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Abstract

In this paper, we consider several option pricing models with stochastic volatility

in the context of the generalized autoregressive conditional heteroskedastic (GARCH)

processes. We propose a globally risk-neutral valuation relationship (GRNVR) to de-

rive the model dynamics under risk-neutral measure and obtain the corresponding

closed-form pricing formula for the Chicago Board Options Exchange Volatility Index

(CBOE VIX). The parameters of the proposed models are then calibrated using the

S&P 500 returns data and the CBOE VIX. Based on the empirical pricing perfor-

mances, we observe that the proposed GRNVR generally performs better than the

locally risk-neutral valuation relationship (LRNVR). We also provide theoretical justi-

fication of the proposed GRNVR.

Keywords: GARCH process, Stochastic volatility, CBOE VIX
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1. Introduction

The study of finance largely concerns about the trade-off between risk and expected

return. An important source of risk is the uncertainty of the volatility of equity indices,

where volatility is understood as the standard deviation of the return of a financial

instrument with a specific time horizon. Since the Chicago Board Options Exchange

(CBOE) introduced standardized derivative contracts on S&P 500 implied volatility

index (VIX), e.g., VIX options and VIX futures, volatility derivatives have been traded

actively in the CBOE market. As the interest in understanding and forecasting the

VIX index grows, it is important to develop reliable mathematical models for the term

structure of VIX. The literature of using stochastic volatility model to evaluate VIX and

its derivatives has grown rapidly in the last decade. The first stochastic volatility model

to study the VIX index and VIX futures were proposed in Zhang and Zhu (2006). Zhu

and Zhang (2007) extended the model in Zhang and Zhu (2006) by changing the long-

term mean variance to be time-dependent. Lin (2007) used the affine jump-diffusion

model to describe the VIX with jumps in both stock and volatility processes. The

term structure of VIX was analyzed in Luo and Zhang (2012). Unfortunately, the

parameter estimation of stochastic volatility models is often a challenging task as the

models generally do not have the closed form likelihood function given the S&P 500

stock and VIX data.

On the other hand, GARCH models introduced by Bollerslev in Bollerslev (1986)

are widely used to model volatility term structure in practice mainly because the like-
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lihood function of the parameters in the GARCH models can often be expressed in

closed form in terms of the observed data. So it is possible to derive the maximum

likelihood estimation (MLE) of the model parameters. Inspired by the success in de-

scribing volatility with GARCH models, Duan (1995) pioneered in applying GARCH

models for S&P 500 option pricing by proposing a locally risk-neutral valuation re-

lationship (LRNVR). Under the LRNVR, the one-period ahead conditional variance

remains the same during the change of probability measure. This approach developed

a link between the conditional variance in the physical measure and the risk neutral

measure. Therefore, GARCH models is a natural candidate for calibration using the

historical VIX data. Kanniainen, Lin, and Yang (2014) evaluate S&P 500 options using

three variant GARCH models using VIX data. They found empirical evidence that a

joint maximum likelihood estimation using S&P 500 returns and VIX improved the

performance of pricing S&P 500 options compared to traditional MLE using the re-

turns data only. However, there exists some drawback in the calibration of the GARCH

models under the LRNVR risk-neutral measure. The empirical evidence was obtained

in Barone-Adesi, Engle, and Mancini (2008); Christoffersen, Heston, and Jacobs (2013)

to show that the same model parameters in the conditional volatility of historical and

risk-neutral pricing dynamics results in poor calibration results. Hao and Zhang (2013)

also demonstrated that the GARCH-type models under the LRNVR could not capture

the variance risk premium. They examined a family of GARCH models and derived

the model-implied VIX index under the LRNVR. When the models were estimated
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with returns data only, the model implied VIX was significantly lower than the market

CBOE VIX. Even when the models were jointly estimated with both returns and VIX,

the equity risk parameter distorted to be a large positive price, and the model implied

VIX still underestimated the CBOE VIX, and did not match the statistical aspects

of the CBOE VIX. They further provided the theoretical arguments by considering

the diffusion limit of GARCH models. Inspired by the discussion in Hao and Zhang

(2013), we propose a new globally risk-neutral valuation relationship (GRNVR) for the

risk-neutral dynamics of GARCH models and display the advantage of the GRNVR

compared to the LRNVR using theoretical and empirical evidences.

