (2015) Blitz and van Kliet (2008)

Leippold and Rueegg (2017)

OI Brandt et al. (2009) Barroso and Santa-Clara (2015b) 

DeMiguel et al. (2018) 

RSI Barberis and Shleifer (2003)

Frijns et al. (2016)

VTI Asness et al. (2015) Asness et al. (2015) Asness et al. (2015) Asness et al. (2015) Asness et al. (2015)

SMI Arnott et al. (2018)

Momentum

Value

Liquidity

Carry
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Appendix B.  Cross-sections of futures contracts 

 

 
  

Dow-Jones Industrial Average MSCI Russia Russell 1000 Value S&P Industrial 

E-mini Dow-Jones Industrial Average MSCI Taiwan Russell 2000 S&P Information Technology

E-Mini S&P500 MSCI Thailand Russell 2000 Growth S&P Materials

Euro Stoxx 50 MSCI USA Russell 2000 Value S&P Small Capitalization

Eurotop 100 MSCI World Russell 3000 S&P Utilities

Eurotop 300 Nasdaq 100 S&P Citigroup Growth S&P400 Mid Capitalization

Major Market Index Nasdaq Biotechnology S&P Citigroup Value S&P500

MSCI Asia Nikkei 225 S&P Consumer Discretionary Value Line

MSCI EAFE NYSE composite S&P Consumer Staples VIX

MSCI Emerging Markets PSE Technology S&P Energy

MSCI Emerging Markets Latin America Russell 1000 S&P Finance

MSCI India Russell 1000 Growth S&P Health

1-Month Eurodollar 30-Year U.S. Treasury Bond

30-Day FED Funds BC U.S. Aggregate

90-Day U.S. Treasury Bill Brazil 'C' Barra Index

3-Month CD Brazil 'EI' Bond Index

3-Month Eurodollar GNMA Constant Default Rate

3-Month Euromark Mexican Brady Bond Index

2-Year U.S. Treasury Note Moody's Bond Index

3-Year U.S. Treasury Note Municipal Bond Index

5-Year Eurodollar Bundle Ultra 10-Year U.S. Treasury Note

5-Year U.S. Treasury Note Ultra Treasury Bond Index

10-Year Agency Note

10-Year U.S. Treasury Note

Australian Dollar Mexican Peso

Brazilian Real New Zealand Dollar

Canadian Dollar Norwegian Krona

Chinese Renmimbi Polish Zloty

Czech Koruna Russian Rouble

Deutsche Mark South African Rand

Euro Sterling

French Franc Swedish Krona

Hungarian Forint Swiss Franc

Israeli Shekel

Japanese Yen

Korean Won

BFP Milk Frozen Concentrated Orange Juice NY Harbor ULSD Sugar Number 14

Brent Crude Oil Frozen Pork Bellies Oats Unleaded Gas

Butter Cash Gold 100 oz (CBT) Palladium Wheat (CBT)

Cheese Cash Gold 100 oz (CMX) Platinum Wheat (KCBT)

Coal High Grade Copper RBOB Gasoline Wheat (MGE)

Cocoa HR Coil Steel Rough Rice White Wheat

Coffee C Lean Hogs Silver 1000 oz WTI Crude Oil

Corn Light Crude Oil Silver 500 oz

Cotton Number 2 Live Cattle Soyabean Meal

Electricity JPM Lumber Soyabean Oil

Ethanol Mini-Soyabeans Soyabeans

Feeder Cattle Natural Gas Sugar Number 11

Panel A: 45 equity index futures 

Panel B: 22 fixed Income and interest rate futures

Panel C: 21 currency futures

Panel D: 43 Commodity futures
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Figure 1. Turnover of standalone-style portfolios and style-integrated portfolios. 

The figure plots the turnover of the standalone-style momentum, value, carry, liquidity and skewness 

portfolios discussed in Section 2.2, and the style-integrated portfolios discussed in Section 2.3, 

measured as in Equation (5). EWI is equally-weighted integration, OI is optimized (mean-variance) 

integration, RSI is rotation-of-styles integration, VTI is volatility-timing integration, CSI is cross-

sectional pricing integration, SMI is style momentum integration and PCI is principal components 

integration. 
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Table 1. Performance of standalone-style portfolios. 

