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Abstract

In this paper, we consider several option pricing models with stochastic volatility
in the context of the generalized autoregressive conditional heteroskedastic (GARCH)
processes. We propose a globally risk-neutral valuation relationship (GRNVR) to de-
rive the model dynamics under risk-neutral measure and obtain the corresponding
closed-form pricing formula for the Chicago Board Options Exchange Volatility Index
(CBOE VIX). The parameters of the proposed models are then calibrated using the
S&P 500 returns data and the CBOE VIX. Based on the empirical pricing perfor-
mances, we observe that the proposed GRNVR generally performs better than the
locally risk-neutral valuation relationship (LRNVR). We also provide theoretical justi-
fication of the proposed GRNVR.

Keywords: GARCH process, Stochastic volatility, CBOE VIX
JEL Classifications: G13, C52.



1. Introduction

The study of finance largely concerns about the trade-off between risk and expected
return. An important source of risk is the uncertainty of the volatility of equity indices,
where volatility is understood as the standard deviation of the return of a financial
instrument with a specific time horizon. Since the Chicago Board Options Exchange
(CBOE) introduced standardized derivative contracts on S&P 500 implied volatility
index (VIX), e.g., VIX options and VIX futures, volatility derivatives have been traded
actively in the CBOE market. As the interest in understanding and forecasting the
VIX index grows, it is important to develop reliable mathematical models for the term
structure of VIX. The literature of using stochastic volatility model to evaluate VIX and
its derivatives has grown rapidly in the last decade. The first stochastic volatility model
to study the VIX index and VIX futures were proposed in Zhang and Zhu (2006). Zhu
and Zhang (2007) extended the model in Zhang and Zhu (2006) by changing the long-
term mean variance to be time-dependent. Lin (2007) used the affine jump-diffusion
model to describe the VIX with jumps in both stock and volatility processes. The
term structure of VIX was analyzed in Luo and Zhang (2012). Unfortunately, the
parameter estimation of stochastic volatility models is often a challenging task as the
models generally do not have the closed form likelihood function given the S&P 500
stock and VIX data.

On the other hand, GARCH models introduced by Bollerslev in Bollerslev (1986)

are widely used to model volatility term structure in practice mainly because the like-



lihood function of the parameters in the GARCH models can often be expressed in
closed form in terms of the observed data. So it is possible to derive the maximum
likelihood estimation (MLE) of the model parameters. Inspired by the success in de-
scribing volatility with GARCH models, Duan (1995) pioneered in applying GARCH
models for S&P 500 option pricing by proposing a locally risk-neutral valuation re-
lationship (LRNVR). Under the LRNVR, the one-period ahead conditional variance
remains the same during the change of probability measure. This approach developed
a link between the conditional variance in the physical measure and the risk neutral
measure. Therefore, GARCH models is a natural candidate for calibration using the
historical VIX data. Kanniainen, Lin, and Yang (2014) evaluate S&P 500 options using
three variant GARCH models using VIX data. They found empirical evidence that a
joint maximum likelihood estimation using S&P 500 returns and VIX improved the
performance of pricing S&P 500 options compared to traditional MLE using the re-
turns data only. However, there exists some drawback in the calibration of the GARCH
models under the LRNVR risk-neutral measure. The empirical evidence was obtained
in Barone-Adesi, Engle, and Mancini (2008); Christoffersen, Heston, and Jacobs (2013)
to show that the same model parameters in the conditional volatility of historical and
risk-neutral pricing dynamics results in poor calibration results. Hao and Zhang (2013)
also demonstrated that the GARCH-type models under the LRNVR could not capture
the variance risk premium. They examined a family of GARCH models and derived

the model-implied VIX index under the LRNVR. When the models were estimated



with returns data only, the model implied VIX was significantly lower than the market
CBOE VIX. Even when the models were jointly estimated with both returns and VIX,
the equity risk parameter distorted to be a large positive price, and the model implied
VIX still underestimated the CBOE VIX, and did not match the statistical aspects
of the CBOE VIX. They further provided the theoretical arguments by considering
the diffusion limit of GARCH models. Inspired by the discussion in Hao and Zhang
(2013), we propose a new globally risk-neutral valuation relationship (GRNVR) for the
risk-neutral dynamics of GARCH models and display the advantage of the GRNVR
compared to the LRNVR using theoretical and empirical evidences.