The article is structured as follows. Section 2 proposes a new way for changing

physical probability measure for the GARCH(1,1) to the risk-neutral probability mea-

sure. In Section 3, we derive theoretical VIX formula for the GARCH(1,1) model under

the risk-neutral measure, and extend the derivation idea to a broad class of GARCH

models which include GARCH, TGARCH, AGARCH and EGARCH models. In Sec-

tion 4, we calibrate these GARCH models using various combinations of time series of

the S&P 500 index and the CBOE VIX. Section 4 compares the the CBOE VIX with

the GARCH implied VIX obtained from the calibrated GARCH models. In Section 5,

we analyze the diffusion limit of the GARCH process under the risk-neutral measure to

demonstrate that the risk-neutral dynamics captures the variance risk premium. We

then conclude the findings in Section 6.
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2. GARCH model specification

In this paper, we consider the asset price as a discrete-time stochastic process and

denote the asset price at time t as Xt. It was proposed in Duan (1995) that the return

of the asset follows a conditional lognormal distribution under the physical measure P

as

ln
Xt

Xt−1

= r − 1

2
ht + λ1

√
ht + ϵt,

where r is the one-period risk-free interest rate, λ1 is the asset risk premium, and ϵt

follows a GARCH(p, q) process introduced in Bollerslev (1986) with mean zero and

conditional variance ht

ϵt|ϕt−1 ∼ N(0, ht) under measure P,

ht = α0 +

q∑
i=1

αiϵ
2
t−i +

p∑
j=1

βjht−j, (1)

where ϕt is the information set of up to and including time t; α0 ≥ 0, αi ≥ 0 for

i = 1, 2, . . . , q and βj ≥ 0 for j = 1, 2, . . . , p. We focus on the GARCH(1,1) case, so

the equation (1) simplifies to

ht = α0 + α1ϵ
2
t−1 + β1ht−1. (2)

We propose an alternative risk-neutral valuation relationship to the locally risk-

neutral valuation relationship (LRNVR) introduced by Duan (1995). We shall refer to
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the proposed risk neutral-valuation relationship as the globally risk-neutral valuation

relationship (GRNVR); and the dynamics of asset return in the risk-neutral pricing

measure Q under the GRNVR has the following form as

ln
Xt

Xt−1

= r − 1

2
ht + ξt, ξt|ϕt−1 ∼ N(0, ht) under measure Q,

ht = α0 + α1

(
ξt−1 − λ1

√
ht−1

)2
+ β∗

1ht−1

= α0 + α1

(
ξt−1 − λ1

√
ht−1

)2
+ (β1 −

√
2α1λ2)ht−1. (3)

Note that the proposed GARCH(1,1) process (3) is different to the one derived by Duan

(1995) under the LRNVR. Under the GRNVR the persistence parameter β1 is designed

to be different in the P and Q measures, whereas under the LRNVR the persistence

parameter β1 is the same in the P and Q measures. Specifically, for the dynamics of

risk-neutral measure Q under the GRNVR, the persistence parameter of conditional

variance is β∗
1 = β1 −

√
2α1λ2, where λ2 represents the variance risk premium of the

asset. The motivation for the inclusion of the variance risk premium is discussed in Hao

and Zhang (2013) where it was shown that there is no risk adjustment for the variance

risk of the process in Duan (1995) from physical measure to the risk-neutral measure

under the LRNVR. It was also discussed in Barone-Adesi et al. (2008); Christoffersen

et al. (2013) that the restriction of conditional volatility of historical and risk-neutral

pricing distributions with the same model parameters leads to poor calibration results
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in the empirical studies (cf. Chernov and Ghysels (2000); Christoffersen, Heston, and

Jacobs (2006); Hao and Zhang (2013)). Therefore, it was suggested that the parameters

of volatility dynamics of historical and risk-neutral pricing returns might be different

in Barone-Adesi et al. (2008). We adopt the idea by modifying the persistence pa-

rameter in Q to incorporate the variance risk premium in the model. The theoretical

justification of the modification is further discussed in section 6.