The table summarizes the performance of the five long-short standalone style portfolios based on the 

predictive signals stated in the first row. The results are reported per class of futures in Panels A to D 

and cross-class in Panel E; the portfolio excess returns span the period indicated in parentheses. The 

class-weights in Panel E are determined by unconstrained mean-variance optimization. CER is the 

annualized certainty-equivalent return based on unconstrained mean-variance utility with coefficient 

of relative risk aversion parameter 𝛾 = 5.  

  

Mom Value Carry Liquidity Skewness

Sharpe ratio 0.8932 0.1246 1.0505 -0.7804 0.2719

Sortino ratio (<0%) 1.2933 0.2001 1.3581 -1.2695 0.3182

Omega ratio (=0%) 2.0009 1.1146 2.4199 0.5699 1.2550

CER 0.0794 -0.0291 0.1076 -0.0195 -0.0032

Sharpe ratio 0.3091 -0.0734 0.4149 0.4872 0.2971

Sortino ratio (<0%) 0.4891 -0.1126 0.6075 0.7252 0.4616

Omega ratio (=0%) 1.2880 0.9469 1.3829 1.4574 1.2570

CER 0.0086 -0.0054 0.0112 0.0078 0.0057

Sharpe ratio 0.1069 0.6653 0.4090 0.2938 -0.0381

Sortino ratio (<0%) 0.1246 1.0541 0.3956 0.4461 -0.0421

Omega ratio (=0%) 1.0986 1.6874 1.4622 1.2826 0.9658

CER -0.0042 0.0249 0.0166 0.0078 -0.0107

Sharpe ratio 0.5893 0.2672 0.3480 0.1635 0.4532

Sortino ratio (<0%) 1.0498 0.4334 0.5745 0.2298 0.7032

Omega ratio (=0%) 1.5373 1.2192 1.3190 1.1373 1.4030

CER 0.0333 0.0025 0.0089 -0.0016 0.0201

Sharpe ratio 0.5768 0.5523 1.2176 0.9328 0.1978

Sortino ratio (<0%) 0.7775 0.8606 1.5814 1.2284 0.2758

Omega ratio (=0%) 1.5637 1.5679 2.5190 2.0342 1.1632

CER 0.0240 0.0187 0.0396 0.0135 0.0034

Panel A: Equity index futures (2001/09-2017/12)

Panel B: Fixed income futures (1991/12-2017/12)

Panel C: Currency futures (1989/08-2017/12)

Panel D: Commodity futures (1989/07-2017/12)

Panel E: Cross-class futures (2006/09-2017/12)
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Table 2. Subsample analysis of standalone-style portfolios. 

This table reports per style the annual Sharpe ratio (SR) over 5-year non-overlapping rolling windows 

and the corresponding rank from 5 (top) to 1 (bottom). The final rows report for each style the mean 

ranking and volatility of rankings (and corresponding ratio) across time periods and class-specific or 

cross-class portfolios; a larger ratio for a given style indicates a higher instability-adjusted rank. 

  