The article is structured as follows. Section 2 proposes a new way for changing
physical probability measure for the GARCH(1,1) to the risk-neutral probability mea-
sure. In Section 3, we derive theoretical VIX formula for the GARCH(1,1) model under
the risk-neutral measure, and extend the derivation idea to a broad class of GARCH
models which include GARCH, TGARCH, AGARCH and EGARCH models. In Sec-
tion 4, we calibrate these GARCH models using various combinations of time series of
the S&P 500 index and the CBOE VIX. Section 4 compares the the CBOE VIX with
the GARCH implied VIX obtained from the calibrated GARCH models. In Section 5,
we analyze the diffusion limit of the GARCH process under the risk-neutral measure to
demonstrate that the risk-neutral dynamics captures the variance risk premium. We

then conclude the findings in Section 6.



2. GARCH model specification

In this paper, we consider the asset price as a discrete-time stochastic process and
denote the asset price at time ¢ as X;. It was proposed in Duan (1995) that the return
of the asset follows a conditional lognormal distribution under the physical measure P

as
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where r is the one-period risk-free interest rate, A\; is the asset risk premium, and ¢
follows a GARCH(p, q) process introduced in Bollerslev (1986) with mean zero and

conditional variance h;

€t|ps—1 ~ N(0,hy) under measure P,
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where ¢; is the information set of up to and including time t¢; g > 0, a; > 0 for
i=1,2,...,qgand ; > 0 for j =1,2,...,p. We focus on the GARCH(1,1) case, so

the equation (1) simplifies to
hi = ag + cn€fy + Bihia. (2)

We propose an alternative risk-neutral valuation relationship to the locally risk-

neutral valuation relationship (LRNVR) introduced by Duan (1995). We shall refer to



the proposed risk neutral-valuation relationship as the globally risk-neutral valuation
relationship (GRNVR); and the dynamics of asset return in the risk-neutral pricing

measure () under the GRNVR has the following form as
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Note that the proposed GARCH(1,1) process (3) is different to the one derived by Duan
(1995) under the LRNVR. Under the GRNVR the persistence parameter (3 is designed
to be different in the P and () measures, whereas under the LRNVR the persistence
parameter (37 is the same in the P and () measures. Specifically, for the dynamics of
risk-neutral measure ) under the GRNVR, the persistence parameter of conditional
variance is 5] = [ — \/5@1)\2, where Ay represents the variance risk premium of the
asset. The motivation for the inclusion of the variance risk premium is discussed in Hao
and Zhang (2013) where it was shown that there is no risk adjustment for the variance
risk of the process in Duan (1995) from physical measure to the risk-neutral measure
under the LRNVR. It was also discussed in Barone-Adesi et al. (2008); Christoffersen
et al. (2013) that the restriction of conditional volatility of historical and risk-neutral

pricing distributions with the same model parameters leads to poor calibration results



in the empirical studies (cf. Chernov and Ghysels (2000); Christoffersen, Heston, and
Jacobs (2006); Hao and Zhang (2013)). Therefore, it was suggested that the parameters
of volatility dynamics of historical and risk-neutral pricing returns might be different
in Barone-Adesi et al. (2008). We adopt the idea by modifying the persistence pa-
rameter in @) to incorporate the variance risk premium in the model. The theoretical

justification of the modification is further discussed in section 6.

3. VIX formulas of the GARCH models

The Chicago Board Options Exchange (CBOE) introduced a volatility index, named
VIX, in 1993. The VIX index is calculated from the implied volatilities of the eight near-
the-money, nearby, and second nearby S&P 100 index options based on the method-
ology by Whaley Whaley (1993). The VIX was a proxy of the implied volatility of 30
calendar days at-the-money (ATM) options. In 2003, the CBOE used another theory
proposed in Carr and Madan (1998); Demeterfi, Derman, Kamal, and Zou (1999) to
design a new methodology to compute the CBOE volatility index VIX. The new VIX
is based on the prices of a portfolio of 30 calendar days out-of-the-money (OTM) S&P
500 index call and put options. The square of new VIX represents the S&P 500 30-day
variance swap rate. The old VIX has been renamed to be VXO.