3. VIX formulas of the GARCH models

The Chicago Board Options Exchange (CBOE) introduced a volatility index, named

VIX, in 1993. The VIX index is calculated from the implied volatilities of the eight near-

the-money, nearby, and second nearby S&P 100 index options based on the method-

ology by Whaley Whaley (1993). The VIX was a proxy of the implied volatility of 30

calendar days at-the-money (ATM) options. In 2003, the CBOE used another theory

proposed in Carr and Madan (1998); Demeterfi, Derman, Kamal, and Zou (1999) to

design a new methodology to compute the CBOE volatility index VIX. The new VIX

is based on the prices of a portfolio of 30 calendar days out-of-the-money (OTM) S&P

500 index call and put options. The square of new VIX represents the S&P 500 30-day

variance swap rate. The old VIX has been renamed to be VXO.

The VIX index reflects investors’ expectation of the volatility of the S&P 500 in
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the next 30 calender days or 21 trading days, which is calculated using its definition as

(
VIXt

100

)2

= EQ
t

(
1

τ0

∫ t+τ0

t

h̃sds

)
,

where h̃s denotes the annualized instantaneous variance of the return of S&P 500 and

τ0 is 30 calendar days or 21 trading days. In this paper, VIX is computed as the mean

value of the expected variance in the n sub-periods of the next 21 trading days, that is

(
VIXt

100

)2

=
1

n

n∑
k=1

EQ
t

(
h
t+

τ0k
n

)
.

In particular, we use the daily closing value data, so it implies τ0 = n, and

Vt =
1

n

n∑
k=1

EQ
t (ht+k) ,

where the term Vt =
1

252

(
VIXt

100

)2
is defined as a function of VIXt to measure the ex-

pected daily variance of S&P 500. The conditional mean of the future variance can be

calculated in a broad class of GARCH models as discussed in Hao and Zhang (2013);

Wang, Shen, Jiang, and Huang (2017).

We derive the implied VIX from the model (3) under Q by first rewriting the error
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terms of the process using the standard normal distribution as

ln
Xt

Xt−1

= r − 1

2
ht +

√
htεt,

ht = α0 + α1ht−1 (εt−1 − λ1)
2 + (β1 −

√
2α1λ2)ht−1, (4)

where εt is the standard normal random variable, conditional on the information set

up to and including time t− 1 under Q.

One can rewrite the GARCH(1, 1) process (4) as a special case of the square-root

stochastic autoregressive volatility (SR-SARV(1)) models introduced in Meddahi and

Renault (2004) with the following form

ht+1 = ω + γht + νt, with E [νt|ϕt−1] = 0, (5)

ω = α0, γ = α1(1 + λ2
1) + β1 −

√
2α1λ2,

νt = α1ht(ε
2
t − 1− 2λ1εt).

It was shown in Hao and Zhang (2013) that if the S&P 500 return follows a SR-

SARV(p) process under the risk-neutral measure, then the implied daily variance Vt at

time t is affine in the conditional variance ht+1. Following similar ideas, we can obtain

the long term variance as h̄ = limm→∞ EQ
t [ht+m] =

ω
1−γ

by noticing

h̄ = lim
m→∞

EQ
t [ht+m] = lim

m→∞
EQ

t [ω + γht+m−1 + νt+m−1] = ω + γh̄.
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Then the conditional expectation of the variance after two periods can be obtained via

the long run variance

EQ
t [ht+2]− h̄ = EQ

t [ω + γht+1 + νt+1]−
ω

1− γ
= ω + γht+1 −

ω

1− γ
= γ(ht+1 − h̄).

So the conditional expectation of the variance after n periods is given by

EQ
t [ht+n] = h̄+ γn−1(ht+1 − h̄).

Therefore, we can represent the expected daily variance as an affine function of ht+1

Vt =
1

n

n∑
k=1

EQ
t (ht+k)

= h̄+
1

n

n∑
k=1

γk−1(ht+1 − h̄)

= h̄+
1− γn

n(1− γ)
(ht+1 − h̄)

=

(
1− 1− γn

n(1− γ)

)
ω

1− γ
+

1− γn

n(1− γ)
ht+1

= A+Bht+1, (6)

where A = (1−B)ω
1−γ

and B = 1−γn

n(1−γ)
.