SR Rank SR Rank SR Rank SR Rank SR Rank

2001/09 - 2006/08 1.2795 4 -0.2215 1 1.6372 5 0.1536 3 -0.1891 2

2006/09 - 2011/08 0.3236 3 1.0464 5 0.8137 4 -0.5828 1 -0.1287 2

2011/09 - 2016/08 1.0230 5 -0.3182 2 0.7782 4 -1.8730 1 0.7493 3

2016/09 - 2017/12 5.4843 5 -3.1300 1 4.6561 4 -2.5801 2 2.9219 3

1991/12 - 1996/11 0.5833 5 -0.6139 1 0.4169 4 0.2152 2 0.4041 3

1996/12 - 2001/11 0.7551 5 0.5748 3 0.5585 2 0.7452 4 0.4518 1

 2001/12 - 2006/11 0.1514 1 0.5142 3 0.3532 2 0.6601 5 0.6330 4

2006/12 - 2011/11 0.1266 3 -0.3075 1 0.7191 5 0.6318 4 0.0554 2

2011/12 - 2016/11 -0.0648 4 -0.2825 1 -0.1496 3 0.2212 5 -0.2005 2

2016/12 - 2017/12 -0.7183 2 -1.0747 1 1.1983 5 0.8280 3 1.0408 4

1989/08 - 1994/07 0.1851 3 0.4200 4 0.0755 2 -0.7263 5 -0.7884 1

1994/08 - 1999/07 -0.1729 1 1.1903 5 0.0911 2 0.6183 4 0.3948 3

1999/08 - 2004/07 1.0640 4 0.6464 3 1.1690 5 0.2163 2 -0.7779 1

2004/08 - 2009/07 0.0211 1 0.7798 5 0.7388 4 0.3671 2 0.5843 3

2009/08 - 2014/07 -0.2424 1 0.5759 4 0.2684 3 0.7323 5 -0.0648 2

2014/08 - 2017/12 0.0166 2 0.3618 3 0.6775 4 0.7944 5 -0.0333 1

1989/07 - 1994/06 0.8591 5 0.6487 3 -0.4347 1 0.7287 4 0.3838 2

1994/07 - 1999/06 0.5297 3 0.5958 4 -0.2062 1 0.5172 2 1.2560 5

1999/07 - 2004/06 0.9427 5 -0.3016 1 0.4278 4 0.1621 2 0.3983 3

2004/07 - 2009/06 0.4198 4 0.3302 2 0.8936 5 -0.3320 1 0.4004 3

2009/07 - 2014/06 0.5322 5 0.1649 2 0.3199 4 -0.0971 1 0.1863 3

2014/07 - 2017/12 -0.0587 2 0.4616 4 0.8379 5 0.4155 3 -0.3024 1

2006/09 - 2011/08 0.1581 5 0.5676 4 0.9810 5 0.0041 1 0.2015 3

2011/09 - 2016/08 0.6218 3 0.4278 2 0.8815 4 1.9385 5 -0.0375 1

2016/09 - 2017/12 3.7915 4 1.3892 2 4.2846 5 2.9284 3 1.1550 1

Mean rank 3.40 2.68 3.68 3.00 2.36

StDev rank 1.47 1.41 1.31 1.50 1.11

Mean/Stdev rank 2.31 1.91 2.80 2.00 2.12

Time period

Panel A: Equity index futures

Panel B: Fixed income futures

Panel C: Currency futures

Panel D: Commodity futures

Panel E: Cross-class futures

Mom Value Carry Liquidity Skewness
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Table 3. Correlation structure of standalone-style portfolios. 

This table reports Pearson pairwise correlations of the excess returns of the standalone-style 

portfolios. Bold figures denote significant correlations at the 5% significance level or better. The 

sample periods that the style premia correlation matrices refer to are indicated in parentheses. 

 

Mom Value Carry Liquidity

Value -0.11

Carry 0.60 -0.12

Liquidity -0.27 -0.09 -0.23

Skewness 0.37 0.31 0.22 -0.36

Value -0.34

Carry 0.63 -0.34

Liquidity 0.61 -0.45 0.81

Skewness 0.21 -0.18 0.34 0.31

Value -0.23

Carry 0.15 0.40

Liquidity 0.13 0.30 0.17

Skewness 0.00 -0.01 0.24 0.12

Value -0.51

Carry 0.37 -0.27

Liquidity -0.07 0.00 -0.13

Skewness -0.02 -0.04 -0.06 0.14

Value 0.26

Carry 0.29 0.09

Liquidity 0.04 -0.02 0.36

Skewness 0.11 -0.05 0.25 0.03

Panel A: Equity index futures (2001/09-2017/12)

Panel B: Fixed income futures (1991/12-2017/12)

Panel C: Currency futures (1989/08-2017/12)

Panel D: Commodity futures (1989/07-2017/12)

Panel E: Cross-class futures (2006/09-2017/12)
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  Table 4. Performance of style-integrated portfolios.  