The VIX index reflects investors’ expectation of the volatility of the S&P 500 in



the next 30 calender days or 21 trading days, which is calculated using its definition as

X\’ I
VIX, —E9 (= / heds | |
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where /~15 denotes the annualized instantaneous variance of the return of S&P 500 and

To is 30 calendar days or 21 trading days. In this paper, VIX is computed as the mean

value of the expected variance in the n sub-periods of the next 21 trading days, that is

VIX:\? 1= 0
< 100 > =L 2B (hw%) '
k=1
In particular, we use the daily closing value data, so it implies 7 = n, and

n

1
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where the term V, = ﬁ (\?O}ét)Q is defined as a function of VIX; to measure the ex-

pected daily variance of S&P 500. The conditional mean of the future variance can be
calculated in a broad class of GARCH models as discussed in Hao and Zhang (2013);
Wang, Shen, Jiang, and Huang (2017).

We derive the implied VIX from the model (3) under @) by first rewriting the error



terms of the process using the standard normal distribution as

X 1
In thl = r— §ht + \/Egt,
hi = ap+aihi1 (-1 — >\1)2 + (61 — \/5041/\2)}%—1, (4)

where ¢; is the standard normal random variable, conditional on the information set
up to and including time ¢ — 1 under Q).

One can rewrite the GARCH(1, 1) process (4) as a special case of the square-root
stochastic autoregressive volatility (SR-SARV(1)) models introduced in Meddahi and

Renault (2004) with the following form

ht+1 = w + ’}/ht + Vg, with E [Vt|¢t—1] = 0, (5)
w = O, 7:&1(1+A%)+61—\/§Q{1A2,

Vy = Oélht<€? —-1- 2)\15t).

It was shown in Hao and Zhang (2013) that if the S&P 500 return follows a SR-
SARV (p) process under the risk-neutral measure, then the implied daily variance V; at
time ¢ is affine in the conditional variance h;, ;. Following similar ideas, we can obtain

the long term variance as h = lim,,_,oo ]EtQ [irm] = ﬁ by noticing
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Then the conditional expectation of the variance after two periods can be obtained via

the long run variance

_ w w —
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So the conditional expectation of the variance after n periods is given by
Q _ 7 n—1 T
Ef [hin] = h+9"" (his1 — h).

Therefore, we can represent the expected daily variance as an affine function of h; 4
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where A = @ and B = 2=
1—y n(1—y)

Apart from the GARCH(1,1) model discussed above, we also consider the threshold
GARCH(1,1) (TGARCH) moder introduced in Glosten, Jagannathan, and Runkle

(1993), the non-linear asymmetric GARCH(1,1) (AGARCH) model proposed in Engle
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and Ng (1993) and the exponential GARCH(1,1) (EGARCH) model by Nelson (Nelson,
1991). The forms of the models in the physical measure P and in the risk-neutral
measure () under the GRNVR are as follows:

TGARCH(L,1)

Physical measure: h; = ag + ares | + 0er 1(e_1 < 0) + Bihs_1, (7)

2
GRNVR: ht = g + (é't—l - >\1 \V ht_1> (Oél + 01(&5_1 — )\1 ht—l < O)) + (51 - \/5051)\2)ht_1.
AGARCH(1,1)

2
Physical measure: h; = ag + o (Et_1 — Qx/ht_1> + Bihi_1, (8)

2
GRNVR: ht = og+ oy (&—1 - )\1 vV ht—l — 9\/ ht_1> + (61 - \/§a1)\2)ht_1.
EGARCH(1,1)
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As shown in Hao and Zhang (2013), these widely used models are special cases of SR~

SARV (p) models; and following similar derivation process as the GARCH(1,1) model,

11



we can obtain the implied VIX formula for different GARCH models analogous to the
ones in Hao and Zhang (2013) as:

TGARCH(1,1)

Vi =C+ Dhyyq, (10)
where
C _ Ozo<1—D)7
L—n
D = 1_—77’
n(l —mn)

n = ar(1+A]) + (B — V21 o) + 65,

§ = A e-§+(1+A2)N(A)
V2T ! b

Note that N(-) denotes the cumulative function of the Normal distribution.

AGARCH(1,1)

Vi=FE + Fhya, (11)
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where

E Oéo(l—F)’
L—mn
1__ n
2 n
n(l—mn)

n = ar(l+ (A +0)%) + (B — V2ar ).