Apart from the GARCH(1,1) model discussed above, we also consider the threshold

GARCH(1,1) (TGARCH) moder introduced in Glosten, Jagannathan, and Runkle

(1993), the non-linear asymmetric GARCH(1,1) (AGARCH) model proposed in Engle

10



and Ng (1993) and the exponential GARCH(1,1) (EGARCH) model by Nelson (Nelson,

1991). The forms of the models in the physical measure P and in the risk-neutral

measure Q under the GRNVR are as follows:

TGARCH(1,1)

Physical measure: ht = α0 + α1ϵ
2
t−1 + θϵ2t−11(ϵt−1 < 0) + β1ht−1, (7)

GRNVR: ht = α0 +
(
ξt−1 − λ1

√
ht−1

)2 (
α1 + θ1(ξt−1 − λ1

√
ht−1 < 0)

)
+ (β1 −

√
2α1λ2)ht−1.

AGARCH(1,1)

Physical measure: ht = α0 + α1

(
ϵt−1 − θ

√
ht−1

)2
+ β1ht−1, (8)

GRNVR: ht = α0 + α1

(
ξt−1 − λ1

√
ht−1 − θ

√
ht−1

)2
+ (β1 −

√
2α1λ2)ht−1.

EGARCH(1,1)

Physical measure:

lnht = α0 + β1 lnht−1 + α1
ϵt−1√
ht−1

+ κ

(∣∣∣∣∣ ϵt−1√
ht−1

∣∣∣∣∣−
√

2

π

)
, (9)

GRNVR:

lnht = α0 + (β1 −
√
2α1λ2) lnht−1 + α1

(
ϵt−1√
ht−1

− λ1

)
+ κ

(∣∣∣∣∣ ϵt−1√
ht−1

− λ1

∣∣∣∣∣−
√

2

π

)
.

As shown in Hao and Zhang (2013), these widely used models are special cases of SR-

SARV(p) models; and following similar derivation process as the GARCH(1,1) model,

11



we can obtain the implied VIX formula for different GARCH models analogous to the

ones in Hao and Zhang (2013) as:

TGARCH(1,1)

Vt = C +Dht+1, (10)

where

C =
α0(1−D)

1− η
,

D =
1− ηn

n(1− η)
,

η = α1(1 + λ2
1) + (β1 −

√
2α1λ2) + θS,

S =
λ1√
2π

e−
λ21
2 + (1 + λ2

1)N(λ1).

Note that N(·) denotes the cumulative function of the Normal distribution.

AGARCH(1,1)

Vt = E + Fht+1, (11)
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where

E =
α0(1− F )

1− η
,

F =
1− ηn

n(1− η)
,

η = α1(1 + (λ1 + θ)2) + (β1 −
√
2α1λ2).

EGARCH(1,1)

Vt =
1

n

(
ht+1 +

n−1∑
k=1

(
k−1∏
i=0

li

)
h
(β1−

√
2α1λ2)k

t+1

)
, (12)

where

li = e
(β1−

√
2α1λ2)i

(
α0−κ

√
2
π

)
(
e−(β1−

√
2α1λ2)i(α1−κ)λ1+0.5(β1−

√
2α1λ2)2i(α1−κ)2N(λ1 − (β1 −

√
2α1λ2)

i(α1 − κ))

+e−(β1−
√
2α1λ2)i(α1+κ)λ1+0.5(β1−

√
2α1λ2)2i(α1+κ)2N((β1 −

√
2α1λ2)

i(α1 + κ)− λ1)
)

4. Data and estimation

It was shown in Hao and Zhang (2013) that under the LRNVR, the GARCH implied

VIX does not fit the market data of CBOE VIX very well. The model was analyzed to

display that the reason may be that variance risk premium and the volatility risk price

were not present in the diffusion limit of the GARCH models under the LRNVR. In
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the modified GARCH processes, we include the variance risk premium into the models

under the GRNVR. And it is of interest to see whether the implied VIX in the modified

GARCH models fit the CBOE VIX market values better. In this section, we will

investigate this question by estimating the parameters in the modified GARCH models

and calculating the corresponding GARCH implied VIX times series for comparison to

the CBOE VIX.

The two time series data we use for the GARCH models calibration are the closing

values of S&P 500 and the CBOE VIX ranging from 2nd January, 1990 to 30th June,

2017. For the daily risk-free interest rate, we use the 3-month treasury bill secondary

market rate from the U.S. Federal Reserve website.