The table summarizes the style-integrated portfolios in five scenarios – individual futures classes and 

in Panels A to D and cross-class in Panel E. EWI is equally-weighted integration, OI is optimized 

(mean-variance) integration, RSI is rotation-of-styles integration, VTI is volatility-timing integration, 

CSI is cross-sectional pricing integration, SMI is style momentum integration and PCI is principal 

components integration. CER is the annualized certainty-equivalent return with unconstrained mean-

variance utility and CRRA parameter 𝛾 = 5. The p-values of the Opdyke (2007) test are for the null 

hypothesis 𝐻0: 𝑆𝑅𝐸𝑊𝐼 ≥ 𝑆𝑅𝑗 versus 𝐻𝐴: 𝑆𝑅𝐸𝑊𝐼 < 𝑆𝑅𝑗 where j is the sophisticated style-integrated 

portfolio at hand. The asymptotic p-values of the CER test are for 𝐻0: 𝐶𝐸𝑅𝐸𝑊𝐼 ≥ 𝐶𝐸𝑅𝑗 versus 

𝐻𝐴: 𝐶𝐸𝑅𝐸𝑊𝐼 < 𝐶𝐸𝑅𝑗. The sample periods in each panel are shown in parentheses. The class-weights in 

the portfolio in Panel E are determined by unconstrained mean-variance optimization of the 

everywhere style-integrated portfolio. 

 

EWI OI RSI VTI CSI SMI PCI

Sharpe ratio 1.0043 0.7576 0.9566 -0.0056 0.9368 0.9680 0.8709

Opdyke test p -value - (0.8082) (0.5789) (0.9985) (0.6626) (0.5742) (0.7052)

Sortino ratio (<0%) 1.3146 1.0831 1.2546 -0.0094 1.1667 1.4914 1.0785

Omega ratio (=0%) 2.2440 1.9771 2.1244 0.9953 2.1008 2.1788 2.0381

CER 0.0919 0.0420 0.0884 -0.0033 0.0796 0.0935 0.0693

CER asymptotic p -value - (0.9514) (0.5389) (0.9969) (0.8583) (0.4771) (0.7819)

Sharpe ratio 0.4564 0.2141 0.2863 0.4542 0.4442 0.2596 0.2156

Opdyke test p -value - (0.9021) (0.8830) (0.4996) (0.5908) (0.9424) (0.9199)

Sortino ratio (<0%) 0.6561 0.3239 0.4377 0.6369 0.6378 0.3721 0.2992

Omega ratio (=0%) 1.4742 1.2015 1.2772 1.4414 1.4642 1.2365 1.1813

CER 0.0125 0.0034 0.0074 0.0097 0.0122 0.0059 0.0044
CER asymptotic p -value - (0.9513) (0.8510) (0.8249) (0.7358) (0.9514) (0.9239)

Sharpe ratio 0.4037 0.1845 0.1055 0.4540 0.4125 0.1479 0.0378

Opdyke test p -value - (0.8869) (0.9911) (0.2698) (0.4318) (0.9695) (0.9760)

Sortino ratio (<0%) 0.4246 0.1953 0.0897 0.5630 0.4340 0.1446 0.0398
Omega ratio (=0%) 1.4114 1.1722 1.1121 1.4440 1.4232 1.1414 1.0344

CER 0.0152 0.0029 -0.0046 0.0169 0.0158 -0.0006 -0.0066
CER asymptotic p -value - (0.8967) (0.9927) (0.3393) (0.3175) (0.9739) (0.9813)

Sharpe ratio 0.9738 0.7440 0.4367 0.8391 0.8498 0.6691 0.0051

Opdyke test p -value - (0.8965) (0.9929) (0.8579) (0.8462) (0.9477) (0.9999)

Sortino ratio (<0%) 1.6011 1.2161 0.7428 1.2682 1.2656 1.2377 0.0077
Omega ratio (=0%) 2.1059 1.7593 1.3921 1.8763 1.9182 1.6420 1.0038

CER 0.0571 0.0413 0.0190 0.0460 0.0474 0.0379 -0.0169
CER asymptotic p -value - (0.9101) (0.9863) (0.9849) (0.9760) (0.9277) (0.9999)

Sharpe ratio 1.0255 0.2323 0.7245 1.1664 0.8129 0.7378 0.5925

Opdyke test p -value - (0.9864) (0.8041) (0.3329) (0.8707) (0.8116) (0.8563)