EGARCH(1,1)

n—1 [k—1
1 —V2a1A2)F
Vi= o (ht—H + Z (H li) hiﬁ Vamra) ) ) (12)
k=1

1=0

where

I = e(ﬁl—x/ialAQ)i(%_H\/%

(e n 0SB B N (= (6 = VEarks) (e — )

e (B1=vR2aada) (1) A0.5(81—v2aa A (@1 +0)® N (B — v/2ay o) (a + K) — )\1)>

4. Data and estimation

It was shown in Hao and Zhang (2013) that under the LRNVR, the GARCH implied
VIX does not fit the market data of CBOE VIX very well. The model was analyzed to
display that the reason may be that variance risk premium and the volatility risk price

were not present in the diffusion limit of the GARCH models under the LRNVR. In
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the modified GARCH processes, we include the variance risk premium into the models
under the GRNVR. And it is of interest to see whether the implied VIX in the modified
GARCH models fit the CBOE VIX market values better. In this section, we will
investigate this question by estimating the parameters in the modified GARCH models
and calculating the corresponding GARCH implied VIX times series for comparison to
the CBOE VIX.

The two time series data we use for the GARCH models calibration are the closing
values of S&P 500 and the CBOE VIX ranging from 2nd January, 1990 to 30th June,
2017. For the daily risk-free interest rate, we use the 3-month treasury bill secondary
market rate from the U.S. Federal Reserve website.

There are different methods to calibrate the models using market data. We will use
the common maximum likelihood approach to estimate the parameters of the models.
We can use only the S&P 500 returns data to obtain a maximum likelihood estimation of
the GARCH processes under the physical measure P and fix the variance risk premium
parameter Ay = 0, since Ay is not included in the GARCH models under P measure.
For the S&P 500 returns data only, the log-likelihood function In Ly for the GARCH

models is given by

InLp= —TlnT@”) — %Z (m(ht) + (m

t=1

Xy —r—Al\/E+h—> /ht>, (13)

t
Xiq 2

where the conditional variance h; is updated by corresponding processes using differ-

ent forms of GARCH models. For the maximum likelihood estimation, the conditional
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variance for the first period is set as the variance of S&P 500 returns over the whole
sample period. The stationary conditions for the GARCH processes under physical and
the risk-neutral measures are different, with the latter having more strict constraints on
the parameters. Thus, we find the estimation of the parameters in the GARCH mod-
els by maximizing the corresponding log-likelihood function subject to the stationary
conditions under the risk-neutral measures.

We may also calibrate the GARCH models by matching the model implied VIX to
the market value of CBOE VIX]| since the CBOE VIX series may contain additional
information about the underlying S&P 500 return process. To utilize both time series,
we follow the assumption in Hao and Zhang (2013) that the pricing differences between

the CBOE VIX and the implied VIX on a daily basis come from a Normal distribution

VIXME = VIXT™P oy~ N(0, 52),

where s? is estimated using the sample variance of pricing difference of §2 = var(VIXMt —

VIX™P). Under the above assumption, the log-likelihood function corresponding to the

CBOE VIX data is

TIn(2ri?) = (VIXME — vIX™P)? 10

In Ly = —— M5
ey 2 242

t=1

In addition to use the S&P 500 returns data and CBOE VIX data for calibration of

the GARCH models separately, we can also combine both time series to find a joint
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maximum likelihood estimation of the models by maximizing the joint log-likelihood

function

IHLT :1HLR+1I1L\/. (15)

5. Numerical results

In this section, we compare the estimated parameters from different data used for the
calibration. In particular, Table 1 displays the maximum likelihood estimates and the
standard errors of GARCH(1,1) model. The values of the three log-likelihood functions
(13, 14, 15) are also displayed in Table 1. Although the contributions from S&P 500
returns and CBOE VIX as well as the joint likelihood values are reported, we maximize
In Lz when only S&P 500 returns are used, In Ly, when only CBOE VIX data are used
and In L7 when both time series are used.

From the output in Table 1, we can see that the equity risk premium \; increases
significantly from 0.0886 (return data used) to 0.2134 (both data used) and 0.2253
(VIX data used) in the GARCH(1,1) models when the CBOE VIX data is used for
calibration. The variance risk premium A, is negative and significantly different from
zero as -0.3670 (both data used) and -0.3514 (VIX data used). The persistence of
conditional variance, f; increases slightly from 0.8543 (return data used) to 0.9251
(both data used) and 0.9286 (VIX data used). There is a sizable decrease of the

parameter value «; from 0.0886 (return data used) to 0.0474 (both data used) and
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0.0456 (VIX data used). Comparing the maximum likelihood result of the model
under the GRNVR and the results under the LRNVR, we can see that the maximum
likelihood value increases significantly from 54697 to 55921 (both data used) and from
33424 to 33662 (VIX data used).