There are different methods to calibrate the models using market data. We will use

the common maximum likelihood approach to estimate the parameters of the models.

We can use only the S&P 500 returns data to obtain a maximum likelihood estimation of

the GARCH processes under the physical measure P and fix the variance risk premium

parameter λ2 = 0, since λ2 is not included in the GARCH models under P measure.

For the S&P 500 returns data only, the log-likelihood function lnLR for the GARCH

models is given by

lnLR = −T ln(2π)

2
− 1

2

T∑
t=1

(
ln(ht) +

(
ln

Xt

Xt−1

− r − λ1

√
ht +

ht

2

)2

/ht

)
, (13)

where the conditional variance ht is updated by corresponding processes using differ-

ent forms of GARCH models. For the maximum likelihood estimation, the conditional
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variance for the first period is set as the variance of S&P 500 returns over the whole

sample period. The stationary conditions for the GARCH processes under physical and

the risk-neutral measures are different, with the latter having more strict constraints on

the parameters. Thus, we find the estimation of the parameters in the GARCH mod-

els by maximizing the corresponding log-likelihood function subject to the stationary

conditions under the risk-neutral measures.

We may also calibrate the GARCH models by matching the model implied VIX to

the market value of CBOE VIX, since the CBOE VIX series may contain additional

information about the underlying S&P 500 return process. To utilize both time series,

we follow the assumption in Hao and Zhang (2013) that the pricing differences between

the CBOE VIX and the implied VIX on a daily basis come from a Normal distribution

VIXMkt = VIXImp + µ, µ ∼ N(0, s2),

where s2 is estimated using the sample variance of pricing difference of ŝ2 = var(VIXMkt−

VIXImp). Under the above assumption, the log-likelihood function corresponding to the

CBOE VIX data is

lnLV = −T ln(2πŝ2)

2
−

T∑
t=1

(
VIXMkt − VIXImp

)2
2ŝ2

. (14)

In addition to use the S&P 500 returns data and CBOE VIX data for calibration of

the GARCH models separately, we can also combine both time series to find a joint
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maximum likelihood estimation of the models by maximizing the joint log-likelihood

function

lnLT = lnLR + lnLV . (15)

5. Numerical results

In this section, we compare the estimated parameters from different data used for the

calibration. In particular, Table 1 displays the maximum likelihood estimates and the

standard errors of GARCH(1,1) model. The values of the three log-likelihood functions

(13, 14, 15) are also displayed in Table 1. Although the contributions from S&P 500

returns and CBOE VIX as well as the joint likelihood values are reported, we maximize

lnLR when only S&P 500 returns are used, lnLV when only CBOE VIX data are used

and lnLT when both time series are used.

From the output in Table 1, we can see that the equity risk premium λ1 increases

significantly from 0.0886 (return data used) to 0.2134 (both data used) and 0.2253

(VIX data used) in the GARCH(1,1) models when the CBOE VIX data is used for

calibration. The variance risk premium λ2 is negative and significantly different from

zero as -0.3670 (both data used) and -0.3514 (VIX data used). The persistence of

conditional variance, β1 increases slightly from 0.8543 (return data used) to 0.9251

(both data used) and 0.9286 (VIX data used). There is a sizable decrease of the

parameter value α1 from 0.0886 (return data used) to 0.0474 (both data used) and
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0.0456 (VIX data used). Comparing the maximum likelihood result of the model

under the GRNVR and the results under the LRNVR, we can see that the maximum

likelihood value increases significantly from 54697 to 55921 (both data used) and from

33424 to 33662 (VIX data used).

Similar numerical results are also observed in the other types of GARCH models

as displayed in Tables 2-4. Specifically, Table 2 shows that the equity risk premium λ1

increases significantly from 0.0131 (return data used) to 0.1160 (both data used) and

0.0889 (VIX data used) in the TGARCH(1,1) model when the CBOE VIX data is used

for calibration. The variance risk premium λ2 is negative and significantly different

from zero as -0.4412 (both data used) and -0.3978 (VIX data used). The persistence of

conditional variance, β1 increases significantly from 0.8338 (return data used) to 0.9561

(both data used) and 0.9553 (VIX data used). There is a decrease of the parameter

value α1 from 0.0256 (return data used) to 0.0091 (both data used) and 0.0060 (VIX

data used). Comparing the maximum likelihood result of the TGARCH(1,1) model

under the GRNVR and the results under the LRNVR, we can see that the maximum

likelihood value increases significantly from 55455 to 56282 (both data used) and from

33468 to 33795 (VIX data used).