Sortino ratio (<0%) 1.4870 0.3442 0.9770 1.9371 1.0321 1.1670 0.9089
Omega ratio (=0%) 2.1072 1.1941 1.7690 2.3526 1.8548 1.7166 1.5874

CER 0.0264 0.0041 0.0300 0.0172 0.0213 0.0284 0.0217
CER asymptotic p -value - (0.9956) (0.3931) (0.9152) (0.9695) (0.4286) (0.6263)

Panel E: Cross-class futures (2006/09-2017/12)

Panel A: Equity index futures (2001/09-2017/12)

Panel B: Fixed income futures (1991/12-2017/12)

Panel C: Currency futures (1989/08-2017/12)

Panel D: Commodity futures (1989/07-2017/12)
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Table 5. Subsample analysis of style-integrated portfolios. 

This table reports per style-integrated approach the annual Sharpe ratio (SR) over 5-year non-overlapping rolling windows, the Opdyke test p-value for the 

hypothesis  𝐻0: 𝑆𝑅𝐸𝑊𝐼 ≥ 𝑆𝑅𝑗 versus 𝐻𝐴: 𝑆𝑅𝐸𝑊𝐼 < 𝑆𝑅𝑗 where j is a sophisticated style-integrated portfolio strategy, and the corresponding rank from 7 (top) to 1 

(bottom). The final rows report for each style the mean ranking and volatility of rankings (and corresponding ratio) across time periods and class-specific or 

cross-class portfolios; a larger ratio for a given style indicates a higher instability-adjusted rank. 

  

SR Rank SR p -value Rank SR p -value Rank SR p -value Rank SR p -value Rank SR p -value Rank SR p -value Rank

2001/09 - 2006/08 1.2919 7 0.8566 (0.81) 1 1.1301 (0.65) 4 1.0255 (0.73) 2 1.2793 (0.52) 6 1.1281 (0.65) 3 1.2198 (0.56) 5

2006/09 - 2011/08 0.7042 5 0.8201 (0.39) 7 0.7310 (0.47) 6 -0.5730 (0.97) 1 0.6425 (0.61) 4 0.6327 (0.61) 3 0.4484 (0.72) 2

2011/09 - 2016/08 0.9760 7 0.2414 (0.84) 2 0.7782 (0.70) 5 -1.8422 (1.00) 1 0.7567 (0.79) 4 0.8950 (0.58) 6 0.5157 (0.90) 3

2016/09 - 2017/12 4.5240 4 4.3826 (0.51) 2 4.7692 (0.49) 6 -1.6522 (1.00) 1 4.5054 (0.50) 3 5.0228 (0.47) 7 4.6243 (0.50) 5

1991/12 - 1996/11 0.4145 3 0.4591 (0.45) 4 0.6252 (0.28) 7 0.3444 (0.64) 1 0.4094 (0.52) 2 0.5123 (0.30) 5 0.5564 (0.32) 6

1996/12 - 2001/11 0.8761 7 0.3559 (0.88) 1 0.7551 (0.66) 4 0.8572 (0.49) 5 0.8590 (0.53) 6 0.6369 (0.77) 3 0.4508 (0.91) 2

 2001/12 - 2006/11 0.5544 5 0.4461 (0.61) 3 0.3088 (0.78) 1 0.6312 (0.33) 7 0.5555 (0.50) 6 0.4151 (0.78) 2 0.4768 (0.69) 4

2006/12 - 2011/11 0.4978 6 0.4202 (0.58) 4 -0.3565 (0.97) 1 0.5559 (0.38) 7 0.4587 (0.61) 5 -0.2821 (0.99) 3 -0.3429 (0.93) 2

2011/12 - 2016/11 -0.2309 2 -0.5827 (0.77) 1 -0.0771 (0.33) 5 -0.1761 (0.41) 4 -0.2171 (0.43) 3 0.1217 (0.16) 7 -0.0183 (0.33) 6

2016/12 - 2017/12 0.9705 4 0.1349 (0.75) 2 0.8280 (0.58) 3 0.9771 (0.50) 6 0.9713 (0.50) 5 -0.9757 (0.95) 1 1.0817 (0.44) 7