Similar numerical results are also observed in the other types of GARCH models
as displayed in Tables 2-4. Specifically, Table 2 shows that the equity risk premium A;
increases significantly from 0.0131 (return data used) to 0.1160 (both data used) and
0.0889 (VIX data used) in the TGARCH(1,1) model when the CBOE VIX data is used
for calibration. The variance risk premium ), is negative and significantly different
from zero as -0.4412 (both data used) and -0.3978 (VIX data used). The persistence of
conditional variance, 3; increases significantly from 0.8338 (return data used) to 0.9561
(both data used) and 0.9553 (VIX data used). There is a decrease of the parameter
value «; from 0.0256 (return data used) to 0.0091 (both data used) and 0.0060 (VIX
data used). Comparing the maximum likelihood result of the TGARCH(1,1) model
under the GRNVR and the results under the LRNVR, we can see that the maximum
likelihood value increases significantly from 55455 to 56282 (both data used) and from
33468 to 33795 (VIX data used).

Table 3 shows calibration results of the AGARCH(1,1) model using both returns
and VIX data. If using VIX data only, it is not easy to distinguish the parameters 6
and A;. Therefore, the numerical results using VIX data are not displayed in the table.

From Table 3 we observe that the equity risk premium J\; increases significantly from
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0.0255 (return data used) to 0.1158 (both data used) in the AGARCH(1,1) model when
the CBOE VIX data and returns used for calibration. The variance risk premium A,
is negative and significantly different from zero as -0.3125 (both data used). The per-
sistence of conditional variance, f; increases from 0.8810 (return data used) to 0.9316
(both data used). There is a big decrease of the parameter value a4 from 0.0841 (return
data used) to 0.0380 (both data used). Comparing the maximum likelihood result of
the AGARCH(1,1) model under the GRNVR and the results under the LRNVR, we
can see that the maximum likelihood value increases significantly from 55483 to 56333
(both data used).

Table 4 shows that in the EGARCH(1,1) model the variance risk premium A, is
negative as -0.0567 (both data used) and -0.0483 (VIX data used), both significantly
different than zero. The persistence of conditional variance, ; increases slightly from
0.9792 (return data used) to 0.9906 (both data used) and 0.9891 (VIX data used). Com-
paring the maximum likelihood result of the EGARCH(1,1) model under the GRNVR
and the results under the LRNVR, we can see that the maximum likelihood value in-
creases significantly from 56399 to 57105 (both data used) and from 33774 to 34303
(VIX data used).

From the comparisons in the GARCH, TGARCH, AGARCH and EGARCH models,
we see that the maximum likelihood results under the GRNVR are generally better
than those under the LRNVR. Table 5 measures how the implied VIX fits the CBOE

VIX by computing a list of statistics and the results demonstrate that the implied VIX
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under GRNVR fits the CBOE quite well.

After obtaining the estimates of the parameters in the models, we can then calculate
the conditional variance h; and compute the corresponding GARCH implied VIX.
Figure 1 shows the time series of the CBOE VIX and the implied VIX of the four
GARCH models estimated using returns only. Figure 2 shows the time series of the
CBOE VIX and the implied VIX of the GARCH(1,1) model estimated using VIX data
only. Figure 3 shows the time series of the CBOE VIX and the implied VIX of the
GARCH(1,1) model estimated using both returns and VIX. Similar comparison plots
are obtained for other GARCH models. Specifically, the time series of the CBOE VIX
and the implied VIX of the TGARCH(1,1) model estimated with VIX data only are
displayed in Figure 4. The time series of the CBOE VIX and the implied VIX of the
TGARCH(1,1) and AGARCH (1,1) model estimated with both returns and VIX data
are shown in Figure 5 and Figure 6, respectively. For the EGARCH(1,1) model, Figure
7 shows the comparison between the CBOE VIX and model implied VIX with VIX
data only, and Figure 8 displays the comparison between the CBOE VIX and model
implied VIX with both returns and VIX data. From the list of graphs, we observe that
the model implied VIX fits the CBOE VIX better under the GRNVR compared to the

LRNVR in general.
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6. Theoretical justification

Duan studied the bivariate diffusion limit of the GARCH(1,1) model as the length
of the time period tends towards zero in Duan (1996, 1997). Applying Duan’s argu-
ments, one can show that the limiting bivariate diffusion process of the approximating

GARCH(1, 1) process under the physical measure P is given by

1
dnX, = <r —ghe+ Al\/h_t> dt + /hedW, (16)
dhy = (ao—+ (o + B1 — Dhy)dt + V201 hedWay, (17)