Table 3 shows calibration results of the AGARCH(1,1) model using both returns

and VIX data. If using VIX data only, it is not easy to distinguish the parameters θ

and λ1. Therefore, the numerical results using VIX data are not displayed in the table.

From Table 3 we observe that the equity risk premium λ1 increases significantly from
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0.0255 (return data used) to 0.1158 (both data used) in the AGARCH(1,1) model when

the CBOE VIX data and returns used for calibration. The variance risk premium λ2

is negative and significantly different from zero as -0.3125 (both data used). The per-

sistence of conditional variance, β1 increases from 0.8810 (return data used) to 0.9316

(both data used). There is a big decrease of the parameter value α1 from 0.0841 (return

data used) to 0.0380 (both data used). Comparing the maximum likelihood result of

the AGARCH(1,1) model under the GRNVR and the results under the LRNVR, we

can see that the maximum likelihood value increases significantly from 55483 to 56333

(both data used).

Table 4 shows that in the EGARCH(1,1) model the variance risk premium λ2 is

negative as -0.0567 (both data used) and -0.0483 (VIX data used), both significantly

different than zero. The persistence of conditional variance, β1 increases slightly from

0.9792 (return data used) to 0.9906 (both data used) and 0.9891 (VIX data used). Com-

paring the maximum likelihood result of the EGARCH(1,1) model under the GRNVR

and the results under the LRNVR, we can see that the maximum likelihood value in-

creases significantly from 56399 to 57105 (both data used) and from 33774 to 34303

(VIX data used).

From the comparisons in the GARCH, TGARCH, AGARCH and EGARCHmodels,

we see that the maximum likelihood results under the GRNVR are generally better

than those under the LRNVR. Table 5 measures how the implied VIX fits the CBOE

VIX by computing a list of statistics and the results demonstrate that the implied VIX
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under GRNVR fits the CBOE quite well.

After obtaining the estimates of the parameters in the models, we can then calculate

the conditional variance ht and compute the corresponding GARCH implied VIX.

Figure 1 shows the time series of the CBOE VIX and the implied VIX of the four

GARCH models estimated using returns only. Figure 2 shows the time series of the

CBOE VIX and the implied VIX of the GARCH(1,1) model estimated using VIX data

only. Figure 3 shows the time series of the CBOE VIX and the implied VIX of the

GARCH(1,1) model estimated using both returns and VIX. Similar comparison plots

are obtained for other GARCH models. Specifically, the time series of the CBOE VIX

and the implied VIX of the TGARCH(1,1) model estimated with VIX data only are

displayed in Figure 4. The time series of the CBOE VIX and the implied VIX of the

TGARCH(1,1) and AGARCH (1,1) model estimated with both returns and VIX data

are shown in Figure 5 and Figure 6, respectively. For the EGARCH(1,1) model, Figure

7 shows the comparison between the CBOE VIX and model implied VIX with VIX

data only, and Figure 8 displays the comparison between the CBOE VIX and model

implied VIX with both returns and VIX data. From the list of graphs, we observe that

the model implied VIX fits the CBOE VIX better under the GRNVR compared to the

LRNVR in general.
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6. Theoretical justification

Duan studied the bivariate diffusion limit of the GARCH(1,1) model as the length

of the time period tends towards zero in Duan (1996, 1997). Applying Duan’s argu-

ments, one can show that the limiting bivariate diffusion process of the approximating

GARCH(1, 1) process under the physical measure P is given by

d lnXt =

(
r − 1

2
ht + λ1

√
ht

)
dt+

√
htdW1t, (16)

dht = (α0 + (α1 + β1 − 1)ht)dt+
√
2α1htdW2t, (17)