1989/08 - 1994/07 -0.3765 1 0.9101 (0.02) 7 -0.2471 (0.39) 5 -0.2632 (0.24) 4 -0.3328 (0.35) 3 0.3401 (0.08) 6 -0.3386 (0.46) 2

1994/08 - 1999/07 0.3256 6 -0.3387 (0.97) 2 -0.2253 (0.98) 3 0.5837 (0.07) 7 0.2658 (0.81) 5 -0.3993 (0.98) 1 0.2200 (0.68) 4

1999/08 - 2004/07 1.0883 6 0.2327 (0.97) 1 0.4490 (0.91) 3 0.7127 (0.85) 5 1.1123 (0.47) 7 0.5108 (0.93) 4 0.2616 (0.91) 2

2004/08 - 2009/07 0.7606 6 0.2993 (0.92) 2 0.7388 (0.54) 4 0.7210 (0.57) 3 0.7898 (0.45) 7 0.7505 (0.52) 5 -0.2452 (0.95) 1

2009/08 - 2014/07 0.4159 4 0.3742 (0.52) 3 0.0665 (0.77) 2 0.4770 (0.34) 7 0.4593 (0.37) 5 0.4764 (0.44) 6 -0.0283 (0.87) 1

2014/08 - 2017/12 0.6402 5 0.0650 (0.87) 2 0.7576 (0.37) 7 0.6508 (0.48) 6 0.6327 (0.51) 4 0.0061 (0.94) 1 0.1571 (0.73) 3

1989/07 - 1994/06 1.0356 6 1.0837 (0.46) 7 0.6507 (0.74) 2 0.7817 (0.81) 3 0.8823 (0.71) 4 0.8924 (0.61) 5 0.3543 (0.94) 1

1994/07 - 1999/06 1.3206 5 1.2672 (0.55) 3 0.2652 (0.99) 1 1.4259 (0.40) 7 1.3734 (0.45) 6 1.3111 (0.50) 4 0.5958 (0.91) 2

1999/07 - 2004/06 0.9890 7 0.6849 (0.78) 4 0.1962 (0.91) 1 0.7905 (0.73) 5 0.8331 (0.69) 6 0.5545 (0.82) 3 0.3121 (0.87) 2

2004/07 - 2009/06 1.0264 7 0.6759 (0.85) 4 0.2725 (0.93) 2 0.8585 (0.70) 6 0.7722 (0.76) 5 0.5298 (0.90) 3 -0.8601 (1.00) 1

2009/07 - 2014/06 0.6247 6 0.1511 (0.84) 3 0.3367 (0.74) 4 0.6697 (0.42) 7 0.5208 (0.70) 5 0.1173 (0.86) 2 -0.2333 (0.89) 1

2014/07 - 2017/12 0.7818 6 0.3425 (0.76) 2 1.1298 (0.30) 7 0.4163 (0.89) 3 0.6787 (0.64) 5 0.5711 (0.63) 4 -0.1518 (0.92) 1

2006/09 - 2011/08 0.7699 7 0.2331 (0.84) 2 0.2035 (0.85) 1 0.5911 (0.69) 5 0.6307 (0.71) 6 0.2874 (0.83) 3 0.3021 (0.80) 4

2011/09 - 2016/08 0.8271 6 -0.1564 (0.97) 1 0.8182 (0.51) 5 1.5241 (0.09) 7 0.5312 (0.91) 4 0.4991 (0.76) 3 -0.0139 (0.90) 2

2016/09 - 2017/12 3.8211 5 3.5351 (0.54) 4 4.0695 (0.47) 7 2.0412 (0.82) 1 3.8908 (0.49) 5 3.1786 (0.60) 2 3.3378 (0.57) 3

Mean rank 5.32 2.96 3.84 4.44 4.84 3.68 2.88

StDev rank 1.60 1.84 2.12 2.29 1.28 1.80 1.79

Mean/Stdev rank 3.33 1.61 1.82 1.94 3.78 2.05 1.61

Panel D: Commodity futures

Panel E: Cross-class futures 

SMI PCI

Panel A:  Equity index futures

Panel B: Fixed income futures

Panel C: Currency futures

EWI OI RSI VTI CSI