= (g + (a1 + B; — Dhy)dt + V21 dohydt + V201 hydWoy, (18)

where the persistence parameter of conditional variance is defined as 8 = 8; —v/2a1 \o
under the GRNVR. The terms dW7; and dWs; are independent standard Brownian
motions under the physical measure P. The limiting bivariate diffusion under the
risk-neutral measure @) is a re-parameterization of Hull and White’s bivariate diffusion

model Hull and White (1987) as follows:

1
dlnX, = <r — 5@) dt + \/hedZy, (19)
dhy = (oo + (a1 + 85 — Dhy)dt + V21 hydZsy, (20)

where dZ; = dWq; 4+ Mdt and dZy = dWo + Aodt are independent standard Brownian

motions under the GRNVR ). Both equity risk premium A; and variance risk premium
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Ao are present in the model under the risk-neutral measure (). The discrete-time
GARCH(1, 1) process (3) corresponding to the limiting diffusion process under the

risk-neutral measure Q).

7. Conclusion

In this paper, we follow the GARCH option pricing framework of Duan (1995) and
propose a new way of changing from physical probability measure to risk-neutral prob-
ability measure. The new risk-neutral valuation is referred to as the GRNVR. The
advantage of the GRNVR compared to the LRNVR commonly used in the literature
Duan (1995); Hao and Zhang (2013); Wang et al. (2017) is that the variance risk pre-
mium is included in the risk-neutral dynamics under the GRNVR. The absence of
variance risk premium in the risk-neutral dynamics under the LRNVR is noted in Hao
and Zhang (2013), where it is shown that both empirical studies and theoretical results
indicated that the GARCH models under the LRNVR did not capture the variance
premium.

We then find the theoretical VIX squared value as the conditional risk-neutral ex-
pectation of the arithmetic mean variance over the next 21 trading days under the
GRNVR. Specifically, the GARCH implied VIX formulas are derived using the fea-
tures of square-root stochastic autoregressive volatility (SR-SARV) models. We apply
several calibration methods to estimate the model parameters using various sets of

time series data, and compare the theoretical formula performances with the market
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data. Various combinations of time series of the daily closing price of S&P 500 in-
dex and the CBOE VIX are used to find the maximum likelihood estimation of the
GARCH models. The corresponding implied VIX time series are then calculated from
the calibrated model. Similar to the empirical evidences in Hao and Zhang (2013);
Wang et al. (2017), when only S&P 500 returns are used for estimation, the GARCH
implied VIX is consistently and significantly lower than the CBOE VIX. When the
CBOE VIX is used for estimation, the implied VIX fits the statistical properties of the
CBOE VIX and matches the CBOE VIX data better. The numerical results provide
evidences that the GARCH option pricing under the GRNVR is more suitable to price
volatility. In the case of GARCH(1,1), we compare the diffusion limit of the GARCH
process under the physical measure and the GRNVR risk-neutral measure to show that

variance premium is captured in the risk-neutral dynamics.
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Figure 1: Comparison between CBOE VIX and implied VIX using return data only
for four GARCH models.
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Figure 2: Comparison between CBOE VIX and implied VIX of the GARCH(1,1) model

using VIX data only with the upper panel showing the result under the GRNVR and
the lower panel showing the result under the LRNVR.
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Figure 3: Comparison between CBOE VIX and implied VIX of the GARCH(1,1) model

using both return and VIX data with the upper panel showing the result under the
GRNVR and the lower panel showing the result under the LRNVR.
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model using VIX data only with the upper panel showing the result under the GRNVR
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Figure 5: Comparison between CBOE VIX and implied VIX of the TGARCH(1,1)
model using both return and VIX data with the upper panel showing the result under
the GRNVR and the lower panel showing the result under the LRNVR.
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Figure 6: Comparison between CBOE VIX and implied VIX of the AGARCH(1,1)
model using both return and VIX data with the upper panel showing the result under
the GRNVR and the lower panel showing the result under the LRNVR.
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Figure 7: Comparison between CBOE VIX and implied VIX of the EGARCH(1,1)

model using VIX data only with the upper panel showing the result under the GRNVR
and the lower panel showing the result under the LRNVR.
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Figure 8: Comparison between CBOE VIX and implied VIX of the EGARCH(1,1)

model using both return and VIX data with the upper panel showing the result under
the GRNVR and the lower panel showing the result under the LRNVR.
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