= (α0 + (α1 + β∗
1 − 1)ht)dt+

√
2α1λ2htdt+

√
2α1htdW2t, (18)

where the persistence parameter of conditional variance is defined as β∗
1 = β1−

√
2α1λ2

under the GRNVR. The terms dW1t and dW2t are independent standard Brownian

motions under the physical measure P . The limiting bivariate diffusion under the

risk-neutral measure Q is a re-parameterization of Hull and White’s bivariate diffusion

model Hull and White (1987) as follows:

d lnXt =

(
r − 1

2
ht

)
dt+

√
htdZ1t (19)

dht = (α0 + (α1 + β∗
1 − 1)ht)dt+

√
2α1htdZ2t, (20)

where dZ1t = dW1t+λ1dt and dZ2t = dW2t+λ2dt are independent standard Brownian

motions under the GRNVR Q. Both equity risk premium λ1 and variance risk premium
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λ2 are present in the model under the risk-neutral measure Q. The discrete-time

GARCH(1, 1) process (3) corresponding to the limiting diffusion process under the

risk-neutral measure Q.

7. Conclusion

In this paper, we follow the GARCH option pricing framework of Duan (1995) and

propose a new way of changing from physical probability measure to risk-neutral prob-

ability measure. The new risk-neutral valuation is referred to as the GRNVR. The

advantage of the GRNVR compared to the LRNVR commonly used in the literature

Duan (1995); Hao and Zhang (2013); Wang et al. (2017) is that the variance risk pre-

mium is included in the risk-neutral dynamics under the GRNVR. The absence of

variance risk premium in the risk-neutral dynamics under the LRNVR is noted in Hao

and Zhang (2013), where it is shown that both empirical studies and theoretical results

indicated that the GARCH models under the LRNVR did not capture the variance

premium.

We then find the theoretical VIX squared value as the conditional risk-neutral ex-

pectation of the arithmetic mean variance over the next 21 trading days under the

GRNVR. Specifically, the GARCH implied VIX formulas are derived using the fea-

tures of square-root stochastic autoregressive volatility (SR-SARV) models. We apply

several calibration methods to estimate the model parameters using various sets of

time series data, and compare the theoretical formula performances with the market

21



data. Various combinations of time series of the daily closing price of S&P 500 in-

dex and the CBOE VIX are used to find the maximum likelihood estimation of the

GARCH models. The corresponding implied VIX time series are then calculated from

the calibrated model. Similar to the empirical evidences in Hao and Zhang (2013);

Wang et al. (2017), when only S&P 500 returns are used for estimation, the GARCH

implied VIX is consistently and significantly lower than the CBOE VIX. When the

CBOE VIX is used for estimation, the implied VIX fits the statistical properties of the

CBOE VIX and matches the CBOE VIX data better. The numerical results provide

evidences that the GARCH option pricing under the GRNVR is more suitable to price

volatility. In the case of GARCH(1,1), we compare the diffusion limit of the GARCH

process under the physical measure and the GRNVR risk-neutral measure to show that

variance premium is captured in the risk-neutral dynamics.
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Figure 1: Comparison between CBOE VIX and implied VIX using return data only
for four GARCH models.
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Figure 2: Comparison between CBOE VIX and implied VIX of the GARCH(1,1) model
using VIX data only with the upper panel showing the result under the GRNVR and
the lower panel showing the result under the LRNVR.
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Figure 3: Comparison between CBOE VIX and implied VIX of the GARCH(1,1) model
using both return and VIX data with the upper panel showing the result under the
GRNVR and the lower panel showing the result under the LRNVR.
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Figure 4: Comparison between CBOE VIX and implied VIX of the TGARCH(1,1)
model using VIX data only with the upper panel showing the result under the GRNVR
and the lower panel showing the result under the LRNVR.
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Figure 5: Comparison between CBOE VIX and implied VIX of the TGARCH(1,1)
model using both return and VIX data with the upper panel showing the result under
the GRNVR and the lower panel showing the result under the LRNVR.
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Figure 6: Comparison between CBOE VIX and implied VIX of the AGARCH(1,1)
model using both return and VIX data with the upper panel showing the result under
the GRNVR and the lower panel showing the result under the LRNVR.
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Figure 7: Comparison between CBOE VIX and implied VIX of the EGARCH(1,1)
model using VIX data only with the upper panel showing the result under the GRNVR
and the lower panel showing the result under the LRNVR.
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Figure 8: Comparison between CBOE VIX and implied VIX of the EGARCH(1,1)
model using both return and VIX data with the upper panel showing the result under
the GRNVR and the lower panel showing the result under the LRNVR.
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